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Outline

The aim of this thesis is the understanding of elastic and plastic relaxation in SiGe het-

eroepitaxial nanostructures. This issue is addressed by developing ad hoc methods, based

on the coupling between linear elasticity theory and numerical simulations in the Finite

Element Method (FEM) framework. The outline is the following. Chap. 1 recalls the

state of the art and the main features of Ge on Si(001) heteroepitaxial growth, showing

that the lattice mismatch between Ge and Si (strain is accumulated in the Ge epilayer) and

different growth conditions lead to nucleation of three dimensional islands (elastic relax-

ation) or layer by layer growth (plastic relaxation via dislocation nucleation). Chap. 2 is

focused on the modeling of the elastic relaxation in islands, calculating the detailed elastic

field in nanostructures using FEM simulations. Chapter 3, on the contrary, is dedicated

to the analysis of plastic relaxation. Thanks to a novel method, developed in the FEM

framework, the study of dislocations in heteroepitaxial nanostructures is addressed. Plas-

tic relaxation is analyzed in a layer by layer growth on patterned substrates, highlighting

how the patterning could be a viable path to dislocation confinement. In Chap. 4 and

Chap. 5 the plastic relaxation in overgrown island is studied. In fact, the elastic relaxation

channel is not fully effective and, during the growth, dislocation are nucleated in islands

as well. In particular the onset of plasticity (first dislocation nucleation) is calculated in

Chap. 4 , exploiting the FEM methodology developed in Chap. 3. Chap. 5 is focused

on the nucleation and the evolution of dislocations, at large island volumes. A simple an-

alytical method is used to determine periodic dislocation nucleation occurring in islands,

while a suitable adapted Dislocation Dynamics (DD) code is used to predict the dislocation

microstructure deposited at interface between islands and substrate.





1
State of the art

Silicon is the material which has dominated the semiconductor industry for over 30 years,

even though the first transistor was fabricated using Germanium as active material. The

reasons are simple. Silicon-based technology has the clear advantage of a low-cost and

an easy processing that made it the standard technology for microelectronic applications.

Nowadays silicon devices has reached the nano-meter scale. Therefore the size has become

critical from a technological point of view. In fact, the nanometer scale it recognized

as the scale at which a top-down approach is ineffective to shrink the size down of any

device, like a Field Effect Transistor (FET). Due to the fatigue of keeping the reliable top-

down approach alive, researchers has been driving importance to bottom-up approaches

where Silicon can still be the main actor. This is the reason why SiGe heteroepitaxial

self-assembled nanostructures have attracted a considerable interest in the development of

new electrical and optical devices. The aim of this thesis is the basic study of the physical

properties that play in determining the formation and the evolution of such self-assembled

nanostructures.

1.1 Main features of Epitaxy

Epitaxy is defined as a controlled phase transition that leads to a single crystalline solids

[1]. In this process a material, called epilayer, is deposited onto a crystalline solid, called

substrate, of a given structure. In epitaxy epilayer grows layer by layer and the crystallo-

graphic orientation is determined by the exposed surface of the substrate. If the epilayer

and the substrate are of the same material such process is called homoepitaxy. In contrast,

when atoms of material A grow on a material B (A and B with the same crystalline struc-

ture) the process is called heteroepitaxy. The epilayer adopts the in-plane lattice parameter

of the substrate. If A has different lattice parameter than B, elastic energy is stored in

the epilayer. In heteroepitaxy three growth modes are observed [2]: Frank Van der Merve,

Volmer-Weber and Stranski-Krastanow mode. The three mode, sketched in Fig. 1.1, can

be described as layer by layer two dimensional growth, island growth and layer by layer

(wetting layer) plus island growth respectively. The growth mode is mainly governed by

surface energies and by lattice mismatch.

In lattice matched systems (A and B have the same lattice constant) the growth mode is

governed by surface energy only. Let us call γepi the surface epilayer energy, γint the energy
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Figure 1.1: Schematic diagrams of the three growth modes for heteroepitaxial sys-

tems: Frank-van der Merwe (FM), Volmer- Weber (VW), and Stranski-Krastanow

(SK).

of the interface between A and B and γsub the surface substrate energy. If γepi+γint < γsub,

the deposited material wets the substrate, and the growth proceeds in the FM mode. A

change in γepi + γint alone may drive a transition to the FM to VW growth mode: the

epilayer either wets the substrate or does not. In lattice mismatched systems there is

an additional possibility. In case of systems with small interface energy but large lattice

mismatch, SK growth mode is favored. Initial growth is layer by layer, but because a thicker

layer has large elastic energy, islands are formed to relax the strain.

1.2 SiGe/Si heteroepitaxy

Silicon and Germanium are group-IV semiconductors. At room temperature they are found

in diamond crystalline structure [3], so that each atom has four nearest neighbours (in

bulk) [4]. Lattice constants, along the [100] direction, are aSi = 5.432 Å and aGe = 5.658 Å

[5]. Thus, Ge/Si is a mismatched system, where the difference in lattice parameter accounts

for about 4%. From a chemical point of view, Ge and Si are very similar. Alloying is favored

and Si1−XGeX (X is the Ge content) alloys are fully miscible in the whole composition

range for temperatures used in heteroepitaxy [6]. By tuning the Ge content X, the lattice

mismatch between the alloy and the substrate varies from 0% to 4%. The surface energy

Si1−XGeX is lower than the surface energy of Si, and their interface energy is small, so the

Ge content x is a key parameter in determining the heteroepixial growth mode of SiGe alloys

on Si. In the high Ge content regime the epilayer growth in SK mode. The initial growth

occurs layer by layer, then three-dimensional islands are formed to relieve the elastic energy

stored in the system (elastic relaxation). In the low Ge content regime, lattice strain plays

a minor role, the epilayer grows forming a pseudomorphic layer following the FM mode.

As the epilayer become thicker and thicker, the elastic energy stored in the pseudomorphic

epitaxial layer increases and dislocation nucleation is observed (plastic relaxation). Besides

the alloy lattice parameter, the temperature and the growth technique (Molecular Beam

Epitaxy (MBE) and Chemical Vapor Deposition (CVD) the most common) are of relevant

importance in determining the growth mode. For instance varying the temperature is

possible to change the growth mode from SK or FM (or viceversa). We can conclude that
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Figure 1.2: Sketch of a SiGe layer grown epitaxially on a Si substrate. (a) Pseudo-

morphic case with tetragonal distortion. (b) Plastic relaxation case with introduction

of one dislocation.

in Si1−XGeX/Si heteroepitaxy strain (Ge content) and deposition condition are the main

actors in determining the growth mode. In the following part of the chapter we focus our

attention on Si1−XGeX on Si(001) substrate, studying strain relief mechanism leading to a

3D morphology (elastic relaxation) rather than dislocation nucleation (plastic relaxation).

1.3 Layer by layer growth: plastic relaxation

Low lattice mismatch, that is low Ge content, leads Si1−XGeX epilayers to layer by layer

growth (FM). The relaxed lattice parameter ae of the epilayer is different to the relaxed

lattice parameter of the substrate as. Thus a lattice mismatch strain f is defined as follows

:f = (ae − as)/as . In the Si1−XGeX/Si(001) system the mismatch f is positive and can

vary from 0 to 0.04 as X varies from 0 to 1. In the first steps of the growth, as mentioned,

the heteroepitaxial layer tends to grow coherent or pseudomorphic with the substrate,

that is the in plane lattice parameter a‖ of heteroepitaxial layer is equal to the substrate

lattice parameter and the unit cells are tetragonal distorted, as shown in Fig. 1.2 (a).

Therefore the pseudomorphic layer has a in-plane strain ε‖ equal to the lattice mismatch

: ε‖ = f . Increasing the thickness of the epitaxial layer, the elastic energy stored in the

pseudomorphic layer grows up.

At a certain thickness, called critical thickness hc, is energetically more favorable to

introduce a random network of Misfit Dislocations 1 (MD) ,at the interface between the

substrate and the growing layer, to relax some of the mismatch strain (see Fig. 1.2 (b) ).

Thus beyond the critical thickness of the epilayer, a part of the stored energy is relaxed

plastically by MD network (plastic relaxation), as shown in Fig. 1.3.

Different models have been developed to predict the critical thickness of the strained

epitaxial layer. Van der Merwe [8] produced a thermodynamic equilibrium model comparing

the strain energy relaxed by a misfit dislocation and the energy cost associated to the

introduction of the dislocation itself in the system. The critical thickness is defined as:

hc =
b

8πf

(

1− ν cos2 β

(1 + ν) cosλ

)[

ln

(

hc
b

)

+ 1

]

(1.1)

1the basic concepts of dislocation in hereroepitaxial structures are recalled in App. B
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Figure 1.3: Misfit dislocation network at the interface of Si0.98Ge0.02/Si heteroepi-

taxial film [7].

where b is the misfit dislocations Burgers vector, β is the angle between b and the dislo-

cation line direction and λ is the angle between b and a direction normal to the dislocation

line in the epilayer/substrate interface plane (to account for the real component of the

dislocation acting on reliving the strain in the epilayer). Matthews and Blakeslee used an

equivalent approach, balancing the forces acting on a dislocation terminating at the epilayer

surface (threading dislocation) [9]. The critical thickness, in this case, is given by:

hc =
b

2πf

(

1− ν cos2 β

(1 + ν) cosλ

)[

ln

(

hc
b

)

+ 1

]

(1.2)

where β is the angle between the dislocation line and its Burgers vector and λ is the

angle between the Burgers vector and the direction in the interface normal to the disloca-

tion line. Notice that in both model hc is proportional to f−1 that is to ε−1. Therefore

as the lattice mismatch between epilayer and substrate decrease, the thickness for which

a film remains pseudomorphically distorted (stable) increases. It was observed experimen-

tally that many pseudomorphic layers could be grown well above the critical thickness

values predicted from the above equilibrium theories. These results can be explained con-

sidering a non-equilibrium growth condition. Epilayers with h > hc are often found in a

metastable strained state. The transition to stable epilayer is achieved by annealing at

high temperature. In fact high growth temperatures and post growth annealing, leads to

a good agreement between experimental critical thickness and the values predicted by Eq.

1.2. Kinetic barriers have to be overcome to appreciate the nucleation and the motion

of dislocation. Some attempts to model the above described kinetic limitation are due

to People and Bean [10, 11], Dodson and Tsao [12, 13] and Houghton [14]. By the way,

the kinetic effects are strongly related to the peculiar growth condition, such as the sub-

strate temperature, the initial dislocation density and growth rate making this field still

challenging.
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1.4 Islands formation: elastic relaxation

High lattice mismatch that is high Ge content leads Si1−XGeX epilayers to Stranski-

Krastanow growth mode. SK growth of coherent Ge islands on Si(001) was firstly reported

by Eaglesham and Cerullo at Bell Labs in 1990 [15]. Given a flat surface of Si(001), Ge

accommodates first as a flat film of no more than 3ML, called wetting layer. Even in the

case of nominally-pure Ge deposition over Si, wetting layer is known not to reach 100%

Ge concentration, while it ends at values of ≃80% Ge, as demonstrated by recent photo-

luminescence experiments [16]. Quantitative similar results, on the other hand, have been

obtained via dedicated atomistic simulations [17], also with a Monte Carlo approach [18]

of allowed Ge-Si chemical mixing during Ge layer-by-layer deposition.

Deformed in the pseudomorphic structure, the wetting layer stores elastic energy that

will find paths to be released. By increasing the amount of deposited material, because of

the high lattice mismatch, the elastic energy stored in the lattice is sufficient to nucleate 3D

nanostructures, called quantum dots or islands, arising from the substrate in a bottom-up

fashion. Ge-on-Si quantum dots represent a more effective route towards elastic relaxation

with respect to a flat film, at the cost of an extra surface energy exposed.

Islands are best represented with the set of crystallographic facets composing them,

together with their aspect ratio ρ, defined as the ratio between the island height h and the

square root of the island base surface S:

ρ ≡ h√
S
.

The following paragraphs describe the main features of Ge quantum dots on Si. The

first islands to appear are unfacetted, low-aspect-ratio nanostructures, called pre-pyramids.

The nucleation barrier to nucleate such structures is zero [19], which accounts for its actual

experimental observation. At later stages of growth, those structures transform into fully-

3D faceted islands, with the shape of a truncated pyramid [20]. Evidently Ge islands

exposes defined crystallographic facets among all the possible available; this already implies

that there must be facets with higher and others with lower surface energy, so that Ge

islands, among all the possible ones, have shapes such that they expose the lowest-energetic

ones. Facet stability is separated into the so-called “major” and “minor” stable surfaces, a

systematic study of which was made by Gai et al [21].

Before transition to a full-3D structure, it was shown the stability of intermediate,

metastable shapes of Ge elongated “huts” [22], particularly visible under specific growth

conditions.

The peculiar shape of mature Ge islands on Si(001) is now briefly reviewed here. It is

worth starting from the plot reported in Fig. 1.4, where the aspect ratio is plotted against

the island base size. Smaller islands are shaped as square-base pyramids bounded with

{105} facets: for this reason, those are usually called “{105} pyramids”. Their aspect

ratio is thus 0.1: these islands should be considered as rather flat, since facets join the

substrate with an angle of 11.4◦. These pyramids are the first to appear because the

extra-surface cost associated with island formation is balanced by the gain of exposing a

low-energy crystallographic facet, together with the gain in elastic energy compared with

a flat wetting layer.

Among others, Ge {105} facet with the so-called “rebounded-step” (RS) reconstruction

shows to be sensitive to lattice strain condition. Correspondent surface energy, in fact,
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Figure 1.4: (left) Aspect ratio versus island base plot for a typical sample of Ge

islands grown on Si(001). (right) The first 3D-islands to appear are the so-called

{105} pyramids, like the example (right) here shown (from [23]).

decreases with increasing strain [24]; this feature is not found in other crystallographic

facets [25]. The peculiar surface energy of the {105}-RS Ge surface is critical in determining

the stability of the corresponding Ge huts/pyramids with respect to the same amount of

material displaced as a wetting layer. Dedicated atomistic molecular-dynamics simulations,

first carried out by Raiteri et al [26] and later by Liu [27], confirmed the gain in energy

which is accompanied by island nucleation, with respect of a flat wetting layer. Finally,

dedicated atomistic simulations of {105}-RS reconstructed ridges were able to estimate the

edge energy to be of the order of 8 meV/Å [28].

It is found that, with increasing amount of deposited material, a new island shape

appears: it is called dome [29] and corresponds to a more complex, high-aspect ratio (ρ ≃
0.2) island. It is interpreted as a first-order shape transition from pyramids [30]. A typical

dome, recorded as a STM image, is shown in Fig. 1.5. Domes cover a range of aspect ratios

varying from ∼ 0.17 to ∼ 0.26: they thus represent an ensemble of different islands, at

variance with {105} pyramids which are always located at ρ = 0.1 (simply for geometrical

reasons). As clear from Fig. 1.5, there is thus a gap in aspect ratio between pyramids

and domes, confirmed by an extensive amount of experiments [31]. At the same time,

experiments carried out at low deposition temperature with chemical sapor deposition

(CVD), showed that the transition can be continuous in special cases, without an aspect-

ratio gap [32].

Domes are composed by this set of facets: {15,3,23} [33] and {113} [34, 35] at the base,

capped with {105} facets terminated with a flat (001) facet at their top. It is relevant to

note that this model corresponds to one peculiar realization of a dome shape of a given

aspect ratio, while the relative size of each facet type can vary. For this reason, it is more

convenient to refer to “dome” any island shape built with {15,3,23}, {113}, {105} and (001)

facets, independently from their relative size over the island.

The atomic-scale mechanism that triggers the shape transition from pyramid to dome

is the accumulation of Ge at the top of a {105} pyramid, because it represents a local
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Figure 1.5: (left) Aspect ratio versus island base plot of a typical sample of Ge

islands grown on Si(001). (right) STM image of a dome of typical size and shape

(from [39]).

minimum of the pyramid chemical potential [36].

Once domes are formed, material is extracted from the island periphery, forming trenches.

Trenches represent a newly available source of Si to mix with Ge [37] and act as centers of

relaxation for the island elastic energy [38]. Intermixing phenomenon takes place, the Ge

islands starts to incorporate Si. The island changes its composition (decrease of Ge content

means reduction of the mismatch) and so lowering its elastic energy. This issue will be

addressed in the next section.

Recently [40] a new, still defect-free, island shape was discovered. It is called “barn” in

compliance with a similar island shape observed in different growth conditions [41]. Barn is

composed of {111}, {20,4,23}, {23,4,20}, {15,3,23}, {113}, {105} and {001} facets. With

steeper facets, a barn points at aspect ratios ∼ 0.3, becoming the highest coherent island

found on a flat Si (001) substrate. It is interesting to point out that {20,4,23} and {23,4,20}
are stable facets for Si and not for Ge [42], so that strong intermixing is believed to be the

key ingredient in the dome-to-barn shape transition. A sketch of the barn shape, together

with the position on the (ρ, V ) plot, is reported in Fig. 1.6

1.5 Intermixing in SiGe Islands

The SK growth leads to islands formation, as mentioned in the previous section. Increasing

the amount Ge deposited, transition from shallow to steeper islands is observed, in order

to minimize the energy of the system. The pyramid-to-dome shape transition is accom-

panied by the formation of trenches surrounding the island [38]. Trenches dig into the Si

substrate [43], thus representing a fresh source of Si at that stage of growth. Ge islands

start to incorporate Si and intermixing phenomenon takes place. The driving force towards

Si incorporation is the entropy of mixing that leads to alloy Si and Ge. By lowering the Ge

content the local lattice parameter of a Si1−XGeX alloy comes closer to the Si bulk decreas-

ing the lattice mismatch. The compositional profile of the SGe island is clearly affected
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Figure 1.6: (left) Aspect ratio versus island base plot of a typical sample of Ge

islands grown on Si(001). (right) STM image of a barn-shaped island from top view

(from [40]).

by the intermixing phenomenon. The intermixing of the deposited Ge, with Si popping

up from the substrate, which has been shown to decrease the Ge content with increasing

growth temperatures, both in CVD [44] and MBE [45, 46] growths. One experimental tech-

nique successfully applied to study the composition profiles inside island is etching [47]. By

the use of a chemical solvent (the etchant), islands can be selectively removed over the

substrate, allowing for the study of the reaction of the islands upon attack with a solution

able to remove SiGe alloy, but not pure Si. In particular, wet chemical etching with a 30%

solution of hydrogen peroxide (H2O2) selectively removes Si1−XGeX alloys with composi-

tions having x > 0.65 (i.e. Ge-rich material) [48]. At this stage, etching is thus useful to

explore the 65% Ge isocompositional profile inside islands, which is already enough to get

into some details of the anisotropic island Ge concentration. Recent experiments, carried

out with etchants able to remove material up to the complete dissolution of the islands,

were carried out assisted by atomic force microscopy (AFM) scan of the partially etched

island at every etching step [49]. Known the etchant composition selectivity at every etch-

ing step, it is finally possible to reconstruct a cross-sectional map of the Ge content, as

reported in Fig. 1.7.

The maps come already very useful to get the first insights of the actual Ge distribution

inside islands (domes). The general features are here listed. First of all, a Ge-rich core is

clearly present at the top of the island. Second, Si-rich areas are visible at the island corners,

which can be explained as the accumulation of material driven by strain by intermixing,

during the trenches excavation, as mentioned above. Finally, even if it cannot be inferred

from the maps of Fig. 1.7, it is expected a pure-Ge layer at the very free island surface.

This happens because of the reduced surface tension of Ge with respect to Si: the energy

of a dangling bond, in fact, is 0.96 eV for Ge and 1.15 eV for Si from Tersoff potential [50].

This effect is called “surface segregation” and consists in the tendency of material to expose

Ge to a greater extent than Si. This effect has thus strong influence especially when Si

is deposited on Ge, where now surface segregation becomes a direct driving force towards
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Figure 1.7: Cross-section composition profile reconstructed from etching experi-

ments for a dome (d), a transition barn (e) and two superdomes (f,g). Top view of the

sample under etching is in (a,b,c). The average Ge content in the islands is ≃ 0.36,

The color map reveal that the top of the island is Ge-rich, while the bottom edges,

close to trenches are Si rich. Reproduced from [49].
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Figure 1.8: Typical STM image of a dislocated dome. The presence of the crystal-

lographic defects alter the island growth, making it asymmetric.

intermixing [51].

1.6 Plastic relaxation in SK growth

Evolution towards higher aspect ratios, is abruptly interrupted by the opening of an alter-

native (plastic) channel for strain relaxation. Islands reach barn shape and, upon further

deposition of Ge on the substrate, misfit dislocations are eventually injected (onset of plastic

relaxation). Dislocated islands can be distinguished on a sample because their shape loose

the symmetry typical of any coherent island, as shown in Fig. 1.8. Dislocation nucleation

deeply influences evolution at larger volumes. An intriguing cyclic growth regime is actually

observed, involving a periodic flattening of the island shape each time a new dislocation (60◦

dislocation deposited at the SiGe/Si interface) nucleates in the island [52, 53],generating an

average decrease in ρ, back to about 0.25-0.27 (Superdome islands [39]. This drop in the

aspect ratio is nicely highlighted also in Ref. [44], for samples grown by Chemical Vapor

Deposition (CVD).

The cyclic growth phenomenon was observed by real time Transmission Electron Mi-

croscopy (TEM) in situ [52, 53] and deduced from the Atomic Force Microscopy (AFM)

analysis of the ”footprints” left by dislocated islands on the Si substrate [39, 54], after

selective wet chemical etching of the SiGe epilayer.

In fig. 1.9 are shown TEM in situ analysis performed at 650◦ C, during island growth.

Fig. 1.11 (a) shows the island after the formation of the first 60◦ dislocation, close to

the island edges. Once dislocation is nucleated, the island becomes more relaxed, hence a

preferential site for Ge attachment.

A quick lateral expansion is observed (few seconds) and the island decreases its aspect

ratio. Therefore the island increases in size, moving again towards higher aspect ratio (some

minutes), reaching superdome shape. As soon the second dislocation nucleation occurs, Fig.

1.11 (b) the islands, again, grows laterally, and the mechanism just described is repeated

ciclycally, as shown Fig. 1.11 (c) (d) (e). This is the reason why such process is called

cyclic growth. The final pattern formed by the evolution of 60◦ dislocations during the

cyclic growth mechanism is shown in Fig. 1.10, revealing that dislocation forms a series of

concentric rings, avoiding the center of the island [55].
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Figure 1.9: Evolution of dislocations in a superdome island. The TEM in situ images

show the first dislocation nucleated at the island edges (a). A second dislocation event

occurs in (b). The island grows to recover its elastic budget and the dislocation evolves

in the system (c), till a third nucleation events appears (d). Therefore the island again

recover its elastic budget and its aspect ratio. The described process is called cyclic

growth, periodically dislocation nucleation events are observed. Reproduced from [53]

Figure 1.10: Dislocation pattern observed at SiGe-Superdome/Si interface. Dis-

locations form a series of concentric rings, avoiding the center of the island. This

image was obtained by superimposition of two dark field (g,3g) weak beam images

with g=(220) and g=(2̄20).
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Figure 1.11: (a) AFM scan of the tree-ring structure left over by a single superdome

after etching. (b) Cross-sectional profile of the same superdome before and after

etching taken along the dashed line shown in (a). The bottommost curve represents the

numerical second derivative (in arbitrary units) of the AFM topograph of the profile

after etching. The solid triangles indicate the position of the rings. (c) Schematic

representation of the mechanism leading to the formation of ring structure.Reproduced

from [54]

The AFM analysis performed by selective wet etching, confirming the TEM scenario,

shows that during cyclic growth a tree-ring structure is left by islands on the Si substrate.

In particular the tree-ring structure consists of several nearly concentric, rings surrounding

a central plateau. The central Si plateau can be interpreted as the original island base

prior to introduction of the first dislocation. Its size can thus be taken as a measure of

the critical diameter for the first dislocation introduction [56]. The concentric rings can

be ascribed to the cyclic growth mechanism: when an island increases its aspect ratio, a

deep trench in the Si substrate at the perimeter of the island base is carved. This stage

corresponds to a short steep profile in the AFM scan of the Si substrate. As the critical

conditions for one dislocation nucleation are met, sudden lateral expansion of the island is

observed, providing a full coverage of the trench bottom line. This stage corresponds to

a small plateau in the etched samples. Periodic repetition of these two stages during the

cyclic growth gives rise to a clear stepped profile in the Si substrate, which appears in form

of concentric grooves in the AFM images. Therefore we can thus interpret the number of

rings as the number of dislocations introduced in the island during its growth. The issues

about the onset of plastic relaxation, and the evolution of dislocations in ”mature” SiGe

island will be addressed in chapters 4 and 5.



2
Elastic relaxation in

three-dimensional Ge/Si islands

This chapter is devoted to the calculation of the elastic field in realistically-shaped Ge/Si

islands. As mentioned in chapter 1 three mechanism are in charge of elastic relaxation:

free surfaces relaxation, substrate deformation (both provided by SK growth mode) and

alloying due to intermixing phenomenon. A continuum approach based on linear elasticity

theory joint with Finite Element Method (FEM) calculations is used to understand free sur-

face relaxation and substrate deformation. After a brief introduction about computational

approach adopted to properly simulate with FEM heteroepitaxial structures, a detailed

analysis of elastic field in the Stranski-Krastanow nano-islands grown on Si (001) is per-

formed. We followed the evolution of islands in enhancing elastic relaxation towards higher

aspect ratio (ρ), from shallow {105} pyramids to steeper barns. The third mechanism in

charge of elastic relaxation is investigated in the second part of the chapter. The alloying

occurring in the islands during the growth is analyzed with a dedicated Monte Carlo-FEM

approach. Thanks to the Monte Carlo algorithm, coupled with FEM, is possible to calculate

the variation compositional profile that minimize the elastic energy in system.

2.1 Computational approach

Several approaches can be applied to the computation of the elastic field in Ge/Si islands.

Continuum models built in the framework of elasticity theory, that yield analytical solu-

tions, are surely a valid tool to obtain fast, semi-quantitative estimates. Starting from the

Green function associated to a point-like inclusion of Ge in a semi-infinite Si substrate [57],

the elastic field due to a macroscopic island is obtained integrating this Green function

over the island volume. Based on this starting point, a method generally known as “flat-

island approximation” was developed [2, 58]. The latter was demonstrated to be valid for

low-aspect ratio islands (i.e. {105} pyramids), while expected to generally fail in determin-

ing the elastic field in steeper islands. Recently, an improvement of this method has been

obtained by taking into explicit account the base-to-top stress relaxation in islands. The

improved method has shown to yield a good estimate of the elastic field also for pyramids

with ρ similar to domes [59].

However, the critical shortcoming is that the analytical solution can be computed only
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for simple island shapes, and/or in two dimensions. Ge/Si systems, on the other hand,

are characterized by a rather broad spectrum of island shapes, some of them being very

complex, like domes and barns.

Two approaches particularly suited for treating any geometry are classical molecular dy-

namics (MD) simulations and calculations based on continuum elasticity theory as solved

by Finite Element Methods (FEM).

In MD, the system is built atom by atom. Possible many-body interatomic potentials have

been proposed for the Si/Ge system. Here we recall the very popular ones introduced by

Stillinger and Weber [60] and by Tersoff [50]. One of the advantages of atomistic simulations

is that they can handle atomic-scale features like surface reconstructions, defects [61, 62],

or non-homogenous distributions of atomic species [63]. The latter phenomenon, called

intermixing, has been widely investigated experimentally [64, 65, 47], and it has been shown

to strongly influence the global relaxation inside the island [43].

MD simulations have been shown to yield results consistent with experiments in several

investigations dealing with Ge islands on Si(001). For example, a total-energy calculation

based on the Tersoff potential was used to demonstrate the critical role of facets reconstruc-

tion to determine the stability of {105} pyramids [26]. Atomistic calculations represent also

a useful tool for the investigation of the elastic-field interaction between islands. When a

sequence of Ge/Si layers are grown in a stacked array, islands show a general trend of en-

hancing the spatial order as the number of Ge/Si layers is increased. While a beautifully

simple model based on dipolar fields was shown to capture the main physics of the order-

ing process [66], MD simulations allowed for a detailed characterization of the strain field

generated in Si by buried Ge islands [67, 68]. Interestingly, an increase in lateral ordering

was reported also for a single Ge-dot layer on Si(001), and shown to be triggered by partial

capping with silicon [69]. Also in this scenario MD simulations proved to be useful, sug-

gesting that the ordering driving force was the elastic interaction between adjacent islands,

inducing an energetic unbalance among the facets of the dots, eventually determining an

effective lateral motion aimed at increasing the island-island separation [69, 70]. Asym-

metric alloying has also been shown to promote lateral motion [70, 71]. In the total-energy

island budget, it has been shown that, at least for small islands, the contributions due to

island edges are critical to predict the correct size of island nucleation [72, 73]; classical

MD simulations have been recently used to directly compute this term [28].

Despite the above reported examples of success in determining key phenomena associated

with island-induced strain fields, MD simulations become computationally very demanding

when handling systems with more than a few million atoms, so that FEM-based calculations

are often applied to treat realistic-scale systems. In the next sections, we show FEM

calculations are reliable in computing the elastic field (strain,stress and elastic energy)

in realistic Ge/Si islands used. We highlight that FEM allows one for treating complex

geometries, and that properly combined with different method FEM allows for handle

defects and non-homogenous intermixing in solid.

2.2 Boundary value problem and finite element method

Classical linear elasticity theory describes the equilibrium state of a solid in terms of internal

stresses σij(u), as a function of the displacement field u with respect to the initial position
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Figure 2.1: Sketch of an elastic body Ω with applied forces f and g, and boundary

conditions ΓN and ΓD. See text and Eqn. 2.1 for details.

1, and applied external forces fi. With Fig. 2.1 as a reference, we define the elastic body

as the domain Ω, with boundary ∂Ω = ΓD ∪ ΓN . Equilibrium equations can be written in

a boundary value problem as [74]:











−∑3
j=1

∂
∂xj

σij(u) = fi inside Ω
∑3

j=1 σij(u)nj = gi on ΓN

ui = 0 on ΓD

(2.1)

ΓN are Neumann boundaries, ΓD the Diriclet ones, n is the vector normal to ΓN , gi is

the force acting on ΓN . The first equation is the statement of equilibrium condition: the

sum of forces inside Ω has to balance the force fi acting on the elastic body (the internal

properties of the body and so the reactions to applied forces are completely described by

its elastic constants).

Two types of boundary conditions are applied. At the Neumann boundaries we may

fix the values of gi to simulate a traction on that boundary or set gi = 0 to have free-

surface-like boundary. At the Diriclet boundaries a given prescribed displacement can be

set. Only simple problems allow for analytical solution of the boundary value problem in

equations 2.1. In our case, in order to calculate the elastic field in complex elastic bodies,

such as nanometric 3D islands, no analytical solutions are available. We use finite element

method (FEM) to numerically solve the problem. FEM starts with the discretization of

the elastic bodies into a set of points which define a 3D (or two dimensional) grid to fill

all the body. This set of points (called “nodes”), together with the elementary elements

which have nodes as vertices, is called mesh. in our calculation we always use the proper

tetrahedral (or triangular in the bidimensional calculation) mesh to fill the body. Once the

mesh is generated,a key point is the set up of the proper boundary and internal condition.

In our calculation there are not external forces acting on the island, so fi = 0. The island

itself is the origin of the stress in the system. As we will see in the next session,it is

possible to mimic the mismatch between Si1−XGeX island and Si substrate treating the

island as an inclusion in a not deformed matrix (substrate). We impose to the bottom of

1see App. A for a brief introdution of linear elasticity theory
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the simulation box the Diriclet condition (ui = 0) letting free the other exposed surfaces.

With this condition the boundary value problem becomes:











−∑3
j=1

∂
∂xj

σij(u) = 0 inside Ω
∑3

j=1 σij(u)nj = 0 on ΓN

ui = 0 on ΓD

(2.2)

Solving Eq. 2.2 is possible to calculate the displacement field u at each node, and the

elastic properties of the system (stress, strain and elastic energy). The results showed in

this thesis are obtained using the commercial FEM code Comosol Multiphysics.

2.2.1 Mimicking lattice mismatch between islands and substrate

Lattice mismatch between Germanium and Silicon is the origin of the stress field in het-

eroepitaxial structures. Using FEM or analytical calculation one of the main point is how

to mimic the mismatch in a continuum framework. Eshelby’s theory of inclusion can be a

useful tool and it presented in the following. Suppose we have a media where there is a

region Ω completely embedded in it, which undergoes a permanent, not elastic deformation.

The material inside Ω is called an inclusion, while the media surrounding it is generally

called matrix. If we could pick up the entire Ω region and take it away from the media,

it would experience a deformation which could restore the zero-stress condition, that is, it

would assume a uniform strain ǫ∗ij that is known as eigenstrain.

In general, we say that there is a condition of eigenstrain ǫ∗ in a certain region of the

body if the stress vanishes as ǫ = ǫ∗. As a consequence, the eigenstrain tensor can be

defined in the following way:

σij = Cijkl
(

ǫij − ǫ∗ij
)

. (2.3)

The previous relation defines the eigenstrain ǫ∗ as the value of the strain field at which

the stress field is zero. In point of fact,

ǫkl = ǫ∗kl ⇒ σij = 0 . (2.4)

Furthermore, the eigenstress is defined as

σ∗
ij = Cijkl ǫ∗ij . (2.5)

However, since the inclusion is surrounded by the matrix, it is not able to reach the state

of eigenstrain, i.e. the condition of zero stress. Instead, both the matrix and the inclusion

will deform in order to minimize the elastic energy: the Eshelby’s problem of inclusion

consists indeed in the problem of finding the displacement field due to the condition of

eigenstrain in the entire space. This is exactly our problem. We can assume that the

Ge island (or more generally the epilayer) determines a permanent condition of strain in

the Si substrate due to the mismatch between the lattice parameters of the two species.

The specific expression of such a permanent deformation must take into account the the

microscopic differences between the Si and Ge crystal structures. It is well-known that

both have diamond structure, with a lattice mismatch given by

ǫm =
aGe − aSi

aGe
. (2.6)
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In case of pure Ge value of such a parameter is found to be

ǫm ≈ 0.0399 . (2.7)

The fact that the materials have the same crystalline structure implies that, micro-

scopically, the unique condition of stress must is by the lattice parameter mismatch. As a

consequence, one can assume a simple eigenstrain,

ǫ∗ij = ǫmδij , (2.8)

According to the eigenstrain principle, if we were able to take the island away from the

substrate, it would undergo an elastic deformation that would recover its natural lattice

parameter.

Evidently, the problem of finding the solving the elastic problem of an heteroepitaxial

island really resembles the one of an inclusion, since the main idea is that some SiGe alloy is

forced into a Si matrix, thus leading to a condition of stress because of the lattice parameter

mismatch ǫm.

2.3 Elastic relaxation in islands with realistic shape

The formation of 3D stable islands is possible because it allows for a partial relaxation of

its lattice parameter with respect to a flat film. Two main mechanisms are responsible of

such relaxation: free surface relaxation and and substrate deformation [59]. The in-plane

compression can be reduced by exploiting all of the free surfaces inclined with respect to

the (001) interface. In fact, all the forces acting along the free surface normal vanish, be-

ing the material free to change its effective lattice parameter in that direction. The force

components parallel to the free surfaces, on the other hand, can be reduced by involving

a deformation of the substrate. It is important to notice that while the first mechanism

allows for an effective reduction of the elastic energy, the second one redistribute the defor-

mation between the island and the substrate. To analyze quantitavely the effects of elastic

relaxation described above FEM calculations have to be performed, choosing the proper

condition to impose at Eq. 2.2, and imposing Eshelby eigenstrain condition in the island.

2.3.1 Island geometries and boundary conditions

Before performing any calculation, it is necessary to define precisely the domain Ω, that

is to properly construct the geometry of island and substrate in which elastic relaxation

has to be studied. Furthermore, it is necessary to define what kind of boundary conditions

have to be imposed and how to manage properly the substrate on which the island relies.

We modeled island geometries mimicking the real shapes experimentally observed.

105 pyramid (ρ=0.1), dome (ρ=0.2) and barn (ρ=0.3) shaped islands are shown in

Fig. 2.2 according to their crystallographic orientation.

The substrate, indeed, is modeled by a box with edges Lx, Ly and Lz. After contact-

ing the bottom of the island with the top of the substrate, we fixed the displacement at

the bottom and at the sidewalls of the substrate, applying Diriclet boundary conditions.

Because of that we chose Lx, Ly and Lz large enough to avoid interactions between the

stress field of the system and the fixed boundaries. We have performed a simple check of

the correct choice of Lx, Ly and Lz by evaluating the elastic energy of the system while
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Figure 2.2: Island geometries used in FEM calculations. Geometries are modeled

to fit the experimental observations, free surfaces are marked in order to distinguish

among different facet inclinations.

the length in the different directions is varied. On the contrary, free surface conditions are

imposed at the top of the substrate and at the exposed surfaces of the island.

2.3.2 Eigenstrain condition in Ge island

Before solving the problem we need to assign the internal stress in order to simulate the

lattice mismatch between islands and substrate according to Eq. 2.8:

{

σij = Cijkl ǫm island

σij = 0 substrate
(2.9)

As already highlighted in section 2.2.1, the epilayer acts as stressor in the system.

2.3.3 Detailed elastic field in Ge islands by FEM

Once properly defined the initial condition it is possible to compute the elastic field in

the structure. In order to give a quantitative estimation of the relative redistribution of

the elastic energy due to the two relaxation mechanism described above mechanisms, we

start our analysis with the results of a FEM calculation performed on a {105} pyramid.

In Fig. 2.3, Panels (a) and (b) show a gray-scale map of the elastic energy density in the

island and in the substrate, respectively. The elastic energy is stored in both the island and

the substrate; in particular it can be noticed that the upper part of the island has lower

energy density with respect to the wetting layer condition (pseudomorphically distorted and

used as reference, −1.3eV/nm3) via free surface relaxation and substrate loading, while the

substrate has higher elastic energy with respect to the initial condition (no stress is assigned

to the substrate, see Eq. 2.9). It is important to point out that, beyond surfaces, also the

lateral edges joining adjacent island facets act as further centers of deformation relieve.

Indeed, in this region each surface atom can exploit enhanced degrees of freedom to locally

adjust distances.



2.3 Elastic relaxation in islands with realistic shape 21

Figure 2.3: Elastic-energy-density plot for a vertical scan crossing through the island

apex, for a 105 pyramid. In (a) the elastic energy is referred to the wetting-layer one.

Negative values correspond to higher relaxation; (b) elastic energy density stored in

the Si substrate.

Table 2.1: Reference of the experimental elastic constants for Si and Ge and the

correspondent values computed with the Tersoff potential.

(GPa) Si Ge

Exp. Tersoff Exp. Tersoff

C11 167.5 142.6 131.5 138.6

C12 65.0 75.5 49.4 44.5

C44 80.1 69.0 68.4 66.8

2.3.4 Comparison between FEM and atomistic calculations

For sake of robust and reliable FEM calculations, it is worth starting with a direct com-

parison with atomistic calculations. A 3D {105} pyramid was simulated with an atomistic

code to get the relaxed atom configuration, using the Tersoff interatomic potential [50]. For

a significant comparison, elastic constants obtained by using this potential (see Tab. 2.1)

were implemented in the FEM code and used to simulate the same pyramid. Since a

comparison of the elastic strain with color map between a FEM and an atomistic is not

sufficient to declare the agreement of the two methods, a comparison of the elastic field on

localized positions was made. In particular, data were extracted from both simulations for

the εxx strain tensor component along a vertical line passing through the island apex. The

comparison is made in Fig. 2.4 where it can be noticed the nice overlap between FEM and

atomistic solution of the same problem. At high z, fluctuations in the atomistic solution

are ascribed to step effects due to the local geometry of the pyramid at the atomic scale.

2.3.5 Elastic relaxation from {105} pyramid to barn

Elastic relaxation guarantees a global reduction of the elastic energy, establishing a non

uniform elastic field in the island and in the substrate. In the following we will describe such

field in its general features and in the island-shape dependent characteristics. Figures 2.5,

2.6, 2.7 depict the εxx, εzz, εxz strain tensor components for a vertical cross section inside

each island, for pure Ge island and the Si substrate lattice obtained via FEM calculations.

In addition, a horizontal cross cut at the island base is exploited to map the xy and in-plane
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Figure 2.4: Comparison of FEM and atomistic calculation of deformation field inside

a {105} pyramid. Data are taken along a vertical line passing through the island apex,

as illustrated in the inset. Here h is the total island height. Excellent agreement is

obtained by comparing FEM (solid line) and atomistic calculation (dashed line).

(i.e. 1
2 (εxx + εyy)) strain components. Each figure is focused upon a shape:{105} pyramid,

dome, barn, respectively, as summarized in Fig. 2.2.

There are common features of the εxx component in the three shapes. Two regions are

clearly visible, located at the island corners and in the substrate too, where the lattice is

highly compressed. This compression is higher than the misfit εm, so that this effect cannot

be only due to the pseudomorphic arrangement of the Ge lattice on the Si substrate. In fact,

this compression is one of the fingerprints of the elastic energy redistribution previously

mentioned. Underneath the island, on the other hand, it is visible a region where the Si

lattice parameter is expanded with respect to its native lattice parameter. This is another

effect of the energy redistribution due to the presence of the island. Notice that this

deformation is absent in the case of a flat film (in this case εxx = εm), so that the elastic

energy does not propagate inside the substrate and is instead confined exactly at the Ge

epilayer. Inside the island, from the bottom to top, the horizontal compression decreases.

This is the effect of surface relaxation, which continues to relieve elastic energy as soon as

the island top is reached. Analyzing The map of the εxx component for different shapes it

is clear that island edges are more compressed as the aspect ratio increases. The maps show

that the top edges (convex) are centers of relaxation, with respect to the high compression

located at the bottom edges (concave). By increasing the aspect ratio, the strain value

reached at the island top decreases, from -3% for a {105} pyramid to almost zero for barn.

This trend represents the net effect of surface relaxation, which is more effective in high-

aspect ratio islands since they have a surface-to-volume ratio larger than shallow, {105}
pyramids. The dome and barn shape display the most uniform strain map: we ascribe this

finding to the presence of the multiple facets characterizing these shapes.

The εzz component is directly linked to the εxx (or εyy) component, through the analytical
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relation εzz = − ν
1−ν

(εxx + εyy) (ν is the Poisson ratio), that is exact for a flat film and

approximated for an island. The sign of this formula points out that once the εxx and εyy
components are negative, the εzz is positive and vice versa. This means, as can be directly

seen from the figures 2.5, 2.6 and 2.7 , that the centers of local horizontal compression

correspond to a tensile deformation in the z direction. For the same reason, the Si lattice,

if expanded in the x,y directions, is compressed in the z direction. Focusing on shapes,

It can be seen that the strain field inside {105} pyramids is quite non-uniform, while the

rounded shape of domes and barn produces a more uniform strain field in this case too.

The off-diagonal strain tensor components quantify the lattice bending. For instance, the

εxz component gives the local lattice bending in the (x,z) plane, as well as the xy component

gives the torsion in the (x,y) horizontal plane. A careful analysis of these components reveals

that the elastic field is symmetric in sign with respect to the island center: at every point

lattice with a given strain value, there exists another point with the same value and opposite

sign meaning that the curvature inside the island follows the symmetry of the island shape.

The εxz maps show that with increasing aspect ratio, two symmetrical lobes located at the

island bottom edges become more and more defined, also increased in absolute value.

Finally, the in-plane strain component displays, by definition, symmetry with respect to

the island center. It shows how the deformation propagates inside the inner island regions,

far from surfaces. It is a common feature that the in-plane elastic field decreases moving

from the island boundaries to its center; this is another fingerprint of edges as local sites of

high deformation.

The in-plane strain component shows that the deformation is always decreasing moving

from the island boundary to the center. The shape of the contour lines always resembles

the shape of the corresponding boundary: squares in square-base pyramids and circular in

domes and barns.

The εxy component shows a very non-uniform strain distribution, being always larger at

the corners than at the island center. Four lobes are present: their shape and size evolve

moving towards steeper islands. While they are small and very localized in {105} pyramids,

these lobes are more spread – and correspond to higher values – in steeper islands.

2.3.6 Self-similarity of the elastic field

The last important point about elastic field in island is highlighted in the following para-

graphs. Given a 3D quantum dot placed on the substrate, it is worth questioning wheter

the elastic field changes while the island grows. Three FEM simulations were carried out

with a dome where the lateral size is doubled and doubled again. The comparison of the

elastic field, reported in Fig. 2.8, demonstrates that the elastic field is exactly the same.

No changes can be appreciated while varying the island size. This effect is called “self-

similarity” — or “scale-invariance” — of the elastic field and can be explained as follows.

It has been seen in the previous Section that features like the facet inclination angle are

key to influence the elastic field in the island. By varying the size, but not the shape,

geometrical angles are preserved so that there are actually no reasons why the elastic field

should change by varying the island size. In conclusion, one could even not be restricted

to explicitly mention the lateral size of the island, since it does not affect the elastic field

inside the shape. In conclusion, elastic field is a function of island shape, and not of island

size. Analytic approaches demonstrated the ability to capture the essence of this effect as

well [75].
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Figure 2.5: Maps and contour lines of the independent strain tensor components

calculated for a full {105} pyramid by FEM. Anisotropic elastic constants are taken

into account.
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Figure 2.6: Maps and contour lines of the independent strain tensor components

calculated for a dome by FEM. Anisotropic elastic constants are taken into account.
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Figure 2.7: Maps and contour lines of the independent strain tensor components

calculated for a barn by FEM. Anisotropic elastic constants are taken into account.



2.4 Alloying of the islands due to intermixing phenomenon 27

Figure 2.8: Self-similarity of the elastic field, showed for a dome-shaped island.

When an island of size L is doubled and doubled again, the behavior of the elastic

field is unaltered (the color map of the εxx strain component is shown).

It is worth mentioning that the self-similarity statement, in any case, is strictly true

only in absence of a wetting layer. Since its thickness is always 3ML, independently of the

island size, its weight over the whole elastic body (island+wetting layer+substrate) changes

as the island volume changes.

2.4 Alloying of the islands due to intermixing phenomenon

The mechanisms described in previous sections do not allow for a complete relaxation of

the elastic energy in the islands, the bottom edges remain strongly loaded with stress (Sec.

2.3.5). From different set of experiments, and with the help of theory [76, 43], it emerged

that the actual concentration profile in 3D islands depends on the growth conditions and

it is determined by the complex and not yet fully understood cooperation between elastic-

energy relaxation, frozen kinetics 2, and entropy maximization (enthalpy of mixing has

been shown to be rather negligible [76, 64]). Since the growth-parameter space cannot be

sampled at will in experiments, a promising way for understanding the role played by each

of such phenomena is surely given by directly relating the experimentally-derived concen-

tration profile with theoretical simulations performed under conditions tuned to emphasize

the different contributions. With this goal in mind that we developed a very fast method

for determining the concentration profile which minimizes the elastic energy in realistically

shaped 3D heteroepitaxial islands for a given average concentration value. Beside a very

nice model allowing for an analytical treatment of the problem [78] (limited however, to

the description of islands formed at the very first stages of growth), a very direct method

2Bulk diffusion in Si/Ge systems is usually considered to be totally frozen at typical dots growth tem-

peratures. Very recently, however, a bulk diffusion length ∼ 1nm, was estimated at a non-dramatically high

temperature T = 750◦C [77].
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for finding the optimal Ge distribution is given by exploiting atomic-scale Monte Carlo

(MC) simulations, the system energy in each configuration being computed through clas-

sical empirical potentials [79, 80, 81, 82]. Minimization can be achieved by iterating a

procedure consisting in chemical-species random exchanges, energy optimization, and ac-

ceptance based on the Boltzmann statistical weight [79]. The drawback of the atomistic MC

approach is given by the computational cost. The volume of typical experimental islands

can easily exceed 105 nm3 (particularly so, if alloying is pronounced), making an atomistic

treatment impossible. If it is true that the self-similar behavior of the deformation field

allows one to work at a reduced scale [83], two main problems might be encountered. First,

the effective number of bulk-like atoms could become comparable with the surface ones,

making surface effects too strong. Secondly, the complex, multifaceted geometry of realistic

islands like domes [84, 29] or barns [40] works against excessive size shrinking since each

facet must be created with a physically meaningful extension in order to avoid artifacts

(such as the overlap between the strain field coming from edges and/or vertex). In prac-

tice, this means working with islands of at least 104–105 atoms, making the convergence

procedure extremely long. Motivated by this limitation, even in this case, we have designed

a rather simple and very fast way for achieving elastic-energy minimization within a Finite

Element Method (FEM) framework. While in this thesis we shall provide an application to

Ge/Si(001), a system for which several experiments analyzing alloying have been reported

[85, 44, 86, 87, 88, 47, 64], it is important to emphasize that the physics involved is rather

general (see the interesting discussion in [89]), and applies also, for example, to the popular

III-V systems [90]. In InAs/GaAs films, moreover, the larger lattice mismatch is expected

to provide a stronger driving force for non-homogeneous alloying, so that all the effects here

below discussed should be even stronger.

2.4.1 Monte Carlo-FEM approach

In order to treat non-uniform distributions we propose a particular procedure which has

the appealing feature of exploiting only typical operations performed by any FEM code,

allowing for a simple implementation. Here we recall that the core of a FEM calculation

consists in dividing the space into elements (typically, tetrahedrons for 3D problems), and

by evaluating any function f(x, y, z) considering an interpolation based solely on the values

of the function at the nodes of the element containing (x, y, z) (see, e.g., [74]). Here, we shall

make use of two different meshes at the same time. A first one, called concentration mesh,

and made by n nodes located at (xi, yi, zi), i = 1, . . . , n, is used to define a non-uniform

concentration profile. Values are assigned at the nodes (ci = c(xi, yi, zi), i = 1, . . . , n),

while a linear interpolation scheme is used for evaluating the concentration at any other

point, including the nodes (Xj , Yj , Zj) (j = 1, . . . , N,N ≫ n) of a second, much finer grid

(called simply FEM grid in the following), used for finding the elastic body equilibrium

condition. For the systems considered in this work, concentration meshes with n ∼ 400

turned out to be sufficient to accurately describe the concentration profiles in 3D islands

(in practice, only 1/8 of the n points were used, see Section 2.4.2).

Once the initial strain condition is assigned, the minimization of the elastic energy

proceeds by a MC iterative procedure. Two vertices of the concentration grid are chosen

randomly and their assigned values are randomly changed so that the overall composition

of the island remains the same. This constrain can be rather easily fulfilled for linear

interpolation leading only to a pre-calculation of necessary weights. The new elastic energy



2.4 Alloying of the islands due to intermixing phenomenon 29

Figure 2.9: Evolution of the concentration profile for a two-dimensional ridge, with

average Ge concentration c = 0.6. After ∼ 3000 Monte Carlo steps, the energy of

the system, plotted in the bottom right panel in the form of ratio between the actual

energy and the one of the uniform distribution, reaches convergence.

is then calculated by a full FEM calculation, using linear elastic theory. While to this

goal we used the commercial Comsol Multiphysics code, the method can be obviously

implemented with any FEM solver. Moves (i.e., concentration exchanges) are accepted if the

energy is lowered and rejected otherwise. This procedure is repeated until the concentration

profile does not change anymore. It is important to emphasize that at each MC step a new

solution of the elastic problem is found, so that the calculation is fully self-consistent:

changes in the elastic field accompanying Si/Ge redistribution are correctly described. In

order to speed-up convergence, we used a guiding function to bias moves. The bias function

is built on the fly, and assigns different statistical weights at the concentration values using

information on all previously accepted moves.

A schematic representation of the system evolution during our MC procedure is reported

in Fig. 2.9 for a two-dimensional case, for which illustration of the system evolution is

particularly simple. In the reported example, the Ge island (of height to base aspect ratio

0.2) is actually a ridge, infinitely extended in one dimension. The Si substrate is not

reported in this figure and in the following ones. The concentration grid was made of 109

points, and the average c was set to 0.6. Experimental Ge and Si lattice constants were used

[5]. In the figure, a color map is used to highlight different Ge contents. After ∼ 1000 steps

the system starts converging toward the final situation, where Ge accumulates at the top

of the island, while Si tends to fill the lower edge region. Notice that the final distribution

in Fig. 2.9 is nicely symmetric, although no constraints were imposed. Indeed, while first

validating our approach, we found out that checking for artificial lack of symmetry was

sometimes more indicative than simply looking at the elastic energy convergence. After

several trials runs (both in 2D and 3D) convinced us that our implementation was correct,

however, we started exploiting symmetry to speed-up convergence.

2.4.2 MC-FEM in realistic 3D islands

Let us now consider more realistic, 3D applications. We have applied our MC-FEM proce-

dure to the three main shapes observed in Ge/Si(001) molecular beam epitaxy experiments

[40], already described Section 2.3.5, i.e. (105) pyramids multifaceted domes and multi-

faceted barns. Ge and Si elastic anisotropy was taken into account in the calculations, even
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Figure 2.10: Concentration profiles for a (105) pyramid. The average Ge content is

fixed to c = 0.75. (a) 3D view of the distribution along the island facets. (b) Cross-

sectional view. (c) 3D distribution of material with a Ge concentration below 0.65

(selective-etching profile). (d) 3D distribution of material with a Ge concentration

below 0.80.

if we verified that qualitatively similar results are obtained also in the isotropic case. Pyra-

mids, domes and barns can be easily divided into 8 equivalent sub-regions. Since the 3D

FEM solution of the elastic problem is computationally rather demanding, considering that

it is required at each MC step, exploiting symmetry is rather important for accelerating

convergence. We therefore defined our concentration mesh only in the subregions, propa-

gating every attempted concentration exchange in the rest of the island before calling the

FEM solver. In this way, the single elastic-energy calculation is not faster, but the number

of MC iterations is reduced since fewer concentration mesh points are needed to reach a

satisfactory description of the atomic distribution in the subregions. A further advantage

is given by the fact that the solution displays the correct symmetry at each step, so that

the portion of the sampled concentration space is reduced.

Let us start the analysis of our results by looking at the behavior displayed by (105)

pyramids. Simulations were performed using an average Ge concentration value c = 0.75,

in order to reproduce the experimental estimate reported in [40]. In Fig. 2.10, panels a and

b, we report the final Ge concentration in the island using a 3D perspective view (panel a)

showing c(x, y, z) at the island facets, and a cross-sectional 2D view, obtained by cutting

the island along the [010] direction (panel b). Color maps are used to distinguish different

concentrations in the on-line version. A few representative values are also superimposed

in panel b, in order to facilitate the reader of a black and white printed version. Overall,

there is a spread in concentration of ∼ 0.35 between Ge-rich and Ge-poor regions, the latter

being located close to the island bottom edges. In panels c and d, instead, we plot only

the subregions occupied by less than 65% (c) and 80% (d) of Ge atoms. The analysis of
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the corresponding isocompositional surfaces is interesting for two main reasons. If from

one side they give a good idea of the 3D Ge distribution in the island interior, the 0.65

case also allows for a direct comparison with the selective-etching experiments of Ref.[40],

where Ge-rich (above 0.65) regions are eliminated by a suitable etchant. From panel c, it is

evident that the concentration profile minimizing the elastic energy in a (105) pyramid of

average c = 0.75 displays almost entirely regions where the Ge content is above 0.65. Only

at the very bottom of the island, and along the base edges, material is therefore predicted

to resist the etching action. Comparing our results with the ones of Ref.[40], it is evident

that the agreement is only qualitative: in both cases it is confirmed that Si-rich regions

are located far from the top of the islands, but in the experiments the four corners appear

more rich in Si with respect to the center of the edges, i.e. the reverse of the behavior found

in panel c. Notice that, as stressed in Section 2.4, differences between the concentration

profile minimizing the elastic energy and the real one must in general be expected, since

entropic and kinetic effects are not taken into account. With this respect, we find the

comparison between our results and the experimental ones particularly useful in evidencing

that the actual profiles do not allow for the maximum possible strain relaxation. A further

observation can be made. The main difference between our results and the experimental

ones does not seem to stem in different degrees of deviation from a uniform distribution,

but only in the actual location of the Si-richer regions. With this respect, we believe that

the observed difference should not be attributed to entropic effects. Kinetic effects, as

suggested in Ref.[40] (see also [48]), could explain the observed distribution. The 0.80

isocompositional surface (panel d), although not corresponding directly to experimental

etching profiles, provides further interesting information on Ge distribution, showing that

a Ge-rich region, starting from the top of the island (where pure Ge is found), extends in

the center of the island reaching the substrate. A similar behavior is found also for dome

islands, for which experimental evidence of this hole was reported. Results for domes are

reported in Fig. 2.11. In this case, always trying to reproduce experimentally reported

values [40, 91], we considered an average Ge content c = 0.6. Panels a,b, and c of Fig.

2.11 display the same kind of results shown in Fig. 2.10 for pyramids. Notice that in

this case, differences in concentration exceeding 0.9 are reported between the top and the

base of the island. Evidently, the strong compression at the edges, induced by the higher

aspect ratio [92], strongly attracts Si atoms which better accommodate in a low lattice-

parameter environment. The simulated etching profile (panel c) confirms this observation,

showing that removing material exceeding 0.65 of Ge induces a clear hole in the center

of the island. Looking at the composition map obtained by atomistic MC at T = 8K in

Ref.[79], one can infer an analogous behavior, thus providing a rather convincing proof

of the reliability of our continuum-theory based approach to non-uniform concentration

distribution in heteroepitaxial islands.

The comparison between our results for domes and the corresponding experimental re-

sults of Ref.[40] shows an agreement much more pronounced with respect to the pyramidal-

island case, once it is taken into account that convolution effects produce a rounding effect

in the images of [40], and that in our figures proportions in the x,y, and z directions are

maintained. Not only the presence of the central hole is confirmed experimentally, but

also the slight tendency towards maximal accumulation along the [110] directions seems to

be in agreement. Experiments in [40] were repeated by raising the growth temperature,

therefore enhancing the Si concentration in the island, in order to check possible variations
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Figure 2.11: Concentration profiles for a typical dome-shaped island. (a) 3D view

of the distribution along the island facets for an average Ge content c = 0.60. (b)

Corresponding cross-sectional view (c = 0.60). (c) 3D distribution of material with a

Ge concentration below 0.65 (selective-etching profile), always for c = 0.60. (d) As in

in panel c, but for c = 0.40.
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Figure 2.12: Concentration profiles for a typical barn-shaped island. (a) 3D view

of the distribution along the island facets for an average Ge content c = 0.60. (b)

Corresponding cross-sectional view (c = 0.60). (c) 3D distribution of material with a

Ge concentration below 0.65 (selective-etching profile), always for c = 0.60. (d) As in

in panel c, but for c = 0.40.

in the etching profile. The higher Si content, indeed, was shown to qualitatively change

the morphology of the material resisting the etching action which no longer displayed the

central depleted zone. In order to check for reported change in behavior, we have run a

further simulation for c = 0.4, obtaining the result displayed in Fig. 2.11d. As in the

experiments, the hole disappeared, leaving only a slight depression, possibly not visible in

experiments due to the above mentioned convolution effects.

For sake of completeness, we have also investigate the behavior of barn-shaped islands,

simulated under the exact same conditions (c = 0.6 and c = 0.4) considered for domes.

From our results, it is quite evident that by raising the island aspect ratio, the tendency

towards segregating Si at the island base gets stronger. However, the concentration profile

now looks more regular, as a direct consequence of the different geometry: isoconcentration

lines are more rounded with respect to the dome case, as it appears clearly from both the

3D (Fig. 2.12a) and the cross-cut images (panel b). Also the etching profile (panel c)

looks different, the c = 0.6 result for the barn resembling the c = 0.4 case for the dome

(depression, not hole). Finally, for c = 0.4, we predict etching to cause a simple and

moderate flattening of the very top of the island.

So far we have focused our attention on the concentration profiles within the islands.

Let us now look at the influence of the non-uniform concentration profiles on the elastic

energy distribution. Since we have verified that a qualitatively similar behavior is displayed
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Figure 2.13: Left panel: elastic-energy distribution for a dome-shaped island with

a uniform Ge distribution, and c = 0.6. Right panel: elastic-energy distribution for

the Ge concentration profile, illustrated in Fig. 2.11, panels a, b, and c, minimizing

the elastic energy. The cross-sectional view is as in Fig. 2.11b. Energies are reported

in meV/atom. For the uniform case, the elastic energy at the island edges strongly

exceeds 10 meV/atom. In order to show the main differences between the two cases,

however, it was more convenient to display color maps between 0 and 10 meV/atom,

representing all points above 10 meV/atom with a uniform black color.

by all three geometries, we shall directly illustrate only the dome case. In Fig. 2.13 elastic-

energy maps are presented for c = 0.6 in the case of a uniform distribution (panel a) and

for the distribution obtained after MC optimization (corresponding to the concentration

distribution displayed in Fig. 2.11a,b, and c). Energy is expressed with the usual (for atom-

istic approaches) meV/atom, meaning that a local atomic distribution of atoms yielding,

on average, the concentration c(x, y, z) would have the corresponding elastic energy (per

atom). Differences between the uniform and the optimized distributions are rather strong,

pointing out the importance of using a self-consistent approach. In the former case (already

discussed in several papers, for instance see [92]), the upper portion of the island is almost

fully relaxed while at the edges the elastic load is particularly significant. Indeed, upon MC-

FEM optimization, it is precisely the strong accumulation at the edges which is relieved.

While, obviously, the total energy of the system is decreased (by ∼ 12%) in passing from

the situation illustrated in Fig. 2.13a to the one of Fig. 2.13b, elastic-energy relaxation

at the edges is accompanied by a mild (but well detectable) increase in the central portion

of the island, decaying while moving towards its top. Clearly, the common picture of a

base-to-top elastic energy relaxation is modified by the non-uniform concentration profile.

2.4.3 Outlook about MC-FEM

When we decided to get involved in the problem of concentration distributions in heteroepi-

taxial islands our initial goal was to start tackling the problem by providing a fast method
3 able to search for the profile cmin = c(x, y, z) minimizing the elastic energy. Being a well

defined quantity, independent on the growth conditions and representative of the maximum

possible level of strain relaxation (for a given island shape and average composition), we

3For an island composed of ∼ 104 atoms, we directly verified that atomistic MC based on typical empirical

potentials is ∼ 50 slower than MC-FEM in providing the minimum-energy concentration distribution. The

computational boost allowed for by MC-FEM is however in many cases much higher. Realistic islands at

experimental concentration values are in fact made of more than 105 atoms, making the use of atomistic

simulations prohibitive. Also if the method is applied at finite temperatures, an application not discussed

in this work, the speed-up guaranteed by MC-FEM becomes much larger, due to the need of averaging over

multiple independent atomistic simulations.
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found cmin a quantity of particular interest. We were aware, however, that entropic contri-

butions at experimental growth temperatures were demonstrated by atomistic simulations

[79] to be fully dominant on elastic effects, driving perfect intermixing. Notice that also

the very low energy values (much lower than kBT for any T relevant for the experiments)

reported in Fig. 2.13 indicate the negligible stability of the 0K cmin distribution at finite

temperatures. In addition, we were also aware of the limitations of a thermodynamic ap-

proach allowing for site exchanges for systems were bulk diffusion is frozen. Therefore, we

expected to use cmin as a simple starting point to analyze deviations at finite temperatures.

The successful comparison between the simulated and the experimental selective-etching

profiles, came out unexpected. Interestingly, it looks like elastic energy is (at least roughly)

minimized while entropy is not allowed to raise. These results appear in contradiction with

the conclusions of [64]. There, the authors estimated the entropy values based on the ex-

perimentally determined concentration profiles. The mixing entropy S, multiplied by the

growth temperature T and estimated on the basis of the simple relation holding for random

alloys, turned out to be much larger than the elastic energy Eel, leading to the suggestion

that strain release is not a significant driving force. This result puzzled us, since their

experimental profiles were qualitatively rather similar to ours: a dominating entropic term

should have prevented the formation of the observed highly non-homogeneous Si distribu-

tion in the island. To clarify this point, we have applied their same TS estimate to our

minimum-energy concentration profiles, also finding that the TS contribution outweighs

the elastic one. For instance, for a 60% Ge-rich dome, the average TS at the typical growth

temperature of 873K is almost 7 times larger than Eel, a value very similar to what reported

in [64]. Entropy, however, played no role at all in determining our concentration profile, the

only driving force allowed by our MC-FEM procedure being elastic-energy minimization.

Obviously, we are not saying that entropy plays no role in the experimental profiles, but

simply that Eel minimization is indeed important, the comparison between the absolute

values of TS and Eel being misleading in this sense.

It still remains to be explained how the system is able to approach the minimum-

energy configuration given that bulk diffusion is frozen. A model able to predict the whole

formation process based on an accurate description of the system kinetics seems to be

needed. The most promising attempt so far is probably the one reported in Ref.[43], even

if important ingredients, such as kinetics of Si/Ge exchanges at islands facets, are still

missing.





3
Dislocations in nanostructures by

FEM

The chapter is dedicated to the study of plastic relaxation in heteroepitaxial structure

using FEM. At this purpose we developed a straightforward method to handle dislocations

in nanostructrures directly in FEM framework. In fact the elastic field of dislocations in

nano-object is strongly influenced by the small size of the structure, deeply interacting with

free surfaces and interfaces. We show how our novel computational strategy can be applied

to the study key properties of heteroepitaxial structures such as the plastic relaxation onset

(introduction of the first dislocations) in flat film and, in next chapter, in Ge/Si islands.

Furthermore we depict how by proper patterning of the Si (001) substrate it is possible to

predict dislocation confinement in a prescribed area of the heteroepitaxial system, opening

a viable path for dislocation engineering. For a brief introduction about the concept of

dislocation see App. B

3.1 Dislocations in FEM code

Many different strategies have been developed approaching defected structures. Atomistic

simulations can be carried out in order to obtain atoms configurations around dislocation

lines, core geometries and energies (e.g. Refs. [93, 94, 95, 96, 97]). A long computational

time is however required so that, for instance, the simulation of dislocated island, despite

the nanometer scale, can be performed only for idealized, prototypical cases (an example

will be given in the section 4.1).

An analytical approach is therefore highly desirable. The unavoidable consequent loss in the

description of the core regions, when realistic structures are modeled, does not influence the

calculation of mechanical properties, because of their small extensions. Classical dislocation

theory [98] even if it remains the touchstone of all the tried analytical approaches, fails in

managing complex three dimensional structures with multiple surfaces and interfaces. Most

of the models proposed in literature are developed considering dislocations described by

analytical infinite domain solutions and correction terms (image stresses) tackling surfaces

and interfaces interactions, generally approximated by empirical/analytical formulae valid

for simple boundary geometries [99]. We provided a continuum based approach exploiting

the capability of numerical calculations to handle the interactions between dislocations and
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surfaces, as described in the following.

Let us consider first the general case of the calculation of the stress field due to a dislocation

segment in a finite structure where no other sources of the elastic field are present.

As we have seen in sec 2.2, classical elasticity theory describes the equilibrium state of

a solid in terms of internal stresses σij(u), as a function of the displacement field u with

respect to the initial position, and external applied forces fi. Defining the body as the

domain Ω, with boundary ∂Ω, equilibrium equations can be written in a boundary value

problem as highlighted in Eq. 2.1. FEM allows the numerical solving of the equations

system 2.1 so that assigning the proper conditions it’s possible to find the elastic field in

any domain (see chapter 2).

We conceived to use the FEM calculation starting from the stress field of a dislocation

segment in an infinite body and using the solver to find the solution that satisfy also the

finite body boundary conditions for free surfaces and interfaces. In particular, an external

function is used in communicating to the FEM code the analytic stress tensor σdislo
ij (u)

(i, j = 1, 2, 3) produced by a dislocation segment in a bulk [98]; then, we replace in Eq.

2.2 σij(u) with σij(u) + σ0
ij(u) where σ0

ij(u) = σdislo
ij (u) (i, j=1,2,3). The proper boundary

value problem is then solved also where no external forces are considered (fi = 0). When

convergence is reached, the solution for σij(u) is found and the total stress tensor σtot
ij (u)

can be written as:

σtot
ij (u) = σsurf

ij (u) + σint
ij (u) + σdislo

ij (u) (3.1)

where σsurf
ij (u) is the correction to σij(u) due to the interaction between the dislocation

and free surfaces (i.e. due to the first boundary condition in (1)), while σint
ij (u) is the one

due to the interaction between the extended defect and the interface (i.e. due to internal

boundaries among different materials) [100].

The whole procedure has to be carried out taking into consideration that the bulk solution

σdislo
ij (u) (i ,j=1,2,3) is singular along the dislocation line, so that some technical require-

ments for the FEM calculation are needed. A first obvious condition is that the mesh

used to solve the boundary value problem system must not contain nodes exactly along the

dislocation line, otherwise infinite values would be introduced. In addition, a sufficiently

dense mesh must be defined close to the core region, where the stress field reaches high

values, also in derivative. This second key requirement can be fulfilled following a geomet-

rical construction which also allows the quantitative estimates of the elastic energy in a

dislocated structure. A small cylinder has been built around the dislocation line and we

define a very dense array of nodes within it. We set the radius as
∣

∣

∣

~b
∣

∣

∣
/α with α = 2.71.

Excluding only such small cylinder (about 1,5 Åin radius) in the elastic energy calculation,

the core contribution is empirically included (see e.g. Refs. [98, 9, 101]). Notice that the

definition of a suitable grid, as the one described above, is straightforward within several

available FEM packages. Meshes, indeed, can be automatically generated by the codes, at

variable levels of node density, based solely on the geometry of the objects composing the

system. By introducing the very small cylinder explicitly, one automatically forces the mesh

generator to introduce several nodes around the core region, as it was desired. However, a

careful control of convergence as function of the mesh density is mandatory.

To give a simple example of the flexibility and the accuracy of the method, we illustrate

a case study where a direct comparison with the exact analytical solution is possible. Let

us consider a dislocation with Burgers vector ~b and dislocation line ~l parallel to a single,
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Figure 3.1: Panels (a), (b) and (c): various components of the edge dislocation

stress field (~b = [100],~l = [001]) near a (100) surface (black line), calculated using the

analytical solution by Heads [102].The dislocation is placed at a distance of 6 nm from

the surface. Panels (d), (e) and (f): corresponding results obtained by direct solution

of the elastic problem by FEM.

horizontal free surface (placed at x=0). While for pure screw character the exact solution

is provided by a simple image method [98], it is more interesting to consider an edge

dislocation. In this case, the problem is more complex, but it was nicely solved by Head

[102], who supplied a solution valid for any distance d between the dislocation line and

the surface, in the case of Burgers vectors perpendicular to the free surface. The Head

solution, in terms of various components of the stress tensor is shown in the three upper

panels of Fig. 3.1, while our results obtained by using FEM are displayed in the three lower

ones. It is evident that a very good match is found. Outside the small cylinder around

the dislocation line, indeed, the two solutions always differ by less than 0.1% of the stress

value. Notice the stress field behavior close to the surface: while the σxx and σxy stress

components (parallel to the normal ~n) vanishes, σyy does not, at variance with the (wrong)

result that one would obtain by using the approximated image method [98]. It is therefore

clear that our method is suitable to handle dislocations in the presence of free surfaces. Due

to the requirement in terms of mesh density, a significant computer memory (up to 8Gb for

the results of Section 3 and 4) is needed to obtain stable results. Until a couple of years ago,

this would have prevented similar calculations, so that smart attempts to circumvent the

problem were proposed, avoiding to deal with the singularity directly in a FEM calculations.

A particularly general and valid approach was introduced by Johnson and Freund (JF)[75],

similar ideas being contained also in Ref.[96]. JF proposed to suitably split the elastic

problem into two sub-problems. First, using the known analytical expression for σdislo
ij ,

tractions are computed at each free surfaces (components of the stress tensor normal to the

surface itself). Then, a FEM calculation is performed for the system without dislocation,

but using such tractions (opposite in sign) as boundary conditions. The bulk stress field
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σdislo
ij is finally superimposed. In this way, the problem of using very dense meshes while

solving the elastic problem is bypassed.

Recently, another possible approach has been presented [97, 100, 103]. With respect to the

JF method, no explicit analytical expressions for σdislo
ij and no JF-like problem splitting

are required. This extended FEM methodology seems very promising for treating systems

containing several dislocations. However, some ad hoc technical FEM machinery needs to

be implemented.

While the above methods are surely valid alternatives (we verified the perfect correspon-

dence between our results and the JF approach for a simple test case), and might still

prove to be essential for treating an elevated number of cores at the same time (a situa-

tion not encountered in this case [56]), our direct treatment of the dislocation field within

FEM approach has some appealing features. First, it can be very easily implemented also

within commercial FEM codes, where original sources are usually not available. A similar

extension to use the method of Refs.[97, 100, 103] does not seem straightforward. With

respect to the JF method, instead, one does not need to explicitly compute tractions. If

their calculation poses no problems for simple geometries, for multifaceted heteroepitaxial

islands one would need to carefully define the normal to each different exposed surface.

In addition, if islands of different shapes need to be considered and compared, our direct

approach allows one to move from one geometry to another very easily, particularly if the

simple object-drawing features provided by most modern FEM packages are exploited.

In this Section we have demonstrated that an accurate, direct solution of the elastic problem

posed by a straight dislocation segment in the presence of free surfaces can be obtained

directly by FEM. Let us now apply this methodology to realistic heteroepitaxial System.

3.2 Dislocation engineering in patterned substrate

A first application to the developed method, is the study of dislocations in patterned

substrate. We showed how by exploiting the inhomogeneous elastic field, produced in a

trench patterned substrate is possible to achieve dislocation engineering.1

Dislocation engineering is the capability of governing the position and the shape of dis-

locations on a nanometric scale, i.e. controlling not only where the misfit segments (MS)

are located, but also their extension and where their two ends are connected to a surface

by threading arms (TA). For the epitaxial integration of different materials on Si(001),

this achievement would allow for device positioning in sub-micrometer areas far from the

detrimental TA. Defined access to the electrical conductivity of dislocations[104] and elec-

troluminescence measurement[105, 106] are other fields that will benefit from dislocation

engineering. However, this goal has always been out of hand, because heterogeneous nu-

cleation of dislocation loops at unpredictable defects on the surface of the growing film

and blocking of loops by pre-existing dislocations prevent any meaningful control. Re-

cently, Ge[107] or GaAs[108] selective area deposition in oxide windows, or on small SiGe

mesas,[109, 110] have allowed the blocking of TA. Still, the nucleation sites and the dis-

location lengths are hard to control. In next paragraphs, we show that a turning point is

the introduction of preferential nucleation sites at the interface between Si (001) and SiGe,

which trap both the TA of dislocation lines running in one 〈110〉 direction, and the MS

in the perpendicular direction. Guided by Finite Element Method (FEM) simulations, we

1This part of the work was made in collaboration with Francesca Boioli
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Figure 3.2: (a) Elastic energy of a 60 ◦ MS parallel to the [1̄10] direction with b =

aGe[011]/2 as a function of the x position along the Ge/Si interface. (b) Hydrostatic

strain map of the dislocation in its energy minimum. Nucleation of such dislocations

is favored at the upper edge of the (1̄1̄1) plane, where RSS is maximum (c).

etched arrays of trenches with {111} facets of suitable spacing and width into Si (001),

and showed by Atomic Force Microscopy (AFM) and Transmission Electron Microscopy

(TEM) that efficient dislocation engineering is possible during mask-less heteroepitaxy of,

here, Si0.7Ge0.3.

In the film growth-temperature regime, of SiGe on Si(001) a random network of 60 ◦

dislocations along the [110] and [1̄10] directions is observed, giving rise to a cross hatch

morphology[111] that is readily observed by AFM. The lattice deformation induced by

the MS of a 60◦ dislocation is composed of an expanded and a compressed lobe, which

are mirror symmetric with respect to the {111} plane. It is easy to show by suitable

FEM calculations[112] that the lowest elastic energy is obtained when the MS lies on a

{111} interface between SiGe and Si. In Fig. 3.2(a), we report the elastic energy of a MS

parallel to the [1̄10] direction, with Burgers vector b = aGe[011]/2 (aGe is the germanium

lattice parameter), as a function of the position x along the Ge/Si interface, patterned as

shown in Fig. 3.2(b). The energy minimum corresponds to the MS in the (1̄1̄1) interface

plane. The map of the hydrostatic strain in such a position is shown in Fig. 3.2(b).

In this configuration, the dislocation line generates an expansive lobe in the Ge film and

a compressive one in the Si substrate. Both are perpendicular to the (11̄1) interface,

enhancing the total strain release. Fig. 3.2(c) maps the Resolved Shear Stress (RSS),

which becomes maximum at the upper intersection between the (1̄1̄1) and (001) planes.

Here, dislocations will nucleate[98] and eventually glide within the (1̄1̄1) interface plane to

the energy minimum.

Let us consider now a substrate patterned with 350 nm wide trenches, periodically

repeated along the [110] direction, and covered by a conformal, 160 nm thick Si0.7Ge0.3
film, as shown in Fig. 3.3. In our 2D geometry both the trenches and the MS are ideally

infinite and parallel to the [1̄10] direction. We see from the FEM strain map in Fig. 3.3(a)

that the presence of {111}-terminated trenches allows for a significant elastic relaxation of

the εxx component in the epilayer even in the absence of dislocations. Therefore, we expect

a reduced number of dislocation lines in the [1̄10] direction. From the calculation of the

mean value of εxx in the epilayer, we found that in the coherent system the average residual

strain εxx is ∼-6.7·10−3, i.e. much lower than expected for a Si0.7Ge0.3 film grown on a flat

Si(001) substrate (∼-1.2·10−2). Considering the same pattern geometry, we calculated the
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equilibrium configuration of multiple dislocations in order to demonstrate that substrate

patterning with {111} trenches is a suitable strategy for confining MS. In particular, for a

given number of dislocations and their initial positions, we can calculate the force acting

on each of them using the Peach and Kohehler equation[98]:

F = (σ(r) · b)× ℓ(r) , (3.2)

where b and ℓ are the Burgers vector and the line vector of the dislocation, respectively, and

r = (x, y, z) is the dislocation position. σ(r) = σepi(r) + σdsl(r) is the position-dependent

stress tensor consisting of the FEM-calculated epitaxial stress field σepi and the elastic field

provided by all the dislocations in the system σdsl. The latter was calculated using the

analytical formulation given in Ref. [113]. We computed the equilibrium configuration by

using the steepest-descent algorithm. A random distribution of dislocations is generated,

forces are calculated using eq. 3.2, and dislocations are moved along the force directions

until the forces acting on each of them is zero. The equilibrium configuration is then ob-

tained by repeating the elastic energy minimization for different initial dislocation positions

and increasing their number up to the maximum allowed by the film thickness and trench

periodicity. In the minimum energy configuration the dislocations are distributed exclu-

sively in the {111} interfaces inside the trenches, as long as the trench period is ≤1.5 µm,

(Fig. 3.3(b)). When the trench period exceeds 1.5 µm complete dislocation confinement

in the trenches is lost. For a trench period of 1.8 µm, for instance, we predict that some

dislocations are also located in the (001) interface between the trenches, as highlighted in

the inset in Fig. 3.3(c). Thus, by varying both pattern geometry and Ge content it is pos-

sible to tune the range of trench periods where misfit dislocations become entirely confined

inside the trenches.

To confirm our predictions, {111} faceted trenches were fabricated by a similar proce-

dure as described in Ref. [114]. Regular arrays of trenches oriented along the [1̄10] direction

and with a spacing of 2 µm were defined by electron beam lithography on a Si (001) sub-

strates covered with 70 nm of SiNx. The pattern was transferred into the SiNx layer via

reactive ion etching to provide a hard mask for the subsequent anisotropic Si etching in

Tetramethylammonium Hydroxide at 80 ◦ C. Since the etching rate in the Si <001> di-

rections is ∼ 0.3 µm/min whereas the one for Si <111> is as small as ∼ 0.01 µm/min,

trenches with well defined {111} side facets result.[115] The width and the depth of these

trenches were defined by the size of the hard mask openings, here 350 nm and 250 nm,

respectively, to match the model assumptions. The patterned substrates were then chemi-

cally pre-cleaned with a final dip in hydrofluoric acid and transferred to a Riber SIVA 45

solid source molecular beam epitaxy (MBE) system. After in-situ annealing at 700 ◦ C for

45 minutes, a 45 nm thick Si buffer layer was deposited at a rate of 0.6 Å/s at a temperature

that was ramped up from 450 ◦ C to 550 ◦ C. An overcritical[9, 11] 160 nm thick Si0.7Ge0.3
layer was subsequently grown at TGe= 550 ◦ C, with rates of 0.18 Å/s and 0.41 Å/s for Ge

and Si, respectively.

Fig. 3.4(a), shows an AFM image from the boundary region between the trench pat-

terned area and the unprocessed surroundings. Evidently, most of the [1̄10] oriented dislo-

cations propagate as bundles from the sidewall areas of the trenches into the non-patterned

area. Since the AFM measurements are only sensitive to the surface-footprint of several

bunched dislocations, TEM investigations were carried out to identify individual disloca-

tions and their TA. As in the case of the AFM image, we analyzed the region between the

patterned and the non-patterned areas. Small apertures were used to improve the contrast,
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Figure 3.3: Map of the strain exx in the xz-plane for the coherent (a) and dislocated

(b) system with a trench period of 1.5 µm and a film thickness h of 160 nm. Up to

trench periods equal to 1.5 µm all dislocations are confined inside the trenches (b),

while for larger periods (here: 1.8 µm), few dislocations are expected between the

trenches (c).



44 Dislocations in nanostructures by FEM

Figure 3.4: AFM images of the areas, where the {111} trench pattern ends (a), from

the middle of the patterned (c) and non-patterned field (e), obtained after deposition

of 160 nm Si0.7Ge0.3. Color coding corresponds to surface sensitive derivative. Plan

view TEM images of the end of a trench (b), where dislocations are confined along

the trench, and MS running from trench to trench (d). Trenches are outlined in red

to guide eye. (f) RSS calculated for a 60 ◦ dislocation perpendicular to the trenches

(parallel to the [110] with b = aSiGe[01̄1]/2 and (11̄1) glide plane).
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the specimen orientation was adjusted to get the highest dislocation contrast possible. Due

to sample bending caused by residual strain and the presence of the trenches in the thin

plan-view specimens, it was only possible to get good imaging condition in areas of about

0.5 µm2. In Fig. 3.4(b) one can see that most dislocations parallel to the [1̄10] direction are

confined along the trenches and extend into the non-patterned area, confirming both the

model predictions and the AFM results. A few [1̄10] oriented dislocation lines are observed

between trenches, because the experimental trench period of 2 µm exceeds the aforemen-

tioned limit of 1.5 µm for complete MS confinement in the trenches. Both the AFM and

the TEM images also reveal that perpendicular to the trenches MS run from trench to

trench as a dense network with narrow, rather regular distances, (Fig. 3.4(c) and (d)). TA

can easily be identified in TEM images, because of their characteristic contrast modulation

with a period that is related to the extinction length of the electrons employed for imaging.

We find that most TA are located in the trenches, where they end on a sidewall surface.

The area between the trenches has a much lower density of TA. Their occurrence is mainly

associated with occasional stacking faults caused by not-yet optimized growth conditions on

the 111 sidewalls of the trenches. In the non-patterned area, Fig. 3.4(e), an irregular net-

work of bundled dislocations is observed, giving rise to a superficial cross hatch morphology

associated with dislocations along the [110] and the [1̄10] directions. In contrast, the pres-

ence of trenches substantially affects dislocation formation: MS parallel to the trenches are

confined inside them and the ones perpendicular to the trenches produce a rather uniform

distribution. The latter finding is probably due to the high RSS at the upper trench edges,

which provides preferential sites for homogeneous dislocation nucleation in the patterned

area. In Fig. 3.4(f) the RSS calculated for a 60 ◦ straight dislocation parallel to the [110]

direction (i.e. perpendicular to the trenches), with Burgers vector b = aSiGe[011]/2 (aSiGe

is the Si0.7Ge0.3 alloy lattice parameter), is plotted. Since the RSS reaches its maximum at

the upper trench edge where it is much higher than in flat films, we expect dislocations to

be more easily nucleated in films grown on such patterned substrates. This effect allows for

the formation of a homogenous distribution of dislocations perpendicular to the trenches.

In conclusion, our model predictions and experimental results clearly suggest that sub-

strate patterning with {111}-terminated trenches is an effective method for trapping misfit

dislocations parallel to the trenches. Their density is low, since the relaxation of the strain

component perpendicular to the trenches is mainly of elastic nature. In contrast, the strain

component along the trench direction is plastically relaxed by a quite regular array of mis-

fit segments that run from trench to trench. Their threading arms are effectively trapped

on the open sidewalls of the trenches. It is therefore possible to fabricate relatively large

film areas (∼1 µm2) free of threading dislocations, which demonstrates that our mask-less

approach can provide efficient dislocation engineering.





4
Plastic relaxation onset in

heteroepitaxial islands

This chapter effort is the study and understanding of the onset of plastic relaxation in

heteroepitaxial SiGe islands. The plastic onset is determined making use of thermodynamic

criteria, exploiting the method described in chapter 3. In fact, the onset of plastic relaxation

occurs in small volumes, involves only single nucleation event, and misfit dislocations are

the main actors in such process, threading segments can be neglected. The detailed stress

field and the elastic energy of an island with a single 60◦ misfit dislocation is computed,

determining the critical volume of injection of the first dislocation, finding a good agreement

with experimental data.

4.1 Modeling of dislocated islands by FEM

As shown in chapter 2, before the onset of plastic relaxation, the elastic field in the island

is completely determined by its shape and composition. This section is devoted to the

study of stress field of the dislocated island case. We shall recall that the calculation of the

complex elastic field in a dislocated dot is the actual goal of our FEM methodology, and

that the results here reported allow for a complete description of stress and strain field in

realistic shaped 3D islands.

In Ref. [56] it has been addressed that the onset of plastic relaxation in SiGe islands grown

on a Si(001) substrates occurs in barn shaped islands, we followed this suggestion and

addressed the dislocated dots to be a barn. Moreover as in Ref. [56], we focus on perfect

straight 60◦ dislocation segments (typical of Si and Ge diamond structure). Different island

composition and size have been considered, along with different dislocation position at the

island-substrate interface (see Section ).

In Chapter 2 we described the procedure to calculate via FEM the elastic field in a finite

system where the stresses are originated only by the presence of a dislocation segment. In

one dislocated island, instead, both the elastic field due to lattice misfit with the substrate

and the one due to the dislocation are present. The superposition principle holding for

linear system allows us to simply sum the two initial stress σ0
ij(u) for one unique BVP

problem. Therefore in Eq.(2.2) σij(u) becomes σij(u) + σ0
ij(u) (i, j = 1, 2, 3) with:
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Figure 4.1: Hydrostatic (upper panels) and shear (bottom panels) stress components

mapped in a central barn section. Left panels show the case of a coherent 35 nm

based island, while the right panels show the same system when a 60◦ dislocation is

introduced.

{

σij = Cijkl ǫm + σdislo
ij island

σij = σdislo
ij substrate

(4.1)

In particular, we chose to orient the dislocation line ~l along [110] direction (here and in the

following the direction of the x axis, being z axis along [001] and y along ([1̄10]) and we

take the Burgers vector ~b = aGe

2 [011]. Then the relative analytic stress tensor σdislo
ij (u) is

obtained as in Ref. 21 for a dislocation segment actually starting on one side of the island

and ending at the opposite one. We neglect the presence of threading arms and we place

the dislocation segment always at the interface with the substrate. Both simplifications find

their physical reason in a realistic picture of the dislocation evolution after its nucleation:

the misfit segment has to be elongated as much as possible, in order to maximize the strain

release, so that the threading arms have to become as short as possible and the dislocation

has to move towards the interface.

Results for a pure Ge dislocated barn are plotted in right panels of Fig. 4.1, allowing for

a close comparison with the coherent case (left panels). The island base was realistically

set to 35 nm [54, 56]. Notice the importance of specifying the islands dimensions. The

coherent case is self-similar, so that the stress field can be scaled to represent any island of

the same shape. This is not possible anymore when a dislocation is considered, since the

Burgers vector introduces an intrinsic length scale. The dislocation was placed exactly at

the interface at a relative distance of about 0.3 from the closest barn edge with respect to

the island base, i.e. in the position that in Ref. [56] was indicated to be the lowest in total

energy (as reported in the next section we found exact the same result).

Looking at the hydrostatic components σxyz (upper panels in the figure) it can be observed
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Figure 4.2: Elastic field in a 3D dislocated barn. Panels report color maps of the

σyy component for different island cross sections, along the dislocation line. The cross

sections in the island are shown in the top left panel, along with a sketch of dislocation

line and Burgers vector orientation.

how the presence of the dislocation allows for a strong reduction of the compression at the

island edge closer to the core, i.e. exactly where the elastic relaxation does not provide

a good way for lowering the stress load arising from the lattice mismatch. The influence

on the Si substrate is also interesting. Below the dislocation core, a compressive lobe is

created. While this causes strong negative stress values right below the core, at larger

distances it allows for a reduction of the tensile Si region. The components σyz illustrated

in the bottom panels of Fig. 4.1 give an example on the local modification induced by the

60◦ dislocation segment in reducing the shear deformation.

Proceeding with the analysis of the dislocation-induced stress field in the barn, in Fig. 4.2

we show the σyy component of the stress field at different positions within the island.

We find the comparison between the various panels of Fig. 4.2 particularly appealing,

since it clarifies the complex interaction between the dislocation and the various island

facets, highlighting the importance of performing actual three-dimensional calculations.

The overall stress field is determined by several factors. Beside the position-dependent

lattice mismatch contribution, the relative position with respect to both the dislocation

line and the free surfaces is important, together with the relative orientation of the Burgers



50 Plastic relaxation onset in heteroepitaxial islands

Figure 4.3: Left panel: dome island as built in MD code, the facets are indicated

and the {111} planes mostly involved in the initial deformation have been highlighted

in color. Right panel: sketch of the atomistic generation of the dislocation, z0 being

the interface level.

vector (shown separately in the figure) and of the normal to the closer facet. In the cross

section of Fig. 4.2 (a), one observes a strong dislocation contribution reaching the free

surface (upper left corner in the panel). In that region the dislocation core is very close to

a free surface and, more importantly, the Burgers vector is almost normal to the facet. In

cross section displayed in Fig. 4.2 (e), instead, the Burgers vector is parallel to the surface

causing a weaker relaxation close to the surface (orange area). Finally, in the central

sections of the island [panels (b), (c), (d)], the typical butterfly-shaped dislocation stress

field is observed to become less significant while moving from the base to the top, where

the elastic relaxation is maximum.

As a further confirmation of the method accuracy we chose to compare the elastic field of

a dislocated island as found by our full FEM methodology with the same result calculated

via atomistic simulations. We compare our results with Molecular Dynamics (MD) ones

based on the Tersoff empirical potential [116, 50]. This comparison also allows for analyzing

atomic-scale effects, which are not present in the continuum approach. Instead of a barn,

we here consider a dome island [84] (see Fig. 4.3), since this allows us to reduce the number

of atoms to be considered, still dealing with realistically sized and shaped islands. In order

to introduce a 60◦ dislocation segment in the island analogous to the one previously treated

by FEM, we applied the same procedure successfully used in Refs. [117, 118] for the simpler

case of a flat film. In particular, we chose to induce the dislocation in the shuffle set (in

elastic continuum calculations the dislocation setting is not relevant as no lattice is present).

Briefly, a specific {111} glide plane is selected, together with the vertical position for the

dislocation core. Suitably modulated rigid shears are applied above the core position: atoms

on one side of the glide plane are sheared in the direction of the Burgers vector, while atoms

at the other side are moved in the opposite one. In the left panel of Fig. 4.3 the island as
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Figure 4.4: 60◦ dislocation in a dome island as obtained via atomistic simulation.

The core position is encircled. Core atoms and the half extra plane are highlighted.

The detailed atomistic configuration is shown in the right panel.

built up in the MD code is shown from a top view. The atomic planes mostly involved in

the displacements are highlighted. The right panel of Fig. 4.3 , instead, contains a sketch

of the procedure used to generate the dislocation.

After the preparation of the initial configuration, a simulated annealing procedure was run

in order to minimize the total energy in the dislocated configuration, reaching a temper-

ature of 400K before bringing the system down to zero temperature. The applied initial

displacement is sufficient to guarantee that the minimization procedure causes only minor

atoms arrangement around the induced dislocation core, avoiding the system to get back

to the perfect crystal configuration. During the simulation, periodic boundary conditions

were applied in the directions parallel to the substrate, and the bottom four layers of the

supercell were kept frozen to bulk position. The total system was composed of ≈ 1.5× 106

atoms. 58 layers were used to describe the Si substrate, each of them composed by ˜21600

atoms, completed by a 3ML Ge wetting layer and by the dome island, made of about 118000

Ge atoms.

Fig. 4.4 presents a portion of the final configuration, highlighting the presence of a 60◦

shuffle dislocation segment at the island base. The core structure is shown in the right

panel.

The same dome island has been then constructed in the FEM code and a 60◦ dislocation

has been introduced in the same position. In order to draw a closer comparison, we used

the elastic constants predicted by the Tersoff potentials[116, 50]. Panels in Fig. 4.5 show

the color maps of the hydrostatic strain resulting from the two approaches. It is evident

the good qualitative and quantitative correspondence.

An obvious difference is seen close to the free surfaces, the steep dome facets being here

stepped in their as-cut configuration. Each step is a source of alternating compressive

and tensile regions, this effect being absent in the FEM calculation. Notice that the step-
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Figure 4.5: Color map of the hydrostatic strain in the central cross section of a

3D dome island (32 nm in base) as obtained by FEM calculations (upper panel) and

Tersoff-potential MD (bottom panel).

induced effect seen in the MD results is doubtfully realistic since reconstructions (unknown

for the high-index facets of a dome) are expected to change the surface stresses. Moreover,

also the top (001) dome facet is built up in the MD code without introducing possible

reconstruction, random rebonding in dimers occurs during the simulated annealing, giving

rise to local stresses.

Overall, the FEM approach, while recovering the correct result, allowed for a two orders of

magnitude saving in computational time for this prototypical case. Estimating the critical

volume for plastic relaxation (particularly at low Ge contents, yielding larger islands) by

MD is prohibitive, so that in the following we shall drop the atomistic approach.

4.2 Calculation of plastic onset and comparison with differ-

ent approaches

In the previous section we have demonstrated that FEM calculations can yield a reliable

description of the elastic field in a dislocated island. Before exploiting them to yield an

accurate estimation of the critical volume for plastic relaxation onset, we find interesting

to introduce two more approximated, still analytic, approaches, in order to compare the

different predictions and to understand which are the key contributions determining the

system behavior.

On general grounds, the total elastic energy stored in an heteroepitaxial island in the

presence of a dislocation can be written as:

Etot = Ecoh + Egain + Ecost (4.2)

where Ecoh is the elastic energy of the coherent dot, Egain accounts for the energy lowering

corresponding to the effective misfit reduction, provided by the dislocation, and Ecost the

energy of the additional lattice deformation produced by the defect. Different approaches

can yield an explicit expression for the three terms contained in Eq.(4.2), at different levels

of approximation.
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4.2.1 Peach-Koehler approach

A more detailed procedure has to take into consideration the actual (position dependent)

interaction between the dislocation and the inhomogeneous elastic field of the island, before

the onset of plastic relaxation. A combination of FEM calculations and dislocation theory

provides a viable way.

The misfit reduction due to the presence of a dislocation can be viewed as the interaction

between the strain field in the island and the dislocation Burgers vector: such an interaction

depends, obviously, on the dislocation position. In details, the stress in the island σ̂ (x, y, z)

exerts a force (Peach-Koehler force) d~F = ~b · σ̂(x, y, z)×d~l on each infinitesimal segment of

the dislocation line (d~l), being~b the relative Burgers vector, moving the dislocation segment

to the position maximizing strain relaxation in the island. The position dependent energy

gain term can be modeled as the work due to place a dislocation segment from outside the

island into any position [119, 120].

Our results are referred to a 60◦ dislocation segment running along the x axis direction

([110]) and with ~b = aSiGe

2 [011]. The work performed by the Peach-Koehler force to place

that segment from the outer of the island in any position (y0, z0) reads:

Egain(y0, z0) =

[

by

∫ h(y0,z0)

z0

(

∫

l(y0,z)
σyydx)dz + bz

∫ h(y0,z0)

z0

(

∫

l(y0,z)
σyzdy)dz

]

(4.3)

where h (y0, z0) is the distance of the (y0, z0) position from the free surface along z, and

l (y0, z) is the dislocation line length along x, which depends on z. Finally, by, bz represent

the components of the Burgers vector in the y ([1̄10]) and in the z ([001]) directions,

respectively. We recall that the integral of the Peach-Koehler force starting from the surface

(energy E = 0) is path independent if the stress field is calculated at the equilibrium, so

that it is possible and convenient to calculate Egain along a straight vertical path, from the

surface to the most favorable position in the island (always along the interface with the

substrate).

Let us consider now the Ecost term, the analytical formulation is

Ecost = λ
G(1− ν cos2 β)b2

4π(1− ν)
ln

αRcutt−off

b
(4.4)

where β is the angle between dislocation line and Burgers vector, α is the parameter

which describes the energy of the dislocation, set equal to 2.7 as in Ref. [9], and b the

length of the Burgers vector. For finite system, the role of the free surfaces in reducing

the extension of the dislocation elastic field (see e.g. Fig. 3.1) is commonly enclosed in the

analytical model using a suitable choice of Rcut−off as a cut-off radius of the dislocation self

field. Rcut−off is a function of the dislocation position. In particular Rcut−off is defined as

the geometric average of the distances of the dislocation position from the base edge and

the free surface above, as calculated in the middle cross section of the island. The limits of

such approximation will be highlighted upon comparison with the full FEM results.

4.2.2 Comparison between different approaches

Figure 4.6 reports the three contributions Ecost, Egain and Etot, as calculated in the case

of a pure Ge barn (basis L=35 nm) by the proposed full FEM methodology (Section 3.1)

and by the Peach-Koehler approach (PKA) . Actually, Etot is shown in the third panel

of Fig. 4.6 after subtraction of the corresponding coherent energy Ecoh, so that positive
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(or negative) values indicate an overall energetic increase (or decrease) provided by the

presence of the dislocation.

The calculation of the individual energy terms in the full FEM approach is done as follows.

After the equilibrium condition is found, the FEM code provides the stress and strain fields,

so that the total elastic energy in a volume V can be computed by the well-known relation:

E =
1

2

∫

V

(σxxεxx + σyyεyy + σzzεzz + 2σxyεxy + 2σxzεxz + 2σyzεyz)dV (4.5)

By integrating over the whole system volume, one would include in E the (wrong) contri-

bution coming from the core region. We therefore integrate everywhere but for the small

cylinder built around the core (see Section 3.1). This yields the total elastic energy Etot.

Following the definition, Ecost is actually given by the elastic energy in the zero-misfit is-

land, when only the dislocation is present. So that, Egain can be directly computed by

subtraction.

The comparison of the Ecost terms shown in the first panel of Fig. 4.6 clearly reveals some

limitations of the PKA treatment, where the influence of free surfaces on the dislocation

field is described only by the introduction of a cut off radius R related to the island geometry.

An immediate consequence is that the PKA curve is symmetric, merely reflecting the

barn geometry, while the full FEM curve correctly shows a behavior determined by the

dependence of the elastic field on the relative orientation of the different surfaces and

the Burgers vector. Since at the two opposite island edges the facet normal is differently

oriented, a different Ecost must be expected. The effect of the relative-orientation depending

elastic field revealed by full FEM is particularly important in nanometric multifaceted

island, where the dislocation line turns to be always close to a free surfaces, and it is here

investigated in details for the first time.

In Fig. 4.7 the role played by the free surfaces (and the interface) is made clear by plotting

the difference between the hydrostatic stress for the equilibrium solution when only the

dislocation segment is present and the dislocation analytical bulk solution (reported in the

upper panel) [98]; i.e. following the definitions of Section 3.1, Fig. 4.7 shows σtot
xyz(u) −

σdislo
xyz (u) = σsurf

xyz (u)+σint
xyz(u). The middle panel displays the behavior obtained by placing

the dislocation in the minimum of the Etot curve and the lower one reports the data obtained

when the dislocation is in a symmetric position on the other island side. Notice that the

σsurf
xyz (u) + σint

xyz(u) actually reduces the dislocation field (upper panel) being opposite in

sign. Indeed the Ecost found in the PKA approach results higher with respect to the full

FEM one because of the too simple approximation used for the surface contribution that

corresponds to a simple geometric cut off of the dislocation field. The comparison between

the middle and the bottom panel highlights the dislocation position dependence of the

surface terms that gives rise to the asymmetry in the full FEM Ecost curve. From Fig. 4.7

we conclude also that no significant effect seems to be present due to the Ge/Si interface

at the bottom of the island (σint
xyz(u), see Section 3.1), mainly because of the very similar

values of the elastic constants of the two materials.

Let us now focus our attention on the Egain term, reported in the central panel of Fig.

4.6. Actually, the Peach-Koehler force is shown to yield a good qualitative description of

the interaction between the dislocation field and the epitaxial one. Indeed, the use of the

FEM-computed elastic field in the island before the onset of the plastic relaxation in the

PKA expressions guarantees a correct estimation of the energy reduction obtained when

a dislocation is introduced. Very importantly, the PKA and full FEM curves present the
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Figure 4.6: Comparison between full FEM, PKA results for a barn island with base

L= 35 nm. First panel reports the values of Ecost, middle panel of Egain and the

bottom one of Etot.
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Figure 4.7: Color maps of the hydrostatic stress in different cross sections of the

barn cut along the dislocation line (~l). In the upper panel it is shown the analytical

dislocation segment bulk solution σdislo
xyz (u) (cut following the barn shape), the defect

is located in the position corresponding to the Etot minimum. The central and the

lower panel describe only the dislocation-surface interaction (σsurf
xyz (u)+σint

xyz(u)): the

former refers to the same position of the upper panel, the latter for a symmetric

position on the other island side.
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minimum at the same position along the interface (0̃.3), so the two models predict the same

equilibrium dislocation position. It is important to notice that such position, maximum in

the energy reduction, actually corresponds to a strong release of the island edge compression

due to the expansive lobe of the dislocation field (see upper right panel in Fig. 4.1). From

the quantitative point of view, instead, the energy gain seems to be overestimated by the

PKA approach. Since the same behavior was found for Ecost (opposite in sign), the total

energy curve is expected to benefit from this compensation. Indeed, by looking at the

bottom panel of Fig. 4.1, one sees that full FEM and PK give very close results in the

central region. It is evident, instead, the failure of the PK-based approach in regions where

the dislocation is in the proximity of the island edge, closer to the optimal position. Notice

that the minimum of Etot (we recall that Ecoh was subtracted) for the full FEM calculation

corresponds to 0 eV. This is because the comparison reported in this Section was performed

exactly at the full FEM critical volume for dislocation introduction. The Next Section is

dedicated to a more detailed investigation of critical volumes, including a comparison to

Ge concentration-dependent experimental data.

4.2.3 Prediction of the critical size vs experiments

A useful and interesting application of the methods described in 3 is the calculation of

the critical island dimension for the onset of plastic relaxation. Such calculation has been

already published in the Peach-Koehler framework for SiGe islands [56]. Here we com-

pare the PKA results with the one obtained using the more accurate full FEM approach.

Critical volumes VC are defined as the smaller island dimensions where it exists at least

one dislocation position where Egain = −Ecost. Clearly, finding VC requires calculating

the two terms for different island sizes and for different dislocation positions along the

interface. If in the previous sections we simply considered pure Ge islands, here we wish

to carry out the calculations at realistic Ge compositions. We considered values ranging

between 20% and 70% as determined in Ref. [56] by using different growth temperatures.

In the FEM calculations, alloying can be tackled by considering a rescaled misfit stress

σm = −8.6xGe GPa where xGe is the Ge content and also linearly interpolated elastic con-

stants (CSiGe
ij (xGe) = xGeC

Ge
ij +(1−xGe)C

Si
ij ). Results, obtained by full FEM and PKA are

displayed in Fig. 4.8, along with the experimental data of Ref. [56]. With respect to that

work, here only the data where the concentration values were determined by independent

and more accurate X-rays measurements are shown. In the plot, the vertical axis represent

the barn critical island base, experimentally estimated by looking at the internal plateau

regions revealed by selective etching [56]. Let us first focus on the two models.

While the two theoretical curves all capture the essential physics (higher Ge concentrations

determine larger elastic-energy accumulation, and, therefore, smaller critical volumes), a

closer comparison reveals once again the different levels of approximation, full FEM yielding

a virtually exact description. The sizeable underestimation of the Egain term in the PKA

approach, as expected, yields too small critical sizes. Interestingly, despite the approxima-

tions discussed in the previous Section, critical islands dimensions predicted by the PKA

method do not deviate substantially from the full FEM results, particularly if one takes

into account the large experimental uncertainties on the actual Ge content. However, it is

well visible that the most accurate full FEM approach better recovers the data. Overall,

the agreement between the latter and experiments is very satisfactory and reinforces the

main conclusion of Ref.[56]: dislocation injection in nanometric island is not kinetically
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Figure 4.8: Critical island bases as calculated by the two different method

(fullFEM,PKA), and compared with the experimental data of Ref. [56]

limited all along the concentration (and, thus, the temperature) range, at variance to the

flat film case.

As a final investigation, we carried out a comparison between the thermodynamic critical

height in islands and in flat films. Using only the FEM approach, the critical height hc
determining dislocation injection in films have been determined for the same concentration

values previously considered for the barns, together with the pure Ge case. It may appear

of limited interest to investigate the very Ge-rich case, where flat films can be grown only

by freezing the surface atomistic diffusion (i.e. using a high H concentration in PECVD

growth). Still, in this case hc is very small, and the role of the surfaces is much larger, the one

of threading arms much smaller. In Fig. 4.9, hc is compared with the corresponding height

of barn islands at the critical volume. It is evident that, from the thermodynamic point

of view, higher structures can be reached before the onset of plastic relaxation in a three

dimensional growth with respect to the two-dimensional one, the effect being particularly

pronounced at low misfit values. However, at variance with islands, measured values for

critical films seem much higher than the thermodynamic predictions,[101, 14] highlighting

a key role of the kinetic barriers opposing to dislocation nucleation in films.



Figure 4.9: Critical thickness for flat films (dashed line), as compared to the barn

island height (solid line), both calculated by full FEM.
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5
Beyond plastic relaxation: Late

stage of cyclic growth.

This chapter is devoted to the understanding of late stage of cyclic growth. When the

onset of plastic relaxation is bypassed, islands volumes become larger and a cyclic growth

mechanism is observed [52]. The method used in Chapter 3 is computational demanding and

cannot be exploited to study multi dislocated island. A simple analytical was successfully

used to determine the critical volumes and the periodic spacing between dislocations (called

ring width in the next sections) observed during the cyclic growth. Finally to study the

feature of pattern formed by dislocations at the SiGe/Si interface it was exploited the

capabilities of dislocation dynamics, properly adapted to run simulation in nanostructures.

5.1 Circular dislocations in SiGe/Si(001) islands

Here we introduce a simple analtycal model that is able to predict correctly the spacing

between tree-rings structures measured by AFM . Except for the nucleation of the first

few dislocations, which are strongly influenced by the island shape, the model predicts

self-ordering of dislocations inside SiGe islands in a regularly spaced network. The model

presented here can be used as a non destructive tool, with respect to selective etching

techniques, to give estimates of the number of dislocations contained in SiGe islands, on

the basis of the experimental island volume, when the Ge content is known.

5.1.1 Tree-rings measurement

In order to analyze the composition and the periodicity of plastic events in multiply dis-

located islands with increasing amount of deposited Ge, a more straightforward method,

rather than X-ray diffraction and TEM, is to map the footprints of the islands in the Si sub-

strate, after selective etching of all the SiGe material [120, 40, 121]. Ad Hoc sample growth

was carried out by solid source MBE depositing of 15 ML Ge, at a substrate temperature of

either 620◦C or 740◦C. With these growth parameters both coherent and plastically relaxed

islands are observed on the surface [54, 122]. After etching selectively SiGe islands,Such

etc The surface morphology was then imaged by Atomic Force Microscopy (AFM), reveal-

ing stepped-ring structures left below plastically relaxed islands. Such observed structures

are produced during the island cyclic growth, as mentioned in Sec 1.6. As the increase of
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strain in the island proceeds with Ge deposition by accumulation of material at the top, a

progressively deeper trench in the Si substrate at the perimeter of the island base is carved.

After selective SiGe etching, this stage corresponds to a short steep profile in the AFM

scan of the Si substrate. As the critical conditions for one dislocation nucleation are met,

sudden lateral expansion of the island has been observed [52], providing a full coverage of

the trench bottom line. This stage corresponds to a small plateau in the etched samples.

Periodic repetition of these two stages gives rise to a clear stepped profile in the Si sub-

strate, which appears in form of concentric grooves in the AFM images [54]. Since it is well

known that AFM measurements may be affected by artifacts due to the finite size of the

probe [123, 124], the sample with islands grown at high temperature was also imaged by a

Carl Zeiss Orion PlusTM helium-ion microscope (HeIM).

A representative HeIM scan and an AFM image of the tree-ring structure below dis-

located islands in the sample grown at 740◦C are shown in Fig. 5.1 (a) and 5.1 1(b),

respectively. As described above, the footprints left on the surface consist of a central Si

plateau surrounded by a staircase of several nearly concentric rings. From the microscopy

images, we measured the distances between subsequent rings (ring width), starting from

the central plateau and moving towards the periphery of the islands along two orthogonal

directions. The first value of ring width corresponds to the lateral expansion of the island

base after the introduction of the first dislocation, so that we expect some variation in size

and in symmetry (off-centered ring [54, 125]) related to the different conditions occurring

at the very first plastic event (see below). Figures 5.1 (c) and 5.1 (d) display the aver-

age ring width measured over many islands for two different growth temperatures. The

AFM results are shown in black circles, while the values obtained by HeIM are shown in

red squares. The two independent measurement techniques (see Fig. 5.1 1(d)) yield fully

consistent results. It can be concluded that, within our growth conditions, the ring width

shows a slight decrease from the island center to the island borders, in the range of ∼20

to ∼10 nm for the sample grown at 620◦C and between ∼30 and ∼20 nm for the sample

grown at 740◦C, converging to an almost constant value, 15 and 22 nm, respectively, for

the two samples. The average island Ge composition determined using AFM is X ∼0.36

and X ∼0.48 at 740 ◦C and 620◦C, respectively.

5.1.2 Modeling of circular dislocations

In order to interpret the experimental findings of the previous section , we exploited an

analytical approach to the study of multiply dislocated islands. This simple approach fully

captures the essential features of the system, providing a fast tool to calculate, with a

thermodynamic criterium, the critical island size at different stage of cyclic growth. Closed

circular dislocations were approximated by the sum of 60◦ type misfit segments in [110]

and in the [1̄10] direction (for high growth temperatures, as used here, commonly observed

dislocations are of 60◦ character [52, 126]). The dislocation is supposed to nucleate right at

the perimeter of the growing island. While the real dislocation microstructure (60◦ misfit

segments along the [110] and the [ ¯110] direction and their threading arms which together

form a regular pattern of concentric circles) is more complex, our geometrical simplification

seems to reproduce the main features of the dislocation network analyzed in Ref [55].

By considering a Si1−XGeX island with an aspect ratio ρ, estimated as in Ref [40], an

analytical expression for the misfit strain energy stored in the island and in the substrate

can be formulated in a similar way as for the case of a continuous film [112, 127]:
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Figure 5.1: He-ion image of the Si surface obtained after removal of a dislocated

SiGe island grown at 740◦C showing a characteristic ring structure. (b) 3D view of an

AFM image of a similar ring structure (the depth of the trench around the tree-ring

is about 16 nm). (c), (d) Statistical analysis of the ring width as a function of number

of rings obtained from AFM and He-ion microscopy images of several islands growth

at 620◦C (c) and 740◦C (d). The average Ge content was estimated to be X=0.36 at

T=740◦C and X=0.48 at T=620◦C, using AFM
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Table 5.1: Model parameters for three different island shapes and aspect ratio ρ.

The quantities a(ρ) and b(ρ) determine the relaxation function F(ρ,X) in Eq. 5.2,

while the coefficient B(ρ) is defined as the ratio V/r3, where V and r are the island

volume and base radius, respectively.

ρ a(ρ) b(ρ) B(ρ)

Dome 0.2 0.505 0.0388 0.5229

Barn 0.3 0.317 0.0297 0.8362

W0 =
G

1− ν
F (ρ,X)(ε2xx + 2νεxxεyy + ε2yy)V (5.1)

where G is the shear modulus, ν is the Poisson ratio, εxx, εyy are the in-plane strain

tensor components, V is the island volume, and F (ρ,X) is the reduction factor of the

elastic energy stored in the three-dimensional (3D) island and substrate, as compared to

the flat film case. Here F (r,X) was numerically evaluated for different island shapes and

compositions by Finite Element Method (FEM). In particular, F (ρ,X) is given by the ra-

tio between the elastic energy stored in island and substrate divided by the island volume

and the elastic energy density in a biaxially strained two-dimensional layer. F (ρ,X) de-

creases significantly when ρ increases. It also depends on the Ge content X, because we

linearly interpolate Si and Ge isotropic elastic properties to compute the elastic constants

of Si1−XGeX alloys:

F (ρ,X) = a(ρ) + b(ρ) X. (5.2)

The values of a(ρ) and b(ρ) evaluated for islands with different shape and aspect ratio,

are given in Tab. 5.1. Notice that in this analytical model islands are approximated by,as

show in Fig. 5.2, a cylinder with equal base area and volume

The realistic geometries are used to define the relaxation function F (ρ,X) and the ratio

V/r3, where V and r are the island volume and base radius, respectively. The decrease

in energy (Egain) due to the misfit strain reduction provided by a new n-th dislocation is

E
(n)
gain = Wn−1 −Wn, where

Wn =
G

1− ν
F (ρ,X)

(

ε2yy(n) + 2νεxx(n)εyy(n) + ε2yy(n)
)

V (5.3)

is the elastic energy stored in an island when n dislocations are present. We considered

the x and y axis parallel to the [110] and the [-110] directions, respectively, and εxx(n) =

εyy(n) = (f − εdisl(n)) are the in-plane strain components corresponding to the lattice

misfit f , as reduced by the presence of n circular dislocations by εdisl(n). Due to the

circular shape of the dislocations in our simplified model, each dislocation segment can be

interpreted as relieving beff/2 on the average, along the two orthogonal strain components,

multiplied by an effective linear density of dislocations
(

∑n
i=1

λi

πR2

)

, where λi = 2πRi is

the length of each dislocation nucleated at a different island base radius Ri. This simply

means that, on the average, half dislocation length is parallel to the [110] direction and

reduce the εyy strain tensor component, while half dislocation length is parallel to the [1̄10]

direction and relax the εxx component.

R is the actual island base radius, beff = b cos(π/3) is the effective Burgers vector

for a 60◦ misfit dislocation with Burgers vector b = aSiGe

√
2/2 and λi is the length of

each dislocation. Thus, the island misfit is reduced by εdisl(n) =
(

beff
2

∑n
i=1 λi/(π R2)

)

in
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Figure 5.2: Schematic representation of a barn-like island (solid line), which is

approximated in the analytical model by a cylinder (dashed line) of equal base size

L = 2r and volume. The cylinder height is chosen as the cut off radius R.

presence of n circular dislocations. A second contribution to the total energy is the cost

related to the lattice distortion provided by the dislocation itself. E
(n)
self can be analytically

calculated as for the case of a flat film [9], by considering again that each segment of the

circular loop is decomposed into two components, along the x and the y directions. In this

case

E
(n)
self = λiG

(1− ν cos2 β)b2

4π(1− ν)
ln

αRcut−off

b
(5.4)

where β is the constant angle between each dislocation component and b, α is the

parameter taking into account the atomistic core energy (usually set to 2.722). Rcut−off

is the cut-off radius is the cut-off radius of the dislocation strain field, i.e. the average

distance of the dislocation line from the free surface, taken as the height of a cylinder equal

in volume and in base area to the island [112],as shown in Fig. 5.2 (d):

Rcut−off = V/(π ·R2) (5.5)

But for the first dislocation, an additional increase in energy due to dislocation formation

is also given by the interaction energy between the n-th dislocation and the other (n − 1)

dislocations already present in the island, here taken as the sum of the well established

pair-interaction energies between straight dislocation segments located near a free surface

[128]:

E
(n)
int =

n−1
∑

j=1

(λn + λj)

2
EI(dn,j) (5.6)

where

EI(dij) =
G b2sin2β sin2ϕ

4π(1− ν)

(

ln(4a2 + 1)− 4a2(12a2 + 1)

(4a2 + 1)2

)

+

+
G b2sin2β cos2ϕ

4π(1− ν)

(

ln(4a2 + 1) +
4a2(4a2 + 3)

(4a2 + 1)2

)

+

+
G b2 cos2β

4π(1− ν)
ln(4a2 + 1) (5.7)

Here dij is the separation distance between dislocations, a =
Rcut−off

dij
, and j is the angle

between the glide plane of either the two components of the misfit segment and the vertical
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[001] direction. Therefore, by summing the last two contribution into one “energy cost”

term,

E
(n)
cost = E

(n)
self + E

(n)
int (5.8)

the estimation of the critical island dimension for the nucleation of the n-th circular

dislocation is obtained by numerically scanning the island base radius R until E
(n)
cost is equal

to E
(n)
gain. It should be noted that the change in the average Ge composition X of the island

affects both the misfit f and the elastic constants entering the two terms of Eq. 5.8. Since

we assume that all the circular dislocations nucleate exactly at the island edge, the ring

spacing (and the dislocation spacing) as a function of the number of dislocations in the

island is obtained directly by subtracting subsequent critical base radii. In order to clarify

the role of composition and aspect ratio, an analytical form of the ring width without the

repulsive contribution (essentially a shift to higher values, see the following Sections) can

be also obtained. In this case we first rewrite the gain components as:

εdisl(n)− εdisl(n− 1) =
beff
R

(

n
∑

i=1

Ri

R
−

n−1
∑

i=1

Ri

R

)

=

=
beff
Rn

(

Rn

Rn
+

n−1
∑

i=1

Ri

Rn
−

n−1
∑

i=1

Ri

Rn

)

=
beff
Rn

(5.9)

and

ε2disl(n)− ε2disl(n− 1) =
b2eff
R2







(

n−1
∑

i=1

Ri

R

)2

−
(

n
∑

i=1

Ri

R

)2






=

=
b2eff
R2

n







(

n
∑

i=1

Ri

Rn
− 1

)2

−
(

n
∑

i=1

Ri

Rn

)2






=
b2eff
R2

n

{

1− 2
n
∑

i=1

Ri

Rn

}

(5.10)

By using a simplified functional expression for the island volume V = BR3 ( where B is

given in Tab. 5.1) for islands with different aspect ratios, 0.2 (domes), 0.3 (barns)), we can

rewrite equations (5.3) and (5.4) as follows:

Egain(n) = 2G
1 + ν

1− ν
F (ρ,X)B

(

2f beffR
2
n + b2effRn

{

1− 2
n
∑

i=1

Ri

Rn

})

(5.11)

Ecost(n) = 2πRnG
(1− ν cos2 β)b2

4π(1− ν)
ln

(

αB

bπ
Rn

)

(5.12)

The critical condition for the nucleation of a new dislocation is then Egain(n) = Ecost(n)

and the critical island radius for n-th dislocation formation is:

Rn =
beff
f

n
∑

i=1

Ri

Rn
− beff

2f
+

(1− ν cos2 β)

8(1 + ν)F (ρ,X)Bfbeff
b2 ln

(

αB

bπ
Rn

)

(5.13)

Therefore, the ring width reads :

wn−1 = Rn −Rn−1 =
beff
f

(

n
∑

i=1

Ri

Rn
−

n−1
∑

i=1

Ri

Rn−1

)

+

+
(1− ν cos2 β)

8(1 + ν)F (ρ,X)Bfbeff
b2 ln

(

Rn

Rn−1

)

(5.14)
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For sufficiently large n values, as we verified numerically,

(

n
∑

i=1

Ri

Rn
−

n−1
∑

i=1

Ri

Rn−1

)

→ 1

2

and Rn/Rn−1 → 1, so that the ring width converges to beff/(2f)and all information

concerning the island is lost. Such a result is not unexpected. In fact, in the continuous

film case, the equilibrium density fully balancing the misfit along the [110] or the [-110]

direction is f/beff , which corresponds to a dislocation spacing of beff/f . In our model, each

dislocation segment relieves beff/2 along the two orthogonal directions [110] and [-110], so

that the dislocation distance in the limit of very large islands corresponds to (beff/2)/f .

5.1.3 Model prediction vs. experiment

Following the previous analysis of Ref. [56], we shall assume a barn shape for the dislocated

islands, thus fixing the aspect ratio to ρ=0.3, in agreement with the average value indicated

by AFM measurements [40]. In particular, we report in Fig. 3(a) how the critical condition,

Eq. 5.8 is periodically satisfied by increasing the dislocation number and island base radius

for a barn with X=0.36 (black arrows), corresponding to the average value experimentally

determined for samples grown at T=740◦C.

From the left to the right in Fig. 5.3 (a), the solid curves (blue online) give the Egain

terms calculated increasing the number of dislocations from 1 to 5 as a function of the island

radius. Similarly, the dashed curves (red online) give the Ecost terms obtained varying the

dislocation number from 2 to 5 (from left to right), while the dotted line (green online)

represents the Eself term. This curve increases monotonically because Eself , (see Eq. (4)),

depends just on the last dislocation length λn and on the cut-off radius Rcut−off , which

in our model are both directly proportional to the island radius R. The first dislocation is

nucleated when E
(1)
self (dotted line) is equal to E

(1)
gain (first solid line left), while all the others

are nucleated when E
(n)
cost (dashed lines), including both the self energy and the repulsive

term, crosses E
(n)
gain (solid lines). We note that the radial spacing between dislocations

decreases to a nearly constant value, and that the repulsive term contributes significantly

to the spacing. These issues are better seen in Fig.5.3 (b), where we report the ring

width between two plastic events vs the increasing number of rings for the same system,

calculated with (solid line with boxes) and without (dashed line with circles) the interaction

term. We see that the solid curve correctly reproduces the experimental trend observed

at 740◦C, as reported in Fig. 5.1(d), and converges to the ring width value of 22 nm,

which is the experimental indication. The dashed curve obtained neglecting the repulsive

term is shifted by a nearly constant value far below this experimental data, outside the

relative error bar (grey band in Fig. 5.3 (b)). The results in Fig. 5.3 show that the

ring width initially decreases with the dislocation number, but after the nucleation of the

very first dislocations the spacing between two subsequent circular dislocations becomes

almost constant. The shape and the size of the island clearly affect the early plastic events,

dislocations interact with free surfaces and with each other in small volumes, so the spacing

between loops is larger than the value provided by the theory for continuous film case [9].

Increasing the island radius the size effect is lost and the plastic relaxation events occur

periodically. With or without the dislocation interaction, the calculation gives qualitatively

the same behavior, but quantitatively different results, as highlighted in Fig. 5.3(b). Hence
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Figure 5.3: Results for barn-shaped islands (ρ=0.3), and Ge concentration X=0.36,

corresponding to the experimental data at T=740ÂoC. (a) Critical radii (arrows) for

dislocations nucleation. The first critical radius is determined by the intersection of

Egain (solid, blue curve) and Eself (dotted, green curve), which is the only energy-cost

term. Subsequent critical radii are also influenced by dislocation-dislocation interac-

tion (Eint). Plastic relaxation therefore occurs at the intersection between Egain and

the total energy cost Ecost (dashed, red curve), i.e. the sum of Eself and Eint. (b) Dis-

tance between dislocations (ring width) versus the number of rings, with (full boxes,

blue) and without (full circles, red) including the Eint term. The ring width satu-

ration value at T=740◦C is reported using a dashed line within a shaded rectangle

representing error bars
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Figure 5.4: Rings width at different Ge content for a barn island (ρ=0.3). Experi-

mental results at both 740◦C and 620◦C are nicely predicted, considering uncertainties

in both concentration estimates and ring widths (see text)

the dislocation interaction cannot be neglected in the thermodynamic balance if we want

an accurate prediction of the critical island radii and dislocation spacing.

As one should expect, increasing the Ge content inside the island the elastic energy stored in

the system is also increased and the dislocation spacing becomes smaller with the increasing

misfit. In fact, by tuning the island Ge content X from 0.3 to 0.5, as reported in Fig.5.4

, a downward shift and flattening of the ring width curve is obtained, in agreement with

the experimental trend observed by decreasing the growth temperature, outlined by Fig.

5.1(c) and 5.1(d). In particular, we observe that at any Ge concentration the ring width

quickly converges to a nearly constant value, which is lower for higher island Ge content.

Together with the theoretical calculations at different island Ge concentrations we plotted

in Fig. 5.4 the saturation ring width values (dashed lines) for the two growth temperature

examined in this work. Comparing the experimental ring width values with the theoretical

curves in Fig. 5.4, we see a good agreement between the ring width measured at 740◦ and

620◦ and the curve obtained for X=0.36 and X=0.48, respectively. The predicted value for

X=0.48 is slightly larger than the experimental one, but still in the error bar range shown

in Fig. (c).

Notice that the variation in the ring width saturation values with the island Ge content

becomes larger when the Ge composition is low, while at high Ge content we observed small

changes between the different predicted values. For instance, changing the island composi-

tion from X=0.3 to X=0.4 leads to a decrease in the converged ring width value of about

7 nm, while the ring width variation obtained by changing X between 0.4 and 0.5 is only 4

nm. We can conclude, by looking at the critical radius differences, that the model is more

sensitive in describing diluted SiGe islands. Our agreement between the experiments and

the model predictions makes the latter of direct use for estimating the number of disloca-

tions in the islands without performing selective etching, whenever the average composition

is known. In Fig. 5.5, the critical island volumes for the introduction of the n-th disloca-

tion is plotted as a function of the dislocation number for different concentration values.
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Figure 5.5: Critical volume estimation for island of different Ge content (X=0.3,

X=0.4, X=0.5)

At variance with the ring width, the predicted critical volumes significantly increases with

the dislocation number. Thus, the critical volume for plastic relaxation events is a sensi-

tive parameter that can be exploited for estimation of the dislocation number contained in

islands. Moreover, the predicted critical volumes can be directly compared with barn vol-

umes measured by AFM allowing dislocation number estimation with no need to perform

selective etching, which is a destructive technique.

5.2 Dislocation Dynamics in 3D nanostructures

Experimental observation has revealed the formation of dislocation patterns at the interface

between island and substrate during relaxation. While the method developed and described

in sec. 4.2 allows for the analysis of static configuration of 3D misfit dislocations, to

determine the pattern formation at the Si1−xGex interface a dislocation dynamics (DD)

code is needed. DD is necessary to take into account interactions and reactions that occur

during dislocation propagation. We chose a DD code originally developed at the LEM
1 laboratory, called microMegas (mM). The code is a powerful tool to study the final

microstructure formed by dislocation motion in bulk material, in the following we described

howwe adapt microMegas to tackle nanostructures.

5.2.1 Brief overview of microMegas

microMegas is an open source DD code to study plastic behavior of crystalline materials

using the classical theory of dislocation. The peculiarity of the code is that both time and

space are discretized. The time is discretized as in usual molecular dynamics simulation.

The space is discretized into a lattice that is homothetical with respect to the lattice of the

crystalline material (hcp,fcc,bcc,..).

1Laboratoire d’Etudes des Microstructures, CNRS-ONERA, 92322 Chatillon cedex,France
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Figure 5.6: Example of microMegas output: dislocation microstructure in bulk

system.

By scaling the simulation lattice it is possible to describe systems in the nanometer-

micrometer range. For a given distribution of dislocations the code simulates the prop-

agation and the reaction of the line defects due only to the glide phenomenon, in Fig 5.6

an example of a typical output of simulation is shown. In this section we describe the main

feature of the code, focusing our attention on fcc lattice, used to run simulation with Silicon

and Germanium.

5.2.2 Dislocation line discretization

Continuum dislocation lines are described as the sum of elementary straight segments (see

5.7). There are 8 elementary segments (two screw,two edge and four ±60◦ character in fcc)

for each slip system (three slip systems per glide planes) of the chosen crystalline structure,

as it is shown in Fig.5.7 (a). The lenght of elementary segments depends on the dimension

of the parameter of the simulation lattice. In the code, when the elementary cell has exactly

the size of the real lattice a the lenght of the elementary screw dislocation is exactly the

modulus of the Burgers vector. Fig.5.7 (b) highlights how the combination of elementary

segments provides a description of a continuum dislocation line (orange line). Scaling down

the elementary cell of the simulation lattice the discrete description of the dislocation line

converges to the continuum one.

Force and displacement

DD simulation as molecular dynamics simulation are driven by the rules of classical me-

chanics. To compute the displacement of each dislocation segment we need to know the

effective force τeff acting on it. As in the classical dislocation theory [98], the forces acting

on a straight segment i is given by the sum of two contribution: Peach and Koehler (PK)

force FPK and a local line tension correction τL. the former, PK force, is the force acting
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i

Figure 5.7: Elementary dislocation segments used to discretize a real dislocation

line (a). There are 8 elementary segments for each glide plane of the chosen struc-

ture (fcc,bcp, hcp..). In panel (b) sketch of how the sum of elementary segments

approximates a continuum dislocation line.

on a dislocation segment due to external stress field. The source of the external stress field

is of two characters. The first one is σapp, the stress applied to the system. In our case,

it is the stress field computed by FEM inside the analyzed nanostructure. The second one

σint is the stress acting on segment i due to the presence of the other dislocations in the

crystals. In particular in microMegas it is calculated with the formulation given in ref.

[129]. Once we defined the two quantities the expression of PK force becomes:

FPK = (σapp + σint) ·~b×~l (5.15)

where ~b and ~l are respectively the Burgers vector and the dislocation line direction of

straight segment i. The vector FPK usually does not necessary belong to the glide plane

of the segment i. In order to compute the component of force (FPK
eff ) really effective on

dislocation displacement the FPK has to be projected on the segment glide plane. The

latter term, the local line tension correction, comes from the fact that during discretization

process curved dislocations line sections are locally replaced by straight segments. Hence,

an additional force on straight segments must be added in the simulations to account for

such decrease of the elastic energy imposed by discretization process. This correction is

made thank to the usual concept of line tension[98]. In the result shown in 5.2.5 we used

the expression of line tension derived by Foreman [130]. The total effective force acting on

the straight segment i in the glide plane is:

τeff = FPK
eff + τL (5.16)

Once computed τeff it is possible to calculate the dislocation velocity using a simple

mobility law:

v =
τeffb

B
(5.17)

where B is the viscosity coefficient. Expression 5.17 is a simple velocity equation com-

monly used in DD simulations to account for the dislocation-phonon interactions that take
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place during dislocation glide and at the origin of dissipation phenomena. Neglecting iner-

tial effects (dislocation mass is small and the line energy very large), the updated position

associated to segment i is calculated with the explicit Euler forward method:

xi(t) = xi(t−∆t) + v∆t (5.18)

where xi(t) is the position at the time t and ∆t is the time step chosen to run the

simulation. No lattice friction (resolved shear stress needed to initiate the motion of dis-

location) was considered in the present simulation, because in fcc materials, and in SiGe

system when the applied stress is larger than 1 GPa, its contribution is negligible. In the

following simulations the time step was set to about 1 × 10−14 s. The glide motion of

dislocations, because of the large applied stress level in the island, is very quick, so small

time step is needed to observe the propagation and interactions of gliding dislocations.

Interactions between dislocations

An important part of microMegas is devoted to search any possible reaction between a

gliding segment and other segments or obstacles. In fact if during its motion a segment

encounter other segments or obstacles, the displacement v∆t predicted by Eq. 5.18 is

reduced to the collusion distance. Special criteria called local rules are applied in order to

account for the possible reaction between the line defects (formation of junctions, collinear

annihilation, self annihilation, Hirth lock).

Cross-slip

Cross-slip is a mechanism who allowing screw dislocations to change glide plane. In fact to

cross-slip dislocation line must belong both the primary glide plane (the glide plane in which

dislocation is moving) and the called cross-slip plane (the plane in which dislocation will

move after the cross-slip event); only screw segments have this properties. This mechanism

is usually driven by dislocation core properties, not by elasticity, and it is modeled in

microMegas using a stochastic rule [131]. As explained in more details in section 5.2.4 in

case of SiGe islands because of high stress, cross-slip is mostly mechanically activated.

5.2.3 How to adjust mM to tackle heteroepitaxial nanostructures

mM is a robust tool to study evolution of plasticity in bulk system, as listed in previous

sections, it could manage all the physical interactions occurring to dislocations during their

motion. The heteroepitaxial nanostructures treated in this work (thin film and 3D islands)

are objects with several free surfaces, threading arms cannot be neglected in studying dislo-

cations propagation. To adapt the code to face our problem, we addressed the possibility of

describing the motion of threading arms (dislocations terminating on a free surface). The

problem of calculating elastic field of dislocation touching free surfaces, and the force acting

on it, is out of hand using the classical elasticity theory. To reach this goal we introduced

a physical approximation firstly described in Ref. [98] and then applied in Ref. [132].

Two terms concur to determine dislocation-surface interaction. The first contribution

is arising from image construction and try to turn the segment normal to the surface.

The second one is, as in bulk system, the tendency of a dislocation to rotate into screw

direction. Taking into account both term, the force acting on segment touching a free

surface ( sketched in Fig. 5.8 ) is:
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Figure 5.8: Projection on glide plane of dislocation segment (red line) touching

free surface (black horizontal line). Two force terms act on a segment touching the

surface. The first one, arising from images force and depending on θ, tries to rotate

the dislocation to be normal to the surface, The second one, depending on β, tries to

rotate the segment to be parallel to the Burgers vector.

τ fs =
1

λ

µb2

4π(1− ν)
[n̂1|(1− ν cos2 β) tan θ|+ n̂2|(2ν cosβ sinβ)| (5.19)

where, as described above, the first term in the parentheses acts to rotate the line so

that it is normal to the surface (in the glide plane), while the second term acts to align the

dislocation with the Burgers vector. Here λ is the distance from the point at which the force

is applied and the point at which the line intersects the surface (the solution of elastic field is

diverging exactly at the intersections between dislocation segment an the surface), and it is

a parameter to be tuned in the simulation. We run simulation to set λ in order to reproduce

the critical thickness of flat films as calculated in Ref [9]. In the expression defining th force

acting on a straight segment touching the surface the line tension correction is replaced by

Eq. 5.19.

5.2.4 Cross-slip criterium at high stress

Cross slip as described in Sec. 5.2.2 is a thermally activated process. In semiconductor as Si

and Ge, the Peierls stress (stress needed to move dislocations at 0 K) is about 1 GPa [133].

When the applied stress σapp is larger than the Peierls stress some process as cross-slip can

be considered athermal [134], depending only on the effective stress acting on dislocations.

In areas close to the interface and the corners of the SiGe islands the stress field exceeds the

Peierls stress. To take into account this effect in the simulation, we introduce a local rule

for cross slip event: if the effective stress is larger than 1GPa and the effective stress in the

cross-slip plane τCS
eff is larger than the effective stress τeff in the glide plane, cross slip can

take place (mechanical activation). In order to avoid ineffective cross slip event (segments

moving back and forth between cross slip plane and glide plane without any real effect on

dislocations microstructure), we added a critical stress criterium depending on the lenght

of segment, as described in Ref. [130]:
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τc =
µb

2π
log

(

L

b

)

(5.20)

where L is the lenght of the dislocation screw segment involved in the cross slip event.

Summarizing the rule for having mechanical activated cross slip is:











σapp > 1GPa

τCS
eff > τeff
τCS
eff > τc

(5.21)

5.2.5 Results

The ad-hoc modifications introduced on the mM simulation code allow for handling the

motion of threading dislocations and for studying cross-slip event at high stress (> 1 GPa)

in nanostructure. Hence the code is suitable to study the time evolution and interaction

of dislocations. Still we have to define where nucleation events occur in nano islands. In

fact DD code can study dislocation propagation, starting from given dislocations sources.

FEM analysis can be exploited (once again) to identify the nucleation sites, computing the

resolved shear stress (RSS) in the system.

Island shape and elastic properties

We modeled the onset of plastic relaxation (dislocation nucleation) in barn shaped islands.

After the first plastic event, cyclic growth is observed, island changes from barn (ρ=0.3)

to superdome (ρ=0.25) shape. To address the behavior of dislocations beyond the plastic

relaxation onset we run simulations using the Superdome geometry 5.9. Superdome islands

(shown in Fig. 5.9) have the same set of exposed facets than domes. The different extension

of facets causes the difference in aspect ratio. Chosen the Reuss average isotropic elastic

constants [98] for Si and Ge (they were used both in DD code and in FEM calculations

to be consistent) we decided to study (as described in the following sections), island with

Ge content of 40 %, to fit the condition of experimental TEM observation (islands grown

at about 650◦ C). In DD simulation cell, only superdome is reproduced, because only the

determination of the applied stress inside the island is needed to describe the dynamic of

dislocations. The substrate influence is considered in FEM calculations to determine the

elastic field in the nanostructure, then the stress field solution determined in the island

with finite element calculation is applied to the DD simulation. In the latter simulations

the SiGe/Si(001) interface is modeled as a barrier (dislocations can not cross it) at which,

in our case, dislocations can deposit. The segments deposited at the interface are 60◦ misfit

segment.

Nucleation sites analysis

Nucleation sites are important to determine the distribution of dislocation sources in the

system. Different source distributions generate different patterns, in particular when small

volumes are considered. For instance in infinite flat films, dislocation multiplication is

observed. New sources are generated by self interaction of running threading arms, so the

final dislocation microstructure is not only related to the initial source distribution. On

the contrary in small volumes threading arms are shorter and the dislocation mean free
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Figure 5.9: Sketch of the Superdome island (ρ=0.25) geometry used in the simula-

tion.

Table 5.2: Slip system used to compute resolved shear stress and to run DD simu-

lations in SiGe islands.

~b Glide plane

a/2[011] (11̄1)

a/2[011] (1̄1̄1)

a/2[01̄1] (1̄11)

a/2[01̄1] (111)

path is smaller. Then, interactions between line defects are less probable. A useful tool for

determining sites of homogeneous nucleation is the RSS analysis on a given slip system. In

diamond lattice, there are twelve activated slip systems (see App. B). In islands, the four

slip systems with ~b in the (001) interface are not expected to be active, because they do not

relax heteroepitaxial stress. The eight slip systems with Burgers vector out of the interface

plane are symmetric by pairs with respect to the generated elastic field. For instance, using

as a reference Fig. 5.10 (a), the slip system with ~b = a/2[011] and glide plane (11̄1) is

equivalent to the slip system with the same glide plane but with ~b = a/2[1̄01]. This rule

of symmetry allows us for reducing at four the number of slip systems to be used in DD

simulations (see Tab. 5.2).

Once determined the stress field of Si0.6Ge0.4 Superdome island using FEM, as depicted

in sec. 2, the RSS associated to each of the four chosen slip systems can be calculated. As

case study we started analyzing the RSS of the slip system reported in the first row of Tab.

5.2 and in panel (a) of Fig. 5.10. In panel (b) the RSS map is plotted on a cross-section

parallel to the interface. Hence the upper right corner of the island shows the maximum

values (dark red color). High value of RSS means, not only high effective applied stress but

also high probability of homogeneous dislocation nucleation [98]. The upper right corner

of the superdome is the most favorable site for dislocation loop nucleation of slip system

drawn in Fig 5.10.

In addition, the RSS analysis allows for addressing the probability of observing mechan-

ically activated cross slip. Fig. 5.11 shows the previously analyzed slip system (red plane)

and its cross slip system (blue plane). Notice that both have the same Burgers vector. Let

us call RSSgp the resolved shear stress for the primary system (red) and RSScs the resolved
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Figure 5.10: (a) Slip system with Burgers vector ~b = a/2[011] and glide plane (11̄1)

and its correspondent RSS (b). Due to the stress field of the island (computed by FEM)

the resolved shear stress has maximum in the upper left corner of the superdome island

(green elipse). This corner can act as site of homogeneous nucleation of dislocations.

shear stress for the cross slip one (blue). RSSgp and RSScs by itself give the effective ap-

plied force acting on line defects belonging to the red and blue plane respectively. The

difference between them (RSSgp-RSScs) depicts the domain where mechanical activated

cross slip events are expected to take place. In region where RSSgp is larger than RSScs,

dislocation segment in the primary glide plane in Fig. 5.11 (b) can evolve from top to bot-

tom following, for instance, the red dashed line. When the segment approaches the border

where the color map changes from red to blue region, RSScs is larger than RSSgp. The

propagation of dislocation segment is now favored in the cross slip plane. If the dislocation

has screw character and fits all the requirement of Eq. 5.21 cross slip event ideally takes

place if the lenght and curvature of threading dislocation is favorable. This last points are

dependent on dislocation dynamics and must be investigated with DD simulations.

Dynamics of a single dislocation in SiGe islands

We tested the evolution of a dislocation loop belonging to the slip system analyzed in the

previous section (sketched in Fig. 5.10). We chose a loop with a critical initial perimeter

of total lenght of about 10 nm. The critical resolved shear stress to expand such loop is

about 3.5 Gpa (stress needed to increase the diameter of the loop). The evolution of the

dislocation loop is tested moving the starting position in the islands. The base of the island

is 140 nm (just overcritical for Ge content of 40 %) and FEM stress field of the analyzed is

used as source of applied stress. The result of the test is summarized in Fig. 5.12.

Panel (a) and (b) show the top view of a superdome island. In particular panel (b)

highlights the behavior of the test loop in the island (moving the starting point of the loop,

it should evolve running parallel to the black dashed line). In light blue region the tested

seed loop does not evolve, the resolved shear stress in this region is not large enough to

expand the loop so that the loop shrinks, annihilating itself. In the green area, even if the

resolved shear stress has the maximum values, the seed loop is in this area systematically

annihilated due to the strong dislocation-surface interaction. When the loop is placed close
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Figure 5.11: (a) Dislocation Primary glide system (red) and cross slip system (blue).

(b) Probability to observe mechanically activated cross slip event in the system. When

the difference between the resolved shear stress in the primary glide plane (RSSgp)

and the resolved shear stress in the cross slip plane (RSScs) in the cross slip plane is

smaller than zero, cross slip event could be observed.

Figure 5.12: Map of propagation of a seed loop (size 10 nm) in a superdome island

with base equal to 140 nm an Ge content of 40 %. (a) slip system of the tested loops.

(b) Behavior of the dislocation loop for the four different slip system when placed in

different initial position of the island.
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to the island bottom edges, surface effect is still very strong due to the small dislocation-

surface distance, and the dislocation loop is attracted to the surface without depositing

misfit segment.

In the red area, dislocation seed loops are found to expand and to propagate in the

island system, depositing a misfit segment parallel to the black dashed line. Placing the

test loop in the red area its propagation is highlighted in Fig. 5.13 from panel (a) to panel

(f). The dislocation starts to expand in the island, panel (a), touching the free surfaces

(b). Threading arms are created and a 60◦ misfit segment is deposited at the bottom

interface (001 oriented). Threading arms evolve following the contact surface force. In

fact, comparing panel (c) and (d) the direction of the segment touching the surface changes

when the superdome facet orientation change. In panel (f) the final equilibrium position

is depicted: the misfit segment is deposited and the two threading arms point out from

superdome facets. In such simulations no cross-slip events are detected: even if the left

threading arm in panel (e) is oriented in the screw direction and the stress field in that

region is favorable to cross slip event activation. Detailed analysis of the DD simulation

results shows that cross-slip is not possible in the present case since, the lenght of threading

segment is too short and con not be curved in the cross-slip plane. Finally we can notice how

the final shape and position of a single dislocation, predicted by our dislocation dynamics

simulation, are in agrrement with the results of Sec. 4.2. Figure 5.14 (a) shows the top

view of the final result of dynamics depicted in 5.13 (e), while figure 5.14 (b) shows the 60
◦ dislocation equilibrium position calculated using the thermodynamic criterion. The basis

of the superdome island in panel (b) was set equal to 140 nm, as in DD simulations. By

comparing Fig. 5.14 (a) with Fig. 5.14 (b) it is clear how the two different approaches lead

to the same final equilbrium position. In particular we can highlight how the assumption

made in Sec. 4.2 (to calculate the onset of plastic relaxation introducing a 60◦ straight

dislocation segment in the island) was correct. In fact, the shape of the dislocations in

panel (a) and (b) are similar, both of them show a long 60◦ straight segment deposited at

the SiGe/si interface.

First stage of cyclic growth

The analysis performed in the two previous sections can be extended to the four active

slip system. The result is shown in Fig. 5.15. By calculating the RSS and testing the

propagation of different seed loops, we were able to define two active corners in the island

(highlighted by different color in figure 5.15). Placing four loops (one for each active glide

plane) in the two different active corner, we studied the general solution when plastic

relaxation is expected to appear on several slip system.

We considered an island 160 nm large (larger island is needed to carry four dislocations)

and Ge content of 40%. The steps to reach the final dislocation microstructure are described

in the following. As illustrated in Fig. 5.16. The four loops expand, touch free surfaces

and interact with each other,(panel (a)-(c)). Misfit segments are deposited and the final

dislocation configuration is formed. Notice that, during their propagation dislocations are

found in simulations to strongly interact, but no formation of junctions is observed. This,

once again, is due to the fact that threading segments are too short, and junctions can not

zip.

The final dislocation pattern provided by DD simulations looks like a square, with edges

in 〈110〉 directions. The lenght of misfit segments are still predominant with respect to
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Figure 5.13: Evolution of a dislocation loop placed in the active corner of the island.

the loop starts to expand (a), touching the free surfaces (b) threading arms are created

and misfit segment initiate to be deposited. Threading arms evolution is driven by

surface force and the direction of the segment in contact with the surface is modified

changing facet orientation between panel (c) e (d). (f) final equilibrium position of

dislocation, misfit is deposited and threading arms are pointing out from island free

surfaces. No cross-slip events are detected: even if the left threading arm in panel

(e) is oriented in the screw direction and the stress field in that region is favorable

to observe cross slip, the lenght of the segment is to short to allow for changing glide

plane.
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Figure 5.14: (a) Top view of the final shape and position of the first dislocation inside

a superdome island as predicted by DD. (b) Thermodynamics equilibrium position of

a 60circ dislocation segment inside a superdome island, calculated as in Sec. 4.2. Both

results show a long 60circ straight segment deposited at the interface.

Figure 5.15: Map of propagation of a test loop (size 10 nm) in a superdome island

with base equal to 140 nm an Ge content of 40 %. (a) slip system of the test loop.

(b) behavior of the dislocation loop in the system when it is placed in different initial

position of the island.
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Figure 5.16: Evolution of four dislocation loops placed in the two active corners of

the island, (see Fig. 5.15). The four loops starts to expand (a), touching the free

surfaces and interacting each other (b)-(c). Misfit segment is deposited and the final

microstructure is formed (d)-(f). Notice that no junctions formation is observed and

even in this case, no cross-slip events are detected. Different color of dislocations

means different slip system.
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Figure 5.17: Comparison between TEM images and DD simulation results. (a) and

(b) TEM images obtained with different reciprocal lattice vector ~g. The TEM images

reveals more details about the shape of dislocation with respect to their superposition

shown in 1.11. The resulting dislocation pattern is shown in panel (c). Comparing

panel (d) , where our predicted simulation pattern is reported (in top view with respect

the island), and panel (c), it is clear that the simulation captures the main feature

of the experimental data. We checked that the contrast in images (a) and (b) is

compatible with slip system used in the simulations (d).
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threading arms. Experimental TEM image [55] reported in Fig. 1.11 shows the dislocation

pattern at the interface of an island of a multidislocated island and can be compared directly

to our simulations. We can assign the inner round structure as the sign of the first stage

of cyclic growth. The image is the superimposition of two different TEM images obtained

with two different reciprocal lattice vector ~g, and so some details are missed (see Fig. 5.17

panel (a) and (b)) because of different contrast. Analyzing separately the two images it

appears the pattern showed in Fig. 5.17 (c). Comparing panel (d) , where our predicted

simulation pattern is reported (in top view with respect the island), and panel (c), it is clear

that the simulation captures the main feature of the experimental data. Misfit dislocations

form a pattern similar to a square (more rounded in the experiment) in both cases, the

arms appearing out of the square shape could be ascribed to threading arms. By the way

the experimental pattern in panel (b) appears more bend. This morphology is due to the

fact that in our simulation the interface between island and substrate is perfectly flat, while

in the experiments it is curved, thus so the deposited segments do not appear as straight

lines.

Mechanical cross slip in superdome islands

In all the simulation we discussed, no cross slip events were observed. We ascribed this

behavior to the short lenght of threading segments in the screw direction due to small island

size. What we expect is to observe cross slip events by increasing the volume of the island,

to enhance the threading dislocation lenght and therefore the cross slip probability. We

run simulations increasing island base size, studying the propagation of a single dislocation

loop. We noticed cross slip event for superdomes with base equal to 200 nm, and in Fig.

5.18 the dynamics is reported. The dislocation has the same evolution as in panel (a)-(d) of

Fig 5.13. When the dislocation reaches the area in which cross slip is favored, Fig 5.18 (a)

the lenght of the screw segment is larger and in panel (b) the onset of cross slip is observed

(light blue segment appears). Dislocation bows out in the cross slip direction, panel (c).

Because the RSSgp and RSScs in this region are comparable (see Fig. 5.11 their difference

is close to zero), during the cross slip event the local stress field is modified, and in panel

(d) we observed dislocation double cross slip phenomenon [98]. At the interface small misfit

segments are deposited for both slip systems (zig-zag shape, panel (e)). Finally, in panel (e)

the dislocation reaches a region where RSScs is larger than RSSgp, and the misfit segment

is deposited in the cross slip direction.

At this stage, we can notice that TEM observation made at late stages of cyclic growth

are revealing the zig-zag features in the dislocation pattern (Fig. 5.19(a)), that compare

very well with the results of simulations in Fig. 5.19 (b).
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Figure 5.18: Cross slip events in Si0.6Ge0.4 island. The base of the island is 200

nm. Dislocation threading arm is aligned in the screw direction (a). In panel (b)

is highlighted the onset of cross slip phenomenon and in panel (c) dislocation bows

out in the cross slip direction. Because the RSSgp and RSScs in that region are

comparable (see Fig. 5.11 their difference is close to zero), during the cross slip event

the local stress field is modified, and in panel (d) we observed dislocation double cross

slip phenomenon. At the interface small misfit segments are deposited for both slip

systems (e). In panel (f) dislocation reaches a region where RSScs is larger than

RSSgp, and the misfit segment is deposited in the cross slip direction.
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Figure 5.19: Comparison between experimental dislocation pattern and simulation

results. The zig-zag features in panel (a) can be ascribed to a series of double cross

slip events



Conclusions

My Ph. D. work led to the development of numerical methods devoted to the study of

elastic and plastic relaxation in SiGe/Si (001) heteroepitaxial nanostructures. The meth-

ods were successfully applied to the study of self-assembled nanostructures arising from the

heteroepitaxial growth of Ge (or SiGe alloys) on Si substrate (three dimensional islands and

thin films). First of all, I studied the mechanisms allowing for elastic relaxation. Tuning

the initial condition, it was possible to calculate with Finite Element Method the elas-

tic field in SiGe islands. Then the variation of compositional profile, observed during the

three dimensional growth, were determined by an ad hoc Monte Carlo algorithm coupled

with FEM. My main contributions, however, were in the field of plastic relaxation and the

study of dislocations in nanostructures. First I developed a novel approach to handle misfit

dislocation in nanostructures in the FEM framework. The developed method allows for

determining the elastic field of dislocations in small size object, where the extended defects

deeply interact with free surfaces and interfaces. It was shown how my novel computational

strategy can be applied to the study of the plastic relaxation onset (introduction of the first

dislocations) in Ge/Si islands, finding an excellent agreement with experimental data. Fur-

thermore we depicted how by proper patterning of the Si (001) substrate it is possible to

predict dislocation confinement, as confirmed experimentally by AFM and TEM analysis,

in prescribed areas of the heteroepitaxial system, opening a viable path for dislocation en-

gineering. Then, I adapted the microMegas dislocation dynamics (DD) code to dislocation

propagation in nanostructures. The DD code was originally designed to study the time

evolution of extended defects in bulk system. I therefore introduced suitable modifications

for treating free surfaces and for handling the propagation of threading arms (dislocation

touching free surfaces) in the system. Simulations performed in overgrown islands, predict

a dislocation pattern at the SiGe island extremely similar to the experimentally observed

dislocation microstructure.
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A
Elasticity theory equations used in

this work

This brief appendix is intended to give some very basic concepts that were often recalled

in this work.

A.1 Strain tensor

Under external applied forces, any elastic medium undergoes a deformation from its equi-

librium (external force-free) configuration. By denoting with r the position of a given

point inside the medium prior of the deformation, and with r′ its position in the deformed

medium, it is possible to define the displacement field u = r′− r at every point. Elastic de-

formation is completely known when u(r) is known for every r. Given a small deformation

δr, it can be written

ui(r+ δr) = ui(r) +
∂ui(r)

∂xk

δxk.

where the derivatives ∂kui defines the components of a rank 2 tensor γik, which can be

decomposed into a symmetric and an anti-symmetric part:

εik =
1

2

(

∂ui
∂xk

+
∂uk
∂xi

)

and ωik =
1

2

(

∂ui
∂xk

− ∂uk
∂xi

)

.

In other words, any possible deformation of the elastic body is decomposed into one

rotation, described by the tensor ωik, and one distortion, which is described by εik. The

tensor εik is the strain tensor. As it is clear from its definition, ε is symmetric: εik = εki.

Figure. A.1 is intended to show the physical meaning of each strain tensor component.

If dV the volume of a small portion of the solid before the deformation and dV ′ is

the volume of the same portion after the deformation, those quantities are linked by the

relation [57]

dV ′ = dV (1 + Tr(ε)).

This means that the trace of the strain tensor is the relative volume change with deformation

(dV ′ − dV )/dV .
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Figure A.1: Illustration of the physical meaning of each strain tensor component.

A.2 Equations of elasticity theory

The elastic response of a medium under applied external forces is completely described by

the stiffness tensor cijkl. This tensor links stress to strain tensor, since it holds

σij = cijklεkl.

The tensor cijkl have several symmetries. The symmetry of the stress tensor implies

that cijkl = cjikl, while the symmetry of the strain tensor implies cijkl = cijlk. Finally, from

thermodynamic arguments it is possible to demonstrate that cijkl = cklij . Since both σ and

ε are symmetric tensors, this means that each one has six independent coefficients. It is

thus useful to use Voigt indexes, to simplify the notation. Making the following statements:

xx → 1, yy → 2, zz → 3, xy → 4, yz → 5, xz → 6 it is possible to explicit cijkl with only

two indexes; this way the stress-strain relaxation can be written as

σxx = c11εxx + c12εyy + c13εzz + c14εyz + c15εzx + c16εxy

σyy = c21εxx + c22εyy + c23εzz + c24εyz + c25εzx + c26εxy

σzz = c31εxx + c32εyy + c33εzz + c34εyz + c35εzx + c36εxy

σyz = c41εxx + c42εyy + c43εzz + c44εyz + c45εzx + c46εxy

σzx = c51εxx + c52εyy + c53εzz + c54εyz + c55εzx + c56εxy

σxy = c61εxx + c62εyy + c63εzz + c64εyz + c65εzx + c66εxy

(A.1)

In addition to that, the symmetry of the crystal imposes further reduction to the inde-

pendent coefficient in the stiffness tensor. Depending on the type of crystal, there are 21

independent components in the case of the triclinic crystal, 13 for the monoclinic, 9 for the

orthorhombic and 3 for the cubic. The latter ones are usually mentioned as c11, c12 and c44.

One relevant case is the omogeneous and isotropic medium. Here, only two stiffness

tensor components are independent, and are called Lamé constants λ and µ. The parameter

λ is the shear modulus; it holds
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λ = c12

µ = c44 =
1

2
(c11 − c12)

and the link with Young modulus Y and Poisson ratio ν is

λ =
νY

(1 + ν)(1− 2ν)

µ =
Y

2(1 + ν)
.

To deform the medium, external forces must do work, which must equal the elastic

energy stored by the medium in consequence of the applied forces. The correspondent

elastic energy density is

E =
1

2
cijklεijεkl.
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B
Introduction to dislocations

This appendix is devoted to introduce the concept of dislocation, in particular focusing on

dislocations appearing in Silicon-Germanium heteroepitaxy.

B.1 Burgers vector and dislocation line

Dislocations are line defects that introduce plastic deformation in a perfect crystal. So

Their more appropriate description has to be referred to the atomic crystal structure [135].

In particular each dislocation is individuate both in type and position using two impor-

tant vectors: the Burgers vector and the dislocation line.

A simple explanation can be provided using fig. B.1. In the middle a perfect undeformed

crystal is represented (we choose a simple cubic crystal in order to make easy the description

but all the definitions remain valid for a general crystal). Around the image of the perfect

crystal the three different possible dislocation geometry are reported. One have to imagine

to cut the structure along the planes shown in the three empty cubes. The atoms above and

below the selected planes are moved as shown by the arrows by an half lattice parameter.

The new deformed lattices are shown in the external figures. They are perfect in all

the structure but in the neighborhood of the AA lines. These lines are the dislocation

lines. If the atoms around the cutting plane are displaced in the perpendicular directions

to the line AA, the dislocation is called edge; if instead the same atoms are displaced

in the parallel direction to the line AA a screw dislocation is formed ; if finally they are

displaced in a general direction with respect to the line AA the dislocation is called mixed

dislocation. In particular in the last case the dislocation is characterized by the angle

between the dislocation line and the direction of the deformation and it is named by this

angle, for instance an important dislocation in the diamond structure is the 60◦ one. If

a 60◦ dislocation is present in a crystal the defect is characterized by a dislocation line

and direction of the deformation forming a 60◦ angle. A simple description of the edge

dislocation is the following: if in a crystal an edge dislocation is present, in the deformed

region an extra half lattice plane is inserted (see fig. B.2). In this case the dislocation line

is simply the edge of the extra plane.

Instead, if in a crystal a screw dislocation is present, the lattice plane perpendicular to

the dislocation line are rotated along the dislocation line as shown in fig. B.1 along the
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Figure B.1: The introduction of edge, screw and mixed dislocations in a perfect

crystal [135].

Figure B.2: Edge dislocation:an half extra plane in a crystal.
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Figure B.3: Screw dislocation: planes screw around the dislocation line (dashed in

the figure) [135]

Figure B.4: The tangent vector ~t of a dislocation line in a point individuated by ~r

AA line. In particular they screw along that line as clearly shown in fig. B.3 where the

dislocation line is the dashed one.

The atoms around the dislocation line are called core atoms, and in general the ensemble

of that atom are called core.

In order to give a precise description of dislocations in a crystal, their position and the

consequent displacement have to be indicated.

The dislocation position is simply identified by the dislocation line position in each

point. So we have to introduce a vectorial field ~r that individuates the position of an

infinitesimal dislocation line segment in the crystal. In fig. B.4 an example is reported, ~t

is the infinitesimal dislocation line segment (tangent to the line by definition) ,~t = d~r
dr
).

In order to define the actual atoms displacement due to the dislocation, as already

mentioned, another very important vector is introduced: the Burgers vector.

In fig. B.5 two different loops in a crystal are drawn: on the left it is around a dislocation

line, on the right it is in a perfect crystal. Both begin in the site label M and finish in

the site Q. Each loops segments (vertical and horizontal ones) are composed by the same

number of lattice parameters. However, in the loop on the left the point labeled Q and

the point labeled M are the same lattice site, instead in the dislocated crystal Q and M

correspond to different lattice site. The vector ~QM in the loop on the right is the Burgers

vector of the dislocation involved. This definition is valid for each dislocation type (the

simple one used in fig. B.5 is an edge dislocation).

In fig. B.6 the same definition is used in the case of a screw dislocation.

It should be now clear that Burgers vector and dislocation line of an edge dislocation

are perpendicular by definition, instead for a screw dislocation they are always parallel.

In the case of a mixed dislocation Burgers vector and dislocation line form an arbitrary

angle. So it is possible to divide the Burgers vector in its edge component (the component

perpendicular to the dislocation line) and its screw component (the parallel one). The
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Figure B.5: Burgers vector definition: the difference vector between the two loops

in the figure ( ~QM), the left loop encircles the dislocation, the right one is in a perfect

crystal[136]

Figure B.6: Burgers vector for a screw dislocation [135]
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actual atoms displacement, in this case, is obtained equally moving the atoms directly as

imposed by the total Burgers vector or first by one component and then by another.

It is important to notice that the Burgers vector definition has some arbitrary aspects.

In particular changing the direction going through in the dislocation loop, the Burgers

vector changes its direction. It is a convention to chose first the direction of the dislocation

line and then to individuate the Burgers vector going around the loop in clock wise observing

it along the positive direction of the dislocation line.

Up to now, we have always taken under consideration dislocation characterized by a

Burgers vector of the same length of a lattice parameter, such dislocations are called perfect

dislocation. It is otherwise possible that a dislocation presents a Burgers vector less then a

lattice parameter long. In this case the dislocation is called partial dislocation.

B.2 The dislocation motion

As we said the studies about dislocations gave rise from studies about materials plasticity.

When a solid is subjected to an external force the dislocations already present as a defect

in the crystal or nucleated subsequently that force, move until they reach the free surface

where they cause the macroscopic deformation.

The dislocation motion can be classified in two different types: glide motion e climb

motion.

The dislocation can move into the plane containing both the dislocation line and the

Burgers vector, in this case the motion is called glide motion, or changing the dislocation

plane, the climb motion.

The glide motion is more energetically favored, it is the first activated and the more

observed. Therefore the plane containing the dislocation line and the Burgers vector is

called glide plane.

The climb motion can be activated only at sufficiently high temperature: a dislocation

can change plane only if atoms can be removed.

It is assumed that dislocation glide involves the thermal creation and migration of kinks.

Let us consider a dislocations where segments have been displaced within the glide plane,

keeping the same dislocation line direction. The connection between the segments are called

dislocations kinks (see fig. B.7). So the glide motion can be pictured as the formation of two

symmetric kinks (a right step and a left one along the dislocation line) and their migration

in two opposite directions, resulting in the progressive glide of the dislocation line into the

glide plane.

During the motion dislocations can approach each other, they can interact. The interac-

tion between dislocations is a very complex item. Many different action can be subsequent

to dislocation interaction, the simpler examples are their repulsion and attraction. The

whole interaction mechanisms is already unclear, they depends from the particular geome-

tries of the dislocations, their elastic fields and their glide planes. Other known phenomenon

linked to dislocations interaction are the formation of new dislocations in the crossing points

(pinning) or the deviation of dislocation to another equivalent glide plane (Jog) as shown

in fig. B.7, this is the case of a developed climb motion of dislocations, jogs for the climb

motion are the analogous of kinks for the glide one.
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Figure B.7: Examples of jogs and kinks

B.3 Dislocations in linear elasticity theory

Linear elasticity theory, as already explained, turns to be a very useful tool to describe the

elastic field (in particular the long range) due to dislocations.

Here we want report the results concerning an isolated straight dislocation, that is the

subject of this thesis.

Two items are mainly important: the elastic energy and the interaction forces between

two straight dislocations.

It is also important to notice that from the equilibrium equations A considering static

conditions, the exact expressions of the displacements around a dislocation can be obtained,

imposing that, considering a close loop around the dislocation, the displacement of the final

point with respect to the initial one has to be equal to the Burgers vector length. From

the displacement expressions it is easy to obtain stress and strain terms.

If the dislocation line is parallel to the z axis, in the case of a screw dislocation the

Burgers vector will be in the same direction (~b = b~k) while for an edge dislocation it will

be in one of the perpendicular directions, let us consider it in the x direction (~b = b~i). In

the first case strain and stress have the following expressions:

ǫxz =
∂u

∂z
+

∂w

∂x
=

b

2π

y

x2 + y2

ǫyz =
∂v

∂z
+

∂w

∂y
= − b

2π

x

x2 + y2

ǫxx = ǫyy = ǫzz = ǫxy = 0 (B.1)

σxz =
µb

2π

y

x2 + y2

σyz = −µb

2π

x

x2 + y2

σxx = σyy = σzz = σxy = 0

(B.2)

Instead for the edge dislocation the results are:
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ǫxx =
by

2π

µy2 + (2λ+ 3µ)x2

(λ+ 2µ)(x2 + y2)2

ǫyy =
by

2π

(2λ+ µ)x2 − µy2

(λ+ 2µ)(x2 + y2)2

ǫxy =
b

2π(1− ν)

x(x2 − y2)

(x2 + y2)2

ǫzz = ǫxz = ǫyz = 0 (B.3)

e

σxx =
µb

2π(1− ν)

y(3x2 + y2)

(x2 + y2)2

σyy = − µb

2π(1− ν)

y(x2 − y2)

(x2 + y2)2

σzz = ν(σxx + σyy) =
µνby

π(1− ν)(x2 + y2)
(B.4)

It is interesting to notice that directly from the mathematical form of strain and stresses

we can derive the dislocation theory limit: they have an unresolved value in the origin in

correspondence to the core of the dislocation. In fact in this area the stresses are too large

in order to be predicted by the linear elasticity equations. In that region the atomistic

nature of solids can not be neglected, it is needed to consider the actual atoms positions,

an atomistic treatment is needed.

For mixed dislocations the previous solutions remain valid for the edge and screw compo-

nents separately (i.e. using as Burgers vectors the edge and screw components respectively)

and the expressions of stresses and strain of the mixed dislocation will be the sum of the

component’s solution.

B.3.1 Elastic energy

When a solid is subject to a deformation, it accumulates energy used afterwards to return at

the equilibrium status (shape and volume). This potential energy is called elastic energy. As

in a general definition energy is the integration of the product force times displacements,

the elastic energy is the integration of the product stress times strain. Obviously this

integration is not always simple, it depends on the tensor’s form of strain and stress. The

energy accumulated in a solid due to a dislocation deformation field is called self energy.

We have already described the stress and strain forms for different dislocation. Their

integration in order to find the elastic energy is not simple but it can be actually done

analytically (see for instance [98]).

It is found that the energy per unit length contained in a cylinder of radius r and length

L of an infinite straight dislocation, in an otherwise perfect crystal can be written:

Eself

L
=

K(β)

4π
b2 ln

r

rc
+

Ec

L
, (B.5)

where K(β) is called energy coefficient and depends on the angle β between the dislo-

cation line and the Burgers vector and on the crystal properties, b is the Burgers vector

length, rc is a parameter called core radius and Ec is the core energy. The meaning of these

two last quantities will be more clear in the following.
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The logarithmic term in eq. B.5 diverges for both the limits R → 0 and R → ∞.

The first divergence show another time the linear elasticity theory limit and the one of a

continuum description. In the core region, characterized by breaking and stretched bonds,

stresses are high and a discrete model is needed being at distance similar to the bonds

length.

As a result it exist a critical value of r, called core radius (rc), below it eq. B.5 does

not give a good description of the elastic energy. In other words the region below rc is the

minimum region which cannot be described by elasticity theory. The elastic energy inside

this region is called core energy (Ec).

Eq. B.5 also diverges for R → ∞. In consequence, in an infinite crystal we cannot

evaluate a finite total elastic energy of a dislocation (real crystal have a finite extension),

however the important physical quantities are the energy coefficient K(β), the core radius

rc and the core energy Ec.

B.3.2 Resolved shear stress

In this paragraph we want to describe shortly the last aspects for our interests, the inter-

action force between an external field and a dislocation. When an elastic field σ is acting

on a dislocation with Burgers vector ~b, it develops a force given (per unit length of the

dislocation line) by:

Fres = τresb = |S : σ| b , (B.6)

where S is called Schmidt tensor and |S : σ| is called the resolved shear stress (τres).

If ~n is the vector normal to the glide plane, then S is defined by:

S =
~b

b
⊗ ~n . (B.7)

In the Schmidt tensor expression are summarized all the main characteristics of the

dislocation taken under consideration: ~b, the Burgers vector, is composed with ~n, the geo-

metric label for the glide plane. The resolved shear stress, then, composes these dislocation

geometries with the external field. The resolve shear stress, together with the temperature,

determines the dislocation motion. Large resolve shear stress means high probability of

dislocation nucleation [98].

B.4 Dislocations in the diamond structure

Following the equation B.5 we learn that low energy dislocations are those with a minimum

Burgers vector and we know, by the definition, that Burgers vectors are always a linear

combination of lattice vectors. Thus, if the lattice vector is known, one can already specify

possible low energy types of dislocations and also their glide plane, it will be the plane

containing the minimum lattice translation vectors. In the diamond structure the planes

with the highest lattice site density are the {111} ones so they are preferred glide planes. In

these planes the minimum lattice vectors are in the 〈110〉 directions. Since the dislocation

line, at least locally, is also given by lattice translations, three possible dislocation types

are favored in the diamond structure depending on the combination of dislocation line and

Burgers vector. Fig. B.8 shows the case for [110] and [11̄0] dislocations line (~j). For each
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Figure B.8: Dislocation line in the directions [110] (left) and [11̄0] (right). The other

diagonal lines represented in the figure are the possible Burgers vector direction [137].

line six possible Burgers vectors (shown in the figure) exist [137].

Let us consider the left cube in fig. B.8 in which a [110] line dislocation is presented.

As said three dislocation can be introduced:

• screw dislocation. If also the Burgers vector is in the [110] direction (segment AB

in the figure), Burgers vector and dislocation line are parallel giving rise to a screw

dislocation in the crystal.

• edge dislocation. If the Burgers vector is in the [11̄0] direction (segment CD in

the figure), Burgers vector and dislocation line are perpendicular developing an edge

dislocation in the crystal.

• 60◦ dislocation. If the Burgers vector is in one of the other four 〈110〉 directions

(segments AC, AD, BC or BD), Burgers vector and dislocation line form a 60◦ angle,

the dislocation is therefore a mixed dislocation with both screw and edge component.

Obviously the same observations hold for all the other dislocation line directions (e.g.

for the right cube).

We will see in the next section that the most important dislocations in the heteroepi-

taxial Si-Ge structure are the 60◦ ones.

B.5 Introduction to the strain relaxation in the epitaxial

structure

B.5.1 The 60◦ dislocation

While in general, for example in bulk metallic materials, dislocations are extended defects

that degrade the quality of the solid, in epitaxy, as already explained in the first section,

dislocations have a key role in the strain relaxation being therefore necessary if a relaxed

layer has to be obtained. This simple consideration gives also another indication about the

dislocation type population in epitaxial film. In the previous section we individuated three

different dislocation type (screw, edge and 60◦) energetically favored in diamond structures,

here we will see their efficiency in strain relaxation.

Let see the figure B.9. There an heteroepitaxial structure with an edge or a screw

dislocation at the interface is pictured. The epilayer has a bigger lattice parameter with
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Figure B.9: Edge and screw dislocations at the interface of an heteroepitaxial struc-

ture [137].

respect to the substrate. We know that, in this case, during the growth an elastic field in the

epitaxial layer is developed, in particular it is characterized by a compression in the growth

plane and an expansion in the perpendicular direction (the pseudomorphic structure).

An important difference in the strain relaxation efficiency between the two dislocations

in the figure is evident: the edge dislocation allows the epitaxial layer to release the com-

pression, restoring its own lattice parameter (the edge dislocation is characterized by an

half missing plane in the epitaxial layer), the screw dislocation instead doesn’t change the

in-plane lattice parameter of the epitaxial layer, it doesn’t release the in-plane compression.

An important observation is needed. The efficiency of the edge dislocation in the figure

is closely linked to the Burgers vector direction: it is in the growth plane, if the Burgers

vector would be perpendicular to the dislocation line but out the plane of the growth it

doesn’t relieve any strain (the half missing plane would be parallel to the growth plane).

Therefore also in the case of a 60◦ dislocation only the edge component and, in particular,

the component of it lying in the growth plane releases the compression. [137].

The heteroepitaxial Si-Ge structures for technological applications are mainly (001)

oriented, i.e. the free surface is a (001) surface so also the interface is (001) oriented.

Therefore the glide plane, being a {111} plane, is inclinated with respect to the interface.

Burgers vector and dislocation line lie on the glide plane, in particular dislocations that

can release more strain have dislocation line in the intersection between the glide plane

and a plane parallel to the interface (the so called misfit dislocations). In this geometry

an edge dislocation does not have Burgers vector in the 〈110〉 favored direction. Now it is

clear that the most diffuse dislocation in heteroepitaxial Si-Ge films is the 60◦ dislocation

characterized by ~b = a
2 〈110〉, dislocation line 〈110〉 and glide plane {111} [137].

B.5.2 Misfit dislocations and threading arms

In the previous section we learn that the 60◦ dislocation is the real subject of the strain

relaxation in Si-Ge (001) heteroepitaxial structures. In order to play this role each 60◦

dislocation have to introduce a missed half-plane in the compressed epitaxial layer (an

extra half-plane in the substrate). This means that for each 60◦ dislocation line only two

of the four possible Burgers vectors can be present, the ones pointing towards the free

surface. Hence in the films the deformation will appear at the surface. The deformation

induced by the components of these Burgers vectors in the (001) direction causes a step

at the surface. Typically an array of steps along [110] directions can be observed at the

surface of Si-Ge epitaxial layers in correspondence to the 60◦ dislocations inside the layers.
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Figure B.10: Evolution of loop dislocations in epitaxial films

The ending points of these steps are called pits. They corresponds to the ending points of

the 60◦ straight dislocation in the inner part of the crystal. An example is shown in figure

B.10.

Dislocations in heteroepitaxial films nucleate mainly as loop dislocations as shown in the

figure. After the nucleation the epitaxial elastic field acts on each part of the dislocations,

consequently they increase their radius until they reach the interface, then they become a

semiloop composed by a straight segment parallel to the interface (called misfit segment)

and two threading arms reaching the surface. While when the dislocation line is a curve

it is too difficult to describe in the microscopic geometry, in the second phase it can be

easily described dividing the dislocation in three segments: the misfit segment and the two

threading arms. The misfit segment will be (because energetically favored) a 60◦ straight

dislocation relieving strain at the interface. The two threading arms turn to be mainly

screw dislocations. The pits hence are the intersection between the threading arms and the

free surface.

Pits and steps obviously degrade the morphological quality of the surface and, in con-

sequence, degrade the performances of the devices eventually grown at the top of the

structure. In fact this epitaxial layer are mainly used as buffer layers (bases of the mi-

croelectronic devices). The misfit segment, on the other hand, is absolutely necessary for

the strain relaxation (the epitaxial layers has to be on their own lattice parameter for the

technological application). Instead the threading arms, being screw dislocations, do not re-

lease strain and their presence causes only the structure degradation. So a very important

goal is to individuate the growth conditions that minimized the threading arms density,

increasing the misfit segment length (e.g. in fig. B.11 the condition of the misfit line A is

favored with respect to misfit line B) [138]. An important part of my work has this target.

In the next we will briefly enumerate the main nucleation mechanisms in the epitaxial

structures.

The elasticity theory, as mentioned, predicts the critical thickness necessary for the

nucleation of the first dislocation, however the experimental values are much more high

than the predicted ones. The reason is that the calculated value are the results of a

thermodynamic calculation that does not take into consideration the kinetic activation

barrier [101]. Until the layer reaches the critical experimental thickness, but reached the

theoretical one the system is in the so called metastable regime. The extension in thickness

of this regime depends on the growth conditions [101]. The kinetic processes characteristic

of the barriers are, for example [101]:

1. Homogeneous nucleation. If the strain in the layer becomes sufficiently high (misfit
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Figure B.11: Two different possible configurations of dislocation loops in epitaxial

structure. The case denoted with line A is the ideal one being characterized by a long

misfit segment and only two threading arms [138]

.

Figure B.12: Possible dislocations nucleation processes in epitaxial layer [137].

of about 6-8%) the nucleation can also spontaneously happen. It is a very rare case.

2. Heterogeneous nucleation. The nucleation mainly happens in a high-strain lo-

calized zone. It means where in the sample a superimposed strain field is already

present. Typically where some point defects are present as vacancies or interstitials

but also at surfaces and interfaces and points where dislocations arrive from the sub-

strate at the interface. In this case we assist at the pinning mechanism: a dislocation

of the substrate nucleate many dislocations in the epitaxial layer. The heterogeneous

nucleation is the most diffuse nucleation process.

3. Multiplication. The intersection between dislocations can be a nucleation site for

other dislocations. This happens mainly in low strained layer (e.g. ǫ = 0.005). This

mechanism is very complex, the nucleation sites are called Frank-Read sources [139].

4. Islands. Around the islands a strain accumulation occurs and dislocation can there

nucleate.

Figure B.12 summerizes some of the possible nucleation processes [137].
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