

UNIVERSITA’ DEGLI STUDI DI MILANO BICOCCA

Facolta’ di Scienze Matematiche, Fisiche e Naturali

COMPUTATIONAL INTELLIGENCE

APPROACHES: FROM TIME SERIES

TO DATA DRIVEN

GENE REGULATORY NETWORK

PhD Dissertation of:

Antonella FARINACCIO

Supervisors Tutor
Prof. Giancarlo Mauri Prof.ssa Paola Bonizzoni
Prof. Leonardo Vanneschi

PhD Coordinator

Prof.ssa Stefania Bandini

XXIII Phd Cycle

To my parents

Abstract

For the past decade or so, Computational Intelligence has been an extremely
hot topic among researchers working in the fields of biomedicine and bioin-
formatics. There are many successful applications of Computational In-
telligence in such areas as computational genomics, prediction of gene ex-
pression, protein structure, and protein-protein interactions, modeling of
evolution, or neuronal systems modeling and analysis. However, there are
still many problems in biomedicine and bioinformatics that are in desperate
need of advanced and efficient computational methodologies to deal with the
tremendous amounts of data so prevalent in those kinds of research pursuits.

In an attempt to fill this gap, in the last decade many tools of Systems Bi-
ology have been developed to elaborate the large quantity of data generated
by high-throughput experimental techniques with the increasingly sophis-
ticated range of mathematical modelling techniques. The aim of systems
biology is to integrate models at multiple biological scales and investigate
system-level properties of biological organisms. This aim includes under-
standing at four levels:
(a) the structure of biological interaction networks;
(b) their dynamics, how states change over time in different conditions;
(c) the methods biological systems use to control the state of a cell;
(d) the design of systems, including both how they have evolved and how
they may potentially be artificially constructed.

A key feature of systems biology is the integration of both theoretical
modelling and empirical investigation, in which current biological knowledge
informs the development of models and the analysis of these models produces
a set of predictions that may then be tested in the laboratory.

Many models have been proposed to describe the network, one of the
most extensively used is Boolean Network, that notwithstanding its numer-
ous successes, in some cases could suffer from being too coarse.

Another widely studied candidate is the system of differential equations,

iv

v

which is a very powerful and flexible model to describe complex relations
among components. But it is not necessarily easy to determine the suitable
form of equations which represent the network. Thus, the form of the differ-
ential equations had been fixed during the learning phase in previous studies.
As a result, their goal was to simply optimize parameters, i.e., coefficients
in the fixed equations.

In the analysis of time series of gene expression data presented in this
thesis, a mathematical model has been identified and a system for the re-
construction of a Gene Regulatory Network Driven from Data has been
implemented. Based on Genetic Programming, its target is to extractes
knowledge and properties from data and so to generate the network that
underlies the behaviour of genes. For this reason the system is called Data
Driven Gene Regulatory Network Generator.

Planning to individualize the mutual interactions between genes, a Ge-
netic Programming application for the extraction of the best activation func-
tion of the genes has also been developed. In order to test such a system, it
has been applied to a serial temporal dataset of microarray gene expression
data of breast cancer, while a study aimed at predicting the survival of a
set of cancer patients has also been performed. This study has led to the
definition of a Medical Decision Support System.

The activation functions of genes performed by this system have been
successively used to reconstruct the gene regulatory network that underlies
the development, response and regulation of the biological system. With the
intent to test it, a reverse engineering of a synthetic gene regulatory network
has been made and a dynamic symulation has been performed allowing for
the related time series reconstruction. The gene regulatory network used for
the reverse engineering has been the recently published IRMA network, a
yeast synthetic network for the assessment of reverse engineering networks
and modelling approaches.

Finally, in order to apply this system to a realistic gene regulatory net-
work composed by thousands of genes, a new cluster kernel method has been
identified and a framework driven by it has been developed. It is based on
Gene Ontology to facilitate the detection of similar patterns of interacting
genes, with the aim of reducing the dimension of the related serial temporal
data.

PhD Thesis Antonella Farinaccio

Acknowledgments

First and foremost, I would like to thank my Supervisors, Prof. Giancarlo
Mauri and Prof. Leonardo Vanneschi. Their expertise, excellent under-
standing and patient guidance had a major influence on this thesis, and
this research work would not have been possible without their fundamental
support.

I gratefully acknowledge Prof.ssa Bonizzoni, I enjoyed her interest in my
research as well as the fruitful advises and support.

I owe special gratitude to Prof. Marco Antoniotti, Prof. Italo Zoppis, Prof.
Mario Giacobini, Prof. Paolo Provero and Dott. Daniele Merico, for their
crucial contributions that have been of great value in this study.

I want to thank all members of the Bimib group, for providing an excellent
and inspiring working atmosphere.

I was delighted to interact with Prof.ssa Raffaella Rizzi. Most important,
she became a friend.

My sincerely thanks go to my fellow labmates, Fabrizio and Simone. I
enjoyed the atmosphere, their friendship and their support.

My deepest gratitude goes to my parents for their unflagging love and sup-
port throughout my life; this dissertation would have been simply impossible
without them.

vi

Contents

Abstract iv

Acknowledgments vi

1 Introduction 1
1.1 Preliminary Concepts . 3

1.1.1 Computational Intelligence in Gene Expression 3
1.1.2 Machine Learning and Statistical Data Analysis . . . 3

1.2 Motivations and Goals . 7
1.2.1 Medical Decision Support System For Survival Pre-

diction in Breast Cancer 7
1.2.2 Generator of Gene Regulatory Network and Dynamic

Simulator System . 8
1.2.3 An Application of Kernel Methods to Gene Cluster

Temporal Meta-Analysis 9

PART I BIOLOGICAL AND COMPUTATIONAL

BACKGROUND 11

2 Elements of Molecular Biology 12
2.1 Organisms and cells . 12
2.2 Molecules of life . 15

2.2.1 Small molecules . 15
2.2.2 Proteins . 17
2.2.3 DNA . 18
2.2.4 RNA . 23

2.3 Genes and Genomes . 24
2.3.1 Chromosomes, Genomes and Sequencing 24
2.3.2 Genes and Protein Synthesis 26

vii

CONTENTS viii

2.3.3 Gene Prediction, Counting, Annotation 29
2.3.4 Genome Similarity and Genetic Variation 31

2.4 Functional Genomics . 32
2.4.1 Gene Regulatory Networks 32

2.5 Microarrays and Gene Expression 34
2.5.1 Microarrays Technology and Applications 35
2.5.2 Gene Expression Data Analysis and Expression Profiler 38

3 Machine Learning and Statistical Data Analysis 40
3.1 Overview of Machine Learning 40
3.2 Machine Learning Methods 43

3.2.1 Support Vector Machines 43
3.2.2 Multilayer Perceptron 43
3.2.3 Random Forests . 44
3.2.4 Radial Basis Function Network 44
3.2.5 Voted Perceptron . 44

3.3 Statistical Methods for Resampling, Validation and Evaluation 45
3.3.1 Resampling Methods with Cross-Validation 45

K-Fold Cross-Validation 46
3.3.2 Evaluation of Classifier Performance 47

Interval Estimation . 47
Hypothesis Testing . 51
t-Testing . 53

3.4 Statistical Methods for Comparison 54
3.4.1 Comparing Two Classification Algorithms:

K-Fold Cross-Validated Paired t-Test 54
3.4.2 Comparing Multiple Algorithms: Analysis of Vari-

ance(ANOVA) . 55

4 Genetic Programming 60
4.1 A Brief Introduction to Evolutionary Algorithms 60
4.2 Genetic Programming - basic concepts 62
4.3 Preliminary Steps of Genetic Programming 63
4.4 The Basic GP Algorithm . 64
4.5 Representation of GP Individuals: Terminals and Functions . 66

4.5.1 The Choice of Functions and Terminals 69
4.6 Inizialization of a GP Population 70

PhD Thesis Antonella Farinaccio

CONTENTS ix

4.6.1 Initializing Tree Structure 70
Grow Initialization . 71
Full Initialization . 71
Ramped Half-and-Half Initialization 72

4.7 Genetic Operators of GP . 73
4.7.1 Crossover . 73
4.7.2 Mutation . 74
4.7.3 Reproduction . 75

4.8 Fitness in GP . 76
4.8.1 Symbolic Regression 78

4.9 Selection in GP . 79
4.9.1 Roulette-Wheel or Fitness Proportional Selection . . . 79
4.9.2 Ranking selection . 80
4.9.3 Tournament selection 81

4.10 GP Parameters . 81

PART II MEDICAL DECISION SUPPORT SYSTEM 83

5 Medical Decision Support System For Survival Prediction
in Breast Cancer using a binary dataset 84
5.1 A first glance . 84
5.2 Previous and Related Work 85
5.3 Computational Methods . 86

5.3.1 Genetic Programming 86
5.3.2 Support Vector Machines 87
5.3.3 Multilayer Perceptron 88
5.3.4 Random Forests . 88

5.4 Validation Dataset . 89
5.5 Experimental Results . 90
5.6 Discussion . 94

6 Medical Decision Support System For Breast Cancer Based
On Floating Point Dataset 96
6.1 Classification of breast cancer patients into risk classes using

floating point data . 96
6.2 Dataset and methods . 97

PhD Thesis Antonella Farinaccio

CONTENTS x

6.2.1 The 70-Genes Signature 97
6.2.2 Methods . 98

6.3 Experimental Results . 99
6.3.1 Comparing Different Algorithms 100
6.3.2 Towards GP-MDSS with Greater Sensitivity or Sensi-

bility . 101
6.3.3 Analysis of the best solutions found by GP-MDSS . . 104

PART III DATA DRIVEN GENE REGULATORY NET-

WORK 107

7 Generator of Gene Regulatory Network
and Dynamic Simulator System 108
7.1 Introduction . 108

7.1.1 Random Boolean Networks 109
7.2 Data Driven Gene Regulatory Network 110
7.3 The Proposed System: GRNGen 111
7.4 Example of GRNGen Application 112
7.5 A Test Case: The Reverse Engineering of IRMA Network . . 118
7.6 Experimental Setting . 119
7.7 Experimental Results . 121
7.8 Discussion . 124

8 An Application of Kernel Methods to Gene Cluster Tempo-
ral Meta-Analysis 126
8.1 Cluster Meta-Analysis: Problem Context 126

8.1.1 Cluster Meta-Analysis: Problem Description 129
8.2 Dataset Description and Pre-processing 130

8.2.1 Dataset Description 130
8.2.2 Clustering and Data Pre-processing 132

8.3 Graph and Kernels Description 133
8.3.1 Kernel Functions Review 133

Graph Kernels
134

8.3.2 Kernel for GO graph 136
8.3.3 Connection Selection Algorithm 137

PhD Thesis Antonella Farinaccio

CONTENTS xi

8.3.4 Clustering Quality Score 138
8.3.5 Kernels and Algorithms Application Results 141

PART IV FINAL CONSIDERATIONS 144

9 Conclusions and Assessments 145
9.1 Medical Decision Support System for Survival Prediction in

Breast Cancer using a binary dataset 145
9.2 Medical Decision Support System for Survival Prediction in

Breast Cancer using floating point dataset 146
9.3 Generator of Gene Regulatory Network and Dynamic Simu-

lator System . 147
9.4 An application of Kernel Methods to Gene Cluster Temporal

Meta-Analysis . 148

10 Future Works 150
10.1 Medical Decision Support System for Survival Prediction in

Breast Cancer . 150
10.2 Generator of Gene Regulatory Network and Dynamic Simu-

lator System . 151
10.3 An application of Kernel Methods to Gene Cluster Temporal

Meta-Analysis . 151

Bibliography 153

PhD Thesis Antonella Farinaccio

Chapter 1

Introduction

The past few decades have seen a huge growth in biological information
gathered by the related scientific communities. A fload of such information
coming in the form of genomes, protein sequences, gene expression data and
so on have led to the absolute need for effective and efficient computational
tools to store, analyze and interpret such multiformed data. Techniques
including applied mathematics, informatics, statistics, computer science, ar-
tificial intelligence, chemistry, and biochemistry have been involved to solve
biological problems usually at the molecular level, flooding in Bioinformatic
and Computational Biology.
Research in computational biology often overlaps with systems biology. Ma-
jor research efforts in the field include sequence alignment, gene finding,
genome assembly, protein structure alignment, protein structure predic-
tion, prediction of gene expression and protein-protein interactions, and
the modeling of evolution. Hence, in other words, bioinformatics can be
described as ”the application of computational methods to make biolog-
ical discoveries” [Baldi and Brunak, 1998]. The ultimate attempt of the
field is to develop new insights into the science of life as well as creating
a global perspective, from which the unifying principles of biology can be
derived [Altman et al., 2001].

In the year 2006, there were at least 26 billion base pairs (bp) repre-
senting the various genomes available on the server of the National Center
for Biotechnology Information (NCBI) [Ezziane, 2006]. Besides the human
genome with about 3 billion bp, many other species have their complete
genome available there.

Both bioinformatics and computational biology are concerned with the
use of computation to understand biological phenomena and to acquire and
exploit biological data, increasingly large-scale data [Gusfield, 2004]. Meth-
ods from bioinformatics and computational biology are increasingly used to
augment or leverage traditional laboratory and observation-based biology.

1

2

These methods have become critical in Biology due to recent changes in
our ability and determination to acquire massive biological data sets, and
due to the ubiquitous, successful biological insights that have come from
the exploitation of those data. This transformation from a data-poor to a
data-rich field began with DNA sequence data, but is now occurring in many
other areas of biology [Ezziane, 2006]. So bioinformatic and computational
biology have emerged as a strategic frontier between biology and computer
science.

Computational Intelligence(CI) is placed in this context. It is a well-
established paradigm, where new theories with a sound biological under-
standing have been evolving. The current experimental systems have many
of the characteristics of biological computers (brains) and are beginning to be
built to perform a variety of tasks that are difficult or impossible to do with
conventional computation paradigms. Computational intelligence methods
are now being applied to problems in molecular biology and bioinformat-
ics [Mitra and Hayashi, 2006]. Reader may refer to [Kelemen et al., 2008,
Cios et al., 2005] for an extensive review of various computational intelli-
gence techniques applied to different bioinformatics problems.

Defining computational intelligence is not an easy task. In a nutshell,
which becomes quite apparent in light of the current research line, the
area is heterogeneous, with a combination of technologies such as neural
networks, fuzzy systems, evolutionary computation, swarm intelligence,
and probabilistic reasoning [Hassanien et al., 2008].
The recent trend is to integrate different components to take
advantage of complementary features and to develop a syner-
gistic system [Kelemen et al., 2008]. Hybrid architectures like
neuro-fuzzy systems, evolutionary-fuzzy systems, evolutionary
neural networks, evolutionary neuro-fuzzy systems, rough-neural,
rough-fuzzy, etc. are widely applied for real world problem solv-
ing [Abraham, 2002, Abraham, 2005, Hunga et al., 2006].

The work presented in this thesis is based on this line of research. An
integrated stochastic approach is used in order to reconstruct a gene reg-
ulatory network. The building process is guided by the phenomena under
investigation, attempting to extract the knowledge that underlies the gene
expression data and using it to reconstruct the network that regulate the
genes mutually interactions. The process is driven from time series gene ex-

PhD Thesis Antonella Farinaccio

1.1. Preliminary Concepts 3

pression microarray data and is performed using regression through Genetic
Programming(GP).

1.1 Preliminary Concepts

1.1.1 Computational Intelligence in Gene Expression

Gene expression refers to a process through which the coded information
of a gene is converted into structures operating in the cell. It provides
the physical evidence that a gene has been turned on or activated.
Expressed genes include those that are transcribed into mRNA and
then translated into proteins and those that are transcribed into
RNA but not translated into proteins (e.g., transfer and ribosomal
RNAs) [Luscombe et al., 2001, Mitra et al., 2007]. The expression levels of
thousands of genes can be measured at the same time using the modern
microarray technology [Quackenbush, 2001].

DNA microarrays usually consist of thin glass or nylon substrates con-
taining specific DNA gene samples spotted in an array by a robotic printing
device. Researchers spread fluorescently labeled mRNA from an experimen-
tal condition onto the DNA gene samples in the array. This mRNA binds
(hybridizes) strongly with some DNA gene samples and weakly with oth-
ers, depending on the inherent double helical characteristics. A laser scans
the array and sensors to detect the fluorescence levels (using red and green
dyes), indicating the strength with which the sample expresses each gene.
The logarithmic ratio between the two intensities of each dye is used as the
gene expression data [Hassanien et al., 2008].

In order to understand better these concepts, the Chapter 2 is devoted to
a brief description of cell biology. In it some elements of molecular biology
have been exposed, such as organisms and cells, genes and genomes, gene
regulatory network, gene expression and microarray.

1.1.2 Machine Learning and Statistical Data Analysis

Machine learning techniques are increasingly being used to address problems
in computational biology, bioinformatics and computational intelligence.

Machine learning consists in programming computers to optimize a per-
formance criterion by using example data or past experience. The optimized
criterion can be the accuracy provided by a predictive model in a modelling

PhD Thesis Antonella Farinaccio

1.1. Preliminary Concepts 4

problem, and/or the value of a fitness or evaluation function in an opti-
mization problem. In a modelling problem, the term ”learning” refers to
running a computer program to induce a model by using training data or
past experience.

The exponential growth of the amount of biological data available (see
Fig. 1.1) raises at least two problems: need of capable information storage
and expert management and, secondly, the intelligent extraction of useful
information from these data. The second problem is one of the main chal-
lenges in computational biology. It requires the development of tools and
methods capable of transforming all these heterogeneous data into biologi-
cal knowledge about the underlying mechanism. These tools and methods
should allow one to go beyond a mere description of the data and provide
knowledge in the form of testable models. Predictions of the system should
be obtained by this simplifying abstraction that constitutes a model.

Figure 1.1: Evolution of the GenBank database size

Machine learning approaches (e.g., genetic programming, neural net-
works, hidden Markov models and belief networks) are ideally suited for
areas where there is a lot of data but little theory and this is exactly the

PhD Thesis Antonella Farinaccio

1.1. Preliminary Concepts 5

situation in molecular biology. As with its predecessor, statistical model
fitting, the goal in machine learning is to extract useful information from a
body of data by building good probabilistic models. The particular twist
behind machine learning, however, is to automate the process as much as
possible [Zhang and Rajapakse, 2008].

There are several biological domains where machine learning techniques
are applied for knowledge extraction from data, as showed in Fig. 1.2. The
main are genomics, proteomics, microarrays, systems biology, evolution and
text mining.

Figure 1.2: Classification of the biology-related topics where machine learning
methods are applied - Picture taken from [Larranaga et al., 2006]

Microarray essays are the best known (but not the only) domain where

PhD Thesis Antonella Farinaccio

1.1. Preliminary Concepts 6

this kind of data is collected.
Complex experimental data raise two different problems. First, data

need to be preprocessed, i.e. modified to be suitably used by machine learn-
ing algorithms. Second, the analysis of the data, which depends on what
we are looking for. In the case of microarray data, the most typical applica-
tions are expression pattern identification, classification and genetic network
induction.

Systems biology and computational intelligence is another domain where
biology and machine learning work together. It is very complex to model the
life processes that take place inside the cell. Thus, computational techniques
are extremely helpful when modelling biological networks, especially signal
transduction networks, metabolic pathways and genetic networks.

Moreover, machine learning often uses statistical methods when build-
ing computational models, since the objective is to make inferences from a
sample, and/or when making use of stochastic methods. Furthermore, it
uses statistical theory to evaluate the outcomes. The statistical methods
used in this thesis for the evaluation of the results obtained are described in
Chapter 3.

The two main steps in the machine learning process are to induce the
model by processing the huge amount of data as well as to represent the
model and make inferences efficiently. It must be noticed that the efficiency
of the learning and inference algorithms, as well as their space and time
complexity and their transparency and interpretability, can be as important
as their predictive accuracy. Note that the process of transforming data
into knowledge may be both iterative and interactive. The iterative phase
consists of several steps. In the first step, we need to integrate and merge
the different sources of information into a single format. By using data
warehouse techniques, the detection and resolution of outliers and inconsis-
tencies are solved. In the second step, it is necessary to select, clean and
transform the data. To carry out this step, we need to eliminate or correct
the incorrect data and instances.

Approximate algorithms always output a candidate solution, but it is
not guaranteed to be the optimal one. Optimization is also a fundamental
task when modelling from data. In fact, the process of learning from
data can be regarded as searching for the model that best fits the
data [Larranaga et al., 2006]. Therefore, an optimization method based

PhD Thesis Antonella Farinaccio

1.2. Motivations and Goals 7

on Genetic Programming(GP) is used in this thesis as a fundamental
ingredient of modelling. In Chapter 4 GP is described in depth.

The analysis of gene expression data achieved in this thesis has been
performed using GP and subsequently compared with other techniques of
Machine Learning, such as Support Vector Machines, Multilayered Percep-
tron, Random Forest, Radial Basis Function Network and Voted Perceptron.
So, a brief description of these methods is given in Chapter 3, where the ba-
sic concepts of Machine Learning and Data Mining are introduced, and,
as stated above, the statistical methods used to evaluate and validate the
results obtained by the developed systems are also described.

1.2 Motivations and Goals

1.2.1 Medical Decision Support System For Survival Predic-

tion in Breast Cancer

The advent of high-throughput techniques to measure gene expression led in
the last decade to a large body of research on gene expression as just stated,
and especially in cancer, in particular in view of the possibility of using gene
expression data to improve cancer patient classification.

The ability to accurately classify cancer patients into risk classes, i.e. to
predict the outcome of the pathology on an individual basis, is a key ingre-
dient in making therapeutic decisions, especially for cancer therapies, due to
their serious side effects. Therefore the classification of cancer patients into
risk classes is a very active field of research, with direct clinical applications.

A gene signature is a set of genes whose levels of expression can be used
to predict a biological state (see [Nevins and Potti, 2007]): in the case of
cancer, gene signatures have been developed both to distinguish cancerous
from non-cancerous conditions and to classify cancer patients based on the
aggressiveness of the tumor, as measured for example by the probability of
relapsing within a given time.

While many studies have been devoted to the identification of gene sig-
natures in various types of cancer, the question about which the algorithms
should be used to maximize the predictive power of a gene signature has
received less attention.

In this thesis, the intent is to investigate this issue systematically, con-
sidering one of the best established gene signatures, the 70-gene signature

PhD Thesis Antonella Farinaccio

1.2. Motivations and Goals 8

for breast cancer [van’t Veer et al., 2002]. In that work, a set of microarray
features were selected based on the correlation with survival, on which the
molecular prognostic test for breast cancer “MammaPrint”TMis based.

We aim at developing a Medical Decision Support System (GP-MDSS)
in order to perform a survival prediction of breast cancer giving also the
possibility of generating biological insight and hypotheses on the influence
of the various gene expression levels on the pathology.

1.2.2 Generator of Gene Regulatory Network and Dynamic

Simulator System

The principal purpose of this thesis is to investigate the functions of genes
and their mutual interactions. These functions can be better understood if
they are not only studied as isolated entities, but if their reciprocal relation-
ships are also investigated.

An ensemble approach which seems very promising is the study of Gene
Regulatory Networks. It is based on the hypothesis that genes that have
similar expression profiles should also have similar regulation mechanisms
as there must be a reason why their expression is similar under a variety
of conditions. Therefore, if we cluster the genes by similarities in their
expression profiles and take sets of promoter sequences from genes in such
clusters, some of these sets of sequences may contain a ”signal” as a specific
sequence pattern such as a particular substring, which is relevant to the
regulation of these genes.

However, Gene Regulatory Networks, far from being as straightfor-
ward as they may seem, are extremely complex systems, comprising
genes, proteins and other interacting molecules. So a field of systems
biology is emerging [Hasty and McMillen, 2002, Hayete et al., 2007,
Sprinzak and Elowitz, 2005] that is aimed at a formal understanding of
the biological processes caused by the numerous regulatory, signaling
and metabolic interactions between the different components and their
coordinated action. This is usually done by developing quantitative
mathematical models, able to describe changes in concentration of each
gene transcript and protein in a network as a function of their regulatory
interactions (Gene Regulatory Network).

The formalisms to model biological networks defined so far are numerous
(see for instance [Di Ventura et al., 2006, Szallasi et al., 2006]). A widely

PhD Thesis Antonella Farinaccio

1.2. Motivations and Goals 9

used one is the Random Boolean Network (RBN) that, notwithstanding its
numerous successes, in some cases could suffer from being too coarse.

Another commonly used model is based on a system of differential equa-
tions. It is a very powerful and flexible model to describe complex relations
among components, but it is not necessarily easy to determine the suitable
form of equations which represent the network. Thus, the form of the dif-
ferential equations was fixed during the learning phase in previous studies.
As a result, their goal was to simply optimize parameters, i.e., coefficients
in the fixed equations.

The aim of this thesis is to conceive a new model of Gene Regulatory
Network driven from data, to overcome some of the limitations of RBN’s. So
the goal is to develop a system that, extracting both the topology and the
activation functions directly from the time series gene expression microar-
ray data by means of GP, is able to generate the gene regulatory network
that underlies the data, to simulate the dynamics of the network and to
reconstruct the underlying time series.

1.2.3 An Application of Kernel Methods to Gene Cluster

Temporal Meta-Analysis

As just stated, microarrays are one of the most successful and widespread
technologies in the field of gene expression studies, enabling the paral-
lel measurement of thousands of transcripts for a given cellular extract
[Eisen et al., 1998, Lockhart and Winzeler, 2000], as described in more de-
tails in Chapter 2. But, after the generation of raw signals, the data need
to undergo a sophisticated process of statistical analysis [Speed, 2003].

So, the intent of this work is to address a more sophisticated design, such
as the profiling of different cellular systems (e.g. their response to different
stimuli), or the same system over a time-course (e.g. the cell cycle).
The principal purpose is to perform a dimensional reduction of data in order
to apply it to a study of a realistic genetic network using the Data Driven
Gene Regulatory Network developed in this work and described in Chapter 7.

The state-of-the-art approach is to perform clustering, in order to group
together genes with similar expression profiles across experiments, and then
summarize the clusters by identifying the most prominent functional groups.

If the same experiment is sampled using different technological platforms,
or if different experiments generate highly correlated data, this is informative

PhD Thesis Antonella Farinaccio

1.2. Motivations and Goals 10

to track similarities among different clusters. The most elementary solution
to evaluate cluster similarity is to count the number of overlapping genes;
however, this strategy is suboptimal when the clusters are generated from
partially or non-overlapping gene sets, as can happen when different tech-
nological platforms are used. A more general and high-level approach is to
compute similarity according to the functional profiles of the clusters; this
approach is usually called cluster meta-analysis.

A specific case of cluster meta-analysis is encountered when analyzing
time-course gene expression experiments. In this case the temporal
dimension can be exploited to gather information about the dynamics
of the biological system under observation. Most analysis setups for
time-course experiments analyze the time-span of the measurements
globally, [Bar-Joseph, 2004, Ernst and Bar-Joseph, 2006], and may
generate clusters spanning the full length of the time-course; consequently,
genes are associated into a cluster only if their expression is coordinated for
the entire duration of the experiment.

In this thesis a different approach is followed where gene expression
experiments are analyzed by splitting the time course into shorter time-
windows.

The key observation is that temporally localized (i.e., within a limited
sequence of time-steps) relationships among genes are worth detecting.

If the time-course is split into shorter time-windows, and clusters are gen-
erated separately within each window, it is possible to concentrate on tem-
porally localized gene relationships. In this method a cluster meta-analysis
method is required to detect further relationships among clusters belong-
ing to consecutive time-windows. The result of this meta-analysis will be
the reconnection of the clusters from different windows, in order to better
visualize the temporal evolution of the system.

Clustering meta-analysis is a valuable resource for the understanding of
complex microarray data-sets. In particular, segmenting time-course exper-
iments enables to identify local patterns; clustering meta-analysis enables to
track the differences and similarities among such patterns. A typical ques-
tion answered by the proposed framework is the following: are two functional
groups of genes constantly co-expressed along a time-course, or in related
yet different experiments?

PhD Thesis Antonella Farinaccio

PART I

BIOLOGICAL AND

COMPUTATIONAL

BACKGROUND

Chapter 2

Elements of Molecular Biology

2.1 Organisms and cells

In this chapter well known concepts are described that are useful for the
comprehension of this dissertation. Contents of molecular cell biology
are based on [Albert et al., 2010, Lodish et al., 2008, Watson et al., 2004,
Nelson and Cox, 2000, Muller-Esterl et al., 2004], knowledge of microarray
analysis is acquired from [Amaratunga and Cabrera, 2004, Knudsen, 2002,
Gentleman et al., 2005, Emmert-Streib and Dehmer, 2008] and many
pictures are taken from [Farabee,].
With the invention of the microscope, it became clear that all living
organisms are composed of small cells, that cells can also exist as
independent organisms, and that individual cells are living in the sense
that they can grow, reproduce, convert energy from one form into another,
control their internal working, respond to their environment, and so
on [Lodish et al., 2008, Watson et al., 2004, Muller-Esterl et al., 2004,
Nelson and Cox, 2000]. Each cell is a complex system of many different
membrane-enclosed units filled with a concentrated acqueous solution of
chemicals and provided with the astonishing ability to create copies of
themselves by growing and dividing in two. The simplest forms of life
are solitary cells, they are unicellular organisms, consisting of only one
cell, like bacteria, amoeba and baker’s yeast. Each of these kinds of cell is
able to survive and multiply independently in an appropriate environment.
Higher organisms, including humans, are communities of cells derived by
growth and division from a single founder cell: each animal, plant, or
fungus is a vast colony of individual cells that perform specialized functions
coordinated by complex systems of communication.
Cell biologists often speak of ”the cell” without specifying any particular
cell. But cells are not all alike; in fact they can be widely different. It is
estimated that there are at least 10 million of distinct species of living

12

2.1. Organisms and cells 13

things in the world and about 320 different types in the 6x1013 cells of
human body. For instances there are several types of skin cells, muscle
cells, brain cells (neurons), among many others. The number of cell types is
not well-defined and depends on the similarity threshold (the level of detail
we would like to use to distinguish the cell types; for instance, it is unlikely
that we could find two identical cells in an organism if we counted the
number of their molecules). But what does a bacterium have in common
with the cells of a butterfly, what do the cells of a rose have in common
with those of a dolphin? And in what ways do they differ?
Cells vary widely in size, shape and functions, and in chemical requirements
and activities. For example, some cells need oxygen to live, while for others
it is deadly. Some consume little more than air, sunlight and water, as
their raw materials; other need a complex mixture of molecules produced
by other cells. Some appear to be specialized factories for the production
of particular substances, such as hormones, starch, fat, latex, or pigments.
Some are engines, like muscles, burning fuel to do mechanical work, other
are electricity generators.
Although they are infinitely varied when viewed from the outside, all
living things are fundamentally similar inside. Nowadays we know that
cells resemble one another to a surprising degree in the details of their
chemistry, sharing the same machinery for the most basic functions. All
cells are composed of the same sorts of molecules that partecipate in the
same types of chemical reactions.
Traditionally, cell biologists divided the organisms into two big groups and
two types of cells respectively: organisms whose cells have a nucleus are
called eukaryotes (from the Greek word eu, meaning ”well” or ”truly”, and
karion, a ”kernel” or ”nucleus”), instead organisms whose cells do not have a
nucleus are called prokaryotes (from pro, meaning ”before”). However, most
organisms which we can see, such as trees, grass, flowers, weeds, worms,
flies, mice, cats, dogs, humans, mushrooms and yeast are eukaryotes,
whereas bacteria and archea belong to the procaryotes. Nowaday molecular
studies reveal that there is an enormous difference within the class of
procaryotes, dividing it into two distinct domains called the eubacteria and
the archea [Albert et al., 2010, Lodish et al., 2008]. For our purpose, it is
enough to distinguish between eukaryotes and prokaryotes.

Prokaryotic cells are smaller than eukaryotic cells (Fig. 2.1): a typical

PhD Thesis Antonella Farinaccio

2.1. Organisms and cells 14

size of a prokaryotic cell is about 1 micron in diameter and has a simpler
structure (e.g., it does not have any inner cellular membranes that are always
present in Eukaryotes, see below). Prokaryotes are single cellular organisms,
but the opposite is not true: if an organism is a single cell it is not necessarily
a prokaryote. They are sometimes also known as microbes.

Figure 2.1: A figurative comparison of eukaryotic and procariotic cell - Picture
taken from On-Line Biology Book [Farabee,]

Eukaryotic cells, in general, are bigger and more elaborate than bacteria
and archea. Some live independent lives as single-celled organisms, such as
amoeba and yeast; others live in multicellular assembly. Such a cell has a
nucleus, which is separated from the rest of it by a membrane. The nu-
cleus contains chromosomes, which are the carrier of the genetic material.
There are internal membrane enclosed compartments within eukaryotic cells,
called organelles, e.g., centrioles, lysosomes, golgi complexes, mitochondria,
among others (Fig. 2.2), which are specialised for particular biological pro-
cesses. The area of the cell outside the nucleus and the organelles is called
the cytoplasm. Membranes are complex structures which provide an effec-
tive barrier to the environment, and regulate the flow of food, energy and
information in and out of the cell.

An essential feature of most living cells, prokaryote and eukaryote, is
their ability to create copies of themselves by growing and dividing into
two. The growth of a single cell and its subsequent division is called the
cell cycle. However, not all cells continually grow and divide, for example
neurons only undergo an initial growth phase. Prokaryotes, particularly
bacteria, are extremely successful at multiplying. Multicellular organisms
typically begin life as a single cell, usually as a result of fusion of a male and a
female sex cell (gametes). The single cell has to grow, divide and differentiate

PhD Thesis Antonella Farinaccio

2.2. Molecules of life 15

Figure 2.2: A model of eukaryotic cell - Picture taken from On-Line Biology
Book [Farabee,]

into different cell types to produce tissues and, in higher eukarotyes, organs.
Cell division and differentiation need to be controlled. Cancerous cells grow
without control and can go on to form tumours. Development of single cells
into complex organisms is in itself an area of study called developmental
biology. It has a relevant effect on the modern biology, in fact the Nobel
Prize for Physiology or Medicine in 2001 has been awarded to scientists
for the discoveries of key regulators of the cell cycle. In 2002, it has been
awarded to scientists for their discoveries concerning ’genetic regulation of
organ development and programmed cell death’, and in 2006 to scientists
for their discovery of RNA interference - gene silencing by double-stranded
RNA.

2.2 Molecules of life

Cells consist of molecules. There are four basic kinds of molecules implied
in life: (1) small molecules, (2) proteins, (3) DNA (4) RNA.
Proteins, DNA and RNA are known collectively as macromolecules.

2.2.1 Small molecules

Small molecules can be the building blocks of the macromolecules or can
have independent roles, such as signal trasmission or being a source of energy
or material for cells. Some relevant examples besides water are sugar, fatty
acids, amino acids and nucleotides. These small organic molecules account
for 75-80 % of living material by weight, of which water is by far the most

PhD Thesis Antonella Farinaccio

2.2. Molecules of life 16

abundant. The rest of living material consists of macromolecules, including
proteins, DNA and RNA (Fig. 2.3).

Figure 2.3: This illustration shows a cross-section of a small portion of an Es-
cherichia coli cell. The cell wall, with two concentric membranes studded with
transmembrane proteins, is shown in green. A large flagellar motor crosses the
entire wall, turning the flagellum that extends upwards from the surface. The cyto-
plasmic area is colored in blue and purple. The large purple molecules are ribosomes
and the small, L-shaped maroon molecules are tRNA, while the white strands are
mRNA. Enzymes are shown in blue. The nucleoid region is shown in yellow and
orange, with the long DNA circle shown in yellow, wrapped around the HU protein
(bacterial nucleosomes). [Illustration by D.Goodsell [Goodsell, 2009]]

Cells acquire and use these two size classes of molecules (small molecules
and macromolecules) in essentially different ways. Ions, water, and many
small organic molecules are imported into the cell. Cells also make and alter
many small organic molecules by a series of different chemical reactions.
In contrast, cells can obtain macromolecules only by making them. Their
synthesis entails linking together a specific set of small molecules (monomers)
to form polymers through the repetition of a single type of chemical-linkage
reaction.

For example the protein macromolecules are built of amino-acids
molecules. There are 20 different amino acid molecules. They differ by the
R side chains which determine their properties while the order of these
different amino acids within the protein determines the three-dimensional
structure of the protein, some of which are shown in Fig. 2.4. There is a

PhD Thesis Antonella Farinaccio

2.2. Molecules of life 17

convention that each amino acid is denoted by a letter in Latin alphabet,
for instances Arginine is denoted by R, Histidine by H, Lysine by L, and so
there are 20 such letters.

Figure 2.4: The image shows the basic composition of three amino acids: Arginine,
Histidine and Lysine

Some small molecules function as precursors for the synthesis of macro-
molecules, and the cell provides the appropriate mix of small molecules
needed. Small molecules also store and distribute the energy for all cel-
lular processes; they are broken down to extract this chemical energy, as
when sugar is degraded to carbon dioxide and water with the release of the
energy bound up in the molecule. Other small molecules (e.g., hormones and
growth factors) act as signals that direct the activities of cells, and nerve
cells communicate with one another by releasing and sensing certain small
signaling molecules.

2.2.2 Proteins

Proteins have complex three-dimensional (3D) structure (Fig. 2.5). They
are the workhorses of the cell and are the most abundant and functionally
versatile of the cellular macromolecules. Among others, there are:

• Transmembrane proteins they play a key role in maintenance of the
cellular environment, as communication between cells, communication
between organells and cytosol, nutrient transport, receptor for viruses,
regulating cell volume, extraction and concentration of small molecules
from the extracellular environment, and generation of ionic gradients
essential for muscle and nerve cell function.

• Structural proteins, which are the main basic building blocks of the
organism. An example is elastin that is a critical components of con-

PhD Thesis Antonella Farinaccio

2.2. Molecules of life 18

nective tissue. It allows many tissues in the body to resume their shape
after stretching or contracting and helps skin to return to its original
position when it is poked or pinched.

• Enzymes, which increase the rate of chemical reactions (catalyze) such
as altering, joining together or chopping up other molecules. Like
all catalysts, enzymes work by lowering the activation energy for a
reaction, thus dramatically increasing the rate of the reaction. Most
enzyme reaction rates are millions of times faster than those of compa-
rable un-catalyzed reactions. Together these reactions and the path-
ways they make up is called metabolism. Usually enzymes are very
specific and catalyze only a single type of reaction, however the same
enzyme can play role in more than one pathway.

Figure 2.5: 3D structure of Human Hemoglobin protein

2.2.3 DNA

Deoxyribonucleic acid (DNA) is an informational molecule that contains, in
the sequence of its nucleotides, the information required to build all proteins
of an organism, and hence the cells and tissues of that organism . It is ideally
suited to perform this function on a molecular level (Fig. 2.7). Its chemical
structure is finely stable under most terrestrial conditions, as exemplified by

PhD Thesis Antonella Farinaccio

2.2. Molecules of life 19

the ability to recover DNA sequence from fossils that are tens of thousands of
year old. For this characteristic of long-term storage of information it is often
compared to a set of blueprints or a recipe, or a code, since it contains the
instructions needed to construct other components of cells, such as proteins
and RNA molecules. The DNA segments that carry this genetic information
are called genes, but other DNA sequences have structural purposes or are
involved in regulating the use of this genetic information. Genes are the
core ingredient of this thesis, they are the start and the end of the study
presented here. In fact, the long term target of the scientific line in which this
thesis is inserted is the investigation of genes functionalities in a biological
organism, through the exploration of their mutual interaction. In order to
approach this aim, the relations between genes and diseases are investigated
through a knowledge extraction from time series of gene expression data.
To this end a Medical Decision Support System for the survival prediction
in breast cancer has been developed, and is described in depth in Chapter 5
and Chapter 6. Morever, with the purpose to investigate on the genes and
their mutual interaction, a mathematical model has been identified and a
system for the reconstruction of the control network that involves interaction
between genes has been developed; it is named Gene Regulatory Network
Generator and Simulator is described in Chapter 7. Furthermore a method
useful for its application is showed in Chapter 8.
So, for the comprehension of the following systems, this entire chapter is
dedicated to the description of the basic concepts about genes and related
notions.

From the chemical point of view, a molecule of DNA consists of two
long polynucleotide chains. Each of these DNA chains, or DNA strands, is
composed of four types of nucleotide subunits, and the two chains are held
together by hydrogen bonds between the base portions of nucleotides. The
members of each pair can fit together within the double helix because the
two strands of the helix run antiparallel to each other, that is, they are
oriented with opposite polarities (Fig. 2.6).

Attached to each sugar is one of four types of molecules called bases,
(which are, in fact, the only distinguishing elements between different nu-
cleotides, (Fig. 2.8) and are denoted by their initial letters, A,C ,G and
T.

The information is encoded according to the sequence of these four

PhD Thesis Antonella Farinaccio

2.2. Molecules of life 20

Figure 2.6: Rendering of two complementary bases on a DNA molecule (picture
taken from On-Line Biology Book)

bases along the backbone. Different nucleotides can be linked together in
any order to form a polynucleotide, for instance, like this:
A-G-T-C-C-A-A-G-C-T-T
Polynucleotides can be of any length and can have any sequence. The
two ends of this molecule are chemically different, i.e., the sequence has a
directionality, like this:
A->G->T->C->C->A->A->G->C->T->T
The end of the polynucleotide are marked either 5’ and 3’ (this has
chemical reasons in the numbering of the -OH groups of the sugar ring);
by convention DNA is usually written with 5’ left and 3’ right, with the
coding strand at top. Two such strands are termed complementary, if one
can be obtained from the other by mutually exchanging A with T and C
with G, and inverting the direction of the molecule. For instance:
<-T<-C<-A<-G<-G<-T<-T<-C<-G<-A<-A
is complementary to the polynucleotide given above.
Specific pairs of nucleotides can form weak bonds between them. A binds
to T, C binds to G (to be more precise, two hydrogen bonds can be formed
between each A-T pair, and three hydrogen bonds between each C-G
pair). Although such interactions are individually weak, when two longer
complementary polynucleotide chains meet, they tend to stick together, as
shown in Fig. 2.9.

Vertical lines between two strands represent the forces between them (to
be more accurate we could draw triple lines between each C and G and
double lines between A and T) as shown in Fig. 2.10. The A-T and G-C
pairs are called base-pairs (bp). The length of a DNA molecule is usually
measured in base-pairs or nucleotides (nt), which in this context is the same
thing.

PhD Thesis Antonella Farinaccio

2.2. Molecules of life 21

Figure 2.7: DNA molecules inside the cell’s nucleus tightly packed into chromo-
some

The antiparallel sugar-phosphate strands twist around each other to form
a double helix containing 10 base pairs per helical turn, which is about 3.4
nm long (Fig. 2.11, Fig. 2.12).

It is noticeable that two complementary DNA polypeptides form a sta-
ble double helix almost regardless of the sequence of the nucleotides. This
makes the DNA molecule a perfect medium for information storage. A con-
sequence of the double helix base-pairing requirements is that each strand
of a DNA molecule contains a sequence of nucleotides that is exactly com-
plementary to the nucleotide sequence of its partner strand - an A always
matches a T on the opposite strand, and a C always matches a G - there-
fore for the information extraction it is enough to give only one strand of
the genome molecules. Thus, for many information related purposes, the
molecule used on the example above can be represented as just the sequence
CGATTCAACGATGC. The maximal amount of information that can be

PhD Thesis Antonella Farinaccio

2.2. Molecules of life 22

Figure 2.8: Two nucleotides that differes from bases (picture taken from On-Line
Biology Book)

Figure 2.9: Two complementary polynucleotides sticked together

encoded in such a molecule is therefore 2 bits times the length of the se-
quence. Noting that the distance between nucleotide pairs in DNA is about
0.34 nm, we can calculate that the linear information storage density in DNA
is about 6x108 bits/cm, which is approximately 75 GB or 125 CD-ROMs per
cm.
The complementarity of two strands in the DNA is exploited for copying
(multiplying) DNA molecules in a process known as the DNA replication,
in which one double stranded DNA is replicated into two identical ones.
The DNA double helix unwinds and forks during the process, and a new
complementary strand is synthesized by a specific molecular procedure on
each branch of the fork. After the process is finished there are two DNA
molecules identical to the original one. In a cell this happens during cell
division and a copy identical to the original goes to each of the new cells.

It is remarkable that mismatched components between polynucleotide
strands are possible, if the total sum of weak forces between the comple-
mentary nucleotides are strong enough. So the molecules shown in Fig. 2.13
are chemically possible, though they may be rare in a living cell. More
bonds, i.e., more complementary pairs, make the molecule more stable. If
there are not enough bonds, the two stranded molecular structure may be-
come weak and the strands may be separated. DNA which is no longer in
the helical form is said to be denatured.

PhD Thesis Antonella Farinaccio

2.2. Molecules of life 23

Figure 2.10: Chemical structure of DNA

2.2.4 RNA

Ribonucleic acid (RNA) was discovered after DNA. DNA, with exceptions
in chloroplasts and mitochondria, is restricted to the nucleus (in eukaryotes,
to the nucleoid region in prokaryotes); instead, RNA occurs in the nucleus
as well as in the cytoplasm. RNA is constructed from nucleotides, as DNA,
but differs in few very important details: instead of the thymine (T), it has
an alternative base, the uracil (U), which is not found in DNA. Because of
this minor difference, RNA does not form a double helix, instead usually
it is single stranded, but may have complex spatial structure due to com-
plementary links between the parts of the same strand. RNA has various
functions in a cell required for protein synthesis.

RNA can bind complementarily to a single strand of a DNA molecule,
even though T is replaced by U, so molecules like that shown in Fig. 2.14
are possible and, in fact, play an important role in life processes and in
biotechnology.

PhD Thesis Antonella Farinaccio

2.3. Genes and Genomes 24

Figure 2.11: A space-filling model shows the conformation of the DNA double
helix. The two strands of DNA wind around each other to form a right-handed
helix with 10 bases per turn.

2.3 Genes and Genomes

2.3.1 Chromosomes, Genomes and Sequencing

Large amounts of DNA are required to encode all the information needed to
make even a single-celled bacterium, and far more DNA is needed to encode
the instructions for the development of multicellular organisms like humans.
Each human cell contains about 2 m of DNA; yet the cell nucleus is only
5-8 µm in diameter. Tucking all this material into such a small space is the
equivalent of trying to fold 40 km (24 miles) of extremely fine thread into a
tennis ball.
In eucaryotic cells, very long double-stranded DNA molecules are packaged
into structures called chromosomes, which not only fit readily inside the nu-
cleus but can be easily apportioned between the two daughter cells at each
cell division. The complex task of packaging DNA is accomplished by spe-
cialized proteins that bind to and fold the DNA, generating a series of coils
and loops that provide increasingly higher levels of organization and prevent
the DNA from becoming an unmanageable tangle. Amazingly, the DNA is
compacted in a way that allows it to remain accessible to all of the enzymes

PhD Thesis Antonella Farinaccio

2.3. Genes and Genomes 25

Figure 2.12: A section of DNA. The bases lie horizontally between the two spiraling
strands

Figure 2.13: Molecules with mismatched components between polynucleotide
strand

and other proteins that replicate it, repair it, and direct the expression of
its genes.
There is a molecular machinery in cells, which keeps both DNA strands in-
tact and complementary (i.e., if one strand is damaged, it is repaired using

PhD Thesis Antonella Farinaccio

2.3. Genes and Genomes 26

Figure 2.14: A complementary bind between RNA and a single strand of
DNA

the second as a template). This is important as DNA damage (caused by
environmental factors like radiation) can result in breaks in one or both
strands, or mispairing of the bases, which would disrupt DNA replication
among other things. If damaged DNA is not repaired the result can be cell
death or tumours. Changes in genomic DNA are known as mutations. In
this context the developed Medical Decision Support System for the sur-
vival prediction in breast cancer is inserted, which is described in depth in
Chapter 5 and Chapter 6.

Determining the four-letter sequence for a given DNA molecule is known
as the DNA sequencing. The first full genome for a bacterium was sequenced
in 1995. The yeast (Saccharomyces cerevisiae) genome was sequenced in
1997, worm (nematode Caenorhabditis elegans) in 1999, fly (Drosophila
melanogaster) in 2000, and weed (Arabidopsis thaliana) in 2001. The se-
quencing of the human genome was completed in 2003.

2.3.2 Genes and Protein Synthesis

Genomes contain genes, most of which encode proteins.
There are many discussions between biologists aimed at finding a compre-
hensive definition of a gene, which is not easy, if possible at all.

The definition given by Lodish et al. in [Lodish et al., 2008] is:
” A Gene is the entire nucleic sequence that is necessary for the synthesis of
a functional polypeptide.”
To better understand this definition, it is necessary to describe the molecu-
lar machinery making proteins based on the information encoded in genes.
This process is called protein synthesis and has three essential stages: (1)
transcription, (2) splicing, and (3) translation.

I. In the transcription phase the two-stranded DNA double helix is
unwound and information is read only from one strand. The protein

PhD Thesis Antonella Farinaccio

2.3. Genes and Genomes 27

complex, called RNA polymerase II, copies one strand of the DNA
molecule into a complementary strand called pre-mRNA (pre stands
for preliminary and m for messenger).

II. The genomic DNA that corresponds to the coding part of genes is not
continuous, but consists of exons and introns. Exons are the part of
the gene that encode proteins; they are interspersed with non-coding
introns which must be removed (Fig. 2.15).

Figure 2.15: Introns and exons in a double strand of DNA

Splicing is the stage that removes the introns and joins together the
remaining sections of the pre mRNA, the exons (Fig. 2.16). The num-
ber and size of introns and exons differs considerably between genes
and also between species. Prokaryote genes do not have introns and
the splicing step is not present. The result of splicing is mRNA. Many
eukaryote genes are known to have different alternative splice vari-
ants, i.e. the same pre-mRNA producing different mRNAs, known as
alternative splicing.

Figure 2.16: A scheme of transcription phase of DNA into mRNA

III. Translation is the process of making proteins by joining together

PhD Thesis Antonella Farinaccio

2.3. Genes and Genomes 28

amino-acids in the order encoded in the mRNA. The order of the
amino acids is determined by 3 adjacent nucleotides in the DNA. This
is known as the triplet or genetic code. Each triplet is called a codon
and codes for one amino-acid. As there are 64 codons and only 20
amino-acids the code is redundant, for example histidine is encoded
by CAT and CAC.

Figure 2.17: Polysome forms: a structure in which many ribosomes read the same
message

In cytoplasm the mRNA forms a complex with ribosomes, which are
large complex of proteins and RNA molecules. Each different transfer
(or tRNA molecule) carries one specific amino acid to the ribosome and
specifically recognises one codon on the mRNA. The amino acid carried
by the tRNA is added to the nascent (growing) protein, Fig. 2.17.
The end of translation is the final part of gene expression and the
final product is a protein, the sequence of which corresponds to the
sequence encoded by the mRNA. Anyway, the translation is a complex
process and not all the details are yet understood.

Moreover, proteins can be modified post-translationally, e.g., by adding
of sugars or cleavage (chopping), and this affects their location and
function.
Biologists used to believe in the paradigm ”one gene - one protein”.
Now this is known not to be true, since, due to alternative splicing and
post-translational modifications, one gene can produce a variety of proteins.
There are also genes that do not encode proteins but encode RNA (for
instance tRNA and ribosomal RNA); for a more detailed explanation
see [Albert et al., 2010] .

PhD Thesis Antonella Farinaccio

2.3. Genes and Genomes 29

2.3.3 Gene Prediction, Counting, Annotation

Given the genomic DNA sequence, the detection of the exact location of
the genes is yet an attractive challenge. The current methodologies and
technologies are able to achieve this purpose [Polymeropoulos et al., 1996],
although the accuracy of such predictions is not very high. Most of the know-
how needed to make these predictions comes from experimentally identified
genes. It is an important problem for computational biology and there
are a number of applications approaching this issue, including DNA se-
quencing, DNA fragment assembly, multiple sequence alignment, protein
function prediction, gene expression, gene selection and cancer classifica-
tion [Vanneschi et al., 2010, Farinaccio et al., 2010, Hassanien et al., 2008,
Altman et al., 2001, Cios et al., 2005, Ezziane, 2006]. The first two refer-
ences are related with a part of the work presented in this thesis, in Chap-
ter 5 and Chapter 6.

A related issue is the detection of when and where genes are expressed
in the cell, or in the organism as a whole. Determining the pattern and
timing of a gene’s expression can be accomplished by associating the regu-
latory region of the gene under study to a reporter gene, whose activity can
be monitored. Gene expression is controlled by regulatory DNA sequences,
usually located upstream of the coding region, that are not trascribed them-
selves. These regulatory sequences, which control which cells will express a
gene and under what conditions, can also be made to control the expression
of a reporter gene. The level, timing, and cell specificity of reporter protein
production will reflect the function of the original gene as well as the action
of the regulatory sequences that belong to it.

Moreover, one gene can affect the expression of another gene by binding
of the gene product of one gene to the promoter region of another gene.
Looking at more than two genes, we refer to the regulatory network as the
regulatory interactions between the genes. If we have a large number of
measurements of the expression level of a number of genes, we should be
able to model or reverse engineer the regulatory network that controls their
expression level.
To this purpose, in the second phase of this thesis a system for a gene
regulatory network reconstruction has been developed, which is described in
Chapter 7.
No matter which organism is analysed, there is a large fraction of genes that

PhD Thesis Antonella Farinaccio

2.3. Genes and Genomes 30

is not yet functionally characterized. They have been predicted either by a
match to homologous gene in another organism, or by gene finding in the
genomic sequence.
Gene finding uses computer software to predict the structure of genes based
on DNA sequence alone [Guigo et al., 1992]. Hopefully they are marked as
’hypothetical’ genes by annotator. For certain purposes, for example when
designing a chip to measure all genes of a new microrganism, we are not able
to rely exclusively on functionally characterized genes and genes identified
by homology. To get a better coverage of genes in the organism we may
have to include those predicted by gene finding.

So it is important to measure the quality of the gene finding meth-
ods and approaches that have been used. While expression analysis may
be considered a good method for experimental verification of predicted
genes (if we find expression of the predicted gene it confirms the predic-
tion), this method can become a costly verification if there are hundreds
of false positive predictions that all have to be tested. A study of Skov-
gaard [Skovgaard et al., 2001], showed that for Escherichia Coli the pre-
dicted number of 4300 genes probably contains 500 false positive predic-
tions. The most extreme case is the Archea Aeropyrum Pernix where all
open reading frames longer than 100 triplets were annotated as genes. Half
of these predictions are probably false [Skovgaard et al., 2001].

Thus, for all these reasons, it is not yet entirely obvious how to count
genes in the genome. Due to the existence of overlapping genes and splice
variants, it is difficult to define which parts of the DNA should be regarded
as the same or several different genes. In a rough manner, allowing for
some experimental error described above, we can count how many genes an
organism has. Some of the results of the counting of predicted genes have
turned out to be quite surprising. For instance, the number of genes in a
human genome, compared to the genome of a worm, is relatively small 2.1.

Organism Number of predicted genes Percentage of genes that encode proteins (exons)

E.Coli (bacteria) 5000 90%

Yeast 6000 70%

Worm 18000 27%

Fly 14000 20%

Weed 25500 20%

Human 30000 < 5%

Table 2.1: Percentage of exons in E.Coli, Yeast, Worm, Fly, Weed and Human

PhD Thesis Antonella Farinaccio

2.3. Genes and Genomes 31

The presence of 95% of non-coding DNA in the human genome (some-
times called the junk DNA) remains not understood at all.

2.3.4 Genome Similarity and Genetic Variation

Actually it is well-known that there is no people having the same genome as
another one, with the exception of identical twins. When the same region of
the genome from two different humans is compared, the nucleotide sequences
typically differ by about 0.1% . That may seem an insignificant degree of
variation, but considering the size of the human genome, that amounts to
some 3 million genetic differences in each maternal or paternal chromosome
set between one person and the next.
Most of the genetic variation in the human genome takes the form of single-
base changes called single-nucleotide polymorphisms (SNPs.) These poly-
morphisms are DNA sequence mutations which occur when a single nu-
cleotide (A,C,G or T) is altered so that different individuals may have dif-
ferent nucleotide in these positions.
Two human genomes chosen at random from the world’s population will
differ by approximately 2.5x106 SNPs that are scattered throughout the
genome. Since SNPs are present in such quantities, they provide useful
markers in genetic analyses in which one tries to link a particular property
(such as disease susceptibility) with a specific pattern of SNPs. For exam-
ple, there is evidence that certain combinations of SNPs occur in individuals
with Alzheimer’s disease. This type of analysis should lead to improvements
in healthcare by allowing specialists to determine whether an individual is
vulnerable to a disease, such as heart disease, breast cancer, etc. So the
subject person can change behavior to help prevent the disease before it
arises or becomes irreversible. The Medical Decision Support System for
survival prediction in breast cancer, presented in Chapter 5 and Chapter 6
is developed to this purpose.

Some SNPs vary in frequency between different populations, so SNPs
analysis can also be used in population genetics studies. There are about 3
million SNPs collected in public SNP databases.

In addition to the SNPs, there are several different sources of variation
inherited from our ancestors, like the duplication and deletion of large blocks
of DNA and like repetitive nucleotide sequences that are particularly prone
to new mutations. CA repeaters, for example, are ubiquitous in the human

PhD Thesis Antonella Farinaccio

2.4. Functional Genomics 32

genome. Nucleotide sequences containing large numbers of CA repeats are
often replicated inaccurately; hence the exact number of repeats can vary
widely from one individual to another. Since they show such exceptional
variability, they make ideal markers for differences between individual hu-
mans. In fact, at present, differences in the numbers of CA and other types
of repeats at different positions in the genome are used to identify individu-
als by DNA fingerprinting in crime investigations, paternity suits, and other
forensic investigations.

Most of the variations in the human genome sequence are genetically
silent, as they fall within DNA sequences in noncritical regions of the
genome. Such variations have no effect on how we look and how our cells
function. This means that only a small subset of the variation we observe
in our DNA is responsible for the heritable differences from one human
to the next. A major challenge in human genetics is to learn to recognize
those relatively few variations that are functionally important against the
large background of neutral variation.

2.4 Functional Genomics

Even with the human genome sequence in hand, many questions will con-
tinue to challenge cell biologists throughout the next century. Functional
genomics can be roughly defined as using the emerging knowledge about
genomes to answer these questions, understanding the gene and their prod-
uct functions and interactions, and most importantly of all, comprehending
how all this makes organisms function the way they do.

2.4.1 Gene Regulatory Networks

Traditionally molecular biology has followed the so-called reductionist ap-
proach mostly concentrating on the study of a single or very few genes in any
particular research project. There is a proverb: ”one gene at a time” or ”one
post-dot, one gene”. With genomes being sequenced, this is now changing
into the so-called systems approach. Almost all cells in a particular organ-
ism have an identical genome, so we can begin asking questions such as how
many genes are expressed in different cell types, which genes are expressed
in all cell types, what are the functional roles of these genes, how big is the
gene function universe, how many genes are needed for life, how it can be

PhD Thesis Antonella Farinaccio

2.4. Functional Genomics 33

that a worm has more genes than a fly, and the human only a bit more
than a worm, and, of course the most perplexing questions about human
genome: given that a human, a chimp and a mouse contain essentially the
same genes, and therefore the same proteins, what makes these creatures so
different from each other?

The answer, it seems, will come in large part from studies of gene regu-
latory network. The protein encoded in the genome are like the components
of a construction kit. By assembling the components in different combina-
tions and in different orders, many different things can be built with the
same kit. Anyway, the overall shape of the final object is determined by the
instructions that prescribe how the components are to be put together.

To a large extent, the instructions needed to produce a multicellular
animal are contained in the noncoding regulatory DNA that is associated
with each gene. This DNA contains sparse within it, dozen of separate
regulatory elements, short DNA segments that are used as binding sites for
specific transcription regulators. This regulatory DNA can be said to define
the sequential program of development of the rules that cells follow as they
proliferate, assess their positions in the embryo, and switch on new sets of
genes accordingly.

Altough comparison among many different species are a powerful way
to locate key regulatory sequences in a vast excess of irrilevant DNA, we
still do not know how to read these sequences accurately. For example,
different transcription regulators can bind to the same short strech of DNA,
so that knowing the DNA sequence is not enough to specify which protein
or proteins might really regulate the gene. In addition, the fact that control
of gene expression occur in complex and combinatorial ways complicates our
attemps to decode when in development and in which type of cell each gene
is expressed.

Another challenge in interpreting the information encoded in the human
genome comes from the prevalence of alternative splicing. We know that
most human genes are subjected to alternative splicing, allowing cells to
produce a range of related but distinct proteins from a single gene. Often
this splicing is regulated, so that one form of the protein is produced in one
type of tissue, while other forms are produced preferentially in other tissues.
Thus an organism can produce far more protein products than it has genes.
We do not know enough yet about the biology of alternative splicing to

PhD Thesis Antonella Farinaccio

2.5. Microarrays and Gene Expression 34

predict exactly which human genes are subject to this process, and when
and where during development such regulation might occur. However, it
does seem that alternative splicing is especially prevalent in the developing
brain.

Another doubt in interpreting the human genome concerns the exact
roles of microRNAs. Discovered relatively recently, these short RNAs reg-
ulate as many as one-third of all human genes, yet few of them have been
studied in any detail. Finally, although an estimated 1.5% of the human
genome codes for protein, an additional 3.5% is highly conserved when com-
pared with that of other mammalian genomes, and is therefore presumed
to be considerable. Some of this conserved DNA produces RNA molecules
of known function and some is regulatory DNA; the rest remains a mis-
tery [Albert et al., 2010].

Microarrays (see next section) and computational methods are playing
a major role in attempts to reverse-engineering gene networks from vari-
ous observations. Note that, in reality, the gene regulation is likely to be a
stochastic and not a deterministic process. For this reason an attempt to
reconstruct and simulate it is performed in this thesis using a stochastic ap-
proach and implemented through Genetic Programming, a non deterministic
algorithm-based methodology.

2.5 Microarrays and Gene Expression

As previously described, proteins in a cell are synthesised from genes and
their life cycle can be roughly described as synthesis, functionality and
degradation. Nobody really knows how many different proteins are synthe-
sized from the estimated 36.000 genes in a human cell [Lodish et al., 2008,
Albert et al., 2010].
The protein abundance may depend on many factors such as whether the
respective gene is expressed (i.e., is actively transcribed) or not, how inten-
sively (how fast) it is expressed, whether and how fast it is spliced, trans-
lated and modified, how long a half-life the mRNA and the protein have,
and whether it is actively degraded at a given moment. Direct experimental
studies of protein abundance are technically difficult at present. However,
thanks to the microarray technology (see the next section), it is possible
to measure the mRNA abundance (gene expression) for tens of thousands

PhD Thesis Antonella Farinaccio

2.5. Microarrays and Gene Expression 35

of genes in parallel in a single experiment. The correlation between gene
expression and the presence of the respective proteins in the cell is not
straightforward, still in many cases some estimates about the proteins can
be made from gene expression.

Microarray technology makes use of the sequence resources created by the
genome projects and other sequencing efforts to answer the question, what
genes are expressed in a particular cell type of an organism, at a particular
time, under particular conditions. For instance, they allow comparison of
gene expression between normal and diseased cells (e.g., cancerous cells),
between cancerous and non-cancerous conditions, allowing also a prediction
on patients survival status, as the case presented in Chapter 5 and Chapter 6.

2.5.1 Microarrays Technology and Applications

The DNA microarrays (microarray or array for short) were developed as
an extensive mean of monitoring the expression patterns (or more precisely
the transcription patterns) of large numbers of genes (sometimes even en-
tire genomes) at once, exploiting the preferential binding of complemen-
tary single-stranded nucleic acid sequences. So they induced an enormous
improvement over the classical ”one gene per experiment” paradigm that
dominated until then.

A typical DNA microarray experiment proceeds as follows: a small slide
of glass (or of some other material) is taken. The surface of the slide has
been divided into a series of imaginary square cells, called spots, to form
a rectangular grid [Amaratunga and Cabrera, 2004]. There may be tens of
thousands of spots on an array, each containing a huge number of identical
DNA molecules; These should ideally identify one gene or one exon in the
genome, even if this is not so straightforward and may not even be always
possible due to families of similar genes in a genome. The spots are either
printed on the microarrays by a robot, or synthesized by photo-lithography
(similar as in computer chip productions) or by ink-jet printing. A typical
dimension of such an array is about 1 inch or less, the spot diameter is of the
order of 0.1 mm, although for some microarray types it can be even smaller.
Separately, a solution that contains a mixture of mRNAs whose sequences
are unknown, is prepared. A substance that fluoresces when excited by
light is added to this solution. The solution then is poured onto the slide.
From that moment on, the mRNA molecules will diffuse over the slide and,

PhD Thesis Antonella Farinaccio

2.5. Microarrays and Gene Expression 36

wherever they find a matching DNA sequence, such as the one taken from
the gene from which the mRNA was transcribed, they will hybridize to each
other, i.e. join their complementary strands of DNA, and the solution will
stick to the slide. Without a match the solution will not stick to the slide
and can be washed away. Finally, a laser scanner is used to detect and
measure the fluorescent signal being emitted to each cell.

So, summarizing, the five basic steps of a typical basic microarray ex-
periment are [Amaratunga and Cabrera, 2004]:

I. Preparing the microarray

II. Preparing the labeled sample

III. Hybridizing the labeled sample to the microarray and washing the
microarray

IV. Scanning the microarray

V. Interpreting the scanned image

There are different ways microarrays can be used to measure the gene
expression levels. One of the most popular micorarray applications allows
to compare gene expression levels in two different samples, e.g., the same
cell type in a healthy and diseased state.

It is easier to explain the principle behind this kind of microarray ex-
periments with a very simple hypothetical example. Suppose that we have
obtained some cancerous liver tissue and some normal liver tissue from a
liver cancer patient and that we want to know which genes are expressed
differently in the two. We will begin by extracting mRNA from each tissue
so that we have two mRNA samples. Note that in each sample only mRNA
corresponding to any genes that were expressed (i.e. transcribed) would be
present. We will reverse-transcribe the mRNA to cDNA (complementary
DNA) and label these two samples with two different fluorescent dye: for
example a green dye for cells obtained from the cancerous liver tissue and
a red dye for the cells obtained from the normal liver tissue. These two
labeled samples are sometimes called target, sometimes are called probes,
because they are used to probe the collection of spots on a microarray, and
sometimes are simply called labeled samples.

PhD Thesis Antonella Farinaccio

2.5. Microarrays and Gene Expression 37

Now suppose we have prepared a DNA microarray containing the entire
human genome. Suppose there are 36.000 genes. A DNA microarray for
this experiment would be a tiny glass slide on which the 36.000 genes are
printed in, say a 300 × 120 rectangular array of spots, one gene per spot.

Figure 2.18: An illuminated microarray (enlarged)

We will now flood the microarray with the labeled sample from the can-
cerous tissue and then with the other labeled sample from the normal tissue.
We allow enough time for any cDNA in the samples to recognize and hy-
bridize to its complementary sequence in the spots of microarray due to the
preferential binding. Complementary single stranded nucleic acid sequences
tend to attract each other and the longer the complementary parts, the
stronger the attraction. (see Fig. 2.19).

The dyes enable the amount of sample bound to a spot to be measured by
the level of fluorescence emitted when it is excited by a laser. If the mRNA
from the sample in cancerous condition is in abundance, the spot will be
green, if the mRNA from the sample in normal condition is in abundance,
it will be red. If both are equal, the spot will be yellow, while if neither
are present it will not fluoresce and appear black (Fig. 2.18). Thus, from
the fluorescence intensities and colours for each spot, the relative expression
levels of the genes in both samples can be estimated.

The raw data that are produced from microarray experiments are the
hybridised microarray images. To obtain information about gene expression

PhD Thesis Antonella Farinaccio

2.5. Microarrays and Gene Expression 38

Figure 2.19: Microarray Technology

levels, these images should be analysed, each spot on the array identified, its
intensity measured and compared to the background. This is called image
quantitation.

Image quantitation is done by image analysis software. To obtain the fi-
nal gene expression matrix from spot quantitations, all the quantities related
to some gene (either on the same array or on arrays measuring the same con-
ditions in repeated experiments) have to be combined and the entire matrix
has to be scaled to make different arrays comparable.

2.5.2 Gene Expression Data Analysis and Expression Pro-

filer

Capturing and storage of microarray data is not a goal in itself. The amounts
of data from even a single microarray experiment are so large, that software
tools have to be used to make any sense out of it. This PhD work is developed
in this direction. Clustering and classification are typical methods currently
used in gene expression data analysis.

An example of such a research is an approach to reverse engineering
of gene regulatory networks, which is based on the hypothesis that genes
that have similar expression profiles (i.e., similar rows in the gene expres-
sion matrix) should also have similar regulation mechanisms as there must

PhD Thesis Antonella Farinaccio

2.5. Microarrays and Gene Expression 39

be a reason why their expression is similar under a variety of conditions.
Therefore, if we cluster the genes by similarities in their expression profiles
and take sets of promoter sequences from genes in such clusters, some of
these sets of sequences may contain a ”signal” as a specific sequence pattern
such as a particular substring which is relevant to regulation of these genes.

PhD Thesis Antonella Farinaccio

Chapter 3

Machine Learning and Statistical

Data Analysis

In this chapter the basic concepts of Machine Learning (ML) and Statis-
tical Methods are introduced. The purpose is not to describe the entire
field of ML exhaustively, but to describe some fundamental concepts use-
ful for the comprehension of the Medical Decision Support System and the
Data Driven Gene Regulatory Network developed in this thesis and de-
scribed in the following chapters. This introduction is widely inspired by
the books [Mitchell, 1996, Alpaydin, 2010, Banzhaf et al., 1998] to which
the reader is referred for a deeper description.

3.1 Overview of Machine Learning

Machine learning is a scientific discipline that is concerned with the design
and development of algorithms that allow computers to evolve behaviours
based on empirical data.
With the development of the computer science the natural behaviour and
evolution inspired scientists to better understand them and teach their pro-
cesses to the computers so that they could improve automatically with ex-
perience. Following this dream, in 1958 and 1959 Friedberg attempted to
solve fairly simple problems by teaching a computer to write computer pro-
grams [Friedberg, 1958, Friedberg et al., 1959].

If we are ever to make a machine that will speak, understand or
translate human languages, solve mathematical problems with
imagination, practice a profession or direct an organization, ei-
ther we must reduce these activities to a science so exact that
we can tell a machine precisely how to go about doing them or
we must develop a machine that can do things without being
told precisely how... . The machine might be designed to grav-

40

3.1. Overview of Machine Learning 41

itate toward those procedures which most often elicit from us
a favorable response. We could teach this machine to perform
a task even though we could not describe a precise method for
performing it, provided only that we understood the task well
enough to be able to ascertain whether or not it had been done
successfully. ...In short, although it might learn to perform a
task without being told precisely how to perform it, it would
still have to be told precisely how to learn.

Friedberg’s analysis anticipated the coming split between artificial in-
telligence (with its emphasis on expert knowledge) and machine learning
(with its emphasis on learning) [Banzhaf et al., 1998]. During the 1960s
and 1970s, the study of domain knowledge and expert knowledge systems,
named as artificial intelligence (AI), was the dominant form of computa-
tional intelligence. These systems generally encoded human knowledge. For
example, an expert system might be developed by consulting human experts
about how they make particular kinds of decisions. Then, the results of that
interview would be encoded into the expert system for use in making real-
world decision. The type of intelligence represented by such expert systems
was a static comprehension because it did not learn from experience, so it
was quite different from machine learning (ML). Along the time, expert
systems have turned out to be fragile and to have difficulty handling inputs
that are different or noisy. So, in the 1970s the focus on machine learning
reappeared. Interest switched from the static question of how to represent
knowledge to the dynamic question of how to acquire it. The search began
in earnest to find a way, in Friedberg’s words, to tell a computer ”precisely
how to learn”. By the early 1980s, machine learning was recognized as a
distinct scientific discipline [Banzhaf et al., 1998].
Today in the field known as data mining, machine learning algorithms are
being used widely to discover valuable knowledge from large commercial
databases containing equipment maintenance records, loan applications, fi-
nancial transactions, medical records, to perform time series prediction, in-
dustrial process control, prediction of creditworthiness, pattern recognition
such as optical character recognition and voice recognition.
For the purposes of this work, learning is defined roughly, to include any
computer program that improves its performance at some task through ex-
perience. Put more precisely, as stated in [Mitchell, 1996]:

PhD Thesis Antonella Farinaccio

3.1. Overview of Machine Learning 42

Definition 3.1. A computer program is said to learn from experience E
with respect to some class of tasks T and performance measure P, if its
performance at tasks in T, as measured by P, improves with experience E.

Machine learning systems are usually applied to a ”learning domain”. A
learning domain is any problem or search of facts where the researcher can
identify ”features” of the domain that may be measured, and can discover a
result or results (usually organized as ”classes”) that he would like to pre-
dict. Simply speaking, machine learning is a process that begins with the
identification of the learning domain and ends with testing and using the
results of the learning. An example could be the case studied in this work
and discussed in more details in Chapter 5 and in Chapter 6 . In this case,
the microarray of the gene expression value of a set of breast cancer patients
has been chosen as domain. The genes are the features of the domain se-
lected and the survival status of the patients at a fixed timepoint are the
results that have to be predicted. Of course, the features, i.e. the input
(genes, in the example) ought to be related in some manner to the desired
result, that is the output (survival status of the patients). Otherwise, a
machine learning system based on this features will have little predictive
power. Once the features are chosen from the learning domain, they define
the overall dimensions of the environment that will train the ML system and
from which it will, hopefully, learn.
But the selection of features (inputs) does not completely define the envi-
ronment from which the system will learn. The researcher must also choose
specific examples from the learning domain. Each example should contain
data that represent one instance of the relationship between the choosen fea-
tures (inputs) and the classes (output). These examples are often referred
to as ”training cases”, or ”training instances” or ”training set”. Once the
training set is selected, the learning environment of the system has been de-
fined. Machine learning occurs by training. An ML system goes through the
training set and attempts to learn from the examples [Banzhaf et al., 1998].
Finally, the researcher must estimate the quality of the learning that has
taken place. One way to estimate the quality of learning is to test the abil-
ity of the best solution of the ML system to predict outputs from a ”test
set”. A test set is comprised of inputs and outputs from the same domain
the system was trained upon. Although from the same domain, the test set
contains different examples than the training set. The ability of a system

PhD Thesis Antonella Farinaccio

3.2. Machine Learning Methods 43

to predict the outputs of the test set is often referred to as ”generalization”,
that is, it answers the question: could the learned solution generalize to new
data or has it just memorized the existing training set?

3.2 Machine Learning Methods

This section contains a brief description of some ML methods, which were
used to compare the performance of the binary and floating point version of
the Medical Decision Support System developed.
It is painted with a very broad brush and is not a complete discussion of
them; a deeper description is referred to in the bibliography.

3.2.1 Support Vector Machines

Support Vector Machines (SVM) are a set of related supervised learning
methods used for classification and regression. They were originally in-
troduced in [Vapnik, 1998]. Their aim is to devise a computationally effi-
cient way of identifying separating hyperplanes in a high dimensional feature
space. In particular, the method seeks separating hyperplanes maximizing
the margin between sets of data. This should ensure a good generalization
ability of the method, under the hypothesis of consistent target function
between training and testing data. To calculate the margin between data
belonging to two different classes, two parallel hyperplanes are constructed,
one on each side of the separating hyperplane, which are“pushed up against”
the two data sets. Intuitively, a good separation is achieved by the hyper-
plane that has the largest distance to the neighboring data points of both
classes, since in general the larger the margin the lower the generalization
error of the classifier. The parameters of the maximum-margin hyperplane
are derived by solving large quadratic programming (QP) optimization prob-
lems.

3.2.2 Multilayer Perceptron

The Multilayered Perceptron is a feed-forward artificial neural network
model [Haykin, 1999]. It is a modification of the standard linear perceptron
in that it uses three or more layers of neurons (nodes) with nonlinear
activation functions, and is more powerful than the simple perceptron in
that it can distinguish data that are not linearly separable, or separable

PhD Thesis Antonella Farinaccio

3.2. Machine Learning Methods 44

by a hyperplane. It consists of an input and an output layer with one or
more hidden layers of nonlinearly-activating nodes. Each node in one layer
connects with a certain weight to every other node in the following layer.

3.2.3 Random Forests

Random Forests denotes an improved Classification and Regression Trees
method [Breiman et al., 1984]. It works by creating a large number of clas-
sification trees or regression trees. Every tree is built using a deterministic
algorithm and the trees are different owing to two factors. First, at each
node, a best split is chosen from a random subset of the predictors rather
than from all of them. Secondly, every tree is built using a bootstrap sample
of the observations. The out-of-bag data, approximately one-third of the ob-
servations, are then used to estimate the prediction accuracy. Unlike other
tree algorithms, no pruning or trimming of the fully grown tree is involved.

3.2.4 Radial Basis Function Network

A Radial Basis Function Network (RBFN) is an artificial neural network
that uses radial basis functions as activation. RBFNs are embedded in a
two-layer neural network, where each hidden unit implements a radial ac-
tivated function. The output units implement a weighted sum of hidden
unit outputs. Their excellent approximation capabilities have been studied
in [Park and Sandberg, 1991, Poggio and Girosi, 1990]. Due to their nonlin-
ear approximation properties, RBFNs are able to model complex mappings,
which generally perceptron neural networks can only model by means of
multiple intermediary layers [Haykin, 1999].

3.2.5 Voted Perceptron

Voted Perceptron [Freund and Schapire, 1998] is an artificial neural network
which combines the Rosenblatt’s Perceptron algorithm [Haykin, 1999] with
Helmbold and Warmuth’s [Helmbold and Warmuth, 1995] leave-one-out
method. Like Vapnik’s maximal-margin classifier [Vapnik, 1998], this
method takes advantage of data that are linearly separable with large
margins. Compared to Vapnik’s algorithm, however, it is simpler to
implement, and usually more efficient in terms of computation time. It
can also be efficiently used in very high dimensional spaces using kernel

PhD Thesis Antonella Farinaccio

3.3. Statistical Methods for Resampling, Validation and Evaluation 45

functions. In particular, compared to the standard Rosenblatt’s perceptron
algorithm, Voted Perceptron stores more information during training and
then uses this elaborate information to generate better predictions on the
test data. The information maintained during training is the list of all
prediction vectors that were generated after each and every mistake. For
each such vector, the number of iterations it survives until the next mistake
is made is counted (this count is often referred to as the weight of the
prediction vector). To perform a classification, the binary prediction of each
prediction vector is computed and all these classifications are combined
by a weighted majority vote. The weights used are the survival times
described above. This makes intuitive sense as good prediction vectors
tend to survive for a long time and thus have a larger weight in the major-
ity vote. For a more detailed exposition see [Helmbold and Warmuth, 1995].

Another technique widely used in ML is Genetic Programming. It is
intensely applied in the Medical Decision Support System and Data Driven
Gene Regulatory Network developed in this thesis, so an entire chapter, the
next one, is devoted to its description.

3.3 Statistical Methods for Resampling, Valida-

tion and Evaluation

The use of statistic methods is helpful to analyzing machine learning results
in such a way that whatever conclusion we get is not subjective or due
to chance. If, for example, we want to answer the question ”Is A a more
accurate algorithm than B?”, we can transform it in the following statistical
hypothesis test : ”Can we say that the average error of learners trained by
A is significantly lower than the average error of learners trained by B?” In
this manner we can apply the statistical methods to generalize the results.

3.3.1 Resampling Methods with Cross-Validation

We need several replications to draw objective conclusions analyzing data
with statistical methods. The problem is that, for replication purposes, it
is necessary to get a number of training and test set pairs from a dataset
X . To get them, if the sample X is large enough, we can randomly divide it
into K parts, then randomly divide each part into two and use one half for

PhD Thesis Antonella Farinaccio

3.3. Statistical Methods for Resampling, Validation and Evaluation 46

training and the other half for validation. K is generally 10 or 30, sometimes
50. Unfortunately, datasets are never large enough to do so. So we must
do our best with small datasets. This is done by repeated use of the same
data, split differently; this is called cross-validation. So, given a dataset X ,
we create from this dataset K training/test set pairs, {Ti,Vi}K

i=1.
There are several Cross-Validation methods, as K-Fold Cross-Validation, 5x2
Cross-Validation and Bootstrapping. Just for example, the K-Fold Cross-
Validation is described in more details in the next section.

K-Fold Cross-Validation

In K-fold cross-validation, the dataset X is divided randomly into K equal
sized parts, Xi, i = 1, ...,K. To generate each pair, we keep one of the K
parts out as the test set and use the remaining K−1 parts as the training
set. Doing this K times, each time leaving out a different part out of the K
parts, we get K pairs:

V1 = X1 T1 = X2
⋃

X3
⋃

...
⋃

XK

V2 = X2 T2 = X1
⋃

X3
⋃

...
⋃

XK
...
VK = XK TK = X1

⋃
X2

⋃
...

⋃
XK−1

There are two crucial points with this. First, to keep the training set
large, we allow test sets that are small. Second, the training sets overlap
considerably, in fact any two training sets share K−2 parts. As K increases,
the percentage of training instances increases and we get more robust es-
timators, but the test set becomes smaller. Furthermore, there is the cost
of training the classifier K times, which increases as K is increased. As N,
the cardinality of the dataset, increases, K can be smaller; if N is small, K
should be large to allow large enough training sets. One extreme case of
K-fold cross-validation is the leave-one-out case where given a dataset of N
instances, only one instance is left out as the validation set (instance) and
training uses the other N− 1 instances. We then get N separate pairs by
leaving out a different instance at each iteration.

PhD Thesis Antonella Farinaccio

3.3. Statistical Methods for Resampling, Validation and Evaluation 47

3.3.2 Evaluation of Classifier Performance

In order to evaluate classifier performance, it is necessary to define a mea-
sure. Several types have been proposed. One of them, the most used, is
the percentage of the true positives, true negatives, false positives and false
negatives (see the Table 3.1).

PREDICTED CLASS

TRUE CLASS POSITIVE NEGATIVE TOTAL

Positive tp: true positive fn: false negative p
Negative fp: false positive tn: true negative n

Total p’ n’ N

Table 3.1: Confusion matrix for two classes

For a positive instance, if the prediction is also positive, this is called
a true positive; if the prediction is negative for a positive example, this is
called a false negative. For a negative instance, if the prediction is also
negative, we have a true negative, and we have a false positive if we predict
a negative instance as positive.
In some two-class problems, we make a distinction between the two classes
and hence the two types of errors, false positives and false negatives.
Let us image an application which classifies, for example, the survival
status of a cohort of cancer patients, the application studied in this work
and described in more details in Chapters 5 and Chapter 6. A false negative
is a patient wrongly classified as negative to the disease, therefore classified
as healthy, while he is actually affected by cancer. A false positive, instead,
is a healthy patient wrongly classified as diseased. It is clear that the two
type of errors are not equally bad: the former is much worse.

From another perspective, but with the same goal, there are the two
measures of sensitivity and specificity. Sensitivity measures which percent-
age of positive cases have been correctly detected. Specificity measures how
well we detect the negatives, and is defined as the number of true negatives
divided by the total number of negatives.

Interval Estimation

Let us now take a quick glance of the interval estimation that we will use
in the hypothesis testing for the comparison of two classification algorithms.

PhD Thesis Antonella Farinaccio

3.3. Statistical Methods for Resampling, Validation and Evaluation 48

A point estimator, for example, the maximum likelihood estimator, spec-
ifies a value for a certain parameter ϑ of the problem analyzed. Interval
estimation, instead, specifies an interval within which ϑ lies with a certain
degree of confidence. To obtain such an interval estimator, we make use of
the probability distribution of the point estimator.

Interval Estimation using normal distribution
In order to make the explanation clearer, we first introduce firstly an

example.
Let us say we are trying to estimate the mean µ of a normal density function
from a sample X = {xt}N

t=1 , where N is the sample size. Also m = ∑t xt/N is
the sample average and is the point estimator to the mean; m is a sum of
normals, and therefore is also normal, m∼N (µ,σ2/N), σ2 is the variance of
the distribution.
We define the statistic with a unit normal distribution:

(m−µ)
σ/
√

N
∼ Z (3.1)

We know that 95 percent of Z lies in (-1.96, 1.96), namely, P{−1.96 <

Z < 1.96}= 0.95, and we can write

P{−1.96 <
√

N
(m−µ)

σ
< 1.96}= 0.95 (3.2)

or equivalently

P{m−1.96
σ√
N

< µ < m+1.96
σ√
N
}= 0.95 (3.3)

That is ”with 95 percent confidence”, µ will lie within 1.96σ/
√

N units
of the sample average (see Fig. 3.1).

This is a two-sided confidence interval.
If we want more confidence, the interval gets larger, in fact, in the

previous example the confidence with which µ lies in (m− 2.58σ/
√

N,m +
2.58σ/

√
N) is 99 percent. Note that the interval gets smaller as N increases.

This can be generalized for any required confidence as follows.
Let us denote zα such that

P{Z > zα}= α, 0 < α < 1 (3.4)

PhD Thesis Antonella Farinaccio

3.3. Statistical Methods for Resampling, Validation and Evaluation 49

Figure 3.1: 95 percent of the unit normal distribution lies between -1.96 and 1.96

Because Z is symmetric around the mean (zero), z1−α/2 = −zα/2, and
P{X < −zα/2} = P{X > zα/2} = α/2. Hence for any specified level of confi-
dence 1−α, we have

P{−zα/2 < Z < zα/2}= 1−α (3.5)

and

P{−zα/2 <
√

N
(m−µ)

σ
< zα/2}= 1−α (3.6)

or

P{m− zα/2
σ√
N

< µ < m+ zα/2
σ√
N
}= 1−α (3.7)

Hence a 100(1−α) percent two-sided confidence interval for µ can be
computed for any α.

Similarly for the one-sided upper confidence interval for µ. Knowing, for
example, that P{Z < 1.64}= 0.95, we have

P{
√

N
(m−µ)

σ
< 1.64}= 0.95 (3.8)

or

P{m−1.64
σ√
N

< µ}= 0.95 (3.9)

and (m−1.64σ/
√

N,∞) is a 95 percent one-sided upper confidence inter-
val for µ, which is defined by its lower bound (see Fig. 3.2).

PhD Thesis Antonella Farinaccio

3.3. Statistical Methods for Resampling, Validation and Evaluation 50

Figure 3.2: 95 percent of the unit normal distribution lies before 1.64

Generalizing, a 100(1−α) percent one-sided confidence interval for µ can
be computed from

P{m− zα
σ√
N

< µ}= 1−α (3.10)

Similarly, the one-sided lower confidence interval that defines an upper
bound can also be calculated.

Interval Estimation using the t-distribution
In the previous intervals, we used σ, so we assumed that the variance is

known. If it is not, one can plug the sample variance into the equation

S2 = ∑
t
(xt −m)2/(N−1) (3.11)

instead of σ2.
We know that when xt ∼N (µ,σ2),(N−1)S2/σ2 follows a distribution χ2 with
N− 1 degrees of freedom. We also know that m and S2 are independent.
Then,

√
N(m−µ)/S is t-distributed with N−1 degrees of freedom, denoted

as

√
N(m−µ)

S
∼ tN−1 (3.12)

Hence for any α ∈ (0,1/2), we can define an interval, using the values
specified by the t-distribution, instead of the unit normal Z

PhD Thesis Antonella Farinaccio

3.3. Statistical Methods for Resampling, Validation and Evaluation 51

P{t1−α/2,N−1 <
√

N
(m−µ)

S
< tα/2,N−1}= 1−α (3.13)

or using t1−α/2,N−1 =−tα/2,N−1, we can write

P{m− t1−α/2,N−1
S√
N

< µ < m+ tα/2,N−1
S√
N
}= 1−α (3.14)

Similarly, the one-sided confidence intervals can be defined.
The t-distribution has larger spread (longer tails) than the unit normal dis-
tribution, and generally the interval given by the t is larger; this should be
expected since additional uncertainty exists due to the unknown variance.

Hypothesis Testing

Instead of explicitly estimating some parameters, in certain applications we
may want to use the sample to test some particular hypothesis concerning
the parameters. For example, instead of estimating the mean, we may want
to test whether the mean is less than 0.02. If the random sample is consistent
with the hypothesis under consideration, we ”fail to reject” the hypothesis;
otherwise, we say that it is ”rejected”. But when we make such a decision,
we are not really saying that it is true or false but rather that the sample
data appears to be consistent with it to a given degree of confidence.
Formally, the approach is as follows. We define a statistic that obeys a cer-
tain distribution if the hypothesis is correct. If the statistic calculated from
the sample has very low probability of being drawn from this distribution,
then we reject the hypothesis; otherwise, we fail to reject it.

Hypothesis Testing with normal distribution
Let us say we have a sample from a normal distribution with unknown

mean µ and known variance σ2, and we want to test a specific hypothesis
about µ, for example, whether it is equal to a specified constant µ0.
It is denoted as H0 and is called the null hypothesis

H0 : µ = µ0 (3.15)

against the alternative hypothesis

H1 : µ 6= µ0 (3.16)

PhD Thesis Antonella Farinaccio

3.3. Statistical Methods for Resampling, Validation and Evaluation 52

We denote m as the point estimate of µ, and it is reasonable to reject H0

if m is too far from µ0. This is where the interval estimate is used. We fail to
reject the hypothesis with level of significance α if µ0 lies in the 100(1−α)
percent confidence interval, namely, if

√
N(m−µ0)

σ
∈ (−zα/2,zα/2) (3.17)

We reject the null hypothesis if it falls outside, on either side. This is a
two-sided hypothesis test.

If we reject H0 when the hypothesis is correct, this is called type I error
and thus α, set before the test, defines how much type I error we can tolerate,
typical values being α = 0.1,0.05,0.01 (see table 3.2). A type II error is if
we fail to reject the null hypothesis when the true mean µ is unequal to µ0.

DECISION

Truth Fail to reject Reject

True Correct Type I error
False Type II error Correct

Table 3.2: Type I error and Type II error of the Hypothesis Test

The probability that H0 is not rejected when the true mean is µ is a
function of µ and is given as

β(µ) = Pµ{−zα/2 ≤
(m−µ0)
σ/
√

N
≤ zα/2} (3.18)

The function 1− β(µ) is called the power function of the test and is
equal to the probability of rejection when µ is the true value. Type II error
probability increases as µ and µ0 get closer, and we can calculate how large
a sample we need for us to be able to detect a difference δ = |µ− µ0| with
sufficient power.

One can also have a one-sided hypothesis test. The α level of significance
in it defines the 100(1−α) confidence interval bounded on one side in which
m should lie for the hypothesis not to be rejected.
It has the form:

H0 : µ≤ µ0 vs H1 : µ > µ0 (3.19)

PhD Thesis Antonella Farinaccio

3.3. Statistical Methods for Resampling, Validation and Evaluation 53

as opposed to the two-sided test when the alternative hypothesis is µ 6= µ0.
We fail to reject if

√
N

σ
(m−µ0) ∈ (−∞,zα) (3.20)

and reject if it is outside such an interval.
Note that the null hypothesis H0 also allows equality, which means that we
get ordering information only if the test rejects. This tells us which of the
two one-sided tests we should use. Whatever claim we have should be in H1

so that rejection of the test would support our claim.

Hypothesis Testing with t-distribution
If the variance is unknown, just as we did in the interval estimates, we

use the sample variance instead of the population variance as well as the
assertion that

√
N(m−µ0)

S
∼ tN−1 (3.21)

For example, for H0 : µ = µ0 vs H1 : µ 6= µ0, we fail to reject at significance
level α if

√
N(m−µ0)

S
∈ (−t(α/2),N−1, t(α/2),N−1) (3.22)

which is known as the two-sided t test.
A one-sided t test can be defined similarly.

t-Testing

The two tests we discussed earlier use a single validation set. If we run the
algorithm K times, on K training/test set pairs, we get K error percentages,
pi, with i = 1, ...,K on the K test sets. Let xt

i be 1 if the classifier trained
on Ti makes a misclassification error on instance t of Vi, the ith test set;
otherwise let xt

i be equal to 0. Then

pi = ∑N
t=1 xt

i
N

(3.23)

Given that

m = ∑K
i=1 pi

K
, S2 = ∑K

i=1(pi−m)2

K−1
(3.24)

PhD Thesis Antonella Farinaccio

3.4. Statistical Methods for Comparison 54

we know that we have

√
N(m− p0)

S
∼ tK−1 (3.25)

and the t-test rejects the null hypothesis that the classification algorithm
has p0 or less error percentage at significance level α if this value is greater
than tα,K−1.

3.4 Statistical Methods for Comparison

3.4.1 Comparing Two Classification Algorithms:

K-Fold Cross-Validated Paired t-Test

We use the two classification algorithms to train on the training sets Ti, i =
1, ...,K, and test on the test sets Vi . The error percentages of the classifiers
on the test sets are recorded as p1

i and p2
i .

If the two classification algorithms have the same error rate, then we expect
them to have the same mean, or equivalently, that the difference of their
means is 0. The difference in error rates on fold i is pi = p1

i − p2
i .

This is a paired test ; that is, for each i, both algorithms see the same training
and test sets. When this is done K times, we have a distribution of pi

containing K points. Given that p1
i and p2

i are both (approximately) normal,
their difference pi is also normal. The null hypothesis is that this distribution
has 0 mean:

H0 : µ = 0 vs H1 : µ 6= 0 (3.26)

So, defining

m = ∑K
i=1 pi

K
, S2 = ∑K

i=1(pi−m)2

K−1
(3.27)

under the null hypothesis that µ = 0, we have a statistic that is t-
distributed with K−1 degrees of freedom:

√
N(m−0)

S
=
√

Nm
S

∼ tK−1 (3.28)

Thus the K− f old cv paired t− test rejects the hypothesis that two clas-
sification algorithms have the same error rate at significance level α if this
value is outside the interval (−tα/2,K−1, tα/2,K−1).

PhD Thesis Antonella Farinaccio

3.4. Statistical Methods for Comparison 55

If we want to test whether the first algorithm yields less error than the
second, we need a one-sided hypothesis and use a one-tailed test:

H0 : µ≥ 0 vs H1 : µ < 0 (3.29)

If the test rejects, our claim that the first one has significantly less error
is supported.

3.4.2 Comparing Multiple Algorithms: Analysis of

Variance(ANOVA)

In many cases, as in the study of a Medical Decision Support System per-
formed in this thesis and described in the following, we have more than two
algorithms, and we would like to compare their expected error.
Given L algorithms, we train them on K training sets, induce K classifiers
with each algorithm, and then test them on K validation sets and record
their error rates. This gives us L groups of K values. The problem then
is the comparison of these L samples for statistically significant difference.
This is an experiment with a single factor with L levels, the learning algo-
rithms, and there are K replications for each level.
In Analysis of Variance (ANOVA), we consider L independent samples, each
of size K, composed of normal random variables of unknown mean µ j and
unknown common variance σ2:

Xi j ∼N (µ j,σ2), j = 1, ...,L, i = 1, ...,K (3.30)

We are interested in testing the hypothesis H0 that all means are equal:

H0 : µ1 = µ2 = ... = µL vs. H1 : µr 6= µs (3.31)

for at least one pair (r,s)
The comparison of error rates of multiple classification algorithms fits

this scheme. We have L classification algorithms, and we have their error
rates on K validation folds. Xi j is the number of validation errors made by
the classifier, which is trained by classification algorithm j on fold i. Each
Xi j is binomial and approximately normal. If H0 is not rejected, we fail to
find a significant error difference among the error rates of the L classification
algorithms. This is therefore a generalization of the tests we saw in the pre-
vious section that compared the error rates of two classification algorithms.

PhD Thesis Antonella Farinaccio

3.4. Statistical Methods for Comparison 56

The L classification algorithms may be different or may use different hyper-
parameters, for example, number of hidden units in a multilayer perceptron,
number of neighbors in k-nn, and so forth. The approach in ANOVA is to
derive two estimators of σ2. One estimator is designed such that it is true
only when H0 is true, and the second is always a valid estimator, regardless
of whether H0 is true or not. ANOVA then rejects H0, namely, that the L
samples are drawn from the same population, if the two estimators differ
significantly. Our first estimator to σ2 is valid only if the hypothesis is true,
namely, µ j = µ, j = 1, ...,L. If Xi j ∼N (µ,σ2), then the group average

m j =
K

∑
i=1

Xi, j

K
(3.32)

is also normal with mean µ and variance σ2/K. If the hypothesis is true,
then m j, j = 1, ...,L are L instances drawn from N (µ,σ2/K). Then their mean
and variance are

m =
∑L

j=1 m j

L
, S2 =

∑ j(m j−m)2

L−1
(3.33)

Thus an estimator of σ2 is K ·S2, namely,

σ̂2
b = K

L

∑
j=1

(m j−m)2

L−1
(3.34)

Each of m j is normal and (L−1)S2/(σ2/K) is χ2 with (L−1) degrees of
freedom. Then, we have

∑
j

(m j−m)2

σ2/K
∼ X 2

(L−1) (3.35)

We define SSb, the between-group sum of squares, as

SSb ≡ K ∑
j
(m j−m)2 (3.36)

So, when H0 is true, we have

SSb

σ2 ∼ X 2
(L−1) (3.37)

Our second estimator of σ2 is the average of group variances, S2
j defined

as

PhD Thesis Antonella Farinaccio

3.4. Statistical Methods for Comparison 57

S2
j =

∑k
i=1(Xi j−m j)2

K−1
(3.38)

and their average is

σ̂2
w =

L

∑
j=1

S2
j

L
= ∑

j
∑ i

(Xi j−m j)2

K−1
(3.39)

We define SSw , the within-group sum of squares:

SSw ≡∑
j
∑

i
(Xi j−m j)2 (3.40)

Remembering that for a normal sample, we have

(k−1)
S2

j

σ2 ∼ X 2
k−1 (3.41)

and that the sum of chi-squares is also a chi-square, we have

(k−1)
L

∑
j=1

S2
j

σ2 ∼ X 2
L(k−1) (3.42)

So

SSw

σ2 ∼ X 2
L(k−1) (3.43)

Then we have the task of comparing two variances for equality, which
we can do by checking whether their ratio is close to 1. The ratio of two
independent chi-square random variables divided by their respective degrees
of freedom is a random variable that is F-distributed, and hence when H0 is
true, we have

F0 =

(
SSb/σ2

L−1

)
(

SSw/σ2

L(K−1)

) =
SSb/(L−1)

SSw/(L(K−1))
=

σ̂2
b

σ̂2
w
∼ FL−1,L(K−1) (3.44)

For any given significance value α, the hypothesis that the L classification
algorithms have the same expected error rate is rejected if this statistic is
greater than Fα,L−1,L(K−1). Note that we are rejecting H0 if the two estimators
disagree significantly. If H0 is not true, then the variance of m j around m
will be larger than what we would normally have if H0 were true, and hence
if H0 is not true, the first estimator σ̂2

b will overestimate σ2, and the ratio
will be greater than 1. For α = 0.05,L = 5 and K = 10,F0.05,4,45 = 2.6. If Xi j

PhD Thesis Antonella Farinaccio

3.4. Statistical Methods for Comparison 58

varies around m with a variance of σ2, then if H0 is true, m j varies around
m by σ2/K. If it seems to vary more, then H0 should be rejected because
the displacement of m j around m is more than what can be explained by
some constant added noise. The name analysis of variance is derived from
a partitioning of the total variability in the data into its components.

SST ≡∑
j
∑

i
(Xi j−m)2 (3.45)

SST divided by its degree of freedom, namely, K ·L− 1 (there are K ·L
data points, and we lose one degree of freedom because m is fixed), gives us
the sample variance of Xi j . It can be shown that the total sum of squares
can be split into between-group sum of squares and within-group sum of
squares

SST = SSb +SSw (3.46)

Results of ANOVA are reported in an ANOVA table as shown in Tab. 3.3
This is the basic one-way analysis of variance where there is a single factor,
for example, the learning algorithm.

Source of variation Sum of squares Degrees of freedom Mean square F0

Between groups SSb ≡ K ∑ j(m j−m)2 L−1 MSb = SSb
L−1

MSb
MSw

Within groups SSw ≡ K ∑ j ∑i(Xi j−m j)2 L(K−1) MSw = SSw
L(K−1)

Total SST ≡ ∑ j ∑i(Xi j−m)2 L ·K−1

Table 3.3: The analysis of variance (ANOVA) table for a single factor model

We may consider experiments with multiple factors, for example, we can
have one factor for classification algorithms and another factor for feature
extraction algorithms used before, and this will be a two-factor experiment
with interaction. If the hypothesis is rejected, we only know that there is
some difference between the L groups but we do not know where. For this,
we do the so called posthoc testing, that is, an additional set of tests involving
subsets of groups, for example, pairs.
Fisher’ s least square difference test (LSD) compares groups in a pairwise
manner. For each group, we have mi ∼ N (µi,σ2

w = MSw/K) and mi−m j ∼
N (µi−µ j,2σ2

w). Then, under the null hypothesis that H0 : µi = µ j, we have

t =
mi−m j√

2σw
∼ tL(K−1) (3.47)

PhD Thesis Antonella Farinaccio

3.4. Statistical Methods for Comparison 59

We reject H0 in favor of the alternative hypothesis H1 : µ1 6= µ2 i f |t|>
tα/2,L(K−1). Similarly, one-sided tests can be defined to find pairwise order-
ings.
When we do a number of tests to draw one conclusion, this is called multiple
comparisons, and we need to keep in mind that if T hypotheses comparisons
are to be tested, each at significance level α, then the probability that at
least one hypothesis is incorrectly rejected is at most T α.
For example, the probability that six confidence intervals, each calculated
at 95 percent individual confidence intervals, will simultaneously be correct
is at least 70 percent. Thus to ensure that the overall confidence interval is
at least 100(1−α), each confidence interval should be set at 100(1−α/T).
This is called a Bonferroni correction.
Note that sometimes it may happen that ANOVA rejects H0 and none of
the posthoc pairwise tests finds a significant difference.

PhD Thesis Antonella Farinaccio

Chapter 4

Genetic Programming

4.1 A Brief Introduction to Evolutionary Algo-

rithms

“A process which led from amoeba to man appeared to philoso-
phers to be obviously a progress, though whether the amoeba
would agree with this opinion is not known ”

B.Russel, 1914.

The dream of evolving computer programs to execute an automatic
programming was born together with the computer itself. In the early
1950s, the father of computer science, Alan Turing, already imaged it,
when this area of research had just a vague form. Some years later the
idea rose to evolve computer programs on the basis of natural evolution
and there were many efforts in this direction, noteworthy Friedberg’s works
[Friedberg, 1958, Friedberg et al., 1959], that can be considered an embry-
onic form of program evolution, or genetic programming.

More recently, the general term Evolutionary Algorithms (EA) has
emerged to denote all the techniques tuned up for computer simulation of
evolution [Banzhaf et al., 1998].
Evolutionary algorithms define a goal expressed as a quality criterion,
successively they use this goal to measure and compare solution candidates
in a step-by-step refinement of a set of data structures. After some
iterations, if EA has success, it will return an optimal or near optimal
solution.

”In this sense, the algorithms are more similar to breeding off dogs than
to natural selection, since breeding also works with a well-defined quality
criterion. When dogs are bred to have, for example, long hair and short
legs, the breeder selects - from a group of individuals - the best individuals
for reproduction according to this quality criterion. In this case, he or she

60

4.1. A Brief Introduction to Evolutionary Algorithms 61

selects the ones with the longest hair and shortest legs for mating. The
process is repeated with the offspring over many generations of dogs until a
satisfying individual is found - and a Syberian Husky has been turned into
an Angora Dachshund.... [Banzhaf et al., 1998] ”

So the term selection indicates the process of selecting the best indi-
viduals for mating. Of course a quality criterion is necessary to determine
which individuals shall be selected, and this criterion is often realized by
means of a user-defined function called fitness in the EAs. Furthermore a
technique is also needed to simulate the mating and the reproduction. Note
that the variation is important for the evolution process, so a mechanism
is also needed to generate a variation to the genetic material and to make
sure that children do not become identical copies of their parents, to achieve
the improvements. Among several variation operators in EAs, the two main
ones, as in nature, are mutation and crossover of genetic material between
individuals. Mutation changes a small part of an individual, while crossover
(recombination or sexual reproduction) exchanges genetic material between
two individuals, to create an offspring that is a combination of its parents.
A scheme of a basic EA can be seen in Fig. 4.1

Figure 4.1: Evolutionary Algorithm. (Scheme taken from [Banzhaf et al., 1998])

PhD Thesis Antonella Farinaccio

4.2. Genetic Programming - basic concepts 62

4.2 Genetic Programming - basic concepts

As stated previously, in EA there is a population of individuals. The ones
that survive and produce children are those that fit better the chosen quality
criterion (fitness). These children are placed in the new population, instead
older individuals die and are removed from it. The population is usually of
fixed size and each new child replaces an existing member of the population.
The individual that dies may be chosen from the relatively unfit individuals
(e.g. the worst) in the population, or chosen at random or selected from the
child’s parents.
Most of the computer resources are devoted to deciding which individuals
will have children [Langdon and Poli, 2002].

In Genetic Programming (GP), one of the EA paradigms, the evolving
individuals are themselves computer programs.

Since the publication of Koza’s 1992 book, there was a fast growth of
GP studies, and almost six thousand GP papers have been published up to
now. Researchers in the field have devised many different systems: systems
that use tree, linear and graph structures, systems that use high crossover
rates, systems that use high mutation rates, etc. All of these systems may
reasonably be called Genetic Programming.
The purpose of the description of GP in the present work, principally due
to W. Banzhaf’s description [Banzhaf et al., 1998], is to give a several de-
scriptions of these varieties by their essential common properties.
The essential characteristics shared by most GP systems are:

• Stochastic decision making GP emulates the randomness hypoth-
esis of natural selection making random choices and using probability
and pseudo-random numbers.

• Program structures GP assembles variable length program struc-
tures from basic elements called functions (e.g. plus, minus, sin, arc-
tan, turn left, turn right, etc.) and terminals (e.g. the indipendent
variables of the problem, zero-argument functions and random con-
stants).

• Genetic operators GP iteratively transforms a population of com-
puter programs into a new generation of programs by applying analogs
of naturally occurring genetic operations. These operations include

PhD Thesis Antonella Farinaccio

4.3. Preliminary Steps of Genetic Programming 63

crossover, mutation, reproduction, duplication and deletion.

• Simulated evolution of a population by means of fitness-based
selection The process of population evolution in GP is driven by a
fitness-based selection that determines which programs are selected for
further improvements.

4.3 Preliminary Steps of Genetic Programming

Genetic programming starts from a high-level description of a problem and,
transforming the problem’s requirements into an appropriate language, at-
temps to produce a computer program that solves it.
Figure 4.2 shows the five substantial preparatory steps for the basic version
of GP [Koza et al., 2003].

The first two preliminary steps specify the basic components that are
available to create the computer programs. A run of GP is a competitive
search among a population of possibily different programs constructed using
the available functions and terminals.

The identification of the function set and terminal set for a particular
problem is a simple process in most cases. In some situations, the function
set may consists of merely the arithmetic functions as addition, subtraction,
multiplication, and protected division. The terminal set may consist of the
program’s external inputs (indipendent variables), numeric constants and
zero-argument functions. For many other programs, the ingredients include
specialized functions and terminals, as ’turn’, ’stop’, ’read sensor’, ecc.

The third preliminary step is preparatory of the fitness-based selection,
so it indentifies the fitness measure of the problem. On the basis of this
fitness measure, GP determines which programs are selected for further im-
provements.

The third and fourth preliminary steps are administrative. The fourth
preliminary step specifies the control parameters for the run. The most
influential control parameter is the population size, because it has a high
effect on the result and the execution time.

The fifth preliminary step entails of specifying the termination crite-
rion and the method of representing the result of run. The termination
criterion may include a maximum number of generations to be run as well
as a problem-specific success state. When the run is stopped, the single

PhD Thesis Antonella Farinaccio

4.4. The Basic GP Algorithm 64

best-so-far individual is picked up and designated as the result of the run
[Koza et al., 2003].

Figure 4.2: Five major GP preparatory steps

4.4 The Basic GP Algorithm

The execution steps of GP, as reported by J.Koza [Koza et al., 2003] are the
following and are presented schematically in Fig. 4.3:

I. Randomly create an initial polulation (generation 0) of individuals
(computer programs) created using the available functions and termi-
nals.

II. Iteratively perform the following sub-steps (called a generation) on the
population until the termination criterion is satisfied:

II. 1 Execute each program in the population and determine its fitness
(explicitly or implicitly) using the problem’s fitness measure.

PhD Thesis Antonella Farinaccio

4.4. The Basic GP Algorithm 65

Figure 4.3: GP Flowchart. (Scheme inspired from [Koza et al., 2003])

II. 2 Select one or two individuals from the population with a proba-
bility based on fitness to participate in the genetic operations in
(c).

II. 3 Create new individual program(s) for the population by applying
the following genetic operations with specified probabilities.

i. Reproduction: Copy the selected individual to the new pop-
ulation.

ii. Crossover : Create new offspring program(s) for the new pop-
ulation by recombining randomly chosen parts from two se-
lected programs.

iii. Mutation: Create one new offspring program for the new
population by randomly mutating a randomly chosen part of
one selected program.

III. After the termination criterion is satisfied, the single best program in
the population during the run (the best-so-far individual) is picked up

PhD Thesis Antonella Farinaccio

4.5. Representation of GP Individuals: Terminals and Functions 66

and designated as the result of the run. If the run is successful, the
result may be a solution (or approximate solution) to the problem.

4.5 Representation of GP Individuals: Terminals

and Functions

The functions and terminals, as mentioned above, are the primitives with
which a program in GP is built. They play different roles. Loosely speaking,
terminals provide a value to the system and so they are usually either vari-
ables, constants or zero-argument functions, while functions process a value
already in the system and so the set of functions which is chosen includes
those functions which are a priori believed to be useful for the problem at
hand [Banzhaf et al., 1998].

Moreover, functions and terminals are the primitives of GP but are not
themselves programs. They must be assembled into a structure before they
may be executed as programs. The three principal program structures used
in GP are tree, linear and graph structures. The choice of a program struc-
ture in GP affects execution order, use and locality of memory, and the
application of genetic operators to the program. Of the three fundamental
structures, tree structures are the most common in GP. Therefore this rep-
resentation is the one used in this work and GP using this representation is
called tree-based GP from now on.

Hence, the set of all the possible structures that tree-based GP can gen-
erate is the set of all the possible trees that can be built recursively from a
set of function symbols F = { f1, f2, . . . , fn} (used to label internal tree nodes)
and a set of terminal symbols T = {t1, t2, . . . , tm} (used to label tree leaves).
More formally:

Definition 4.1. The terminal set is composed by the inputs to the GP
programs, the constants supplied to the GP programs, and the zero-arguments
functions with side-effects executed by the GP program.

In practice, terminals are inputs to the programs, i.e. they are constants
or functions without argument, so they return an actual numeric value with-
out having to take an input. For this reason they are called terminals, be-
cause in tree-based GP they terminate a branch of a tree.
Note that in typical tree-based GP, a set of real-numbered constants is cho-
sen for the entire population at the beginning of the run. These constants do

PhD Thesis Antonella Farinaccio

4.5. Representation of GP Individuals: Terminals and Functions 67

not change their value during the run. They are called ephemeral random
constants, frequently represented by the symbol R. Other constants may
be constructed within programs by combining ephemeral random constants
using arithmetic functions.

Definition 4.2. The function set is composed of the statements, operators
and functions available to the GP system.

Each function in the function set F takes a fixed number of arguments,
specifying its arity.

Definition 4.3. The arity of a function is the number of inputs to (argu-
ments of) that function.

The collection of available functions is very wide:

• Boolean Functions e.g. and, or, not, xor

• Arithmetic Functions e.g. plus, minus, multiply, divide

• Trascendental Functions e.g. trigonometric and logarithmic functions

• Variable Assignment Functions e.g. Let a be a variable available to
the GP system, a := 1 would be a variable assignment function in a
register machine code approach. The same function would appear in
a tree-based system with an expression that somehow lookes like this:
(ASSIGN a 1), where 1 is an input to the ASSIGN node. Of course,
there should be a corresponding READ node, which would read what-
ever value was stored in a and pass it along as its output.

• Index Memory Functions Some GP systems use indexed memory, i.e.
access to memory cells via an index.

• Conditional Statements e.g. if-then-else; case, switch

• Control Transfer Statements e.g. go to, call, jump

• Loop Statements e.g. while...do, repeat...until, for...do

• Subroutines

PhD Thesis Antonella Farinaccio

4.5. Representation of GP Individuals: Terminals and Functions 68

Figure 4.4: A tree that can be built with the sets F = {+,−} and T = {a,b,3}.

For example, given the following sets of functions and terminals:

F = {+,−}, T = {a,b,3}
a valid GP individual is represented in Fig. 4.4.
This tree can also be represented by the following LISP-like S-expression
(for a definition of LISP S-expressions see, for instance, [Koza, 1992]):

(+ a (− b 3))

Figure 4.4 shows the graphical representation of a tree-based GP individual.
It has some different symbols that could be executed in any order. But there
is a convention for executing the tree structure.
The standard convention for tree execution is that it proceeds by repeatedly
evaluating the leftmost node for which all inputs are available. This order of
execution is referred to as postfix order because the operators appear after
the operands. Another convention for execution is called prefix order. It is
the opposite of postfix order and executes the nodes close to the root of the
tree before it executes the terminal nodes. The advantage of prefix ordering
is that a tree containing nodes like if-then branches can often save execution
time by evaluating first whether the then tree must be evaluated.

PhD Thesis Antonella Farinaccio

4.5. Representation of GP Individuals: Terminals and Functions 69

4.5.1 The Choice of Functions and Terminals

The set of functions may be much wider then the previous list. It may use
any programming construct that is available in any programming language.

However, as stated above, GP assembles variable length program struc-
tures from basic components (functions and terminals) using randomness
in several phases of the process. So, without any restriction, the syntax of
most languages is such that GP operators would create a large percentage
of syntactically incorrect programs.

For this reason, Koza chose a syntax in prefix form analogous to LISP
and a restricted language with an appropriate number of variables, constants
and operators defined to fit the problem to be solved [Koza, 1992]. The
restricted language, as said, is formed by a user-defined function set F and
terminal set T . The function chosen are those a priori believed to be useful
for the problem at hand, and the terminals are usually either variables or
constants. In addition, each function in the function set must be able to
accept as arguments any other function return value and any data type in
the terminal set T . Thus the space of possible programs is constituted by the
set of all possible compositions of functions that can be recursively formed
from the elements of F and T . This property is called syntactic closure. In
such way syntax constraints are respected and the program search space is
limited [Tettamanzi and Tomassini, 2001].

The function set usually contains math and logical functions such as
plus, minus, sin, cos, and, or, etc., as said, but it is usefull to remark
that it may be also application-specific and be selected according to the
problem domain. Any function that a programmer can dream of may be-
come part of the function set in GP. For example, in a robotic application,
primitives could be created by the programmer that are specific to the prob-
lem, such as read sensor, turn left, turn right, move ahead, ecc. Each
of those primitives would become part of the function set or of the terminal
set, if its arity were 0. The choice to fit tightly the function set in GP often
reduces the need for pre- and post- processing.
Anyway, even if the functions and terminals used for GP should be powerful
enough to be able to represent a solution to the problem, often it is not
convenient to use too large function sets. This enlarges the search space and
can sometimes make the search for a solution more difficult. A good starting
point for a function set might be the set of arithmetic and logic functions (+,

PhD Thesis Antonella Farinaccio

4.6. Inizialization of a GP Population 70

-, *, /, OR, AND, XOR,...). The number of problems that can be solved with
these functions is surprising. Effective solutions using only this function set
have been obtained on several different classification problems, robotics con-
trol problems and symbolic regression problems [Banzhaf et al., 1998] (for
more details on symbolic regression see the paragraph 4.8.1). A parsimo-
nious approach to choosing a function and terminal set is often reasonable.
The practice often shows that GP is very ingenious at taking simple func-
tions and creating what it needs by combining them. It frequently ignores
the more sophisticated functions in favor of the primitives during evolution
[Banzhaf et al., 1998].

4.6 Inizialization of a GP Population

The first step in actually performing a GP run is to initialize the population.
It means creating a variety of program structures for successive evolution.
One of the main parameters of a GP run is the maximum size permitted for
a program. For tree-based GP, that parameter is expressed as the maximum
depth of a tree or the maximum total number of nodes in the tree.

Definition 4.4. The depth of a node is the minimal number of nodes that
must be traversed to get from the root node of the tree to the selected node.

Consequently, the MDP(Maximum Depth Parameter) indicates the
largest depth that will be permitted between the root node and the
outermost terminals in an individual.

4.6.1 Initializing Tree Structure

The most common initialization methods in tree-based GP are the grow
method, the full method and the ramped half and half method [Koza, 1992].
As stated above, trees are built from basic units, called functions and ter-
minals. We shall assume, now, that the functions and terminals allowable
in the program trees have been already selected:

F = {+,−,∗}, T = {a,b,c,d,e}
so that we shall use them to describe the most frequently used tree initial-
ization methods.

PhD Thesis Antonella Farinaccio

4.6. Inizialization of a GP Population 71

Grow Initialization

In the grow initialization of a tree, nodes are selected randomly from the
function and the terminal set throughout the entire tree (except the root
node which uses only the function set). Once a branch contains a terminal
node, that branch is complete. The steps of grow initialization algorithm
are:

• a random symbol is selected with uniform probability from F to be
the tree root;

• let n be the arity of the selected function symbol. Then n nodes are
selected randomly with uniform probability from the set F ∪T to be
its children;

• for each function symbol among these n nodes, the method is recur-
sively applied, i.e. its children are selected randomly from the set
F ∪T , unless this symbol has a depth equal to d−1, in that case its
children are selected from T .

Note that this method produces trees of irregular shape, as the tree in Fig.
4.5 . Nodes with depth between 1 and d− 1 are selected randomly with
uniform probability from F ∪ T , but once a branch contains a terminal
node, that branch is complete, even if the maximum depth d has not been
reached. In fact, in the tree of Fig. 4.5 some branches (a, b and e), have
a depth of only three, while some others (c and d) have a depth of four.
Moreover it is noteworthy that the root is selected with uniform probability
from F and not from F ∪T , to avoid creating trees composed by a single
node.
If the number of nodes is used as a size measure, growth stops when the
tree has reached the preset maximum size, forcing the next nodes to be all
terminals.

Full Initialization

Instead of selecting nodes randomly from the union of the function and
terminal sets, as the grow initialization method, the full method chooses
only function symbols until the maximum depth is reached. Then it chooses
only terminals. The result is that every branch of the tree goes to the

PhD Thesis Antonella Farinaccio

4.6. Inizialization of a GP Population 72

Figure 4.5: Example of maximum depth tree initialized with Grow Method

full maximum depth, as we can see in the tree of Fig. 4.6, that has been
initialized with the full method having a maximum depth of three.

Ramped Half-and-Half Initialization

Diversity is useful in GP populations. As first noted by Koza [Koza, 1992],
each of the above methods, by itself, could result in a set of similar structures
in the initial population, because the routine is the same for all individuals.
So the ramped half-and-half technique has been conceived in order to en-
hance population diversity from the outset.
Let d be the maximum depth parameter. The population is divided equally
among individuals to be initialized with trees having depths equal to 1, 2,
..., d−1, d. For each depth group, half of the trees are initialized with the
full technique and half with the grow technique.

PhD Thesis Antonella Farinaccio

4.7. Genetic Operators of GP 73

Figure 4.6: Example of tree initialized with Full Method

4.7 Genetic Operators of GP

The individuals of an initial population usually have very low fitness. Evo-
lution proceeds by transforming the initial population by the use of genetic
operators.
The three principal ones, are:

• Crossover

• Mutation

• Reproduction

4.7.1 Crossover

The crossover operator produces new offspring creating variation in the pop-
ulation. It combines the component of two parents by swapping a part of
one parent with a part of the other. More specifically, standard tree-based
GP crossover proceeds by the following steps:

PhD Thesis Antonella Farinaccio

4.7. Genetic Operators of GP 74

I. Choose two individuals as parents. An example of two parents is shown
in Figure 4.7(a)

II. Select one random point in each parent, which takes the name of
crossover point for the parents. The selection of subtrees can be bi-
ased so that subtrees constituting terminals are selected with lower
probability than other subtrees, so usually it is used a probability of
0.1 for terminals and 0.9 for the other nodes.

III. Swap the selected subtrees between the two parents. Figure 4.7(b)
showes the two resulting children trees.

Because entire subtrees are swapped and because of the closure property
of the functions, crossover always produces syntactically legal programs.
It is important to remark that in cases where a terminal and/or the root of
one parent are located at the crossover point, generated offspring could have
considerable depths. This may be one possible cause for the phenomenon of
bloat [Vanneschi, 2004], which is a progressive growth of the code size of in-
dividuals in the population without a corresponding improvement in fitness.
For this reason, many variants of the standard GP crossover have been pro-
posed in literature. The most common ones select the root with lower prob-
ability than the leaves, for the reason described above, to limit the occurence
of such degenerative phenomena. Another kind of GP crossover is one-point
crossover, introduced in [Poli and Langdon, 1997, Poli and Langdon, 1998]
and not described in this work, for brevity reasons.

4.7.2 Mutation

Mutation operates on only one individual. Standard GP mutation is
often called subtree mutation. When an individual has been selected
for mutation, a point in the tree is randomly choosen with a uniform
probability distribution, and the existing subtree at that point is replaced
by a new randomly-generated subtree. The new randomly-generated
subtree is created in the same way and is subject to the same limitations,
on depth or size, as programs in the initial random population. The altered
individual is then placed back into the population (see Figure 4.8)

As for crossover, researchers have developed many alternatives of stan-
dard GP mutation. The most commonly used are the ones aimed at limiting

PhD Thesis Antonella Farinaccio

4.7. Genetic Operators of GP 75

(a)

(b)

Figure 4.7: Example of crossover operator, with parents on the first level (a) and
children on the second level (b)

the probability of selecting the root and/or the leaves of the parent as mu-
tation points. A special mention is deserved by the point mutation, that
exchanges a single node with a random node of the same arity, for the im-
portance it has had in GP theory [Poli and Langdon, 1997]. A new kind of
GP mutation, similar to, but more general than one-point mutation, called
structural mutation has been introduced in chapter 4 of [Vanneschi, 2004].
Other variants of GP mutation that are often used are permutation (also
named swap mutation) and shrink mutation. The first one exchanges two
arguments of a node and the second one generates a new individual from a
parent’s subtree.

4.7.3 Reproduction

The reproduction operator is very simple. It selects an individual, makes a
copy of it and places the copy into the new population.

PhD Thesis Antonella Farinaccio

4.8. Fitness in GP 76

Figure 4.8: Example of mutation operator

4.8 Fitness in GP

In order to create variability and evolution in the population, as mentioned
before, GP chooses some members of the population that will be subject to
the genetic operators (crossover, mutation and reproduction). In this phase,
one of the most important parts of GP’s model of evolution is implemented:
the fitness based selection [Banzhaf et al., 1998]. GP’s evaluation metric is
called a fitness function and the way in which the fitness function is used in
the selection of individuals for genetic operators may be referred to as the
GP selection algorithm.
The aim of performing a fitness evaluation is to have feedback to the learn-
ing algorithm regarding which individuals should have higher probability of
being allowed to multiply and reproduce and which individuals should have
higher probability of being removed from the population. So, each program
in the population is assigned a fitness value, representing its ability to solve
the problem. The two fitness measures most commonly used in GP are raw
fitness and standardized fitness. They are described below.

Definition 4.5. Raw Fitness is the measurement of fitness that is stated
in the natural terminology of the problem itself

This definition is stated by [Koza, 1992]. In other words, raw fitness is
the most simple and natural way to calculate the ability of a program to
solve a problem.

Often raw fitness is calculated over a set of fitness cases. A fitness case
represents an element of the learning domain for which the ability of the
program to evaluate it can be estimated.
The fitness cases are typically a small sample of the entire domain space

PhD Thesis Antonella Farinaccio

4.8. Fitness in GP 77

and they form the basis for generalizing the results obtained to the entire
domain space.
In order to define raw fitness more formally, let the output of the ith fitness
case from the learning domain be oi. Let the output of a GP program p
applied to the ith fitness case from the learning domain be pi. In this case
for a learning domain of n examples the raw fitness fp of program p would
be:

fp =
n

∑
i=1
|pi−oi|k (4.1)

Because raw fitness is stated in the natural terminology of the problem, the
better value may be either smaller (as when raw fitness is error) or larger
(as when raw fitness is benefit achieved) [Koza, 1992].
Anyway, in some cases, it could be useful to have the best value of fitness
always equal to zero. This kind of fitness is known as standardized fitness.

Definition 4.6. Standardized Fitness is a fitness function or a trans-
formed fitness function for which zero is the best possible value.

If the fitness chosen for a specific problem has not this characteristic, it
can be obtained by subtracting or adding a constant. If a greater value of
raw fitness corresponds to a better individual (maximization problem), and
the maximum possible value of fitness fmax is known, standardized fitness f S

of an individual i can be defined as:

f S
i = fmax− fi (4.2)

where fi is the fitness of i.
Instead, if a lesser value of raw fitness is better (minimization problem),

and the minimum possible value of fitness fmin is known and is grater than
zero, in this case standardized fitness f S of an individual i can be defined as:

f S
i = fi− fmin (4.3)

where fi is the fitness of i.
In some cases it could be useful also to have the values of the fitness

function comprised in a predetermined interval, for instance the interval
between zero and one. In these cases it is enough to normalize the fitness
function.

PhD Thesis Antonella Farinaccio

4.8. Fitness in GP 78

Definition 4.7. Normalized Fitness is a fitness function or a trans-
formed fitness function where fitness is always between zero and one.

4.8.1 Symbolic Regression

Where the learning domain is composed by numeric inputs and outputs, the
process of approximating the function that, with the given inputs, returns
the desired corresponding outputs is called symbolic regression. Many GP
applications can be reformulated as instances of symbolic regression, as the
survival prediction in breast cancer and the reverse engineering of gene reg-
ulatory networks, cases studied in this PhD thesis and described in the last
chapters.

For example, suppose that GP is used to find a function satisfying the
fitness cases in Table 4.1 - that is, a program that could predict the output
column from the values in the input column.
This example is very simple, in fact a program representing the function
f (x) = x2 +1 would be a perfect match on this learning domain.

INPUT OUTPUT

Fitness case 1 1 2

Fitness case 2 3 10

Fitness case 3 4 17

Fitness case 4 9 82

Fitness case 5 12 145

Table 4.1: Example of a set of possible fitness cases for a one-dimensional
symbolic regression problem

Let the output of the ith example from the training set be oi. Let the
output of a GP program p applied to the ith example of the training set be
pi. For this domain of 5 examples the fitness fp of program p would be:

fp =
5

∑
i=1
|pi−oi|k (4.4)

One of the most used version of this fitness function is to calculate the
sum of the squared differences between pi and oi, called squared error and

PhD Thesis Antonella Farinaccio

4.9. Selection in GP 79

stated in the equation 4.5 for a generic domain of n examples.

fp =
n

∑
i=1

(pi−oi)2 (4.5)

Note that all these fitness functions are continous. As pi gets a little
closer to oi, the fitness gets a little better. They are also standardized
because the fitness of a perfect solution, like f (x) = x2 + 1 in the above
example, would be equal to zero.

4.9 Selection in GP

After the quality of an individual has been evaluated using a fitness function,
it is necessary to decide whether to apply genetic operators to that individual
and whether to keep it in the population or replace it. This process is called
selection and is performed by a proper operator, the selection operator. This
step is determinant in the GP process because it is responsible for the speed
of evolution and is often cited as the main cause for premature convergence,
which may prevent the success of an evolutionary algorithm. For this reason,
many selection algorithms have been developed.

4.9.1 Roulette-Wheel or Fitness Proportional Selection

Fitness-proportional selection is employed in a GP scenario for generational
selection and specifies probabilities for individuals to be given a chance to
pass offspring into the next generation. Let N be the number of individuals
belonging to a population P and { f1, f2, ..., fN} be the set of their fitness
values. Each individual i in P is given a probability of:

pi =
fi

N

∑
i=1

fi

(4.6)

to pass on traits by being applied genetic operators. While candidate
solutions with a higher fitness will be more likely to be selected, there is still
a chance that they are not. This contrasts with a less sophisticated selection
algorithm, such as truncation selection, which ”eliminates”a fixed percentage
of the weakest candidates. So, with fitness proportionate selection, there is
a chance some weaker solutions may survive the selection process; this is

PhD Thesis Antonella Farinaccio

4.9. Selection in GP 80

an advantage as, although a solution may be weak, it may include some
component which could prove useful following the recombination process.

The analogy to a roulette wheel can be visualised by imagine a roulette
wheel in which each candidate solution represents a pocket on the wheel;
the size of the pockets are proportionate to the probability of selection of
the individual to which they are associated. So, selecting N individuals from
the population is equivalent to playing N games on the roulette wheel, as
each candidate is drawn independently. The resulting population is called
mating pool.

This selection algorithm, although widely used in GP, has been criti-
cized for attaching differential probabilities to the absolute values of fitness
[Blickle and Thiele, 1995]: if the difference between individuals with bet-
ter fitness and those with worse fitness in a population is high, it is pos-
sible that the first ones will be selected in many copies, which increases
the selection pressure, decreasing the population diversity. Early reme-
dies for this situation were introduced through fitness scaling, a method
by which absolute fitness values were adapted to the population average
[Grefenstette and Baker, 1989], and several other methods; for details see
[Koza, 1992].

4.9.2 Ranking selection

Ranking selection [Grefenstette and Baker, 1989] was proposed to reduce
the possible predominant effects of high fitness individuals in the fitness
proportionate selection.
It is based on fitness order, by which individuals are sorted. The selection
probability is assigned to individuals as a function of their position in the
ordered population. Types of ranking used for the ordering are principally
linear and exponential ranking.
Let be p−/N the probability of the worst individual being selected, and
p+/N the probability of the best individual being selected (p−+ p+ = 2 in
order for the population size to stay constant, in the case of the selection of
the survival individuals). Then the probability for linear ranking is a linear
function of the rank:

pi =
1
N

[
p−+(p+− p−)

i−1
N−1

]
(4.7)

PhD Thesis Antonella Farinaccio

4.10. GP Parameters 81

Instead the probability for the exponential ranking can be computed
using a selection bias constant c, with 0 < c < 1

pi =
c−1
cN−1 cN − i (4.8)

These are the most commonly used ranking functions.
The drawback of this technique is the opposite as the one of fitness

proportionate selection: it amplifies the difference between closely clus-
tered fitness values so that the better ones can be sampled more frequently
[Whitley, 1989].

4.9.3 Tournament selection

Tournament selection is not based on competition within the full generation
but in several subsets of the population. A number of individuals, called
tournament size, is selected randomly and the ones with better fitness are
selected. The traits of the better individuals in the tournament are then
allowed to replace those of the worse individuals. In the smallest possible
tournament, two individuals compete. The better of the two is allowed to
reproduce with mutation. The result of that reproduction is returned to
the population, replacing the loser to the tournament. The tournament
size allows practitioners to adjust selection pressure. A small tournament
size causes a low selection pressure, and a large tournament size causes
high pressure [Banzhaf et al., 1998]. This method is widely used in GP
mainly because it does not require a centralized fitness comparison between
all individuals. This saves computational time and also provides an easy
way to parallelize the algorithm.

4.10 GP Parameters

In paragraph 4.3 we have stated that one of the preliminary steps in a GP
run is the definition of control parameters. The fundamental ones are:

• Population size

• Maximum individual size

• Initialization of population

• Selection method

PhD Thesis Antonella Farinaccio

4.10. GP Parameters 82

• Crossover probability

• Mutation type and rate

• Termination criterion

The setting of each of these parameters represents in general a crucial
choice for the performance of the GP system. Much of what GP researchers
know about them is empirical and based on experience. Following in this
work some choices are presented for two problem-specific implementations,
a survival prediction in breast cancer and a reverse engineering of gene reg-
ulatory networks.

PhD Thesis Antonella Farinaccio

PART II

MEDICAL DECISION

SUPPORT SYSTEM

Chapter 5

Medical Decision Support System

For Survival Prediction in Breast

Cancer using a binary dataset

5.1 A first glance

Current cancer therapies have serious side effects: ideally type and dosage of
the therapy should be matched to each individual patient based on his/her
risk of relapse. Therefore the classification of cancer patients into risk classes
is a very active field of research, with direct clinical applications. Until
recently patient classification was based on a series of clinical and histo-
logical parameters. The advent of high-throughput techniques to measure
gene expression led, in the last decade, to a large body of research on gene
expression in cancer, and in particular on the possibility of using gene ex-
pression data to improve patient classification. A gene signature is a set of
genes whose levels of expression can be used to predict a biological state
(see [Nevins and Potti, 2007]): in the case of cancer, gene signatures have
been developed both to distinguish cancerous from non-cancerous conditions
and to classify cancer patients based on the aggressiveness of the tumor, as
measured for example by the probability of relapsing within a given time.

While many studies have been devoted to the identification of gene
signatures in various types of cancer, the question of the algorithms to be
used to maximize the predictive power of a gene signature has received less
attention. To investigate this issue systematically, one of the best estab-
lished gene signatures has been considered: the 70-gene signature for breast
cancer [van’t Veer et al., 2002]. The performance of four different machine
learning algorithms in using this signature to predict the survival of a cohort
of breast cancer patients is compared in the present chapter. The 70-gene
signature is a set of microarray features selected in [van’t Veer et al., 2002]

84

5.2. Previous and Related Work 85

based on correlation with survival, on which the molecular prognostic
test for breast cancer “MammaPrint”TMis based. In the field of machine
learning algorithms used to classify cancer samples based on gene expres-
sion data [Chu and Wang, 2005, Deb and Reddy, 2003, Deutsch, 2003,
Langdon and Buxton, 2004, Paul and Iba, 2005, Yu et al., 2007], is inserted
the Medical Decision Support System (GP-MDSS) presented in this thesis.
It was developed with Genetic Programming using the GP toolbox GPLab
[Silva, 2007]. Also a systematic comparison of its performance with three
other machine learning algorithms is shown using the same features to
predict the same classes. In such a comparison, feature selection is thus not
explicitly performed as a pre-processing phase before executing the machine
learning algorithms1. It is compared with Support Vector Machines,
Multilayer Perceptrons and Random Forests, which are applied to the
problem of using the 70-gene signature to predict the survival of the breast
cancer patients included in the NKI dataset [van de Vijver et al., 2002].
This is considered one of the gold-standard datasets in the field, and the
predictive power of the 70-gene signature on these patients was already
shown in [van de Vijver et al., 2002]. In this preliminary study all the
methods are used in an “out-of-the-box” version so as to obtain a first
evaluation, as unbiased as possible, of the performance of the methods.

5.2 Previous and Related Work

Many different machine learning methods [Lu and Han, 2003]
have already been applied for microarray data analysis, like
k-nearest neighbors [Michie et al., 1994], hierarchical cluster-
ing [Alon et al., 1999], self-organizing maps [Hsu et al., 2003], Support
Vector Machines [Guyon et al., 2002, Hernandez et al., 2007] or Bayesian
networks [Friedman et al., 2000]. Furthermore, in the last few years
Evolutionary Algorithms (EA) [Holland, 1975] have been used for solving
both problems of feature selection and classification in gene expression
data analysis. Genetic Algorithms (GAs) [Goldberg, 1989] have been
employed for building selectors where each allele of the representation

1As discussed later, the system presented is the only method, among the ones studied

in this chapter, that is able to perform automatically a further feature selection and thus

identify small subsets of the original signature characterized by high predictive power.

That happens thanks to the intrinsic characteristic of GP.

PhD Thesis Antonella Farinaccio

5.3. Computational Methods 86

corresponds to one gene and its state denotes whether the gene is selected
or not [Liu et al., 2005]. GP on the other hand has been shown to work well
for recognition of structures in large data sets [Moore et al., 2001]. GP was
applied to microarray data to generate programs that reliably predict the
health/malignancy states of tissue, or classify different types of tissues. An
intrinsic advantage of GP is that it automatically selects a small number
of feature genes during evolution [Rosskopf et al., 2007]. The evolution
of classifiers from the initial population seamlessly integrates the process
of gene selection and classifier construction. In fact, in [Yu et al., 2007]
GP was used on cancer expression profiling data to select potentially
informative feature genes, build molecular classifiers by mathematical
integration of these genes and classify tumour samples. Furthermore, GP
has been shown to be a promising approach for discovering comprehensible
rule-based classifiers from medical data [Bojarczuk et al., 2001] as well as
gene expression profiling data [Hong and Cho, 2006]. The results presented
in those contributions are encouraging and pave the way to a further
investigation of GP for this kind of datasets, which is the goal of this part
of the work.

5.3 Computational Methods

The machine learning methods considered in this work are roughly depicted
in this section, whereas GP, the core of the system, is described in details in
Chapter 4.

5.3.1 Genetic Programming

The most common version of GP, and also the one used here, considers
individuals as syntax tree structures2 that can be built recursively from a
set of function symbols F = { f1, f2, . . . , fn} (used to label internal tree nodes)
and a set of terminal symbols T = {t1, t2, . . . , tm} (used to label tree leaves).
GP breeds these solutions to solve problems by executing an iterative process
involving the probabilistic selection of the fittest solutions and their variation
by means of a set of genetic operators.

In this work a tree-based GP configuration inspired by boolean problems
and introduced in [Koza, 1992] is used: each feature in the dataset was

2Traditionally represented in Lisp notation.

PhD Thesis Antonella Farinaccio

5.3. Computational Methods 87

represented as a boolean value and thus the set of terminals T was composed
by 70 boolean variables (i.e. one for each feature of our dataset). Potential
solutions (GP individuals) were built using the set of boolean functions
F = {AND,OR,NOT}. The fitness function is the number of incorrectly
classified instances, which turns the problem into a minimization one (lower
values are better)3.

Finally no explicit feature selection strategy was employed, due to
the GP’s ability to automatically perform an implicit feature selection.
The mechanism allowing GP to perform feature selection, is simple: GP
searches over the space of all boolean expressions of 70 variables. This
search space includes the expressions that use all the 70 variables, but also
the ones that use a smaller number of variables. In principle there is no
reason why an expression using a smaller number of variables could not
have a better fitness value than an expression using all the 70 variables. If
expressions using smaller number of variables have a better fitness, they
survive and reproduce, given that fitness is the only principle used by GP
for selecting genes.
This mechanism is already pointed out in [Vanneschi et al., 2010,
Farinaccio et al., 2009, Archetti et al., 2006, Archetti et al., 2007a,
Archetti et al., 2007b, Rosskopf et al., 2007]. The first two papers contain
a first version of the work presented in this chapter.

The parameters used in this work are reported in Table 6.1, together
with the parameters used by the other machine learning methods studied.
There is no particular justification for the choice of those parameter values,
if not the fact that they are standard for the GP Matlab tool [Silva, 2007]
based on which GP-MDSS is constructed.

5.3.2 Support Vector Machines

In this work the Support Vector Machine implementation of John
Platt [Platt, 1998] sequential minimal optimization (SMO) algorithm for
training the support vector classifier is used. SMO works by breaking
the large Quadratic Programming (QP) problem into a series of smaller
2-dimensional sub-problems that may be solved analytically, eliminating

3In case of minimization problems, the term “fitness” might be inappropriate, given

that a fitness is usually a measure that has to be maximized. Nevertheless, this term is

used for simplicity.

PhD Thesis Antonella Farinaccio

5.3. Computational Methods 88

the need for numerical optimization algorithms such as conjugate gradient
methods. The implementation used is the one contained in the Weka public
domain software [Weka, 2006]. This implementation globally replaces all
missing values and transforms nominal attributes into binary ones. It also
normalizes all attributes by default (in that case the coefficients in the
output are based on the normalized data, not the original data and this
is important for interpreting the classifier). Neverthless, in this work this
normalization is not used, because binary data and targets are directly
passed to the Weka software, as explained in Section 5.4

The main parameter values used in this work are reported in Table 6.1.
All these parameter values correspond to the standard values offered
by the Weka software [Weka, 2006] and they are defined for instance
in [Platt, 1998].

5.3.3 Multilayer Perceptron

The Multilayer Perceptron implementation adopted in this work is
the one included in the Weka software distribution [Weka, 2006]. The
Back-propagation learning algorithm [Haykin, 1999] was used and the
values used for all the parameters are reported in Table 6.1. As for the
previously discussed machine learning methods, also in the case of the
Multilayer Perceptron it is important to point out that the parameter
setting used is as standard as possible, without doing any fine parameter
tuning for this particular application. The goal is, in fact, to compare
different computational methods under standard conditions and not to
solve in the best possible way the problem itself. In particular, all the
values reported in Table 6.1 correspond to the default ones adopted by the
Weka software.

5.3.4 Random Forests

In this work the Breiman model presented in [Breiman, 2001] and imple-
mented in the Weka software [Weka, 2006] has been used. As can be seen
from Table 6.1, this method, compared to the other ones, has the advantage
of a smaller amount of parameter setting required. In order to allow a fair
comparison with GP-MDSS, random forests composed by 2500 trees were
considered (given that the GP population is composed by 500 trees and it
runs for 5 generations, 2500 trees are globally inspected by GP too) such

PhD Thesis Antonella Farinaccio

5.4. Validation Dataset 89

that each node corresponds to exactly one feature (as it is for GP-MDSS).
All the other parameters were set to the standard values used by the Weka
software.

GP Parameters

population size 500 individuals

population initialization ramped half and half [Koza, 1992]

selection method tournament (tournament size = 10)

crossover rate 0.9

mutation rate 0.1

maximum number of generations 5

algorithm generational tree based GP with no elitism

SVM Parameters

complexity parameter 0.1

size of the kernel cache 107

epsilon value for the round-off error 10−12

exponent for the polynomial kernel 1.0

tolerance parameter 0.001

Multilayered Perceptron Parameters

learning algorithm Back-propagation

learning rate 0.03

activation function for all the neurons in the net sigmoid

momentum 0.2 progressively decreasing until 0.0001

hidden layers (number of attributes + number of classes) / 2

number of epochs of training 500

Random Forest Parameters

number of trees 2500

number of attributes per node 1

Table 5.1: Parameters used in the experiments.

5.4 Validation Dataset

The NKI breast cancer dataset [van de Vijver et al., 2002] used in this work
provides gene expression and survival data for 295 breast carcinoma pa-
tients. Only the expression data for the genes included in the “70-gene”
signature [van’t Veer et al., 2002] were considered.

Both survival and gene expression data were transformed into binary
form. For the survival data, the outcome is defined as the survival status of
the patient at time tend = 10.3 years. By choosing this particular endpoint the
number of dead and alive patients is balanced: out of 148 patients for which
the status at tend is known, 74 were dead and 74 were alive. Binary expression
data were obtained by replacing all positive logarithmic fold changes in the

PhD Thesis Antonella Farinaccio

5.5. Experimental Results 90

original dataset with 1 and all negative and missing ones with 0.
The dataset is a matrix H = [H(i, j)] of binary values composed by 148 rows

(instances) and 71 columns (features), where each line i represents the gene
signature of a patient whose binary target (0 = survived after tend years, 1 =
dead for breast cancer before tend years) has been placed at position H(i,71).
In this way, the last column of matrix H represents all the known target
values.
The task is now to generate a mapping F such that

F(H(i,1),H(i,2), ...,H(i,70)) = H(i,71)

for each line i in the dataset. Of course, we also want F to have a good
generalization ability, i.e. to be able to assess the target value for new
patients who have not been used in the training phase. For this reason, a
set of machine learning techniques is used, as discussed in Section 5.3.

Each computational method was run 50 independent times. For each run
the dataset was randomly partitioned into a training and a test set: 70%
of the patients are randomly selected with uniform probability and inserted
into the training set, while the remaining 30% form the test set.

5.5 Experimental Results

Table 5.2 summarizes the results returned by each machine learning method
on the 50 runs. The first line indicates the different methods, the second
line shows the best (i.e. lowest) value of the incorrectly classified instances
obtained on the test set over the 50 runs, and the third line reports the mean
performances of each group of 50 runs on their test sets, together with the
corresponding standard error of mean (SEM).

As Table 5.2 clearly shows, the best solutions were found by GP-MDSS
and Multilayer Perceptrons and the best average result was found by GP-
MDSS. Moreover, statistical analysis indicates that GP-MDSS consistently
outperforms the other methods except SVM using polynomial kernel with
degree 1. In fact, as can be seen in Table 5.3, the difference between
the various average results is statistically significant (P-value 3.05× 10−5

for ANOVA test on the 4 samples of solutions found by each method). Fi-
nally, pairwise 2-tailed Student t-tests comparing GP-MDSS with each other
method demonstrates its general better performance. These statistical tests
were performed since there was no evidence of deviation from normality or

PhD Thesis Antonella Farinaccio

5.5. Experimental Results 91

GP-MDSS SVM-K1 SVM-K2 SVM-K3 MP RF

best 10 13 14 15 10 12

average (SEM) 16.40 (0.30) 18.32 (0.37) 16.76 (0.18) 17.62 (0.17) 18.08 (0.39) 17.60 (0.35)

Table 5.2: Experimental comparison between the number of incorrectly classified
instances found on the test sets by the different machine learning methods. Each
method was independently run 50 times using each time a different training/test
partition of the validation dataset (see text for details). The first line indicates
the method: Medical Decision Support System based on GP (GP-MDSS), Support
Vector Machine with exponent for the polynomial kernel 1.0 (SVM-K1), 2.0 (SVM-
K2), and 3.0 (SVM-K3), Multilayer Perceptrons (MP), and Random Forest (RF).
The second line shows the best value of the incorrectly classified instances obtained
on the test set over the 50 runs, and the third line reports the average performances
of each group of 50 runs on their test sets (standard error of mean is shown in
parentheses).

unequal variances.

ANOVA
P = 3.05×10−5

GP-MDSS vs. SVM-K1 GP-MDSS vs. SVM-K2 GP-MDSS vs. SVM-K3 GP-MDSS vs. MP GP-MDSS vs. RF
P = 0.0001 P = 0.3107 P = 0.0008 P = 0.0009 P = 0.0103

Table 5.3: Statistical significance of the difference in performance between the
methods. The first line shows ANOVA test on the 6 samples of solutions found
by each method, while the second line depicts pairwise 2-tailed Student t-tests
comparing GP-MDSS with each other method.

When using gene signatures to predict the survival of a cohort of breast
cancer patients, one of the main goals in clinical applications is to minimize
the number of false negative predictions. Table 5.4 summarizes the false
negative predictions returned by each machine learning method on the 50
runs. The first line indicates the different methods, while the second and
the third lines show the best (i.e. lowest) and mean performances (together
with the corresponding SEM).

The best solutions were found by GP-MDSS, and statistical analysis
indicates that GP-MDSS consistently outperforms the other five methods
as can be seen in Table 5.6. The difference between the various average
results is statistically significant (P-value 2.75× 10−9 for ANOVA test on
the 4 samples of solutions found by each method). Finally, pairwise 2-tailed
Student t-tests comparing GP-MDSS with each other method demonstrates
its better performance.

PhD Thesis Antonella Farinaccio

5.5. Experimental Results 92

GP-MDSS SVM-K1 SVM-K2 SVM-K3 MP RF

best 2 6 6 6 5 6

average (SEM) 9.82 (0.44) 13.26 (0.51) 12.60 (0.35) 14.08 (0.39) 12.88 (0.51) 13.38 (0.49)

Table 5.4: Experimental comparison between the number of false negatives found
on the test sets by the different machine learning methods. Each method was in-
dependently run 50 times using each time a different training/test partition of the
validation dataset (see text for details). The first line indicates the method: Med-
ical Decision Support System based on GP (GP-MDSS), Support Vector Machine
(SVM), Multilayer Perceptrons (MP), and Random Forest (RF). The second line
shows the smallest number of false negatives obtained on the test set over the 50
runs, and the third line reports the average performances of each group of 50 runs
on their test sets (standard error of mean is shown in parentheses).

The solutions found by GP-MDSS typically use a rather small number
of genes (i.e. features, terminals). In fact, the solutions of the 50 GP-MDSS
runs are functions of a number of gene that ranges from 1 to 23, with a
median value of 4, and first and third quartiles of 2 and 7 respectively. Few
of these features tend to recur in several solutions as can be seen in Table 5.5,
where the gene symbol, the gene name of each feature, together with the
number of solutions where the feature occurs are shown.

Accession ID Gene name Gene description Solutions

NM 003981 PRC1 protein regulator of cytokinesis 1 48

NM 002916 RFC4 replication factor C (activator 1)
4, 37kDa

23

AI992158 - - 16

AI554061 - - 10

NM 006101 NDC80 NDC80 homolog, kinetochore
complex component (S. cere-
visiae)

9

NM 015984 UCHL5 ubiquitin carboxyl-terminal hy-
drolase L5

7

NM 020188 C16orf61 chromosome 16 open reading
frame 61

6

NM 016448 DTL denticleless homolog
(Drosophila)

6

NM 014791 MELK maternal embryonic leucine zip-
per kinase

6

NM 004702 - - 6

Table 5.5: The 10 most recurring features in the solutions found by GP-MDSS.
The four columns show: accession ID, gene name, gene description, and number of
solutions where that feature occurs.

PhD Thesis Antonella Farinaccio

5.5. Experimental Results 93

The authors of [van de Vijver et al., 2002] used the seventy-gene signa-
ture by computing the correlation coefficient between the expression profile
of the patient (limited to the 70 genes of the signature) and a previously
computed typical expression profile of a good prognosis patient. To com-
pare the performance of the various machine learning algorithms with this
scoring system the process was as follows:

• The prognostic score s of the patients was obtained (excluding the ones
used to train the signature in [van’t Veer et al., 2002]) from the Sup-
plementary Material of [van de Vijver et al., 2002]; authors classified
as good prognosis the patients with s > 0.4 and as bad prognosis the
ones with s≤ 0.4. This is the cutoff used in [van de Vijver et al., 2002].

• 50 random lists of 50 patients from this set were generated, to match
the statistic used for machine learning techniques, and for each list the
number of false predictions given by the scoring method was computed.

The mean number of false predictions was 16.24, with a SEM of 0.37.
Therefore the scoring method appears to be better than all machine learning
algorithms other than GP-MDSS, and slightly better than GP-MDSS. The
difference between the performances of GP-MDSS and the scoring method
are not statistically significant (P = 0.49, 2-tailed Student t-test).
The original scoring method of [van’t Veer et al., 2002, van de Vijver et al., 2002],
and in particular the suggested cutoff of 0.4, was chosen to minimize
the number of false negatives. Therefore it is not surprising that in this
respect the scoring method is far superior to all machine learning methods,
including GP-MDSS. Indeed the average number of false negatives given
by the scoring method is 1.78, to be compared to the numbers reported in
Table 5.6.

ANOVA
P = 2.75×10−9

GP-MDSS vs. SVM-K1 GP-MDSS vs. SVM-K2 GP-MDSS vs. SVM-K3 GP-MDSS vs. MP GP-MDSS vs. RF
P = 2.74×10−6 P = 3.32×10−6 P = 1.27×10−10 P = 8.53×10−6 P = 4.65×10−7

Table 5.6: False negative prediction: statistical significance of the difference in
performance between the methods. First line shows ANOVA test on the 6 samples of
solutions found by each method, while second line reports pairwise 2-tailed Student
t-tests comparing GP-MDSS with each other method.

PhD Thesis Antonella Farinaccio

5.6. Discussion 94

5.6 Discussion

It is well known that the fitness function driving the evolutionary dynamics
in a GP framework can be modified in order to let solutions with different
characteristics emerge. The results presented and discussed in the previous
section were obtained with the goal of minimizing all incorrectly classified
instances, summing both false negative and false positive predictions ob-
tained by the solutions. However, when using gene signatures to predict the
survival of a cohort of breast cancer patients, minimizing the number of false
negative predictions is recognized as one of the most important goals.

For all these reasons, the GP-MDSS fitness function was modified so
that false negatives (positives) are penalized more than errors of the other
type, hoping to tune the algorithm towards better sensitivity (sensibility).
In particular, solutions with greater sensitivity can emerge if larger weights
are assigned to false negatives compared to false positives. In general, the
fitness function can be transformed in a weighted average of the form:

Fitness = 0.9×FalseNegative+0.1×FalsePositive

The results of 50 runs of this new version of the GP-MDSS technique
showed an average of 16.04 (with SEM = 0.44) incorrectly classified in-
stances. Compared with the performances of the previous GP-MDSS al-
gorithm, no statistically significant difference can be highlighted (Student
t-test P = 0.50). When looking only at the number of false negative incor-
rectly classified instances, the average performance of 4.32 (SEM = 0.346)
is better than the one of standard GP-MDSS reported in table 5.6 (Student
t-test P = 6.62× 10−16), even if it is still worse than that of the original
scoring method.

Finally, it is noteworthy that GP-MDSS can potentially offer
biological insight and generate hypotheses for experimental work (see
also [Yu et al., 2007]). Indeed an important result of this analysis is that
the trees produced by GP-MDSS tend to contain a limited number of
features, and therefore are easily interpretable in biological terms. For
example, the best-performing tree, shown in Fig. 5.1, includes only 7 genes
(features).

PhD Thesis Antonella Farinaccio

5.6. Discussion 95

(or (and (or ORC6L RFC4) (or UCHL5 PRC1))

(and (or PRC1 AI554061) (or ESM1 AW014921)))

Figure 5.1: Tree representation and traditional Lisp representation of the
model with the best fitness found by GP over the 50 independent runs.

PhD Thesis Antonella Farinaccio

Chapter 6

Medical Decision Support System

For Breast Cancer Based On

Floating Point Dataset

6.1 Classification of breast cancer patients into

risk classes using floating point data

In the previous chapter the use of several machine learning schemes for
the classification of cancer patients survival was investigated. In order to
compare their performances, the well known “70-genes signature” dataset,
a set of microarray features selected in [van’t Veer et al., 2002] based on
correlation with survival was used. This is the set of genes on which the
molecular prognostic test for breast cancer “MammaPrint”TMis based and
has already been discussed in the previous chapter.

In such an investigation both the disease outcome (survival status) of
the patients and the expression data were preprocessed and binarized. This
choice was made in order to use GP in a rather simple and standard way,
with logical operators for the functional nodes (as is usual in many stan-
dard GP benchmarks such as the even parity or the multiplexer prob-
lems [Koza, 1992]), allowing a simple and direct interpretation of the so-
lutions found by GP-MDSS from the biological viewpoint. Using default
implementations and parameters of all machine learning methods, so as to
minimize the possible bias given, for instance, by a smart parameter setting
in a computational method and a naive one in another, the results presented
showed that GP-MDSS clearly outperforms all other techniques. Since all
methods other than GP-MDSS had very similar performances, our conclu-
sions indicated GP-MDSS as the most promising method. Finally the best
solution found by GP-MDSS was compared to the original scoring method
proposed in [van’t Veer et al., 2002, van de Vijver et al., 2002] showing that

96

6.2. Dataset and methods 97

the difference in prediction of the two methods was rather small and not sta-
tistically significant. However, as expected, the scoring method was superior
to all machine learning algorithms in minimizing false negatives, which is
clearly a very important task in clinical applications.

Nevertheless, GP-MDSS showed some interesting characteristics. For
instance, it produced solutions containing a limited number of features,
thus performing an automatic feature selection of the relevant genes in the
dataset. This added value of the GP-MDSS approach, together with the
promising performances shown by GP-MDSS, motivated us in pursuing this
research line, whose results shall be presented in this chapter.

First, to overcome the limitations of the analysis of the binarized dataset,
the use of original floating point valued expression data was investigated,
abandoning the binarization of the 70-genes dataset. Moreover, the fitness
function was modified so that false negatives are penalized more than false
positives, hoping to tune the classifiers towards better sensitivity.

6.2 Dataset and methods

6.2.1 The 70-Genes Signature

As stated above, the NKI breast cancer dataset [van de Vijver et al., 2002],
providing gene expression and survival data for 295 young, systemically
untreated breast carcinoma patients is used. As in the previous chapter,
only the expression data for the genes included in the “70-genes signa-
ture” [van’t Veer et al., 2002] were considered. Survival data (targets) were
transformed into binary form: the outcome was defined as the survival status
of the patient at time tend = 10.3 years. By choosing this particular endpoint
the number of dead and alive patients was balanced: out of 148 patients for
which the status at tend is known, 74 were dead and 74 were alive.

Thus, the dataset is a matrix H = [H(i, j)] composed by 148 rows (in-
stances) and 71 columns (features). Each line i represents the gene signature
of a patient and consists in a vector [H(i,1) H(i,2) . . . H(i,70)] of 70 floating point
numbers, and one binary number representing the target (0 = survived after
tend years, 1 = dead for breast cancer before tend years), that has been placed
at position H(i,71). In this way, the last column of matrix H represents all
the known target values.

As in the previous chapter, the task is to generate a binary classification

PhD Thesis Antonella Farinaccio

6.2. Dataset and methods 98

model F such that F(H(i,1),H(i,2), ...,H(i,70)) = H(i,71) for each line i in the
dataset. Each computational method used was run 50 independent times.
For each run, a random splitting of the dataset was performed before model
construction, by partitioning it into a training and a test set: 70% of the
patients are randomly selected with uniform probability and inserted into
the training set, while the remaining 30% form the test set.

6.2.2 Methods

The methods used are described in the previous chapters.
GP potential solutions (GP individuals) were built using the set of func-

tions F = {plus,minus,mul,div,squaredsin}, where plus, minus and mul

are the usual binary addition, subtraction and multiplication operators, re-
spectively; div is the protected division operator as in [Koza, 1992] and
squaredsin is the square of the sine trigonometric function. GP individuals
(which are expressions returning a floating point number) have been turned
into binary classifiers by using a threshold value. The threshold used was the
average between the maximum and minimum values in the whole dataset
set.

For Support Vector Machines (SVM), Multilayer Perceptron (MP),
Voted Perceptron (VP) and Radial Basis Function Network (RBFN), the
Weka standard implementation has been used, using the Weka default
parameters reported in Table 6.1. In this study with the original floating
point valued expression data Support Vector Machine with polynomial
kernel with degree 1 was used. This means that just the accurancy of linear
SVM is evaluated, due to the little difference between different kernels
demonstrated in this feature space.

Moreover, in order to use a RBFN, it is necessary to specify the hid-
den unit activation function, the number of processing units, a criterion for
modeling a given task and a training algorithm for finding the parameters
of the network. In this work the standard Weka implementation has been
used. It consists in a normalized Gaussian radial function network. It uses
the k-means clustering algorithm to provide the basis functions and learns
a logistic regression (discrete class problems) on top of that. Symmetric
multivariate Gaussians are fit to the data from each cluster. All the other
parameters are specified in Table 6.1.

PhD Thesis Antonella Farinaccio

6.3. Experimental Results 99

GP-MDSS Parameters

population size 500 individuals

population initialization ramped half and half [Koza, 1992]

selection method tournament (tournament size = 10)

crossover rate 0.9

mutation rate 0.1

maximum number of generations 5

algorithm generational tree based GP-MDSS with no elitism

SVM Parameters

complexity parameter 0.1

size of the kernel cache 107

epsilon value for the round-off error 10−12

exponent for the polynomial kernel 1.0

tolerance parameter 0.001

Multilayered Perceptron Parameters

learning algorithm Back-propagation

learning rate 0.03

activation function for all the neurons in the net sigmoid

momentum 0.2 progressively decreasing to 0.0001

hidden layers (number of attributes + number of classes) / 2

number of epochs of training 500

Voted Perceptron Parameters

exponent for the polynomial kernel 1.0

maximum number of alterations to the perceptron 10000

Radial Basis Function Network Parameters

minimum standard deviation for the clusters 0.1

number of clusters for K-Means 2

ridge value for the logistic 1.8×10−8

Table 6.1: Parameters used in the experiments.

6.3 Experimental Results

The experiment focus is twofolds: first, to overcome the limitation of the
study on the binarized expression data, the use of the original floating point
valued expression data has been investigated, abandoning the binarization
of the 70-genes dataset. The machine learning techniques are tested on it,
and the results are discussed in Section 6.3.1. Second, the fitness function
in the GP-MDSS runs was modified so that false negatives (positives) are
penalized more than errors of the other type, so as to tune the algorithm
towards better sensitivity (specificity). These experiments are presented
and analyzed in Section 6.3.2. The best solutions found by GP-MDSS are
discussed in Section 6.3.3

PhD Thesis Antonella Farinaccio

6.3. Experimental Results 100

6.3.1 Comparing Different Algorithms

Table 6.2 summarizes the results of the 50 runs returned by each machine
learning method introduced in Section 6.2.2 on the floating point valued
70-genes signature dataset introduced in Section 6.2.1. The first two lines
indicate the different methods and the best (i.e. lowest) values of the in-
correctly classified instances obtained on the test set over the 50 runs, re-
spectively. Since every set of runs does not show any evidence of deviation
from a normal distribution, the third line reports the mean performances
of each group of 50 runs on their test sets, together with the corresponding
standard error of mean (SEM from now on).

GP-MDSS MP RBFN SVM VP

best 12 10 14 11 10

average (SEM) 16.56 (0.37) 15.70 (0.49) 17.82 (0.28) 14.72 (0.35) 14.74 (0.31)

Table 6.2: Experimental comparison between the number of incorrectly classified
instances found on the test sets by the different machine learning methods. Each
method was independently run 50 times using each time a different training/test
partition of the validation dataset (see text for details). The first line indicates
the method: Genetic Programming Medical Decision Support System (GP-MDSS),
Multilayer Perceptron (MP), Radial Basis Function Network (RBFN), Support Vec-
tor Machines (SVM), and Voted Perceptron (VP). The second line shows the best
value of the incorrectly classified instances obtained on the test set over the runs,
and the third line reports the average performances of each group of runs on their
test sets (standard error of mean is shown between parentheses).

These groups being similar in the large number of samples, an ANOVA
test indicated a significant difference in their average performances (P-value
8.41×10−9). Tukey’s Honestly Significant Difference test evidenced a differ-
ence between RBFN and all other methods, together with an outperformance
of both VP and SVM with respect to GP-MDSS. Finally, no statistically sig-
nificant difference was outlined between VP and SVM, and between MP and
VP, SVM, and GP-MDSS.

When using gene signatures to predict the survival of a cohort of breast
cancer patients, one of the main goals in clinical applications is to minimize
the number of false negative predictions. Table 6.3 summarizes the false
negative predictions returned by each machine learning method on the 50
runs. The first two lines indicate the different methods and the best (i.e.
lowest) values of the false negatives obtained on the test set over the 50 runs,

PhD Thesis Antonella Farinaccio

6.3. Experimental Results 101

respectively. Since every set of runs does not show any evidence of deviation
from a normal distribution, also in this case the third line reports the mean
performances (together with the corresponding SEM) of each group of 50
runs on their test sets.

GP-MDSS MP RBFN SVM VP

best 3 5 2 6 3

average (SEM) 10.66 (0.48) 11.56 (0.49) 10.34 (0.43) 10.34 (0.36) 9.18 (0.36)

Table 6.3: Experimental comparison between the number of false negative pre-
dictions found on the test sets by the different machine learning methods. Each
method was independently run 50 times using each time a different training/test
partition of the validation dataset (see text for details). The first line indicates
the method: Genetic Programming Medical Decision Support System (GP-MDSS),
Multilayer Perceptron (MP), Radial Basis Function Network (RBFN), Support Vec-
tor Machines (SVM), and Voted Perceptron (VP). The second line shows the best
value of the false negatives obtained on the test set over the runs, and the third line
reports the average performances of each group of runs on their test sets (standard
error of mean is shown between parentheses).

If looking only at false negative predictions, the only difference evidenced
by ANOVA (P-value of 4.16×10−4) together with Tukey’s Honestly Signif-
icant Difference test was the outperformance of VP with respect to all the
other methods.

6.3.2 Towards GP-MDSS with Greater Sensitivity or Sensi-

bility

Contrarily to what was observed with the binarization of the 70-genes sig-
nature dataset, when faced with the problem of classifying floating point
valued expression data, GP-MDSS did not outperform the other machine
learning techniques. On the other hand, it is well known that the fitness
function driving the evolutionary dynamics in a GP system can be modified
in order to let solutions with different characteristics emerge. The results
presented and discussed in the previous section were obtained with the goal
of minimizing all incorrectly classified instances, summing both false nega-
tive and false positive predictions obtained by the solutions. However, when
using gene signatures to predict the survival of a cohort of breast cancer
patients, minimizing the number of false negative predictions is recognized
as one of the most important goals. In fact, the original scoring method

PhD Thesis Antonella Farinaccio

6.3. Experimental Results 102

of [van’t Veer et al., 2002, van de Vijver et al., 2002] was designed in such a
way as to minimize the number of false negatives. It is therefore not sur-
prising that in this respect the scoring method is far superior to all machine
learning methods.

For all these reasons,the GP-MDSS fitness function was modified so that
false negatives (positives) are penalized more than errors of the other type,
hoping to tune the algorithm towards better sensitivity (sensibility). In
particular, solutions with greater sensitivity can emerge if larger weights are
assigned to false negatives compared to false positives. As stated previously,
we can transform the fitness function in a weighted average of the form:

Fitness = α×FalseNegative+β×FalsePositive

where α and β are two floating point values. In this work, has been decided
to use α,β ∈ [0,1] and such that α+β = 1, in order to facilitate the task of
giving higher weights to false negatives or false positives.

The fitness function of the GP-MDSS, whose results have been presented
in the previous section, can be expressed using α = β = 0.5 (from now on,
called GP-MDSS5,5). In order to explore the possibility of tuning the fitness
function, the evolutions of other four GP-MDSS variants, designed to find
solutions from larger specificity to larger sensibility, have been performed.
The variants are:

• GP-MDSS1,9 where α = 0.1 and β = 0.9;

• GP-MDSS3,7 where α = 0.3 and β = 0.7;

• GP-MDSS7,3 where α = 0.7 and β = 0.3;

• GP-MDSS9,1 where α = 0.9 and β = 0.1.

Table 6.4 summarizes the results of the 50 runs returned by each GP-
MDSS variant. The first two lines indicate the different methods and the
best (i.e. lowest) values of the incorrectly classified instances obtained on
the test set over the 50 runs, respectively. Since every set of runs does not
show any evidence of deviation from a normal distribution, the third line
reports the mean performances of each group of 50 runs on their test sets,
together with the corresponding SEM.

Statistical analysis has been performed comparing these results among
one another them and with the machine learning method that showed the

PhD Thesis Antonella Farinaccio

6.3. Experimental Results 103

GP-MDSS1,9 GP-MDSS3,7 GP-MDSS5,5 GP-MDSS7,3 GP-MDSS9,1

best 17 14 12 11 11

average (SEM) 24.28 (0.45) 20.58 (0.48) 16.56 (0.37) 15.20 (0.26) 16.02 (0.39)

Table 6.4: Experimental comparison between the number of incorrectly classified
instances found on the test sets by GP-MDSS1,9, GP-MDSS3,7, GP-MDSS5,5 (reported
for completeness), GP-MDSS7,3, and GP-MDSS9,1. Each variant was independently
run 50 times using each time a different training/test partition of the validation
dataset (see text for details). The first line indicates the method, the second line
shows the best value of the incorrectly classified instances obtained on the test set
over the 50 runs, and the third line reports the average performances of each group
of 50 runs on their test sets (SEM is shown between parentheses).

GP-MDSS1,9 GP-MDSS3,7 GP-MDSS5,5 GP-MDSS7,3 GP-MDSS9,1

best 12 5 3 2 0

average (SEM) 21.72 (0.55) 16.60 (0.73) 10.66 (0.48) 6.64 (0.37) 5.0 (0.37)

Table 6.5: Experimental comparison between the number of false negative predic-
tions found on the test sets by GP-MDSS1,9, GP-MDSS3,7, GP-MDSS5,5 (reported for
completeness), GP-MDSS7,3, and GP-MDSS9,1. Each variant was independently run
50 times using each time a different training/test partition of the validation dataset
(see text for details). The first line indicates the method, the second line shows the
best value of the false negatives obtained on the test set over the 50 runs, and the
third line reports the average performances of each group of 50 runs on their test
sets (standard error of mean is shown between parentheses).

best performance on minimizing the total number of incorrectly classified in-
stances, the Support Vector Machines, as discussed in Section 6.3.1. ANOVA
test showed a significant (P-value of 8.74×2.26−58) difference between these
methods. Tukey’s Honestly Significant Difference test highlighted an out-
performance of SVM, GP-MDSS9,1, GP-MDSS7,3, and GP-MDSS5,5 (that do
not show any statistical difference among them) with respect to GP-MDSS3,7,
and of GP-MDSS3,7 with respect to GP-MDSS1,9.

If the GP-MDSS variants did not result in better performances on all
incorrectly classified instances, this is not true when looking only at false
negative predictions. Below this issue is approached. Table 6.5 summarizes
the results of the 50 runs returned by each GP-MDSS variant. The first two
lines indicate the different methods and the best (i.e. lowest) values of the
false negatives obtained on the test set over the 50 runs, respectively. Since
also in this case every set of runs does not show any evidence of deviation
from a normal distribution, the third line reports the mean performances
(together with the corresponding SEM) of each group of 50 runs on their

PhD Thesis Antonella Farinaccio

6.3. Experimental Results 104

test sets.
Statistical analysis of the results summarized in Table 6.5 depicts the fol-

lowing ranking in the performance among the five GP-MDSS variants and
the VP, the best performing among all other machine learning techniques in
minimizing false negatives (as discussed in Section 6.3.1): GP-MDSS9,1, GP-
MDSS7,3, GP-MDSS5,5, GP-MDSS3,7, GP-MDSS1,9, with VP statistically indis-
tinguishable from GP-MDSS5,5, but GP-MDSS9,1 outperforming GP-MDSS7,3

in a statistically significant way and GP-MDSS7,3 outperforming VP in a
statistically significant way. This analysis clearly demonstrates the effec-
tiveness of the modified fitness function when minimizing the false negative
predictions.

The authors of Refs. [van’t Veer et al., 2002, van de Vijver et al., 2002]
used the seventy-gene signature by assigning a coefficient to each of the
features and computing a score for each patient as the scalar product of these
coefficients and the patient gene expression. The process used to compare
the performance of the various machine learning algorithms is the same as
the one used for the binarized dataset. The mean number of false predictions
was 16.7, while the mean number of false negative predictions was 1.7.

This method’s performances have been compared to those obtained by
the other machine learning techniques on the binarized dataset. Concerning
the total number of false predictions, the scoring method appeared to per-
form better than all machine learning algorithms other than GP-MDSS, and
slightly worse than GP-MDSS. The difference between the performances of
GP-MDSS and the scoring method were not statistically significant. On the
other hand, not surprisingly, with respect to false negative predictions, the
scoring method is far superior to all machine learning methods, including
GP-MDSS.

When compared to the predictive power of the best performing GP-
MDSS classifier presented in this work and in Refs. [Farinaccio et al., 2010],
the comparison is interesting. If the scoring method still outperforms GP-
MDSS in minimizing the number of false negative predictions, the opposite
is true when looking at the total number of incorrectly classified instances.

6.3.3 Analysis of the best solutions found by GP-MDSS

Figure 6.1 reports the individual with the best value of the incorrectly clas-
sified instances found by GP-MDSS1,9, represented both in a tree structure

PhD Thesis Antonella Farinaccio

6.3. Experimental Results 105

and in prefix expression form. From this figure, we can clearly see that GP-
MDSS performed a strong implicit feature selection. In fact, of the total 70
available features, only 6 are used by this solution (some of them, like for
instance AF257175, repeated several times in different points in the tree).
Analogously, Figure 6.2 reports the individual with the best value of the false
negatives found by GP-MDSS1,9. In this case, the implicit feature selection
performed by GP-MDSS is even stronger, given that only two features are
used by this solution. Interestingly, one of those two features (NM 001809)
was used also by the solution with the best value of the incorrectly classified
instances. Another interesting characteristic shared by these two solutions
is the frequent use of operators such as squaredsin, plus and minus and
the absence of the multiplication and division operators.

In Table 6.6 a sketch of the features contained in the two solutions shown
in Figures 6.1 and 6.2 is reported.

Accession ID Gene description

Contig32125 RC –

AF257175 Homo sapiens hepatocellular carcinoma-associated antigen 64 (HCA64) mRNA, complete cds.

NM 001809 Homo sapiens centromere protein A (CENPA), transcript variant 1, mRNA.

Contig38288 RC ESTs, weakly similar to quiescin

NM 003961 Homo sapiens rhomboid, veinlet-like 1 (Drosophila) (RHBDL1), mRNA

Contig48328 RC –

NM 016448 Homo sapiens denticleless homolog (Drosophila) (DTL), mRNA

Table 6.6: Features used in the solutions found by GP-MDSS reported in Fig-
ures 6.1 and 6.2. The two columns show accession ID and gene description.

The two columns of this table show the gene accession IDs and an infor-
mal description of the genes, respectively. A further analysis of the semantics
of these features and their reciprocal relationships, in order to verify their
effective binding with breast cancer and to have a biological insight of the
results found by GP-MDSS, is an important part of future work.

PhD Thesis Antonella Farinaccio

6.3. Experimental Results 106

plus(minus

(squaredsin(minus(squaredsin(Contig32125_RC),

squaredsin(plus(AF257175,AF257175)))),

squaredsin(plus(AF257175,plus(AF257175,plus(AF257175,NM_001809))))),

plus

(plus(Contig38288_RC,NM_003981),plus(minus(NM_003981,Contig48328_RC),

NM_003981)))

Figure 6.1: Individual found by GP-MDSS1,9 with the best value of the Incorrectly
Classified Instances. Upper part: tree representation. Lower part: prefix expression
representation.

(plus (NM_001809, squaredsin (NM_016448)))

Figure 6.2: Individual found by GP-MDSS1,9 with the best value of the False
Negatives. Upper part: tree representation. Lower part: prefix expression repre-
sentation.

PhD Thesis Antonella Farinaccio

PART III

DATA DRIVEN GENE

REGULATORY NETWORK

Chapter 7

Generator of Gene

Regulatory Network

and Dynamic Simulator System

7.1 Introduction

As stated in Chapter 1, the aim of this thesis is to investigate the functions
of genes and their possible relations. These functions can be better under-
stood if they are not only studied as isolated entities, but if their reciprocal
relationships are also investigated.
One approach which seems very promising is the ensemble approach to
the study of genetic networks, pioneered twenty years ago by S.A. Kauf-
mann [Kaufmann, 1971, Kaufmann, 1993]. According to this line of re-
search, the interest is focused on the typical properties of networks which
are supposed to capture some charachteristics of biological systems, like for
instance gene regulatory networks.

Gene regulatory networks comprising genes, proteins and other
interacting molecules, are extremely complex systems. The emerging
field of system’s biology [Hasty and McMillen, 2002, Hayete et al., 2007,
Sprinzak and Elowitz, 2005] is aimed at a formal understanding of
the biological processes caused by the numerous regulatory, signaling
and metabolic interactions between the different components and their
coordinated action. This is usually done by developing quantitative
mathematical models, able to describe changes in concentration of each
gene transcript and protein in a network as a function of their regulatory
interactions (gene regulatory network).
The formalisms to model biological networks defined so far are nu-
merous (see for instance [Di Ventura et al., 2006, Szallasi et al., 2006]);
a widely used one is the system of differential equations. It is

108

7.1. Introduction 109

a very powerful and flexible model to describe complex relations
among components. Some researchers studied how to learn about
the gene regulatory networks by using systems of differential equa-
tions [Chen et al., 1999, Tominaga et al., 2000, Sakamoto and Iba, 2000].
But it is not necessarily easy to determine the suitable form of equations
which represent the network. Thus, the differential equations form had
been fixed during the learning phase in previous studies. As a result,
their goal was to simply optimize parameters, i.e., coefficients in the fixed
equations.

Another technique most commonly used is the Random Boolean Net-
works, to which the system developed in this thesis and described in this
chapter is partially inspired, so that it is briefly described in the next section.

7.1.1 Random Boolean Networks

Let us consider a network composed of N genes, or nodes, which can take
either the value 0 (inactive) or 1 (active). Let xi(t) ∈ {0,1} be the activa-
tion value of node i at time t, and let Xi(t) = [x1(t),x2(t), ...,xN(t)] be the
vector of activation values of all the genes. In a classical Random Boolean
Network (RBN) each node has the same number of incoming connections
kin, and its kin input nodes are chosen at random with uniform probabil-
ity among the remaining N-1 nodes. The output (i.e. the new value of a
node) corresponding to each set of values of the input nodes is determined
by a boolean function, named activation function, which is associated to
that node (see Fig.7.1), which is also chosen at random, according to some
probability distribution [Kaufmann, 1993]; the simplest choice is that of a
uniform distribution among all the possible boolean function of kin argu-
ments. So the RBNs have two degrees of randomness: the random topology
and the random activation function for each node.

Even if this model is yet one of the main reference models for many
studies of genetic networks [Kaufmann et al., 2003, Serra et al., 2008,
Semeria et al., 2004], it has the weakness of the assumption of randomness.
In fact, a careful analysis of some known real biological control circuits
has shown that there is a strong bias in favour of the so-called canalizing
functions [Harris et al., 2002]. A boolean function is said to be canalizing if
at least one value of one of its input nodes uniquely determines its output,
no matter what the other input values are, while both the topology and the

PhD Thesis Antonella Farinaccio

7.2. Data Driven Gene Regulatory Network 110

Figure 7.1: Example of Random Boolean Network and node’s Activation Function

boolean function associated to each gene do not change in time.
In order to analyse the properties of an ensemble of random boolean

networks, different networks are synthesized and their dynamical properties
are examined. The ensemble differs mainly in the choice of the number
of nodes N, the input connectivity kin and the choice of the set of allowed
boolean functions.

So the aim of this thesis is modelling a gene regulatory network with
a data driven topology, instead of a random one. It is driven by Genetic
Programming (GP) applied to serial temporal data first elaborated with
a new cluster kernel method, in order to perform dimensional reduction of
data. It is described in details in the next chapter; in addition the interested
reader is referred to [Antoniotti et al., 2010].

7.2 Data Driven Gene Regulatory Network

A method, widely used to identify interactions among genes from gene ex-
pression data is the reverse-engineering method. Typically, the data con-
sist of measurements at steady state after multiple perturbations (like gene
overexpression, knockdown or drug treatment) or at multiple instants af-
ter one or more perturbations (i.e. time series data), as the ones used to
test the system presented here. Successful applications of these approaches
have been demonstrated in bacteria, yeast and, recently, in mammalian sys-

PhD Thesis Antonella Farinaccio

7.3. The Proposed System: GRNGen 111

tems [Della Gatta et al., 2008, Di Bernardo et al., 2005, Faith et al., 2007,
Gardner et al., 2003]. Many reverse-engineering approaches have been pro-
posed to date, and their assessment and evaluation is of critical impor-
tance [Stolovitzky et al., 2007]. For this reason, in [Cantone et al., 2009], a
synthetic network of five genes in the yeast Saccharomyces cerevisiae, reg-
ulating each other, called IRMA, was defined. This network was defined
with the explicit goal of enabling in vivo reverse-engineering and modeling
assessment.

Principally for this reason, the IRMA network is used to test the gene
regulatory network generator and dynamic simulator system proposed in
this thesis and presented at the 20th Italian Workshop on Neural Network
[Farinaccio et al., 2011] and in the 5th European Graduated Student Work-
shop on Evolutionary Computation [Farinaccio, 2010] .

The system takes as input a dataset of temporal series of gene expression
levels and tries to reconstruct the underlying gene regulatory network by
taking advantage of some characteristics of GP. These characteristics are
the ability of GP to solve complex regression problems, where little or no
information is known about the underlying data, and its ability to perform
an automatic feature selection during the learning phase, as already pointed
out, for instance, in [Langdon and Barrett, 2004, Vanneschi et al., 2010,
Farinaccio et al., 2010, Farinaccio et al., 2009]. The peculiarity of such
a system, compared to many existing reverse-engineering systems (like
for instance the ones used in [Cantone et al., 2009]), is that it is able
to generate both the topology of the target network and the activation
functions of the different genes at the same time. This allows not only
to know the structure of the network, but also to simulate its dynamics.
Given its ability to automatically generate networks the system is called
Gene Regulatory Nework Generator (GRNGen).

7.3 The Proposed System: GRNGen

The proposed system (GRNGen) works on datasets containing temporal
series of gene expressions [Quackenbush, 2001] and it can be summarized
in three steps, the last of which is composed of five phases:

I. The construction of a regression problem for each gene represented in

PhD Thesis Antonella Farinaccio

7.4. Example of GRNGen Application 112

the dataset;

II. The generation of the regression models, interpreted as the activation
functions of the various genes;

III. The building and simulation of the network using the information con-
tained in those models;

III. 1 The generation, for each gene, of its own activation function,
expressed in form of tree structure;

III. 2 The identification, for each gene, of the genes involved in its acti-
vation function, and between them, the construction of the sub-
graph relating to its dependencies;

III. 3 The construction of the complete graph that represents the whole
network;

III. 4 The collection of the activation rule of each gene;

III. 5 The dynamic simulation of the constructed gene regulatory net-
work.

The system is general and can potentially be implemented using any re-
gression technique at step (II). Nevertheless, it could be particularly suitable
to use GP, given that GP has the ability to perform an automatic feature
selection at learning time. The intuition of GRNGen is simple, even though
its formal definition may be complicated. For this reason, it is preferable
to present it using a description of its application to an example of gene
expression time series.

7.4 Example of GRNGen Application

Assume we have the following matrix of temporal series of gene expression
data, denoted as X (Time Series Matrix):

T IME1 T IME2 T IME3 T IME4 T IME5 T IME6
GENE1 x11 x12 x13 x14 x15 x16

GENE2 x21 x22 x23 x24 x25 x26

GENE3 x31 x32 x33 x34 x35 x36

GENE4 x41 x42 x43 x44 x45 x46

GENE5 x51 x52 x53 x54 x55 x56

PhD Thesis Antonella Farinaccio

7.4. Example of GRNGen Application 113

where each line GENEi of this matrix represents the activation values of
gene i in the different considered instants and each element xi j represents
the activation value of i− th gene at instant j.
According to the matrix, in this example we have five genes (lines) and six
instants (columns).

Step I: Building Regression Problems from Matrix X. We assume
that the activation value of each gene at a given instant t > 1 is given by the
activation values of all the other genes at time t−1, as drafted in Fig. 7.2.

Figure 7.2: Example of Gene Expression TimeSeries

Thus, to obtain the Activation Function of GENE1 in time series matrix X ,
we have to find (or approximate) the function ACT1 such that:

ACT1(x21,x31,x41,x51) = x12,
ACT1(x22,x32,x42,x52) = x13,
ACT1(x23,x33,x43,x53) = x14,
ACT1(x24,x34,x44,x54) = x15,
ACT1(x25,x35,x45,x55) = x16.

So for GENE1, we build the dataset showed in Fig. 7.3
The Activation Functions ACT2, ACT3 and ACT4 of the other genes are ob-
tained in the same way.

PhD Thesis Antonella Farinaccio

7.4. Example of GRNGen Application 114

Figure 7.3: Example of Regression Model for Gene 1

Step II: Regression for Each Gene We perform a regression on the
dataset built for each gene by means of GP. The result will be the approxi-
mation of the Activation Function of each gene.

For example, possible expressions for functions ACT1, ACT2, ACT3, ACT4

and ACT5 could be the following (denoting GENEi with Gi, for the sake of
readability):

ACT1(G2,G3,G4,G5) = (G4 +(G4 +G5)+((G2−G4)−G3)−G2)

ACT2(G1,G3,G4,G5) = G4

ACT3(G1,G2,G4,G5) = G2

ACT4(G1,G2,G3,G5) = ((G2 +G5)− ((G5−G5)+G5))

ACT5(G1,G2,G3,G5) = (G1 +(G3−G4))

Of course, given its stochastic nature, in practice the regression by means
of GP has to be executed several independent times for each gene. For
example, the regression function chosen for each gene may be the one with
the best fitness over all these runs.

Suppose we are in the case stated above, so we assume that the
activation values of the various genes have the following dependencies:

PhD Thesis Antonella Farinaccio

7.4. Example of GRNGen Application 115

G1 depends on the activation values of G2, G3, G4 and G5;
G2 depends on G4;
G3 depends on G2;
G4 depends on G2, G5;
G5 depends on G1, G3, G4;

Note that the use of GP in performing the regression has the two ad-
vantages of being readily generalized to arbitrary non-linear dependencies
and of automatically performing a selection of the most relevant features (in
our case, of the genes whose expression is most relevant in determining the
activation of the target gene).

Step III: Network Reconstruction and Simulation

Phase1
In order to reconstruct/approximate the topology of the network that

induces time series X , the activation functions of each gene found by means
of GP regression, denoted with ACTi from now on, have to be collected. Due
to the nature of the tree-based GP used, they have a tree form, and so they
are expressed as a tree structure.

Phase2
It is necessary, at this point, to extract, for each gene, the genes involved

in its activation function. In this way it is possible to build the subgraph
relating to each gene, basing it on its dependencies, as shown in Fig. 7.4.

Phase3
Now all the subgraphs can be connected to build the whole gene regulatory

network, as shown Fig. 7.5.
In this network each gene is represented by a node and links represent the
mutual relationships between genes. In this reconstructed network, a di-
rected link from genei to gene j exists if and only if gene j appears in the
expression of function ACTi found by GP.

Phase4
Contrarily to what happens in many existing gene regulatory network

PhD Thesis Antonella Farinaccio

7.4. Example of GRNGen Application 116

Figure 7.4: Scheme of Phase1 and Phase2: GRNGen collects the activation func-
tion of each gene found by means of GP linear regression and extracts, for each
gene, the ones involved in its activation function. Then it builds the subgraph
related to each gene, basing it on its dependencies.

generator systems, GRNGen is able not only to reconstruct the topology of
the network, but it also allows to know the activation rules of each nodes.
With this aim, in phase 4 it collects in a table the activation rules of each
gene, see Fig. 7.6. Note that the difference between this phase and the 2th
phase has a logic nature rather than being an implementation constraint: in
the 2nd phase the mutual interactions between genes are identified, instead
in the 4th phase the activation function are detected and extracted.

Phase5
Knowing the activation rules of each node, GRNGen is now able to sim-

ulate the dynamics of the gene regulatory network. A scheme is shown in
Fig. 7.7 and it is based on a realistic reconstruction and dynamic simulation
of a gene regulatory network, described in depth in the following section.
For this reason the name of the genes are now the real ones, i.e.:
G1 = CBF1,
G2 = GAL4,

PhD Thesis Antonella Farinaccio

7.4. Example of GRNGen Application 117

Figure 7.5: Scheme of Phase3: GRNGen connects all the subgraphs to build the
whole gene regulatory network

Figure 7.6: Scheme of Phase4: GRNGen collects in a table the activation rules of
each gene

G3 = SWI5,
G4 = GAL80,
G5 = ASH1.

PhD Thesis Antonella Farinaccio

7.5. A Test Case: The Reverse Engineering of IRMA Network 118

Figure 7.7: Scheme of Phase5: GRNGen simulates the dynamic of the gene regu-
latory network initializing the network with the first instant of the gene expression
time series

The initialization is obtained by assigning the values at the first instant
of matrix X to all genes. The subsequent states of the network are obtained
by applying to each gene its activation function.

7.5 A Test Case: The Reverse Engineering of

IRMA Network

In order to validate the system a reverse engineering of a gene regulatory
network has been performed as a test case. The IRMA synthetic network,
introduced in [Cantone et al., 2009] has been used (Fig. 7.8).

This network was built in the yeast Saccharomyces cerevisiae for in
vivo benchmarking of reverse-engineering and modeling approaches. It
is composed by five genes regulating each other through a variety of
regulatory interactions. A matematical model of the regulatory interactions
among genes in IRMA is shown in Figure 7.11(a). IRMA is organized in
such a way that each gene controls transcription of at least another gene in
the network and it can be switched on or off by culturing cells in galactose
or in glucose, respectively.

PhD Thesis Antonella Farinaccio

7.6. Experimental Setting 119

Figure 7.8: IRMA Synthetic Network

The genes involved in this network are SWI5, ASH1, CBF1, GAL4 and
GAL80. A description of these genes is beyond the objectives of this
thesis. The interested reader is referred to [Cantone et al., 2009] or to
http://www.yeastgenome.org for a detailed description.
In this work, both the switch on and switch off time series presented in the
supplementary material of [Cantone et al., 2009] have been used in order
to test GRNGen (drafted in Fig. 7.9)

7.6 Experimental Setting

The different regression problems, aimed at finding the activation functions
of the different genes, have been solved using GP with the following param-
eter configuration:

• Ramped Half-and-Half initialization;

• Tournament Selection of size 10;

• Standard Subtree Crossover with rate equal to 0.9;

PhD Thesis Antonella Farinaccio

7.6. Experimental Setting 120

Figure 7.9: IRMA SwitchOn and SwitchOff TimeSeries

• Standard Subtree Mutation with rate equal to 0.1;

• Maximum Tree Depth for Initialization equal to 6;

• Maximum Tree Depth for Variation equal to 10;

The function set F contained the two binary operators + and −.
The terminal set T contained five floating point variables.
The fitness function is the root mean squared error. Only in the case of
the switch on dataset, the numerical constant 0.5 has been added to the
terminal set. Several preliminary tests induced this choice, showing better
results having this constant in the terminal set in the case of switch on
dataset.

For the switch on data a population composed by 50 individuals has been
used and GP was run for 100 generations, while for the switch off data a
population composed by 100 individuals has been used and GP was run for
50 generations.

Given the regression trees obtained by means of GP (performed with a
modified version of the GPLab tool [Silva, 2007]), GRNGen builds, for each
gene, the graph of its dependencies with the other genes and finally it ag-
gregates all these (sub-)graphs, building the complete graph that represents
the network. GRNGen is developed in Matlab v7.0.

PhD Thesis Antonella Farinaccio

7.7. Experimental Results 121

7.7 Experimental Results

Although the procedure by which the GRNGen builds the network is mostly
deterministic, the result is non deterministic due to the stochastic nature of
the regression step executed by means of GP. For this reason a statistical
approach has been used to evaluate the results, as sketched in Fig. 7.10

Figure 7.10: A sketch of the phases of GRNGen and the statistical approach used
to evaluate its results

As outlined, GRNGen has been executed 30 independent times for the
switch on data and 30 independent times for the switch off data. This has
produced 30 different reconstructions of the target network for the switch
on data and 30 different reconstructions for the switch off data.
In order to evaluate the ability of these reconstructed networks in approx-
imating the topology of the target one, the same performance measures as
in [Cantone et al., 2009] have been used, i.e.:

• Positive Predictive Value (PPV) = TP / (TP + FP)

• Sensitivity (Se) = TP / (TP + FN)

where TP (True Positives) is the number of links that are both in the recon-
structed network and in the true one, FP (False Positives) is the number of
links that are in the reconstructed network, but not in the true one and FN

PhD Thesis Antonella Farinaccio

7.7. Experimental Results 122

(False Negatives) is the number of links that are not in the reconstructed
network, but are contained in the true one. For both PPV and Se, the best,
median, average and standard deviations obtained over these 30 runs are
reported.

The results obtained by GRNGen are compared with the ones returned
by three algorithms that have been studied in [Cantone et al., 2009]:
BANJO (Bayesian network) [Yu et al., 2004], NIR and TSNI (ordinary
differential equations) [Della Gatta et al., 2008, Gardner et al., 2003]. For
the sake of completeness, it is necessary to point out that also a fourth
algorithm was studied in [Cantone et al., 2009], i.e. ARACNE (information
theoretic). Nevertheless, the authors of [Cantone et al., 2009] state that
this algorithm cannot be used for time series. For this reason, the results
of the ARACNE algorithm are not reported here.

The work presented in this thesis, as stated above, is focused on identi-
fying the interactions between genes, building the topology of the network
and simulating its dynamic. So, for the moment, the network constructed
in this manner neither distinguish between activatory and inhibitory links,
nor between protein-protein interactions and other kinds of interactions.
As suggested in section 7.8 the particular operators used by the activation
functions found by GP could help to make this distinction in future.

The IRMA network used as a test case, instead, presents some of these
elements. This has, of course, an impact on the PPV and Se values. For this
reason, the PPV and Se of the networks reported in [Cantone et al., 2009] for
BANJO, NIR and TSNI have been recalculated in such a way that inhibitory
and activatory links and protein-protein interactions and other kinds of inter-
actions have not been distinguished among them. For this reason, the results
reported here are different from the ones reported in [Cantone et al., 2009].

The comparison of the results returned by GRNGen and BANJO, NIR
and TSNI on the switch off data is reported in Table 7.1, while the com-
parison on the switch on data is reported in Table 7.2 (results of meth-
ods NIR and TSNI have been reported in the same column, given that
these two methods have allowed to reconstruct the same networks, as shown
in [Cantone et al., 2009]).
Looking at the results obtained on the switch off data (Table 7.1), we can

see that the best, median and average values found by GRNGen outperform
BANJO, NIR and TSNI both for PPV and Se. Looking at the results ob-

PhD Thesis Antonella Farinaccio

7.7. Experimental Results 123

BANJO NIR & TSNI GRNGen
(best)

GRNGen
(median)

GRNGen
(avg.)

GRNGen
(std.dev.)

PPV 0.60 0.60 0.80 0.66 0.66 0.097

Se 0.42 0.42 0.75 0.62 0.58 0.081

Table 7.1: PPV and Se values returned by the considered methods on the switch
off data. Results of BANJO, NIR and TSNI calculated on the networks found by
these methods as reported in [Cantone et al., 2009].

BANJO NIR & TSNI GRNGen
(best)

GRNGen
(median)

GRNGen
(avg.)

GRNGen
(std.dev.)

PPV 0.33 0.75 0.80 0.71 0.68 0.10

Se 0.25 0.42 0.75 0.56 0.57 0.084

Table 7.2: PPV and Se values returned by the considered methods on the switch
on data. Results of BANJO, NIR and TSNI calculated on the networks found by
these methods as reported in [Cantone et al., 2009].

tained on the switch on data (Table 7.2), we can see that the best PPV and
Se values found by GRNGen outperform BANJO, NIR and TSNI.
Median and average PPV values are outperformed by NIR and TSNI, while
they outperform BANJO.
Finally, median and average Se values found by GRNGen outperform all
methods studied in Ref. [Cantone et al., 2009].

The target network and one of the networks found by GRNGen (in par-
ticular, the one with the best Se on the switch off data found over the
performed 30 runs) are reported in Figure 7.11.

(a) (b)

Figure 7.11: (a): Model of the regulatory interactions among genes in IRMA.
Dashed lines represent protein-protein interactions. Directed edges with an arrow
end represent activation, whereas a dash end represents inhibition. Figure taken
from [Cantone et al., 2009]. (b): Network with the best Se on the switch off data
found by GRNGen.

PhD Thesis Antonella Farinaccio

7.8. Discussion 124

As pointed out above, one interesting characteristic of GRNGen is that,
once the topology of the target network has been reconstructed, it is also
able to simulate its dynamics.

The activation values of the different genes are initialized with the time
zero values of the original time series and evolved applying the activation
functions found by GP.
This simulation has been performed for all the 30 networks obtained by
GRNGen on the switch off data and for all the networks obtained by GRN-
Gen on the switch on data. For each of these networks, at each time step,
the mean squared error has been computed between the activation values
obtained by this simulation and the ones that are contained in the original
time series, calculated over all genes. Finally the average of these averages
has been performed over the 30 runs.

What has been obtained is one average error at each time step for the
switch off data and one for the switch on data. These results are reported
in Figure 7.12.

For the switch off data (Figure 7.12(a)), we can see that the average error
remains limited (smaller than 2) and more or less constant in the first 10 time
steps, while it slightly grows in the subsequent 10 steps, however without
reaching the value of 6.

For the switch on data (Figure 7.12(b)), the error plot is constantly
increasing, but also in this case the average error does not reach the value
of 6 in the first 15 instants.

A comparison between these errors and the ones obtained by simulating
the networks found by BANJO, NIR and TSNI is impossible, given that
BANJO, NIR and TSNI are only able to reconstruct the topology of the
target network, without generating the activation functions of the different
genes. Thus, the dynamics of the networks reconstructed by BANJO, NIR
and TSNI cannot be simulated. On the other hand, GRNGen is able to
reconstruct the topology and the activation functions “in one shot”, thus
allowing to simulate the network dynamics.

7.8 Discussion

The application of GRNGen to large genetic networks will require some pre-
processing of the data since the regression problem is underdetermined in

PhD Thesis Antonella Farinaccio

7.8. Discussion 125

0 5 10 15 20
0

2

4

6

Time

Me
an

 Sq
ua

red
 Er

ror

0 5 10 15
0

2

4

6

Time

Me
an

 Sq
ua

red
 Er

ror

(a) (b)

Figure 7.12: Average mean squared error of the gene activation values at the
different time steps obtained by simulating the networks reconstructed by GRNGen
for the switch off (a) and switch on (b) data.

the likely scenario in which the number of genes is much larger than the
number of available time-points. This problem could be solved either by
limiting the genes involved in the activation function to known transcrip-
tion factors or by preprocessing the expression data to identify clusters of
coexpressed genes and then running GRNGen on the clusters rather than
on the genes, based on the reasonable assumption that coexpressed genes
should have similar activation functions.

In order to approach this aim, a new cluster kernel method for gene
expression time series is studied in this thesis and is presented in the
next chapter. It is useful for the execution of a preliminary clustering
step [Sheng et al., 2005] before running the method presented here, in
which genes are grouped into a reasonable number of clusters. Genes
belonging to the same clusters should present similar behaviours and thus
could have similar activation functions.

Many other issues could be considered in the future to improve and
refine the system presented here. First of all, the system could be extended
to distinguish activatory from inhibitory connections. It is reasonable to say
that this can be done easily, given that the activation functions found by
GP are constructed using the operators + and −: for instance, a majority
of + symbols in the expressions could represent activation, while a majority
of − symbols could represent inhibition. Furthermore the full power of GP
as a regression method can be better exploited by considering non-linear
activation functions that could describe threshold and saturation effects in
gene regulation.

PhD Thesis Antonella Farinaccio

Chapter 8

An Application of Kernel Methods

to Gene Cluster Temporal

Meta-Analysis

8.1 Cluster Meta-Analysis: Problem Context

Real application of medical decision support systems and gene regulatory
networks, as stated in the previous chapters, needs data pre-processing in
order to perform a dimensional reduction of data manageable by actual sys-
tems, as the ones presented in this thesis.
Cluster analysis is one of the most widespread techniques used in the pre-
processing phase of gene expression data investigation. Following a very
brief introduction to this concept is given, that, far from being a complete
description, has the unique scope to introduce the reader to the concepts
expressed later.

Cluster analysis is a set of methodologies for automatic classification
of samples into a number of groups using a similarity measure, so that
the samples in one group are similar and samples belonging to different
groups are not similar. The input to a cluster analysis algorithm is a set of
samples and a measure of similarity (or dissimilarity) between two samples.
The output of cluster analysis is a number of groups (clusters) that form a
partition, or a structure of partition, of the data set. One additional result
of cluster analysis is a generalized description of every cluster, and this is
especially important for a deeper analysis of the dataset’s characteristic.
Samples for clustering are represented as a vector of measurements, or more
formally, as a point in a multidimensional space.

Clustering is a very difficult problem because data can be organized in
clusters with different shapes and size in a n-dimentional data space. To
make the problem more difficult, the numbers of clusters in the data often

126

8.1. Cluster Meta-Analysis: Problem Context 127

depends on the resolution (fine vs. coarse) at which we view the data.
Of course, the process of clustering points in the Euclidean 2D space is
quite straightforward because clusters can be recognized by sight. For a set
of points in a higher-dimensional Euclidean space, instead, we cannot recog-
nize clusters visually, especially for gene expression time course microarray
experiments, that generally comprise tens of thousands of transcripts for
a given cellular extract. Accordingly, we need an objective criterion for
clustering, as the one presented in this thesis.

To describe this criterion, a more formalized approach in describing the
basic concepts and the clustering process is introduced later.

The input to a cluster analysis algorithm can be described as an ordered
pair (X ,s), or (X ,d), where X is a set of samples, and s and d are measures for
similarity or dissimilarity (distance) between samples, respectively. Output
of the clustering system is a partition Λ = {G1,G2, . . . ,GN} where Gk, k =
1, . . . ,N is a crisp subset of X such that:

G1∪G2∪·· ·∪GN = X , and
Gi∩G j = /0, i 6= j

The members G1,G2, . . . ,GN of Λ are called clusters.
It is important to mention that there is no clustering technique that is uni-
versally applicable in uncovering the variety of structures present in multi-
dimensional datasets [Kantardzic, 2003]. In fact, the cluster kernel method
based on Gene Ontology presented later, is conceived specifically for the
application domain of time course microarray gene expression.

As stated in the first chapter, microarrays are one of the most successful
and widespread technologies in the field of gene expression studies, enabling
the parallel measurement of thousands of transcripts for a given cellular
extract [Eisen et al., 1998, Lockhart and Winzeler, 2000].

The Gene Ontology (GO) project [Gene Ontology Consortium, 2006],
provides an ontology of defined terms representing gene product proper-
ties. The ontology covers three domains: cellular component, the parts of a
cell or its extracellular environment; molecular function, the elemental ac-
tivities of a gene product at the molecular level, such as binding or catalysis;
and biological process, operations or sets of molecular events with a defined
beginning and end, pertinent to the functioning of integrated living units:
cells, tissues, organs, and organisms.

PhD Thesis Antonella Farinaccio

8.1. Cluster Meta-Analysis: Problem Context 128

So GO is used in this work to fulfill the requirements for the application
domain of microarray of gene expression data, in order to perform a more
accurate clustering of it.

The state-of-the-art of the clustering approach is to perform clustering,
in order to group together genes with similar expression profiles across exper-
iments, and then summarize the clusters by identifying the most prominent
functional groups 1 [Eisen et al., 1998].

If the same experiment is sampled using different technological platforms,
or if different experiments generate highly correlated data, it is informative
to track similarities among different clusters. The most elementary solution
to evaluate cluster similarity is to count the number of overlapping genes;
however, this strategy is suboptimal when the clusters are generated from
partially or non-overlapping gene sets, as can happen when different tech-
nological platforms are used. A more general and high-level approach is to
compute similarity according to the functional profiles of the clusters; this
approach is usually called cluster meta-analysis.

A specific case of cluster meta-analysis is encountered when analyzing
time-course gene expression experiments. In this case the temporal dimen-
sion can be exploited to gather information about the dynamics of the biolog-
ical system under observation. Most analysis setups for time-course experi-
ments look at the overall time-span of the measurements, [Bar-Joseph, 2004,
Ernst and Bar-Joseph, 2006], and may generate clusters spanning the full
length of the time-course; consequently, genes are associated into a cluster
only if their expression is coordinated for the entire duration of the experi-
ment.

In this thesis a different approach is followed where gene expression
experiments are analyzed by splitting the time course into shorter time-
windows, as proposed in [Kleinberg et al., 2006, Ramakrishnan et al., 2005]
and implemented in the GOALIE system [Antoniotti, 2007].

The key observation is that temporally localized (i.e., within a limited
sequence of time-steps) relationships among genes are worth detecting.

If the time-course is split into shorter time-windows, and clusters are
generated separately within each window, it is possible to concentrate on
temporally localized gene relationships. In this framework 2 a cluster meta-

1Functionally-correlated genes are expected also to be expressed according to coordi-

nated patterns.
2Of course, such a framework opens up several interesting problems, which will be

PhD Thesis Antonella Farinaccio

8.1. Cluster Meta-Analysis: Problem Context 129

analysis method is required to detect further relationships among clusters
belonging to consecutive time-windows. The result of this meta-analysis will
be the reconnection of the clusters from different windows, in order to better
visualize the temporal evolution of the system.

Clustering meta-analysis is a valuable resource for understanding com-
plex microarray data-sets. In particular, segmenting time-course experi-
ments enables one to identify local patterns; clustering meta-analysis en-
ables one to track the differences and similarities among such patterns. A
typical question answered by the proposed framework is the following: are
two functional groups of genes constantly co-expressed along a time-course,
or in related yet different experiments?

Finally, the overall cluster meta-analysis model and framework proposed
have been evaluated in the context of a split time-course analysis, and tested
comparing two stand-alone experiments.

8.1.1 Cluster Meta-Analysis: Problem Description

The most popular resource for functional profiling is Gene Ontology
(GO) [Gene Ontology Consortium, 2006], a hierarchical controlled vocab-
ulary for the annotation of gene function. GO is organized as a directed
acyclic graph (DAG), in which the vertices are terms and arcs are IS-A
or PART-OF relations. A team of curators regularly reviews the most
reliable literature on gene function, in order to annotate genes using GO

terms; the results are then stored in the Gene Ontology Database. The
functional evaluation of a cluster is performed by testing every GO term
for over-representation (also referred as enrichment) in the clustered genes,
hence determining a significance score [Gene Ontology Consortium, 2006].

Available cluster meta-analysis methods do not take into account the GO

structure [Doherty et al., 2006], as it is common to visualize the enrichment
result as a flat list of terms. Nevertheless, a GO enrichment can be conve-
niently regarded as a labeled graph, where the significance score (usually a
p-value) is associated to every term in the DAG. We argue that exploiting
the GO structure can significantly improve the cluster meta-analysis.

To this end, in [Zoppis et al., 2007] the use of a kernel func-
tion [Ben-Hur and Noble, 2005, Schölkopf et al., 2004] is proposed in order
to compute the similarity among the GO enrichment graphs of different

briefly discussed later on.

PhD Thesis Antonella Farinaccio

8.2. Dataset Description and Pre-processing 130

clusters. The graph similarity is computed by identifying common paths in
the graphs, and then computing a more elementary path similarity score,
exploiting the enrichment scores associated to the vertices. In order to
evaluate the advantages of using a structured approach, cluster similarities
are computed using an unstructured approach (based on the Jaccard
coefficient index [Jaccard, 1901] for set comparison), and the comparative
performance of the two competing methods is determined.

In this thesis, an improved evaluation framework for the numerical re-
sults is proposed, based it on an information-theoretic approach and it is
published in [Antoniotti et al., 2010].

The proposed kernel function can be extended to other annotation on-
tologies, and applied to other gene-expression data-sets, hence constituting
a generally-valid solution to the cluster meta-analysis problem.

8.2 Dataset Description and Pre-processing

8.2.1 Dataset Description

The Kernel Function proposed for clustering meta-analysis was tested on
the following data-sets:

• Spellman’s [Spellman et al., 1998] time-course microarray study of the
yeast cell cycle;

• yeast sporulation [Chu et al., 1998] and diauxic shift [DeRisi et al., 1997],
two short time-course microarray experiments.

These datasets can be regarded as an optimal testing yard for the ker-
nel function, as they are well known in the bioinformatics community, and
constitute a very well characterized biological system.

Spellman’s Cell cycle Data-set
The original Spellman’s cell cycle data-set is composed by three subsets

(Cdc15, Alpha factor and Elutriation), obtained using different experimental
techniques 3, and having different time-course length.

3The study of the cell cycle is carried out on a population of cells; therefore, it is

mandatory to synchronize their cycles, in order to obtain coherent expression profiles.

Cdc15, Alpha Factor and Elutriation are the three different techniques used by Spellman

et al. for synchronization.

PhD Thesis Antonella Farinaccio

8.2. Dataset Description and Pre-processing 131

After extensive exploratory data analysis, it was decided to work on
a subset of the Alpha (factor) data-set, comprising ten time-points 4; the
analyzed time-course covers a full round of cell cycle, during which the cell
undergoes different stages of the cell cycle transcriptional program 5.

The clustering meta-analysis is required to evaluate whether functional
groups maintain the same inter-association patterns over time, or what
changes occur.

Yeast Sporulation and Diauxic Shift Datasets
Yeast sporulation and diauxic shift are two short time-course microarray

experiments, composed by seven time-points each. They are too short for
segmentation; nevertheless, the two cluster-sets referring to the full time-
course can be productively meta-analyzed using the same framework intro-
duced for split time-course experiments.
The two data-sets sample different yeast stress response programs, involv-
ing extensive structural and/or metabolic remodeling. Sporulation consists
in the generation of reproductive spores after nutrient starvation, whereas
diauxic shift consists in the switch from anaerobic to aerobic metabolism
after glucose exhaustion.
The data-sets were used in their original form, without excluding any sam-
ple.

4The Cdc15 subset was not analyzed as some of its time-points presented systematic

biases. Part of the Elutriation time-course was affected by heavy noise; as a matter of

fact, relying on size sorting, this method does not grant accurate separation of different

cell cycle stages. Initial time-points of the Alpha subset were discarded as dominated by

the response to the Alpha factor, a yeast pheromone; final time-points were discarded be-

cause of de-synchronization, a phenomenon due to stochastic events, and to the typically

asymmetric division of budding yeast. These features were studied using Principal Com-

ponent Analysis, to identify global gene expression patterns, and looking at the profiles of

cell cycle marker genes, such as Cyclins.
5The time-course starts with the cell in G2 phase, a growth phase preparatory for cell

division; then it undergoes M phase, when cell division occurs; the next phase, G1, is again

a growth phase; the S phase is devoted to DNA replication. The execution of different

activities (e.g. DNA condensation required for chromosome segregation in the M phase,

versus DNA replication) requires different programs of transcriptional regulation; hence

the rationale for studying the patterns of association and dissociation of functional groups.

PhD Thesis Antonella Farinaccio

8.2. Dataset Description and Pre-processing 132

8.2.2 Clustering and Data Pre-processing

The cell cycle data-set was split into 6 overlapping windows, each composed
by 5 subsequent time-points. Clustering was performed on each of the cell
cycle windows, on the sporulation and on the diauxic datasets, using the
CLICK algorithm [Sharan and Shamir, 2000].

The algorithm utilizes graph-theoretic and statistical techniques to iden-
tify tight groups of highly similar elements (kernels), which are then ex-
panded into the full clusters. CLICK was picked as it was proved superior
to K-means, both in terms of cluster homogeneity and separation. The eu-
clidean distance was used as dissimilarity measure, after fixed-norm scaling
of the gene profiles.

The CLICK homogeneity target value was set in a range between 0.1 and
0.4, in order to obtain a comparable number of clusters for every window
(in a range between 3 and 4).

The number of genes in a cluster ranges between 100 and 1500.
Clustering failed in cell cycle window 3, as only one cluster was generated

with all possible values of target homogeneity; in addition, a large part of
the genes (more than one third) was discarded as outliers.

Therefore, the cell cycle window 3 is neglected during the evaluation of
the Jaccard’s index and the kernel comparative performances 6.

Functional enrichment profiles were generated for every cluster. Func-
tional Enrichment p-values were calculated according to Fisher’s exact test.

These p-values reflect the significance, compared to the random expecta-
tion, of the set size obtained by intersecting the genes grouped into a certain
cluster with the genes annotated under a certain GO term.
In the bioinformatics community, this procedure is usually termed functional
enrichment or over-representation analysis.

It is common to pre-filter Gene-Ontology before computing enrichment
profiles. A common choice is to exclude terms that are too small, for several
reasons:

• multiple test correction burden;

• extremely narrow biological scope;
6Window 3 is centered on the M phase of the cell cycle, and is thus possible that

the observed phenomenon is due to significant transcriptional reprogramming of gene

expression after cell division.

PhD Thesis Antonella Farinaccio

8.3. Graph and Kernels Description 133

• higher instability of statistical test outcome;

In this work, GO terms annotating less than 4 genes were excluded from
the analysis. The p-value of GO terms with less than 5 genes in a cluster
was arbitrarily set to 1 (not significant), in order to reduce their leverage in
the similarity computation.

8.3 Graph and Kernels Description

First of all, the entities manipulated later are described in this section, using
standard mathematical notation.

A graph G = (V,E) consists of a finite set of nodes (or vertices) V and a
set of edges E ⊆V ×V .

A path of length k− 1 in G is a sequence of nodes (v1,v2, . . . ,vk) where
(vi−1,vi) ∈ E for all 1 < i≤ k.

Definition 8.1 ((Labeled) GO graph). A GO Graph is a graph G(V,E) with
a double label for its vertices defined by labelGO :V →GO and labelp :V → [0,1]
where GO is the set of Gene Ontologies terms and labelp(v) is the p-value of
statistical significance associated to the term labelGO(v).

With a slight abuse of terminology, a random variable is referred to as
a function X : Ω → X where Ω is the sample space and X is a discrete set.
When X has distribution PX(x) then the (Shannon) entropy of X is given by

H(X) = ∑
x∈X

px log(1/px).

In order to measure the average amount of information conveyed when
an outcome of a conditional random variable is observed, the conditional
entropy is also used in the following. It is defined by

H(X |Y) = ∑
y∈Y

py ∑
x∈X

px|y log(1/px|y)

for some Y taking values in Y .

8.3.1 Kernel Functions Review

Kernel methods are a family of algorithms that, thanks to their theoretical
potential, have been applied successfully to a variety of problems. The main

PhD Thesis Antonella Farinaccio

8.3. Graph and Kernels Description 134

idea is to map any input set X into a new feature space (generally a Hilbert
space) F in order to find there some suitable hypothesis: in this way complex
relations in X can be simplified and more easily discovered. The “feature
map” Φ used for this task is defined by a kernel function k which allows to
compute the inner product in F using only objects of the input space, hence
without “computing” Φ. This is sometimes referred as the kernel trick.

Definition 8.2 (Kernel function). A kernel is a function k : X ×X → R
capable of representing through Φ : X → F the inner product of F i.e.

k(x,y) = 〈Φ(x),Φ(y)〉. (8.1)

To ensure that such equivalence exists a kernel must satisfy Mercer’s The-
orem [Courant and Hilbert, 1953]. Hence, under certain conditions, by fix-
ing k one is able to ensure the existence of a mapping Φ and a Hilbert
space F for which (8.1) holds. Therefore these functions can be inter-
preted as similarity measures of data objects in the new feature space
[Schölkopf and Smola, 2002].

Graph Kernels

A common strategy adopted to formulate similarity measures for structured
objects is to assemble kernel functions operating on the object parts; in
the case of graphs, various measures based on the count of matching la-
beled paths have been proposed [Gärtner et al., 2003, Kashima et al., 2003,
Kondor and Lafferty, 2002].

Given a pair of nodes with matching labels, the (kernel) similarity be-
tween two random paths is the product of more elementary similarity values,
which are defined on the node and edges encountered along the path.

The kernel value of two graphs is then the sum over the kernel values of
all pair of paths within these two graphs:

kgraph(G1,G2) = ∑
path1∈G1

∑
path2∈G2

kpath(path1,path2), (8.2)

where the membership notation w ∈ G is abused in order to denote a
“path” w in the graph G.

An elegant approach to construct such a similarity measure uses the
direct product graph [Gärtner et al., 2003]:

PhD Thesis Antonella Farinaccio

8.3. Graph and Kernels Description 135

Definition 8.3 (Direct product of two labeled graphs). Given two labeled
graphs G1 = (V,E), G2 = (W,F) the direct product is denoted by G1×G2. The
vertex set V× and edge set E× of this direct product are respectively defined
as:

V×(G1×G2) = {(v1,w1) ∈V ×W : label(v1) = label(w1)}, (8.3)

E×(G1×G2) = {((v1,w1),(v2,w2)) ∈V 2
×(G1×G2) :

(v1,v2) ∈ E ∧ (w1,w2) ∈ F ∧ label((v1,v2)) = label((w1,w2))},

where label(·) is an uninterpreted “labeling” function for vertices and
edges 7.

With this definition the random path kernel is computed as follows

Definition 8.4 (Random Path Kernel).

k×(G1,G2) =
|V×|
∑

i, j=1

[
∞

∑
n=0

λnAn
×

]

i, j

(8.4)

where A× is the adjacency matrix of the product graph 8.
The sum in (8.4) converges for a suitable choice of λ0,λ1,λ2 . . . [Gärtner et al., 2003].

Here, the random walk kernel is computed only for walks up to a predeter-
mined length (i.e. by truncating the summation for walks ≥ 7).

Function (8.4) is redefined in [Borgwardt et al., 2005] to measure simi-
larities between paths (up to a fixed lengths) that are not identically labeled
since the application has to cope with this case (i.e. the comparison between
GO graphs having almost different labeled paths).

Note that the work is performed actually with label couples (GO term
label, p-value label); the GO term label needs to be matching, whereas
the p-value label does not need to be matching. This distinction will be

7The label(·) function will be eventually re-interpreted for the needs of this work on

the basis of Definition 8.1.
8The applicability of this elegant formulation is limited by the high polynomial time

complexity, a problem particularly significant with large data sets. Nonetheless, some

speed up methods are available [Vishwanathan et al., 2007]. Moreover, the tottering prob-

lem [Borgwardt and Kriegel, 2005] may lead to high similarity score even when only small

identical substructures are present. This phenomenon is due to the existence of cycles,

which can cause the iterated visit of the same node sequence. In our case, tottering does

not occur, as the graphs we treat do not contain cycles.

PhD Thesis Antonella Farinaccio

8.3. Graph and Kernels Description 136

implemented in the kernel function definition.

Definition 8.5. Given two graphs G1 = (V,E) and G2 = (W,F) and two paths
path1 = (v1,v2, . . . ,vn) ∈ G1 and path2 = (w1,w2, . . . ,wn) ∈ G2, with vi ∈ V ,
wi ∈W , the path kernel is defined as

kpath(path1,path2) =
n−1

∏
i=1

kstep((vi,vi+1),(wi,wi+1)) (8.5)

for each i and j.

The random kernel is still the sum over all kernels on pairs of path and
can be computed with the adjacency matrix:

[A×]((vi,wi),(v j,w j)) =

{
kstep((vi,v j),(wi,w j)) if((vi,v j),(wi,w j)) ∈ E×
0 otherwise

(8.6)

with E× = E×(G1×G2) and (vi,v j) ∈ E and (wi,w j) ∈ F .

8.3.2 Kernel for GO graph

Based on the ideas stated in [Zoppis et al., 2007] a similarity score capable
of taking into consideration the graph structure nature of GO terms was
applied.

In [Merico et al., 2007] an evaluation criterion to compare the
performance of this kernel approach versus an unstructured one (based
on Jaccard’s index) is proposed. In order to improve on such result, the
information-theoretic model presented above is developed; more specifically,
the amount of residual uncertainty after applying the two different methods
(Kernel and Jaccard’s index) is considered.

More formally, the goal is to infer a relation L1,m⊆ S1×S2× ...×Sm among
sets Si of all possible clusters Ci,u (with 1≤ u≤ |Si|) of gene expressions. A
tuple in L1,m represents a sequence of functionally homogeneous clusters.
For each cluster Ci,u a labeled GO graph GCi,u is computed by assigning the
GO term code labelGO(v) and the enrichment p-value labelp(v) to each graph
vertex v; in other words, the input set X can also be represented by the space
of all labeled GO graphs. The enrichment p-value is an index of statistical
significance, quantifying the relevance of a GO term within a specific cluster

PhD Thesis Antonella Farinaccio

8.3. Graph and Kernels Description 137

(as in, for example, [Beißbarth and Speed, 2004]).
GO graphs are then filtered, excluding terms with non-significant p-values,
in order to avoid noise in distance computation. By neglecting these vertices,
we work on potentially disconnected GO sub-graphs.

Following is described in details how the kernel function is structured.
The start is as in [Borgwardt et al., 2005] by using (8.6) as adjacency

matrix. In order to compare different paths, the steps are compared in the
following way.

Definition 8.6 (Step kernel for GO graphs). For i = 1, . . . ,n− 1, the step
kernel kstep is defined as

kstep((vi,vi+1),(wi,wi+1)) (8.7)

= kpv(vi,wi)× kterm(vi,wi)× kpv(vi+1,wi+1)× kterm(vi+1,wi+1)

where kpv(vi,wi) = max(0,c− |labelp(vi)− labelp(wi)|) 9 is the Brownian
bridge kernel [Schölkopf and Smola, 2002] and kterm is a Dirac function, i.e.,

kterm(vi,wi) =

{
1 if labelGO(vi) = labelGO(wi)
0 otherwise.

(8.8)

Armed with these definitions, the procedure for inferring L1,m is now
presented. It is done in the section 8.3.3, by defining a distance function
based on the kernel k×.

8.3.3 Connection Selection Algorithm

The set of tuples in L1,m is iteratively inferred by using the following defini-
tion.

Definition 8.7. Given L1,m ⊆ S1×S2× ...×Sm and Lm,m+1 ⊆ Sm×Sm+1, the
aggregation L1,m ◦Lm,m+1 is given by:

L1,m ◦Lm,m+1 = {(C1,u1 ,C2,u2 , . . . ,Cm,uk ,Cm+1,us)}
where 1≤ uk ≤ |Si|, 1≤ us ≤ |Si+1| and

∃Cm,ukt.c.(C1,u1 ,C2,u2 , . . . ,Cm,uk) ∈ L1,m∧ (Cm,uk ,Cm+1,us) ∈ Lm,m+1

9c is fixed in order to accounting only for distance lower then 0.1 (i.e c = 0.1), This

setting reflects a non-similarity (i.e. Kpv = 0) when p-values are more distant.

PhD Thesis Antonella Farinaccio

8.3. Graph and Kernels Description 138

Therefore, given the kernel k× (8.4) (with the adjacency matrix 8.6) one can
always induce a (non Euclidean) distance d : X ×X →R such that d2(x,y) =
k(x,x)+k(y,y)−2k(x,y). Now, let the set of pairs in Li,i+i ⊆ Si×Si+1 defined
by:

Li,i+1 = {(Ci,uk ,Ci+1,us)|1≤ uk ≤ |Si|,1≤ us ≤ |Si+1|}
where each pair is either

(Ci,uk ,Ci+1,us) = argmin
Ci,uk ∈ Si

Ci+1,us ∈ Si+1

{d(Ci,uk ,Ci+1,us)}

or a pair such that

θL ≤ d(Ci,uk ,Ci+1,us)≤ θR

Where θL = m− IQR∗γ, θR = m+ IQR∗γ, m being the median and IQR being
the Inter-Quartile Range, both referred to the distribution over the distance
d.

This is done in order to possibly take into account pairs that are still
significant while avoiding to limit the attention to those that minimize d(., .).
In other words, by fixing Li,i+1, the first step was the identification of the
most similar destination cluster Ci+1,k, for every cluster Ci,u ∈ Si;
then the results are furthermore refined, by adding other pairs with a high
similarity score, and removing those pairs with limited similarity.

Given this background, it is a simple matter to implement an iterative
algorithm to compute the relevant relations L1,m (cfr. Algorithm 1).

Algorithm 1 Compute the relevant relations L1,m

1: Z1,2 := L1,2 // Initialization step.
2: for i = 2 to m do
3: T := Li,i+1

4: Z1,i := Z1,i ◦T
5: end for

8.3.4 Clustering Quality Score

The focus of this section is the comparative evaluation of connections among
clusters of consecutive windows determined using different methods. Un-

PhD Thesis Antonella Farinaccio

8.3. Graph and Kernels Description 139

der an information-theoretical perspective, establishing connections among
clusters of consecutive time-windows modifies the uncertainty of the sys-
tem. Connections that lower the uncertainty are better. This idea can be
suitably exploited to evaluate the comparative performance of the kernel
function versus the Jaccard’s index. The first part of this section provides
a qualitative description of the score; the second part is devoted to a more
rigorous definition.

In order to evaluate the uncertainty, the distribution of its gene counts
over the clusters of two consecutive windows is considered, for every GO

term; if the distribution is non-uniform, i.e. with low uncertainty, that
implies the term is mostly represented in a limited number of clusters, and
not all over them.

In order to determine the uncertainty reduction induced by establishing
a connection between two clusters, the connected clusters are merged, and
the corresponding uncertainty after the merge are evaluated. Indeed, if the
connected clusters are functionally homogeneous, the gene count is expected
to significantly increase in the merged cluster, for all the GO terms repre-
sented in the original clusters; as a consequence, for these GO terms the gene
count distribution becomes less and less uniform, thus inducing a reduction
of the entropy value.

Since the entropy associated to the disconnected setting is the same for all
methods, comparing the entropy difference associated to a connection, and
comparing the absolute entropy associated to the setting with that connec-
tion, lead to equivalent results. Therefore, the quality score is constructed
considering only the absolute entropies associated to each single connection.

As a further refinement, the quality score for each term separately are
not computed; instead, it is averaged over the union of size-one neighbor-
hood of GO terms. To induce the neighborhoods, all GO terms having a
significant enrichment score in the clusters are used. The rationale of this
choice is to restrict the uncertainty estimation to GO terms important for
the functional profiles: these are the very genes driving the establishment
of cluster connections in both the methods. We now proceed with a more
formal treatment: let’s consider a pair of consecutive windows (Si,Si+1). The
clusters in the window pair belong to the set Pi,i+1 = Si∪Si+1. Let’s also con-
sider the set of GO terms GOi,u, which is the set of nearby significant terms
in a GO graph – the actual definition of GOi,u will be given shortly. It is then

PhD Thesis Antonella Farinaccio

8.3. Graph and Kernels Description 140

possible to introduce the conditional distribution fC|G(c|g), representing the
count number of ‘time-localized’ genes associated to the specific GO term g,
over the different clusters C; C and G are two random variables taking values
respectively on Pi,i+1 and GOi,u. Therefore it is also possible to consider the
associated entropy function:

H(f (C|G = g)) = ∑
c∈Pi,i+1

f (c|g) log(1/ f (c|g)). (8.9)

When the clusters are disconnected, H(f (C|G = g)) can be thought as an
index of the background uncertainty, which clearly assumes the same value
whatever method is used to compute the cluster connections.

Time-localized genes are specifically introduced in order to treat the
same gene in different time-windows as a different entity. As a matter of
fact, when cluster connections (Ci,u,Ci+1,k)∈ Li,i+1 ⊆ Si×Si+1 are introduced,
it is possible, for each connection, to merge the corresponding clusters. This
operation modifies Pi,i+1 from

Pi,i+1 = Si∪Si+1

to
Pi,i+1 = (Si\Ci,u)∪ (Si+1\Ci+1,k)∪{C̃i,i+1},

where Ci,u and Ci+1,k are the connected clusters, and C̃i,i+1 = {Ci,u∪Ci+1,k}.
Thanks to the use of time-localized genes, the size of C̃i,i+1 is equal to the sum
of the sizes of Ci,u and Ci+1,k, a property which enables a more meaningful
treatment of the conditional entropy 10. After the merging operation, it
is possible to recompute H(f (C|G = g)) using the new value of Pi,i+1. We
interpret a low value of H(f (C|G = g)) as a successful reduction of the system
uncertainty after the establishment of the cluster connection.

The most represented GO terms are expected to be more relevant for the
entropy evaluation.Therefore, firstly are looked for the“most significant”GO

terms (using the labelp values) and then are looked at their neighboring ones
in the GO graph. More formally, the final score used for the comparative

10If the time-localized genes are not introduced, the reduction of entropy is greater

when different genes supporting the same term are merged, compared to when the same

genes supporting the same term are merged; this different behavior is not meaningful: on

the contrary, the latter situation is expected to be associated to an even more consistent

reduction of the uncertainty.

PhD Thesis Antonella Farinaccio

8.3. Graph and Kernels Description 141

performance evaluation is computed only on the GO terms subset GOi,u,
which is defined as:

GOi,u =
⋃

v∈V (GCi,u):labelp(v)≤δ
Ov.

where V (GCi,u) and E(GCi,u) are vertices and edges of the GO graph associated
to the cluster Ci,u, Ov = {labelGO(vi) | vi ∈ N[v]}, N[v] is the closed neighbor-
hood of a vertex v, i.e., N[v] = {v}∪N(v) and N(v) = {vi | (v,vi) ∈ E(GCi,u)}.
Therefore, the final formulation of the entropy becomes:

I =
1

m−1

[
m−1

∑
i=1

1
|Li,i+1|

[
∑

(Ci,u,Ci+1,k)∈Li,i+1

H(C|G)

]]
(8.10)

where 1≤ u≤ |Si| and 1≤ k ≤ |Si+1| and

H(C|G) = ∑
g∈GOi,u

fG(g)H(f (C|G = g)),

i.e. the conditional entropy of clusters given gene distributions.
This result is compared with the score obtained from a method which

simply treats cluster enrichments as a flat lists of GO terms. In this case,
firstly those terms whose p-values were below a detection threshold are re-
moved from each cluster. Then, the Jaccard’s index distance is applied:

J(Ci,u,Ci+1,v) = 1− |Ci,u∩Ci+1,v|
|Ci,u∪Ci+1,v| .

8.3.5 Kernels and Algorithms Application Results

The procedures described in the previous sections are implemented with
four computational modules developed in Matlab 7: functional enrichment,
kernel, Jaccard, contingency. The connections among the clusters of the
yeast cell cycle and yeast sporulation / diauxic shift time course data are
determined using both the kernel function and the Jaccard’s index (p-value
threshold set to 0.05). For every pair of consecutive windows (or cluster
pairs in case of sporulation/diauxic data), the quality score defined in Sec-
tion 8.3.4 is computed; in the cell cycle data, pairs formed by window 3 (2,
3 and 3, 4) were excluded from the computation, as previously discussed
in Section 8.2.2; in addition, the presence of one single cluster in window
3 in yeast, would induce a zero entropy. The results are displayed in Ta-
ble 8.1. Clearly, the performance of the kernel function is systematically

PhD Thesis Antonella Farinaccio

8.3. Graph and Kernels Description 142

Yeast cell cycle: quality score win 1, 2 win 4, 5 win 5, 6

Jaccard 1.038 0.873 1.138

Kernel 0.951 0.856 1.078

Sporulation/Diauxic: quality score Cluster Pairs

Jaccard 0.0670

Kernel 0.0670

Table 8.1: The comparison of the quality scores obtained for the connections
induced by the kernel function and the Jaccard’s index. Every column repre-
sents a window pair (or a pair of cluster sets in case of Sporulation/Diauxic
data).

better than the performance of the Jaccard’s index for yeast cell cycle while
the performance for the sporulation/diauxic pair are equivalent.

In addition, the biological significance of the results induced by the ker-
nel function is checked. For the window pair (1, 2), the meta-analysis
is performed manually: for every cluster, the gene ontology terms is se-
lected passing a relatively stringent threshold (p-value threshold set to 0.01);
then the enriched terms are grouped into aggregated and biologically homo-
geneous groups, considering the graph structure and additional biological
knowledge 11; the connections were eventually determined considering the
matching of the aggregated groups, and sorted into high-confidence and low-
confidence. The strategy adopted for the manual method does not strictly
reproduce neither the Jaccard’s index, nor the kernel function, avoiding
circularity issues. The results are displayed in figure 8.1. All the high-
confidence connections manually determined overlap totally with the kernel
function results (three out of three connections), whereas the overlapping
with the Jaccard coefficient results is poor (none of the manually deter-
mined, high-confidence connections overlaps with the Jaccard-determined
ones).

11There are well known relations between GO terms which are not rendered by the

graph; most of these relations occur among terms belonging to the three GO partitions,

Molecular Function, Biological Process and Cellular Component

PhD Thesis Antonella Farinaccio

8.3. Graph and Kernels Description 143

- Cell Cycle
 . G2/M transition
- Growth Metabolism
 . Aminoacid Metabolism
 . Nucleotide Metabolism
 . Lipid Metabolism
 . Hexose Metabolism
 . Krebs Cycle
 . Electron Transport Chain
 . Vitamin & Cofactor
 . Ion Transport
- Mitochondrion
- Vescicle Trans, Golgi & ER
 . Endoplasmic Reticulum
 . Golgi
 . Endosome
 . Secretion
- Peroxisome
- Nuclear Membrane
 . Pore Complex
- Cytoskeleton
 . Motor
- r/tRNA Metab & Translation
 . RNA Pol-III transcription
 . ncRNA catabolism
- mRNA Transcription & Metab
 . mRNA degradation
- DNA Process
 . DNA Pre-Replication Complex
 . DNA Recombination
- Chromatin
 . Nucleosome
- Chromosome State
 . Chromosome Cohesion
 . Chromosome Segregation
- Cell Wall
- Budding & Cytokinesis

- mRNA Transcription & Metab
 . RNA Pol-II transcription
- Carbohydrate Metabolism
 . Glycogen Biosynthesis
- Budding & Cytokinesis
 . Septin Ring
- DNA Process
 . DNA Replication Fork
 . DNA Mismatch Repair
- Chromatin
- Mating
 . Pheromone Response

- r/tRNA Metab & Translation
 . Ribosome
 . Translation
- mRNA Transcription & Metab
 . mRNA Splicing
- DNA Process
 . DNA Checkpoint
 . DNA Damage Response
- Cytoskeleton
 . Spindle

- Growth Metabolism
 . Aminoacid Metabolism
 . Nucleotide Metabolism
 . Vitamin & Cofactor
 . Ion Transport
- Mitochondrion
- Vescicle Trans, Golgi & ER
 . Endoplasmic Reticulum
 . Golgi
- Peroxisome
- Cytoskeleton
 . Motor
 . Spindle
- r/tRNA Metab & Translation
 . RNA modification
- Chromatin
 . Nucleosome
- Chromosome State
 . Chromosome Segregation

- Growth Metabolism
 . Hexose Metabolism
- r/tRNA Metab & Translation
 . Ribosome
 . Translation
 . rRNA Transport
 . tRNA Transport
- mRNA Transcription & Metab
 . mRNA Splicing
 . mRNA Transport
- DNA Process
 . DNA Replication
 . Mismatch Repair
- Cell Cycle
 . S Phase
- Budding & Cytokinesis
 . Bud Neck
 . Cytokinesis
- Cytoskeleton
 . Spindle
 . Cell Cortex
- Chromosome State
 . Chromosome Cohesion
- Cell Polarity
- Nuclear Membrane
 . Pore Complex

- DNA Process
 . DNA Pre-Replication Complex
 . DNA Replication
- Chromatin
 . Nucleosome
- mRNA Transcription & Metab
 . RNA Pol-II transcription
- Growth Metabolism
 . Aminoacid Metabolism
 . Nucleotide Metabolism
 . Electron Transport Chain
- Carbohydrate Metabolism
 . Glycogen Biosynthesis
- Mating
 . Pheromone Response

- DNA Process
 . DNA Replication
- mRNA Transcription & Metab
 . RNA Pol-II transcription

Manual
- High Confidence
- Low Confidence
Jaccard
Kernel

Figure 8.1: The results of the cluster meta-analysis for windows 1 and 2 of the
yeast cell cycle data. The boxes represent the different clusters, and the manually
determined GO term groups are used to summarize their respective GO enrichment
profiles. The connections were determined using the manual method (solid line),
the kernel function (dash-dotted line), and the Jaccard’s index (dotted line); in par-
ticular, manually determined connections were sorted into high-confidence (black)
and low confidence (gray).

PhD Thesis Antonella Farinaccio

PART IV

FINAL CONSIDERATIONS

Chapter 9

Conclusions and Assessments

9.1 Medical Decision Support System for Survival

Prediction in Breast Cancer using a binary

dataset

The goal of the investigation on the 70-gene signature was to refine the set of
criteria that could lead to an individualized diagnosis of variations of Breast
Cancer. To reach this goal the study was based on the well known “70-
genes signature” and led to the development of a Medical Decision Support
System based on GP able to predict the outcome of the therapy predicting
the survival of breast cancer patients. It is also able to perform an automatic
feature selection, giving the possibility of generating biological insights and
hypotheses that are intrinsic to the method.

Subsequently, several machine learning schemes, such as Support Vector
Machines, Multilayered Perceptron, Random Forest, Radial Basis Function
Network and Voted Perceptron, have been applied to the 70-genes signa-
ture dataset, in order to perform a comparison between their respective
performances. Some simplifying assumptions were made, the data were pre-
processed accordingly and several evaluation experiments were run.

The results showed that while all the machine learning algorithms that
have been used do have predictive power in classifying breast cancer patients
into risk classes, GP-MDSS clearly outperforms all other methods. Of course
there is no way to do such a comparison in a completely unbiased way, as
one could always argue that the numerous parameters used by the different
methods have been set to favour one of them. To minimize bias as much
as possible, default implementation and parameters setting of all methods
was used. The fact that all methods other than GP-MDSS had very similar
performances suggests that GP-MDSS is indeed the most promising method.

The improvement in performance shown by GP-MDSS compared
to the original scoring method presented in [van’t Veer et al., 2002,

145

9.2. Medical Decision Support System for Survival Prediction in Breast
Cancer using floating point dataset 146

van de Vijver et al., 2002] was rather small and not statistically significant.
As expected, the scoring method was superior to all machine learning
algorithms in minimizing false negatives.

9.2 Medical Decision Support System for Survival

Prediction in Breast Cancer using floating

point dataset

The study of the survival prediction of breast cancer patients based on the
binarized 70-gene signature was preliminary, mainly because the validation
dataset was preprocessed and all its features binarized in order to use logical
operators for the GP functional nodes. If, an the one hand, this choice
allowed a simple interpretation of the solutions from the biological viewpoint,
on the other hand the binarization of data was limiting, since it caused a
sizable loss of information.
To overcome this limitations, the use of the original floating point valued
expression data was investigated, abandoning the binarization of the 70-
genes dataset.

In the first phase of the investigation, it has been showed that all the
machine learning algorithms used do have predictive power in classifying
breast cancer patients into risk classes and GP-MDSS is outperformed by
Support Vector Machines and Voted Perceptron in the minimization of the
number of incorrectly classified instances and by Voted Perceptron in the
minimization of false negatives. To minimize bias, in this first phase default
implementation and parameter setting was used for all methods.

In the second phase, GP-MDSS was enriched by changing its fitness
function so that false negatives (positives) were penalized more than false
positives (negatives), hoping to tune the classifiers towards better sensitivity
(specificity).
Some experiments were performed with different values of these weights
and showed that, when larger weight is given to false negatives, GP-MDSS
obtains results comparable to all other machine learning methods in the
minimization of the number of incorrectly classified instances while being
able to outperform the other machine learning methods in a statistically
significant way in the minimization of the false negatives.

It is also pointed out that:

PhD Thesis Antonella Farinaccio

9.3. Generator of Gene Regulatory Network and Dynamic Simulator
System 147

• GP-MDSS used on the original floating point valued expression data
outperforms GP-MDSS used on binarized data (results shown in Chap-
ter 5) both in the minimization of the incorrectly classified instances
and in the minimization of the false negatives in a statistically signifi-
cant way.

• The improvement in performance shown by GP-MDSS in minimiz-
ing false negatives compared to the original scoring method presented
in [van’t Veer et al., 2002, van de Vijver et al., 2002] was rather small
and not statistically significant.

9.3 Generator of Gene Regulatory Network and

Dynamic Simulator System

A new Gene Regulatory Network Generator (GRNGen) driven by data has
been developed in this thesis.

Taking as input a dataset of temporal series of gene expression levels,
the proposed system is composed of three macro-steps:

In the first step a regression dataset is built for each gene. The targets
of this dataset are the activation values of that gene at all instants t > 1,
while the features are the activation values of all other genes at the previous
instants.

In the second step, the regression models are computed using the GP
and interpreted as the activation function for that gene.

In the third step the network is reconstructed and simulated interpreting
the previously generated regression models as the activation functions for the
various genes.

The proposed system has been tested on the IRMA gene regulatory
network defined in [Cantone et al., 2009].

This network contains five genes in the yeast Saccharomyces cerevisiae,
regulating each other and has been defined with the explicit objective of
being a simplified biological model to benchmark reverse-engineering ap-
proaches.

An experimental comparison has been performed between the ability
of GRNGen to reconstruct the topology of the IRMA network and
the three different well-established reverse engineering methods used
in [Cantone et al., 2009]: BANJO, NIR and TSNI.

PhD Thesis Antonella Farinaccio

9.4. An application of Kernel Methods to Gene Cluster Temporal
Meta-Analysis 148

In this experimental study, the performance measures used are the same
as in [Cantone et al., 2009]: Positive Predictive Value (PPV) and Sensitiv-
ity (Se).

The results found by GRNGen generally outperform BANJO, NIR and
TSNI both for PPV and Se.

Even though this system is not yet able to distinguish between acti-
vatory and inhibitory connections and between protein-protein interactions
and other kinds of interactions, it is able to simulate the dynamics of the
network, a feature that BANJO, NIR and TSNI do not have.

9.4 An application of Kernel Methods to Gene

Cluster Temporal Meta-Analysis

The application of GRNGen to large genetic networks will require some
preprocessing of the data since the regression problem is underdetermined
in the likely scenario in which the number of genes is much larger than the
number of available time-points. This problem could be solved either by lim-
iting the genes involved in the activation function to known transcription
factors or by preprocessing the expression data to identify clusters of coex-
pressed genes and then running GRNGen on the clusters rather than on the
genes, based on the reasonable assumption that coexpressed genes should
have similar activation functions. To reach this aim a new cluster kernel
method has been identified and developed, and a meta-analysis procedure
for time-course gene expression experiments based on the time-windowing
segmentation has been introduced.
The contributions are the following:

• An application of kernel methods to the initial problem of enriching
clusters of genes has been developed, in order to take into account the
hierarchical structure of the Gene Ontology, and the related problem
of tracking relations of similarity among clusters, exploiting the hierar-
chical structure of their functional profiles (clustering meta-analysis).

• A new scheme for the ranking of various relationships between clusters
across time-steps has been defined.

• A performance measure for the results of clustering meta-analysis has
been identified and compared with the simpler and widely used Jaccard

PhD Thesis Antonella Farinaccio

9.4. An application of Kernel Methods to Gene Cluster Temporal
Meta-Analysis 149

index.

PhD Thesis Antonella Farinaccio

Chapter 10

Future Works

10.1 Medical Decision Support System for Sur-

vival Prediction in Breast Cancer

In Chapters 5 and 6, the Medical Decision Support System(GP-MDSS) for
survival prediction in breast cancer has been described. It has been shown
that this system outperforms other machine learning methods as a tool to
extract predictions from an established breast cancer gene signature, the well
known “70-genes signature”. Since the method is able to generate biological
insights and hypotheses, it deserves deeper investigation along the following
three lines:

• The implementation of GP-MDSS was purposely not optimized, and
substantial improvements in performance can be expected aimed at
tuning the various GP parameters.

• Maybe more importantly, GP-MDSS can potentially offer biological
insights and generate hypotheses for experimental work (see also
[Yu et al., 2007]). Indeed, an important result of this analysis is that
the trees produced by GP-MDSS tend to contain a limited number of
features, and therefore are easily interpretable in biological terms.

Future work along these lines should therefore focus on both improving
the performance of GP-MDSS and interpreting the results from the biolog-
ical point of view.

Finally, it will be a future task to test the GP-MDSS approach on other
features/gene sets that account for other kinds of cancer or other diseases,
always with the objective of providing clinicians with more precise and in-
dividualized diagnosis criteria.

150

10.2. Generator of Gene Regulatory Network and Dynamic Simulator
System 151

10.2 Generator of Gene Regulatory Network and

Dynamic Simulator System

The Gene Regulatory Network Generator and Simulator System(GRNGen)
presented in this thesis is rather preliminary and many issues could be con-
sidered in the future to validate and establish it. First of all, the system
could be extended to distinguish activatory from inhibitory connections.
This can be done easily, given that the activation functions found by GP
are constructed using the operators + and −: for instance, a majority of +
symbols in the expressions could represent activation, while a majority of −
symbols could represent inhibition.

Moreover the full power of GP as a regression method can be better
exploited by considering non-linear activation functions that could describe
threshold and saturation effects in gene regulation.

The realization of this extension of the system is a hard and ambitious
task and many issues still have to be understood in order to perform this
extension effectively. This is one of the main objectives of the current re-
search.

10.3 An application of Kernel Methods to Gene

Cluster Temporal Meta-Analysis

The application of Kernel Methods to Gene Cluster Temporal Meta-Analysis
presented in this thesis could be extended in several directions in the future.
First of all there is the issue of how to semi-automatically evaluate the
dependency of the presented methods on the clustering algorithm chosen
(all our experiments have been conducted using the CLICK system) This
opens up a vast search space where each potential clustering method yields
a result as a function of some input parameters; while searching such space
is very likely to be unwieldy, the problem points in the direction of studying
various formulations as an optimization problem of such dependency.

Second, the method which leads to the most “informative” segmenta-
tion of a time course experiment could be determined. This problem is
also formalizable as an optimization problem and a first discussion appears
in [Kleinberg et al., 2007, Tadepalli et al., 2008].

Third, data from time-course experiments are not very easy

PhD Thesis Antonella Farinaccio

10.3. An application of Kernel Methods to Gene Cluster Temporal
Meta-Analysis 152

to obtain due to their cost. This has led researchers to try to
reconstruct time-course “snapshots” starting from various “static” exper-
iments [Gupta and Bar-Joseph, 2008, Magwene et al., 2003]; in this last
case, this kernel method could be proposed as a variation of the optimality
measure that is used to re-order the experiment snapshots.

Finally, while the work presented uses the notion of time intrinsic in the
windowing segmentation, such constraint can be easily lifted and the method
applied also in cases where the objects to be compared for similarity are not
ordered in time.

PhD Thesis Antonella Farinaccio

Bibliography

[Abraham, 2002] Abraham, A. (2002). Intelligent systems: Architectures
and perspectives, recent advances in intelligent paradigms and applica-
tions. In Abraham, A., Jain, L., and Kacprzyk, J., editors, Studies in
Fuzziness and Soft Computing, Heidelberg. Springer.

[Abraham, 2005] Abraham, A. (2005). Nature and scope of AI techniques.
In Sydenham, P. and Thorn, R., editors, Handbook for Measurement Sys-
tems Design, Chichester. John Wiley and Sons Ltd.

[Albert et al., 2010] Albert, B., Bray, D., Hopkin, K., Johnson, A., Lewis,
J., Raff, M., Roberts, K., and Water, P. (2010). Essential Cell Biology.
Gardland Science, New York and London.

[Alon et al., 1999] Alon, U., Barkai, N., Notterman, D., Gish, K., Ybarra,
S., Mack, D., and Levine, A. J. (1999). Broad patterns of gene expression
revealed by clustering analysis of tumour and normal colon tissues probed
by oligonucleotide arrays. In Proc. Nat. Acad. Sci., pages 6745–6750. USA
96.

[Alpaydin, 2010] Alpaydin, E. (2010). Introduction to Machine Learning
(Adaptive Computation And Machine Learning). The MIT Press, Cam-
bridge, Massachusetts, London, England.

[Altman et al., 2001] Altman, R., Valencia, A., Miyano, S., and Ran-
ganathan, S. (2001). Challenges for intelligent systems in biology. IEEE
Intelligent Systems, 6(16).

[Amaratunga and Cabrera, 2004] Amaratunga, D. and Cabrera, J. (2004).
Exploration and Analysis of DNA Microarray and Protein Array Data.
Wiley-Interscience, New Jersey.

[Antoniotti, 2007] Antoniotti, M. (2004-2007). GOALIE site.
http://bioinformatics.nyu.edu/Projects/GOALIE/.

153

BIBLIOGRAPHY 154

[Antoniotti et al., 2010] Antoniotti, M., Carreras, M., Farinaccio, A.,
Mauri, G., Merico, D., and Zoppis, I. (2010). An application of kernel
methods to gene cluster temporal meta analysis. Computers and Opera-
tions Research, 37(8):1361–1368.

[Archetti et al., 2006] Archetti, F., Lanzeni, S., Messina, E., and Vanneschi,
L. (2006). Genetic programming for human oral bioavailability of drugs.
In M. Cattolico et al., editor, Proceedings of the 8th annual conference on
Genetic and Evolutionary Computation, pages 255 – 262, Seattle, Wash-
ington, USA.

[Archetti et al., 2007a] Archetti, F., Messina, E., Lanzeni, S., and Van-
neschi, L. (2007a). Genetic programming and other machine learning
approaches to predict median oral lethal dose (LD50) and plasma protein
binding levels (%PPB) of drugs. In E. Marchiori et al., editor, Evolution-
ary Computation, Machine Learning and Data Mining in Bioinformat-
ics. Proceedings of the Fifth European Conference, EvoBIO 2007, Lecture
Notes in Computer Science, LNCS 4447, pages 11–23. Springer, Berlin,
Heidelberg, New York.

[Archetti et al., 2007b] Archetti, F., Messina, E., Lanzeni, S., and Van-
neschi, L. (2007b). Genetic programming for computational pharmacoki-
netics in drug discovery and development. Genetic Programming and
Evolvable Machines, 8(4):17–26.

[Baldi and Brunak, 1998] Baldi, P. and Brunak, S. (1998). Bioinformatics,
The Machine Learning Approach. The MIT Press.

[Banzhaf et al., 1998] Banzhaf, W., Nordin, P., Keller, R., and Francone,
F. (1998). Genetic Programming - An Introduction. Morgan Kaufmann
Publishers, San Francisco, Heidelberg.

[Bar-Joseph, 2004] Bar-Joseph, Z. (2004). Analyzing time series gene ex-
pression data. Bioinformatics, 20(16):2493–2503.

[Beißbarth and Speed, 2004] Beißbarth, T. and Speed, T. P. (2004). GO-
stat: find statistically overrepresented Gene Ontologies within a group of
genes. Bioinformatics, 20(9):1464–1465.

PhD Thesis Antonella Farinaccio

BIBLIOGRAPHY 155

[Ben-Hur and Noble, 2005] Ben-Hur, A. and Noble, W. S. (2005). Ker-
nel methods for predicting protein-protein interactions. Bioinformatics,
21(Supplement 1):38–46.

[Blickle and Thiele, 1995] Blickle, T. and Thiele, L. (1995). A compari-
son of selection schemes used in genetic algorithms. Technical Report
TIK-Report 11, TIK Institut fur Technische Informatik und Kommunika-
tionsnetze, Computer Engineering and Network Laboratory, ETH, Swiss
Federal Institute of Technology, Gloriastrasse 35, 8092 Zurich, Switzer-
land.

[Bojarczuk et al., 2001] Bojarczuk, C., Lopes, H., and Freitas, A. (2001).
Data mining with constrained-syntax genetic programming: applications
to medical data sets. Proceedings Intelligent Data Analysis in Medicine
and Pharmacology, 1.

[Borgwardt et al., 2005] Borgwardt, K. M., Cheng, S. O., Schönauer, Vish-
wanathan, S., Smola, A., and Kriegel, H. (2005). Protein Function Pre-
diction via Graph Kernel. Bioinformatics, 21(Supplement 1):47–56.

[Borgwardt and Kriegel, 2005] Borgwardt, K. M. and Kriegel, H. (2005).
Shortest-path Kernels on Graphs. In ICDM, pages 74–81.

[Breiman, 2001] Breiman, L. (2001). Random forests. Machine Learning,
45(1):5–32.

[Breiman et al., 1984] Breiman, L., Friedman, J., Olshen, R., and Stone,
C. (1984). Classification and Regression Trees. Belmont, California,
Wadsworth International Group.

[Cantone et al., 2009] Cantone, I., Marucci, L., Iorio, F., Ricci, M., Belcas-
tro, V., Bansal, M., Santini, S., Di Bernardo, M., Di Bernardo, D., and
Cosma, M. (2009). A yeast synthetic network for in vivo assessment of
reverse-engineering and modeling approaches. Cell, 137(1):172–81.

[Chen et al., 1999] Chen, T., He, H., and Church, G. (1999). Modeling gene
expression with differential equations. In Pacific Symposium on Biocom-
puting, pages 29–40.

PhD Thesis Antonella Farinaccio

BIBLIOGRAPHY 156

[Chu and Wang, 2005] Chu, F. and Wang, L. (2005). Applications of sup-
port vector machines to cancer classification with microarray data. Int J
Neural Syst, 15(6):475–484.

[Chu et al., 1998] Chu, S., DeRisi, J. L., Eisen, M., Mulholland, J., Botstein,
D., Brown, P. O., and Herskowitz, I. (1998). The Transcriptional Program
of Sporulation in Budding Yeast. Science, 282:699–705.

[Cios et al., 2005] Cios, K., Mamitsuka, H., Nagashima, T., and
Tadeusiewicz, R. (2005). Computational intelligence in solving bioinfor-
matics problems. Artificial Intelligence in Medicine, 1(35).

[Courant and Hilbert, 1953] Courant, R. and Hilbert, D. (1953). Methods
of Mathematical Physics, volume 1.

[Deb and Reddy, 2003] Deb, K. and Reddy, A. R. (2003). Reliable classifi-
cation of two-class cancer data using evolutionary algorithms. Biosystems,
72(1-2):111–129.

[Della Gatta et al., 2008] Della Gatta, G., Bansal, M., Ambesi-Impiombato,
A., Antonini, D., Missero, C., and Di Bernardo, D. (2008). Direct tar-
gets of the TRP63 transcription factor revealed by a combination of gene
expression profiling and reverse engineering. Genome Res., 18:939–948.

[DeRisi et al., 1997] DeRisi, J. L., Iyer, V. R., and Brown, P. O. (1997).
Exploring the Metabolic and Genetic Control of Gene Expression on a
Genomic Scale. Science, 278:680–686.

[Deutsch, 2003] Deutsch, J. M. (2003). Evolutionary algorithms for finding
optimal gene sets in microarray prediction. Bioinformatics, 19(1):45–52.

[Di Bernardo et al., 2005] Di Bernardo, D., Thompson, M. J., Gardner,
T. S., Chobot, S. E., Eastwood, E. L., Wojtovich, A. P., Elliot, S. J.,
Schaus, S. E., and Collins, J. J. (2005). Chemogenomic profiling on a
genome-wide scale using reverse-engineered gene networks. Nat. Biotech-
nol., 23:377–383.

[Di Ventura et al., 2006] Di Ventura, B., Lemerle, C., Michalodimitrakis,
K., and Serrano, L. (2006). From in vivo to in silico biology and back.
Nature, 443:527–533.

PhD Thesis Antonella Farinaccio

BIBLIOGRAPHY 157

[Doherty et al., 2006] Doherty, J. M., Carmichael, L. K., and Mills, J. C.
(2006). GOurmet: a tool for Quantitative Comparison and Visualization
of Gene Expression Profiles Based on Gene Ontology (GO) Distributions.
BMC Bioinformatics, 7(151).

[Eisen et al., 1998] Eisen, M. B., Spellman, P. T., Brown, P. O., and Bot-
stein, D. (1998). Cluster analysis and display of genome-wide expression
patterns. Proceedings of the National Academy of Science, 95(25):14863–
14868.

[Emmert-Streib and Dehmer, 2008] Emmert-Streib, F. and Dehmer, M.
(2008). Analysis of Microarray Data - A Network-Based Approach. Wiley-
Vch Verlag GmbH and Co. KGaA, Weinheim.

[Ernst and Bar-Joseph, 2006] Ernst, J. and Bar-Joseph, Z. (2006). STEM:
a tool for the analysis of short time series expression data. BMC Bioin-
formatics, 7(191).

[Ezziane, 2006] Ezziane, Z. (2006). Applications of artificial intelligence in
bioinformatics: A review. Expert Syst. Appl., 1(30):2–10.

[Faith et al., 2007] Faith, J. J., Hayete, B., Thaden, J. T., Mogno, I.,
Wierzbowski, J., Cottarel, G., Kasif, S., Collins, J. J., and Gardner, T. S.
(2007). Large-scale mapping and validation of escherichia coli transcrip-
tional regulation from a compendium of expression profiles. PLoS Biol.,
5(1):e8.

[Farabee,] Farabee, J. On-line biology book. http://mac122.icu.ac.jp/
biobk/biobooktoc.html.

[Farinaccio, 2010] Farinaccio, A. (2010). Modelling a complex system: from
microarray time series to data driven gene regulatory network. In Pro-
ceedings of EvoPhD in Evo* 2010 Conference, Istanbul. Springer.

[Farinaccio et al., 2010] Farinaccio, A., Vanneschi, L., Giacobini, M., Mauri,
G., and Provero, P. (2010). On the use of genetic programming for the
prediction of survival in cancer. In Proceedings of the GECCO, Genetic
and Evolutionary Computation, 2010 Conference, ACM Press, pages 163–
170.

PhD Thesis Antonella Farinaccio

BIBLIOGRAPHY 158

[Farinaccio et al., 2009] Farinaccio, A., Vanneschi, L., Muppirisetty, S., Gi-
acobini, M., Antoniotti, M., Mauri, G., and Provero, P. (2009). Genetic
programming for survival prediction in breast cancer. In Alberghina, L.
and Milanesi, L., editors, Proceedings of the SysBioHealth 2009 Sympo-
sium, pages 69–71.

[Farinaccio et al., 2011] Farinaccio, A., Vanneschi, L., Provero, P., Mauri,
G., and Giacobini, M. (2011). A study on gene regulatory network re-
construction and simulation. In Apolloni, B., S.Bassis, Esposito, A., and
Morabito, C., editors, Proceedings of the 20th Italian Workshop on Neural
Nets WIRN 2010 Conference, volume 226, pages 235–242.

[Freund and Schapire, 1998] Freund, Y. and Schapire, R. E. (1998). Large
margin classification using the perceptron algorithm. In Machine Learn-
ing, pages 277–296.

[Friedberg, 1958] Friedberg, R. (1958). A learning machine, part I. IBM, J.
Research and Development, 2:2–13.

[Friedberg et al., 1959] Friedberg, R., Dunham, B., and North, J. (1959). A
learning machine, part II. IBM, J. Research and Development, 3:282–285.

[Friedman et al., 2000] Friedman, N., Linial, M., Nachmann, I., and Peer,
D. (2000). Using bayesian networks to analyze expression data. J. Com-
putational Biology, 7:601–620.

[Gardner et al., 2003] Gardner, T. S., Di Bernardo, D., Lorenz, D., and
Collins, J. J. (2003). Inferring genetic networks and identifying compound
mode of action via expression profiling. Science, 301:102–105.

[Gärtner et al., 2003] Gärtner, P., Flach, P., and Wrobel, S. (2003).
On Graph Kernels: Hardness Results and Efficient Alternatives. In
COLT/Kernel, volume 2777 of Lecture Notes in Artificial Intelligence,
pages 129–143. Springer-Verlag.

[Gene Ontology Consortium, 2006] Gene Ontology Consortium (2006). The
Gene Ontology (GO) project in 2006. Nucleic Acid Research (Database
issue), 34:D322–D326.

[Gentleman et al., 2005] Gentleman, R., Carey, V. J., Huber, W., Irizarry,
R., and Dudoit, S. (2005). Bioinformatics and Computational Biology

PhD Thesis Antonella Farinaccio

BIBLIOGRAPHY 159

Solutions Using R and Bioconductor. Springer Science-Business Media,
LLC, New York.

[Goldberg, 1989] Goldberg, D. E. (1989). Genetic Algorithms in Search,
Optimization and Machine Learning. Addison-Wesley.

[Goodsell, 2009] Goodsell, D. (2009). The machinery of life. Springer Ver-
lag.

[Grefenstette and Baker, 1989] Grefenstette, J. and Baker, J. (1989). How
genetic algorithms work: A critical look at implicit parallelism. In Proc.
3rd International Conference on Genetic Algorithms, pages 20–27. San
Mateo, CA. Morgan Kaufmann, San Francisco CA.

[Guigo et al., 1992] Guigo, R., Knudsen, S., Drake, N., and Smith, T.
(1992). Prediction of gene structure. Journal of Molecular Biology,
226:141–157.

[Gupta and Bar-Joseph, 2008] Gupta, A. and Bar-Joseph, Z. (2008). Ex-
tracting dynamics from static cancer expression data. IEEE/ACM Trans-
actions on Computational Biology and Bioinformatics, 5(2):172–182.

[Gusfield, 2004] Gusfield, D. (2004). Introduction to the ieee/acm transac-
tions on computational biology and bioinformatics. IEEE/ACM Trans-
actions on Computational Biology and Bioinformatics, 1(1):2–3.

[Guyon et al., 2002] Guyon, I., Weston, J., Barnhill, S., and Vapnik, V.
(2002). Gene selection for cancer classification using support vector ma-
chines. Machine Learning, 46:389–422.

[Harris et al., 2002] Harris, S., Sawhill, B., Wuensche, A., and Kauffman, S.
(2002). A model of transcriptional regulatory network based on biases in
the observed regulation rules. Complexity, V:23–40.

[Hassanien et al., 2008] Hassanien, A., Milanova, M. G., Smolinski, T. G.,
and Abraham, A. (2008). Computational intelligence in solving bioinfor-
matics problems: Reviews, perspectives, and challenges. In Smolinski, T.,
M.G.Milanova, and Hassanien, A., editors, Computational Intelligence in
Biomedicine and Bioinformatics, Heidelberg. Springer.

[Hasty and McMillen, 2002] Hasty, J. and McMillen, D. (2002). Engineered
gene circuits. Nature, 420:224–230.

PhD Thesis Antonella Farinaccio

BIBLIOGRAPHY 160

[Hayete et al., 2007] Hayete, J., McMillen, D., and Collins, J. J. (2007). Size
matters: network inference tackles the genome scale. Mol. Syst. Biol.,
3:77.

[Haykin, 1999] Haykin, S. (1999). Neural Networks: A Comprehensive
Foundation. Prentice-Hall, London, UK.

[Helmbold and Warmuth, 1995] Helmbold, D. P. and Warmuth, M. K.
(1995). On weak learning. J. Comput. Syst. Sci., 50(3):551–573.

[Hernandez et al., 2007] Hernandez, J. C. H., Duval, B., and Hao, J. (2007).
A genetic embedded approach for gene selection and classification of mi-
croarray data. Lecture Notes in Computer Science, 4447:90–101.

[Holland, 1975] Holland, J. H. (1975). Adaptation in Natural and Artificial
Systems. The University of Michigan Press, Ann Arbor, Michigan.

[Hong and Cho, 2006] Hong, J. and Cho, S. (2006). The classification of
cancer based on DNA microarray data that uses diverse ensemble genetic
programming. Artif. Intell. Med, 36:43–58.

[Hsu et al., 2003] Hsu, A., Tang, S., and Halgamuge, S. (2003). An un-
supervised hierarchical dynamic self-organizing approach to cancer class
discovery and marker gene identification in microarray data. Bioinfor-
matics, 19(16):2131–40.

[Hunga et al., 2006] Hunga, C., Huanga, Y., and Changb, M. (2006). Align-
ment using genetic programming with causal trees for identification of
protein functions. Nonlinear Analysis, (65):1070–1093.

[Jaccard, 1901] Jaccard, P. (1901). Étude comparative de la distribution
florale dans une portion des alpes et des jura. Bulletin del la Société
Vaudoise des Sciences Naturelles, (37):547–579.

[Kantardzic, 2003] Kantardzic, M. (2003). Data Mining: concepts, models,
methods and algorithms. Piscataway(N.J.): IEEE Press, J.Wiley, New
York.

[Kashima et al., 2003] Kashima, H., Tsuda, K., and Inokuchi, A. (2003).
Marginalized Kernels between Labelled Graphs. In Proceedings of Inter-
national Conference on Machine Learning(ICML), pages 321–328.

PhD Thesis Antonella Farinaccio

BIBLIOGRAPHY 161

[Kaufmann, 1971] Kaufmann, S. (1971). Gene regulation networks: A the-
ory of their global structure and behaviour. Curr. Top. Dev. Biol.,
(6):145–182.

[Kaufmann, 1993] Kaufmann, S. (1993). Origins of Order: Self-organization
and Selection in Evolution. Oxford University Press, New York.

[Kaufmann et al., 2003] Kaufmann, S., Peterson, C., Samuelsson, B., and
Troein, C. (2003). Random boolean network models and the yeast tran-
scriptional network. Proceedings of the National Academy of Sciences of
the United States of America (PNAS), (25):14796–14799.

[Kelemen et al., 2008] Kelemen, A., Abraham, A., and Chen, Y. (2008).
Computational intelligence in bioinformatics. In Studies in Computational
Intelligence, Heidelberg. Springer Publishing Company.

[Kleinberg et al., 2006] Kleinberg, S., Antoniotti, M., Tadepalli, S., Ra-
makrishnan, N., and Mishra, B. (2006). Remembrance of Experiments
Past: A Redescription Based Tool for Discovery in Complex Systems. In
Proceedings of the International Conference on Complex Systems, pages
1–8, Boston, MA, U.S.A.

[Kleinberg et al., 2007] Kleinberg, S., Casey, K., and Mishra, B. (2007). Sys-
tems Biology via Redescription and Ontologies: Untangling the Malaria
Parasite Life Cycle. In Proceedings of the LSMS-07.

[Knudsen, 2002] Knudsen, S. (2002). Analysis of DNA Microarray Data.
Wiley-Liss, New York.

[Kondor and Lafferty, 2002] Kondor, R. S. and Lafferty, J. (2002). Diffu-
sion Kernels on Graphs and Other Discrete Structures. In Proceedings of
ICML.

[Koza et al., 2003] Koza, J., Keane, M., Streeter, M., Mydlowec, W., and
Lanza, J. Y. G. (2003). Genetic Programming IV, Routine Human-
Competitive Machine Intelligence. Klugen Academic Publishers, Norwell,
Massachusetts.

[Koza, 1992] Koza, J. R. (1992). Genetic Programming. The MIT Press,
Cambridge, Massachusetts.

PhD Thesis Antonella Farinaccio

BIBLIOGRAPHY 162

[Langdon and Barrett, 2004] Langdon, W. and Barrett, S. (2004). Genetic
Programming in data mining for drug discovery. Evolutionary Computing
in Data Mining, pages 211–235.

[Langdon and Buxton, 2004] Langdon, W. B. and Buxton, B. F. (2004).
Genetic programming for mining DNA chip data from cancer patients.
Genetic Programming and Evolvable Machines, 5(3):251–257.

[Langdon and Poli, 2002] Langdon, W. B. and Poli, R. (2002). Foundations
of Genetic Programming. Springer, Berlin.

[Larranaga et al., 2006] Larranaga, P., Calvo, B., Santana, R., Bielza, C.,
Galdiano, J., Inza, I., Lozano, J., Armananzas, R., Santafe, G., Perez, A.,
and Robles, V. (2006). Machine learning in bioinformatics. Briefings in
Bioinformatics, 7(1):86–112.

[Liu et al., 2005] Liu, J., Cutler, G., Li, W., Pan, Z., Peng, S., Hoey, T.,
Chen, L., and Ling, X.-B. (2005). Multiclass cancer classification and
biomarker discovery using ga-based algorithms. Bioinformatics, 21:2691–
2697.

[Lockhart and Winzeler, 2000] Lockhart, D. J. and Winzeler, E. A. (2000).
Genomics, gene expression and dna arrays. Nature, 405(6788):827–36.

[Lodish et al., 2008] Lodish, H., Berk, A., Kaiser, C., Keiger, M., Scott, M.,
Bretscher, A., Ploegh, H., and Matsudaira, P. (2008). Molecular Cell
Biology. W. H. Freeman and Company, New York.

[Lu and Han, 2003] Lu, Y. and Han, J. (2003). Cancer classification using
gene expression data. Inf. Syst., 28(4):243–268.

[Luscombe et al., 2001] Luscombe, N., Greenbaum, D., and Gerstein, M.
(2001). What is bioinformatics? a proposed definition and overview of
the field. Yearbook of Medical Informatics.

[Magwene et al., 2003] Magwene, P. M., Lizardi, P., and Kim, J. (2003). Re-
constructing the temporal ordering of biological samples using microarray
data. Bioinformatics, 19(7):842–850.

[Merico et al., 2007] Merico, D., Zoppis, I., Antoniotti, M., and Mauri, G.
(2007). Evaluating Graph Kernel Methods for Relation Discovery in GO-

PhD Thesis Antonella Farinaccio

BIBLIOGRAPHY 163

Annotated clusters. In KES-2007/WIRN-2007, Part IV, volume 4694,
pages 892–900, Lecture Notes in Artificial Intelligence. Springer-Verlag.

[Michie et al., 1994] Michie, D., Spiegelhalter, D., and Taylor, C. (1994).
Machine learning, neural and statistical classification. Prentice Hall.

[Mitchell, 1996] Mitchell, T. (1996). Machine Learning. McGraw Hill, New
York.

[Mitra et al., 2007] Mitra, S., Banka, H., and Paik, J. (2007). Evolutionary
fuzzy biclustering of gene expression data. In Yao, J., Lingras, P., Wu,
W., Szczuka, M., N.J.Cercone, and Slezak, D., editors, RSKT 2007. LNCS
(LNAI), Heidelberg. Springer.

[Mitra and Hayashi, 2006] Mitra, S. and Hayashi, Y. (2006). Bioinformatics
with soft computing. IEEE Transactions on Systems, Man, and Cyber-
netics, Part C: Applications and Reviews, (36):616–635.

[Moore et al., 2001] Moore, J., Parker, J., and Hahn, L. (2001). Symbolic
discriminant analysis for mining gene expression patterns. Lecture Notes
in Artificial Intelligence, 2167:372–381.

[Muller-Esterl et al., 2004] Muller-Esterl, W., Brandt, U., Anderka, O.,
Kieb, S., Ridinger, K., and Plenikowski, M. (2004). Biochemie. Elsevier-
GmbH.

[Nelson and Cox, 2000] Nelson, D. L. and Cox, M. (2000). Lehninger Prin-
ciples of Biochemistry. Worth Publisher, Inc.

[Nevins and Potti, 2007] Nevins, J. R. and Potti, A. (2007). Mining gene
expression profiles: expression signatures as cancer phenotypes. Nat Rev
Genet, 8(8):601–609.

[Park and Sandberg, 1991] Park, J. and Sandberg, J. W. (1991). Universal
approximation using radial basis functions network. Neural Computation,
3:246–257.

[Paul and Iba, 2005] Paul, T. K. and Iba, H. (2005). Gene selection for clas-
sification of cancers using probabilistic model building genetic algorithm.
Biosystems, 82(3):208–225.

PhD Thesis Antonella Farinaccio

BIBLIOGRAPHY 164

[Platt, 1998] Platt, J. (1998). Fast training of support vector machines using
sequential minimal optimization. Advances in Kernel Methods – Support
Vector Learning.

[Poggio and Girosi, 1990] Poggio, T. and Girosi, F. (1990). Networks for
approximation and learning. Proceedings of the IEEE, 78(9):1481–1497.

[Poli and Langdon, 1997] Poli, R. and Langdon, W. B. (1997). Genetic pro-
gramming with one-point crossover and point mutation. Technical Report
CSRP-97-13, University of Birmingham, B15 2TT, UK.

[Poli and Langdon, 1998] Poli, R. and Langdon, W. B. (1998). Genetic pro-
gramming with one-point crossover. In Chawdury, P. K., Roy, R., and
Pant, R. K., editors, Second On-line World Conference on Soft Computing
in Engineering Design and Manufacturing, pages 23–27. Springer-Verlag,
London.

[Polymeropoulos et al., 1996] Polymeropoulos, M. H., Higgins, J. J., Golbe,
L. I., Johnson, W. G., Ide, S. E., Iorio, G. D., Sanges, G., Stenroos,
E. S., Pho, L. T., Schaffer, A. A., Lazzarini, A. M., Nussbaum, R. L.,
and Duvoisin, R. C. (1996). Mapping of a gene for parkinson’s disease to
chromosome 4q21-q23. Science, 274.

[Quackenbush, 2001] Quackenbush, J. (2001). Computational analysis of
microarray data. Nat Rev Genet, 2(6):418–427.

[Ramakrishnan et al., 2005] Ramakrishnan, N., Antoniotti, M., and Mishra,
B. (2005). Reconstructing Formal Temporal Models of Cellular Events
using the GO Process Ontology. In Bio-Ontologies SIG Meeting, ISMB,
Detroit MI, U.S.A.

[Rosskopf et al., 2007] Rosskopf, M., Schmidt, H., Feldkamp, U., and
Banzhaf, W. (2007). Genetic programming based dna microarray analy-
sis for classification of tumour tissues. Technical Report Technical Report
2007-03, Memorial University of Newfoundland.

[Sakamoto and Iba, 2000] Sakamoto, E. and Iba, H. (2000). Identifying gene
regulatory network as differential equation by genetic programming. In
Poster Session of Genome Informatics Workshop, volume 3.

PhD Thesis Antonella Farinaccio

BIBLIOGRAPHY 165

[Schölkopf and Smola, 2002] Schölkopf, B. and Smola, A. J. (2002]). Learn-
ing with Kernels. MIT Press.

[Schölkopf et al., 2004] Schölkopf, B., Tsuda, K., and Vert, J. P. (2004).
Kernel Methods in Computational Biology. MIT Press.

[Semeria et al., 2004] Semeria, A., Villani, M., Serra, R., and Kauffman,
S. (2004). Perturbation in genetic regulatory network: Simulation and
experiments. In Proceedings of ACRI 2004 Conference, number 3305 in
Springer, LNCS, pages 533–542.

[Serra et al., 2008] Serra, R., Villani, M., Graudenzi, A., Colacci, A., and
Kauffman, S. (2008). The simulation of gene knock-out in scale-free ran-
dom boolean models of genetic networks. AIMS’ Journals, 3(2):333–343.

[Sharan and Shamir, 2000] Sharan, R. and Shamir, R. (2000). CLICK: A
Clustering Algorithm with Applications to Gene Expression Analysis. In
Proceedings of ISMB 2000, pages 307–316. AAAI Press, Menlo Park, CA,
U.S.A.

[Sheng et al., 2005] Sheng, Q., Moreau, Y., Smet, F. D., Marchal, K., and
Moor, B. D. (2005). Advances in cluster analysis of microarray data. Data
Analysis and Visualization in Genomics and Proteomics, pages 153–173.

[Silva, 2007] Silva, S. (2007). GPLAB – a genetic programming toolbox for
MATLAB, version 3.0. http://gplab.sourceforge.net.

[Skovgaard et al., 2001] Skovgaard, M., Jensen, L. J., Brunak, S., Ussery,
D., and Krogh, A. (2001). On the total number of genes and their length
distribution in complete microbial genomes. Trends Genet., 17:425–428.

[Speed, 2003] Speed, P. T. (2003). Statistical Analysis of Gene Expression
Microarray Data. Interdisciplinary Statistics Ser. CRC Press, first edition.

[Spellman et al., 1998] Spellman, P. T., Sherlock, G., Zhang, M. Q., Iyer,
V. R., Anders, K., Eisen, M. B., Brown, P. O., Botstein, D., and Futcher,
B. (1998). Comprehensive Identification of Cell Cycle-Regulated Genes of
the Yeast Saccharomyces Cerevisiae by Microarray Hybridization. Molec-
ular Biology of the Cell, 9:3273–3297.

[Sprinzak and Elowitz, 2005] Sprinzak, D. and Elowitz, M. B. (2005). Re-
construction of genetic circuits. Nature, 438:443–448.

PhD Thesis Antonella Farinaccio

BIBLIOGRAPHY 166

[Stolovitzky et al., 2007] Stolovitzky, G., Monroe, D., and Califano, A.
(2007). Dialogue on reverse-engineering assessment and methods: the
dream of high-throughput pathway inference. Ann. N Y Acad. Sci,
1115:1–22.

[Szallasi et al., 2006] Szallasi, Z., Stelling, J., and Periwal, V. (2006). Sys-
tem modeling in cellular biology: From concepts to nuts and bolts. The
MIT Press.

[Tadepalli et al., 2008] Tadepalli, S., Ramakrishnan, N., Watson, L. T.,
Mishra, B., and Help, R. F. (2008). Simultaneuosly Segmenting Mul-
tiple Gene Expression Time Courses by Analyzing Cluster Dynamics. In
Proceedings of the Sixth Asia-Pacific Bioinformatics Conference (APBC
2008), pages 297–306, Tokyo, Japan.

[Tettamanzi and Tomassini, 2001] Tettamanzi, A. and Tomassini, M.
(2001). Soft Computing - Integrating Evolutionary, Neural and Fuzzy
Systems. Springer, Berlin.

[Tominaga et al., 2000] Tominaga, D., Koga, N., and Okamoto, M. (2000).
Efficient numerical optimization algorithm based on genetic algorithm for
inverse problem. In Genetic and Evolutionary Computation Conference,
pages 251–258.

[van de Vijver et al., 2002] van de Vijver, M. J., He, Y. D., van’t Veer, L. J.,
Dai, H., Hart, A. A. M., Voskuil, D. W., Schreiber, G. J., Peterse, J. L.,
Roberts, C., Marton, M. J., Parrish, M., Atsma, D., Witteveen, A., Glas,
A., Delahaye, L., van der Velde, T., Bartelink, H., Rodenhuis, S., Rutgers,
E. T., Friend, S. H., and Bernards, R. (2002). A gene-expression signature
as a predictor of survival in breast cancer. N Engl J Med, 347(25):1999–
2009.

[Vanneschi, 2004] Vanneschi, L. (2004). Theory and Practice for Efficient
Genetic Programming. Ph.D. thesis, Faculty of Sciences, University of
Lausanne, Switzerland.

[Vanneschi et al., 2010] Vanneschi, L., Farinaccio, A., Giacobini, M., Anto-
niotti, M., Mauri, G., and Provero, P. (2010). Identification of individ-
ualized feature combinations for survival prediction in breast cancer: A

PhD Thesis Antonella Farinaccio

BIBLIOGRAPHY 167

comparison of machine learning techniques. In Proceedings of 8th Euro-
pean Conference, EvoBIO 2010, volume 6023 of LNCS, pages 110–121,
Istanbul. Springer.

[van’t Veer et al., 2002] van’t Veer, L. J., Dai, H., van de Vijver, M. J.,
He, Y. D., Hart, A. A. M., Mao, M., Peterse, H. L., van der Kooy, K.,
Marton, M. J., Witteveen, A. T., Schreiber, G. J., Kerkhoven, R. M.,
Roberts, C., Linsley, P. S., Bernards, R., and Friend, S. H. (2002). Gene
expression profiling predicts clinical outcome of breast cancer. Nature,
415(6871):530–536.

[Vapnik, 1998] Vapnik, V. (1998). Statistical Learning Theory. Wiley, New
York, NY.

[Vishwanathan et al., 2007] Vishwanathan, S. V. N., Borgwardt, K. M., and
Schraudolph, N. N. (2007). Fast Computation on Graph Kernels. In
Schölkopf, B., Platt, J., and Hoffman, T., editors, Advances in Neural
Information Processing Systems 19, pages 1449–1456. MIT Press.

[Watson et al., 2004] Watson, J., Baker, T., Bell, S., Gann, A., Levine, M.,
and Losick, R. (2004). Molecular Biology of the Gene. Pearson Education,
Inc.

[Weka, 2006] Weka (2006). A multi-task machine learning software devel-
oped by Waikato University. www.cs.waikato.ac.nz/ml/weka.

[Whitley, 1989] Whitley, D. (1989). The genitor algorithm and selection
pressure: Why rank-based allocation of reproductive trials is best. In
Schaffer, J. D., editor, Proc. 3rd Int. Conference on Genetic Algorithms,
San Mateo, CA., pages 116–121. San Mateo, CA. Morgan Kaufmann, San
Francisco CA.

[Yu et al., 2004] Yu, J., Smith, V. A., Wang, P. P., Hartemink, A. J., and
Jarvis, E. D. (2004). Advances to bayesian network inference for gener-
ating casual networks from observational biological data. Bioinformatics,
20:3594–3603.

[Yu et al., 2007] Yu, J., Yu, J., Almal, A. A., Dhanasekaran, S. M., Ghosh,
D., Worzel, W. P., and Chinnaiyan, A. M. (2007). Feature selection and
molecular classification of cancer using genetic programming. Neoplasia,
9(4):292–303.

PhD Thesis Antonella Farinaccio

BIBLIOGRAPHY 168

[Zhang and Rajapakse, 2008] Zhang, Y. and Rajapakse, C. (2008). Machine
Learning in Bioinformatics. Wiley.

[Zoppis et al., 2007] Zoppis, I., Merico, D., Antoniotti, M., Mishra, B., and
Mauri, G. (2007). Discovering Relations among GO-annotated Clusters
by Graph Kernel Methods. In Proceedings of the 2007 International Sym-
posium on Bioinformatics Research and Applications, volume 4463 of lncs,
pages 158–169.

PhD Thesis Antonella Farinaccio

