
Università degli Studi di Milano-Bicocca

FACOLTÀ DI SCIENZE STATISTICHE

Corso di Dottorato di Ricerca in Statistica XXIII ciclo

TESI DI DOTTORATO DI RICERCA

Population strati�cation in genome-wide
association studies: comparison between

multivariate analysis methods for dimensionality
reduction

Relatore: Candidato:
Prof Piergiorgio Lovaglio Cristina Menni
Correlatore: Matricola:
Dott.ssa Nadia Solaro 078763

Anno Accademico 2009-2010



Acknowledgements

I would like to thank several people for their contributions towards this thesis.

First of all I would like to thank Sandosh Padmanabhan and the BHF Glasgow

Cardiovascular Research Centre for introducing me to statistical genetics and

for giving me the opportunity to work on genome-wide association data. I would

also like to thank Sandosh for guiding me through most of the research I have

undertaken during the last four years.

I am grateful to Nadia Solaro for supporting me from a statistical perspective

and for her numerous suggestions, comments and insights towards the innovative

part of this work.

I would also like to thank my colleagues Luisa Foco, Roberta Pastorino and

Daniela Cianci for their many useful comments and discussions and for taking

the time to proofread this thesis. Thanks also to Luisa Bernardinelli for her

help and guidance throughout my PhD, to Vincenzo Bagnardi for his numerous

suggestions, and to Giancarlo Cesana for his constant support. I am also grateful

to Daniele Della�ore and Roberto Zanotti for helping me solve practical software

issues; and I thank Alessandra Bianchi and Pia Pozzi for their help to solve any

administrational issue that has come up.

Further, I would like the thank all the PhD students in the Statistics group at

the University of Milano-Bicocca, especially Viviana Amati and Isabella Romeo

for many useful conversations; and Daniele Riggi for his help with the more

practical issues.

On a more personal note, I am extremely grateful to my family, Nicolò, and

my friends for their support and encouragement.

i



Contents

List of Abbreviations viii

Genetic Glossary xi

Introduction 1

1 Background 7

1.1 Basic Genetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.1 DNA, transcription and translation . . . . . . . . . . . . . 8

1.1.2 Alleles, haplotype, genotype and phenotype . . . . . . . 11

1.1.3 Meiosis and recombination . . . . . . . . . . . . . . . . . 11

1.1.4 Polymorphisms and mutations . . . . . . . . . . . . . . . 12

1.1.5 Mendelian genetics . . . . . . . . . . . . . . . . . . . . . . 15

1.1.6 Hardy-Weinberg equilibrium . . . . . . . . . . . . . . . . 15

1.2 Common complex diseases . . . . . . . . . . . . . . . . . . . . . . 16

1.3 Population genetics . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3.1 Linkage versus association . . . . . . . . . . . . . . . . . . 18

1.4 Hypertension and genome-wide association studies . . . . . . . . 20

1.4.1 Evidence of a genetic component for hypertension . . . . 20

1.4.2 Linkage and candidate gene studies in hypertension . . . 21

1.4.3 The case for hypertension genome-wide association study 23

1.4.4 Designing a genome-wide association study for hypertension 25

1.4.5 Phenotyping of subjects . . . . . . . . . . . . . . . . . . . 27

1.4.6 Analysis issues in genome-wide association studies . . . . 27

1.5 Genome-wide association study of blood pressure extremes . . . 29

1.5.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.5.1.1 Study design for the discovery cohort . . . . . . 30

ii



CONTENTS iii

1.5.1.2 Validation cohorts . . . . . . . . . . . . . . . . . 30

1.5.1.3 Clinical functional studies . . . . . . . . . . . . 31

1.5.1.4 Urinary uromodulin measurements . . . . . . . . 32

1.5.1.5 Genotyping and quality control . . . . . . . . . 32

1.5.1.6 Statistical analysis . . . . . . . . . . . . . . . . . 33

1.5.1.7 Validation analysis . . . . . . . . . . . . . . . . . 33

1.5.1.8 Continuous blood pressure trait modelling . . . 34

1.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.5.2.1 Genome-wide association, replication and meta-

analysis . . . . . . . . . . . . . . . . . . . . . . 34

1.5.2.2 Clinical functional studies . . . . . . . . . . . . . 37

1.5.2.3 Cardiovascular outcomes and rs13333226 . . . . 43

1.5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

1.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2 Multivariate methods to correct for strati�cation 49

2.1 Genomic Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.2 Structured association . . . . . . . . . . . . . . . . . . . . . . . . 53

2.2.1 Phase 1: STRUCTURE . . . . . . . . . . . . . . . . . . . 53

2.2.2 Phase II: STRAT . . . . . . . . . . . . . . . . . . . . . . . 55

2.3 Principal components analysis . . . . . . . . . . . . . . . . . . . . 55

2.4 Propensity scores . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3 Multivariate methods for non-metric or mixed data 62

3.1 The Gi� System . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.1.1 Homogeneity analysis . . . . . . . . . . . . . . . . . . . . 63

3.1.2 Nonlinear principal components analysis . . . . . . . . . . 70

3.1.3 Algorithmic implementation . . . . . . . . . . . . . . . . . 74

3.1.3.1 SAS procedure for PRINCALS . . . . . . . . . . 75

3.2 Procrustes analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.2.1 Algorithmic implementation in R . . . . . . . . . . . . . . 82

4 Comparison between linear and non-linear principal compo-

nents analysis to correct for strati�cation 83

4.1 Description of the data matrix . . . . . . . . . . . . . . . . . . . 84

4.1.1 Individual selection . . . . . . . . . . . . . . . . . . . . . . 86

4.1.2 SNPs selection . . . . . . . . . . . . . . . . . . . . . . . . 88



CONTENTS iv

4.2 Application of PCA to the sample dataset . . . . . . . . . . . . . 88

4.3 Application of the PRINCALS method . . . . . . . . . . . . . . . 89

4.3.1 Phase 1: proc prinqual . . . . . . . . . . . . . . . . . . . . 89

4.3.2 Phase 2. Extracting the dimensions . . . . . . . . . . . . 90

4.4 Comparison of PCA and PRINCALS: graphical representation . 91

4.5 Comparison of PCA and PRINCALS: Procrustes and PROTEST 95

4.6 Comparison of PCA and PRINCALS: Genomic Control . . . . . 103

4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.8 R script to extract eigenvectors . . . . . . . . . . . . . . . . . . . 106

Conclusion 111

A Matrix Algebra 113

B Java Script to recode SNPs and transpose the data matrix 120

Bibliography 127



List of Figures

1.1 Chromosome. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Human diploid chromosomes. . . . . . . . . . . . . . . . . . . . . 8

1.3 DNA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Transcription and translation. . . . . . . . . . . . . . . . . . . . . 10

1.5 Crossing over. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.6 Model of linkage disequilibrium mapping based on SNP genotyping. 13

1.7 Hypertension related loci across the genome . . . . . . . . . . . . 22

1.8 Dissecting the polygenic causation of hypertension using the genome-

wide association approach. . . . . . . . . . . . . . . . . . . . . . 24

1.9 Overview of association results in the discovery sample. . . . . . 35

1.10 QQ plot of observed versus expected p-value distributions. . . . . 36

1.11 Association plot of the genomic region around rs13333226. . . . . 36

1.12 Forest Plots of association with rs13333226 and hypertension. . . 39

1.13 UMOD rs13333226 genotype and response to high salt intake. . . 45

2.1 Population Structure. . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1 Bipartite graph of a toy example. . . . . . . . . . . . . . . . . . . 63

4.1 First and second axis of variation on 988 individuals and 405,402

SNPs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2 Second and third axis of variation on 988 individuals and 405,402

SNPs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.3 First and third axis of variation on 988 individuals and 405,402

SNPs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.4 Scree plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

v



LIST OF FIGURES vi

4.5 First and second axis of variation on 90 individuals and 1,000

random unlinked SNPs. . . . . . . . . . . . . . . . . . . . . . . . 92

4.6 Second and third axis of variation on 90 individuals and 1,000

random unlinked SNPs. . . . . . . . . . . . . . . . . . . . . . . . 93

4.7 First and third axis of variation on 90 individuals and 1,000 ran-

dom unlinked SNPs. . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.8 First principal component versus �rst dimension. . . . . . . . . . 96

4.9 Second principal component versus second dimension. . . . . . . 97

4.10 Third principal component versus third dimension. . . . . . . . . 98

4.11 Fourth principal component versus fourth dimension. . . . . . . . 99

4.12 Fifth principal component versus �fth dimension. . . . . . . . . . 100

4.13 Procrustes superimposition plot. . . . . . . . . . . . . . . . . . . 101

4.14 Procrustes ordination plot of the residuals. . . . . . . . . . . . . 102



List of Tables

1.1 Demographic characteristics of the discovery case-control popu-

lation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.2 Results from the meta-analysis of rs13333226 and hypertension

in discovery sample and after validation. . . . . . . . . . . . . . 38

1.3 Results from the meta-analysis of rs13333226 and hypertension

before and after adjustment for eGFR. . . . . . . . . . . . . . . . 40

1.4 Univariate association analysis of rs13333226 in 256 hypertensive

patients from the BRIGHT study. . . . . . . . . . . . . . . . . . 41

1.5 Univariate association analysis of rs13333226 in 110 participants

from the HERCULES Study. . . . . . . . . . . . . . . . . . . . . 42

1.6 Univariate association analysis of urinary uromodulin in relation

to rs13333226 polymorphism and response to high and low salt

intake (GRECO Study). . . . . . . . . . . . . . . . . . . . . . . . 44

2.1 Genotype distribution. . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.1 Options for the PRINQUAL procedure. . . . . . . . . . . . . . . 76

4.1 Ethnic distribution of the study sample. . . . . . . . . . . . . . . 85

4.2 Scenarios analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . 104

vii



List of Abbreviations

ALS: Alternating Least Squares.

ASW: African ancetry in Southwest USA.

BMI: Body Mass Index.

BP: Blood Pressure.

BRIGHT: British Genetics of Hypertension.

CDCV: Common Disease/ Common Variant.

CEU: Utah residents with Northern and Western European ancestry, CEPH

collection.

CHB: Han Chinese in Beijing, China.

CHD: Chinese in Metropolitan Denver, Colorado.

CI: Con�dence Interval.

CKD: Chronic Kidney Disease.

Cl: Chlorine.

CNV: Copy Number Variation.

CVD: Cardiovascular Diseases.

DBP: Diastolic Blood Pressure.

DNA: Deoxyribonucleic acid.

ECV: Extracellular Fluid Volume.

eGFR: Estimated Glomerular Filtration Rate.

FENa: Fractional Excretion of Sodium.

FTO: Fat mass and obesity associated.

GC: Genomic Control.

GCKD: Glomerulo Cystic Kidney Disease.

GIH: Gujarati Indians in Houston, Texas.

GPI: Glycosyphosphatidylinisitol.

GPS: Genomic Propensity Score.

GRECO: Groningen Renal Hemodynamic Cohort Study Group.

viii



LIST OF ABBREVIATIONS ix

GWA: Genome-wide association.

GWAS: Genome-wide association studies.

HERCULES: Hypertension Elevation by Rembler and Calciuria Level Study.

HOMALS: Homogeneity Analysis by Means of Alternating Least Square.

HS: High Salt.

HWE: Hardy�Weinberg Equilibrium.

IBS: Identity By State.

JPT: Japanese in Tokyo, Japan.

K: Potassium.

LD: Linkage Disequilibrium.

LS: Low Salt.

LWK: Luhya in Webuye, Kenya.

MAF: Minor Allele Frequency.

MCKD2: Medullary Cystic Kidney Disease.

MCMC: Markov Chain Monte Carlo.

MDC: Malmö Diet and Cancer study.

MEX: Mexican ancestry in Los Angeles, California.

MKK: Maasai in Kinyawa, Kenya.

MDRD: Modi�cation of Diet in Renal Disease study.

MDS: Multi-Dimensional Scaling.

MONICA: Monitoring Cardiovascular diseases.

MPP: Malmö Preventive Project.

mRNA: Messanger Ribonucleic acid.

Na: Sodium.

NESDA: The Netherlands Study of Depression and Anxiety.

NORDIL: Nordic Diltiazem study.

NLPCA: Non Linear Principal Components Analysis.

OR: Odds Ratio.

PAMELA: Pressioni Arteriose Monitorare E Loro Associazioni.

PC: Principal Component.

PCA: Principal Components Analysis.

PRA: Plasma Renin Activity.

PRINCALS: Principal Components Analysis by Means of Alternating Least

Squares.

PS: Population Strati�cation.

RAAS: Renin Angiotensin Aldosterone System.

RNA: Ribonucleic acid.



LIST OF ABBREVIATIONS x

SBP: Systolic Blood Pressure.

SLC12A1: solute carrier family 12 (sodium/potassium/chloride transporters).

SLC12A3: Solute carrier family 12 (sodium/chloride transporters).

SNP: Single Nucleotide Polymorphism.

STRAT: Structure population Association Test.

SSQ: Sum of Squares.

TAL: Ascending Limp of the Loop of Henle.

TDT: Transmission Disequilibrium Test.

THP: Tamm Horsfall Protein.

TSI: Toscani in Italia.

UMOD: Uromodulin.

YRI: Yoruba in Ibadan, Nigeria.

WTCCC: Wellcome Trust Case Control Consortium.



Genetic Glossary

Additive: A model for dominance in which the heterozygote is at intermediate

risk between the two homozygotes.

Allele: Di�erent version of the same gene at the same position on corresponding

chromosomes.

Amino acids: The building blocks of proteins.

Candidate gene: A gene whose location and biological function are already

known, which may be plausibly related to the phenotype under study.

Chromosome: Storage units of genes.

Coding region: A sequence of DNA that codes for a protein sequence.

Complex disease: A disorder that appears to have a genetic component with

no simple Mendelian pattern of single-gene inheritance; multiple genes and en-

vironmental factors appear to be involved.

Diploid: Most body cells containing two copies of the genome (one from the

father and one from the mother).

DNA: Deoxyribonucleic acid, which makes up genes and chromosomes, com-

posed of a double- stranded helix of nucleotides.

Dominance: The joint e�ect of the two copies of a gene in in�uencing the

phenotype probability.

Dominant: A model for dominance in which individuals with a single copy

a disease susceptibility allele have the same risk of disease as those with two

copies.

Exon: DNA coding sequence.

Gamete: Germ cell (sperm or egg).

Gene: The basic unit of genetic information.

Genome: Collection of genetic information.

Genome scan: The process of searching for a disease gene using widely space

markers scattered throughout the entire genome.

xi



GENETIC GLOSSARY xii

Genotype: The set of alleles at a particular locus.

Haploid: Cells containing one copy of the genome (e.g. sperm and unfertilised

eggs).

Haplotype: Allelic con�guration along a single chromosome.

HapMap project: A global consortium mapping all common SNPs in di�erent

populations across the world.

Hardy-Weinberg Equilibrium: A tendency for the population allele frequen-

cies to remain invariant across generations, with genotype probabilities that are

a particular function of the population allele frequency.

Heterozygote: An individual who carries two di�erent alleles for a particular

gene.

Homozygote: An individual who carries two identical copies of an allele for a

particular gene.

Intron: DNA non-coding sequence in a gene.

Linkage disequilibrium: A tendency for certain pairs of alleles at two linked

loci to be associated with each other in the population more often than would

be expected by chance.

Locus: Unique chromosomal location de�ning the position of an individual

gene or DNA sequence.

Marker: A polymorphic genomic feature whose physical location is known.

Meiosis: Cell division process that leads to the creation of sex cells or gametes.

Mutation: Rare genetic change.

Nucleotide: A nitrogenous base linked to a sugar (ribose or deoxyribose) and

a phosphate. Nucleotides are the building blocks for nucleic acids (DNA and

RNA).

Penetrance: Probability of a phenotype given a genotype.

Phenotype: The observable trait or disease status that may be in�uenced by

a genotype.

Polymorphism: A tendency for a gene to exist in more than one form (the

variant should be relatively common, i.e. present in at least 1% of the popula-

tion).

Recessive: A model for dominance in which individuals with only one copy of

the susceptibility allele have the same risk as those with none.

Recombination: The phenomenon in which genes from two di�erent homolo-

gous chromosomes are joined during meiosis.

RNA: A type of single stranded nucleic acid that serves as an intermediate

between genomic information (DNA) and its phenotypic expression (protein).



GENETIC GLOSSARY xiii

Single Nucleotide Polymorphism (SNP): A DNA sequence variation con-

sisting of a change in a single nucleotide.

Tag SNP: A representative SNP in a region of the genome with high linkage

disequilibrium.

Transcription: The �rst step in the conversion of genomic information to

protein. It is the process that copies genetic information from DNA to RNA.

Translation: The second step in conversion of genomic information to protein.

It is the process that copies genetic information from mRNA to protein.



Introduction

Common complex diseases have a multifactorial etiology arising as the result of

the interplay between many genetic factors and environmental exposure. Deter-

mination of the genetic variants involved in a particular disease should provide

new insights into susceptibility to the disease and will also have a major impact

on public health, improving prevention, diagnosis and treatment [1, 2, 3].

However, the enormous diversity within complex traits, not only in their

environmental determinants, but also in their genetic components of risk, means

speci�c genetic variants causally associated with common diseases will have

small e�ects [4, 5], and their identi�cation so far has been an uphill struggle

[6, 7, 8]. To succeed in �nding complex disease genes, a study must detect

a relatively weak statistical signal, and potentially, the choices made in study

design can have a dramatic impact on the probability of success [9].

The most common genetic variant studied in complex trait association is

single nucleotide polymorphism (SNP). This is a DNA sequence variation, oc-

curring when a single nucleotide, adenine (A), thymine (T), cytosine (C) or

guanine (G), in the genome sequence is altered. A variation must occur in at

least 1% of the population to be considered a SNP.

In the human genome, which consists of 3 billion nucleotide bases, SNPs

occur every 100 to 300 bases. As the coding region comprises only 5% of the

genome, most of the SNPs are found in regions that do not a�ect protein struc-

ture. If they occur in the coding regions, they may be synonymous, i.e. coding

for the same protein without any change in amino acid sequence. Thus, most

of the common SNPs might not be so informative. Amino acid altering coding

region, non-synonymous SNPs, are rare and are harder to be found because of

expected selection against them in human evolution.

Until recently, SNPs have been used in candidate gene association studies.

This approach involves the selection of candidate genes based on a mechanis-

1
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tic understanding of the roles of the encoded proteins in disease regulation, or

the location within a previously identi�ed region. However, this will at best

identify only a fraction of genetic risk factors even for diseases in which the

pathophysiology is well understood. To date, roughly 50 genes and their allelic

variants that contribute to complex diseases have been conclusively identi�ed

[10]. Now, emerging technologies are allowing researchers to study hundreds of

thousands of genetic variants as risk factors for common complex diseases, with

promising and exciting results [7, 11, 12, 13, 14, 15]. Genome-wide association

studies (GWAS) are large-scale association mapping using SNPs, making no

assumptions of the genomic location of the causal variant. They are a com-

prehensive approach to test the hypothesis that common alleles contribute to

heritable phenotype variation. GWAS are mostly case-control studies, where

SNP frequencies are compared between the two groups, and those that di�er

signi�cantly are then validated in independent samples. It is not yet technically

feasible to resequence every base on the genome or genotype the approximately

11 million currently known SNPs. However, the availability of genome-wide SNP

arrays that genotype 650,000 to 1,000,000 SNPs per sample and the availability

of linkage disequilibrium patterns on a genome-wide scale through the HapMap

project (a global consortium mapping all common SNPs in di�erent populations

across the world) [16, 17], make these studies possible. Such studies typically

measure sets of special DNA `tagging' SNPs identi�ed in the HapMap project,

enriched with non-synonymous SNPs, as well as SNPs in evolutionary conserved

regions of the genome. The genome-wide association approach thus represents

an unbiased, yet fairly comprehensive option that can be attempted even in the

absence of convincing evidence regarding the function or location of the causal

genes [18]. There are major statistical issues in GWAS to be overcome including

optimal study designs, population strati�cation, multiple testing, environment

and gene interactions, and the e�ect of epigenetics and structural chromosomal

variations.

Population strati�cation (PS) is a form of confounding that results by the

presence of a systematic di�erence in allele frequencies between cases and con-

trols due to di�erent ancestries rather than association of genes with disease.

Indeed, if the study population consists of subpopulations that di�er geneti-

cally, and if the disease of interest is at high frequency in one subpopulation,

we can expect to �nd such group over represented among the cases. Then any

marker allele at higher frequency in that subpopulation compared to the others

will appear to be associated with the disease, regardless of where it is in the
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genome [19]. PS is perhaps the most often cited reason for non replication of

genetic association studies, since undetected strati�cation can mimic the signal

of association and lead to more false positive �ndings or miss the real e�ects

[20].

Although a well designed case-control study attempts to draw cases and con-

trols from the same population, a hidden �ne-scale genetic substructure within

that single population cannot be ruled out. So, in the last few years, several

statistical methods were developed to account for PS so that association studies

could proceed even in the presence of structure. These methods use genotype

information either from a set of random markers or from a set of selected ances-

try informative markers and can be broadly classi�ed into three classes [21, 22]:

(i) genomic control [23]; (ii) structured association [24]; and (iii) principal com-

ponent methods and multidimensional scaling [25]. Recently, a propensity score

method has also been suggested [26]. No consensus, however, has been reached

as to which method is the best, even though, for GWAS data, principal compo-

nent analysis (PCA) represents a sort of �gold standard�, being easy to apply

and computationally feasible.

PCA uses genotype data to extract continuous (principal) axes of variation,

which can be used to adjust for association attributable to ancestry along each

axis. Under the assumption that markers are biallelic (e.g SNPs), each marker is

quanti�ed by �xing a reference and a variant allele and by counting the number

of mutations. Hence, an individual who is homozygous wild type will have

no variant alleles and will be assigned a value of zero; an individual who is

heterozygous will have one variant and one reference allele and will be assigned

a value of one; and an individual who is mutated homozygous will have two

variant alleles and will be assigned a value of two. Data can then be seen as

a large rectangular matrix of 0, 1 and 2 with rows indexed by individuals and

columns indexed by polymorphic markers. The PCA algorithm, introduced for

GWAS data by Price and collegues [25, 27] and implemented in the software

EIGENSTRAT, involves the calculation of the eigenvalue decomposition of the

data covariance matrix of the individuals, after mean centring and normalising

the data for each attribute. It is important to notice that the covariance matrix

is performed on the individuals, rather than on the markers, and hence its

dimension will be equal to the number of samples in the dataset. The reason

for this is that we are chie�y interested in the situation where the number of

individuals is considerably less than the number of markers. Axes of variation

(eigenvectors) are then used as covariates in the multilinear regression model.
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Besides its computational merits, there are various pros to the use of PCA.

It has been shown that its performance is very stable under various strati�cation

levels in terms of power, type 1 error rates, accuracy, and positive prediction

values [28]. However, PCA rests upon the assumption that the variables under

study are continuous and SNPs are therefore quanti�ed as previously explained.

Counting the number of mutations for each marker and recoding genotypic data

into 0, 1 and 2 assumes that the distance between homozygous wild type and

heterozygous is the same as the distance between heterozygous and homozygous

mutant and hence it assumes an additive model of inheritance. This model is

the most conservative, it is very static and moreover it is not necessarily the

correct one.

Our approach is to treat SNPs as ordinal qualitative variables. This means

that we agree that there is an order between homozygous wild type, heterozy-

gous and homozygous mutant, but that the distance between each pair is not

necessarily the same. As we no longer assume a model of inheritance, we believe

that our approach is more �exible and can potentially capture some information

which linear PCA misses out.

We apply a multivariate technique to reduce dimensionality in the presence

of non-metric data known as non linear principal components analysis (NLPCA,

also known as PRINCALS: Principal components analysis by means of alternat-

ing least squares) and introduced by Gi� as derived from homogeneity analysis

with restrictions [29, 30]. We apply both PCA and PRINCALS to a sample

dataset of 90 individuals belonging to three very distinct subpopulations and

1,000 randomly chosen uncorrelated SNPs and compare the results graphically,

using Procrustean superimposition approach and the test Protest and �nally

with a scenarios analysis.
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The plan of the thesis can be summarised as follows. Chapter 1 begins with a

brief excursus on the principles of human genetics which are required for a better

comprehension of this work. It then contains a general overview of genetic epi-

demiology with particular focus on genome-wide association studies and hyper-

tension as an example of complex disease. The chapter ends with the description,

results and scienti�c issues which were encountered in a personal experience with

genome-wide association studies. In the context of the InGenious HyperCare

Network, the University of Glasgow (where I am an honorary research assis-

tant) and the Istituto Auxologico Italiano carried out a case-control study of

two large groups of extremely well phenotyped hypertensive cases and fully nor-

motensive controls, using SNP-based genome-wide analyses (610K chip). This

study evaluated 1,621 cases chosen among the hypertensive patients recruited

in Sweden for the NORDIL trial, and 1,699 fully normotensive controls chosen

among the subjects enrolled in the Malmo Diet and Cancer (MDC) study. We

identi�ed a locus on chromosome 16 in the 5′ region of the uromodulin gene

and were able to validate this result in an additional 19,845 cases and 16,541

controls (UMOD; rs13333226, combined p-value of 3.6 x 10−11). When we �rst

analysed the Swedish discovery sample, we encountered a lot of strati�cation

and this was the starting point for this work.

Chapter 2 is dedicated to the description of the most used methods to cor-

rect for population strati�cation. Particular emphasis is given to PCA which

represents a �gold standard� for GWAS.

Chapter 3 describes Gi�' s system for multivariate dimensionality reduction

in the presence of qualitative or mixed data with particular attention to homo-

geneity analysis and PRINCALS. Also the goodness of �t measure Procrustes

and the test Protest are presented. Procrustes rotation can be used to com-

pare two data matrices and the test Protest tests matrix association using a

correlation like statistic derived from the Procrustes sum of squares.

Chapter 4 contains the application of PCA and PRINCALS to a sam-

ple dataset consisting of 90 individuals drawn from three ethnically distinct

HapMap populations (30 Caucasian Europeans, 30 Chinese from Beijing, China,

30 Yoruba from Ibadan, Nigeria) and 1,000 random SNPs not in LD to de-

tect and correct for PS. PCA is applied using an R algorithm that mimics

the EIGENSTRAT software, while we use SAS proc prinqual followed by the

same R algorithm for PRINCALS. The sample dataset is described with par-

ticular emphasis on individuals and SNPs selection. Results obtained with the

two di�erent approaches are compared graphically, then by mean of the Pro-
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crustean superimposition approach and by the test Protest. Finally we perform

a scenarios analysis. By randomly allocating the case/control label to generate

structure, we calculate genomic control �rst on the raw data and then adjusting

respectively for the �rst three axis of variation obtained with PCA and for the

�rst three axis of variation obtained with PRINCALS. We compare the magni-

tude of genomic control in the three cases. We consider 10 di�erent scenarios

each with a di�erent level of PS.

The thesis ends with a summary of some basic linear matrix algebra in-

strumental for a better understanding of Chapter 2 and 3 and a Java script to

prepare the data matrix for the R algorithm. These are presented, respectively,

in appendices A, and B.



Chapter 1

Background

1.1 Basic Genetics

A brief summary of the principle of molecular biology on which the phenomena

of transmission of genes are based, is now given [31, 32, 33, 34]. Those familiar

with human genetics may wish to skip this section.

A gene is the basic unit of genetic information, which determines the in-

herited characters. The genome is the collection of genetic information and

chromosomes are storage units of genes (Figure 1.1). A locus is a unique chro-

mosomal location de�ning the position of an individual gene or DNA sequence.

The human genome consists of 23 pairs of chromosomes: 22 pairs of auto-

somes (numbered 1-22) and 1 sex chromosome pair (XX or XY). Somatic cells

are termed diploid as they contain two copies of the genome � one from the

Figure 1.1: Chromosome.

7



1. BACKGROUND 8

Figure 1.2: Human diploid chromosomes.

father and one from the mother. Germ cells such as sperm or unfertilised egg

cells which, by contrast, contain only one copy of the genome, are said to be

haploid (Figure 1.2 ).

One chromosome in each of the 22 homologues pairs is derived from the

mother and one from the father, and the two homologues have the same sequence

of genes in the same position, but usually exhibit sequence variation at several

loci and can therefore be distinguished.

1.1.1 DNA, transcription and translation

The human genome is made up of DNA which consists of a long sequence of

nucleotide bases of four types: adenine (A), cytosine (C), guanine (G), thymine

(T). Strong covalent bonds bind bases together along a single strand, and weaker

hydrogen bonds pair A with T and C with G between the two strands. Each

single strand has two di�erent ends, 5′ and 3′, oriented in opposite directions

(Figure 1.3).

In the nucleus, DNA is double stranded. Double stranded DNA is replicated

by the breakage of two strands and construction of a new complementary strand

for each, resulting in two identical copies of the original. The code is embodied

in the sequence of bases along the DNA strand of the gene: a set of three bases

(known as a codon) speci�es an amino acid. Some amino acids are speci�ed by

more than one codon, and some codons stand for `stop' signals indicating the

end of the protein. The protein-coding sequence of most genes is interrupted by

non-coding sequences called introns; the protein-coding sections are called exons.
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Figure 1.3: DNA.
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Figure 1.4: Transcription and translation.

Genes also contain regulatory sequences (usually located outside the coding

region) that control whether and when that protein is made. Every cell in the

body contains a complete set of DNA instructions for all the millions of di�erent

proteins the body needs. The human genome contains 3 billion base pairs and

22-25,000 genes, which represent no more than a few per cent of the total DNA

sequence. The functions of the remaining `junk' DNA are largely unknown.

The discrepancy between the number of genes and the number of proteins is

explained partly by mechanisms such as alternative splicing, where di�erent

combinations of exons within the same DNA sequence encode di�erent proteins,

and partly by production of proteins with di�erent functional properties by

variations in post-transcriptional and post-translational processing.

A single strand of DNA can also act as a template for a complementary

strand of RNA. This transcription RNA is similar to DNA, but T is replaced by

U (uracil) and deoxyribose is replaced by ribose. In certain regions of the DNA

(genes), transcribed RNA encodes instructions that tell the cell how to assemble

amino acids to make proteins. Most genes contain alternating regions, called

exons and introns. The RNA that is transcribed is complementary to the whole

gene (exons and introns). Mature messanger RNA, mRNA, is then created

by post-transcriptional processing, which cuts out the introns and splices the

exonic elements to produce mRNA which codes for proteins. The production

of protein via mRNA is called translation (Figure 1.4). It is mainly through

altered protein functions that changes in DNA a�ect health and disease.
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1.1.2 Alleles, haplotype, genotype and phenotype

Di�erent versions of the same gene at the same position on corresponding chro-

mosomes (i.e. at the same genetic locus) are known as alleles. Everyone has

two alleles of each gene in their autosomes, one inherited from their mother and

the other from their father. Presence of two copies of the same allele at a locus

means they are homozygous for that allele. Presence of di�erent alleles at one

locus means that they are heterozygous for that allele. The allelic con�gura-

tion along a single chromosome is called a haplotype. The set of alleles at a

particular locus is de�ned as the genotype at that locus. The genotype of an

individual remains unchanged throughout its life, regardless of the environment

surrounding and a�ecting it. On the other hand, the phenotype of an individual

is the set of observable characteristics (e.g. its total physical appearance and

constitution or a speci�c manifestation of a trait, such as size, eye colour, or

behaviour). The phenotype is the result of the interaction between the genotype

and environmental factors and varies between individuals.

1.1.3 Meiosis and recombination

When sex cells or gametes (sperm or eggs) are produced, by a special cell di-

vision mechanism called meiosis, the genetic complement must be halved. Two

sequential divisions produce four gametes, each containing only one represen-

tative of each homologous pair plus one sex chromosome. Fertilisation then

restores the full chromosome complement.

During the �rst division of meiosis, the members of each homologous pair

separate (or `segregate') to the two resulting cells independently of the members

of any other pair, so that the 23 chromosomes in the di�erent gametes produced

by an individual represent di�erent assortments of the original 46. This is an

important source of variation that results from sexual reproduction. Variation

also results from a process called crossing over and recombination (Figure 1.5).

During the �rst division of meiosis, homologous chromosomes can swap portions

of their DNA, which means that the chromosomes in the gametes may contain

di�erent sets of alleles from the chromosomes of the individual who produced

them. There are typically one or two crossovers per chromosome during meio-

sis. It is possible to follow the inheritance of alleles down through generations.

Because of recombination and the independent segregation of chromosomes in

meiosis, most genes show inheritance patterns that are independent of the pat-

terns shown by other genes. For example, the genes determining eye colour is
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Figure 1.5: Crossing over.

inherited independently of the genes determining shape of the ear lobes. How-

ever, genes that are close together on the same chromosome tend to be inherited

together from parent to o�spring more often than expected under independent

inheritance, as they are less frequently separated by recombination. The fre-

quency with which two genes are inherited together, or linked, depends on the

length of the DNA between the two genes: the longer the gap, the greater the

chance that recombination will separate them. Linkage between genes is the

basis of genetic mapping using patterns of inheritance to determine the relative

positions of genes on the chromosomes.

Another key concept in genetic epidemiology is linkage disequilibrium (LD).

LD is the non-random association of alleles at two or more loci on a chromo-

some and results in greater co-occurrence of two genetic markers on the same

chromosome in a population than would be expected for independent markers

(Figure 1.6). In short, linkage measures the co-segregation between a genetic

marker and a disease a�ection status in a pedigree, due to meiotic recombina-

tion events in the last 2�3 generations, while LD measures co-segregation in a

population (a very large pedigree extending back to the founders) resulting from

much earlier ancestral meiotic recombination events. In general, two loci in LD

are also linked, but the reverse is not always true [31, 35].

1.1.4 Polymorphisms and mutations

Despite the wide range of phenotypes observed in the human race, our DNA

has little variability. More than 99% of the nucleotides in the DNA are the
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Figure 1.6: Model of linkage disequilibrium mapping based on SNP genotyping.
Association is tested on a marker in LD with the disease allele. Correlation
between phenotype and the marker allele should indicate the presence of the
causative SNP in LD. However, the strength of the association is a�ected by
the presence of other factors that in�uence phenotype. The success on LD
mapping is determined by genotyping su�cient SNPs so as the capture all the
LD blocks in the genomic region and by minimising the e�ect of environmental
confounders and other causes of etiological heterogeneity (modi�ed from Weiss
and Terwilliger [36]).
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same in all humans. Those DNA locations that vary from person to person are

said to be polymorphic. Generally, the term `mutation' is used to refer to a

rare (present in less than 1% of the population) and deleterious genetic change,

whereas `polymorphism' refers to a normal variant (present in at least 1% of

the population).

The most common and most useful for many purposes type of polymorphism

is the single nucleotide polymorphism (SNP) which represents variation in a

single nucleotide (e.g. C to T or A to G) [37]. Each SNP has a �major� allele

and a �minor� allele based on their observed frequency in the general population.

As humans are diploid, at a chosen SNP, a person can have one of several

genotypes: homozygous for the major allele, heterozygous or homozygous for

the minor allele.

Other very useful markers are the DNA microsatellites, traditionally em-

ployed in linkage analysis. Microsatellites are short sequences of DNA (usually

one to six nucleotides) that repeat multiple times (usually 10 to 60 times).

Although SNPs are not as polymorphic as microsatellites, the abundance

of SNPs in the human genome and their potential to be genotyped in a large

scale, automated fashion makes them the best DNA-based markers for genetic

case-control studies [38]. Their abundance, however, does not guarantee that

the resulting genetic map is powerful for all disease association studies. Indeed,

many SNPs are correlated with one another making it di�cult to identify the

SNP that impacts the phenotype from the several SNPs associated with it [39,

40].

SNPs occur on average once every 100 to 300 base pairs in the human genome

[41, 42, 43]. It is expected that there are approximately 6 millions common

SNPs in the human genome, i.e. SNPs with a minor allele frequency ranging

from 5% to > 20%. Most of these do not occur in the coding region of genes

or even in genes [44], and of those that occur in the coding regions, even fewer

change an amino acid within a protein (�non-synonymous� SNPs) [42]. Non-

synonymous SNPs are the obvious suspects in causing a proportion of human

disease, but they do not account for all SNPs that can cause disease or disease

susceptibility. Indeed, other functional SNPs implicated in disease or disease

susceptibility include SNPs located in promoters [45], introns [46], splice sites

[47], intrageneic regions [46] and even synonymous SNPs [48]. These SNPs alter

the DNA sequence, but do not change the protein coding sequence as interpreted

at translation. Because of the redundancy in the code, several di�erent codes

specify the same amino acid.
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1.1.5 Mendelian genetics

The �rst coherent description of the inheritance of genes was presented by Gre-

gor Mendel in 1865, based on the breeding experiments with pea plants, which

he summarised in two principles.

1. Law of segregation: each individual carries two copies of each gene, one

inherited from each parent. Alleles at any given gene are transmitted

randomly and with equal probability.

2. Law of independent assortment: alleles of di�erent genes are transmitted

independently.

A third concept, distinct from the two basic Mendelian principles, but generally

considered part of the Mendelian framework, assumes that the expression of two

genes is independent of which parent they come from, that is, heterozygotes Dd

have the same penetrance (i.e. probability of a phenotype given the genotype)

irrespective of whether the D allele comes from the father and the d allele comes

from the mother or viceversa [33]. During gamete formation the segregation of

the alleles of one allelic pair is independent of the segregation of the alleles of

another allelic pair.

1.1.6 Hardy-Weinberg equilibrium

The Hardy�Weinberg principle states that both allele and genotype frequencies

in a population remain constant, i.e.they are in equilibrium, from generation to

generation under the following assumptions:

• Large population. The population must be large to minimise random

sampling errors.

• Random mating. There is no mating preference. For example an AA male

does not prefer an aa female.

• No mutation. The alleles must not change.

• No migration. Exchange of genes between the population and another

population must not occur. Most populations are relatively isolated with

some rare exchange of marriage partners between groups. It has been

shown that an average of one immigrant per generation is enough to keep

genetic drift partially at bay and to avoid complete �xation of alleles.



1. BACKGROUND 16

• No natural selection. Natural selection must not favour any particular

individual.

Let's consider a diallelic locus with alleles a and A with population frequencies

1-q and q respectively. Under HWE, the probabilities of the three possible

genotypes (aa, aA, AA) are ((1 − q)2, 2q(1-q), q2). Further, HW law states

that in non-homogeneous but randomly mating populations, these frequencies

are established in a single generation after mixing.

1.2 Common complex diseases

Common complex diseases such as cancer, diabetes and heart disease, arise as

a result of the interplay between many genetic factors and environmental ex-

posures, and impose a signi�cant health burden worldwide. Determination of

the genetic variants involved in a particular disease should provide new insights

into the susceptibility to the disease, disease progression and severity, leading to

novel pharmaceutical targets, with the ultimate goal of improving prevention,

diagnosis and treatment [1, 2, 3]. There is empirical evidence that speci�c ge-

netic variants causally associated with common diseases will have small e�ects

(risk ratios < 2.0). While individually these e�ect sizes are minor, the combina-

tion of even a few small e�ects, caused by less than 20 common genetic variants

could account [49] for a sizeable population attributable fraction of common

diseases and shed important light on etiopathogenesis. A complex interplay of

genetic and environmental factors likely accounts for the largest attributable

fraction of common diseases. Genetic variants with large e�ect sizes manifest

as Mendelian or single-gene disorders and account for only a small fraction of

cases. Tracing patterns of genetic segregation in families have been used suc-

cessfully in single-gene Mendelian diseases, but have provided little success in

the identi�cation of genes that underlie common complex traits.

To succeed in �nding complex disease genes, a study must detect a relatively

weak statistical signal, and choices in study design can potentially have a dra-

matic impact on the probability of success [9]. The key factors which determine

which study design would be most successful are the allelic architecture, their

frequencies and penetrances.

The common disease common variant hypothesis (CDCV) [50] holds that

the genetic variants underlying complex traits occur with a relatively high fre-

quency (> 1%), have undergone little or no selection in earlier populations and
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are likely to date back to more than 100,000 years ago. In contrast, the com-

mon disease rare variant hypothesis argues that diseases are common because

of highly prevalent environmental in�uences, not because of common disease

alleles in the population. The fact that the human population rapidly expanded

from a small founder pool over a short time [51, 52], and that disease-risk alleles

that were common in the founder population take a long time to be diluted

out by new alleles generated during population growth [49] support the CDCV

hypothesis. However, it is clear that environmental factors have an important

role in complex traits and the individual genetic variants associated with these

traits have low attributable risk. The CDCV model depends on the survival of

common risk alleles that are today capable of signi�cantly in�uencing health.

Mendelian disease (or monogenic disease) mutations on the other hand, are

highly penetrant and usually under very strong selection, which keeps them at

low frequencies with high levels of allelic heterogeneity (a form of genetic expres-

sion in which distinct mutant alleles at the same locus lead to the same disease

phenotype). Susceptibility variants involved in complex diseases seem to have

low or medium penetrance, and are probably not subject to such strong selection

resulting in lower allelic heterogeneity. Nevertheless, previous selection can also

be a factor in complex traits, since there is a case that several of the common

variants underlying disease today have increased within the last 5,000 years as

a result of selection. These variants may have exerted signi�cant phenotypic

e�ects in the past and hence are more likely to do so again today under changed

environmental circumstances. Selectively neutral alleles are a random selection

of variants arising throughout evolutionary history, the outcome of the evolu-

tionary processes of mutation, selection and random drift. It seems unlikely that

large numbers of these random, functionless events will signi�cantly in�uence

common disease traits. However, it is likely that some of these alleles will reach

intermediate frequencies of more than 5�10% and are likely to represent only a

small fraction of all the loci that are involved in disease susceptibility, but they

will contribute disproportionately to the total population risk [53]. These are

the loci amenable to mapping by association or linkage studies. The challenge of

complex disease mapping is that the marginal increase in risk due to the at-risk

genotype at a disease gene is quite small. The most common genetic variants

studied in complex trait association are SNPs.
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1.3 Population genetics

Population genetics is concerned with understanding patterns of genetic vari-

ation within and between populations. In particular, it seeks to delineate the

relative roles of factors such as mutation, recombination, selection, geographic

structure, migration and mate selection in contributing to genetic variation.

1.3.1 Linkage versus association

There are two broad classes of gene mapping methods: linkage and associa-

tion. The underlying idea of both methods is that a disease-predisposing allele

will pass from generation to generation together with variants at tightly-linked

marker alleles. Therefore, if the transmission across generations of a marker

allele is correlated with the transmission of the phenotype, it may be that the

marker is tightly linked with a locus at which a disease-predisposing allele has

arisen. If not, recombination should have broken down the correlation between

the marker allele and the phenotype.

Most common methods and data types are:

• Linkage methods

1. Parametric linkage: extended pedigree over multiple generations.

2. Nonparametric linkage: a�ected relative pairs.

• Association methods

1. Population-based: samples of unrelated cases and controls.

2. Family- based: e.g. trios of two una�ected parents and one a�ected

child

Linkage analysis is used to map genetic loci by use of observation of related

individuals (pedigree/family tree) and it thus require family data. Many gener-

ations and/or families are needed for there to be su�cient recombination events.

It can be di�cult to obtain and verify this type of data.

The terms parametric and nonparametric refer to whether or not the pene-

trance functions (i.e. probability of a phenotype given a genotype) need to be

speci�ed.

Linkage analysis is often the �rst stage in genetic investigation of a trait since

it can be used to identify broad genomic regions that may contain a disease gene,

even in the absence of previous biologically driven hypothesis [35].
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In population association methods, which are based on LD, comparisons

are made between unrelated individuals and so recombinations over perhaps

hundreds or thousands of generations can break down associations of pheno-

type with all but the most tightly-linked marker alleles, thus achieving ��ne�

mapping. Association di�ers from linkage in that the same allele (or alleles)

is associated with the phenotype in a similar manner across the whole popu-

lation, while linkage allows di�erent alleles to be associated with the trait in

di�erent families. Nevertheless, genetic association arises only because human

populations share common ancestry and association studies can thus be seen as

a special form of linkage studies where the extended family is the wider pop-

ulation [54]. Since the pedigree is not available in association methods, the

transmission of phenotype over generations cannot be traced and one must rely

on correlations of current phenotype with current marker alleles. Population-

association studies are mostly case-control studies, where SNP frequencies are

compared between the two groups. Those that di�er signi�cantly are then val-

idated in independent samples. With the advent of new technologies, it is now

possible to genotype hundred of thousand of genetic markers and genome-wide

association studies are emerging as they represent an unbiased, yet fairly com-

prehensive option that can be attempted in the absence of convincing evidence

regarding the function or location of the causal genes [18]. They are large-scale

association mapping using SNPs, making no assumptions of the genomic loca-

tion of the causal variant. They measure sets (typically 650,000 to 1,000,000) of

special DNA `tagging' SNPs identi�ed in the HapMap project [16, 17], enriched

with non-synonymous SNPs, as well as SNPs in evolutionary conserved regions

of the genome. Population association studies are the easiest and cheapest to

perform, but there is the risk of spurious association. Indeed, association does

not necessarily imply causation, but may re�ect either linkage to a nearby gene

(because of LD if a disease gene and a marker gene are closely linked, their

alleles may not be independently distributed in the population; i.e. carrier of

the disease allele may also be more likely to carry a particular marker allele) or

simply a spurious result due to some underlying strati�cation or admixture in

the population (see Chapter 2).

Family-based association methods exploit associations between the two par-

ents as well as the single generation transmission from parents to child: therefore

they are tests of both association and linkage making them insensitive to pop-

ulation structure. This type of studies, however, are more expensive and it can

be di�cult to collect family data.
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As the present work will deal with genome-wide association studies (GWAS)

and arises from a personal experience of GWAS in hypertension, the remaining

part of this chapter focuses on hypertension and GWAS. First, we outline where

genetic research in hypertension has arrived so far [55, 56]. Then, we present a

personal and positive experience of GWAS and hypertension [15].

1.4 Hypertension and genome-wide association

studies

The main determinants of blood pressure (BP), cardiac output and total periph-

eral resistance are controlled by a complex network of interacting pathways in-

volving renal, neural, endocrine, vascular and other mechanisms. Multiple genes

within each of these systems contribute to the specialised functions regulating

BP, and hence it is likely that many genes will participate in the development

of hypertension [6, 57, 58]. However, at present, it is not known whether the

inheritance of hypertension susceptibility in humans is attributable to variation

in a narrow or a large subset of these genes. Identifying the genes, and thus

causative mechanisms leading to hypertension, should aid the early diagnosis

and development of more speci�c targeted preventive measures. Knowledge of

the disease pathway and/or drug response pro�le will also help tailoring of ther-

apy to achieve optimal BP control and simultaneously reduce the �nancial and

personal costs of ine�ective or dangerous treatments.

1.4.1 Evidence of a genetic component for hypertension

The in�uence of genes on BP has been suggested by family studies demonstrat-

ing correlation of BP among siblings and between parents and children. BP

variability attributable to all genetic factors varies from 25% in pedigree studies

to 65% in twin studies [59, 60]. The heritability of systolic BP is around 15-40%

and 15-30% for diastolic BP, whereas the sibling recurrent risk of hypertension

is around 1.2-1.5, indicating a phenotype with modest genetic e�ect. From an

evolutionary perspective, hypertension is a disease of civilisation and may be an

undesirable pleiotropic e�ect of a preserved genotype that may have optimised

�tness in the ancient environment [61]. The rates of hypertension and sodium

sensitivity are generally higher in individuals carrying the ancestral alleles of

sodium-conserving genes, which show strong latitudinal clines with the ances-
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tral sodium-conserving alleles much more prevalent in African populations and

less so in the northern regions [62, 63, 64]. It is also hypothesised that the

renin�angiotensin�aldosterone (RAAS) system was initially adapted for sodium

conservation with modern civilisations facing detrimental e�ects even with its

normal state of activity and adapting by selection for lesser RAAS activity [65].

Genetic variants with large e�ect sizes manifest as Mendelian or single-gene

disorders with mutations in at least 10 genes known to cause hypertension or

hypotension, primarily by a�ecting renal tubular electrolyte transport functions

[59, 66]. However, these rare alleles account for less than 1% of human hyperten-

sion and have not been associated with common forms. Studies are ongoing to

determine whether other alleles of these genes, perhaps with smaller e�ects, are

involved in essential hypertension, with the WNK1 [67, 68] gene showing sug-

gestive association but, in general, there is an absence of unequivocal evidence

that this is the case.

1.4.2 Linkage and candidate gene studies in hypertension

Genome-wide linkage studies [69, 70, 71, 72, 8] with microsatellites have shown

evidence for existence of several chromosomal regions that are linked to BP or

hypertension on almost all chromosomes (see Figure 1.7).

Most of these studies, however, have not been replicated, and the main

reasons are the polygenic nature of hypertension involving possibly multiple

pleiotropic variants of low penetrance, epistasis, ethnic diversity of human pop-

ulations, phenotypic heterogeneity and the inability to control environmental

factors. The multiple linkage loci identi�ed especially in human chromosomes

1,2,3,17 and 18 with overlapping con�dence intervals indicate a low likelihood of

there being a single genomic region with a large e�ect on predisposition to hy-

pertension. In addition, linkage analysis has poor power for detecting common

alleles that have low penetrance.

The candidate gene association study approach involves the selection of can-

didate genes based on a mechanistic understanding of the roles of the encoded

proteins in BP regulation, or the location within a previously determined re-

gion of linkage. However, this will at best identify only a fraction of genetic

risk factors even for diseases in which the pathophysiology is relatively well un-

derstood. Candidate genes for hypertension fall into �ve broad categories: the

RAAS, adrenergic system, metabolism related genes and novel genetic pathways

including loci that encode growth factors, oxidative stress and in�ammatory re-



1. BACKGROUND 22

Figure 1.7: Hypertension related loci across the genome[6].

sponse [73]. Figure 1.8a shows the complex multifactorial interplay of genetic

and environmental factors in the causation of essential hypertension. Monogenic

forms of hypertension are completely genetically determined and are a rare cause

of hypertension in the general population . None of the candidate gene stud-

ies have so far shown reproducible associations with hypertension and we also

had a negative experience [74]. In collaboration with the BHF Glasgow Cardio-

vascular Research centre, we performed a gene-centric experiment with dense

tag SNP coverage including the �anking 10 kb regions of major cardiovascular

genes in the large accurately phenotyped Italian population Pressioni Arteriose

Monitorate E Loro Associazioni (PAMELA) [75] with clinic, home and ambu-

latory BP measures in all the participants. This design enabled us to compare

association signals in the same well powered sample for di�erent BP measure-

ment methods capturing all the information in the selected genes. However,

not only among the SNPs analysed none reached experiment-wide signi�cance

threshold for replication, but also we found no consistency in SNPs association

results between ambulatory, clinic and home BP readings. Moreover, evidence

of signi�cant sexual dimorphism emerged.
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The failure of candidate gene association studies to identify the genetic basis

of the common forms of hypertension suggests that there are several limitations

to this approach. First, the choice of candidate genes may be inappropriate.

Second, the causative genes might be either upstream of the points of action

or in the downstream signalling pathways of the selected candidates. Third,

the SNPs selected for association studies may provide incomplete coverage of

all the variants within the genes studied. Fourth, most studies are underpow-

ered and problems arise due to population strati�cation, phenotypic and locus

heterogeneity. Finally, candidate gene studies rely on prior hypotheses about

disease mechanisms, so that discovery of genetic variants in previously unknown

pathways is precluded.

1.4.3 The case for hypertension genome-wide association

study

There may be uncertainty about the extent of oligogenic versus polygenic in�u-

ences on hypertension, but few doubt that non-genetic factors play a major role.

There is evidence from modelling of complex diseases that neutral susceptibility

alleles contribute little and that alleles under weak selection may constitute the

bulk of the genetic variance of the underlying disease. This would indicate that

hypertension may be attributable to loci in which susceptibility mutations are

mildly deleterious and in which the overall mutation rate and hence allelic het-

erogeneity are relatively high [76]. As previously described, a large number of

genes are involved in the regulation of BP, resulting in hundreds of genes that

interact in di�erent combinations in di�erent individuals to in�uence hyperten-

sion. This high locus heterogeneity, in which more than one locus contributes to

disease, ampli�es the di�culty posed by allelic heterogeneity for successful hy-

pertension gene mapping. The most comprehensive analysis of candidate genes

(assuming that both common as well as rare alleles will contribute to hyperten-

sion) is obtained by resequencing the entire candidate gene regions in patients

and controls, and searching for a variant or set of variants that is enriched or

depleted in hypertensive patients. But these studies are laborious and expen-

sive and there are challenges in properly interpreting the results particularly

when considering rare non-coding variants. The recent surge in GWA studies

for complex diseases with replicated results of SNP association would suggest

that pursuing GWA approach for common variants is a valid strategy. Because

no assumptions are made about the genomic location of the causal variants,
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Figure 1.8: Dissecting the polygenic causation of hypertension using the genome-
wide association approach.
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this approach could exploit the strengths of association studies without having

to guess the identity of the causal genes. The crucial factors that have made

GWA studies possible are the availability of high throughput technologies, the

decreasing cost of genotyping and the determination of linkage disequilibrium

on a genome-wide scale through the HapMap project [77]. Such studies typ-

ically measure sets of special DNA tag SNPs selected from the catalogue of

common human genetic variations provided by the HapMap project [16], en-

riched with non-synonymous SNPs, as well as SNPs in evolutionarily conserved

regions of the genome. Most of these studies are case-control studies, in which

SNP frequencies are compared between the two groups, and those that di�er

signi�cantly are then validated in independent samples.

1.4.4 Designing a genome-wide association study for hy-

pertension

There are two main approaches to a GWA study. The direct or sequence-based

study design tests variants with known biological function located within all the

genes, whereas the indirect or map-based approach takes advantage of linkage

disequilibrium to genotype a set of tag SNPs as proxies for the entire set of SNPs.

The International HapMap Project [77] has information on more than 3.8 mil-

lion validated SNPs along with linkage disequilibrium between them, whereas

gene-based SNP discovery projects like Seattle SNPs Program for Genomic Ap-

plications (http://pga.gs.washington.edu/ ) have identi�ed SNPs in genes that

can be used for gene-centric approaches to GWA studies. For indirect GWA, one

can use quasi-random or anonymous SNPs that are spread across the genome

(A�ymetrix, Santa Clara, California, USA), or sets of linkage disequilibrium-

based tag SNPs that are speci�cally chosen to saturate the genome (Illumina,

San Diego, California, USA). For gene-centric GWA, one can use customised

candidate gene chips that provide comprehensive coverage of genes by including

both quasi-random or linkage disequilibrium tagging sets of SNPs and those

from resequencing data. Based on the results of recent GWA studies, both the

gene-centric and indirect map-based approaches can be successful.

Coverage is a measure of how well the SNPs that are part of a genotyp-

ing set capture all known variants and is an important factor not only in the

ability to capture all causal variants, but also in terms of power of the study.

The maximum r2 (squared correlation coe�cient for each SNP) can be used to

translate coverage to the sample size that is required for an indirect association
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study. For a particular variant, the e�ective sample size of an indirect associ-

ation study is simply the product of the actual sample size and the maximum

r2 value of the variant. So, as coverage decreases, a larger sample size will be

needed to obtain the same power. In turn, the overall power of a GWA study

can be estimated using the e�ective sample size for each variant [9, 78]. A gene-

centric approach requires much less genotyping than an indirect approach and

has increased power as a more liberal signi�cance level can be used re�ecting

the smaller number of tests. Additionally, it has been shown that, when half of

all the causal variants occur outside the genes, the gene-centric SNP approach

is more e�cient than whole-genome approaches [78], but, in general, it provides

little coverage of SNPs that lie outside genes. Indirect GWA studies on the

other hand can have higher overall power than gene-centric SNP studies, but

have lower power and coverage for genic SNPs than non-genic SNPs. For a

hypertension GWA, it would be reasonable to go for a combined approach by

enriching the indirect approach with genic SNPs so as to maximise coverage of

regions with a high prior probability of functional importance. A gene-centric

approach would be useful when dealing with less frequent phenotypes like drug

response, testing gene�gene interactions and for identi�cation of cis enhancers

in evolutionarily conserved regions [18, 9, 79].

As part of the Wellcome Trust Case Control Consortium (WTCCC) [7],

a GWA study for hypertension was performed using 2,000 patients and 3,000

common population controls using the A�ymetrix 500 K panel. This analysis

revealed no SNPs with signi�cance below 5 x 10−7, the genome-wide signi�cance

level of this experiment. However, the number and distribution of association

signals in the range 10−4-10−7 was similar to other diseases studied. The study

also did not detect any genes previously implicated by candidate gene association

studies. Various reasons have been proposed for this, including poor coverage

of many genes by the A�ymetrix chip used in this study. Importantly, the use

of common controls in this experiment may have caused signi�cant attrition in

power for hypertension (see Section1.4.5). Furthermore, it is highly plausible

that hypertension may have fewer common risk alleles of larger e�ect sizes than

other complex diseases, and genotype relative risks of less than 1.5 can only be

detected by studying larger cohorts of more than 6,000 patients and controls

(Figure 1.8d). Indeed, the thirteen loci very recently identi�ed as responsible

for BP control come from by two very large meta-analyses consortia [4, 80].
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1.4.5 Phenotyping of subjects

Most of the successful replicated association study results are in diseases in

which phenotyping speci�city is increased with maximum attention to subject

characterisation and selection eliminating much of the background noise from

non-genetic factors. This reduces genetic heterogeneity and thus increases the

chance of success. The Medical Research Council funded British Genetics of Hy-

pertension (MRC BRIGHT) study [69] attempted to increase detectance (the

probability of carrying any particular susceptibility genotype, given that the in-

dividual has a particular disease or trait phenotype) of the disease locus by as-

certaining for disease severity and including only non-diabetic, non-obese hyper-

tensive patients whose BP was in the top 5% of the BP distribution in the UK.

Another method of reducing genetic and environmental heterogeneity is to use

intermediate phenotypes [81] such as endothelial function or anti-hypertensive

drug response [70] that may indicate shared underlying genetic mechanisms.

Of note, patients and controls should undergo the same phenotyping protocol

to establish both presence of disease in patients and also absence of disease in

controls. The value of phenotyping controls is all the more evident in the case

of negative results from the WTCCC GWA study of hypertension. It was esti-

mated that a 5% misclassi�cation of the common controls in this study would

result in a loss of power equivalent to sample size reduction of 10%. However,

the high prevalence of hypertension might have led to a much higher misclassi-

�cation bias [7].

1.4.6 Analysis issues in genome-wide association studies

Standard association analysis considers each genetic marker individually and

this can neglect information on their joint distribution. Haplotypes not only

allow multiple potentially causal variants to be tested simultaneously for asso-

ciation, but also they may be a proxy for untyped causal markers. However, for

haplotypes to be superior to the individual markers, at least at an initial screen,

multiple functional markers must have a strong interaction when in cis (i.e. on

the same chromosome) and yet have no detectable e�ect when considered in-

dividually. If multiple markers have detectable e�ects on their own, then it is

appropriate to test haplotypes for yet stronger e�ects. The penalty for multiple

tests required for adding haplotype-based tests is likely to be less severe when

the use of haplotypes is restricted to blocks of strong linkage disequilibrium with

low haplotype diversity [79, 82, 83, 84]. It is pertinent to point out here that
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the widespread adoption of tagging strategies diminishes the utility of haplotype

analyses. Gene�gene and gene�environment interactions are important factors

in hypertension causation. However, there are important power and multiple

testing factors to be considered. A 500 K SNP study would result in about 1011

and 1016 two and three SNP combinations respectively, and various strategies

to improve power and reduce the cost of computation and multiple testing have

been published [85, 86, 87]. But there is no simple method, and the advantages

and shortcomings of the analytic strategies should be considered in advance of

developing the experimental design of any study of interaction e�ects.

The other major statistical problem to be overcome is identifying a true

positive signal from a sea of false positives. Figure 1.8b shows that there is an

inverse relationship between the allele frequency of a contributory locus and its

phenotypic e�ect. Figure 1.8b is modi�ed from [5]. Alleles with small, interme-

diate and large e�ects are polygenes, oligogenes and major genes, respectively.

The sibling recurrent risk of hypertension is less than 1.5, indicating a phenotype

with modest genetic e�ect. Modi�ed from [23]. The common disease common

variant hypothesis (Figure 1.8c) in hypertension holds that the genetic variants

occur with a relatively high frequency (>1%). Locus heterogeneity is a major

problem in hypertension gene mapping. Mendelian or monogenic hypertension

mutations are highly penetrant, and usually under very strong selection, which

keeps them at low frequencies. Signi�cant thresholds of p-value less than 10−6

have been proposed for GWA owing to the need to allow for the very small

prior probability that any given locus or region is truly associated with dis-

ease. In the recent GWA studies, SNPs reaching a threshold of 5 x 10−7 have

been successfully replicated [7, 9, 79, 84]. The positive associations should help

future studies, as researchers can better understand statistical pro�les of gen-

uinely associated disease alleles, and this will enable the identi�cation of loci of

smaller e�ect that may contribute independently to disease. However, the gold

standard for any genotype�phenotype association is replication in independent

well-powered samples, and guidelines on this have recently been published [88].

Although replications are usually attempted in populations with the same an-

cestry as the initial study, extending this to populations of di�erent ancestry will

increase the con�dence of the �ndings while failure to replicate will not invali-

date the initial �nding, but may indicate a population-speci�c risk. Owing to

their robustness to population strati�cation, family-based studies can also serve

as valuable replication studies. Several rounds of replication may be needed to

establish a valid genotype�phenotype association [88].
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Most of the current GWA studies are probably underpowered to detect odds

ratios less than 1.5 and the requirement for larger sample sizes can be addressed

e�ciently by combining information from the di�erent studies performed on

the same disease. Figure 1.8d shows the needed sample size for a case�control

GWAS using 500,000 SNPs with 80% power for various odds ratios assuming an

equal number of patients and controls; prevalence=30%; p=5× 10−7. It would

be worthwhile considering a priori meta-analyses when designing a GWA for

hypertension, as the potential e�ect sizes are going to less than 1.3. Di�erences

in genotyping platforms between studies, population strati�cation, phenotype

misclassi�cation and between-study heterogeneity may a�ect the gain in power

o�ered by meta-analysis [89, 90]. A typical example is the association of fat

mass-associated gene and obesity-associated gene (FTO) with diabetes through

its e�ect on the correlated phenotype of obesity [7, 89]. The current trend to

make publicly available GWA datasets can o�set the problem of publication

bias.

1.5 Genome-wide association study of blood pres-

sure extremes

In this last section we outline a personal GWAS experience which takes place in

the context of the Ingenious HyperCare Network, in collaboration with the BHF

Glasgow Cardiovascular Research Centre and the Istituto Auxologico Italiano

[15].

As described in Section 1.4, statistical power to detect a phenotype-genotype

association is dependent upon the magnitude of e�ect, the frequency of causal

alleles and the sample size. The hunt for genes responsible for BP control has

so far identi�ed thirteen loci from two large meta-analyses consortia, with each

association explaining only a very small proportion of the total variation in

systolic or diastolic blood pressure (SBP or DBP; roughly 0.05�0.10%, approx-

imately 1 mmHg per allele SBP or 0.5 mmHg per allele DBP) [4, 80]. This

suggests the existence of more undiscovered blood pressure related common

variants. Cross-sectional studies of the general population have required ex-

tremely large sample sizes to detect such small e�ect sizes [7]. We explored

an alternative strategy to increase power, using cases and controls drawn from

the extremes of the BP distribution, and detected a novel locus associated with

hypertension. We then validated this association using large-scale population
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and case-control studies,where similar extreme criteria for selection of cases and

controls have been used. As the locus was related to uromodulin, a protein

exclusively expressed intra-renally, we tested for dependency of the association

on renal function (eGFR) and urinary excretion of uromodulin. Next, we tested

the hypothesis that the locus a�ects sodium homoeostasis by studying the ho-

moeostatic response to altered sodium intake. Finally, we tested associations

with cardiovascular outcomes.

1.5.1 Methods

1.5.1.1 Study design for the discovery cohort

To identify novel susceptibility loci for hypertension, we used an extreme ends

case-control design. Hypertensive cases had to have at least two consecutive

BP measurements of ≥ 160 mmHg systolic and ≥ 100 mmHg diastolic, with

the diagnosis made before age 63 years. We identi�ed 2,000 cases in the Nordic

Diltiazem study (NORDIL) [91]. These hypertensive subjects represent ap-

proximately the top 2% of the BP distribution in the Swedish population. 2,000

control subjects were drawn from the Malmö Diet and Cancer study (MDC)

[92] who had a SBP ≤ 120 mmHg and DBP ≤ 80 mmHg. Controls had to be

at least 50 years of age and free from cardiovascular events (coronary events

and stroke) during 10 years of follow up [93] and not on any anti-hypertensive

medication. Of the MDC population (n=27,000), 9.2% met these criteria and

thus selected subjects were hyper-controls with low cardiovascular risk. In both

NORDIL and MDC, BP was measured in the recumbent position after 5-10

minutes rest using a manual sphygmomanometer. Rigorously phenotyped sam-

ples minimise case/control misclassi�cation, and the potential advantage of an

extreme case/control design is greater power to detect variants associated with

BP and hypertension, for a given total sample size and total genotyping cost.

1.5.1.2 Validation cohorts

For the validation we used phenotypic de�nitions (extreme SBP/DBP thresh-

olds) to closely match our discovery samples. The BP criteria were slightly

modi�ed as most validation cohorts were general population cohorts. We iden-

ti�ed as cases individuals less than 60 years of age with SBP ≥ 140 mmHg

or DBP ≥ 90 mmHg or on current treatment with anti-hypertensive or on BP

lowering medication commenced before age 60 years. We called controls those
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with SBP ≤ 120 mmHg and DBP ≤ 80 mmHg, at least 50 years of age, and

free from any BP lowering medication. If age ≤ 50 years, then the criteria were

slightly modi�ed to SBP ≤ 115 mmHg and DBP ≤ 80 mmHg and free from BP

lowering medications. The validation cohorts were the MONItoring trends and

determinants of CArdiovascular diseases (MONICA) and the PAMELA study

(894 cases/746 controls) from Northern Italy [94, 95], 1956 cases/1057 controls

from the 2002-2006 follow-up exam of the Malmö Preventive Project (MPP)

[96] and 6977 cases/6891 controls from the Malmö Diet and Cancer study [97]

(MDC; non-overlapping with discovery samples), 509 cases/209 controls from

The Netherlands Study of Depression and Anxiety study (NESDA) [98] and ten

cohorts from a collaboration with the Global BPgen consortium [4]. Analyses

reported here are distinct from those previously published [4], because they use

phenotypic de�nitions to match our discovery samples. The combined sample

size of the discovery and validation cohorts is 39,706 individuals (21,466 cases

and 18,240 controls).

Estimated glomerular �ltration rate (eGFR) was calculated using the Mod-

i�cation of Diet in Renal Disease (MDRD) Study equation [99].

1.5.1.3 Clinical functional studies

We studied functional associations of the top SNP in a hypertensive cohort and a

population cohort with extensive urine phenotypes and one interventional study

of low and high salt intake with extensive measurements of sodium balance.

• The British Genetics of Hypertension (BRIGHT) study [69] is a hyper-

tension case-control study. Case inclusion criterion was a diagnosis of

hypertension (> 150/100 mmHg) prior to 50 years of age. Exclusion cri-

teria included BMI > 35, diabetes, secondary hypertension or co-existing

illness. 24-hour urine collection was available for all the cases with mea-

surements of urinary sodium, potassium, creatinine and microalbuminuria.

We measured urinary uromodulin in 256 hypertensive subjects.

• Groningen Renal Hemodynamic Cohort Study Group (GRECO): The

GRECO protocol comprises integrated measurement of renal hemodynam-

ics and extracellular volume as applied in an ongoing series of studies in

healthy subjects [100, 101]. For the current analysis 64 healthy adult

males were included (mean age = 23 years), who had been studied after

two seven-day periods: the �rst 7 days on a low sodium diet (LS, 50 mmol
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Na+ per day, balance veri�ed by repeated 24h urine), the second 7 days

on a high-sodium diet (HS, 200 mmol Na+ per day).

• Hypertension Evaluation by Remler and CalciUria LEvel Study (HER-

CULES) is a substudy of the population-based CoLaus study from Lau-

sanne Switzerland [102, 103]. A random sample of 411 CoLaus partic-

ipants, aged 38-78 years, underwent ambulatory BP monitoring and 24

hour urine collection. The phenotypes available include 24-hour urine

collection with measurement of creatinine clearance, endogenous lithium

clearance, urinary sodium, potassium and uric acid excretion and microal-

buminuria. We measured urinary uromodulin in 110 participants of this

study.

1.5.1.4 Urinary uromodulin measurements

Urinary uromodulin was measured in duplicate in 24 hour urine samples us-

ing a commercially available ELISA (MD Biosciences, Zürich, Switzerland) as

recommended by the manufacturer. The range of assay is 9.375 - 150 ng/mL

and sensitivity <5.50 ng/mL. The inter-assay coe�cient of variation was 11.9%.

Urinary uromodulin levels were corrected for urine creatinine before analysis.

1.5.1.5 Genotyping and quality control

The GWAS samples were genotyped using Illumina 550K Single and Illumina

610 Quad V1 BeadChip (Illumina, Inc., San Diego, CA, USA). We included

551,629 SNPs common to both the Single and Quad chips, for analysis. SNPs

with a minor allele frequency (MAF) <1% or in signi�cant Hardy-Weinberg dis-

equilibrium (P <1x10−7) in pooled samples were removed leaving 521,220 SNPs

for analysis. We assessed population structure within the data using principal

components analysis as implemented in EIGENSTRAT [25] to infer continu-

ous axes of genetic variation. After data quality control for unspeci�ed sex

(5 subjects removed), relatedness/duplicates (68 individuals removed), multi-

dimensional scaling plot outliers (33 individuals removed), genetic outliers (i.e.

individuals whose ancestry is at least 6 s.d. from the mean on one of the top

ten axes of variation on principal component analysis- 388 individuals removed)

and genotyping success of <95% (92 individuals removed), genotype informa-

tion from 1,621 cases and 1,699 controls (1,510 males and 1,810 females) was

available for analysis. Untyped SNPs were imputed using IMPUTE v1 24 with
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data from the August 2009 release of CEU phased haplotypes from Pilot 1 of

the 1000 Genomes Project NCBI Build 36 (dbSNP b126) as the reference panel

(from https://mathgen.stats.ox.ac.uk/impute/impute_v1.html). The probabil-

ity threshold used for calling an imputed genotype was 0.9. Association analysis

was performed using Plink [104] and SNPTEST [105] taking into account un-

certainty in imputation.

1.5.1.6 Statistical analysis

In the GWAS samples, we tested each SNP for association using an additive

genetic model. The model implies that a given allele at a given locus adds a

constant to, or subtracts a constant from, the expected value of the trait. The

amount added or subtracted varies in an unknown way from allele to allele and

from locus to locus. The additive model will usually capture much of the etio-

logical information tat can reasonably be explained by genes [31]) and logistic

regression with adjustment for signi�cant ancestry principal components [25] to

correct for population strati�cation. There was still a slight overall in�ation of

test statistics, with a genomic control in�ation factor (λ) of 1.07. All results

are presented after application of genomic control to correct for this residual in-

�ation [23]. Additionally two logistic regression analyses were performed, with

adjustment for age, age2, sex and BMI and with adjustment for age, age2, sex,

BMI and eGFR. Multiple linear regression was used to test association between

genotype and urinary uromodulin levels, functional parameters like GFR, ex-

tracellular volume etc. with relevant covariates. In the GRECO study, as the

numbers of GG genotypes were small, AG and GG were combined for analysis.

Non-normally distributed traits were tested using the non-parametric Kruskal

Wallis test.

1.5.1.7 Validation analysis

In validation samples, SNPs were tested for association using logistic regression,

with adjustment for ancestry principal components where available to correct

for population strati�cation. Meta-analysis of the combined discovery and val-

idation results was conducted using an inverse-variance weighted (�xed-e�ects)

meta-analysis.

A genome-wide signi�cance threshold of 5x10�8 corresponding to a P value of

0.05 with a Bonferroni correction for 1 million independent tests was considered

a priori as genome-wide signi�cant [106].
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1.5.1.8 Continuous blood pressure trait modelling

The associations between the validated SNP and SBP and DBP were analysed

separately in the Stage 1 samples of the Global BPgen consortium (n=34,433)

and in the overall MDC (n=27,000) and MPP (n=17,700) cohorts [4, 92, 96].

The results were combined using �xed-e�ect inverse variance weighted meta-

analysis. Continuous SBP and DBP were adjusted for age, age2, body mass

index and any study-speci�c geographic covariates in sex-speci�c linear regres-

sion models. In individuals taking anti-hypertensive therapies, blood pressure

was imputed by adding 15 mm Hg and 10 mm Hg for SBP and DBP, respectively

[4, 107].

1.5.2 Results

1.5.2.1 Genome-wide association, replication and meta-analysis

The demographic characteristics of the discovery sample are presented in Table

1.1.

Controls (n=1699) Cases (n=1621)
Age at enrolment,years 57.4 (5.9) 55.4 (7.1)
BMI, kg/m2 24.2 (3.5) 27.1 (7.8)
SBP, mmHg 115.8 (6.8) 175.8 (22.5)
DBP, mmHg 73.7 (5.7) 104.7 (11.8)

Table 1.1: Demographic characteristics of the discovery case-control population.

The results of the GWAS in the discovery sample are presented in Figure 1.9.

The observed versus expected p-value distributions (quantile-quantile plots) are

shown in Figure 1.10.

The top hit was rs13333226 (p=1.14x10−7) . We selected the top 89 SNPs

for validation analysis (corresponding to p-value≤5.6x10−4) in the MONICA

and PAMELA samples. Three SNPs crossed a p-value threshold of 5x10−7 in

the combined analysis - rs13333226 (p=3.86x10−7), rs4293393 (p=3.30x10−7),

rs13353058 (p=4.78x10−7). The two SNPs, rs13333226 and rs4293393 are highly

correlated with an r2 = 0.996. We selected rs13333226, which is in close proxim-

ity to the uromodulin transcription start site at -1617 base pairs (Figure 1.11)

for further analyses.

We found it to be associated with hypertension across the combined dis-

covery and validation samples (Table 1.2, Figure 1.12A&B), with the minor G
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Figure 1.10: Quantile-Quantile plot of observed versus expected p-value distri-
butions in the discovery sample.

Figure 1.11: Association plot of the genomic region around rs13333226 showing
both typed and imputed SNPs with location of genes and recombination rate.
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allele associated with a lower risk of hypertension (OR [95%CI] = 0.87 [0.84;

0.91], p=3.6x10−11 ).

The strong evidence of association remained when the discovery sample was

excluded from the combined analysis (OR [95%CI] = 0.89 [0.86-0.93], p=7.36x10−8).

The association signal strengthened after adjustment for age, age2, sex and BMI

(OR [95%CI] = 0.85, p =1.5x10−13; after excluding the discovery sample: OR

[95%CI] = 0.86[0.83-0.90], p =1.61x10−10). Heterogeneity across the study sam-

ples was assessed using the Q statistic (all samples p = 0.036, after excluding

discovery samples p = 0.514). In the 13,446 individuals with eGFR measure-

ments available, the strength of association of rs13333226 with hypertension

was identical after correcting for eGFR and the e�ect sizes remained unchanged

(unadjusted for eGFR: OR [95%CI] = 0.90[0.83;0.96], p = 0.004; after eGFR

adjustment: OR [95%CI]=0.89[0.83;0.96], p=0.0030); (Table 1.3, Figure 1.12

C&D).

Association with SBP and DBP We �nd rs13333226 to be signi�cantly as-

sociated with lower SBP (0.49 mmHg lower per copy of G allele, p = 2.6x10−5)

and DBP (0.30 mmHg lower per copy of G allele, p = 1.5x10−5) on combined

analysis of Global BPgen, MPP and MDC cohorts (n = 79,133).

1.5.2.2 Clinical functional studies

We studied the association between rs13333226 genotypes and di�erent pheno-

types including urinary uromodulin, in 256 hypertensive individuals from the

BRIGHT cohort. The average age was 63 years and univariate analysis showed

the G allele was signi�cantly associated with higher eGFR (4.6 ml/min/1.73m2

per copy of G allele; p = 0.005) and decreased uromodulin levels corrected for

urine creatinine (0.2mg/mmol lower per G allele; p = 0.007) (Table 1.4).

The association with urinary uromodulin levels persisted after adjusting

for sex, urine sodium and eGFR on multiple regression analysis (r2 = 0.14,

p<0.001).

Urinary uromodulin was also measured in 110 participants from the HER-

CULES study. Univariate analysis showed a signi�cant association between

rs13333226 and urinary excretion of uromodulin but not with creatinine clear-

ance (Table 1.5). In the HERCULES Study, hypertension is de�ned based on 24

hours ambulatory blood pressure >135/85 or on anti-hypertensive treatment.

On multiple regression analyses, uromodulin remained signi�cantly asso-

ciated with rs13333226, independently of creatinine clearance. Urinary uro-
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Figure 1.12: Forest Plots of association with rs13333226 and hypertension. A:
Forest plot of association analysis unadjusted for any covariates - 21,466 cases
and 18,240 controls. B: Forest plot of association analysis adjusted for age, age2,
sex and BMI - 21,466 cases and 18,240 controls. C: Forest plot of association
analysis in the cohorts where eGFR was available and age, age2, sex and BMI
- 7427 controls and 5739 cases. D: Forest plot of association analysis in the
cohorts where eGFR was available and age, age2, sex, BMI and eGFR - 7427
controls and 5739 cases.
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modulin (mg/24h) was also positively associated with urinary sodium excretion

(mmol/24h) (p = 0.025) and with endogenous lithium clearance (p = 0.038), in-

dependently of creatinine clearance. Urinary uromodulin was signi�cantly and

positively associated with fractional excretion of endogenous lithium in indi-

viduals (r2 = 0.19, p = 0.045). This suggests that low urinary uromodulin is

associated with higher proximal tubular sodium reabsorption.

Furthermore, in the GRECO study urinary uromodulin concentration (p =

0.004) and 24 hour uromodulin excretion (p = 0.002; Wilcoxon's signed ranks

test) were found to be signi�cantly increased after a high salt intake (Table 1.6).

Moreover, there was a signi�cant decrease in uromodulin levels with each

additional copy of the G allele on the LS diet, and this was not apparent on the

HS diet. The homoeostatic adaptation to altered sodium intake was signi�cantly

di�erent between the genotypes: the G allele was associated with a signi�cantly

greater increase in measured GFR (p = 0.015), extracellular �uid volume (ECV,

p = 0.047) and a greater suppression of plasma renin activity (PRA, p = 0.055)

during HS compared to LS diet (Figure 4). During LS fractional excretion of

sodium (FENa) was similar across the genotypes. During HS overall FENa was

higher, as appropriate. The rise in FENa elicited by HS was however less in

subjects with one or two G-alleles than in AA subjects, resulting in signi�cant

di�erences in FENa during HS, with lower FENa in presence of one or two

G-alleles (Figure 1.13).

1.5.2.3 Cardiovascular outcomes and rs13333226

Finally, we evaluated the clinical signi�cance of our �ndings by testing whether

the low BP associated allele may protect against development of cardiovascu-

lar events during long-term follow-up at the population level. Among 26,654

subjects from the entire population based MDC study 15 who were free from

prior cardiovascular events at baseline, 2,750 individuals developed cardiovas-

cular events (CVD) during 12 years of follow-up. We found each copy of the G

allele to be associated with a 7.7% reduction in risk of CVD events after adjust-

ing for age, sex, BMI and smoking status (H.R. = 0.923, 95% CI 0.860-0.991; p

= 0.027). When SBP was added to the Cox regression model, the directionality

and risk remained almost identical (H.R. = 0.936, 95% CI 0.872-1.005; p =

0.067).
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Figure 1.13: UMOD rs13333226 genotype and response to high salt intake. Fil-
tered load: Filtered load sodium; ECV: Extracellular volume; FENa: Fractional
excretion sodium; PRA: Plasma renin activity. The bars represent the di�erence
in measurement between high salt and low salt intake for each measurement.
In the GRECO subjects, we see that in response to a change in sodium intake
the change in GFR is larger in G-allele carriers whereas the change in FENa is
less. Hence, in G-allele carriers the restoration of sodium excretion towards the
level that matches the altered intake is more dependent on the change in �ltered
load of sodium than in non-carriers. This is associated with a larger change in
ECV in response to the change in sodium intake. The latter may be the driving
force behind the larger change in GFR, and in plasma renin activity in G-allele
carriers.
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1.5.3 Discussion

We identi�ed and validated a SNP upstream of the uromodulin (UMOD) gene

whose minor allele is associated with a lower risk of hypertension, and a cor-

responding per allele reduction of 0.5 mmHg SBP and 0.3 mmHg DBP. The

associated SNP (rs13333226) is in close proximity to the uromodulin transcrip-

tion start site at -1617 base pairs. There is only one previous candidate gene

study of UMOD and hypertension. This study tested rs6497476, located in the

5' region of the UMOD gene (-744 bp from UMOD transcriptional start point)

and showed nominal association (p=0.04) of the minor allele with a lower risk

of hypertension in a Japanese population [108]. This SNP is correlated with

rs13333226 in the Japanese HapMap population (r2 =0.91) and shows the same

directionality of e�ect. A recent genome scan for chronic kidney disease (CKD)

[109] has found the minor T allele at rs12917707, -3653 bp upstream from the

UMOD transcription start site to be associated with a 20% reduction in risk

of CKD. This association was consistent after adjusting for major CKD risk

factors including SBP and hypertension. This SNP -rs12917707 is perfectly cor-

related (r2 = 1 in HapMap CEU) with rs13333226. Our data shows the minor

allele of rs13333226 is associated with increased eGFR (β=3.6, p=0.012), but

adjustment for eGFR in our meta-analyses did not alter its association with

lower risk for hypertension. Our �ndings indicate that the UMOD locus is in-

dependently associated with hypertension. We also show an association of this

SNP with long term cardiovascular outcomes and despite the relatively small

attenuation of the relationship after SBP adjustment, the association between

rs13333226 and CVD could be mediated through a BP e�ect as baseline BP

may not accurately enough re�ect the di�erences in long term BP exposure,

which are mediated through genetic UMOD variance.

The UMOD gene encodes the Tamm Horsfall protein (THP)/uromodulin, a

glycosylphosphatidylinisitol (GPI) anchored glycoprotein. It is the most abun-

dant tubular protein in the urine, which is expressed primarily in the thick

ascending limb of the loop of Henle (TAL) with negligible expression elsewhere

[110, 111]. Our �ndings in the BRIGHT and HERCULES studies demonstrate

a direct relationship between urinary uromodulin and urinary sodium excretion

in hypertensive patients and the general population, respectively. This is in

line with the rise in urinary uromodulin elicited by the increase in sodium in-

take in the GRECO subjects and suggests a gene-environment interaction on

urinary uromodulin excretion. In addition we also consistently show in three
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separate populations that the minor G allele of rs13333226 (associated with a

lower risk of hypertension) is also associated with lower urinary uromodulin ex-

cretion. This e�ect was lost during the HS in the GRECO subjects. Together,

these data would suggest that UMOD may be involved in regulating BP and

facilitating onset of hypertension, possibly by an e�ect on sodium homoeostasis.

In agreement with this hypothesis, our data in HERCULES show an increase

in proximal sodium reabsorption in G allele subjects, a compensatory reaction

to be expected when distal sodium loss in increased. Furthermore, in GRECO,

when HS diet increased but equalized uromodulin excretion across rs13333226

genotypes, we see greater changes in GFR, �ltered load of sodium, ECV and

PRA in G allele carriers. This supports a unifying hypothesis which connects

genetic variants in the UMOD gene and BP through a link between the gene

product, uromodulin and volume homeostasis. Accordingly, a lower uromod-

ulin excretion (either genetically determined or acquired) is associated with less

sodium reabsorption in TAL, which could lead to lower ECV and lower BP.

In the context of our �ndings it is of interest to note that UMOD mutations

(in exons 4 and 5) are implicated in monogenic syndromes such as familial juve-

nile hyperuricemic nephropathy, autosomal-dominant medullary cystic kidney

disease [MCKD2] and glomerulocystic kidney disease (GCKD) (MIM603860,

MIM162000, MIM609886) [112, 113, 114]. In previous small studies, urinary

uromodulin levels were found to be decreased in older subjects and in subjects

with renal impairment [115, 116]. In renal disease patients, uromodulin excre-

tion was reduced in proportion to the extent of renal damage, and was a marker

of distal tubular sodium reabsorption, but in these studies, the e�ects of BP on

uromodulin were inconsistent [117, 118]. The TAL, where UMOD is selectively

expressed is also the site where mutations of tubular transporters have resulted

in rare Mendelian high or low BP syndromes [66]. Furthermore, recent data from

Lifton's group demonstrated that heterozygous mutations in SLC12A3 (encod-

ing the thiazide-sensitive Na-Cl cotransporter), SLC12A1 (encoding the Na-

K-Cl cotransporter NKCC2), and KCNJ1 (encoding the K+ channel ROMK)

discovered in the general population have been associated with lower BP and a

60% reduction in the development of hypertension [119].

Our strategy of using extremes of BP distribution has led to the discovery

of a gene variant that could not be discovered when a less stringent case-control

de�nition was used [4]. In addition to functional evidence, we show an asso-

ciation of this SNP with continuous BP and long term outcomes (though it is

likely the risk associated with rs13333226 could be mediated partially through
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a BP e�ect). The e�ect size of the risk allele is comparable to the e�ect sizes of

the previous robust association signals for blood pressure [120, 80]. This would

suggest that using an extreme case-control strategy successfully enabled the dis-

covery of a locus that previous GWAS meta-analysis failed to detect possibly

due to the cost imposed by multiple testing correction. The main limitation

of our study is that the functional studies are short-term studies, while the

genotype-phenotype e�ects occur over prolonged time periods. The newly dis-

covered UMOD locus for hypertension has the potential to give unique insights

into pathways of renal sodium transport, and identify novel drugable targets.

1.6 Conclusions

The �eld of common complex disease genetics has moved from linkage to associ-

ation study design, mainly GWAS, because association analysis has far greater

power to detect variants of modest e�ects and of lower frequency [121]. How-

ever, there are still major statistical issues to be overcome including optimal

study designs, population strati�cation, multiple testing, environment and gene

interactions, and the e�ect of epigenetics and structural chromosomal variations.

When we analysed the Swedish data, our biggest problem was the presence of

population strati�cation. Strati�cation is a form of confounding that can result

in artefactual evidence of association. It occurs when there is a systematic

di�erence in allele frequency between cases and controls and it may appear that

the risk of disease is related to the marker allele when in fact it is not [20].

In this work, we develop an alternative approach to correct for the presence of

strati�cation in GWAS. Hence, in the next chapter the most used methods to

account for the presence of strati�cation will be presented.



Chapter 2

Multivariate methods to

correct for population

strati�cation

Population based case-control studies detect a non-random association between

an allele and a trait and provide a powerful tool to identify multiple variants

of small e�ect that modulate susceptibility to common, complex diseases [9].

By using a population sample, however, a signi�cant association between dis-

ease and SNP allele can arise from three di�erent sources: by chance, by tight

linkage to a causal polymorphism, or, spuriously, by the impact of population

strati�cation [122].

Population strati�cation, also referred to as population structure, (PS) is

a form of confounding that arises when cases and controls are sampled from

genetically distinct populations and it is perhaps the most often cited reason for

non-replicability [20]. It refers to the presence of a systematic di�erence in allele

frequencies between subpopulations in the study population possibly due to

di�erent ancestries. The most obvious cause of PS is migration where individuals

from one population migrates into another population. After generations PS will

become less due to admixture. Admixture occurs when individuals from two or

more previously separated populations begin interbreeding and it results in the

introduction of new genetic lineages into a population. Another form of PS is

spurious relatedness where non-random mating causes a certain subpopulation

to be more related with each other compared to the rest of the population.

49
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Figure 2.1: Population Structure.

In such cases, non-random associations can occur even at markers completely

unlinked to a disease locus simply because of the underlying structure [20, 123].

Also the real disease causing locus might not be found in the study if the locus is

less prevalent in the population where the case subjects are chosen. For instance,

in a population that is a mixture of African Americans and Caucasians, cases

of hypertension will occur disproportionately among African Americans, who

are well known to have a higher prevalence of this disease [124]. Any allele that

occur more commonly in African Americans will tend to be associated to the

disease, even if it is completely unlinked to disease causing loci [125].

For a case-control sample to be strati�ed, both the following must be true:

(i) the frequency of the marker genotype of interest varies signi�cantly by

race/ethnicity, and (ii) the background disease prevalence varies signi�cantly

by race/ethnicity [126, 127]. This means that the level of strati�cation is af-

fected by the disease that is being studied, in addition to being a�ected by the

ethnic mixture scenario in the study population. Figure 2.1 shows an example of

this scenario with two populations in which the cases have an excess of individ-

uals from population 2 and population 2 has a lower frequency of allele A than

population 1. In this example, the structure mimics the signal of association in

that there is a signi�cant di�erence in allele and genotype frequencies between

cases and controls [128].

Concerns about the e�ects of PS led to recommendation of using familial

data and to the development of the transmission disequilibrium test (TDT)
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[129]. The TDT is a family-based association test design to detect the presence

of genetic linkage between a genetic marker and a trait by measuring the over-

transmission of an allele from heterozygous parents to a�ected o�springs. It is an

application of McNemar's test. Certainly e�ective at eliminating false positives

due to PS and genetic admixture, the TDT design may result substantially

lower in power than other association tests as it utilises only individuals who

are informative for allelic transmission and exclude all others. Also, collecting

DNA from relatives of a�ected individuals is generally harder than is collecting

DNA from unrelated controls, especially for late-onset diseases. As a result,

case-control studies tend to be cheaper than family-based studies of the same

sample size. Further, the ability to use unrelated controls suggests the possibility

of independent studies reusing database of control genotype data, thus reducing

genotyping costs.

Hence, in the last few years, several statistical methods were developed to

account for PS so that association studies could proceed even in the presence of

structure. It has been argued that the e�ects of strati�cation can be eliminated

by carefully matching cases and controls according to self reported ancestry and

geographical origin [127], however a considerable amount of �cryptic strati�ca-

tion� may remain [125].

Methods for testing and/or adjusting for PS can be broadly classi�ed into

three classes [21, 22]:

• genomic control [23, 130, 131];

• structured association [132, 19, 24, 133];

• principal component methods and multidimensional scaling [25] .

Recently, a propensity score method has also been suggested [26].

2.1 Genomic Control

One of the most used method to control for strati�cation is genomic control

(GC) proposed by Devlin and Roeder in 1999 [23]. It uses both a frequentist

and a Bayesian approach, the latter being appropriate when dealing with a large

number of candidate genes. The frequentist way of correcting for PS works by

using markers that are not linked with the trait in question to correct for any

in�ation of the statistic caused by population strati�cation. The method was

�rst developed for binary traits but has since been generalised for quantitative
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ones [122]. For binary traits and n biallelic markers, let N denote the number

of subjects genotyped. The data for each marker are given in a standard 2 x 3

table of genotypes by case and control (see Table 2.1).

A allele
0 1 2 Total

Case r0 r1 r2 R
Control s0 s1 s2 S
Total n0 n1 n2 N

Table 2.1: Genotype distribution.

To test the lack of independence using an additive genetic model (which is the

model normally used when no prior information about the mode of inheritance

is known), Devlin and Roeder use Armitage's trend test

Y 2 =
N [N(r1 + 2r2)−R(n1 + 2n2]2

R(N −R)[N(n1 + 4n2)− (n1 + 2n2)2]
. (2.1)

This test is equivalent to the score test in the logistic regression model. All is

done under the assumption that the n loci under study consists of c biallelic

polymorphisms in candidate genes and (n - c) null SNP dispersed throughout

the genome. For the disorder of interest, it is also assumed that the null loci

have no impact on liability and that they are not in linkage disequilibrium with

polymorphisms a�ecting liability. Although the test statistic is computed for all

n loci, only the candidate gene polymorphisms are tested for association. For

each marker locus l a statistic Y 2 is obtained using the trend test, l = 1,..,n.

When the marker is in linkage equilibrium with the disorder and there is no

population substructure or cryptic relatedness, Y 2 is distributed as χ2
1 . The

GC model allows for extra variance by assuming that the test statistic is in�ated

by a factor λ [23, 125]; consequently,.

Y 2 ≈ λχ2
1, (2.2)

where λ depends on the e�ect of strati�cation.

The above method rests upon the assumption that the in�ation factor λ is

constant, which means that the loci should have roughly equal mutation rates,

should not be under di�erent selection in the two populations, and the amount
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of Hardy-Weinberg disequilibrium measured in Wright's coe�cient of inbreeding

F should not di�er between the di�erent loci.

Genomic control, however, has some limits. First, it was shown by simu-

lation that genomic control can lead to an anti-conservative p-value leading to

false positives if the two populations (cases and controls) are extremely dis-

tinct and the number of unlinked markers is in the order 50 - 100 [128]. Also,

some markers di�er in their allele frequencies across ancestral populations more

than others. This implies that the uniform adjustment applied by genomic con-

trol may be insu�cient at markers having usually strong di�erentiation across

ancestral populations and may be super�uous at markers devoid of such di�er-

entiation, leading to a loss of power.

2.2 Structured association

Structured association methods are more sophisticated than genomic control,

and are computationally more demanding. These methods aim to allocate an

individual's genome to one or more subpopulations, and to test for association

conditional on this allocation. To cluster, structured association uses model-

based methods (i.e. methods that assume that observations from each cluster

are random draws from some parametric model. Inference for the parameters

corresponding to each cluster is done together with inference for the cluster

membership of each individual using standard statistical methods; e.g. maxi-

mum likelihood or Bayesian methods [134]) and it is based on a two-phase ap-

proach. First, using Bayesian Markov Chain Monte Carlo (MCMC) technology,

genotype data from unlinked genetic markers are used to learn about popula-

tion structure and to infer ancestry in the sample [134]. Second, association

of candidate loci is tested taking into account the ancestry of cases and con-

trols [24]. Pritchard and colleagues implemented the �rst phase in the software

STRUCTURE and the second in the software STRAT (STRucture population

Association Test).

2.2.1 Phase 1: STRUCTURE

The �rst challenge when applying model-based methods is to specify a suitable

model for observations from each cluster. Consider a sample of unrelated in-

dividuals typed at many unlinked markers, yielding genotypes G. Assume that

the sampled individuals have been ascertained from K discrete subpopulations
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and that each population is modelled by a characteristic set of allele frequencies.

Under the assumption of HWE, the aim is to estimate the allele frequencies, pk,

within each subpopulation and the assignments Z, of each individual to each

subpopulation. Under these assumptions each allele at each locus in each geno-

type is an independent draw from the appropriate frequency distribution. The

idea is that the model accounts for the presence of HWE or linkage disequilib-

rium by introducing PS and attempts to �nd population groupings that are not

in disequilibrium.

Using Bayes' theorem and conditioning on allele frequencies pk, the posterior

probability of assignment for the ith individual is:

Pr(zi = J |Gi, pk) =
Pr(Gi|zi = J, pk) Pr(zi = J)∑K
j=1 Pr(Gi|zi = j, pk) Pr(zi = j)

, (2.3)

where Pr(zi = J) is the prior probability of assignment to subpopulation J,

typically taken to be 1/K

Similarly, conditioning on the subpopulation assignments of each individual

Z, given a pre-speci�ed prior density Pr(pk), the posterior distribution of allele

frequency is

Pr(pk|Z,G) =
Pr(Z|pk, G) Pr(pk)∑K

j=1 Pr(Z = j|pk, G) Pr(pk)
. (2.4)

Structure uses Bayesian MCMC technique to sample, in turn, from the densities

Pr(Z|G, pk) and Pr(pk|Z,G).

The algorithm runs for an initial burn-in period to allow for convergence.

In the subsequent sampling period, sampled values of the population allele fre-

quencies and subpopulation assignments for each individual are recorded to

approximate the marginal posterior distribution of pk and Z.

The basic structure model assumes that an individual belongs to just one

discrete subpopulation. STRUCTURE also allows for admixed population, for

which the subpopulations assignments, Z, are replaced by vectors of ancestry,

Q, and qi,k denotes the proportion of the ancestry of the ith individual that

comes from subpopulation k [134].
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2.2.2 Phase II: STRAT

In order to test for association in the presence of PS, the standard null hypothesis

of no overall association between allele frequencies at the candidate locus and

phenotype, is replaced with a null hypothesis of no such association within

each subpopulation. The alternative hypothesis then becomes that genotype

frequencies vary with subpopulation and disease phenotype. Conditioning on

the ancestries Q estimated by STRUCTURE, a test statistics is constructed by

computing the likelihood ration under the two hypotheses:

Λ =
Pr1(G, |p̂1, Q̂)

Pr0(G, p̂0, Q̂)
, (2.5)

where p0 and p1 denote subpopulation allele frequencies under H0 and H1 re-

spectively. Large values of Λ indicate that the alternative model (in which

allele frequencies at the candidate locus depend on the phenotype) is substan-

tially better than the null model. The signi�cance of a particular value of Λ is

assessed by simulation [24].

Structure association has several advantages. First, it allows for discrete or

admixed subpopulations, and can use both SNPs and microsatellites. Second,

it provides a general framework for allowing for structure in association tests

and can thus be extended to multi-locus or haplotype tests. Third, it provides

detailed information about PS.

However, none of the structured association analyses is straightforward to

implement, the most important di�culty being the selection of the number of

subpopulations. Since the notion of subpopulation is a theoretical construct

that only imperfectly re�ects reality, it is clear that the problem of estimating

the number of subpopulations will never satisfactorily be resolved and it is

preferable, if feasible, to implement a method that does not rely on the number

of subpopulations being correctly assessed [135]. Another limit of structured

association is that is too computationally intensive for whole genome data. In

such cases it requires a selection of unlinked markers.

2.3 Principal components analysis

Before describing how principal components analysis (PCA) applies to genetic

data, a brief excursus on linear PCA will be given.
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Suppose we have measurements of N individuals onM variables collected in a

N xM matrix X. PCA is a variable reduction procedure which transforms theM

possibly correlated variables into a smaller number p of uncorrelated variables

called principal components, by projecting the M variables into a subset of

Rp . A principal component (PC) can be de�ned as a linear combination of

optimally-weighted observed variables.

There are many di�erent, but mathematically equivalent ways to de�ne

PCA. Simply speaking, PCA involves the calculation of the eigenvalue decompo-

sition of the data covariance matrix, after mean centering the data for each at-

tribute. PCA can also be formulated by means of a loss function (Eckart-Young

theorem, see Appendix A). This involves �nding N vectors ai corresponding

to the individuals and M vectors bj corresponding to the variables such that

xij ≈ a′ibj and it is de�ned as �nding the scores of A and the loadings of B that

minimise the loss function.

σ(A,B) =

N∑
i=1

M∑
j=1

(xij − a′ibj)2. (2.6)

The N x p matrix A is the matrix of component scores and an M x p matrix B

is the matrix of components loadings. Using the singular value decomposition

theorem (see Appendix A) , the minimum value of the loss function (2.6) is

given by:

σ(Â, B̂) =

M∑
s=p+1

λ2s(X), (2.7)

where λs(X) are the ordered singular values of X.

The �rst component extracted in PCA accounts for a maximal amount of

total variance in the observed variables. This means that the �rst component

is correlated with at least some of the observed variables. The second com-

ponent accounts for a maximum amount of variance in the dataset that was

not accounted for by the �rst component; i.e. it is correlated with some of

the observed variables that did not display strong correlations with the �rst

component. Also, it is uncorrelated with the �rst component. The remaining

components extracted display the same two characteristics: each component

accounts for a maximal amount of variance in the observed variables that was

not accounted for by the preceding components, and is uncorrelated with all of

the preceding components.
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PCA was �rst introduced to study genetic data over thirty years ago by

Cavalli-Sforza and colleagues [136] and it has now become a standard tool in

genetics. It was �rst applied at population level to obtain worldwide axes of

human variation from the allele frequencies of various populations [136, 137]. It

has recently been used at individual level especially now that data with hun-

dreds or thousands of individuals and hundred of thousands of markers become

available. Patterson and collegues [25, 27] use PCA to explicitly model ances-

try di�erences between cases and controls. The algorithm, implemented in the

software EIGENSTRAT, works as follows.

Suppose markers are biallelic (e.g. SNPs) and consider the transposedM x

N data matrix G, with rows indexed by the polymorphic markers and columns

indexed by individuals. Then, for each marker, choose a reference and a variant

allele. Let gij be the number of variant alleles for marker i, individual j (so for

autosomal loci, gij can take values 0,1,2).

The algorithm works in three steps.

1. From each entry in row i, subtract the row mean

µi =

∑N
j=1 gij

N
. (2.8)

Missing entries are excluded from the computation of µi and set to zero.

2. Normalise row i by dividing each entry by
√
pi(1− pi), where

pi =
(1 +

∑N
j=1 gij)

2 + 2N
(2.9)

is a posterior estimate of the unobserved underlying frequency of SNP i.

This normalisation step is motivated by the fact that the frequency change

of a SNP due to genetic drift occurs at a rate proportional to
√
pi(1− pi)

per generation. Moreover, if the population is in HWE, it also normalises

each row to have the same variance. If we denote by X the resulting

matrix, this amounts to

xij =
gij − µi√
pi(1− pi)

. (2.10)

3. Compute the N x N covariance matrix of the individuals Ψ = X ′X and

perform an eigenvalue decomposition.
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The same eigenvalue decomposition can be obtained starting from the original

data matrix, with rows indexed by the individuals and columns indexed by the

polymorphic markers. In this case, columns are mean centred and normalised

and the covariance matrix is computed on the individuals. Hence, this translates

into computing the covariance matrix on the rows, rather than on the columns.

The kth axis of variation is then de�ned to be kth eigenvector of Ψ (i.e.

the eigenvector with the kth largest eigenvalue). Eigenvectors corresponding to

large eigenvalues are exposing non-random PS. The ancestry ajk of individual j

along the kth axis of variation equals to coordinate j of the kth eigenvector.

Finally, let

gij,adjusted = gij − γiaj , (2.11)

where

γi =

∑
j ajgij∑
j a

2
j

(2.12)

is a regression coe�cient for ancestry predicting genotype across individuals j

with valid genotypes at SNP i. A similar adjustment is performed for each

axis of variation. This is equivalent to use axis of variation as covariates in

multilinear regression.

Correcting for strati�cation using continuous axis of variation has several

advantages. First, they provide the most useful description of within-continent

genetic variation [138]. Second, the continuous axis are constructed to be or-

thogonal and so results are insensitive to the number of axes inferred empiri-

cally. Third, EIGENSTRAT runs extremely quickly on large datasets making it

computationally feasible for GWAS data. Fourth, the �rst formal tests for the

presence of genetic data is provided. Finally, the PCA method does not attempt

to classify all individuals into discrete populations or into linear combinations

of populations. Rather, PCA outputs each individual's coordinates along axis

of variation.

A method that is closely related to PCA and that yields similar results

when applied to markers completely unlinked to disease causing loci, is multi-

dimensional scaling (MDS). MDS aims to detect axes of variation between indi-

viduals that maximise the dissimilarities between them. The similarity between

pairs of individuals is measured by mean of their identity by state (IBS) across

the genome, i.e. by the number of genes with the same allele value. Over M

markers, the IBS between the ith and j th individuals is given by:



2. MULTIVARIATE METHODS TO CORRECT FOR STRATIFICATION 59

IBSij = 1− 1

2M

∑
k

|Gik −Gjk|, (2.13)

where Gij denotes the number of minor alleles (0, 1 or 2) carried by the ith

individual at SNP k.

MDS is implemented in the software Plink [104]. As it requires the construc-

tion of a pairwise IBS matrix is more computationally complex than PCA

2.4 Propensity scores

Propensity score was initially introduced in design of experiments to provide

an alternative method to estimate treatment e�ects when treatment assignment

was not random, but could be assumed to be unconfounded [139]. It has now

become widely accepted in observational studies [140, 141].

Propensity score is de�ned as the conditional probability of assignment to

a particular group given a vector of covariates. If subjects are assigned to

strata based on their propensity score, then the comparison groups within the

strata are balanced with respect to the observed potential confounders. Exact

adjustment using the propensity score will on average remove all of the bias

in group e�ect estimates [142]. Recently, a genomic propensity score (GPS)

framework has been developed to optimally estimate and correct for bias due

to PS using both genetic and non-genetic factors [26]. GPS is de�ned as the

likelihood of an individual having a particular test-locus genotype based on that

individual covariate makeup, i.e.

GPSi(zi, xi) = P (Gi|zi, xi), (2.14)

where GPSi(zi, xi) is the genomic propensity score for subject i calculated from

that subject's zi and xi, which represent that individual' s vector of genetic and

non-genetic covariates and where Gi is that subject's test-locus genotype. It is

assumed that, given the observed covariates, the Gi(i = 1,..,N ) are indepen-

dent and identically distributed where N is the total size of the study cohort.

Suppressing the i, it is also assumed that given GPS(z, x ), (Z, X ) and G are

conditionally independent. A general class of models that specify the potential

relation among disease, test-locus genotype, genetic and non-genetic covariates
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is then de�ned to be:

f(E(D|Z, X)) = η, (2.15)

where f(.) is a link function, such as the logit function, that determines the

relationship between the outcome variable D and predictor variables Z and X.

E(D|Z,X) denotes the conditional mean of D given Z and/or X ; η is a linear

function of covariates.

This method is able to correct for confounding both for genetic and non-

genetic factors using a single variable. A simulation shows that GPS consis-

tently outperforms the PCA and MDS methods in terms of standard error and

coverage probability under moderate PS, while PCA consistently outperforms

both in terms of power [26]. Under severe PS the GPS method consistently

outperformed the PCA method in terms of estimation, bias, standard error and

coverage probability. Both GPS and PCA methods always outperformed the

MDS in terms of standard error under severe PS.

However, GPS is not easily applicable to GWAS studies or other large-scale

studies using hundreds or thousands of SNPs because each test requires the

estimation of a propensity score �rst, and then requires the �tting of a logistic

regression model.

2.5 Conclusions

In this chapter, we have described methods for testing and adjusting for PS.

Each has its pros and cons, simulation studies [26] have been done to access

which method is the best, but no consensus has yet been reached. Also, methods

such as STRUCTURE or GPS are computationaly demanding and can not

be easily applied to GWAS data, where PCA still represents a sort of gold

standard. However, the assumption underlying PCA is that the variable under

study should be continuous and this is achieved by transforming the qualitative

values AA, AB and BB of an individual at a given SNP into 0, 1, 2. While

this transformation is easy to apply, it assumes that the distance between AA

and AB is the same as the distance between AB and BB and hence it assumes

an additive model of inheritance. This model is the most conservative, but not

necessarily the correct one.
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Our approach is to treat SNPs as ordinal qualitative variables. This implies

that we agree that there is an order between AA, AB and BB, but that the

distances AA-AB and AB-BB are not necessarily the same. We try to detect

and correct for PS by applying a multivariate analysis method to reduce di-

mensionality in the presence of non-metric data. The next chapter, is dedicated

mainly to the description of such a technique.



Chapter 3

Multivariate analysis methods

for non-metric or mixed-type

data

In this chapter we outline Gi� System to reduce dimensionality in the presence

of qualitative or mixed-type variables. In particular, we describe homogene-

ity analysis (HOMALS) and non-linear principal components analysis (NLPCA

or PRINCALS: principal components analysis by means of alternating least

squares). We also present the goodness of �t measure Procrustes which can

be used to compare two data matrices and the Procrustes's test Protest which

tests the signi�cance of the Procrustes statistics. PRINCALS is then applied to

genetic data in order to correct for PS assuming that SNPs are ordinal quali-

tative variables. Procrustes and Protest are used to compare the performances

of PCA and PRINCALS. A compendium of basic linear and matrix algebra,

which can serve as a convenient source of reference for this chapter, is found in

Appendix A.

3.1 The Gi� System

The Gi� System [30] represents a uni�ed theoretical framework under which

many well known descriptive multivariate techniques are organised. The com-

mon properties shared by all Gi� models are the speci�cation of a loss function

62



3. MULTIVARIATE METHODS FOR NON-METRIC OR MIXED DATA 63

Figure 3.1: Bipartite graph of a toy example.

iteratively optimised by the alternating least squares (ALS) algorithm and trans-

formation of the variables which lead to quanti�cations of the categories. This

latter issue implies the concept of optimal scaling, a procedure that transforms

the observed response categories according to some speci�c criterion, and allows

to account for the scaling level of the variables. Most importantly, in all Gi�

System, variables reduction, in the sense of PCA, and variables quanti�cation

are obtained simultaneously.

In this section, the basic model of homogeneity analysis is presented along

with its extensions and generalisation to non-linear principal components anal-

ysis (NLPCA or PRINCALS) [29, 143] . The terms NLPCA and PRINCALS

are used interchangeably in the remaining of this chapter.

3.1.1 Homogeneity analysis

Suppose that for N objects, data on J categorical variables are collected. Each

of the corresponding J variables can take lj possible levels or categories. Given

such a data matrix, all the available information can be represented by a bi-

partite graph (i.e. a graph whose vertexes can be divided into two disjoint sets

U and V such that every edge connects a vertex in U to one in V) where the

�rst set of N vertexes corresponds to the objects and the second set of
∑

j∈J lj

vertexes to the categories of the J variables.

Each object is connected to the categories of the variable it belongs to. See

Figure 3.1 for the bipartite graph of a toy example of 7 objects and 2 variables

with 4 and 3 categories respectively.

The set of all possible N
∑

j∈J lj edges provides information about which
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categories an object belongs to and about which object belongs to a speci�c

category. Now the degree of a vertex is the size of its neighbourhood (i.e. the

number of edges incident to it). So the N vertexes corresponding to the objects

all have degree J as every object can take one value/category per variable, while

the
∑

j∈J lj vertexes have varying degrees depending on the number of objects in

the categories since more than one individual can take the same value/category

for one variable.

The bipartite graph, however, is not very helpful for big datasets and so the

aim is to construct a low-dimensional joint map of objects and categories in the

Euclidean space Rp . The problem is formulated by means of a loss function and

it is solved by the ALS algorithm.

Let p denote the number of dimensions that we want to keep in the analysis,

let X be the N x p object score matrix containing the coordinates of the object

vertexes in Rp and let Yj , j ∈ J be the lj x p category quanti�cations matrix

containing the coordinates of the lj category vertexes of variable j, then the

aim of homogeneity analysis is to make a graph plot that minimises the total

squared length on the edges.

Homogeneity analysis computes object scores and category quanti�cations

on p dimensions or, in other words, solves a projection problem:

RJ → Rp with p � J .

To this purpose, data are coded using N x lj binary indicator or dummy matrices

Gj such that

Gj(i, t) =

1 if object i ∈ category t

0 if object i /∈ category t,
(3.1)

where Gj is the adjacency matrix which contains, for the j th variable, as many

dummy columns as the number of its categories; i = 1, ..., N and t = 1, ..., lj .

The whole set of indicator matrices can be collected in a block matrix

G = [G1, ..., GJ ].

We can think of G as the adjacency matrix of a graph in which object i is

adjacent to category t of variable j if i is in category t of variable j. The

average squared edge length over all variables is then given by the loss function:
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σ(X,Y1, ..., YJ) =
1

J

J∑
j=1

SSQ(X −GjYj) (3.2)

=
1

J

J∑
j=1

tr(X −GjYj)
′(X −GjYj), (3.3)

where SSQ(H ) denotes the sum of squares of the its argument H. This function

is the heart of the Gi� System [30].

In equations (3.2) and (3.3), Gj only is known. X and Yj are unknown

and have to be determined during optimisation. In order to avoid the trivial

solution X = 0, and Yj = 0, ∀ j ∈ J , optimisation is done under the following

normalisation constraints:

X ′X = NIp, (3.4)

u′NX = 0. (3.5)

The �rst constraint (equation (3.4)) standardises the squared length of the ob-

ject scores to be equal to N, and in two or more dimensions, it also requires the

columns of X to be orthogonal. This means that the p dimensions should be

uncorrelated and standardised. The second constraint (equation (3.5)) requires

the graph plot to be centred around the origin.

So, under the above constraints (i.e. the p dimensions are uncorrelated, with

mean zero, unit variance and the solutions should be non trivial), homogeneity

analysis has two simultaneous goals:

1. to reduce the number of variables from J to p, in the sense of PCA (matrix

X );

2. to quantify the qualitative variables (matrix GjYj).

The ALS algorithm for solving this problem is a numerical iteration process. At

iteration t = 0, ALS begins with a starting solution, conveniently �xed, X(0) for

the object scores. Consequently, it is possible to update the category scores Y
(1)
j .

In the next step, the object scores X(1) are updated and normalised. Based on

these normalised scores, ALS updates the category in the next iteration and

so forth. The algorithm stops when the loss function (3.2) does not decrease
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signi�cantly any more (i.e. the loss di�erence between two iterations is below a

speci�ed threshold ε).

Formally, in the �rst step, function (3.2) is minimised with respect to Yj

for �xed X. X needs to be initialised. For each j ∈ J , the multivariate linear
model

X = GjYj + error, (3.6)

is �tted and the solution is given by

Ŷj =
1

Dj
G′jX, j ∈ J, (3.7)

where

Dj = G′jGj (3.8)

is the lj x lj diagonal matrix containing on its diagonal the relative frequencies

of the categories of variable j. Equation (3.7), which quanti�es categories, rep-

resents the so called �rst centroid principle: a category quanti�cation is in the

centroid of the object scores that belong to it [144]. Thus, a category point is

the centroid of objects belonging to that category.

In the second step, function (3.2) is minimised with respect to X for �xed

Yj ' s. The optimal X̂ is given by

X̂ =
1

J

J∑
j=1

GjYj . (3.9)

This is known as the second centroid principle. The object score is the average

of the quanti�cations of the categories it belongs to. This implies that objects

with the same response pattern receive identical scores.

In the third step, the object scores X are columned centred by setting

W = X̂ − uN

(
u′N

X̂

N

)
, (3.10)

and then orthonormalised by the modi�ed Gram-Schmidt procedure [145]

X =
√
NGRAM(W ), (3.11)

so that constraints (3.4) and (3.5) are both satis�ed.
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The ALS algorithm cycles through these three steps until it converges. This

solution is known as the HOMALS solution (Homogeneity Analysis by Means

of Alternating Least Square) and it is implemented in various platforms (see

Section 3.1.3 below). It is important to notice that with HOMALS, multiple

category quanti�cations are possible.

Once the ALS algorithm converges,

Ŷ ′jDj Ŷj = Ŷ ′jDj

(
1

Dj
G′j Ŷj

)
= Ŷ ′jG

′
jX̂. (3.12)

We can then decompose the loss function (3.2) as follows:
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σ(X,Y1, ..., YJ) =
1

J

J∑
j=1

tr(X̂ −Gj Ŷj)
′(X̂ −Gj Ŷj) (3.13)

=
1

J

J∑
j=1

tr{[(X̂ ′ − (Gj Ŷj)
′](X̂ −Gj Ŷj)}

=
1

J

J∑
j=1

tr[(X̂ ′ − Ŷ ′jG′j)(X̂ −Gj Ŷj)]

=
1

J

J∑
j=1

tr(X̂ ′X̂ − X̂ ′Gj Ŷj − Ŷ ′jG′jX̂ + Ŷ ′jG
′
jGj Ŷj)

=
1

J

J∑
j=1

tr(X̂ ′X̂ − X̂ ′Gj Ŷj − Ŷ ′jG′jX̂ + Ŷ ′jDj Ŷj)

=
1

J

J∑
j=1

tr(X̂ ′X̂ − X̂ ′Gj Ŷj − Ŷ ′jG′jX̂ + Ŷ ′jG
′
jX̂)

=
1

J

J∑
j=1

tr(X̂ ′X̂ − X̂ ′Gj Ŷj)

=
1

J

J∑
j=1

tr ˆ[X
′
X̂ − (Ŷ ′jG

′
jX̂)′]

=
1

J

J∑
j=1

tr[X̂ ′X̂ − (Ŷ ′jDj Ŷj)
′]

=
1

J

J∑
j=1

tr ˆ(X
′
X̂ − Ŷ ′jD′j Ŷj)

=
1

J

J∑
j=1

tr ˆ(X
′
X̂ − Ŷ ′jDj Ŷj)

=
1

J

J∑
j=1

tr(NIp − Ŷ ′jDj Ŷj)

=
1

J

J∑
j=1

tr(NIp)− 1

J

J∑
j=1

tr(Ŷ ′jDj Ŷj)

=
1

J
JNp− 1

J

J∑
j=1

tr(Ŷ ′jDj Ŷj)

= Np− 1

J

J∑
j=1

tr(Ŷ ′jDj Ŷj).
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This loss function decomposition mimics variance decomposition of linear anal-

ysis. Np can be seen as a sort of total inertia, while 1
J

∑J
j=1 tr(Ŷ ′jDj Ŷj) a sort

of explained variation. Hence, the loss function can be considered as a sort of

residual variance.

The sum of the diagonal elements of the matrices Ŷ ′jDj Ŷj is called �t of the

solution.

Moreover, the discriminant measures, which give the average squared dis-

tance (weighted by the marginal frequencies) of the category quanti�cations to

the origin of the p-dimensional space, of variable j in dimension s are given by:

η2js ≡
Ŷ ′j (·, s)Dj Ŷj(·, s)

N
, j ∈ J, s = 1, ..., p, (3.14)

where (·, s) denotes the sth column of matrix Ŷ ′j . Equation (3.14) measures how
well the p variables represent the J starting variables. A variable discriminates

better to the extent that its category points are further apart.

Now, assuming that there are no missing values, the discrimination measures

are equal to the squared correlation between an optimally quanti�es variable

Gj Ŷj(·, s) in dimension s, and the corresponding column of object scores X̂(·, s).
Hence, the loss function (3.2) can be expressed as:

σ(X,Y1, ..., YJ) = Np− 1

J

J∑
j=1

tr(Ŷ ′jDj Ŷj) (3.15)

= Np− 1

J

J∑
j=1

p∑
s=1

Nη2js

= N

p− 1

J

J∑
j=1

p∑
s=1

η2js


= N

(
p−

p∑
s=1

γs

)
,

where

γs =
1

J

J∑
j=1

η2js, s = 1, ..., p

are the eigenvalues. They correspond to the average of the discrimination mea-
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sures and give a measure of the �t of the HOMALS solution in the sth dimension.

3.1.2 Nonlinear principal components analysis

Given an N x M matrix with metric variables, PCA is a common technique

to reduce the dataset dimensionality by projecting the variables into a subset

of Rp . The Eckart-Young theorem states that this classical form of PCA can

be formulated by means of a loss function. Its minimisation leads to an N x

p matrix of component scores and an M x p matrix of components loadings.

In the case of non-metric variables, NLPCA is appropriate [143]. Note that

in Gi� terminology, the term non-linear refers to non-linear transformations of

the observed categories. NLPCA (or PRINCALS) is derived as homogeneity

analysis with restrictions [146]. The crucial di�erence to homogeneity analysis

concerns the category score matrix Yj . In classical HOMALS, Yj is unrestricted;

while in NLPCA is expressed by a linear combination

Yj = QjB
′
j , j ∈ J, (3.16)

where Qj is the restricted lj x rj quanti�cation matrix (rj represents the lower

rank) and Bj is the p x rj weight matrix. From a practical point of view, the

most important special case [29] is the rank-1 restricted formulation

Yj = qjβ
′
j , j ∈ J, (3.17)

imposed on the multiple category quanti�cations. qj is the lj-column vector

of single category quanti�cations for variable j, and βj is a p-column vector of

weights (component loadings). Hence, each quanti�cation matrix Yj is restricted

to be of rank-1, implying that the quanti�cations in p-dimensional space become

proportional to each other. Introducing the rank-1 restrictions allows the exis-

tence of multidimensional solutions for object scores with a single quanti�cation

(optimal scaling) for the categories of the variables, and makes it straightforward

to incorporate di�erent scale levels (ordinal, numerical) on the variable.

In NLPCA, the aim is still to minimise the loss function but this should be

done also under restriction (3.17). The algorithm starts as before, by computing

the Ŷj 's as in equation (3.7). Then, recalling equation (3.8) and that if A is a

squared matrix, tr(A) = tr(A′), the Gi� loss function (3.2) can be partitioned

as follows:
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Jσ(X,Y1, ..., YJ) =
∑
j

tr(X −GjYj)
′(X −GjYj) (3.18)

=
∑
j

tr[X −Gj(Yj + Ŷj − Ŷj)]′[X −Gj(Yj + Ŷj − Ŷj)]

=
∑
j

tr{X −Gj [Ŷj + (Yj − Ŷj)]}′{X −Gj [Ŷj + (Yj − Ŷj)]}

=
∑
j

tr[(X −Gj Ŷj)−Gj(Yj − Ŷj)]′[(X −Gj Ŷj)−Gj(Yj − Ŷj)]

=
∑
j

tr{(X −Gj Ŷj)
′ − [Gj(Yj − Ŷj)]′}

· [(X −Gj Ŷj)−Gj(Yj − Ŷj)]

=
∑
j

tr{(X −Gj Ŷj)
′(X −Gj Ŷj)− (X −Gj Ŷj)

′Gj(Yj − Ŷj)

− [Gj(Yj − Ŷj)]′(X −Gj Ŷj) + [Gj(Yj − Ŷj)]′Gj(Yj − Ŷj)}

=
∑
j

tr{(X −Gj Ŷj)
′(X −Gj Ŷj)

+ (Yj − Ŷj)′Dj(Yj − Ŷj)− (X −Gj Ŷj)
′Gj(Yj − Ŷj)

− [(X −Gj Ŷj)
′Gj(Yj − Ŷj)]′}

=
∑
j

tr{(X −Gj Ŷj)
′(X −Gj Ŷj)

+ (Yj − Ŷj)′Dj(Yj − Ŷj)− Pj − P ′j},

where Pj is the cross product (X−Gj Ŷj)
′Gj(Yj−Ŷj) and Ŷj is given by equation

(3.7).

Now, using equation (3.7),

Pj = (X −Gj Ŷj)
′Gj(Yj − Ŷj) (3.19)

= (X −Gj Ŷj)
′GjYj − (X −Gj Ŷj)

′Gj Ŷj

= X ′GjYj − Ŷ ′jG′jGjYj −X ′Gj Ŷj + Ŷ ′jG
′
jGj Ŷj

= X ′GjYj −X ′Gj
1

Dj
DjYj −X ′Gj

1

Dj
G′jX +X ′Gj

1

Dj
Dj

1

Dj
G′jX

= X ′GjYj −X ′GjYj −X ′Gj
1

Dj
G′jX +X ′Gj

1

Dj
G′jX

= 0.
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Hence,

Jσ(X,Y1, ..., YJ) =
∑
j

tr{(X −Gj Ŷj)
′(X −Gj Ŷj) (3.20)

+(Yj − Ŷj)′Dj(Yj − Ŷj)− Pj − P ′j}

=
∑
j

tr{(X −Gj Ŷj)
′(X −Gj Ŷj) + (Yj − Ŷj)′Dj(Yj − Ŷj)}

=
∑
j

tr(X −Gj Ŷj)
′(X −Gj Ŷj)

+
∑
j

tr(Yj − Ŷj)′Dj(Yj − Ŷj).

At this point, imposing the rank-1 restrictions (3.17) on the Yj 's leaves to min-

imise ∑
j

tr(Yj − Ŷj)′Dj(Yj − Ŷj) =
∑
j

tr(qjβ
′
j − Ŷj)′Dj(qjβ

′
j − Ŷj), (3.21)

with respect to qj and βj . This is done with another ALS loop alternating over

qj and βj which gives, for �xed qj 's,

β̂j =
Ŷ ′jDjqj

q′jDjqj
, j ∈ J, (3.22)

q̂j =
Ŷ ′j βj

β′jβj
, j ∈ J. (3.23)

The restrictions imposed by the measurement levels of the variables need to be

considered. This amounts to project the estimated vector q̂j on some cone .

For ordinal data, the cone Cj is the cone of monotone transformations given

by

Cj = {qj |qj(1) ≤ qj(2) ≤ ... ≤ qj(lj)}, (3.24)

and the projection to this cone is solved by a weighted ordinal regression in the

metric Dj (the weights).

For numerical data, the corresponding cone is a ray given by
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Cj = {qj |qj = γj + δjsj}, (3.25)

where sj is a given vector. The projection to this cone is a linear regression

problem.

For nominal data, the cone is the Rlj space and the projection is done by

setting

qj = q̂j . (3.26)

Then, for given q̂j and β̂j , Ŷj can be updated as follows:

Ŷj = q̂j β̂′j . (3.27)

and object scores are computed. This solution, which takes into consideration

the measurement level of the variables, is known as the PRINCALS solution

(Principal Components Analysis by Means of Alternating Least Squares).

Formally, the PRINCALS algorithm works as follows:

0. Initialise X under the two normalisation constraints (3.4) and (3.5).

1. As with HOMALS, estimate the multiple category quanti�cations by equa-

tion (3.7)

Ŷ ′j =
1

Dj
G′jX, j ∈ J.

2. Estimate the component loadings by equation (3.22)

β̂j =
Ŷ ′jDjqj

q′jDjqj
,

where qj is suitably �xed and j ∈ J .

3. Estimate the single category quanti�cations by equation (3.23)

q̂j =
Ŷ ′j βj

β′jβj
, j ∈ J.

4. Account for the measurement level of the j th variable by performing a mono-

tone or linear regression.
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5. Update the multiple category quanti�cations by setting

Ŷj = q̂j β̂
′
j , j ∈ J.

6. Estimate the object scores by

X̂ =
1

J

∑
j

GjYj .

7. Column centre and orthonormalise the matrix of object scores.

8. Check the convergence criterion.

Step 2-5 minimise the second term of the loss function (3.20). In step 6, X̂ is

updated. In step 8, the convergence criterions are checked. If those are not

met, the algorithm is repeated from step 1. Step 0, on the other hand, is never

repeated. It is simply an initialisation step.

3.1.3 Algorithmic implementation

There are packages in R, SPSS and SAS to work with PRINCALS.

The homals package in R does principle component analysis, correspon-

dence analysis, multiple correspondence analysis, regression, canonical correla-

tion analysis and multiset canonical correlation analysis. It allows for treating

variables nominal, ordinal, numerical; as well as single and multiple.

A similar set of options is available in SPSS Categories, except that they are

distributed over various programmes.

The packages in both R and SPSS have been implemented by de Leeuw and

colleagues and they follow the algorithm just described (Section 3.1), simultane-

ously obtaining the two goals of homogeneity analysis. The algorithms written

in R are still very tentative, especially compared to the least squared methods

which are very well tested and understood.

In SAS, the two goals of homogeneity analysis are not achieved simultane-

ously. Two di�erent procedures are applied one after the other. The �rst, proc

prinqual, quanti�es the qualitative variables; the second, proc princomp, applies

PCA to the quanti�ed variables hence reducing their number from J to p.
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3.1.3.1 SAS procedure for PRINCALS

The prinqual procedure in SAS provides methods to �nd transformations that

decrease the rank of the covariance matrix of the transformed variables or max-

imise the variance accounted for by a few linear combinations. As such, it

generalises PCA to ordinal or qualitative data.

The data for the prinqual procedures can contain variables with nominal,

ordinal, interval, or ratio scales. Any mix is allowed: nominal variables can

be transformed by scoring the categories to optimise the covariance matrix;

ordinal variables can be transformed monotonically or transformed to ranks;

interval and ratio variables can be transformed linearly, or non linearly with

spline, or monotone spline transformations. In addition, the procedure provides

methods for estimating missing data.

Prinqual is primarily a scoring procedure, which produces very little printed

output. It creates an output data set that contains both the original and trans-

formed variables. The original variables are named X1, X2, and X3, and the

transformed (optimally scaled) variables are named AX1, AX2, and AX3. Prin-

qual also produces an iteration history table that displays (for each iteration)

the iteration number, the maximum and average absolute change in standard-

ised variable scores computed over the iteratively transformed variables, the

criterion being optimised, and the criterion change.

Table 3.1 summarises options available in the proc prinqual statement.
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TASK Option
Identify input data set
speci�es input SAS data set DATA=
Specify details for output data set
outputs approximations to transformed variables APPROXIMATIONS
speci�es pre�x for approximation variables APREFIX=
outputs correlations and component structure matrix CORRELATIONS
speci�es a multidimensional preference analysis MDPREF
speci�es output data set OUT=
speci�es pre�x for principal component scores variables PREFIX=
replaces raw data with transformed data REPLACE
outputs principal component scores SCORES
standardises principal component scores STANDARD
speci�es transformation standardisation TSTANDARD=
speci�es pre�x for transformed variables TPREFIX=
Control iterative algorithm
analyses covariances COVARIANCE
initialises using dummy variables DUMMY
speci�es iterative algorithm METHOD=
speci�es number of principal components N=
suppresses numerical error checking NOCHECK
speci�es number of MGV models before refreshing REFRESH=
restart iterations REITERATE
speci�es singularity criterion SINGULAR=
speci�es input observation type TYPE=
Control the number of iterations
speci�es minimum criterion change CCONVERGE=
speci�es number of �rst iteration to be displayed CHANGE=
speci�es minimum data change CONVERGE=
speci�es number of MAC initialisation iterations INITITER=
speci�es maximum number of iterations MAXITER=
Specify details for handling missing values
includes monotone special missing values MONOTONE=
excludes observations with missing values NOMISS
unties special missing values UNTIE=
Suppress displayes output
suppresses displayed output NOPRINT

Table 3.1: Options for the PRINQUAL procedure.

The dataset containing the transformed (optimally scaled) variables can be used

as the input to other SAS procedures.
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3.2 Procrustes analysis

Procrustes transformations permit to compare two con�gurations (i.e. data

matrices) in order to measure their degree of concordance [147, 148]. One data

matrix, referred to as the target matrix, is kept �xed; the other is scaled and

rotated to �nd an optimal superimposition that maximises their �t. The sum of

the squared residuals between con�gurations in their optimal superimposition

can be then used as a metric of association. A permutation procedure (Protest),

implemented by Jackson [149], can be used to assess the statistical signi�cance

of the Procrustean �t.

Let X be a n x p matrix of the coordinates of n points obtained from

matrix G by one technique and let Y be a n x q matrix obtained with a

di�erent technique. Since the superimposition process requires matrices to have

the same dimensionality, the matrix with the smaller number of variables, say

Y (supposing q ≤ p ), can be �lled with columns of zeros until it matches the

dimensionality of the larger matrix. In order to �nd the optimal superimposition

one con�guration is kept �xed as a reference (X ) while the other (Y ) is moved

successively until the residual sum of squares

n∑
r=1

(xr − yr)′(xr − yr) (3.28)

is minimised. yr can be moved relative to xr through rotation, re�ection and

translation, i.e. by

A′yr + b, r = 1, ..., n, (3.29)

where A is a p x p orthogonal matrix.

Hence, the aim is to solve:

R2 = min
A,b

n∑
r=1

(xr −A′yr − b)′(xr −A′yr − b). (3.30)

A and b are found by least squares using the following result.

Theorem. Let Z = Y ′X and let's assume that the column means of X and Y

are zero, i.e. x̄ = ȳ = 0. Using the singular value decomposition theorem,

Z = V ΓU ′ (3.31)

where V and U are orthogonal p x p matrices and Γ is a diagonal matrix of
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non-negative values. Then the minimising values of A and b are given by

b̂ = 0, Â = V U ′, (3.32)

and

R2 = tr(XX ′) + tr(Y Y ′)− 2tr(Γ). (3.33)

Proof.

Equation (3.30) can be rewritten as

R2 = min
A,b

n∑
r=1

(x′r − y′rA− b′)(xr −A′yr − b) (3.34)

= min
A,b

n∑
r=1

(x′rxr − x′rA′yr − x′rb− y′rAxr

+y′rAA
′yr + y′rAb− b′xr + b′A′yr + b′b).

To �nd the minimum we need to di�erentiate equation (3.30) with respect toA

and b and equate the partial derivatives to zero.

Di�erentiating equation (3.30) with respect to b gives,

∂R2

∂b
= −

n∑
r=1

x′r +

n∑
r=1

y′rA−
n∑

r=1

x′r +

n∑
r=1

y′rA+ 2nb′ (3.35)

= −2nx̄′ + 2nȳ′A+ 2nb′,

where ȳ =
∑

yr

n and x̄ =
∑

xr

n .

Equating equation (3.35) to zero gives

b′ = x̄′ − ȳ′A, (3.36)

and taking the transposed on both sides gives

b̂ = x−A′y. (3.37)

Since both con�gurations are centred,
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b̂ = 0.

�

Hence, equation (3.30) can be rewritten as:

R2 = min
A

n∑
r=1

(xr −A′yr)′(xr −A′yr) (3.38)

= min
A

tr(X − Y A)′(X − Y A)

= min
A

tr(X − Y A)(X − Y A)′

= min
A

tr(X − Y A)(X ′ −A′Y ′)

= min
A

tr(XX ′ −XA′Y ′ − Y AX ′ + Y AA′Y ′)

= min
A

tr(XX ′ −XA′Y ′ − Y AX ′ − Y Y ′)

= tr(XX ′) + tr(Y Y ′)− 2 max
A

tr(X ′Y A).

A is such that that AA′ = I, i.e, a′iai = 1, a′iaj = 0, where a′i is the ith row of

A. Hence, there are p(p+ 1)/2 constraints.

Let 1
2Λ be the p x p symmetric matrix of Lagrange multipliers for these

constraints. We need to maximise

tr{Z ′A− 1

2
Λ(AA′ − I)}, (3.39)

where Z ′ = X ′Y .

Di�erentiating equation (3.39) with respect to A gives:

∂

∂A
tr{Z ′A− 1

2Λ(AA′ − I)} =
∂

∂A
tr(Z ′A)− 1

2

∂

∂A
Λ(AA′ − I). (3.40)

Now,

∂

∂A
tr(Z ′A) = Z, (3.41)

and

∂

∂A
tr(ΛAA′) = 2ΛA. (3.42)



3. MULTIVARIATE METHODS FOR NON-METRIC OR MIXED DATA 80

So, di�erentiating equation (3.40) and equating the derivatives to zero gives

∂

∂A
tr{Z ′A− 1

2
Λ(AA′ − I)} = 0 (3.43)

⇐⇒ Z − ΛA = 0

⇐⇒ Z = ΛA

⇐⇒ Λ = ZA′.

Recall that A is orthogonal and that Λ is symmetric. Then,

Λ2 = ZA′AZ ′ (3.44)

= ZZ ′

= (V ΓU ′)(UΓV ′)

= V Γ2V ′. (3.45)

So we can take Λ = V ΓV ′. Thus,

Z = ΛA ⇐⇒ V ΓU ′ = V ΓV ′A (3.46)

⇐⇒ ΓU ′ = ΓV ′A

⇐⇒ U ′ = V ′A

⇐⇒ A = V U ′.

Hence,

Â = V U ′. (3.47)

�

Note that Â is orthogonal. Substituting equation (3.47) into equation (3.38)

gives
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R2 = tr(XX ′) + tr(Y Y ′)− 2 max
A

tr(X ′Y A) (3.48)

= tr(XX ′) + tr(Y Y ′)− 2tr(X ′Y V U ′)

= tr(XX ′) + tr(Y Y ′)− 2tr(UΓV ′V U ′)

= tr(XX ′) + tr(Y Y ′)− 2tr(UΓU ′)

= tr(XX ′) + tr(Y Y ′)− 2tr(ΓUU ′)

= tr(XX ′) + tr(Y Y ′)− 2tr(Γ).

�

Now, we only have to verify that Â maximises equation (3.39) and it is not just

a stationary point. This can be achieved by di�erentiating equation (3.39) again

with respect to A.

For this purpose it is is convenient to write A as a vector a = (a′(1), ..., a
′
(p))
′.

Then equation (3.39) is a quadratic form of the elements of a and its second

derivative can be expressed as the matrix −Ip ⊗ Λ. Since Λ = V ΓV ′ and the

diagonal elements of Γ are non-negative, the second derivative matrix is negative

semi-de�nite. Hence Â maximises equation (3.39).

�

Since we assumed that X and Y are centred at the origin (i.e. their column

means are zero), the best rotation of Y relative to X is Y Â where Â is given by

equation (3.47), and Â is called the Procrustes rotation of Y relative to X.

Now, as

X ′Y Y ′X = UΓ2U ′, (3.49)

equation (3.38) can be rewritten as:

R2 = tr(XX ′) + tr(Y Y ′)− 2tr(X ′Y Y ′X)1/2. (3.50)

It can be seen that equation (3.38) is zero if and only if the yr can be rotated

to the xr exactly.

Scale factor : If the scales of the two con�gurations are di�erent, equation

(3.29) becomes

cA′yr + b, (3.51)
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where c > 0.

Using the above procedure,

ĉ =
tr(Γ)

tr(Y Y ′)
. (3.52)

b̂ and Â remain as before and the new minimum residual sum of squares becomes:

R2 = tr(XX ′) + ĉ2tr(Y Y ′)− 2ĉtr(X ′Y Y ′X)1/2. (3.53)

This transformation is called the Procrustes rotation with scaling of Y relative

to X.

This procedure is not symmetrical with respect to X and Y. However, sym-

metry can be obtained by selecting scaling so that

tr(XX ′) = tr(Y Y ′). (3.54)

3.2.1 Algorithmic implementation in R

In R, Procrustes and PROTEST are implemented in the package �vegan�. Func-

tion procrustes rotates a con�guration to maximum similarity with another

con�guration. The main things that need to be speci�ed are: the target ma-

trix X, the matrix to be rotated Y, whether the scaling of axes of Y should be

allowed and whether the symmetric Procrustes statistic should be used.

If scale=FALSE, the function only rotates matrix Y. If scale=TRUE, it scales

linearly con�guration Y for maximum similarity. Since Y is scaled to �t X, the

scaling is non-symmetric. However, with symmetric=TRUE, the con�gurations

are scaled to equal dispersions and a symmetric version of the Procrustes statis-

tic is computed.

Function protest calls procrustes(..., symmetric = TRUE) repeatedly

to estimate the signi�cance of the Procrustes statistic. It tests the non-randomness

(i.e. the signi�cance) between two con�gurations using a correlation-like statis-

tic derived from the symmetric Procrustes sum of squares.



Chapter 4

Comparison between linear

and non-linear principal

components analysis to

correct for strati�cation

In this �nal chapter, we describe and compare results obtained using linear PCA

and PRINCALS to correct for PS. Linear PCA assumes that variables under

study are continuous, and so, SNPs are quanti�ed by �xing a reference and a

variant allele, and by counting the number of mutations. This implies that: (i)

SNPs can take values 0, 1 and 2; (ii) the distance between homozygous wild

type and heterozygous is the same as the distance between heterozygous and

homozygous mutant; and (iii) the model of inheritance is additive. PRINCALS,

on the other hand, treats SNPs as ordinal qualitative variables. This means that

there is an order between homozygous wild type, heterozygous and homozygous

mutant, but that the distance is not the same. Hence, it does not assume a

model of inheritance, it is more �exible and it can potentially capture some

information which linear PCA misses out.

The chapter is organised as follows. First, there is a description of the sam-

ple dataset including how individuals and SNPs were selected. Second, the

application of linear PCA to the sample dataset is presented. PCA was applied

using an R algorithm written ad hoc which follows precisely the EIGENSTRAT

83
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procedure described in Section 2.3. Third, the application of Gi�'s PRINCALS

to the same sample dataset is outlined. Results obtained with the two di�erent

approaches are then compared graphically, by mean of the Procrustean super-

imposition approach and by the test Protest which tests matrices association,

and �nally with a scenarios analysis.

For clarity, we refer to the components extracted with linear PCA as prin-

cipal components (PC), and to those obtained with PRINCALS as dimensions.

4.1 Description of the data matrix

The study sample was drawn from HapMap [17] and so we knew the ethnicity of

all individuals. Clearly, ethnicity is typically unknown in advance.We had 988

individuals genotyped at 404,502 SNPs. The ethnic distribution of the study

sample is reported in Table 4.1.

We organised data in a large 988 x 404,502 matrix G, with rows indexed by

individuals and columns indexed by SNPs.

G is in pedigree format, i.e. its �rst six columns are respectively:

1. Family ID

2. Individual ID

3. Paternal ID

4. Maternal ID

5. Sex (1=male; 2=female; other=unknown)

6. Phenotype

and from column 7 onwards there are the genotypes.

It has been shown that e�ective strati�cation correction is insensitive to the

number of samples and that, though EIGENSTRAT has di�culty inferring a

perfectly accurate axis of variation when there are less than 5,000 markers (M),

strati�cation correction at random candidate SNPs is e�ective for M ≥200 [25].
Hence, for the purpose of this thesis, we decided to reduce the number of samples

to include 90 individuals belonging to three very distinct ethnic groups and to

1,000 randomly chosen SNPs. Individuals and SNPs were selected as described

in Sections 4.1.1 and 4.1.2.
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4.1.1 Individual selection

We �rst ran EIGENSTRAT on the entire study sample to see how individuals

clustered. Figures 4.1, 4.2 and 4.3 show respectively the plots of the �rst and

second, second and third, and �rst and third axis of variation (i.e. eigenvectors).

Figure 4.1: First and second axis of variation on 988 HapMap individuals and
405,402 SNPs.
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Figure 4.2: Second and third axis of variation on 988 HapMap individuals and
405,402 SNPs.

Figure 4.3: First and third axis of variation on 988 HapMap individuals and
405,402 SNPs.

As we can observe from the �gures, CEU, CHB and YRI always have a very

distinct cluster. We thus decided to restrict our attention to 90 individuals,

randomly chosen from those ethnicities. We �xed the prior probability of being



PCA VERSUS PRINCALS TO CORRECT FOR STRATIFICATION 88

selected from one of the three subpopulations to be 1/3. The reduced study

sample thus included 30 CEU, 30 CHB and 30 YRI.

CEU: These samples were collected from people living in Utah with ancestry

from Northern and Western Europe. Collection was organised by the Centre

d'Etude du Polymorphisme Humain (CEPH) in 1980.

CHB: These samples were collected from individuals living in the residential

community at Beijing Normal University who were self-identi�ed as having at

least three out of four Han Chinese grandparents.

YRI: These samples were collected in a particular community in Ibadan, Nigeria,

from individuals who identi�ed themselves as having four Yoruba grandparents.

4.1.2 SNPs selection

SNPs were chosen as follows. First, SNPs were pruned to exclude markers in

LD with each other. We generated a subset of SNPs in approximate linkage

equilibrium, i.e. uncorrelated, by calculating the pairwise genotypic correla-

tion and recursively removing SNPs within a sliding window. We chose an r2

threshold of 0.5 and performed SNPs pruning using Plink [104] with the op-

tion �--indep-pairwise 50 5 0.5� . With this command we: (i) considered

a window of 50 SNPs; (ii) calculated LD between each pair of SNPs in the win-

dow and removed one of a pair of SNPs if the LD was greater than 0.5; and

(iii) shifted the window 5 SNPs forward; then repeated the procedure. With

pruning we reduced the number of SNPs from 412,354 to 142,792.

Second, SNPs with missing values on any of the randomly chosen individuals

were removed. This further reduced the number of SNPs to 113,521.

Then, we applied the R function [sample(nrowSNP,1000,replace=FALSE),]

to randomly select 1,000 SNPs.

4.2 Application of PCA to the sample dataset

As previously mentioned, we applied linear PCA to the study sample using

an R script which follows precisely the EIGENSTRAT procedure described in

Section 2.3. The R script is reported at the end of this chapter (see Section 4.8

). We also wrote a script in Java (see Appendix B) to recode SNPs as 0, 1 and

2 by choosing for each marker a reference and a variant allele and counting the

number of mutations. We then transposed the 90 x 1000 sample data matrix and

imported it into R. We mean centred its rows (i.e. the SNPs), normalised them
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and computed the covariance matrix on the individuals. Finally, we performed

an eigenvalue decomposition on the covariance matrix.

As it is not yet clear how normalisation can be applied to PRINCALS,

and as it has been shown that results are mathematically valid without the

normalisation [27], we also performed an eigenvalue decomposition omitting the

normalisation step and merely subtracting the row mean. In the remainder of

this chapter, we present results obtained without normalisation.

4.3 Application of the PRINCALS method

We applied PRINCALS to the reduced dataset consisting of 90 individuals (30

CEU, 30 CHB and 30 YRI) and 1,000 randomly chosen SNPs not in LD.

Since the algorithms implemented in the R homals package are still very

tentative, we decided to use SAS proc prinqual. However, as mentioned in sec-

tion 3.1.3, in SAS, the two goals of homogeneity analysis (i.e. (i) to reduce the

number of variables in the sense of PCA and (ii) to quantify the qualitative vari-

ables) are not achieved simultaneously. Rather, SAS proc prinqual quanti�es the

qualitative variables. A data reduction procedure (e.g. SAS proc princomp or

the PCA R script of section 4.8) can then be applied to the quanti�ed variables,

thus reducing their number. So, we used a two phased method:

Phase 1. Quanti�cation of the qualitative variables using SAS proc prinqual

Phase 2. Extraction of the dimensions using the R script on the quanti�ed

variables.

4.3.1 Phase 1: proc prinqual

Step 1. We recoded the data matrix of 0, 1 and 2 into 1, 2 and 3, as SAS

treats 0 as missing. We then imported the matrix into SAS. The �rst column

of the matrix contained the subject id, the remaining 1,000 columns contained

the SNPs. We removed the column headings, so that columns were named by

SAS VAR1-VAR1001. SNPs were therefore named VAR2-VAR1001.
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PROC IMPORT out= WORK.source

datafile= "D:\G_90ids_1000snps.txt"

dbms=DLM replace;

delimite='20'x;

getnames=NO;

datarow=1;

RUN;

Step 2. We performed the proc prinqual procedure on the data matrix to quan-

tify variables.

PROC PRINQUAL data=source maxiter=2000 out=quantified_variables

replace approximations scores;

TRANSFORM monotone (VAR2-VAR1001);

run;
Option maxiter = 2000 told SAS the maximum number of iterations. Replace

asked to replace raw data with transformed data. Approximations and scores

respectively demanded as output approximations to transformed variables and

principle components scores. Finally, under our assumption that SNPs should be

treated as ordinal qualitative variables,with TRANSFORM monotone, we requested

a monotone transformation of the markers.

The algorithm converged in 40 iterations.

Step 3. We created a dataset containing only the quanti�ed, optimally scaled,

variables (which by default, in SAS, are called AVAR). This dataset was then

exported and imported into R.

data nlpca;set quantified_variables ;

keep AVAR2-AVAR1001;

run;

PROC EXPORT data = work.nlpca outfile = �D:\quantified

variables.txt�;

dbms = TAB replace;

run;

4.3.2 Phase 2. Extracting the dimensions

We imported the matrix containing the quanti�ed optimally scaled variables

into R, we transposed the matrix and we ran the R script. As mentioned,

we omitted the normalisation step as no longer applicable. Indeed, with the

normalisation step, each row entry is divided by
√
pi(1− pi) where
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pi =
(1 +

∑N
j=1 gij)

2 + 2N

and
∑

j gij is the sum of the row of the values on each row. While with PCA,

this sum could take as maximum value 2N (as gij could take values 0, 1 and

2) and so pi ≤ 1, with PRINCALS the upper limit of the sum could be > 2.

Therefore, pi could be greater than 1.

4.4 Comparison of PCA and PRINCALS: graph-

ical representation

Figure 4.4 shows the scree plot obtained both with PCA (in blue) and PRIN-

CALS (in red). As the elbow is after the third eigenvalue in both cases, we

considered the �rst three PC and the �rst three dimensions.

Figure 4.4: Scree plot.

Figures 4.5, 4.6 and 4.7 respectively show the scatter plot of the �rst and sec-

ond, second and third, and �rst and third axes of variation (i.e. eigenvectors)

obtained with PCA and PRINCALS. Individuals of CEU origin are indicated

in blue, of CHB origin in yellow and of YRI origin in black.
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Figure 4.5: First and second axis of variation on 90 individuals and 1,000 random
unlinked SNPs. The graph above is obtained from linear PCA, the one below
from PRINCALS.
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Figure 4.6: Second and third axis of variation on 90 individuals and 1,000
random unlinked SNPs. The graph above is obtained from linear PCA, the one
below from PRINCALS.
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Figure 4.7: First and third axis of variation on 90 individuals and 1,000 random
unlinked SNPs. The graph above is obtained from linear PCA, the one below
from PRINCALS.

From these graphs, we can see that PCA and PRINCALS give opposite scores

for the �rst axis of variation. CEU and CHB positive scores are translated to

negative values, while YRI negative values become positive. Also, the third axis
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of variation has a bigger range for PCA than PRINCALS.

However, from a graphical perspective, we can see that for both PCA and

PRINCALS the �rst axis of variation identi�es macro ethnic di�erences. In

particular, it re�ects genetic variation between Eurasia and Africa. Notably, it

is the second axis of variation that separates CEU and CHB.

Figure 4.8 shows the scatter plot produced by plotting the �rst PC versus the

�rst dimension. The points are mainly on a line with a negative gradient, but

there are several exceptions. We looked for patterns by studying the genotypic

distribution of the outliers, but nothing emerged. We thus went on to plot the

second PC vs the second dimension (Figure 4.9) and the third PC versus the

third dimension (Figure 4.10). A similar pattern emerged, though the line had

positive gradient in both cases. However, plots of PC versus dimension from

the fourth component onwards were di�erent, as the points no longer lay on a

line (Figures 4.11 and 4.12). We decided to proceed with Procrustes rotation

to better compare the two matrices.

4.5 Comparison of PCA and PRINCALS: Pro-

crustes and PROTEST

We compared the matrix of PC and the matrix containing the dimensions using

the Procrustean superimposition approach. As described in section 3.2, Pro-

crustes analysis tests the overall degree of association between two matrices

by scaling and rotating them in order to �nd an optimal superimposition that

maximises their �t. The sum of the squared residuals between matrices in their

superimposition can then be used as a metric of association. There are several

strategies for Procrustes analysis. We adopted the simplest approach of the

least squares superimposition of one matrix to a reference matrix.

Let C be the matrix containing all PC extracted from the sample dataset

and let D be the matrix containing all the dimensions extracted from the same

sample dataset. Clearly, both C and D are 1000 x 1000 matrices. Indeed, we

extracted eigenvectors from the 90 x 90 covariance matrix constructed on the

individuals, thus producing 90 eigenvectors and 1,000 PC/dimensions.

We set the matrix of principle components C to be the reference matrix and

we moved the matrix of dimensions, D, successively until the sum of squared

residuals
∑1000

j=1 (cj − dj)′(cj − dj) was minimised.
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We performed Procrustes analysis with the �vegan� package in R. Figure 4.13

is the superimposition plot. The target matrix (i.e. the matrix C of principle

components) is represented by the solid circles. The matrix of dimensions is

represented by the arrow heads. Solid lines represent Procrustes residuals.The

longer the line, the greater is the residual. We can observe that an almost

perfect super imposition is obtained for some markers, whilst high residuals are

seen for others.

Figure 4.13: Procrustes superimposition plot.

Figure 4.14 is the ordination plot of the residuals. SNPs are ordered depend-

ing on the magnitude of the residuals. Again, we can observe that residuals

magnitude ranges from 1.7 to 7.3.

By studying the residuals, we see a trend. PC and PRINCALS yield similar
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results (low residuals) for markers that are homogeneous in the study sample.

As the genotypic variability increases across the population, so do the scores

produced by the two methods.

Finally, we tested matrices association using Protest, a permutation proce-

dure which tests the signi�cance of the Procrustean �t. The function Protest

uses a correlation-like statistic derived from the symmetric Procrustes sum of

squares ss as r =
√

1− ss. Based on 1,000 permutations, this gave a correlation
in a symmetric Procrustes rotation of 0.4137 with p = 0.001 thus indicating that

the two matrices are signi�cantly di�erent.

4.6 Comparison of PCA and PRINCALS: Ge-

nomic Control

For the purpose of this study, we focused on the situation where a single set of

loci (the 1,000 randomly chosen SNPs), was used both to test for association,

and to learn about structure (as in a genome-wide study for association). We

present the results from the following model. Samples cases and controls were

drawn as previously described so that the study population of 90 individuals

consisted of three subpopulations. Case/control label was randomly assigned to

produce association due to PS. The �rst three axis of variation (eigenvectors) ob-

tained with PCA and the �rst three axis of variation obtained with PRINCALS,

were then separately put in a logistic regression multivariate model as covari-

ates. Genomic control was calculated in the three situations. The scenarios

analysis was done using Plink [104] with the options �--logistic --adjust�.

Table 4.2 reports the results from 10 di�erent scenarios each with di�erent level

of strati�cation. For each scenario, we report: (i) the ratio cases : controls

by ethnicity; (ii) the unadjusted genomic control; (iii) the genomic control ob-

tained correcting for the �rst three eigenvectors from linear PCA; and (iv) the

genomic control obtained correcting for the �rst three eigenvectors obtained

with PRINCALS.

As we can observe from Table 4.2, if the genomic control on the study sample

is < 1.5, then adjusting for the �rst three eigenvectors from PCA gives a lower

genomic control than adjusting for the �rst three eigenvectors from PRINCALS.

On the other hand if the original genomic control is > 1.5, then correcting for

PRINCALS yields a lower genomic control than correcting for PC. Hence, it

looks like PCA performs better under mild PS; while under moderate/severe
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PS, PRINCALS outperforms PCA.

4.7 Conclusions

In this chapter, we have compared the results obtained using PCA and PRIN-

CALS to detect and correct for PS. It emerges that the two methods yield

similar scores (PC and dimensions) for markers that have a low/null genotypic

variability across the study sample, whilst scores are di�erent for markers with

a high genotypic variability, thus suggesting that the two methods capture dif-

ferent intra-subject variability. This is con�rmed by the Protest analysis where

we �nd that the matrix of PC and the matrix of dimensions are statistically

di�erent and, further, by the scenarios analysis. In particular, we see that, as

the level of PS increases, PRINCALS outperforms PCA. The reason for this can

be explained by the fact that PCA provides quite a rigid framework by imposing

an additive model of inheritance for each marker. Biology is full of non-linear

phenomena and so is genetics. PRINCALS does not assume any model of in-

heritance and it weighs every marker di�erently depending on the distribution

in the study population. This relaxing of the boundaries can perhaps better

capture the real situation and hence produce a better correction.

Clearly, these results should be validated in multiple independent samples

and by using a greater number of SNPs.
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4.8 R script to extract eigenvectors

The following R script replicates entirely the PCA implemented in EIGEN-

STRAT and described in Section 2.3. We wrote the script in R in order to

better control the algorithm (e.g. to avoid normalisation and to run the algo-

rithm on the transformed, optimally scaled variables).

R script

#Import genotype data

#NB:the matrix is already transposed. SNPs are coded as 0, 1, 2

#There are 1000 SNPs not in LD and 30 IDS: 30 CEU, 30 CHB, 30 YRI

G1<-read.table("matrix_1000SNPs_90ids_pruned.txt",header=T)

a<-G1[,1]

G<-G1[,-1]

row.names(G)<-a

G<-as.matrix(G)

rm(G1)

#Generate the variables number of row (nrowG)

nrowG <- nrow(G)

#Generate the variable number of columns (ncolG)

ncolG <- ncol(G)

#Find the vector of row means

#(row means as we are working on the SNPs)

m<-rowMeans(G)

m<-as.matrix(m)

#Centre the data matrix by subtracting the row mean from each

#entry in row i

one<-matrix(1,1,ncolG)

tmp<-m %*% one

G_centred<-G-tmp

#Normalise the data matrix

M<-ncolG*m

one_tmp <-matrix(1,nrowG ,1)

p_tmp<-(one_tmp +M)/(2*ncolG+2)

p<-sqrt(p_tmp*(1-p_tmp))

p<-as.matrix(p)

P<-p%*%one

#Divide every cell of the centred matrix for the corrisponding pi
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X<-G_centred/P

X<-as.matrix(X)

#Find the variance and covariance matrix S

S<-(t(X))%*%X

#Extract eigenvalues and eigenvectors

eigen(S)

eigenvalue<-eigen(S)$values

eigenvector<-eigen(S)$vectors

#Scree Plot (to determine the significant principal components)

plot(eigenvalue, type="b", main="Scree Diagram",

xlab="Number of components", ylab="Eigenvalues")

#Plot the significant axis of variation (eigenvectors)

plot(eigenvector[,1], eigenvector[,2], main="eigen1 vs. eigen2",

xlab="eigenvactor 1", ylab="eigenvector 2", pch=18, col="black")

text(eigenvector[,1],eigenvector[,2],row.names(eigenvector),

cex=0.6, pos=4, col="black")

plot(eigenvector[,1],eigenvector[,3],main="eigen1 vs. eigen3",

xlab="eigenvector 1", ylab="eigenvector 3", pch=18, col="black")

text(eigenvector[,1],eigenvector[,3],row.names(eigenvector),

cex=0.6, pos=4, col="black")

plot(eigenvector[,2],eigenvector[,3], main="eigen2 vs. eigen3",

xlab="eigenvector 2", ylab="eigenvector 3", pch=18, col="black")

text(eigenvector[,2],eigenvector[,3],row.names(eigenvector),

cex=0.6, pos=4, col="black")

eigenvector<-as.matrix(eigenvector)

#Compute the matrix of PC

C=X%*%eigenvector

#Eigenvalue decomposition omitting the normalisation step

#Find the variance and covariance matrix (S_centred) from the

#centred matrix

S_centred<-as.matrix(G_centred)

S_centred<-(t(G_centred))%*%G_centred

#Extract eigenvalues and eigenvectors from S_centred

eigen(S_centred)

eigenvalue_centred<-eigen(S_centred)$values

eigenvector_centred<-eigen(S_centred)$vectors



PCA VERSUS PRINCALS TO CORRECT FOR STRATIFICATION 108

eigenvector_centred<-as.data.frame (eigenvector_centred)

#Scree Plot (to determine the significant principal components)

plot(eigenvalue_centred,type="b",main="Scree Diagram",

xlab="Number of components",ylab="Eigenvalues")

#Plot the significant axis of variation

plot(eigenvector_centred[,1],eigenvector_centred[,2],

main="eigenvector 1 vs. eigenvector 2",

xlab="eigenvector 1", ylab="eigenvector 2", pch=18, col="black")

text(eigenvector_centred[,1],eigenvector_centred[,2],

row.names(eigenvector_centred),cex=0.6, pos=4, col="black")

plot(eigenvector_centred[,1],eigenvector_centred[,3],

main="eigenvector 1 vs. eigenvector 3",

xlab="eigenvector 1", ylab="eigenvector 3", pch=18, col="black")

text(eigenvector_centred[,1],eigenvector_centred[,3],

row.names(eigenvector_centred), cex=0.6, pos=4, col="black")

plot(eigenvector_centred[,2],eigenvector_centred[,3],

main="eigenvector 2 vs. eigenvector 3",

xlab="eigenvector 2", ylab="eigenvector 3", pch=18, col="black")

text(eigenvector_centrato[,2],eigenvector_centred[,3],

row.names(eigenvector_centred), cex=0.6, pos=4, col="black")

eigenvector_centred<-as.matrix(eigenvector_centred)

#Find the matrix of PC

C_centred=G_centred%*%eigenvector_centred

#Eigenvalue decomposition on the transformed variables

#Import the transformed optimally scaled variables obtained from SAS

proc prinqual

A<-as.matrix(read.table("princals_1000snps_90ids.txt",header=T))

#Transpose matrix A

A_t<-t(A)

#Generate the variables number of row (nrowA_t)

nrowA_t <- nrow(A_t)

#Generate the variables number of columns (ncolA_t)

ncolA_t <- ncol(A_t)

#Find the vector of row means

m<-rowMeans(A_t)

m<-as.matrix(m)
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#Centre A_t by subtracting the row mean from each

#entry in row i

one<-matrix(1,1,ncolA_t)

tmp<-m %*% one

A_t_centred<-A_t-tmp

#Find the variance and covariance matrix from A_t_centred

S_ordinal<-(t(A_t_centred))%*%A_t_centred

#Extract eigenvalues and eigenvectors from S_ordinal

eigen(S_ordinal)

eigenval_ordinal<-eigen(S_ordinal)$values

eigenvec_ordinal<-eigen(S_ordinal)$vectors

eigenvec_ordinal<-as.data.frame(eigenvec_ordinal)

#Scree Plot (to determine the significant dimensions)

plot(eigenvalue_ordinal,type="b",main="Scree Diagram",

xlab="Number of components",ylab="Eigenvalues")

#Plot the significant axis of variation

plot(eigenvec_ordinal[,1],eigenvec_ordinal[,2],

main="eigenvector 1 vs eigenvector 2",

xlab="eigenvector 1", ylab="eigenvector 2", pch=18, col="black")

text(eigenvec_ordinal[,1],eigenvec_ordinal[,2],

row.names(eigenvec_ordinal), cex=0.6, pos=4, col="black")

plot(eigenvec_ordinal[,1],eigenvec_ordinal[,3] ,

main="eigenvector 1 vs eigenvector 3",

xlab="eigenvector 1", ylab="eigenvector 3", pch=18, col="black")

text(eigenvec_ordinal[,1],eigenvec_ordinal[,3],

row.names(eigenvec_ordinal), cex=0.6, pos=4, col="black")

plot(eigenvec_ordinal[,2],eigenvec_ordinal[,3],

main="eigenvector 2 vs eigenvector 3",

xlab="eigenvector 2", ylab="eigenvector 3", pch=18, col="black")

text(eigenvec_ordinal[,2],eigenvec_ordinal[,3],

row.names(eigenvec_ordinal), cex=0.6, pos=4, col="black")

eigenvec_ordinal<-as.matrix(eigenvec_ordinal)

#Find the matrix of dimensions

D=A_t_centred%*%eigenvec_ordinal

#Plot the first PC (centred) vs first dimension

plot(C_centred[,1],D[,1],

main="First PC vs First dimension", xlab="First PC ",
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ylab="First Dimension", pch=18, col="black")

text(C_centred[,1],D[,1], row.names(D), cex=0.6, pos=4, col="blue")



Conclusion

In this thesis we have applied non-linear principal components analysis (PRIN-

CALS) to correct for the presence of population strati�cation in genome-wide

association studies for complex diseases. The approach adopted di�ers from

previous ones in that SNPs are not considered as quantitative variables, but

they are instead treated as ordinal qualitative variables. This implies that there

is an order between homozygous wild type, heterozygous and homozygous mu-

tant, but that the distance between each pair is not necessarily the same. As a

consequence, we no longer assume an additive model of inheritance. Instead, dif-

ferent models of inheritance are allowed. Our approach is thus more �exible and

can potentially capture some information that linear PCA, a �gold standard�

in this �eld, misses out. Indeed, with PRINCALS, each marker is weighted

di�erently depending on its distribution in the study population. As biology is

full of non-linear phenomena, this relaxing of the boundaries can perhaps better

capture the real situation and hence produce a better correction. When we com-

pare the performances of PRINCALS and PCA, we �nd that the two methods

yield similar scores for markers with a low/null genotypic variability across the

study sample, while scores di�er as the level of genotypic variability increases.

This suggests that the two methods capture intra-subject variability di�erently.

Procrustes analysis and scenarios analysis con�rm this. Indeed, the matrix of

PC and the matrix of dimensions are shown to be statistically di�erent by the

test PROTEST and, in the scenarios analysis, we �nd that, as the level of PS

increases, PRINCALS appears to outperform PCA.

As previously mentioned, our results should be validated, perhaps also with

a simulation, in multiple independent samples, increasing the number of markers

and of individuals.

There are interesting areas of research that can be further investigated. In

particular, to our knowledge, there is not yet a validated methodology, even
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for PCA, to choose the optimum number of components (axes of variation) to

keep in the model when adjusting for PS. The rule of thumb is to blindly use

the �rst 10 axes of variation as covariates in the regression model. However,

this can over correct and produce many false negatives. The other criterion

of keeping in the model those axes of variation that explain a certain fraction

of the total variance, can miss out the �intermediate� components. When de-

signing a GWAS, much attention is put towards the homogeneity of the study

sample with respect to ethnicity. The �rst axes of variation show macro-ethnic

di�erences. If the study sample is homogeneous, there should not be many in-

dividuals that display macro-ethnic di�erences and typically those are removed

from the analysis. Intermediate components are then responsible of PS as, event

though they do not explain very much of the total variance, they are crucial in

identifying minor ethnic variability.

We are thinking to tackle the problem using cross-validation methodologies.

This is our current work in progress.



Appendix A

Matrix Algebra

This appendix gives a summary of some of the basic de�nitions and results in

matrix algebra. It is designed to be a convenient source of reference for Chapters

2 and 3.

Matrix

A matrix is a rectangular array of numbers. We say a matrix A is n x m if it

has n rows and m columns.

A =



a11 a12 ... a1m

a21 a22 ... a2m

. . . .

. . . .

. . . .

an1 an2 ... anm


= (aij).

Operations on matrices

Given two n x m matrices A= (aij) and B = (bij), and and m x p matrix C,

then

1. A+B = (aij + bij);

2. A−B = (aij − bij);

3. λA = (λaij), where λ is a scalar;

4. the matrix product AC is the n x p matrix D, given by dik =
∑m

j=1 aijcjk.
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Transposed Matrix

The transposed of a matrix A, A′ is obtained by interchanging rows and columns

A′ =



a11 a21 ... an1

a12 a22 ... an2

. . . .

. . . .

. . . .

a1m a2m ... anm


.

Properties:

1. (A′)′ = A.

2. (A+B)′ = A′ +B′.

3. (AB)′ = B′A′.

Identity matrix

The n x n identity matrix I has entries

sij =


1 if i = j;

0 if i 6= j.

Inverse matrix

Given an n x n matrix A, the n x n matrix B is an inverse of A if

AB = I = BA.

In this case we write

B = A−1.

If A has an inverse we say that it is invertible. If not, we say it is singular.

Diagonal matrix

A square n x n matrix D is a diagonal matrix if dij = 0 ∀ i 6= j .
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Properties:

1. A′ = A.

Trace

Given an n x n matrix A, the trace of A is de�ned as

tr(A) =

n∑
i=1

aii.

Some Properties:

1. tr(A+B) = tr(A) + tr(B);

2. tr(cA) = c tr(A), where c is a scalar;

3. tr (AB) = tr (BA).

Rank

The rank of an n x n matrix A is the maximum number of linearly independent

rows (columns) in A.

Determinant

Given a 2 x 2 matrix A, the determinat of A is given by

det(A) = a11a22 − a12a21.

Given an n x n matrix A,the determinat of A is given by

det(A) =

n∑
j=1

(−1)1+ja1j det(Aij).

Some properties:

1. An n x n matrix A is non-singular if det(A) 6= 0. Otherwise it is singular.

2. det(AB) = det(A) det(B).

3. det(A′) = det(A).

4. det(A)−1 = (det(A))−1.
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Adjoint Matrix

Let A be a square matrix. Then the adjoint of A, Adj(A), is the transpose of

the matrix obtained from A by replacing each entry by its cofactor, i.e. letting

Cij be the ij-cofactor of A, the ij-entry of Adj(A) is Cij .

Eigenvector

Given an n x n matrix A, an eigenvector of A is a non-zero vector u ∈ Rn

such that Au = λu for some λ ∈ R. We say that λ is the eigenvalue of the

eigenvector u.

Computation The eigenvalue equation can be expressed as

Au− λIu = 0,

where I is the identity matrix.

This can be rearranged to

(A− λI )u = 0.

If (A−λI) were invertible, then both sides of the equation coul be left multiplied

by the inverse to obtain the trivial solution u = 0. Thus we require (A− λI) to

be singular. This amount to put the determinant equal to zero:

det(A− λI) = 0.

The determinant requirement is called the characteristic equation of A, and

the left-hand side is called the characteristic polynomial. When expanded,

this gives a polynomial equation for λ.

Some properties of eigenvalues Given an n x n matrix A with eigenvalues λi.

Then

1. tr(A) = λ1 + λ2 + ...+ λn;

2. det(A) = λ1λ2 · · ·λn.
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Singular value decomposition theorem

Given an n x m matrix A of rank p, A can be written as

A = ULV ′,

where the n x p matrix U and the p x m matrix V are column orthonormal

matrices (U ′U = V ′V = I) and L is a diagonal matrix with positive elements.

Derivatives of linear functions

∂

∂x
(a′x) =

∂

∂x
(x′a) = a′.

∂

∂x
(Ax) = A.

∂

∂x′
(Ax) = A′.

Derivatives of quadratic functions

∂

∂x
(x′Ax) = x′(A′ +A).

Derivatives of matrix trace

∂

∂X
tr(AXB) =

∂

∂X
tr(B′X ′A′) = BA.

Vector Space

A vector space consists of a given set of objects and two given operations (addi-

tion and scalar multiplication) de�ned on that set and satisfying certain special

properties.

Linearly Dependent

A set of vectors {v1,v2, . . . ,vn} in a vector space V is linearly dependent if

either

• The vector equation c1v1 + c2v2 + · · ·+ cnvn = 0 has a solution with at

least one ci 6= 0.

or equivalently
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• One of its vectors can be written as a linear combination of the others.

A set of vectors is linearly independent if and only if it is not linearly dependent.

Spans

A set of vectors = in a vector space V spans V if every vector in V can be

written as a �nite linear combination of those in =.

Basis

A set of vectors = in a vector spaceV is a basis forV if = is linearly independent

and spans V.

Inner product space

Let V be a vector space over the real numbers. An inner product on V is a

function that associates a real number, denoted (u, v), with every pair of vectors

u and v in V such that:

1. (u,v) = (v,u);

2. (u,v + w) = (u,v) + (u,w);

3. c(u,v) = (cu,v);

4. (u,v) ≥ 0; (u,u) = 0 if and only if u = 0.

The vector space V, together with the inner product is called an inner product

space.

Norm

Given an inner product space, the norm of u, denoted ||u||, is given by ||u|| =√
(u,u).

Orthogonal and orthonormal

Vectors u and v in an inner product space are orthogonal if (u,v) = 0. A set of

vectors = in an inner product space is orthogonal if every pair of vectors in =
is orthogonal; an orthogonal set = is orthonormal if every vector in = has norm

equal to 1.
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Gram-Schmidt Process

Let V be an inner product space with basis = = {u1,u2, . . . ,un}. Then by the

Gram-Schmidt process we can construct an orthonormal basis from the ui

Let = = {u1,u2, . . . ,un} be a basis for an inner product space V. Let =′ =

{v1,v2, . . . ,vn} be de�ned as follows:

v1 = u1;

v2 = u2 −
(u2,v1)

(v1,v1)
v1;

v3 = u3 −
(u3,v1)

(v1,v1)
v1 −

(u2,v2)

(v2,v2)
v2;

...

vn = un −
(un,v1)

(v1,v1)
v1 −

(un,v2)

(v2,v2)
v2 − · · · −

(un,vn−1)

(vn−1,vn−1)
vn−1.

Then the set =′ is an orthogonal basis for V. An orthonormal basis for V is

given by =′′ = {w1,w2, . . . ,wn} , where

wi =
1

||vi||
vi ∀i = 1, . . . , n.
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Java Script to recode SNPs

and transpose the data matrix

We now report the Java Script which we designed, with the help of a com-

puter expert, to prepare data to run an eigenvalue decomposition on the data

covariance matrix.

The main script (Ped Transformer) calls all the others. The input �les are

the PED and the MAP �le which come out from Illumina. The output �le is

the transposed matrix which can then be imported into R.

PED �le

The PED �le is a white-space (space or tab) delimited �le: the �rst six columns

are mandatory: Family ID, Individual ID, Paternal ID, Maternal ID, Sex (1=male;

2=female; other=unknown), Phenotype. A PED �le must have 1 and only 1

phenotype in the sixth column. The phenotype can be either a quantitative trait

or an a�ection status column. A�ection status, by default, should be coded: 0

if missing, 1 if una�ected and 2 if a�ected. Genotypes (column 7 onwards)

should also be white-space delimited; they can be any character (e.g. 1,2,3,4

or A,C,G,T or 1,2 or anything else) except 0 which is, by default, the missing

genotype character. Our Java script is written for genotypes coded as 11, 12 and

22. If genotypes are in other format, they can be recoded using the --recode12

Plink [104] option. All markers should be biallelic. All SNPs (whether haploid

or not) must have two alleles speci�ed. Either both alleles should be missing
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(i.e. 0) or neither. No header row should be given.

MAP �le

The MAP �le contains exactly 4 columns: chromosome (1-22, X, Y or 0 if un-

placed), rs# or snp identi�er, genetic distance (morgans) and base-pair position

(bp units). By default, each line of the MAP �le describes a single marker.

Ped Transposer

import genotype.AlleleToGenotypeFileTransformer;

import genotype.MapTrasposer;

import java.io.BufferedReader;

import java.io.BufferedWriter;

import java.io.File;

import java.io.FileReader;

import java.io.FileWriter;

import matrix.TextTraspose;

public class PedTransposer {

public static void main(final String[] args) throws Exception {

// String inputFilename = "nameoffile";

String inputFilename = "pca.recode";

/*

* 1. Code genotype, row by row, on a new file: out.gen

* 2. Insert labels as first row of out.gen FID, IID, FA, MO, SEX,

STATUS and then the second transposed column of the MAP file

* 3. Transpose in the file out.txt

* (4. Replace MISSING values with a space (from row 7 onward))

*/

final BufferedReader pedInput = new BufferedReader(new FileReader

(new File("input", inputFilename + ".ped")));

final File output = new File("output", inputFilename + ".gen");

output.createNewFile();
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final BufferedWriter genotypeWriter = new BufferedWriter

(new FileWriter(output));

BufferedReader genotypeReader = null;

BufferedWriter srcWriter = null;

BufferedReader inputMapReader = null;

try

{

// 1 new AlleleToGenotypeFileTransformer(pedInput,

genotypeWriter).run();

genotypeWriter.flush();

System.out.println("STEP 1 - COMPLETE");

// 2 genotypeReader = new BufferedReader(new FileReader(output));

inputMapReader = new BufferedReader(new FileReader

(new File("input", inputFilename + ".map")));

final File src = new File("output", inputFilename + ".src");

srcWriter = new BufferedWriter(new FileWriter(src));

final String columns = new MapTrasposer

(inputMapReader).extract();

final String header = new StringBuilder().append("FID

IID FA MO SEX STATUS ").append(columns).toString();

srcWriter.write(header);

String line = genotypeReader.readLine();

int counter = 0;

while (line != null) { srcWriter.write(line);

srcWriter.write("\n");

line = genotypeReader.readLine();

System.out.println("scrivo il src (gen + header)"

+ counter++);

}

srcWriter.flush();

System.out.println("STEP 2 - COMPLETE");

// First column has as header: FIDIID,

// 3

String resultFilename = inputFilename + ".result";
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TextTraspose textTraspose = new TextTraspose(src,

resultFilename);

textTraspose.run();

} catch (final Exception e) { e.printStackTrace(); }

finally {

srcWriter.close();

genotypeReader.close();

inputMapReader.close();

pedInput.close();

genotypeWriter.close(); }

}

public static final String FILENAME = "input/nameoffile.ped";

public static final String FILEMAP = "input/nameoffile.map"; }

Allele to genotype

import java.io.BufferedReader;

import java.io.BufferedWriter;

import java.io.IOException;

public class AlleleToGenotypeFileTransformer {

private final BufferedReader reader;

private final BufferedWriter writer;

public AlleleToGenotypeFileTransformer(final BufferedReader reader,

final BufferedWriter writer) {

this.reader = reader;

this.writer = writer;

}

public void run() throws IOException {

String personaInAllele = reader.readLine();

int counter = 0;

while (personInAllele != null) {

final CodeGenotype CodeGenotype = new

CodeGenotype(personInAllele);

writer.write(codificaGenotipo.transform());

writer.write("\n");
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personaInAllele = reader.readLine();

System.out.println("code genotype line: " +

counter++); } } }

Code genotype

package genotype;

public class CodeGenoype {

private final String input;

public CodeGenoype(final String input) {

this.input = input;

}

public String transform() {

final String[] split = input.split(" ");

final StringBuilder builder = new StringBuilder();

for (int i = 0; i < 6; i++)

{ builder.append(split[i]);

builder.append(" ");

}

for (int j = 6; j < split.length; j++) {

final Snp snp = new Snp(split[j], split[j + 1]);

builder.append(snp.getGenotype());

builder.append(" ");

j++;

}

return builder.toString();

}

}

Map transposer

package genotype;

import java.io.BufferedReader;

import java.io.IOException;

public class MapTrasposer {

private final BufferedReader reader;
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public MapTrasposer(final BufferedReader reader) {

this.reader = reader;

}

public String extract() throws IOException {

String line = reader.readLine();

final StringBuilder sb = new StringBuilder();

while (line != null) {

final String[] columns = line.split("\t");

sb.append(columns[1]); sb.append(" ");

line = reader.readLine(); }

return sb.toString(); }

}

SNP

package genotype;

public class Snp {

private static final String _0 = "0";

private static final String _1 = "1";

private static final String _2 = "2";

private static final String MISSING = ".";

private int firstAllele; private int secondAllele;

public Snp(final String firstAllele, final String

secondAllele) {

this.firstAllele = Integer.parseInt(firstAllele);

this.secondAllele = Integer.parseInt(secondAllele);

if (this.firstAllele > 2) {

this.firstAllele = 0;

}

if (this.secondAllele > 2) {

this.secondAllele = 0;

}

}

public String getGenotipo() {

switch (firstAllele) {

case 0:
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return MISSING;

case 1:

if (secondAllele == 0) {

return MISSING;

} else if (secondAllele == 1) {

return _0;

} else { return _1; }

case 2:

if (secondAllele == 0) {

return MISSING;

} else if (secondAllele == 1) {

return _1;

} else {

return _2;

}

}

return

MISSING;

}

}
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