
UNIVERSITÀ DEGLI STUDI DI MILANO BICOCCA
Dipartimento di Informatica Sistemistica e Comunicazione

Facolt di Scienze Naturali Fisiche e Naturali
Dottorato di Ricerca in Informatica - XXIII Ciclo

Anno Accademico 2009-2010

Hypernets: a Class of
Hierarchical Petri Nets

Marco Mascheroni

Ph.D. Thesis

Thesis Advisors: Prof.ssa Lucia Pomello
Thesis Coadvisors: Dott. Luca Bernardinello
Thesis Tutor: Prof. Flavio De Paoli
Ph.D. Program Coordinator: Stefania Bandini

i

ii

Acknowledgements

First and foremost, I would like to thank my advisors Prof. Lucia Pomello and
Prof. Luca Bernardinello for their guidance, encouragement and patience. They
help me in these years and in particular, encourage my scientific interests. It
was a real pleasure to work with them.

I am also grateful to Prof Daniel Moldt, and Prof. Rüdiger Valk for their
hospitality at the TGI department of the university of Hamburg, and for all the
interesting ideas they gave me during my period of sojurn in Hamburg.

I am particularly grateful to all my colleagues: Elisabetta from the MC3 lab,
Thomas, Jos and Lars from the TGI depratment of Hamburg, and Fabio from
the physics department.

I would also like to express acknowledgement to all my friends, particularly
to Erisa, “house 119” flatmates, and the “friends of the train”: with them I
spent a lot of nice moments in these years.

Finally, I would thank my family, for their continual support, encouragement
and for giving me the freedom to pursue my own interests. I cannot be grateful
enough for their untiring support and unconditional belief in me.

Last but not the least, I could not have done any of this without Michela that
gave me hope whenever I was down, strength when I felt weak and unquestioning
love all along.

And I want to thank all the others I probably forget in this list...

iii

iv

Abstract

The interest of this thesis is on modeling systems of mobile agents, systems
composed of several open and autonomous components which can interact and
move inside one or more environments.

Several proposal for modeling mobility have been introduced. They can
be roughly divided in two categories: Petri net based formalisms, and process
algebra based formalisms. In this thesis, Petri net formalisms will mostly be
considered, with particular care to formalisms which use the nets-within-nets
paradigm. In models compliant to this paradigm the tokens of a Petri net can
be nets themselves. Since systems of mobile agents exhibit a nesting structure,
it seems natural to use this paradigm.

In particular, the focus of this dissertation is on the hypernet model, whose
main characteristic is that it has a limited state space, characteristic that make
it suitable to be analyzed using well known Petri net techniques.

The thesis topics range from theoretical aspects of the model to more prac-
tical issues.

From a theoretical point of view an extension of the model is introduced.
It is proved that this extension preserves all the good properties of the basic
model. It is also studied how to apply the well known unfolding technique to
this model.

From a practical point of view is is shown how the nets-within nets paradigm
can be used to model systems based on the Grid infrastructure. Moreover, a
tool which allow to draw and to analyze an hypernet is discussed.

v

vi

Contents

1 Introduction 1

2 Basic Notions 7

2.1 Petri Nets . 7

2.1.1 The Firing Rule . 8

2.2 Partially Ordered Sets . 9

3 Basic Hypernets 11

3.1 Informal Introduction . 11

3.2 Formal Definition . 12

3.2.1 The Static Structure of a Hypernet 12

3.2.2 The Dynamic of a Hypernet 14

4 Generalized Hypernets 17

4.1 Concepts . 17

4.1.1 Paths . 17

4.1.2 Virtual Places . 19

4.2 Formal Definition . 19

4.2.1 Static Structure . 19

4.2.2 Behavior . 22

4.3 Preservation of the Tree-Like Structure of the Hypermarking . . 26

4.4 1-Safe Net Semantics . 29

5 Examples 33

5.1 The Bar Example . 33

5.2 The Cellular Respiration Process Example 37

5.3 Modeling a Class of Membrane System 40

5.3.1 P systems with symport/antiport rules 41

6 Unfoldings 45

6.1 An Introductory Example . 45

6.2 Preliminary Definitions . 49

6.3 Branching Processes . 52

6.3.1 Axiomatic Definition . 53

6.3.2 Inductive Definition . 54

6.3.3 Equivalence of Axiomatic and Inductive Definitions . . . 55

6.4 Complete Prefix of the Unfolding 58

vii

7 Hierarchical Net Models 61
7.1 Survey of hierarchical Petri net models 61
7.2 Nets-Within-Nets Paradigm and Mobility 61

7.2.1 Object Nets and MULAN 61
7.2.2 Nested Nets . 64
7.2.3 Object Nets for Mobility 65
7.2.4 Modular Petri Nets For Mobility 66

7.3 Renew and Other Approaches 69
7.3.1 Reference Nets and Renew 69
7.3.2 High Level Nets ith Nets and Rules as Tokens 70
7.3.3 Recursive Petri Nets . 71

8 Modeling a Grid Tool for High Energy Phisics 75
8.0.4 The Application Context: Grid distributed analysis . . . 75
8.0.5 Modeling the submission use-case 76
8.0.6 Details on the model derivation process 83

9 Tools For Hierarchical Nets 85
9.1 A Renew Plugin For Drawing And Analyzing Hypernets 85

9.1.1 Restricting Reference Nets to Hypernets 85
9.1.2 The Hypernet Plugin . 86

9.2 Example . 87

10 Conclusions and Future Developments 91

viii

List of Figures

2.1 An illustration of the firing rule of a Petri net 9

3.1 The plane agent . 12
3.2 The airport agent . 13
3.3 Consistency conditions . 14
3.4 Example of creation of an alpha-flow from A to A′ (A . A′) . . . 15

4.1 Paths are used in the firing rule of the generalize hypernet model 18
4.2 Virtual up places, and virtual down places 19
4.3 A simple agent A1 . 20
4.4 Notation used to represent possible paths of net in figure 4.3 . . 21
4.5 A set of agents that together form an hypernet 22
4.6 Possible marking graphs of the hypernet of Example 2 22
4.7 Possible combinations of paths and their consistency 24
4.8 If the path g exists then the inner agent must be passive agents . 25
4.9 A move with pivot v . 26
4.10 Example of moves application . 27
4.11 Type of possible moves . 29
4.12 Situations where a loop is added 30

5.1 The sort hierarchy of the example 34
5.2 The system net of the Bar example 35
5.3 The net modleing the bar agent 35
5.4 The net modeling the bartender house 36
5.5 The net modeling the client house 36
5.6 The system net of the Blood example 37
5.7 The net modeling the metabolism of the body 38
5.8 The net modeling the behavior of a cell 39
5.9 The net modeling the behavior of a red blood cell 40
5.10 Fragment of a symport/antiport P system 43
5.11 The hypernet corresponding to membrane i 43
5.12 The hypernet corresponding to membrane j 44

6.1 A branching process of the Bar example (Section 5) 47
6.2 A fragment of the unfolding of the Bar example (Section 5) . . . 48
6.3 The net generated by an event 56

7.1 The MULAN architecture . 63
7.2 A system net SN (left), and an object net EN (right) 64

ix

7.3 A mobile agent’s environment . 66
7.4 A simple mail agent . 67
7.5 The composite mail system . 68
7.6 Reference net example . 70
7.7 Rule1 . 71
7.8 The hurried philosophers case of study 72
7.9 A philosopher . 73
7.10 A simple sequential recursive Petri nets 73
7.11 The reachability grapf of the system in Figure 7.10 74

8.1 The Nets hierarchy for the CRAB suite. 77
8.2 The CRABClient net. 78
8.3 The Task net. Only four jobs are considered in order to exemplify

the relation with the job net. 79
8.4 The Job net. 80
8.5 TaskRegister and SubmissionWorker nets respectively 81
8.6 The CRABServerWorker Net . 83

9.1 The airport agent drawn with the hypernet plugin of Renew . . 87
9.2 The plane agent drawn with the hypernet plugin of Renew . . . 87
9.3 A screenshot of the invariants computed inside Renew 88

x

Chapter 1

Introduction

Systems of mobile agents have attracted a lot of attention in the computing
community. They are systems composed of several open and autonomous com-
ponents, called agents, embedded in a local environment, called location, in a
hierarchical way. Each agent is open in the sense that it can interact with
the environment and modify its behavior depending on the past interactions.
Autonomy means that an agent is also able to make autonomous choices, and
to decide its own fate. On the other hand the environment interacts with the
agents by offering some services, and at the same time by restricting the be-
havior of these agents denying (or not providing) other services. An important
point of mobility is that there can be many locations and agents can move from
one location to another one. In many models for systems of mobile agents there
exists a unique environment, the one of the higher level at the hierarchy, which
contains all the other agents and environments.

The huge number of potential interactions and possible behaviors that the
components of a system of mobile agents can exhibit make them difficult to
understand and difficult to implement. Therefore, the designers of systems of
mobile agents often need a formal model of the system to better understand it.
The use of a formal model is also useful because it allows the use of automatic
techniques to verify the system.

A natural setting to model systems of mobile agents is to view them as a set
of autonomous entities working concurrently. In this perspective, models able
to handle concurrency seem a natural pick.

Several formal models of concurrent computation have been proposed so far.
Among the most widely used there are process algebras and Petri nets. The
former provide a tool for the high-level description of interactions, communi-
cations, and synchronizations between a collection of independent processes by
means of algebraic laws. Process descriptions can be manipulated and analyzed.
The latter are a mathematical tool with a graphical representation for describing
and studying information processing systems characterized as being concurrent,
asynchronous, distributed, nondeterministic.

Two of the first process algebras which introduced concepts for mobility are
π-calculus [44], and Ambient calculus [8]. Other approaches are, for example,
the kernel language for agent interactions and mobility (KLAIM, see [15]), and
Seal calculus [9]. π-calculus is a calculus of communicating systems in which
one can naturally express the mobility of processes. The component agents of

1

a system are arbitrarily linked, and the communication between neighbors may
carry information which changes that linkage. Ambient calculus identifies am-
bients as spheres of computation. They are properly nested and this determines
locality. Capabilities are provided for entering, leaving and dissolving ambients.
Movement across ambient boundaries can be subjective (the process in the am-
bient decides to employ the capability) or objective (the process outside the
ambient dictates the move). Seal calculus identifies seals as agents or mobile
computations. Here, seal boundaries are the main protection mechanism and
seal communication is restricted to a single level in the hierarchy. Mobility is
not under the control of a seal but of its parent, thus subjective moves of the
ambient calculus are not supported. Finally, in KLAIM mechanisms that permit
one to statically detect violations of security properties related to capabilities
and access control have been developed.

In all of these approaches the state of the system is a basic notions while in
Petri nets the global state is derived from their local counterparts. Moreover,
Petri nets are one of relatively few formalisms admitting the true concurrency
semantics, i.e., they can model concurrent execution of several actions directly,
in contrast to the interleaving semantics of concurrency, where such an execution
is modelled by a set of sequential runs, each of which is a permutation of these
actions.

Among Petri net approaches, particularly promising for modeling mobility
are the formalisms which use the nets-within-nets paradigm, which was intro-
duced by Valk [49], based on the former work on task-flow nets [48]. In for-
malisms compliant to this paradigm the tokens of a net can be Petri nets them-
selves. Three different semantics have been proposed for the nets-within-nets
paradigm: a reference semantics (where tokens in the system net are references
to common object nets), a value semantics (where tokens in the system net
are distinct object nets), and a history process semantics (where tokens in the
system net are object net processes) [50].

Taking this as a view point, it is possible to model hierarchical structures,
as systems of mobile agents. The environment at the higher level is modeled as
a Petri net, called system net. The locations contained in this environment are
modeled as places of the system net. The agents contained in the system net
locations are modeled as Petri nets again. An interaction between an agent and
its environment is modeled as a transition, as well as an action which moves an
agent from one location to another one. Without the viewpoint of nets as tokens,
the modeler would have to encode the agent differently, e.g. as a data-type. This
has the disadvantage that the inner actions cannot be modelled directly, so, they
have to be lifted to the system net, which seems quite unnatural. By using nets-
within-nets it is possible to investigate the concurrency of the system and of the
agent in one model without losing the abstraction needed.

Some nets-within-nets approaches for modeling system of mobile agents
which will be discussed in the thesis are nested nets [39], modular Petri nets
for mobility [38], and object nets for mobility [31, 32]. Moreover, in [32] the
reference semantics (as supported by the Renew tool) has been used to model
mobile agent systems. Nested nets and modular Petri nets for mobility use
value semantics. This is a natural choice since each agent is dipped in only
one environment in every moment. However, an interesting approach are object
nets for mobility, where a global namespace is considered. In this case the use
of the reference semantics makes sense because different environments can con-

2

currently access and modify an agent. One drawback of nested nets, and object
nets for mobility is that the hierarchy obtained by analyzing the containment
relation between agents is static. Agents can move from one location to another
one if they are in the same agent, but movements from locations belonging to
different environment are not possible. Modular Petri nets for mobility solve
this problem by using peculiar vacate/occupy transitions which clear/set the
marking contained in one location.

One of the main advantages of using formal methods to model concurrent
systems in general, and systems of mobile agents in particular, is that it is
possible to apply automatic analysis techniques to analyze the system. These
techniques can be divided into two categories: static techniques, and dynamic
techniques. The former are able to determine properties satisfied by the system,
by analyzing the structure of the net modeling the system. Place invariants,
transition invariants belong to this category. The latter methods explore every
reachable state of the system, and verify if certain specific properties of interest
are satisfied. The model checking technique belongs to this category.

Static methods are obviously faster than the dynamic counterpart, but they
also are more restrictive: it is possible to miss interesting properties. For exam-
ple, there exist nets which do not have any invariant. Dynamic techniques are
able to check a wider range of properties. For example, with model checking, a
property is specified using a suitable temporal logic, and it is checked if every
state of the system satisfies that property. If the property is not satisfied, a
counterexample is provided, something that is not possible with static meth-
ods. The drawback of using dynamic methods is that they need to explore the
whole state space, and concurrent systems suffer from the state space explosion
problem, i.e.: even small systems yield very large state spaces. To alleviate
this problem several proposals have been brought forward. They can roughly
be classified as aiming at an implicit compact representation of the full state
space of a system (e.g., in the form of a binary decision diagram, see [7]), or at
an explicit generation of its reduced representation (e.g., abstraction [12] and
partial order reduction [53] techniques). Among them, a prominent technique is
McMillan’s Petri net unfolding prefix generation [22, 43]. It relies on the partial
order view of concurrent computation, and represents system states implicitly,
using an acyclic net.

Unfortunately, sometimes the higher expressive power of a formalism comes
at a price: some behavioral properties which are decidable in the basic Petri net
model, become undecidable in high level formalisms. This is the case of some
nets-within-nets models used for modeling mobility. For example, in [33] it was
shown that boundedness is undecidable even for a class of object nets with a
nesting level depth of two, while in [40] it has been shown that boundedness
and reachability are undecidable properties for nested nets. Therefore, these
formalisms are inadequate if the designer of the system needs to perform some
kind of analyses which require these properties.

The main subject of this thesis is the hypernet model, which was introduced
in [2] as a nets-within-nets framework for modelling systems of mobile agents.
A hypernet is a collection of nets, called agents. Each agent is situated in some
location. Locations are places in other agents. This, determines a hierarchy of
agents. A peculiar characteristic of hypernet is that agents can exchange tokens
with their sub- or super-agents, and thereby change the hierarchy arisen from
the containment relation between agents. Modularity plays an important role in

3

the hypernet model: each agent is composed of modules of a certain sort which
are state machines and can communicate with other modules of the same sort
in other agents. Agents have a sort themselves, determining in which module
of other agents they can be located. Agents cannot be created, nor destroyed.

In the hypernet model the number of reachable states is finite, therefore
no decidability issues are present because it is always possible to generate the
whole reachability graph. In [3] it was shown the existence of a morphism from
hypernets to 1-safe Petri nets, which ensures that all the techniques available for
1-safe Petri nets are also available for the hypernet model. On the other hand,
the main drawback of the hypernet model is the presence of some constraints
in the definition that limit their expressive power for modelling purposes. For
example, it is not possible to associate a weight to an arc of a hypernet, and
the modularity subdivision is sometimes too strict.

The question of how to generalize the hypernet model without losing any of
its important properties (like the possibility to apply techniques available for 1-
safe nets, and other structural properties) is one of the main problems addressed
in this thesis. A generalization of the basic model is introduced under the name
generalized hypernets. Some structural constraints, like for example the fact
that modules are state machines, have been removed. As we will see by means
of examples, this gives the modeler a more flexible framework in which to use
the hypernet model. As it has been done for hypernets, it is proved that it is
possible to associate a 1-safe net to a generalized hypernet in such a way that
their behaviors are equivalent. As for basic hypernets, this result guarantees
that all properties which are applicable to 1-safe nets are also applicable to
generalized hypernets.

However, from a practical point of view the computation of the 1-safe net
is an expensive procedure. Therefore it is important to define techniques for
computing properties of a hypernet directly on the model, so that actually
building the 1-safe net is not needed. In particular, the problem of using the
unfolding technique directly on the hypernet model is faced in this thesis. The
concept of finite complete prefix of the unfolding of a generalized hypernet is
defined, and a theorem showing that all the reachable markings of the hypernet
are present as cuts in its corresponding prefix of the unfolding is proved. This
is an important result because it allows the use of all the dynamic analysis
techniques which require an unfolding as an input, like, for example, model
checking [20]

The thesis also covers two more concrete aspects. From an application point
of view it is discussed how the nets-within-nets paradigm has been used to model
a Grid tool for High Energy Physics data analysis. The interactions between
jobs which need to be executed on the Grid infrastructure, and the software
components of the tool were modeled explicitly and in a natural way using nets-
within-nets. Thanks to this, the developers of the system were able to find some
bugs in the implementation of the tool.

The last aspect discussed in the thesis is the implementation of a tool which
allows the use of hypernets to model and analyze systems. A plugin for a tool
based on the nets-within-nets paradigm (Renew) has been developed. The
main feature of this plugin is that it is able to convert the drawn hypernet
in the corresponding 1-safe net, and to use external tools to analyze it. In
particular features for computing place invariants, and CTL model checking are
available.

4

To summarize, the results of the thesis are: the definition of a new class
of hypernets, called generalized hypernets, more flexible than the original one;
the definition of a procedure to build a 1-safe net from a generalized hypernet,
in such a way that they have an equivalent behavior; the definition of the no-
tion of finite prefix of the unfolding for a generalized hypernet; the use of the
nets-within-nets paradigm to model a Grid tool for High Energy Physics data
analysis; the implementation of a tool for drawing and analyzing hypernets.

The thesis is organized as follow:
Chapter 2 recalls the basic notions concerning Petri nets and partial orders

which are needed in the thesis.
Chapter 3 discusses the basic hypernet model. The airport example is

discussed and the basic definitions are given.
Chapter 4 introduces the generalization of the basic hypernet model. It

is shown that the 1-safe nets semantics is preserved, as long as the tree-like
structure of the hierarchy arising from the containment relation between agents.

Chapter 5 discusses some examples in order to illustrates the generalized
hypernet model, and in which sense it is more flexible than basic hypernets.
First it discusses how it is possible to model the behavior of a bartender and a
client who go to a bar, and the behavior of a cell respiration process. Then it
shows how it is possible to model a class of P-Systems, a computational model
based upon the architecture of a biological cell.

Chapter 6 shows how it is possible to apply the unfolding technique to
the hypernet model. First, it introduces the concept of branching process of a
hypernet, both in an inductive and in an axiomatic way. Then, it shows that
the two definitions are equivalent. Finally, it discusses how to build a finite
prefix of the unfolding. The main result of the chapter is the proof of a theorem
which relates the configurations of the prefix and the reachable markings of the
hypernet.

Chapter 7 gives an overview of the main hierarchical Petri net models,
with particular attention to models which use the nets-within-nets paradigm
for modeling systems of mobile agents. A comparison with the hypernet model
is discussed.

Chapter 8 discusses how the nets-within-nets paradigm has been used to
model a tool for High Energy Physics data analysis named CRAB. A use case
of this tool has been modeled using Renew, and interactions between different
component of the system have been explicitly modeled as interactions between
nets in the hierarchy.

Chapter 9 is all about the implementation of a Renew hypernet plugin
which incorporates features for computing S-invariants, and features for model
checking a hypernet.

5

6

Chapter 2

Basic Notions

2.1 Petri Nets

Petri nets are a graphical and mathematical modeling tool applicable devised for
describing and studying information processing systems that are characterized
as being concurrent, asynchronous, distributed, parallel, and/or nondeterminis-
tic.

Petri nets is a generic name for a whole class of net-based models. Common
fundamental concepts that usually Petri net models respect are the following:
a system is seen as a collection of local states, local transitions (between local
states), and a relation between local states and local transitions which identify
the neighbors of an element. The global state of a system is the collection of all
local states that currently and concurrently hold. The result of a change caused
by a local transition is restricted to the neighborhood of that transition. In the
graphical representation of a Petri net places are drawn as circles, transitions are
drawn as boxes. The neighborhood relation is represented by drawing arrows
between places and transitions, and viceversa.

There can be distinguished in three classes of Petri nets. The firs class are
1-safe nets. A place here models a condition. If the condition holds, then a black
token is put inside the place corresponding to the the condition. Therefore the
presence of a token in a place represents the holding of the associated condition.
When a transition is executed (fires), some condition in its neighborhood are
disabled, and other conditions of the neighborhood are enabled. Place transition
nets (P/T nets), folds some repetitive features of 1safe nets in order to get a more
compact representation. Places no longer model conditions, but are more similar
to counter which are decreased/increased when a transition fires. Finally, in high
level nets formalisms more “compact nets” are obtained by structuring tokens,
and annotating arcs and transition. For example, in coloured Petri nets tokens
are data structures of a programming language, arcs are are annotated with
variables, and transitions are annotated with guards which must be satisfied
when the transition fires.

In this Section we recall basic definitions related to P/T nets and 1-safe nets.
A P/T net is a particular kind of directed graph, together with an initial state
called the initial marking. The underlying graph N of a P/T net is a directed,
weighted and bipartite graph consisting of two types of nodes: places and tran-

7

sitions. Arcs are either from a place to a transition, or from a transition to a
place, and represent the neighborhood relationship. As we already mentioned,
in the graphical representation of a Petri net places are drawn as circles, tran-
sitions are drawn as boxes, and arcs are drown as arrows from transitions to
places and viceversa. Each arc has a weight which is drawn as a number near
the arc if it is greater than one.

A marking (state), assigns to each place p a nonnegative integer k. We say
that p is marked with k tokens. Tokens are graphically represented by black
dots, and a marking is represented by a distribution of tokens in places. A
transition has a certain number of output and input places, which are places
connected to the transition by an arc, and places the transition is connected to
by an arc respectively. Tokens can be interpreted as resources, conditions or
signals. The formal definition of a P/T net is the following:

Definition 1. A net is a triple (P, T, F,W) such that P and T are disjoint
sets of places and transitions respectively, F ⊆ (P × T) ∪ (T × P) is the flow
relation, and W : F → N is the weight function. Transitions and places must
be two disjoint sets, i.e.: P ∩ T = ∅.

Since weight are associated to arcs, the flow relation can be treated as a
function F : (P ×T)∪ (T ×P)→ N, and weights can be omitted. The preset of
a node x ∈ P∪T , denoted •x, is the set containing the elements that immediately
procede x in the net, i.e.: •x = {y ∈ P ∪ T | (y, x) ∈ F}. In the same way the
postset of a node, denoted x•, can be defined. Given a set S ⊆ P ∪T , the notion
of preset/postset can be extended to S: S• = {y | x ∈ S, y ∈ x•}. A subnet of
a net (P, T, F) is a net (P ′, T ′, F ′) where P ′, T ′, are subsets of P , T , and F ′ is
the restriction of F to (P ′ × T ′) ∪ (T ′ × P ′). With F+, the transitive closure
of the relation F is denoted. A net system is a pair Σ = (N,M0) comprising a
finite net N = (P, T, F), and an initial marking M0, which is a function from
places to the set of the natural numbers, i.e.: M0 : P → N.

2.1.1 The Firing Rule

The behavior of many systems can be described in terms of system states and
their changes. In order to simulate the dynamic behavior of a system, a state or
marking in a Petri net is changed according to the following transition (firing)
rule:

• A transition t is said to be enabled if each input place p of t has at least
F (p, t) tokens.

• An enabled transition may or may not fire (depending on whether or not
the event actually takes place)

• A firing of an enabled transition t removes F (p, t) tokens from each input
place p of t, and adds F (t, p) tokens to each output place p of t.

The marking M0 of the net is updated to the marking M1 using the firing
rule: M ′(p) = M(p)− F (p, t) + F (t, p). We denote this by M [t〉M ′

Figure 2.1 illustrates a Petri net before and after the firing of a transition.
The left image shows the marking before firing the transition. The right image
shows the marking reached after firing t

8

Figure 2.1: An illustration of the firing rule of a Petri net

After modeling a system with a Petri net an interesting question is “What
can we do with the model?”. A major strength of Petri nets is their support for
analysis of many properties and problems associated with concurrent systems.
Typical problems considered in Petri nets are:

• Reachability : given a marking M is there a sequence of transitions that
transform the initial marking M0 to M?

• Boundedness: is there a natural number k such that the number of tokens
in places of the net does not exceed k in any marking reachable from the
initial marking?

• Liveness: are all the transitions of the net firable from any reachable
marking?

The definition of 1-safe nets can be seen as a particular case of the definition
of P/T nets where all the arcs have a weight of 1, and there is at most one
token in each place in every reachable marking. Even though P/T nets and
1-safe nets have similar graphical and mathematical representations are rather
different; for instance, finite P/T nets can have an infinite state space, but finite
1-safe nets cannot.

2.2 Partially Ordered Sets

A partially ordered set (or poset) consists of a set together with a binary re-
lation that indicates that, for certain pairs of elements in the set, one of the
elements precedes the other. Thus, partial orders generalize the more familiar
total orders, in which every pair is related.

A partial order is a binary relation ≤ over a set A which is reflexive, anti-
symmetric, and transitive, i.e.: for all a, b, and c ∈ A:

• a ≤ a (reflexivity)

• if a ≤ b, and b ≤ a then a = b (antisymmetry)

• if a ≤ b, and b ≤ c then a = c (transitivity)

Let (A,�) a partially ordered set. We call (A,�) a well founded set if
and only if every non empty subset of A contains at least one minimal element
m with respect to the order relation �. This notion will be used in Chapter 6.

9

An infinite descending chain S in a partially ordered set (A,�) is a
totally ordered subset of A without minimal element.

The principle of induction over partially ordered set, called Noetherian In-
duction, will also be used in Chapter 6. The following Proposition and the
following Theorem are taken from [13].

Proposition 1. Let (A,�) a partially ordered set. Then the following two
statements are equivalent:

1. (A,�) is a well founded set.

2. There does not exist an infinite descending chain in A.

Theorem 1. (The principle of Noetherian induction). Let (A,�) a well founded
set. To prove that a property P (x) is true for all elements x in A it is sufficient
to prove the following two properties:

1. Induction basis: P (x) is true for all minimal elements of A.

2. Induction step: For each non-minimal x in A, if P (y) is true for all
y � x, then P (x) is true.

10

Chapter 3

Basic Hypernets

3.1 Informal Introduction

Petri hypernets have been introduced in [2] as a model specifically designed to
cope with systems of mobile agents using the nets-within-nets paradigm. A
hypernet is a collection of nets (called agents), together with an assignment
of mobile agents as tokens to places of other mobile agents (called hypermark-
ing). One peculiar characteristic of the formalism is that it allows a hierarchi-
cal and modular description of reality: there is a natural hierarchy of agents
that corresponds to the assumption that any mobile agent should be higher in
the hierarchy than any of the tokens it manipulates, and each open agent is a
synchronous composition of modules, each one responsible for manipulation of
mobile objects traveling along a fixed channel. Another peculiar characteristic
of hypernet is that the hierarchy of nets is dynamic, and can change during the
dynamic evolution of the system.

As a simple example, consider an airport where plane can refuel, land, and
take off and passengers can board, and deplane. In our model, the airport, the
passengers, and the planes are represented by agents of a hypernet.

The agent in Figure 3.2 models the behavior of the airport. It has three
modules, one for handling passengers, one for handling planes and one for syn-
chronization purposes. Transition board belongs to both module passenger and
module plane, and can only be executed synchronously. The same applies for
transitions deplane and to rf. The dashed half circles are communication places.
They can either be up-communication places, used for communicating with the
net at the level immediately above in the hierarchy (such as the two communi-
cating places of the module plane in the airport agent), or down-communication
places, used to communicate with an agent located in another module of the
current net (such as the communication places in the synch and passenger mod-
ules of the airport). In the latter case, the name of a module is provided. In
this module there must be an agent ready to provide the traveling token which
will be moved in the hierarchy, otherwise the transition is not enabled.

For example, transition deplane of the passenger module in Figure 3.2 has an
input communication place which indicates that a token is expected. Since this
communication place is marked with the plane annotation, the traveling token
which is being moved to place l must be provided by a plane agent. This plane

11

Figure 3.1: The plane agent

agent must be located in the input place of transition deplane in module plane
of the airport, namely lg. In the example the only agent which can provide a
token is P1.

Several works about Petri hypernets have been developed in the literature.
A central result shows the existence of a morphism from hypernet to 1-safe Petri
nets [3]. This translation not only shows that hypernets are well rooted inside
the theory of Petri nets, it also allows us to reinterpret all the properties of the
model one can derive on the 1-safe net by means of the technique developed in
the literature for this basic net model on hypernets. Another result concerns the
definition of a class of transition systems, denominated Agent Aware Transition
Systems, defined in order to describe the behavior of hypernets (see [1]). In [4]
a logical language for reasoning about systems representable with Petri hyper-
nets were proposed. The language combines two families of modal operators:
one family to cope with the temporal, the other to deal with the spatial (or
structural) dimension. The problem of model checking properties of a class of
the logic on Petri hypernets is shown to be PSPACE-complete.

3.2 Formal Definition

In this Section the formal definition of a hypernet is given. All the definitions
are taken from [3].

3.2.1 The Static Structure of a Hypernet

A hypernet is a set of agents. Each agent is composed of modules. Each agent
and to each module have a sort which determines which agents can be contained
in places of a specific module.

12

Figure 3.2: The airport agent

Definition 2. Let Σ be a finite set of sorts. A module of sort α (α-module) is
a finite Petri net N = (PN ∪ IN ∪ ON , TN , FN), where PN is the set of places
of the module, IN ⊆ {?} ∪ {?β | β ∈ Σ, β 6= α}, ON ⊆ {!} ∪ {!β | β ∈ Σ, β 6= α}
are the set of virtual communication places (input and output respectively), TN

is the set of transitions and FN ⊆ ((PN ∪ IN)× TN)∪ (TN × (PN ∪ON)) is the
flow relation. It is assumed that PN ∩ IN = ∅ ∧ PN ∩ ON = ∅, and moreover
|•t| = 1 = |t•|.

Definition 3. A (Mobile) Agent is a set A of indexed modules, A = {Nα | α ∈
Σ}, where Nα is an α-module, Pα

A ∩ Pκ
A = ∅ when α 6= κ, and the following

consistency conditions are satisfied:

Fα
A(?β, t)⇒ ∃ p ∈ P β

A | F
β
A(p, t) (3.1)

Fα
A(t, !β)⇒ ∃ p ∈ P β

A | F
β
A(t, p) (3.2)

where Pα
A ,Tα

A ,Fα
A respectively denotes places, transitions, and flux relation

of the α-module of A.
If an agent is empty, then it will be a non structured token like in a standard

Petri net. Communication ports ? and ! are used to communicate with the
agent situated one level above in the hierarchy (master). In the form ?β and !β
they indicate the necessity to communicate with a β-agent one level down in the

13

hierarchy (slave). The two forms are complementary, an agent can communicate
with his master only if his master is ready to communicate with a slave of that
sort, and viceversa. This idea is captured by the notion of consortium.

By convention, Fα
A(?β, t) and Fα

A(t, ?β) will be drawn as half dashed circles
with the β sort inscribed inside the half circle, connected with an arc to the
transition t in the α module of agent A.

For example, the consistency conditions (3.1) and (3.2) guarantee that if

such a link between modules α and β exists, then preβA(t) or postβA(t) will be

local places (not communication ports), where preβA(t) and postβA(t) denotes
the input and the output places of transition t in the module β. This places
are unique because of the state machine constraint for modules. They can be
communication ports.

Figure 3.3 shows how the links described by the consistency conditions ap-
pear.

β-channel t

tα-channel

(a)

β-channel t

tα-channel

(b)

Figure 3.3: Consistency conditions

Definition 4. A hypernet is a finite family of agents N = (Ai)i∈I , each with
one sort, i.e.: a function σ : N → Σ which assign to each agent its sort.

We assume agents in N have disjoint sets of local places. With PA=̂
⋃
{Pα

A |
α ∈ Σ} and TA=̂

⋃
{Tα

A | α ∈ Σ} we denote the local places and the transitions
of a particular agent A ∈ N .

With the symbol PN =̂
⋃
{PA | A ∈ N} we denote the set of all places of an

hypernet, and with TN =̂
⋃
{TA | A ∈ N} we denote the set of all transition of

an hypernet. Each local place has one sort: σ(p) = α where α is the only sort
of place p..

3.2.2 The Dynamic of a Hypernet

It is necessary to explain what a hypernet transition is. An agent A can execute
a specific transition t only if each of its modules is ready to execute it. An intra
module synchronization is assumed.

Let us focus on an α-module. If all input and output places of t in the
module α are local, the in order to execute t it is sufficient a token in preαA(t).
This token is moved in postαA(t).

If communication placed are involved, a group of agents (called consortium)
can cooperate to execute the transition t. It is necessary to establish an inter
agent synchronization.

14

In particular, there is an α-flow from an agent A to an agent A′, i.e., A.αA
′,

when an agent A is ready to send an agent of sort α from its α-module, to the
α-module of the agent A′. To create an α-flow the two agents must be adjacent,
one of the two must be a token of the other one. Moreover, if one of the two
agents is ready to send/receive a token, the other must be ready to receive/send
a token. Figure 3.4 shows this concept. In both cases there is an α-flow from
A to A′ (A .α A′).

β-channel t

t

tα-channel

A’

A

(a)

t

t

t

β-channel

α-channel

A

A’

(b)

Figure 3.4: Example of creation of an alpha-flow from A to A′ (A . A′)

We now formally define the notion of consortium. Consider a triple Γ =
(t, τ, ξ), where t ∈ TN is a transition, τ ⊆ {A ∈ N | t ∈ TA} is a set of active
agents and ξ : In(Γ)→ N is an injective function which associates active agents
(token) to input places of the instances of t in τ . The definition of these places
is: In(Γ)=̂PN ∩

⋃
α∈Σ{preαA(t) | A ∈ τ}; in the same way it is possible to define

output places Out(Γ).
Consider two agents A,A′ ∈ τ . As explained by Figure 3.4 there is an α-flow

from A to A′ (A .α A′) if one of the two following conditions are satisfied:

postαA(t) =! ∧ ξ(preβA′(t)) = A ∧ preαA′(t) =?β (3.3)

postαA(t) =!β ∧ ξ(preβA(t)) = A′ ∧ preαA′(t) =? (3.4)

The set of passive agents is τξ = {ξ(p) | p ∈ In(Γ)}. Define ↑: τξ → τ =
A′ ↑= A ⇐⇒ ξ(p) = A′ for some p ∈ PA,. It is now possible to define the
notion of consortium:

Definition 5. A triple Γ defined as above is a consortium if the following con-
ditions hold:

1. τ 6= ∅.

2. A ∈ τ ∧ Fα
A(?, t)⇒ A ∈ τξ ∧A ↑ .αA.

3. A ∈ τ ∧ Fα
A(t, !)⇒ A ∈ τξ ∧A .α A ↑.

4. A ∈ τ ∧ Fα
A(?β, t)⇒ ξ(p) ∈ τ ∧ ξ(p) .α A, where p = preβA(t).

5. A ∈ τ ∧ Fα
A(t, !β)⇒ ξ(p) ∈ τ ∧A .α ξ(p), where p = preβA(t).

15

6. The undirected graph (τ,
⋃

α∈Σ .α) is connected.

The state of a hypernet is a partial function µ : N → PN which preserves
sorts. A consortium Γ is enabled in a hypermarking µ (i.e.: µ|Γ〉) if ∀p ∈
In(Γ)⇒ µ(ξ(p)) = p.

A consortium Γ enabled in µ can be fired leading to a new hypermarking µ′

defined as:

µ′(A) =

{
µ(A) se A /∈ τξ;
trg(µ(A)) se A ∈ τξ

In particular, the new assignment of open nets as tokens which results from
the consortium execution, is a well founded hypermarking: it preserves the tree
like structure of the hypermarking [3].

16

Chapter 4

Generalized Hypernets

Basic hypernets have some constraints that limit their expressive power for mod-
elling purposes. For example, it is not possible to associate a weight to an arc
of a hypernet, and the modularity subdivision is sometimes too strict. In this
section, a generalization of the basic model which relaxes these constraints is
defined under the name of generalized hypernets. As it will be shown, the 1-safe
nets semantics is preserved, as long as the tree-like structure of the hierarchy
arising from the containment relation between agents. The state machine mod-
ule structure constraint is replaced with the local notion of paths (defined in
Section 4.1.1), which are themselves of a certain sort. The need of a general-
ization of the hypernet model arose in [5], when it was not possible to model
with basic hypernets a class of membrane systems, computational models based
upon the architecture of a biological cell.

4.1 Concepts

As for basic hypernets, the term agent is used to denote a component of a con-
current system, and it is not related to the concept of agent in other disciplines
such as Artificial Intelligence. Each agent is represented by an open net, that is
a Petri net enriched with particular places for managing the communication of
tokens between agents. The characteristic that each agent is located in another
agent is reflected in the model by the fact that each net but one is a token of
another open net. The only exception is an agent A which contains, directly or
indirectly, all other agents.

4.1.1 Paths

As it has already benn mentioned when the basic model of hypernets has been
introduced, the first difference between a hypernet and a Petri net is that tokens
can be nets and have an identity. Indeed, there is a distinction between struc-
tured tokens and simple tokens: simple tokens are very similar to black tokens in
Petri nets, while structured tokens have an internal state represented by a Petri
net. Structured tokens can either change their state by means of internal au-
tonomous transitions, or by means of interactions with other structured tokens.
These interactions can be enabled or disabled depending on the internal state

17

of the structured tokens and are performed using a token exchange mechanism
between structured tokens.

In Petri nets there is no distinction between tokens because a state is repre-
sented by a function which assigns the number of tokens to each place. There-
fore, each token is identical to others, but in hypernets this is not necessarily
true because of the structure and the internal state of tokens. Thus, the way
tokens are manipulated in hypernets must be different. In the basic Petri net
model it is not necessary to distinguish between each single token. However,
since hypernet tokens are structured and have their own internal state, firing a
simple transition that takes a token from a place p putting it in another place
could produce different results if there are several tokens in p: moving a token
instead of another one could change the future behavior of the entire hypernet
because certain future interactions could be enabled or not, depending on the
internal state of the moved token. A mechanism to select which tokens will be
moved when a transition is fired is needed.

Another issue that must be taken into account is in which place a token must
be placed after the execution of a transition that has more than one output
place. Indeed, the way tokens are moved from input places to output places
is also important and could produce different results. Looking at Figure 4.1 it
is possible to notice that again the usual Petri nets firing rule is not sufficient
because it does not contain informations about token identity. The two tokens
in the place p1 could be both moved to place p3 (Figure 4.1(b)), or could be
separated and moved one to p3 and one to p4 (Figure 4.1(c)).

(a) (b) (c)

Figure 4.1: Paths are used in the firing rule of the generalize hypernet model

To take into account these two problems paths are introduced. A path is
a triple place-transition-place that is used to uniquely identify which tokens
will perform a transition (together with the γ function in the Definition 11)
and where each token will be placed after a transition is fired. In each of
the two Figures 4.1(b) and 4.1(c) there are three paths: two paths that in-
sist on (p1, t, p3) and one that insists on (p2, t, p4) in Figure 4.1(b), and paths
(p1, t, p3), (p1, t, p4), (p2, t, p3) are present in Figure 4.1(c). p1 and p2 are called
input places of the path, whereas p3 and p4 are called output places of the path.
As it will be clearer later when the graphical notation is introduced in example
4.4, the same effect of paths can be obtained in high level nets using annotation
on arcs: it is enough to connect the input place of the path to the transition
with an arc annotated g, and to connect the transition to the output place of
the path with an arc annotated with the same label g.

Basic hypernets solve these problems by means of synchronized state ma-
chine. Each agent is made of a set of state machines that cooperate in per-
forming a transition. Since each transition in a state machine has exactly one
input place and one output place, then it is possible to identify which struc-

18

tured token is moved and the place where it will be placed after the execution
of the transition. However, such state machines decomposition is too strict for
some application contexts, for instance, because of the needs of weighted arcs.
For example, in [5] transformation rules that take any quantity of molecules of
several types and put them out of a membrane were modeled. These kinds of
rules are easy modeled if the formalism allows the use of weighted arcs, whereas
with synchronized state machines the model is more constrained.

4.1.2 Virtual Places

Each agent of a hypernet is located in another agent, with the exception of one
special agent that is considered as an environment. Thus, there is a containment
relation between nets that can be represented as a graph. This graph as it will
be demonstrated in Theorem 2, is always a tree. Virtual places are introduced
to manage the passage of tokens between close agents. Two tokens are close
when one is located in a place of the other or vice-versa. A virtual place acts as
a communication link between structured tokens and is graphically represented
with a triangle inscribed in a circle. Consider an example in which a system
with a structured token A that sends a simple token to a structured token B
is modeled. The simple token can be sent up if token A is located in one place
of token B 4.2(a), or down if token B is located in a place of token A 4.2(b).
Thus, two kinds of virtual places are used: the one with the triangle’s base on
the bottom is used for down to up passage of token, while the one with the
triangle’s base on the top is used for up to down passage.

(a) (b)

Figure 4.2: Virtual up places, and virtual down places

4.2 Formal Definition

4.2.1 Static Structure

Definition 6. An agent is a tuple Ai = (Pi, Ti, Gi, φi), where:

• Pi = Li∪Vi is the set of local places Li and virtual places Vi (or communi-
cation places), with Li∩Vi = ∅; an agent can send tokens in two directions:
up or down, so it is possible to distinguish the two kinds of virtual places
V Up
i and V Down

i such that Vi = V Up
i ∪ V Down

i with V Up
i ∩ V Down

i = ∅

19

• Ti is the set of transitions with Ti ∩ Pi = ∅;

• Gi is the set of paths;

• φi : Gi → Pi × Ti × Pi is the path map that associates a triple place-
transition-place to each path in such a way that at least one of the two
places in the triple is local: φi(g) = (p, t, q)⇒ ¬(p ∈ Vi ∧ q ∈ Vi).

Example 1. In figure 4.3 a simple agent with two transitions, three local places
and two virtual places is depicted. Unfortunately, if the graphical representation
of the agent is done in a classical Petri nets style, there is no way to know which
paths constitute the agent.

Figure 4.3: A simple agent A1

Thus, each input arc and each output arc of a transition is labelled with a
set of label in such a way that the labels of input arcs are pairwise disjoint and
the union of the labels of the input arcs is equal to the union of the labels of
the output arcs. If a transition has only one input arc and one output arc then
labels are not depicted. In figure 4.4 all possible path combinations of figure 4.3
are represented with this graphical notation. There is only one net without a
path where both input and ouput places that are virtual. This is the only net
that is an agent according to Definition 6.

Given a path g ∈ Gi, by •g the input place of path g is denoted, ie: p ∈ Pi :
φi(g) = (p, t, q) with t and q free. In the same way the output place of the path
is defined: g• = q ∈ Pi : φi(g) = (p, t, q) with t and p free. Notice that each
path has only one input place and one output place. Therefore, this notation is
slighty different from the one used from classical Petri nets because it returns a
single place instead of a set of places.

Given a set of agents X = {A1, A2, ..., An}, the following notation is used:

PX =
⋃

Ai∈X

Pi, LX =
⋃

Ai∈X

Li, VX =
⋃

Ai∈X

Vi, TX =
⋃

Ai∈X

Ti,

In a similar way V Up
X and V Down

X are defined.

Definition 7. Let N = {A1, A2, . . . , An} be a family of (possibly empty) agents,
Σ a finite set of sorts, and Λ a finite set of transition labels.

A hypernet is a tuple H = (N , σN , σG, λ) , where

20

Figure 4.4: Notation used to represent possible paths of net in figure 4.3

• The agents in N have disjoint sets of places, paths, and transitions, i.e.:
∀Ai, Aj ∈ N , i 6= j =⇒ (Pi ∪ Ti) ∩ (Pj ∪ Tj);

• σN : N → 2Σ is a function that describes the sorts of each agent;

• σG : GN → Σ is a function that assigns a sort to each path;

• λ : TN → Λ is a function that assigns to each transition a label.

Example 2. Let A1 be the agent shown in figure 4.5(a), A2 the agent shown
in figure 4.5(b), A3 the agent shown in figure 4.5(c), and A4 and A5 two empty
agents. Let N = {A1, A2, A3, A4, A5} be a set of agents, GN be the set con-
taining all the paths of the agents in N , Σ = {α} be the set containing the
only sort α, and Λ = {l,m} be a set of labels. Moreover, let σN : N → 2Σ

be a function that assigns to each element of the domain the element {α},
let σG : GN → Σ be a function which assigns to each path the sort α, and
λ〈t11, t12, t21, t22, t31, t32〉 = 〈l,m, l, l, l, l〉 be a function that assigns to each tran-
sition the label l with the exception of transition t12.

The tuple H = (N , σN , σG, λ) is a hypernet.

Definition 8. Let N = {A1, A2, . . . , An} be a family of agents. A map M :
{A2, . . . , An} −→ LN , assigning to each agent different from A1 the local place
where it is located, is a hypermarking of N iff, considering the relation ↑M⊆
N × N defined by : Ai ↑M Aj ⇔ M(Ai) ∈ Lj, then the marking graph (i.e.:
〈N , ↑M〉) is a tree with root A1 (the choice of A1 is by convention)

Definition 9. A marked hypernet is a pair (H,M) where H is a hypernet and
M is a hypermarking defining the initial configuration.

21

(a) Agent A1 (b) Agent A2 (c) Agent A3

Figure 4.5: A set of agents that together form an hypernet

Example 3. Consider the hypernet of Example 2. Three of the possible maps
from the agents to the local places of that hypernet are the following:

M1〈A2, A3, A4, A5〉 = 〈p11, p21, p31, p32〉
M2〈A2, A3, A4, A5〉 = 〈p11, p23, p31, p24〉
M3〈A2, A3, A4, A5〉 = 〈p11, p31, p31, p32〉

The three graphs in figure 4.6 correspond to the marking graphs 〈N , ↑M1〉 ,
〈N , ↑M2〉 , 〈N , ↑M3〉 respectively.

Figure 4.6: Possible marking graphs of the hypernet of Example 2

Since the latter marking graph is not a tree with root A1 only the two pairs
(H,M1), (H,M2) are marked hypernets.

4.2.2 Behavior

In order to discuss the dynamics of a hypernet, it is convenient to identify some
sets of paths which will be used in the formal definitions.

22

GLocal = {g ∈ GN : φN (g) = (p, t, q) ∧ p ∈ LN ∧ q ∈ LN }
GOut = {g ∈ GN : φN (g) = (p, t, v) ∧ v ∈ VN ∧ p ∈ LN }
GIn = {g ∈ GN : φN (g) = (v, t, p) ∧ v ∈ VN ∧ p ∈ LN }

GUp = {g ∈ GN : φN (g) = (p, t, q) ∧ (p ∈ V Up
N ∨ q ∈ V Up

N)}
GDown = {g ∈ GN : φN (g) = (p, t, q) ∧ (p ∈ V Down

N ∨ q ∈ V Down
N)}

Gt = {g ∈ GN : φN (g) = (p, t, q)}

Notice that in the first five definitions t is free, and in the last one t is fixed.
Let H = (N , σN , σG, λ) , with N = {A1, A2, . . . , An}, be a hypernet.
A consortium is a set of interconnected active agents, cooperating in per-

forming a set of transitions with the same label l, and moving other passive
agents along the paths containing those transitions.

A notion of consistency between paths is introduced with the aim of iden-
tifying pairs of paths belonging to different agents, that could be associated to
exchange tokens. Two virtual paths are consistent if they have the same sort
and the same direction (the virtual places of the paths are both up or down
places). As it can be seen in the formal definition this notion is not a symmetric
relation because the first path belongs to the agent which sends the token and
the second path belongs to the agent which receives the token.

Definition 10. Two paths gi ∈ Gi and gj ∈ Gj are consistent (denoted by
cons(gi, gj)) if:

• i 6= j

• σG(gi) = σG(gj)

• (gi ∈ GUp ∩ GOut ∧ gj ∈ GUp ∩ GIn) ∨ (gi ∈ GDown ∩ GOut ∧ gj ∈
GDown ∩GIn)

∧ ∧ ()

Notice that the nature of the virtual places (up or down) of the two paths
involved in the token exchanging reflects the direction taken by the token.

Example 4. In figure 4.7 all the possible combinations of paths and the corre-
sponding values of the cons predicate are shown. It is supposed that all paths
have the same sort. If not, they are not consistent.

Definition 11. A consortium is a tuple Γ = (l, τ,PASS, δ, γ) where:

1. l ∈ Λ is the name of the consortium,

2. τ = {t0, ..., tm} is the set of transitions that will be fired. They must belong
to different agents and must have the same label, i.e.: ∀ti, tj ∈ τ , i 6= j ⇒
(ti ∈ Tz ⇒ tj /∈ Tz) ∧ λ(ti) = λ(tj) = l. With Gτ =

⋃
tk∈τ G

tk the set of
paths involved in the consortium (i.e.: paths that contain transitions that
are in τ) is denoted

23

Figure 4.7: Possible combinations of paths and their consistency

3. PASS ⊆ N is the set of passive agents

4. δ : GOut ∩Gτ → GIn ∩Gτ is a bijective correspondence such that: δ(g) =
g′ ⇒ cons (g, g′)

5. γ : PASS −→ Gτ\GIn is a bijective correspondence such that: γ(A) =
g ⇒ σG(g) ∈ σN (A)

6. Agents that receive tokens must not move in the hierarchy, i.e.: ∀Ai ∈
PASS : ∃g ∈ Gi ∩GIn ∩Gτ ⇒ γ(Ai) /∈ GOut

7. If an agent A1 sends a token to another agent A2 then either the contained
agent is a passive agent or the outer agent has no local paths containing the
transition which is being fired (see figure 4.8). Let g1 = (p1, t1, v1) ∈ A1

and g2 = (v2, t2, p2) ∈ A2 then

δ(g1) = g2 ∧ g1 ∈ GUp =⇒ A1 ∈ PASS ∨ (Gt2 ∩GLocal = ∅)
δ(g1) = g2 ∧ g1 ∈ GDown =⇒ A2 ∈ PASS ∨ (Gt1 ∩GLocal = ∅)

8. the set of active agents is a minimal one, in the sense that they must be
interconnected through the interaction l, i.e.:

the undirected graph G = (τ, E) is connected,

where E = {(ti, tj) : ti ∈ Ai, tj ∈ Aj ∧ ∃ g ∈ Gti : δ(g) ∈ Gtj}

24

Figure 4.8: If the path g exists then the inner agent must be passive agents

Example 5. In the hypernet described in Example 2 with the markingM1 there
are four consortia associated to the label l, namely:

Γ1 = (l, {t21, t31}, {A4}, δ〈g21〉 = 〈g31〉, γ〈A3, A4, A5〉 = 〈g22, g31, g32〉)
Γ2 = (l, {t21, t32}, {A5}, δ〈g21〉 = 〈g32〉, γ〈A3, A4, A5〉 = 〈g22, g31, g32〉)
Γ3 = (l, {t22, t31}, {A4}, δ〈g24〉 = 〈g31〉, γ〈A3, A4, A5〉 = 〈g22, g31, g32〉)
Γ4 = (l, {t22, t32}, {A5}, δ〈g24〉 = 〈g32〉, γ〈A3, A4, A5〉 = 〈g22, g31, g32〉)

The set of all consortia of a hypernet H is denoted by CONS(H).

Definition 12. Let H = (N , σN , σG, λ) be a hypernet andM be a hypermark-
ing.

A consortium Γ = (l, τ,PASS, δ, γ) is enabled in M, denoted M[Γ〉, iff the
following three conditions hold

∀A ∈ PASS, •γ(A) = p ⇒ M(A) = p (4.1)

∀g ∈ Gi ∩GUp : δ(g) ∈ Gj , Ai /∈ PASS⇒ Ai ↑M Aj (4.2)

∀g ∈ Gj ∩GDown : δ(g) ∈ Gj , Ai /∈ PASS⇒ Ai ↑M Aj (4.3)

where ↑M was defined in Definition 8.

Definition 13. IfM[Γ〉, then the occurrence of Γ leads to the new hypermark-
ingM′, denotedM[Γ〉M′, such that ∀A ∈ N :

M′(A) =


M(A) if A /∈ PASS

q if γ(A) ∈ GOut and (δ(γ(A)))• = q,

q′ if γ(A) /∈ GOut and γ(A)• = q′

Definition 14. Given a marked hypernet (H,M), a hypermarkingMn is reach-
able iff ∃Γ1,Γ2, ... ,Γn ∈ CONS(H) :M0[Γ1〉M1[Γ2〉M2, ... ,Mn−1 [Γn〉 Mn

25

4.3 Preservation of the Tree-Like Structure of
the Hypermarking

When a consortium is fired it modifies the marking graph, the graph induced by
the containment relation between agents (Definition 8). The initial containment
relation between agents forms a tree (i.e., 〈N , ↑M〉 is a tree); is the containment
relation between agents a tree in all possible subsequent configurations of the
hypernet? The aim of this section is to prove that firing a consortium preserves
the tree structure of a hypermarking.

This proof is not trivial because a consortium could correspond in several
simultaneous movements of agents. Thus, some preliminary notions on tree
must be introduced. The first one is a notion of tree which has been adapted
for the purposes of this paper from standard definitions in the graph theory
(which can be found in [16] for instance).

Definition 15. A tree is a pair A = (V , p) where V is the set of verteces of the
tree and p : V \v0 → V is the father function that associates the father to each
vertex with the exception of the root of the tree which is v0. p must satisfies the
following property:

∀v ∈ V \v0 ∃k such that pk(v) = v0 with v0 ∈ V (4.4)

Notice that a tree A = (V , p) can be transformed in a graph G = (V ,E)
with the same set of vertices V and a set of arcs E = {(v, v′) : p(v) = v′}. It is
easy to prove that any two vertices are linked by a unique path in G, which is
equivalent to say that G is a tree as in theorem 1.5.1 of [16].

As in graph theory, the height of a tree is the length of the longest path from
a leaf to the root.

Definition 16. The height of a tree A = (V , p) is the minimum number h such
that ∀v ∈ V : p(v)k = v0 ⇒ k ≤ h

The following definitions introduces the concept of move, distinct set of
moves, and application of a distinct set of moves to a tree. These concepts
are used to represent the changes made by a consortium to the graph induced
by the containment relation between agents. In particular, these changes can
be represented by the application of a distinct set of moves which are one-level
and non-cascading, as it is shown later in this chapter.

Definition 17. Let A = (V , p) be a tree. An A -move m is a pair (v , v′) such
that v ∈ V \v0 and v′ ∈ V . v is called the pivot of the move.

Figure 4.9: A move with pivot v

A move (v , v′) represents the atomic unit of transformation of a tree. It
simply changes the father of the pivot node v from a generic node x to v′ (see

26

figure 4.9), like a consortium can move an agent in such a way that its father
change (i.e.: the place in which it is marked belongs to another distinct agent
after executing the consortium). However, the effect of a consortium to the
marking graph is not represented by a single move, but by a set of moves which
have distinct pivots. Thus, sets of distinct moves are defined:

Definition 18. A set of A -moves M = {(v0 , v′0), (v1 , v′1), ...,
(vn , v′n)} is called distinct iff the moves have pairwise different pivots, i.e.:
v0 6= v1 6= ... 6= vn. With PV T (M) = {v0, v1, ..., vn} the pivot set of the distinct
set of moves M is denoted.

A set of distinct moves can be applied to a tree. They transform the tree
moving some of the edges that connect a vertex to its predecessor in the path
toward the root.

Definition 19. The application of a set of distinct A -moves M = {(v0 , v′0),
(v1 , v′1), ..., (vn , v′n)} to the tree A = (V , p) is a graph G = (V, p′), i.e.:
M(A) = G, such that:

p′(v) =

{
v′ if (v, v′) ∈M,

p(v) if v /∈ PV T (M),

The application of a set of distinct moves to a tree may not be a tree anymore.
For example, the application of the distinct set of moves M = {(5, 6), (3, 5)} to
the tree in figure 4.10(a) produces a graph that is not a tree anymore (see figure
4.10(b)).

(a) A tree on which moves
M = {(5, 6), (3, 5)} is being
applied

(b) The graph is not a tree
anymore

Figure 4.10: Example of moves application

The next step is to recognize the type of moves a consortium results in, and
to prove a theorem that says that the application of such moves preserves the
tree structure of a graph. In particular, an agent can only move one level per
consortium, and the receiving agent must not move in the hierarchy.

Definition 20. A set of distinct A -moves M = {(v0 , v′0), (v1 , v′1), ...,
(vn , v′n)} is one-level iff ∀vi ∈ {v0, v1, ..., vn}, (p2(vi) = v′i) ∨ (p(vi) = p(v′i))

A one level move changes the father of the pivot v either to the grand-father
of v or to a sibling of v. Moves depicted in figure 4.10 are not 1-level, whereas
the moves {(9, 8), (6, 1)} are 1-level.

27

Definition 21. A set of distinct A -moves M = {(v0 , v′0), (v1 , v′1), ...,
(vn , v′n)} is non cascading iff {v0, v1, ..., vn} ∩ {v′0, v′1, ..., v′n} = ∅

A set of moves M is not cascading if the new father of each pivot is not a
pivot itself in M .

Definition 22. Let A = (V , p) be a tree and let M = {(v0 , v′0), (v1 , v′1), ...,
(vn , v′n)} be a set of moves. M[k,k′] = {(vi, v′i) ∈M : pj(vi) = v0 ∧ k ≤ j ≤ k′}
denotes the moves whose pivot vi is at depth j : k ≤ j ≤ k′. If k = k′ notation
Mk is used instead of M[k,k′].

Finally, the following theorem can be proved:

Theorem 2. Let A = (V , p) be a tree of height h, and let M = {(v0 , v′0),
(v1 , v′1), ..., (vn , v′n)} be a set of distinct, non-cascading, one-level A -
moves.

M(A) = M[0,h](A) is a tree (4.5)

Proof. The proof is by induction on the height of the tree starting from the
bottom.
BASE CASE: M[h,h](A) is a tree.
M[h,h] are the moves whose pivots are the leaves of the tree. Since all the
moves are one-level, applying these kind of moves to the tree means that, after
the move, each leaf in PV T (M[h,h]) will be either connected to its grandfather
or to another leaf, a sibling. In the former case the tree structure is obviously
preserved; in the latter case the non-cascading property of the moves guarantees
that the path that connects the new father of each pivot to the root does not
change after the application of the moves M[h,h](A).
INDUCTIVE STEP: 0 < i ≤ h, M[i,h](A) is a tree⇒M[i−1,h](A) is a tree.

The inductive hypothesis written in an extended form says that M[i,h](A) =
(V, pi) is a tree, thus:

pi(v) =

{
v′ if ∃(v, v′) ∈M[i,h],

p(v) if v /∈ PV T (M[i,h])

is such that condition 4.4 holds for pi.
The inductive thesis says that M[i−1,h] = Mi−1(M[i,h](A)) = (V, pi−1) is a tree,
thus:

pi−1(v) =

{
v′ if ∃(v, v′) ∈Mi−1,

pi(v) if v /∈ PV T (Mi−1)

is such that condition 4.4 holds for pi−1.
Case a: ∃(v, v′) ∈Mi−1

Since the moves are one level, then either v′ = pi−1(v) = p2i (v) (up-move:
figure 4.11(a)) or v′ = pi−1(v) and since the moves are non-cascading v′′ =
pi(v

′) = pi−1(v′) which implies p2i−1(V) = pi(v) (down-move figure 4.11(b)). As
nodes v′ for the first case and v′′ for the latter are far i− 3 and i− 2 step from
the root respectively, it is possible to say that all nodes between them and the

28

root are not in PV T (Mi−1), thus the inductive hypothesis can be applyied to
say that they are connected to the root.

(a) Up-Move (b) Down-move

Figure 4.11: Type of possible moves

Case b: v /∈ PV T (Mi−1)
if v /∈ PV T (Mi−1) there are two cases. If the vertex v does not encounter a
vertex in PV T (Mi−1) in the path toward the root, then the inductive hypothesis
applies directly. Otherwise the inductive hypothesis applies until the node in
PV T (Mi−1), and then the previous part of the demonstration holds.

As a direct consequence of theorem 2 the following theorem can be proved:

Theorem 3. Let H = (N , σN , σG, λ) be a hypernet, Γ be a consortium and
M0 a hypermarking.

M0[Γ〉M1 ⇒M1is a hypermarking

Proof. A set of moves can be associated to Γ for each passive agent A which
moves in the hierarchy, i.e.: γ(A) ∈ GOut. From the sixth condition of definition
11, which means that the moves associated to a consortium are non-cascading,
and from structure of the function δ, which guarantees that the moves are 1-
level, it is immediate to prove that the marking graph 〈N , ↑M1〉 is a tree. Thus,
M1 is a hypermarking.

4.4 1-Safe Net Semantics

In this section it is shown how it is possible, starting from a hypernet, to build
a 1-safe Petri nets whose behavior is equivalent to the behavior of the hypernet.
The basic idea underlying this construction is to associate to each agent A and
to each place p of agents in N\A a place 〈A, p〉 which represents the presence of
agent A in the place p. A token in this place means that the agent A is located
at place p in the hypernet. Moreover, for each pair of agents Aj , Aj with i 6= j,
a place 〈Ai@Aj〉 is added in order to reflect the hierarchy structure of the agents
of the hypernet. Place 〈Ai@Aj〉 is marked if agent Ai is marked in a place of
agent Aj .

Definition 23. Given a hypernet H = (N , σN , σG, λ) , its associated 1-safe net
is the net 1S(H) = (B,E, F), such that:

29

• B = {〈A, p〉 : p ∈ PN , A ∈ N , p /∈ PA} ∪ {Ai@Aj : Ai, Aj ∈ N ∧ i 6= j}

• E = {tΓ : Γ ∈ CONS(H)}

Given a consortium Γ = (l, τ,PASS, δ, γ) and its corresponding transition tΓ

• (〈A, p〉, tΓ) ∈ F ⇐⇒ A ∈ PASS ∧ •γ(A) = p

• (tΓ, 〈A, p〉) ∈ F ⇐⇒ γ(A) ∈ GOut ∧ (δ(γ(A)))• = p)

• (tΓ, 〈A, p〉) ∈ F ⇐⇒ γ(A) /∈ GOut ∧ γ(A)• = p

Moreover, a loop from consortium Γ to place 〈Ai@Aj〉 is added if agent Ai

sends/receive a token to/from agent Aj without being also a passive agent (see
figure 4.12):

• (〈Ai@Aj〉, tΓ) ∈ F ∧ (tΓ, 〈Ai@Aj〉) ∈ F ⇐⇒ ∃gj ∈ Gj ∩ GDown : Ai /∈
PASS ∧ δ(gj) ∈ Gi

• (〈Ai@Aj〉, tΓ) ∈ F ∧ (tΓ, 〈Ai@Aj〉) ∈ F ⇐⇒ ∃gi ∈ Gi ∩ GUp : Ai /∈
PASS ∧ δ(gi) ∈ Gj

Figure 4.12: Situations where a loop is added

Finally, the following arcs are added to update places 〈Ai@Aj〉 when a passive
agent moves in the hierarchy:

• (〈Ai@Aj〉, tΓ) ∈ F ⇐⇒ Ai ∈ PASS ∧ γ(Ai) ∈ GOut ∧ γ(Ai) ∈ Gj

• (tΓ, 〈Ai@Aj〉) ∈ F ⇐⇒ Ai ∈ PASS ∧ γ(Ai) ∈ GOut ∧ δ(γ(Ai)) ∈ Gj

Now, an association between hypermarking and marking of the 1-safe net is
defined:

Definition 24. A markingM in a hypernet H = (N , σN , σG, λ) has a corre-
sponding marking m = 1SH(M), that is:

m(〈A, p〉) =

{
1 ifM(A) = p

0 otherwise

m(〈Ai@Aj〉) =

{
1 if Ai ↑M Aj

0 otherwise

30

Notice that function 1SH from reachable hypermarking of H to reachable
marking of 1S(H) is injective, and the function between consortia of the hy-
pernet and corresponding transition of the 1-safe net is bijectivechee. In the
following theorem it is proved that the behavior of the 1-safe net simulates the
behavior of the associated hypernet.

Theorem 4. Let H = (N , σN , σG, λ) be a hypernet,M be a hypermarking and
Γ = (l, τ,PASS, δ, γ) ∈ CONS(H) be a consortium

M[Γ〉M′ in hypernet H =⇒ 1SH(M)[tΓ〉1SH(M′) in 1S(H)

1SH(M)[tΓ〉m in 1S(H) =⇒M[Γ〉1S−1(m) in hypernet H

Proof. 1. M[Γ〉M′ in hypernet H =⇒ 1SH(M)[tΓ〉1SH(M′) in 1S(H)

First, it is shown that if consortium Γ is enabled in a hypermarking
1SH(M), then the corresponding transition tΓ is enabled in the mark-
ing of the 1-safe net 1SH(M):
M[Γ〉 ⇒ 1SH(M)[tΓ〉
Condition 4.1, condition 4.2, and condition 4.3 of Definition 12 hold for
hypothesis. It has to be shown that each input place of tΓ is marked in
1S(H).

There are two kind of input places of tΓ: places which have the 〈A, p〉
form, and places which have the 〈Ai@Aj〉 form (Definition 23).

The first kind of places are added when there is a passive agent A that is
mapped via γ in a path which has an input place p. More precisely, there
is an arc between a place 〈A, p〉 and transition tΓ only when condition
A ∈ PASS ∧ •γ(A) = p is true. Thus, if this condition hold, place 〈A, p〉
must be marked, i.e.: M(A) = p (Definition 24). But, this is true for
hypothesis because condition 4.1 of Definition 12 is true.

An arc between the 〈Ai@Aj〉 kind of places and tΓ are added in the fol-
lowind three situations:

(a) ∃gi ∈ Gi ∩GUp : Ai /∈ PASS ∧ δ(gi) ∈ Gj

(b) ∃gj ∈ Gj ∩GDown : Ai /∈ PASS ∧ δ(gj) ∈ Gi

(c) Ai ∈ PASS ∧ γ(Ai) ∈ GOut ∧ γ(Ai) ∈ Gj

Therefore, if these conditions hold the place 〈Ai@Aj〉 must be marked,
i.e.: Ai ↑M Aj (Definition 24). It is easy to see that if the first holds, then
for hypothesis (condition 4.2) Ai ↑M Aj also holds. The same is true for
the second case and condition 4.3. In the third case there exists a place
p ∈ Aj such that •γ(Ai) = p. For hypothesis M(Ai) = p (condition 4.1),
which really means that Ai ↑M Aj .

Then the first point of the theorem is proved:
M[Γ〉M′ ⇒ 1SH(M)[tΓ〉1SH(M′)
It must be shown that 1SH(M′) = 1SH(M)\•t ∪ t•, that is the result
of firing the consortium in the hypernet and firing the transition in the
1-safe net is the same. Definition 13 distinguishes between passive agents
and other agents. If a non passive agent A is located in place p (i.e.:
M(A) = p) before the firing of the consortium in the hypernet, then it
is also located in p after the firing of Γ (first condition of Definition 13),

31

as long as place 〈A, p〉 stay marked in the 1-safe net (there is not an arc
between 〈A, p〉 and tΓ because A is not passive, i.e.: A /∈ PASS).

Passive agents are either marked in (δ(γ(A)))• or γ(A)• after the execution
of consotrium Γ, depending if γ(A) ∈ GOut or not. In the same way, the
corresponding places are marked in the 1-safe net because they are post-
condition of transition tΓ (see the fourth and fifth point of Definition 23)
.

The sixth and seventh conditions of Definition 23 are now analized. Loops
for places of type 〈Ai@Aj〉 leaves the place marked after the execution of
transition tΓ. In the same way in the hypernet, since Ai is not passive it is
marked in the same place of agent Aj both before and after the execution
of consortium Γ (Definition 13).

The last two conditions says that if agent Ai is passive (Ai ∈ PASS) and
move in the hierarchy (γ(Ai) ∈ GOut) then place 〈Ai@Aj〉 will not be
marked anymore if γ(Ai) ∈ Gj , but place 〈Ai@Ak〉 is marked instead,
where δ(γ(Ai)) ∈ Gk. By analyzing the second condition of definition 13
it can be inferred that agent A will be marked in the agent containing the
place δ(γ(Ai))

• after the execution of Γ.

2. 1SH(M)[tΓ〉m in 1S(H) =⇒ M[Γ〉1S−1
H (m) in hypernet H The proof of

the secon part of the theorem can be build observing that the correspon-
dence between the consortia of H and the transitions of 1S(H) is bijec-
tive, whereas the correspondence between the hypermarkings of H and
the markings of 1S(H) is injective. Since they are both invertible mark-
ing M and consortium Γ can be retrieved. Analyzing the way the 1-safe
net is built (Definition 23) it can be seen that marking m is itself the im-
age of a hypermarking M′. Indeed, places 〈A, p〉 which are preconditions
of 1S(H) will not be marked after the firing of transition tΓ because, by
construction, the place marked is 〈A, p′〉 where p′ is the place where agent
A is located after firing consotrium Γ. In the same way places 〈Ai@Aj〉
are updated in such a way that the hierarchical structure of the hypernet
is reflected.

As a consequences of theorem 4 and of the fact that each agent is marked in
one place in every hypermarking, then it is possible to say that given a hypernet
H the corresponding net 1S(H) is 1-safe.

32

Chapter 5

Examples

In this Chapter the generalized hypernet model is illustrated by means of exam-
ples. First it is discussed how it is possible to model the behavior of a bartender
and a client who go to a bar, and the behavior of a cell respiration process.
Then it shows how it is possible to model a class of P-Systems, a computational
model based upon the architecture of a biological cell.

5.1 The Bar Example

The aim of this Section is to describe a situation in which the agents involved are
a bartender and a client which can go to the bar and drink something, or which
can go to their houses. As we will see, the use sorted paths, and multi-sorted
agents is crucial. It will be discussed how they generalize the idea of module of
the basic hypernets, adding flexibility to the model.

The characteristics of this example are the following. The client need the
presence of the bartender if he wants to order a drink, otherwise he can just
sit down and wait. After the client has drunk he can exit the bar and go to
the street. The bartender can go from the bar to the street too. From the
street they can go to their own houses, which are modeled as agents. In their
houses the client and the bartender can do some houseworks, or they can sleep.
Whenever they want, they can also exit the house and go again to the street.

There also is a maid which works for both the bartender and the client. She
can access their houses, she can do several houseworks, and then she can exit
the house and go to the street. The maid does not like bars, and she never goes
to any bar.

Bartender, client, and maid are modeled as empty nets. The client house,
and the bartender house are modeled with the structured nets in Figure 5.1,
and Figure 5.1 respectively. The bar is the agent depicted in Figure 5.1, and
the outside world, which is the system net, is shown in Figure 5.1.

Before starting a detailed description of each one of this nets, it is important
to explain the role of types. In the example there are some constraints that
agents (bartender, client and maid) must obey. The maid cannot access the
bar, but she can access the houses of the other two agents. The bartender can
access his house, and the bar as bartender. The client can access his house, and
the bar as client. To enforce this constraints, a hierarchy of types has been used.

33

The sorts used by the client to go to his house are of type CLIENT-HOUSE
(see transition t2 of Figure 5.1 and transition t17 of Figure 5.1), a type owned by
the maid and the client. In this way both the client and the maid can go to the
client house. To go to the bar as client you need the sort CLIENT (transitions
t1 and t6). The only agent who owns that sort is the client. In the same way
the access to the bartender house, and the access to the bar as a bartender have
been restricted. Finally there is a basic type used for transition which every
agent can do (provided it is able to enter the appropriate environment).

Figure 5.1: The sort hierarchy of the example

Figure 5.1 summarize the types owned by agents. The client agent owns
the types CLIENT and CLIENT-HOUSE. The bartender agent owns the types
BARTENDER and BARTENDER-HOUSE. The maid agent owns the types
BARTENDER-HOUSE and CLIENT-HOUSE. In other words, client, maid and
bartender have each one its own type. The client and the bartender have the
type which allow them to enter their house, while the maid have both the types
to enter their houses.

The types of paths in the whole example are recognizable by looking at the
color of the arrows which connect places and transitions, or by looking at the
comments indicated by the dashed lines.

The World

The net world is shown in Figure 5.1, and it is the system net.

It contains two unconnected places, bars and houses, which contain the struc-
tured agents modeling the houses and the agent modeling the bar. The other
place of the net is the place named street, which is a temporary place where
client, bartender and maid can use to move from one structured agent to an-
other one.

The five transitions of the net are all used for communication purposes.
enterClient and enterClient let the client and the bartender to enter the bar
respectively. They are all used to transfer down the empty tokens, and as
discussed before, the types of the paths plays an important role in defining who
can enter what. The transition exit is used to transfer the client, the bartender
and the maid, from houses/bar to the street.

The Bar

The net which model the agent bar is shown in Figure 5.1.

34

Figure 5.2: The system net of the Bar example

Figure 5.3: The net modleing the bar agent

There are two transitions which let the client and the bartender go inside
the bar. Transition enterClient allows the client to go inside the bar. The path
which contain the transition is of sort CLIENT, and so the only token which
can use it is the client itself. In the same way, enterBartender is used by the
bartender to go into the bar. Once the client and the bartender are in the bar
they can synchronize to make the transition drink enabled. The bartender stays
in the place bartender and it is ready to serve another client. The client will
move to the place drunk, and then it can exit the bar and go to the street. When
the bartender has finished its work it can also exit the bar.

The Houses

The two nets which model the client and the bartender houses have the same
shape. The only thing that change is the type of the transition which let the
agent enter the house. Let us start analyze the bartender house shown in Figure
5.1

35

Figure 5.4: The net modeling the bartender house

The maid and the bartender can enter the house by firing the transition
gohome. There (when they are in the place homeb), they can do the houseworks,
or they can exit the house and return to the street. Only the bartender is allowed
to sleep in its house, therefore the path containing the transition sleep is of sort
BARTENDER.

The net modeling the client house is very similar, but the path containing
the transition sleep is of type CLIENT, and the path which allows agents to
enter the house is of sort CLIENT-HOUSE. This net is shown in Figure 5.1.

Figure 5.5: The net modeling the client house

Final Considerations

This example models a simple case of study where three agents - a maid, a
client, and a bartender - can move in three buildings - two houses and a bar.
The features added by the generalization which allow to model more easily a
situation like this, are the use of typed paths instead of modules, and the use of
multi-typed agents. The strict module subdivision of the basic hypernet model
implies that the street place must be splitted if it have to contain agent of
different types. The alternative is to assign the same sort to the three moving
agents. Therefore, the access restriction applied to the agents, which allow
them to access only some buildings, must be modeled in some more complex
way. For example, a possibility is to structure the empty moving agents as net,
and encode the information of where it can go in some way inside the net.

36

The too strict module subdivision of the basic hypernet model is also evident
if we consider a variation of the example where there are more than one bar,
and more than one client. Suppose a bartender wants to go in another bar B as
a client. With generalized hypernet it is sufficient to add to this bartender the
sort corresponding to the sort which allows client to enter the bar B. Again,
in the basic hypernet model there are no meaning to do this in a simple and
elegant way. In particular, the reason of allowing multi-sorted agents is clear if
we look at this example.

The next example shows how paths allows the modeling of the cellular res-
piration process in an easy way.

5.2 The Cellular Respiration Process Example

The aim of this section is to represent the cellular respiration process using
the model of generalized hypernets. In particular the modeled aspect is the
transport of oxygen and carbon dioxide from lungs to cell, which is done by red
blood cells. In each red blood cell there are heme groups, which are able to
bind four molecules of oxygen. A red blood cell binds oxygen in the lungs, and
transport it to the tissues of the body. In the cell the oxygen is used in several
reactions for producing energy. The most important one is probably the aerobic
respiration which happens in mitochondria, membrane-enclosed organelle found
in the cytoplasm of each cell of the human body. The simplified form of this
reaction takes one molecule of sugar (C6H12O6) and six molecules of oxygen
(O2), and transform them in six molecules of carbon dioxide (CO2), plus six
molecules of water (H2O), which are expelled from the cell by osmosis.

The system is modeled using five nets. The first one is called WORLD
(Figure 5.2), and it is the system net. Inside this net there is another net, called
HUMAN1, which model the human metabolism. This net is is shown in Figure
5.2. As it can be seen it contains other two structured agents which model the
behavior of a cell (CELL net), and of a red blood cell (RBC net). These two
nets are shown in Figure 5.2, and in Figure 5.2 respectively.

In the following subsections a detailed description of all these net is given.

The world

The world net is the system net and it is shown in Figure 5.2. The net simply
contains a human, and it models with two transitions the actions of inspire and
expire.

Figure 5.6: The system net of the Blood example

The inspire transition binds n oxygen molecules and transfer them inside the

37

human body. The n paths which contain the transition inspire are not shown
in the figure, nut they are graphically represented by the inscription O1, ..., On

associated to the arc connecting the Oxygen place and the inspire transition.
In the same way, the transition expire takes carbon dioxide molecules from the
human body and transfer them in the air outside the world.

The Human Metabolism

The net modeling the respiration cycle, where oxygen is transported from lungs
to tissues by red blood cell is shown in Figure 5.2.

Figure 5.7: The net modeling the metabolism of the body

Transitions inspire, and transition expire are the entwined to the transitions
with the same name in the net world. They transport oxygen from the world
to the body, and carbon dioxide from the body to the world. Places Red Blood
Cell (Lung), and Red Blood Cell (Blood) contain single red blood cells. For
simplicity, in the example there is only one red blood cell. The former place
indicate that the cell is in the lung, and it is ready to give away carbon dioxide
and to take oxygen. Place Red Blood Cell (Tissue) indicates that the red blood
cell is near a tissue and it is ready to exchange oxygen for carbon dioxide. The

38

oxygen taken from the cell goes to the Blood O2 place, while the carbon dioxide
is taken from the place Blood CO2. As the name suggests, transition osmosis
models the transfer oxygen from the blood to a cell by means of osmosis, and
the transfer of carbon dioxide from a cell to the blood (again by osmosis).

The Cell

The behavior of the cell is modeled as the net shown in Figure 5.2. The transition
cellular respiration models the fundamental chemical reaction which creates
energy from sugar and six oxygen molecules: C6H12O6 + 6O2 → 6H2O+ 6CO2.

Figure 5.8: The net modeling the behavior of a cell

Again, the paths can be derived by looking at the inscriptions on arcs. The
three arcs connecting the place which contains the sugar, and the transition
which models the reaction represent twenty-four paths: six for atoms of carbon,
six for atoms of oxygen, and twelve for atoms of hydrogen. All these atoms
correspond to a molecule of sugar (C6H12O6). In the same way twelve atoms
of oxygen are selected, and when the transition fires all these atoms are put
in such a way that the six molecules of water and the six molecules of carbon
dioxide are represented correctly.

Finally, the transition osmosis models an exchange of oxygen and carbon
dioxide with the blood. Carbon dioxide molecules are sent to the red blood
cells present in the blood, and oxygen molecules are absorbed from the the
blood.

The Red Blood Cell

The last net we are going to discuss represent the behavior of a red blood cell.

39

Figure 5.9: The net modeling the behavior of a red blood cell

There are two transitions: O2 Bound and CO2 Bound. The former is used
to give away carbon dioxide, and at the same time to take oxygen. The latter
transition does the opposite operation: it gives away carbon oxygen to a cell,
and in exchange it takes carbon dioxide.

Molecules of carbon dioxide are stored in the place named CO2. The way
molecules are represented is the same as in the cell net. A molecule of carbon
dioxide is represented as an atom of carbon (an empty agent), and two atoms
of oxygen (again empty agents) located in the place CO2.

When more than one molecule is present in this place all the atoms are
represented as empty agents. The drawback of this solution is that the identify
of each molecule of carbon dioxide is lost. This is not a bid deal because every
molecule is equivalent to the others. If the designer wants to distinguish between
them, a solution can be to represent a molecule of carbon dioxide as a structured
agent which contain an atom of carbon and to atoms of oxygen.

5.3 Modeling a Class of Membrane System

In this example it is shown how it is possible to model a class of membrane
systems using generalized hypernets. Membrane systems are computational
model inspired by the behavior of the living cell. They are composed by a
set of nested membranes, organized in a tree like structure, which may contain
molecules. Each membrane has a set of rule used to modify the content of the
membrane, or to import/export molecules to the outer membrane. Rules are
applied until there are no rules enabled. Then, the result of the computation
are the molecules found in the outer membrane. The characteristics of the class
of membrane systems which has been chosen for this example are explained in
Section 5.3.1.

The hierarchy of agents in a hypernet resembles the hierarchy of membranes
in a P system, and the mechanism of consortia can be seen as a way to exchange
molecules across a membrane. The main idea of this translation is quite simple:

40

each membrane and each individual molecule in the P system is represented by
an agent in the hypernet. Molecule agents are unstructured, that is, they are
simple tokens, like in usual nets, and can only be passively moved by the active
components. Membrane agents, viceversa, are nets, with places that can contain
molecules agents, and places that can contain other membrane agents. Consortia
correspond to rules of the P system, whereby molecules can be exchanged across
a membrane.

It should be noted that hypernets would allow, in themselves, movement of
membrane agents, so that the hierarchical structure of membranes could change.
This capability is not exploited here, since we deal with P systems where only
molecules move around, but might be useful in modelling more general kinds of
systems.

The focus of this example is not in the computational aspects of the theory
of P systems, but rather on modelling aspects. Consequently, we compare the
two models on the basis of their reachable configurations.

5.3.1 P systems with symport/antiport rules

Many kinds of membrane systems have been investigated during the last years.
One of the most studied variant of the general model of P systems was introduced
in [45] under the name of systems with symport/antiport rules. Those terms
came from two membrane transport mechanisms. Whereas the term symport
stands for the biological process by which two molecules pass together across
a membrane, when the two molecules pass simultaneously, but in the opposite
direction, the process is called antiport.

The class of membrane systems with symport/antiport rules is a class of
purely communicating P systems, where the objects involved in the computation
only pass through membranes. This means that the objects involved never
change and a sort of conservation law for objects is observed during the entire
evolution of the system.

Many results on this kind of P systems, especially about their computational
power, can be found in [46],[41],[42],[23]. Here we provide a simplified version of
the definition of P system with symport/antiport rules supplied by Păun [47].

A Formal definition

Formally, we define a P system with symport/antiport rules (of degree m), as
a construct of the form

Π = (O,µ,w1, w2, . . . , wm, R1, R2, . . . , Rm),

where:

• O is the (finite and non empty) alphabet of objects

• the membrane structure µ = (N,E, i) is a rooted tree underlying Π, where
N = {1, 2, . . . ,m} is the set of nodes and each node in N defines a mem-
brane of Π. The set E ⊆ N ×N defines the edges. For each node j ∈ N ,
the membrane associated to the node j contains all the membranes asso-
ciated to the children of j. i is the root of the tree and hence the skin
membrane (the outermost membrane of the system)

41

• w1, w2, . . . , wm are multisets over O representing the objects present in the
regions 1, 2, . . . ,m of the membrane structure µ in the initial configuration
of the system

• R1, R2, . . . , Rm are finite sets of evolution rules associated with the mem-
branes of µ. Moreover we impose Ri = ∅, where i is the skin of the
membrane structure. This clause ensures that the external membrane
is impermeable and hence the total number of objects involved in the
computation is finite (and constant); this is required if we want to build
hypernets with a finite number of agents

The term molecule is sometimes used in the rest of the paper when referring
to the objects in the membranes of the P system.

As said above, each rule governs the communication through a specific mem-
brane and can be of two kinds, symport rule or antiport rule. A symport rule
is of the form (u, in) or (u, out), where u is a multiset over O, stating that all
the objects of u pass together through a membrane, entering in the former case
and exiting in the latter. For example, after the application of the symport rule
(u, in) (contained in a membrane i) the multiset associated to this membrane
(denoted by wi) will contain all the objects previously present plus the objects
present in u. The multiset associated to the membrane that contains i, will con-
tain all the object previously present minus the object present in u. Similarly,
an antiport rule is of the form (u, out; v, in), where u and v are multisets over
O, stating that when u exits, at the same time, a multiset v must enter the
membrane.

The P system described above evolves from configuration to configuration
by the application of a multiset of rules in each membrane. Formally, a configu-

ration is a tuple C = (v1, v2, . . . , vm) and C
R̂⇒ C ′ denote that C evolves into C ′

due to the application of R̂, where R̂ = (R̄1, R̄2, . . . , R̄m) is a multi-rules vector
applicable to C and R̄j is a multiset over Rj .

The evolution of the system is non-deterministic and maximally parallel; this
means that in each step we look to the set of rules, and we try to find a multiset
of rules by choosing their multiplicities non-deterministically. The multiset of
rules must be applicable to the multiset of objects available in the respective
regions and must be maximal, that is, no further rule can be added to it.

Figure 5.10 shows a fragment of a P system with symport rules. The system
depicted here consists of two nested membranes: j, the inner membrane, and i,
the outer, which we assume to be a membrane contained in a larger membrane
structure. The set of rules associated to i is Ri = {(b, out), (a2, out)} and the
set of rules of j is Rj = {(ab2, in), (a, out)}. In the same way we define the
initial multisets of objects wi = ab3 and wj = a2.

In this configuration the rules r1, r3, r4 are enabled and a multi-rules vector
can be built with this rules in a maximally parallel manner, i.e.: the multi-rules
vector R̂ = ({r1}, {r3, r4, r4}) is applicable to the initial configuration. Note
that other multi-rules vectors can be applied to the same configuration. The
application of R̂ leads to a new state where the objects in the membrane i are
a2 and the objects in the membrane j are ab2.

42

i

j

r
3
=(ab2,in)

r
4
=(a,out)

w
j
=a2

w
i
=ab3

r
1
=(b,out)

r
2
=(a2,out)

Figure 5.10: Fragment of a symport/antiport P system

The Hypernet Translation

A P system with symport/antiport rules and an impermeable external mem-
brane can be modeled as a hypernet. The idea is to associate to each membrane
a structured agent which contains a transition for each rule belonging to this
membrane and to adjacent membranes. Each molecule of the P system is mod-
eled as an empty token located in a place of the hypernet. For each type of
molecule a place is present in the agent modeling the membrane. This place
will contain all the molecules of this type present in the P system. Each transi-
tion modeling a rule is connected to the places with as many arcs as the number
of required molecules.

Figure 5.11: The hypernet corresponding to membrane i

43

Figure 5.12: The hypernet corresponding to membrane j

For example, Figure 5.11 and Figure 5.12 show the fragment of the hypernet
corresponding to the P system of Figure 5.10. The two membranes i and j
are modelled by the agents Ai (Figure 5.11) and Aj (Figure 5.12). The local
place aij ∈ Pi, which contains (as token) the agent Aj , reflects the fact that the

membrane j is nested inside i, while the local places ai, bi represent the presence
of molecules a and b respectively, inside the agent Ai (this is also true for aj , bj

and the membrane j). Then {r1, r2, r3, r4} ⊆ TN are transitions built from the
evolution rules of the membrane system. The initial hypermarking matches the
initial configuration of the P system.

Note that for simplicity reasons in this example, we have just used symport
rules, but antiport rules can also be modelled, as shown above in this Section.

It is possible to prove that the reachable configurations associated to a P
system with symport/antiport rules correspond to the reachable hypermarkings
of the hypernet which models the P system. For detailed definitions, and proofs
see [5].

44

Chapter 6

Unfoldings

The importance of designing and analyzing concurrent systems has already been
advocated in this thesis. One of the problem which make the analysis of systems
so difficult is the state space explosion problem, i.e., even small systems may
exhibit a huge number of possible behaviors which exponentially grow when the
number of concurrent components of the system grow.

Answering questions about the system using behavioral techniques (like
model checking) implies the exploration of all these behaviors. However, a com-
mon situations in concurrent systems is that several different behaviors lead to
the same result, because they represent different ordering of the same set of con-
current actions, i.e., they are different interleaving. In practice, n independent
actions can occur in n! different orders leading to the same result.

Unfoldings represent one way to exploit this observation. They are a mathe-
matical structure which explicitly represent concurrency and casual dependence
between actions, but hide information about all the possible interleavings of con-
current actions. Therefore, they are exponentially smaller than naive mathemat-
ical structures which represents all the possible interleavings, like case graphs.
Obviously, behavioral techniques which explore all the possible states of a con-
current system, like model checking, will be more efficient if the input data
structure which represents the behavior of the system is small.

The aim of this Chapter is to find a way to apply the unfolding technique
directly on the hypernet model, without computing the expensive 1-safe expan-
sion. Section 6.1 informally introduces the concept of process of a hypernet by
means of an example. In Section 6.2 the preliminary definitions needed in the
rest of the chapter are introduced. Section 6.3 contains an axiomatic definition,
and an inductive one of processes of a hypernet. Finally, Section 6.4 contains
the definition of the notion of unfolding of a hypernet.

6.1 An Introductory Example

How is it possible to represent the behavior of a concurrent system without
explicating all the possible interleavings of concurrent actions? The answer is
to represent them by using a suitable mathematical structure which is able to
handle concurrency. Traditionally, the way to do that in the Petri net theory
is by using another labelled Petri nets with some peculiar characteristics, like

45

the absence of conflicts, and the absence of loops. These labelled Petri nets are
called processes of the original system. In the literature there is a difference
between processes which contain information about several run of the system,
and processes which only contain information about a single run of the system .
The formers are called branching processes (see [17]), and the Petri nets which
represent these processes contain forward conflicts. The latter are simply called
processes (see [6]), and the Petri nets which represent these processes cannot
contain conflicts. The unfolding of a Petri net N is a particular, and usually
infinite branching process which contains all the possible behaviors of N .

(a) The process representing the initial marking. Real names of places (transitions) of the
canonical net are not shown. Labels of the nodes of the process are drawn instead

(b) The extension of the process in Figure 6.1(a) with the consortium corresponding to tran-
sition enterClient. If the agent is clear from the context labels of new places are shortened to
the form @place. @client is a shortened version of the label 〈CLIENT, client〉

(c) The extension of the process in Figure 6.1(b) with the consortium corresponding to tran-
sition enterBartender

(d) The extension of the process in Figure 6.1(c) with the consortium corresponding to tran-
sition doHousework. The figure continues in the next page.

McMillan proposed in [43] an algorithm for the construction of a finite initial

46

(e) The extension of the process in Figure 6.1(d) with the consortium corresponding to tran-
sition drink

(f) The extension of the process in Figure 6.1(e) with the consortium corresponding to tran-
sition exit

Figure 6.1: A branching process of the Bar example (Section 5)

part of the unfolding which contains full information about the reachable states.
The initial part of the unfolding satisfying this property is called finite complete
prefix. Esparza, Romer, and Voegler showed in [22] that McMillan finite com-
plete prefix of the unfolding is sometimes larger than necessary (exponentially
larger in the worst case). They proposed a refinement of the McMillan algo-
rithm which overcome this problem. Khomenko, Koutny, and Voegler developed
a general technique for truncating net unfoldings, parameterized according to
the level of information about the original unfolding one wants to preserve in
[29]. Moreover, they proposed a new notion of completeness of a truncated
unfolding. From an application point of view the unfolding technique has been
successfully applied to verification problems, like the check of relevant properties
of speed independant circuits [30], or unfolding-based model checking algorithms
[19, 18, 21].

In the rest of this introductive section it will be informally explained how it
is possible to build a branching process of a hypernet.

47

Figure 6.2: A fragment of the unfolding of the Bar example (Section 5)

Consider the hypernet modeling the Bar example of Section 5. Figure 6.1
shows how it is possible to incrementally build a process of the Bar example.
For each agent but the system net a place 〈A, p〉 is added (Figure 6.1(a)). This
place represents the fact that the agent A is located at place p in the initial
marking. A label representing this fact is added too. After that, a consortium
enabled in the initial marking is chosen and added, together with a set of places
representing the hypermarking reached after the firing of the consortium.

For example, in Figure 6.1(b) the consortium which models a client entering
the bar has been added. For simplicity, in all the figures the transitions are
not labelled with the name of the consortia, but with a significant label. This
name, together with input/output places, can be used to reconstruct the consor-
tium. The real names of the two transitions labelled enterClient in the agents
WORLD and BAR of the Bar example are t1, t6 respectively, and assuming they
insist on two paths named g1 and g2 respectively, the consortium modeled by
the transition added in Figure 6.1(b) is (enterClient, {t1, t6}, {CLIENT}, δ〈g6〉
= 〈g1〉, γ〈CLIENT 〉 = 〈g1〉). Finally, a place 〈CLIENT, client〉 representing
the new location of agent CLIENT is added too. It is only labelled @client
because instead of using labels with the form 〈agent, place〉, labels with the form
@place are employed if the name of the agent is clear from the figure.

In the same way the consortia corresponding to the transitions labelled

48

enterBartender, doHousework, drink, exit are respectively added in Figures
6.1(c), 6.1(d), 6.1(e), 6.1(f).

Note that new transitions, and new places are always added even if the
current Petri net already contains transitions and places carrying the same la-
bels. For instance, when going from 6.1(c) to 6.1(d) by adding a new transition
labelled doHousework, a new place labelled 〈MAID, housec〉 is added even
though 6.1(c) already contains a place with this label.

A branching process is usually a partial view of the behavior of a hyper-
net. However, as for Petri nets, there is a branching process (which is usually
infinite) in which every possible run of the hypernet is represented. This max-
imal branching process will also be called unfolding. For example, a fragment
of the unfolding of the hypernet representing the Bar example is shown in Fig-
ure 6.2. Starting from the set of places representing the initial hypermarking,
each enabled consortium is added to the unfolding in the same way discussed
before. Then, starting from each set of places which represents a hypermarking
M in the unfolding, each consortium enabled in M is recursively added to the
unfolding. For obvious reasons, the figure has been truncated at some point,
and three dots has been added to indicate a cut of the unfolding. The formal
definition of unfolding of a hypernet will be given in Section 6.4.

The questions which are discussed in the next sections are the following:
which are the fundamental characteristics a labelled Petri net should have to
be a process of a hypernet? Is there an inductive procedure which can be used
to build all the possible processes of a hypernet? Is there a way to represent all
the reachable hypermarking in a finite complete prefix of the unfolding?

6.2 Preliminary Definitions

In this Section some notions given in the literature and concerning branching
processes are introduced. They will be used in the following sections. The
definitions and results discussed in this Section are mostly taken from [20, 22,
29, 17].

Intuitively, a branching process will either be a Petri net containing no events
(like the process in Figure 6.1(a)), or the result of extending a branching process
with an event, or the union of a set of branching processes. Clearly, unions of
Petri nets play a central role in the formal definition of branching processes.
They are formally defined component-wise [20]:

Definition 25. The union
⋃
N of a (finite or infinite) set N of Petri nets is

defined as the Petri net:⋃
N = (

⋃
(P,T,F,M0)∈N

P,
⋃

(P,T,F,M0)∈N

T,
⋃

(P,T,F,M0)∈N

F,
⋃

(P,T,F,M0)∈N

M0)

Unions, however, must be handled with some care. Unless the names of the
nodes are well chosen, they can generate “wrong” nets that do not correspond
to the intuition behind the notion of branching process. For example, the union
of two copies of the net in figure 6.1(b), in which the labeling of the nodes is
the same, but their names are different, is a net with fourteen places and two
transitions.

49

The use of canonical nets, as proposed in [20]. solves this problem. In a
canonical net, to a node with a label x it is assigned a name in the form (x,X),
where X is a set containing the names of the input places/transitions of the
node x.

Definition 26. Let Σ be an alphabet, and let C be the smallest set satisfying: if
x ∈ Σ and X is a finite subset of C, then (x,X) ∈ C. A C-net is a net (B,E, F)
such that:

• B ⊆ C,

• E ⊆ C,

• F ⊆ (B×E)∪(E×B) is such that ∀ (x̂, ŷ) ∈ F, x̂ = (x,X) ∈ B (or E) ∧
ŷ = (y, Y) ∈ E (or B) ⇒ (x,X) ∈ Y

• if (x,X) ∈ B ∪E, then X = •(x,X)

In a canonical net each node is given a unique name which contains infor-
mation about its past. In this way, names and labels are in some sense tied, and
if two nets which have the same labeling are fused together by a union, then no
redundant places are added.

Example 6. Consider the net in Figure 6.1(a), and let H be the hypernet
of the Bar example. We choose the alphabet Σ as the union of all consor-
tia, and the union of all the pair 〈 agent, place 〉 (as defined later at the be-
ginning of Section 6.3.1). Then, the places of the net in Figure 6.1(a) are
given the names (〈CLIENT, street〉, ∅), (〈BARTENDER, street〉, ∅), In
Figure 6.1(b) a transition named (Γ, {(〈CLIENT, street〉, ∅)}) is added, where
Γ is the consortium corresponding to transition enterClient (remember that in
the figures we do not use the name of the consortia). Finally, a place named
(〈CLIENT, client〉, {(Γ, {(〈CLIENT, street〉, ∅)})}) is added too.

The reader may think that canonical names are a useless complication, and
may be worried about their length. But they are just a mathematical tool
which allow the definition of infinite branching processes. From a practical
point of view there is no need to use them and they will not be considered in
the examples. However, from a theoretical point of view they are essential to
avoid the issue related to union of nets discussed before.

As it has been discussed in the introduction of this chapter, not every Petri
net can be used to represent a process of a concurrent system. For example, the
acyclicity of the net, and the absence of backward conflicts are two prerequisites
of a net which represent a process. The following Definition introduce the
concept of occurrence net, Petri nets with constraints which make them suitable
to be used to represent the behavior of concurrent systems. This definition,
and the notations that will be introduced later in this chapter, are taken from
[17, 22, 29, 21].

Definition 27. An occurrence net is a C-net O = (B,E, F) such that:

1. ∀b ∈ B, |•b| ≤ 1,

2. O is acyclic, or equally (B ∪ E,F+) is a partially ordered set,

50

3. O is finitely preceeded, i.e.: ∀x ∈ B ∪E, |{y | yF+x}| <∞,

4. Min(O) ⊆ B, where Min(O) is the set of nodes, which are minimal w.r.t.
F+.

Clearly, all the nets of Figure 6.1 satisfy these requirements and are occur-
rence nets. Now, the notions of causality, conflicts, and concurrency typical of
Petri nets are introduced. Let x, y ∈ B ∪ E, x 6= y. The following notations
will be used in the paper:

• x causally precedes y, denoted x < y, iff there exists a non-empty oriented
path from x to y,

• x, y are in conflict, denoted x#y, iff there exist two non-empty paths
st1...x and st2...y such that s ∈ B, and t1 6= t2

• x, y are concurrent, denoted x co y, iff not x < y nor y < x nor x#y.

For example, in Figure 6.1(f) the place whose label is 〈CLIENT, street〉
causally precedes the place whose label is @client, places @housec and @street
are in conflict, and places @client and @bartender are concurrent. The same can
be said for transitions: enterClient and drink are causally related, enterClient
and enterBartender are concurrent, and doHousework and exit are in conflict.

The notion of configuration is important for branching processes. Given a
set of events C of an occurrence net, it is interesting to know if it represents a
“valid” set of action of the system . With valid we mean that there exists a set
of actions of the system which is an occurrence sequence, and which correspond
to the labels associated to the set C. The following definition contains the
conditions a set of events must satisfy in order to be a configuration [29].

Definition 28. A configuration C of an occurrence net is a set of events such
that:

1. C is causally closed, i.e.: e ∈ C ⇒ ∀e′ < e, e′ ∈ C

2. C does not contain conflicts, i.e.: ∀e, e′ ∈ C, ¬(e#e′)

From now on, let O = (B,E, F) be an occurrence net. Given e ∈ E, with [e]
the backward causal closure of e is denoted, i.e.: [e] = {e′ ∈ E | e′ < e}. Given
a configuration C and a set of events E′, C ⊕ E′ denotes the fact that C ∪ E′

is a configuration, and C ∩ E′ = ∅. The set E′ is a suffix of C, and C ∪ E′ is
an extension of C. A set of conditions B′ such that ∀ b, b′ ∈ B′, b co b′ is called
co-set. A cut is a maximal co-set.

For example, in Figure 6.1(f) the set of events S = {enterClient, enter-
Bartender} is a configuration, and the backward causally closure of event drink
contains drink, enterClient, and enterBartender, i.e.: [drink] = {drink, enterClient,
enterBartender}. Moreover, S ⊕ {enterBartender} holds, infact S ∪ {enter-
Bartender} = [drink]. Therefore, the set {enterBartender} is a suffix of S, and
the set S is a prefix of [drink]. The set of conditions {@client, @bartender} is a
co-set, and the co-set cs = {@client, @bartender, 〈MAID, housec〉, 〈BAR, bars〉,
〈CLIENT -HOUSE, houses〉 〈BART -HOUSE, houses〉} is a cut.

Finite configurations and cuts are tightly related. Let C be a configuration
of O, it is possible to prove that the co-set Fin(C), defined below, is a cut [17]:

51

Fin(C) = (Min(O) ∪ C•)\•C

For example, Fin(S) = {〈CLIENT, street〉, 〈BARTENDER, street〉, 〈
MAID, housec〉, 〈BAR, bars〉, 〈CLIENT -HOUSE, houses〉, 〈BART -HOUSE,
houses〉} \ {〈CLIENT, street〉, 〈BARTENDER, street〉} ∪ {@client, @bart-
ender} = cs

6.3 Branching Processes

In this section two notions of branching process of a hypernet are introduced.
The first one is axiomatic: we define a set of conditions a pair 〈net, mapping
from net’s element to hypernet’s elements〉 must satisfy in order to be a process
of the hypernet. The second one is inductive and formalizes the steps to follow to
build a branching process, like it has been done in Example 6.1: starting from
a process which represents the initial hypermarking we identify all the steps
which can be done to inductively build a process. Finally, we prove a theorem
which states that nets which satisfy the conditions of the first definition are the
same of the nets built using the steps defined in the second definition.

First, a preliminary notion concerning a technical question is introduced:
when dealing with processes of a hypernet the easier way to represent a hyper-
marking is to consider a set of pairs 〈agent/place〉. Given a hypermarking M,
it is possible to associate a set in which there is a pair 〈agent/place〉 for each
agent but the system net, meaning that an agent is marked in a determined
place. The following definition formalizes this concept.

Definition 29. Given a hypernet H = (N , σN , σG, λ), and a hypermarking
M, the hypercase set associated to M, denoted SET(M), is the set of pairs
agent/place such that SET(M) = {〈A, p〉 |M(A) = p}.

In the same way it is interesting to have a way to do the opposite operation,
i.e.: to start with a set S which represent a hypercase set, and obtain the
corresponding hypermarking. The following proposition identifies necessary and
sufficient conditions a set S must satisfies in order to be a hypercase set.

Proposition 2. A set S is a hypercase set iff the following two conditions hold:

• |S| = |N | − 1

• ∃ a hypermarkingM such that ∀Ai ∈ N\A0,∃b ∈ S such that
b = 〈Ai,M(Ai)〉

Given a hypercase set S, HM(S) denotes the hypermarkingM.

Note that, given a set S, there can be only one hypermarking which satysfy
the second condition of the proposition.

Example 7. Consider the hypermarkingM〈CLIENT, BARTENDER, MAID,
BAR, CLIENT -HOUSE, BART -HOUSE〉 = 〈street, street, housec, bars,

52

houses, houses〉 of the hypernet representing the Bar example. The hypercase
set associated toM is:

SET(M) = {〈CLIENT, street〉, 〈BARTENDER, street〉, 〈MAID, housec〉,
〈BAR, bars〉, 〈CLIENT -HOUSE, houses〉,
〈BART -HOUSE, houses〉} = S

Viceversa the hypermarking associated to the set S (which satisfy the condi-
tions of proposition 2) is HM(S) =M.

In the following subsection the axiomatic definition of branching process of
a hypernet is given, and a theorem showing that the cuts of a branching process
correspond to reachable markings of the hypernet is demonstrated.

6.3.1 Axiomatic Definition

From now on let H = (N , σN , σG, λ) be a hypernet, and let M0 be its initial
hypermarking. Moreover, let Σ1 = {〈A, p〉 | p ∈ LN and A ∈ N\A0} be a
set containing an element for each combination 〈agent/place〉 in H, and Σ2 =
{CONS(H)} be the set of consortia in H.

.

Definition 30. A branching process β = (O, h) of (H,M0) is an occurrence
net O = (B,E, F) with a labelling function h : B ∪ E → Σ1 ∪ Σ2 satisfying:

1. h(B) ⊆ Σ1 and h(E) ⊆ Σ2 (h preserves the nature of the nodes)

2. Let h(e) = Γ = (l, τ,PASS, δ, γ) be the consortium associated to an event
e through h. Then:

(a) h(•e) = {〈A, p〉 | A ∈ PASS and p = •γ(A)} (each input place of
an event e corresponds to a pair 〈 passive agent,input place 〉 in the
consortium h(e)),

(b) h(e•) = {〈A, p〉 | A ∈ PASS and (p = trg(A)}, where trg(A) =
γ(A)• ∧ γ(A) /∈ GOut ∨ p = δ(γ(A))• ∧ γ(A) ∈ GOut). (each output
place of an event e corresponds to a pair 〈passive agents/output place〉
in the consortium h(e).

3. ∀e1, e2 ∈ E, •e1 = •e2 ∧ h(e1) = h(e2)⇒ e1 = e2 (there are no duplicated
events),

4. Let A ∈ N and p ∈ PN . M0(A) = p ⇐⇒ ∃b ∈ Min(O) and h(b) =
〈A, p〉 (The restriction of h to Min(O) corresponds to the initial hyper-
marking).

5. ∀(x,X) ∈ B ∪ E, h((x,X)) = x

In order to avoid confusion, it is convenient to have two different names for
transitions/places of the hypernet, and for transition/places of its processes.
Transitions belonging to the process will be called events, and places will be
called conditions.

The set containing all the configurations of a branching process β is denoted
by Conf(β).

In order to prove that the configurations of a branching process correspond
to reachable hypermarkings of the hypernet the following lemma is needed.

53

Lemma 1. Let C be a finite configuration of O, and {e} a suffix of C. Then
•e ⊆ Fin(C).

Proof. By contradiction assume p ∈ •e, and p /∈ Fin(C). Since Fin(C) is a cut,
then ∃q ∈ Fin(C), p 6= q such that ¬(p co q). Therefore q < p ∨ p < q ∨ p#q
must be true. First, p#q is impossible because C ∪{e} is conflict free. If p < q,
then e is in conflict with •q, which is impossible. If q < p then there is at least
an event e′ between p and q such that q = •e′. But that’s impossible because
q ∈ Fin(C).

The following theorem shows that the image through h of the cut associated
to a configuration C, i.e., h(Fin(C)) is a hypercase set. Moreover, it is shown
that the hypermarking corresponding to that hypercase set, i.e., HM(h(Fin(C))
is reachable from the initial hypermarking. With Mark(C) the hypermarking
associated to a configuration C is denoted, i.e.: Mark(C) = HM(h(Fin(C)).

Theorem 5. Let β = (O, h) with O = (B,E, F) be a branching process of
(H,M0).

C ⊆ E is a finite configuration of O ⇒
h(Fin(C)) is a hypercase set ∧Mark(C) ∈ [M0〉

Proof. The proof is by induction starting with the empty configuration, and
then adding a single event as a suffix of a given configuration.

Induction basis: Let C ′ be the empty configuration. Then Fin(C ′) =
Min(O), which is a hypercase set with Mark(C) = M0, a reachable hyper-
marking.

Induction step: Let C be a configuration such that the theorem holds
for it, where M = Mark(C). Let C ′ = C ∪ e be an extension of C, with
h(e) = Γ = (l, τ, PASS, δ, γ). By lemma 1, •e ⊆ Fin(C), and by condition
2a of Definition 30 h(•e) = {〈A, p〉 | A ∈ PASS and p = •γ(A)}. Therefore,
∀A ∈ PASS, M(A) = γ(A), which implies M[Γ〉.

Let M′ be such that M[Γ〉M′.

SET(M′) = SET(M)∪
{〈A,p〉 | A ∈ C and (p = trg(A)}\{〈A, p〉 | A ∈ C and p = •γ(A)}
= h(Fin(C)) ∪ h(e•)\h(•e) = h(Fin(C) ∪ e•\•e) = h(Fin(C ∪ {e})) = h(C ′)

6.3.2 Inductive Definition

Let b be a canonical net over the alphabet Σ. We call the standard labeling of b
the function which assign its canonical name to each node , i.e.: can((x,X)) = x.
The set of branching processes of a hypernet can be characterized in an inductive
way.

Definition 31. Let (H,M′) be a marked hypernet. BP ((H,M0)) is the small-
est set of C-nets satisfying:

54

1. Let S = {(〈A1,M0(A1)〉, ∅), ..., (〈An,M0(An)〉, ∅)} be a set. The C-net,
having S as set of places and no events, belongs to BP ((H,M0)) .

2. Let β ∈ BP ((H,M0)), let m be a cut of β such that can(m) is a hyper-
case set, let Γ = (l, τ,PASS, δ, γ) be a consortium enabled in HM(can(m)),
and let S = {(〈A, p〉 , X) ∈ m | A ∈ PASS and p = •γ(A)}. The C-
net, which is obtained by adding to β the event (Γ, S), and one place
(〈A, trg(A)〉, {(Γ, S)}) for each passive agent A in the consortium Γ, be-
longs to BP ((H,M0)) .

3. If Y ⊆ BP ((H,M0)), then
⋃

β∈Y β ∈ BP ((H,M0)).

Note that {〈A1,M0(A1)〉, ..., 〈An,M0(An)〉} is a hypercase set.
In the following subsection it is shown that the inductive and the axiomatic

definitions of branching process of a hypernet, represents the same class of nets.-

6.3.3 Equivalence of Axiomatic and Inductive Definitions

The first lemma demonstrated in this section proves that each net built using
the steps of Definition 31 satisfies the conditions of Definition 30.

Theorem 6. If β ∈ BP ((H,M0))⇒ (β, can) is a branching process of H.

Proof. Induction basis: We have to prove that the C-net β = (B,E, F) such
that B = {(〈A1,M0(A1)〉, ∅), ..., (〈An,M0(An)〉, ∅)}, and E = ∅ satisfies the
conditions of definition 30.

Condition 1: The function can maps the elements of B, to pairs 〈A, p〉 ∈ Σ1.
Condition 2a, condition 2b, and condition 3 are true because E = ∅.
Condition 4: For each agent but the system net there is exactly one place p

in B such that A is marked in p.
Condition 5: True by the definition of the standard labeling function.
Induction step: Let β′ ∈ BP ((H,M0)) be such that (β′, can) satisfies the

conditions of Definition 30, and let β be the C-net generated by adding to β′ the
event e = {Γ, S}, and one place (〈A, γ(A)•〉, {(Γ, S)}) for each passive agent A
in the consortium Γ. We will prove that (β, can) also satisfies the conditions of
the axiomatic definition of branching process showed in Definition 30.

Condition 1: The only event added to β′ is e = {Γ, S} and can(e) = Γ ∈ Σ2.
Moreover, by construction each place p = (〈A, γ(A)•〉, {(Γ, S)}) added to β′ has
the property: can(p) ∈ Σ1.

Condition 2a: For event e we have can(•e) = {〈A, p〉 |A ∈ C and p =• γ(A)}.
Condition 2b: Similar to the previous condition.
Condition 3: Since β is canonical, two events with the same preset, and the

same labelling are encoded in the same event.
Condition 4: No places without an input event are added. Therefore the set

of minimal elements still satisfy this condition.
Condition 5: By definition the function can satisfies this property.
Now, let us consider a net β ∈ BP ((H,M0)) which is the union of Y ⊆

BP ((H,M0)). By hypothesis if β′ ∈ Y , then (β′, can) is a branching process of
H.

Condition 1: The nodes in β keep the mapping of the components β′, there-
fore by hypothesis the first condition is preserved.

55

Condition 2a and condition 2b: All the events of the components satisfy these
two conditions, and no new events are added. Therefore also all the events of β
satisfies this condition.

Condition 3: As for the previous part of the demonstration, since the net is
canonical two events with the same preset, and the same labelling are encoded
in the same place.

Condition 4: All the components β′ have the same Min(β′) by hypothesis,
and no new minimal elements are added with the union operator.

Condition 5: Again true by definition.

From now on let β = (O, h) with O = (B,E, F) be a branching process
of (H,M0). To prove that each pair (O, h) which satisfy the conditions of
the axiomatic definition can be built using the steps defined in the inductive
definition we proceed in the following way: first, we consider the net generated
by an event e of O, denoted Gen(e), which is a subnet of O built considering
the backward causal closure of e. We prove that, together with the restriction
of h to Gen(e), it also is a branching process; then, it is proved that the net
generated by an event e can be inductively constructed using the steps of the
inductive definition; finally, it is proved that the union of the subnets generated
by all the events of O is again O.

Definition 32. Let β = (O, h) with O = (B,E, F) be a branching process
of (H,M0). Given e ∈ E, the net generated by the event e is denoted with
Gen(e) = ({p | p ∈Min(O) ∨ ∃e′ ∈ [e] such that p ∈ e′•}, [e]).

For example, the process generated by the event drink of the net in Figure
6.1(f) is a net composed of the places and the transitions that causally precede
drink plus the places which represents the initial marking, as it is shown in
Figure 6.3.

Figure 6.3: The net generated by an event

The next proposition proves that each net generated by an event of a branch-
ing process of a hypernet H is a branching process of H itself.

Proposition 3. Let Gen(e) = (B′, E′), and let h′ be the restriction of h to
B′ ∪ E′. (Gen(e), h′) is a branching process.

56

Proof. Conditions 1, 2a, 2b, 3, 5 are trivial since the elements of the nets taken
from a branching process, and all pre-post set are added. Condition 4 can
be proved by induction on [e] observing that by lemma 1 no initial places are
added.

The next lemma shows that the net generated by an event of a branching
process can also be generated by applying the steps of the inductive definition
of branching process (Definition 31). The proof is by induction. It starts with
the net generated by the empty set, which is equivalent to the net of step 1, and
then it is shown that adding an event e to that net using step 2, or generating
the net using Gen(e) leads to the same conclusion. Some preliminary notions
are required in ordeer to prove this lemma:

Let β = (O, h) with O = (B,E, F) be a branching process of (H,M0).
Let Y ⊆ B be a cut, Γ ∈ Cons(H) be a consortium enabled in the hyper-

makring associated to Y , i.e.: HM(Y)[Γ〉. With S2(Y,Γ, O) the net obtained
applying step 2 of definition 31 to the net O is denoted. With S1 the net defined
in step 1 of definition 31 is denoted.

For example, if we consider the Bar hypernet, S1 denotes the net which only
contains the places representing the initial hypermarking (Figure 6.1(a)). Let
O be the net shown in Figure 6.1(d); let Y be the final cut of O, i.e.: Y =
{@client,@bartender,@housec, 〈BAR, bars〉, 〈CLIENT -HOUSE, houses〉,
〈BART -HOUSE, houses〉}; let Γ be the consortium associated to the transition
labelled drink which has been added to Figure 6.1(e): S2(Y,Γ, O) is the net
represented in Figure 6.1(e).

Finally, let E′ = {e1, e2, ..., en} ⊆ E be such that {e1, ..., ei} ⊕ {ei+1} for
all i = 2, ..., n − 1. With GenBP (ei, ..., e1) we denote the net generated start-
ing from S1, and then repeatedly applying step 2 of Definition 31 to the net
described in step 1, i.e.: GenBP (e1, ..., ei) = S2(h(ei),Fin(ei−1), S2(h(ei−1),
Fin(ei−2), S2(..., S1))).

For example, in Figure 6.1(c), GenBP (enterClient, enterBartender) is the
net obtained taking the net S1, and then applying step 2 with the consortium
associated to enterClient and the the net representing the initial cut, and then
again step 2 to the consortium associated to enterBartender and the net ob-
tained by applying the previous step 2 (which, as we will show in the next
theorem, is again the net shown in Figure 6.1(c)).

Lemma 2. Let β = (O, h) with O = (B,E, F) be a branching process of
(H,M0). Let e ∈ E, and [e] = {e1, e2, ..., en} such that {e1, ..., ei} ⊕ {ei+1}
for all i = 2, ..., n− 1 Then, Gen(e) = GenBP (en, ..., e1)

Proof. Induction basis: BP (∅) = Gen(∅) has to be proven. Both will contain
the initial set of the process, which are the same according to condition 4 of
definition 30, and step 1 of definition 31.
Induction step: Assume Gen({ei}) = BP (e1, ..., ei) = (Bi, Ei). Moreover, let
S = {(〈A, p〉, X) ∈ Fin(ei) | A ∈ PASS ∧ γ(A) = p}. We have to prove that
BP (ei+1, ..., e1) = Gen(ei+1). In order to obtain BP (ei+1, ..., e1) we have to
apply step S2 to the net BP (ei, ..., e1), i.e.: S2(h(ei+1,Fin{[ei]}, (Bi, Ei)). By
Definition 31 the places of this net are Bi ∪ {(〈A, trg(A)〉, {Γ, S}) | A ∈ PASS}.
and its events are Ei∪(Γ, S). By Definition 32, and using some simple insiemistic
operation the net Gen{ei+1} is equal to (Bi∪e•i+1, Ei∪e{i+1}). Since condition
22a of Definition 30 holds, and since Gen{ei+1} is a C-net, then ei+1 = (Γ, S).

57

Moreover, since condition 22b of Definition 30 holds, and since Gen{ei+1} is a
C-net, then e•i+1 = {(〈A, trg(A)〉, {Γ, S}) | A ∈ PASS}.

The next lemma proves that the union of the net generated by all the events
of a branching process is the branching process itself. Together with Lemma
3, and the application of step three of the inductive definition, it proves that
the class of net identified by the inductive and the axiomatic definitions are the
same.

Lemma 3. Let β = (O, h) with O = (B,E, F) be a branching process of
(H,M0). Then

⋃
e∈E Gen(e) = β

Proof. All places added by the
⋃

operator belong to β. We have to prove that all
places are taken. Let

⋃
e∈E Gen(e) = (B′, E′), and assume that ∃p such that p ∈

B ∧ p /∈ B′. If p is a minimal place then it belongs to B′ by Definition 32. Oth-
erwise p has an event such that p ∈ e•. But again if it happens then p must
belong to B′.

For events it is simple because all the events of β are added.

Finally, the following theorem is the main result of the section. It proves
that branching processes can be built using the inductive definition.

Theorem 7. Let β = (O, h) with O = (B,E, F) be a branching process of
(H,M0). O can be built using the three step of Definition 31.

Proof. For each event e ∈ E we take the causal closure [e] = {e1, ..., en} of
e. Let (e1, ..., en) be such that {e1, ..., ei} ⊕ {ei+1} for all i = 2, ..., n − 1. By
Proposition 3, Gen(e) is a branching process, and by Lemma 2 each one of these
processes can be built using the inductive definition. By Lemma 3, if we take
the union of all these processes (step 3 of the inductive definition), we obtain
the net O.

6.4 Complete Prefix of the Unfolding

In this Section we first give the definition of Unfolding of an hypernet, a branch-
ing process which contains full information about reachable states. Then, the
notion of complete finite prefix of the unfolding is defined. In this thesis com-
pleteness means that the prefix contains as much information as the unfolding,
in the sense that every reachable hypermarking of the hypernet is represented.
Finally, a Theorem we prove that every reachable hypermarking of a hypernet
is represented as a cut in its finite complete prefix of the unfolding.

Being the previous Section dedicated to the study of branching processes of
an hypernet, the definition of the unfolding of a hypernet shuold be clear and
quite straightforward:

Definition 33. The unfolding of a hypernet H, denoted U = (BU , EU , FU), is
the union of all the branching processes of A.

The main idea for getting a prefix of the unfolding is to cut it at some point
if the parts which follow the cut point have already been explorated. Consider
two configurations C and C ′ of the unfolding whose associated hypermerking
is the same. Then, a sufix E′ of C is also a suffix of C ′, but if we append E′

58

to C, then we do not need to append it to C ′, and viceversa. Configurations
which do not need to be explored are called cut-offs. To be able to stop at a
certain point, and mark a configuration as a cut-off we need an order between
configuretions. This order must satisfy these three conditions:

Definition 34. Let (H,M0) be a marked hypernet, and let ≺ be a partial order
over Conf(β). The order ≺ is adequate if:

1. it is well founded,

2. it refines the set inclusion relation, i.e.: ∀C,C ′ ∈ Conf(β), C ⊂ C ′ ⇒
C ≺ C ′

3. it is preserved by finite extension, i.e.: ∀C,C ′ ∈ Conf(β) such that Mark(C)
= Mark(C ′), then ∀E suffix of C, ∃E′ suffix of C ′ such that
Mark(C ∪E) = Mark(C ′ ∪ E′)

The main idea behind algorithms which generate a prefix of an unfolding
is to start adding events to the branching process which represents the initial
marking, and then to stop when two configurations have the same associated
marking and one of the two is lower than the other one. The following definition
gives an axiomatic characterization of the finite complete prefix of an unfolding.

Definition 35. Let ≺ be an adequate order on Conf(U). An event of the
unfolding is a cut-off event if there exists an event e′′, such [e′′] ≺ [e] and
Mark([e′′]) = Mark([e]). An event e ∈ EU of the unfolding of H is feasible if
no event e′ < e is a cut-off. The ≺-complete prefix is the prefix containing all
the feasible events.

Finally, in the following theorem it is proved that there is a correspondance
between the hypermarking of an hypernet, and the cuts of its finite complete
prefix.

Theorem 8. Let (H,M) be an hypernet, and let U be its unfolding. Let ≺ be
an adequate order on Conf(U). A markingM of H is reachable iff there exists
a configuration C of the ≺-complete prefix of U , that does not cut-off events,
such that Fin(C) = SET(M).

Proof. (⇐): Without loss of generality let fC = {e1, ..., en} be such that ∀i suchthat <
i ≤ n{e1, ..., ei} ⊕ {ei+1}, and let Γ1, ...,Γn be the consortia associated to
e1, ..., en through h. The proof is by induction repeatedly applying the con-
dition 2 of definition 30.

Induction basis: Mark(∅) =M0 which is a reachable hypermarking.
Induction step: Let Ci = {e1, ..., ei} be such that Fin(Ci) = SET(Mi)

whereMi is a reachable hypermarking. By condition 22a Fin(Ci) enables Γi+1.
Let Mi+1 be such that Mi[Γi〉Mi+1. By condition 2 2b Fin(Ci ∪ {ei+1}) =
Fin(Ci)\{〈A, p〉 | A ∈ PASS} ∪ {〈A, p〉 | A ∈ PASS ∧ p = trg(A)} By the

definition of firing rule (Definition 13) Mi+1(A) =

{
Mi(A) if A /∈ PASS

trg(a) if A ∈ PASS,
.

Therefore SET(Mi+1) = SET(M〉)\{〈A, p〉 | A ∈ PASS} ∪ {〈A, p〉 | A ∈
PASS ∧ p = trg(A)}

59

(⇒): Since M is reachable there exists at least one firing sequence τ =
M0[Γ1〉M1...Mn−1[Γn〉Mn. The inductive definition of branching process en-
sures there exists a configuration of C the unfolding such that C = {e1, ..., en}
such that ∀i, 0 < 1 < n then h(ei) = Γi ∧ {e1, ..., ei} ⊕ {ei+1}. Assume that τ
is the minimal firing sequence, i.e.: there is no τ ′ with C ′ ≺ C, where C ′ is the
configuration associated to the firing sequence τ ′.

It will be proved that C does not contain a cut-off event, and therefore it
belongs to the ≺-complete prefix. By contradiction assume that ei ∈ C is a
cut-off event, and let e′ be an event of the unfolding such that [e′] ≺ [ei] and
Mark([ei]) = Mark([e′]). Let [e′] = {e′1, ..., e′j}, and let Γ′

1, ...,Γ
′
j be a firing

sequence such that ∀ k < j h(e′k) = Γ′
k. Since Mark([ei]) = Mark([e′]) the firing

sequence τ ′ = Γ′
1...Γ

′
j ,Γi + 1, ...,Γn leads to the hypermarking M. Let C ′ be

the configuration such that τ ′. Since ≺ is preserved by finite extensions then
C ′ ≺ C which contradicts the minimality of C.

In Figure 6.4 it is shown how the finite complete prefix of the unfolding of
the Bar example appears using the total order defined by Esparsa, Romer, and
Voegler for one safe net in [22].

As it can be seen, the unfolding procedure has been stopped when two
configurations which brings to the same markings have been reached.

60

Chapter 7

Hierarchical Net Models

7.1 Survey of hierarchical Petri net models

We have already discussed how the use of the nets-within-nets paradigm can be
useful to model mobility. Locations are modeled as places of nets, and agents
located in a place are modeled as nets themselves. In this Chapter the main
hierarchical Petri nets formalisms which use the nets-within-nets paradigm are
considered and reviewed. The goal of this Chapter is to give the reader an
overview of which kind of hierarchical Petri net models have been introduced in
the past, with particular attention to models used for mobility. For each class
of net discussed in this thesis we give an informal description of the basic model
by means of an introductory example. Then, extensions, and results concerning
the model are described. The discussion is kept at an informal level: only an
idea of the main characteristics of each model are discussed. The formalism
used to model mobility are compared with the hypernet model.

The Chapter is structured with a first part where several formalisms for
mobility which use the nets-within-nets paradigm are discussed, and a second
part which introduces the Renew tool, and two other approaches which have
not been specifically used to model mobility, but which contain interesting ideas.
The first part begins with object nets, one of the most studied formalisms which
implements the nets-within-nets paradigm. These are discussed in Section 7.2.1.
Then nested nets and its extensions are discussed in Section 7.2.2. Section 7.2.3
discusses object nets for mobility, a particular approach for the problem of
modeling systems of mobile agents acting in distributed namespaces. Modular
nets for mobility are introduced in Section 7.2.4. In the second part we discuss
the Renew tool (Section 7.3.1), the high level net with rules as token paradigm
(Section 7.3.2), and recursive Petri nets (Section 7.3.3).

7.2 Nets-Within-Nets Paradigm and Mobility

7.2.1 Object Nets and MULAN

The idea of using a nesting structure where tokens of a Petri net can be Petri
nets themselves had been discussed by Valk in his earlier work about task flow
in systems of functional unit [48]. The term nets-within-nets was not coined

61

here, but the intuition of using nets (called task flows) as tokens of another net
(the system of functional units) can be tracked back to this earlier work. This
raw idea was refined by Valk itself in his work on elementary object nets [49]
in 1998. A two level structure with a system net (the net at the higher level)
and several object nets (the tokens which are nets themselves) was considered,
and it was also discussed how to handle situations where fork and join of object
nets are required, like for example when a transition t has only one input place,
but several output places. Different semantics were proposed (see for example
[50]). The value semantics and the reference semantics recall the two different
mechanisms of passing parameters to a function in a programming language,
by value and by reference. If the value semantics is used, two copies of the net
bound to the input arc of t are created. They are two independent objects, each
with its own marking. If the reference semantics is used then the two tokens
situated in the output places of t are both references to the same net, and a
change of marking done on one of the two references is reflected immediately
in the other reference. Other semantics introduced are the process semantics in
which the tokens are process of the object net instead of the net itself, and the
distributed semantics where the tokens of the object net in the input place of t
are distributed between the two copies of the object net in the output places of
t when the transition is fired.

Properties of object nets have been studied in [33]. In particular, it was
shown that reachability becomes undecidable while boundedness remains de-
cidable for elementary object net systems. It was also shown that allowing an
infinite nesting structure is enough to obtain a Turing equivalent model. Al-
though this result is useful from a computational point of view, it is a negative
result from the modeling side of the formalism since interesting properties like
reachability and boundedness are not decidable for Turing powerful formalisms.

Other extensions of the object nets model have been proposed. For example,
in [35] the formalism has been extended by adding the possibility of a vertical
synchronization. This means that tokens are no more restricted to move in the
places of the same net, but they can also move in other nets. In this paper it was
also shown that the model with this extension is Turing complete. In [34] an
algebraic extension of object nets was proposed. Operators which compose nets
can be added in arc expression. These operations allow to modify the structure
of net-tokens at run-time.

The paradigm of nets-within-nets has been implemented in the tool Renew.
This topic will be discussed in detail in in Section 7.3.1.

A first attempt to use object nets for modeling mobility can be found in
[32]. To be more precise, the starting point of this paper was the Renew tool.
The authors discuss how the nets-within-nets paradigm can be used to describe
mobility, showing that it is attractive, since it allows an intuitive representation
of mobile entities as well as an operational semantics which is implemented in
the RENEW-simulator. In particular, the Petri net based multi agent system
architecture MULAN was presented (see figure 7.1). A system of mobile agenta
is modeled with a four level structure. Each layer represent a level of abstrac-
tion and it is modeled with a Petri net. The first level of abstraction represents
the agent system with the mobility and communication structure. The tokens
of the net modeling the first level are agent platforms. Platforms offer services
to agents and handle the creation/deletion of agents, and the receiving/sending
of agents to other platforms. Therefore platforms are the environments (also

62

locations) where the agents are located. Agents are also modelled in terms of
nets. They are encapsulated, since the only way of interaction is by message
passing. Agents can be intelligent, since they have access to a knowledge base.
The behavior of the agent is described in terms of protocols, which are again
nets. Protocols are located as templates on the place protocols. Protocol tem-
plates can be instantiated, which happens for example if a message arrives. An
instantiated protocol is part of a conversation and lies in the place conversations.

Figure 7.1: The MULAN architecture

It is hard to compare this approach with the hypernet one. MULAN is not a
high level Petri net formalism like hypernets are, or like all the formalisms which
will be discussed in the following Sections are. MULAN is a framework based
on the reference net formalism, and loosely speaking it builds one more level
of abstraction on a specific formalism: the reference net formalism. Therefore,
from a modeling point of view, MULAN has more features, like the possibility to
model the intelligence of agents, protocol of communication etc. On the other
hand hypernets are more similar to Petri nets, and also offer the possibility
to apply analysis techniques typical of Petri nets to the modeled system. As
we will see, this last point is the main advantage the hypernet model provides
compared to the other nets-within-nets formalism used to model mobility.

63

7.2.2 Nested Nets

Nested nets have been introduced in [40] by Lomazova and Schnoebelen. They
are a nets-within-nets formalism which uses the value semantics. A nested net
can have four kinds of steps. A transfer step is a step in a system net, which
can “move”, “generate”, or “remove” objects, but does not change their inner
states. An object-autonomous step changes only an inner state in one object.
There are also two kinds of synchronization steps. Horizontal synchronization
means simultaneous firing of two object nets, situated in the same place of a
system net. Vertical synchronization means simultaneous firing of a system net
together with some of its objects involved in this ring. It has been demonstrated
that the reachability and the boundedness problems are undecidable for nested
Petri nets, while the termination, the control state maintainability1,and the
inevitability2problems are decidable.

Figure 7.2: A system net SN (left), and an object net EN (right)

Figure 7.2 represents an introductory example in which a set of workers
receive some tasks from time to time. In the initial marking the unlabeled tran-
sition in SN may fire, putting a net token W2 (EN with marking {W2}) into
place S2. This step creates an instance of EN in S2 . After that the transition
marked by t2 in SN may fire synchronously with the transition marked by t2
in the element net lying in S2. After that the net EN with the marking {W3}
will be situated in the place S3, the set A in S5 will be diminished by one token
and the place S4 gets one token. Then the transition marked by t4 in SN may
fire synchronously with the transition marked by t4 in the element net lying in
S3. Note that initially there are no net tokens (workers) in SN , so the element
net EN for a worker plays a role of type description.

In [51] a nested net for adaptive systems has been introduced to model adap-
tive workflow systems. This is a net-within-nets inspired formalism in which the

1The Control-State Maintainability Problem is to decide, given an initial marking M and
a finite set Q = {q1, q2, ..., qm} of markings, whether there exists a computation starting from
M where all markings cover (are not less than w.r.t. some ordering) one of the qis.

2The Inevitability Problem is the dual problem of the Control-State Maintainability Prob-
lem, and consists in deciding whether all computations starting from M eventually visit a
state not covering one of the qis, e.g. for Petri nets we can ask whether a given place will
eventually be emptied.

64

nets are workflow nets enhanced with an exception handling mechanism (EWF).
To manipulate token nets in an adaptive workow net a number of operations on
EWF have been identified. These include: sequential composition, parallel com-
position, and choice. Adaptive workflow nets are Turing complete, therefore in
order to be able to check properties of systems a restriction of this model, called
adaptive workflow net, has been introduced in [52]. It has also been shown that
two typical properties of workflow nets, namely soundness and circumspectness,
can be verified. Soundness means that a proper final marking (state) can be
reached from any marking which is reachable from the initial marking, and no
garbage will be left. Circumspectness means that the upper layer is always
ready to handle any exception that can happen in a lower layer.

Both nested nets and hypernets use the value semantics, a choice which
seems natural for modeling an agent because each agent has its own identity.
However, as we will see in Section 7.2.3, there are some cases where also the
reference semantics makes sense. Nested nets allow the creation of new nets,
feature that is useful for modeling purposes. However, the constraint in the
hypernet model which forbids the creation/deletion of tokens is calculated. In
fact, it is thanks to this constraint that it is possible to expand the hypernet
model to the equivalent 1-safe net. Moreover, the result about the prefix of the
unfolding of Chapter 6 is based on the fact that hypernets have a finite state
space.

As it has been just discussed in nested nets several problems which are
decidable for Petri nets are no more decidable in the nested net formalism,
while in hypernets are a compact representation of 1-safe nets, and therefore all
the problems decidable for 1-safe nets are still decidable.

Finally, another advantage of hypernets is that they have a dynamic hier-
archy, while nested nets have a static hierarchy of agents which cannot change
during the evolution of the system.

7.2.3 Object Nets for Mobility

Object nets for mobility are a nets-within-nets formalism introduced by khöler
and Farwer in [31]. This work investigates the problem of formalizing mo-
bile agents acting in a mobility infrastructure. Consider a situation where two
buildings A and B are present, and a mobile agent can be in eitherbuildings as
shown in Figure 7.3. The two buildings are connected via the mobility transfer
transitions t4 and t6. One mobile agent is present inside building A as a net
token.

When modelling this scenario we have to distinguish two kinds of movement:
movement within a building and movement from one building to another. When
moving within a building, the agent has full access to all services. On the
other hand, when moving to a different building the environment may change
dramatically: services may become unavailable, they may change their name or
their kind of access protocols. This leads to the usual problem that within the
same environment (e.g. the memory of a personal computer) we can use pointers
to access objects (as done for Java objects), which is obviously impossible for a
distributed space like a computer network: For example when a Java program
transfers an object from machine A to B via remote method invocation (RMI)
it does not transfer the object’s pointers (which are not valid for B); instead
Java rather makes a deep copy of the object (called serialization) and transfers

65

Figure 7.3: A mobile agent’s environment

this value over the network. The value is used to generate a new object at B
which can be accessed by a fresh pointer.

Therefore belonging to a name space and migrating between name spaces is
not the same. An object belonging to a name space can be accessed directly via
pointers, but when migrating between name spaces, objects have to be treated
as values that can be copied into network messages. For the modelling of mobile
systems it is essential that the formalism used supports both representations.
To accomplish this, the firing rule of the elementary object net model has been
modified in order to provide both reference and value semantics.

Hypernets do not consider this particular problem and only use the value
semantics. On the one hand this choice restricts the flexibility of the formalism
from a modeling point of view. Situations where agents act in different names-
paces cannot be modeled as simply as in object nets for mobility. On the other
hand adding mechanisms to handle this kind of systems would have complicated
the model of hypernets.

As it has already been discussed for nested nets in the previous Section, in
the hypernet model it is possible to use all the analysis techniques available for
1-safe nets, while in objects nets for mobility problems like boundedness and
reachability are not decidable.

7.2.4 Modular Petri Nets For Mobility

In [38] C.A. Lakos, in an attempt to capture mobility in a Petri net formal-
ism, extended the formalism of modular Petri nets in a hierarchical fashion.
Modular Petri nets are nets made up of a number of subnets, which interact
in the standard Petri net way by place and transition fusion. They have been
extended adding the notion of locations, which are subnets with a specific fusion
environment. Locations are nested, and thus capture the notion of locality or
proximity. Moreover, modular nets have been extended with the capability of
shifting locations: a subsystem resident in one location can be shifted to another
location by firing a transition with arcs incident on locations. A colored version
of this formalism has also been discussed.

In Figure 7.4 a simple mail agent is shown, while Figure 7.5 shows its asso-
ciated system. If place empty is marked in Figure 7.4, then the agent has no

66

Figure 7.4: A simple mail agent

mail to deliver, while if place has1 or has2 is marked, then the agent has mail
to deliver to site1 or site2, respectively. The transitions gen1 and gen2 gener-
ate these mail messages, while transitions rem1 and rem2 consume (or deliver)
them. Transitions moveA and moveB are used to constrain or allow movement
of the agent.

The composite mail system is shown in Figure 7.5. Each rounded rectangle
is a location, which is a subnet together with a fusion environment. The main or
root location is labelled System, and it contains three locations labelled Site0,
Site1 and Site2. Within each of these locations there is a nested location for
the mail agent, labelled Loc0, Loc1 and Loc2, respectively. Transition fusion is
indicated either by name correspondence, by a double line, or by a line through
the transition (these transitions are fused with disabled transitions in the system
which are not shown).

As indicated by the double lines, the transition mov01 in the location Site0
is fused with the transition mov01 in the location System, which is also fused
with the transition mov01 in the location Site1. mov01 in the location Site0
has a broad input arc incident on the location Loc0, while mov01 in Site1 has a
broad output arc incident on the location Loc1. This is shorthand for shifting
the location of a subsystem: a broad input arc removes all the tokens from the
source location, and the broad output arc deposits the tokens into the target
location.

A location is occupied if at least one of the local places is marked. Thus, in
the example, the initial marking indicates that locations System, Site0, Site1,
Site2 and Loc0 are occupied, while locations Loc1 and Loc2 are not. The tran-
sitions like mov01 which shift the location of a subsystem (or more generally
consume a subsystem at a location or generate a subsystem at a location) are
shown with a broad arc. This is a shorthand notation for indicating that all
the tokens in the local places are consumed. Where a consume is paired with
a corresponding generate, it is assumed that the marking is shifted from one
location to another. It is worth noting that for Site0, the shifting of the agent is
determined solely by the site, whereas for Site1 and Site2 the agent collaborates

67

Figure 7.5: The composite mail system

with the shift transition.

Among the formalisms discussed in this Chapter, modular nets for mobility
are probably the class of nets more similar to hypernets. In fact, they both
use the value semantics and they both provides a hierarchy of net which can
dynamically change. However some differences exist. Modular nets for mobility
allows the creation of black tokens, while hypernet don’t. This choice has again
been made to allow the expansion toward 1-safe nets. The other difference is
more technical. When transferring an agent from one location to another one,
what it is transfered is not the entire agent (structure and marking), but only
the marking. This means that places and transition modeling an agents must
be duplicated in every location the agent can go. For example, in Figure 7.5
the net modeling the mail agent (the net in Figure 7.4) is placed in all the four
locations the agents an go.

As far as I know, modular nets for mobility have not been studied from the
decidability of property point of view.

68

7.3 Renew and Other Approaches

7.3.1 Reference Nets and Renew

The reference net formalism was described in [36]. It is a high level Petri net for-
malism based on the nets-within-nets paradigm. The reference net formalism
uses reference semantics. This means that tokens within a net do not exclu-
sively correspond to their object/net (value semantics), but only reference their
object/net. As a result of this, multiple tokens can refer to the same object.

Communication between different net instances within the reference net for-
malism is handled via synchronous channels, based on the concepts proposed
in [11]. Synchronous channels connect two transitions during firing. Transi-
tions inscribed with a synchronous channel can only fire synchronously, mean-
ing that both transitions involved have to be activated before firing can hap-
pen. During firing arbitrary objects can be transmitted bidirectionally over
the channel. While the exchange of data is bidirectional there is a difference
in the handling of the two transitions. The transition, or more accurately the
inscription of the transition, initiating the firing is called the downlink. The
downlink must know the name of the net in which the other transition, the
so-called uplink, is located. The inscription of the downlink has the form net-
name:channelname(parameters), in which the parameters are the objects being
send and received during firing. If the downlink calls an uplink located in the
same net the net name is simply replaced by the keyword this. The uplink’s
inscription is similar, but loses the net name, so that it has the form :chan-
nelname(parameters). Uplinks are not exclusive to one downlink and can be
called from multiple downlinks, so that this construct can be used in a flexible
way. It is also possible to synchronize transitions over different abstraction lev-
els. While during firing one downlink is always linked to just one uplink, it is
possible to inscribe one transition with multiple downlinks, so that more than
two transitions can fire simultaneously.

Figure 7.6 shows a simple example of a reference net system. The example
was modelled using the Renew tool, which will be described later. It models a
producer/consumer system, which holds an arbitrary number of producers and
consumers. The system consists of three kinds of nets: the system net, the
producer nets and the consumer nets. The producer and consumer nets both
possess the same basic structure, but use different channels. The system net
serves as a kind of container for the other nets. The transitions labeled manual
initiate the creation of new producers and consumers by creating new tokens
when a user manually fires them during simulation3. The transitions labeled
C and P actually create new producer or consumer nets when firing. These
new nets are put onto the places below the transitions. The transition labeled
I synchronizes the firing of a transition in one consumer and one producer each
(labeled I1 and I2 in the other nets). In this way it is possible to simulate
the behavior in such a way, that whenever a producer produces a product, an
arbitrary consumer consumes it. It is of course possible to enhance this model
by, for example, adding an intermediary storage, which can store items from
arbitrary producers until consumers need them. Another way of making the
model more realistic is to explicitly model the products as nets as well. That
way they would not just be simple tokens but actual objects being exchanged via

3This is a special function of the Renew tool, which was used for this example.

69

Figure 7.6: Reference net example

the synchronous channels between the producers and consumers. In this case
the parameters of the channels would be the nets, which would be transmitted
from within the producer nets into the consumer nets.

The Petri net editor and simulator Renew (The REference NEt Workshop)
was developed alongside the reference net formalism, and is also described in
[36] as well as in [37]. It features all the necessary tools needed to create, mod-
ify, simulate and examine Petri nets of different formalisms. It is predominantly
used for reference nets, but can be enhanced and extended to support other for-
malisms. It is fully plugin based, meaning that all functionality is provided by a
number of plugins that can be chosen, depending on the specific needs. Plugins
can encapsulate tools, like a file navigator or certain predefined net components,
or extensions to the standard reference net formalism, like hypernets or work-
flow nets. Renew is freely available online and is being further developed and
maintained by the Theoretical Foundations Group of the Department for Infor-
matics of the University of Hamburg. Since the tool supports the idea of nets
within nets and is flexible enough to support multiple formalisms, it was chosen
as the basic environment for the experiments of this thesis. In particular, in
Chapter 9 a Renew plugin which allows to draw and to analyze a hypernet will
be discussed.

7.3.2 High Level Nets ith Nets and Rules as Tokens

In [28] Hoffmann, Ehrig, and Mossakowski introduced a high level model which
uses a modification of the nets-within-nets paradigm, called nets with nets and
rules as tokens. In this new paradigm the tokens of a Petri net can be Petri
nets themselves (like in the ordinary nets-within-nets paradigm), or they can
be rules which can be used to change the structure of net tokens. This new

70

concept has been used to model the main requirements of a modified version of
the dining philosopher example in which a philosopher sitting at the table has
the capability to introduce a new guest. The higher level net of this example

Figure 7.7: Rule1

is shown in Figure 7.8. There are three different locations in the house where
the philosophers can stay: the library, the entrance-hall, and the restaurant. In
the restaurant there are different tables where one or more philosophers can be
placed to have dinner. Each philosopher can eat at a table only when he has
both forks. The philosophers in the entrance-hall have the following additional
capabilities: they are able to invite another philosopher in the entrance-hall to
enter the restaurant and to take place at one of the tables; they are able to ask
a philosopher at one of the tables with at least two philosophers to leave the
table and to enter the entrancehall.

In order to explain the basic concept of this formalism it will be detailed the
execution of transition leave library, which includes the application of the rule
rule1 shown in Figure 7.7. leave library needs an assignment for the variables
n, r and m in the net inscriptions of the transition. They are assigned to the
net phi 1 (see Figure 7.9), the rule rule1, and a match morphism m1 : L → G
between P/T-systems. The first condition codm = n requires G = phi1 and the
second condition applicable(r,m) = tt makes sure that rule rule1 is applicable
to phi1 , especially L = L1 , s.t. the evaluation of the term transform(r,m)
leads to the new net phi1 isomorphic to R1 of rule1 in Figure 7.7. As result of
this ring step phi1 is removed from place Library and phi′1 is added on place
Entrance-Hall. In general, a rule r = (L ← I → R) is given by three P/T-
systems called left-hand side, interface, and right-hand side respectively.

7.3.3 Recursive Petri Nets

Recursive Petri nets are a family of nets introduced by Haddad and Poitrenaud
in which the firing of a transition of a net can generate a copy of the net itself
with a new marking. There are several models belonging to the family of the
recursive Petri net. The first model that is considered here is the sequential
recursive Petri net (SRPN) [26], a restriction of the general model introduced
because, unlike the general model, the model checking problem is decidable for
them. In order to informally explain the basic concepts of this formalism, a
comparison with ordinary Petri nets is described. As an ordinary Petri net, a
sequential recursive Petri net has places and transitions. Moreover, there is a
set of final markings. Transitions are split in two categories: elementary and
abstract transitions. Informally speaking, if the semantics of the basic Petri
net model can be explained as a thread which plays the token game by firing a
transition and updating the current marking, then, by comparison, in the SRPN
model there is a stack of threads (each one with its current marking), where

71

Figure 7.8: The hurried philosophers case of study

the only active thread is the one on the top of the stack. When a thread fires
an elementary transition, it consumes the tokens in the way they are consumed
in ordinary Petri nets. But if an abstract transition is fired, then a new thread
is created, and put on the top of the stack becoming the active one. When a
final marking is reached, then the thread on top of the stack is removed, and
the abstract transition which created the thread is fired.

The net of Figure 7.10 illustrates the characteristic features of SRPNs. Ab-
stract transition are represented by a double border rectangle. The starting
marking of the net created by an abstract transition is specied in a frame. Note
that contrary to ordinary nets, SRPNs are often disconnected since each con-
nected component may be activated by the ring of different abstract transitions.

The left upper part of the gure models the application level of a processor
in an abstract way. The cycle prun , tcorrect , prun represents the correct
execution of the current instruction and the abstract transition tex models a
faulty execution of the instruction yielding a second level with pex marked. In

72

Figure 7.9: A philosopher

Figure 7.10: A simple sequential recursive Petri nets

this level, the system either recovers from the fault (trecover) or detects a
fatal error (tfatal). The sets γ0 and γ1 model these two cases. Depending on
the fault type, when returning to the rst level, the process resumes its activity
(place prun marked) or stops it (place pstop marked). The interrupt modelling
outlines the capabilities of the SRPN. When the abstract transition tint is red,
the current execution is interrupted and a second execution level, modelled by
a token in pup and pint , is activated. The same construction applies again
on this component net making possible a recursive interrupt process. Figure
7.11 represents an extract of the reachability graph of the SRPN of Figure
7.10. An extended marking is graphically represented as a path whose nodes
correspond to levels and are labelled by the associated ordinary markings, and
whose edges connect level i to i + 1. The dashed arcs denote steps between
extended markings.

In the general recursive petri net model (RPN) threads playing the token
game of a Petri net can be dynamically created, and concurrently executed.
From the expressivity point of view it has been proved that RPNs are strictly
more expressive than the union of Petri nets and context free grammars w.r.t.
the language point of view. Moreover, it has been proved that the reachability
problem and some related one remain decidable for RPNs, while event-based

73

Figure 7.11: The reachability grapf of the system in Figure 7.10

linear time model checking is decidable for SRPNs, but not for RPN (see [24, 25]
if you want to deepen these topics).

In [27] some other results concerning recursive Petri nets has been shown.
First, an extended version of RPN which includes new mechanisms like place
capacities, test arcs, parametrised initiation and termination of threads, and
interrupt capabilities has been introduced. It has been also shown that the
reachability and boundedness are still decidable if you consider these extensions.
Then, it is demonstrated that the bisimulation problem between a restricted
class of SRPN and a finite automaton is decidable, like it is decidable between
Petri nets and finite automaton.

74

Chapter 8

Modeling a Grid Tool for
High Energy Phisics

In this Section an example in which the nets-within-nets paradigm has been
successfully used to model a real Grid application is deeply discussed. Section
8.0.4 introduces the application context, a Grid distributed data analysis tool
developed to serve the community of the Compact Muon Solenoid (CMS) exper-
iment at the CERN Large Hadron Collider (LHC). In Section 8.0.5 it is shown
how the considered use case has been modeled. Finally, in Section 8.0.6 it is
possible to find some details about how the model has been built starting from
the source code of the implemented system, and from the documentation.

8.0.4 The Application Context: Grid distributed analysis

The CMS experiment at CERN produces about 2 Petabytes of data to be stored
every year, and a comparable amount of simulated data is generated. Data
needs to be accessed for the whole lifetime of the experiment, for reprocessing
and analysis, from a worldwide community: about 3000 collaborators from 183
institutes spread over 38 countries all around the world.

The CMS computing model uses the infrastructure provided by the World-
wide LHC Computing Grid (WLCG) Project [10] through the supporting projects
EGEE, OSG and Nordugrid. Grid analysis in CMS is data driven. A prerequi-
site is that data is already distributed to some remote computing centers, and
correspondingly published in the CMS data catalogue, so that users can dis-
cover available datasets. Parallelization is provided by splitting the analysis of
large data samples into several jobs. The output data produced by the analyses
are typically copied to the storage of a site and registered in the experiment
specific catalogue. Small output data files are returned to the user. In the CMS
experiment the CRAB tool set has been developed in order to enable physicists
to perform distributed analysis over the Grid. The role of CRAB is to allow
the user to run over distributed datasets the very same analysis she/he ran lo-
cally, and collect the results at the end. CRAB interacts with the distributed
environment and the CMS services, hiding as much of the complexity of the
system as possible. CMS community members use CRAB as a front-end which
provides a thin client, and an Analysis Server which does most of the work in

75

terms of automation, recovery, etc. with respect to the direct interactions with
the Grid. The Analysis Server enables full workflow automation among differ-
ent Grid middlewares and the CMS data and workload management systems.
Indeed, the main reasons behind the development for the Analysis Server are:

• automating as much as possible the whole analysis workflow;

• reducing the unnecessary human load, moving all possible actions to server
side, keeping a thin and light client as the user interface;

• automating as much as possible the interactions with the Grid, performing
submission, resubmission, error handling, output retrieval, post-mortem
operations;

• allowing better job distribution and management;

• implementing advanced use cases for important analysis workflows

The server architecture adopts a completely modular software approach.
In particular, the Analysis Server is comprised of a set of independent com-
ponents (purely reactive agents) implemented as daemons and communicating
asynchronously through a shared messaging service supporting the “publish &
subscribe” paradigm. Most of the components are themselves implemented as
multi-threaded systems, to allow a multi-user scalable system, and to avoid bot-
tlenecks. The task analyses are completely handled during their lifetime by the
server through different families of components: there are components devoted
to monitoring the Grid status of the single jobs in a task, other groups of agents
coordinate to manage the output retrieval and the recovery of the failed jobs by
scheduling their resubmission automatically. A relevant part of the agents is de-
signed in order to handle the submission chain of user tasks to the Grid. As the
Analysis Server internal architecture is a natural candidate for being analyzed
with the nets-within-nets paradigm, as aforementioned, we decided to model
and study the Grid submission chain. The aim of this study is to check that
the involved agents behave correctly and efficiently with respect to the foreseen
submission workflow. We decided to consider the system at the component-
task-job level, as it represents a good compromise between the effects perceived
by the tool final users and the large number of technical details that a complete
representation of the Grid would require.

8.0.5 Modeling the submission use-case

In this Section we describe in detail the process of submitting jobs to the Grid
through the CRAB Analysis Server. For each relevant component of the sys-
tem its net representation is discussed. In addition, the bugs that have been
discovered thanks to the net models are presented with the solutions that the
actual code has adopted in order to solve the issues. The CRAB analysis suite
was modeled using nets in a hierarchical fashion, as shown in Figure 8.1. A
vertical line with multiplicity n, indicates the presence of n nets in the higher
one (e.g.: the CRABClient net contains from 1 to N Task nets); a horizontal
dashed line indicates that the linked nets are references to the same net. In our
modeling we consider one client just for the purpose of simplicity. Of course,
the discussed functionalities and use cases still hold when a larger number of

76

Overall System

CRABClientCRABServerWorker TaskRegister

11 1

Job

1..N

SubmissionWorker

1..N

Job

1

Task

1..N

Task

1..N

Job

1..N

reference

Figure 8.1: The Nets hierarchy for the CRAB suite.

clients is considered, as the client server model assumes no direct interactions
among the clients. In addition, for the use case that will be discussed, the server
code separates properly the session of work for every task.

The OverallSystem net, which is the system net, contains three nets which
respectively model the behavior of the client who is using the CRAB server
(CRABClient net), the TaskRegister component which is a thread running on
the CRAB server (TaskRegister net), and the CRABServerWorker which is also
a thread running on the server (CRABServerWorker net). Tasks are the objects
a client creates, and deals with. They are composed of jobs, the single units of
work that need to be performed. The TaskRegister component is responsible
for registering tasks, i.e. creating some data structures on server disks, check-
ing if each task has all the inputs it needs to be executed, and checking if the
Grid can access the proper security credentials to execute it. The CRABServer-
Worker component continuously receives jobs, schedules them for execution on
the Grid infrastructure, and creates a SubmissionWorker thread which monitors
the lifecycle of each job on the Grid. The clients interact with the server, and
can initiate some operations like: submitting jobs, killing them if needed, and
asking for the results.

CRABClient, Tasks, and Jobs

The first component we are going to discuss is the CRAB client, which is mod-
eled with the net in Figure 8.2. This component is what enables all the action
sequences that the users can do on their Grid analyses.

The first thing a client does is to create a new task on the client machine.
The typical usage pairs a unique task with a CRAB analysis session. For this
reason we assume that the tasksPool can contain a finite number of tokens. After
the task has been locally created on the client machine, the client can perform
a submit operation, which is of course the most important one as it starts the
submission chain. The first time a task is submitted to the server, it is also
registered by the TaskRegister component. Subsequent submits are handled
directly by the CRABServerWorker component. In our model the difference
between the two types of submits is modeled as two different transitions. In
particular crab -submit(first) transition has an uplink (:csf(task)), which means

77

tasktask

task

task

task

task

crab -resubmit

crab -kill

crab -getoutput
task:getjob(j)

task:getjob(j)

task:getjob(j)

j:cg()

j:crs()

j:ck()

task

crab -clean

crab -submit

task

task:cs(jobs)
:cs(jobs)

task task:ck()
crab -overkill

crab -submit (first)
crab -create
task :new Task()

:csf(task)
tasksPool

submittedTaskPool

Figure 8.2: The CRABClient net.

that it must be synchronized with the upper level. As a result the task reference
is copied to the TaskRegister component by the Overall System net. After
creation, the main operations a user can do are submit, resubmit, kill, getoutput,
and clean. All these operations require an interaction with the server, but
since we have focused on the submission use case, these interactions have not
been explicitly modeled. For example the getOutput command is modeled as
an interaction between the client and the job by means of two inscriptions.
Handling all the possible interactions between the actors involved in the system
would have resulted in a very big model, making it impossible to describe in
this paper.

A task, see Figure 8.3, is a bag of jobs (the system allows to collect up
to 4000 jobs into a singe task) and it is a representation that CRAB uses to
perform collective actions on the Grid processes. Places notRegistered, regis-
tering, registered of the Task net contain information about the state of a task
itself. These places control the enabledness of transitions crab -submitFirst,
and taskRegistered, which are respectively called by the CRABClient when a
job is submitted, and by the TaskRegister component when the task has been
successfully registered after a submit first operation. The submit transition is
called when a CRABClient performs a submit subsequent action. In our model
both taskRegistered, and submit transitions send upward two jobs through a
synchronous channel, and make the job move to the submission request state.

The net representing the state of Grid jobs and their allowed actions is re-
ported in Figure 8.4. This net has been modeled combining the finite state
machine reported in the CRAB official documentation with the information ex-
tracted directly from the portion of code devoted to the Grid job state handling.
Several transitions of this net contain uplinks, and therefore have to be synchro-

78

:getjob(j)

x y z

x:new job
y:new job
z:new job

crab -create
v:new job

v

j

j1 j2

j1 j2

crab -submitFirst
j1:cs()

submit

j2:cs()
:cs(j1,j2)

:csf()

killSubmitted

createdJobs

killCreated

firstSubmittedJobs

registered

notRegistered

registering

taskRegistered

submitted

j2

:registered(j1,j2)
j1:cs()
j2:cs()

prematureKill
:ck()

killFirstSubmitted

j

j

j

overkilling

:new()

j2j1

j2j1

j1

j1 j2

Figure 8.3: The Task net. Only four jobs are considered in order to exemplify
the relation with the job net.

nized with some other net. Transitions with a :crs() uplink (CRAB Resubmit)
are transition enabled only if the job is in a state where a resubmit is possi-
ble, and are synchronized with the crab -resubmit transition of the CRABClient
net, or the resubmit transition of the SubmissionWorker net. In the same way
killings (channel :ck()), failures (channel :f()), submission (channel :s()), and
output retrieving (channel :cg()), have to be synchronized with a correspondent
transition in another net.

The integration of the documentation and the code with the formalism of
the nets has allowed us to identify a bug in the way job states are modified. In
particular, the net allows some transitions that are not actually activated by
any event observed by the system (bug 1, b1). For example let us consider the
unlabeled transition between the sub.success and the cleaned places in Figure
8.4: the latter denotes that a job has been abandoned because the user security

79

sub.success

cleared

output retrieval

resubmission

submission fail

cleaned

sub.failed
killsuccess

killrequest

killdone

:crs()

:crs()

:ck()

killrequest

:cs()

created
[]

aborted

:cg()

:s()

:f()

killfailed

sub.request

submission

tsk/pr expire

job finished

terminated resubmit resubmit

:crs()

submission successful

fastKill

:ck()

resubmit
:crs()

gridabort

Figure 8.4: The Job net.

credentials are expired and the Grid will not manage processes whose owner
cannot be recognized. A malicious code interacting with the clients in place of
the proper server could move jobs arbitrarily to this terminal state. The fix
for this bug consisted in a review of the code managing the job state automata
in accordance with what is stated by the presented Job net. Also, the pre-
conditions that allow a client to perform a kill request over the jobs are not
granted properly (b2): jobs can be killed when they are in states where the
killing is dangerous. For example, a user could run into a condition where a
failed job cannot be resubmitted as the system requires to kill it. That means
the job is in a deadlock, as a failed job cannot be killed on the Grid.

TaskRegister

The TaskRegister component, shown on the left of Figure 8.5, duplicates the
task and jobs structures that have been created at the client side and alters
all the object attributes in order to localize them with respect to the running
environment of the server, taking care also of security issues (like user credentials

80

fail

x

fail

task

task

fail

fail

task

task

task

task

task

task

task

task

task:csf()
:csf(task)

archive task

local action

delegate

local action

check input

submission

task

task:registered(j1,j2)
:mcsw(j1,j2)

toCSW

task

task

task

task

task

task

task

task

j

j:f()

j

j

j

j

j

j

j

j

j:f()
fail

j

21 3

[] [] []

:init(j)

j

j

j

j

j

j

j

submit

j

j

j:crs()
resubmit

j

j:f()

j:f()
fail

fail

fail

fail

j:s()

fail
j:f()

clean
:clean()

evaluateOutcome

listMatch

loadGridData

preSubmCheck

Figure 8.5: TaskRegister and SubmissionWorker nets respectively

delegation) and files movement (check the existence of input). We modeled
this cloning by means of the reference semantics: the TaskRegister component
receives from the client a copy of the reference which points to the Task.

The component is able to handle more tasks simultaneously thanks to a
pool of threads implementing the net of Figure 8.5. The first transition that is
fired is submission, which is synchronized with the transition in the system net
that receives the task reference from the CRABClient. Then four operations
which can fail are executed on the task. These include local modification of the
task with respect to the server environment, the user’s credential retrieval (also
known as delegation), the setting of the server behavior according to what the
credentials allow to do and, finally, the checking that the needed input files are
accessible from the Grid. If the registration fails the only possible operation
available is archiveTask which deletes the reference to the task from the task
register component. If the user has the privileges to execute the jobs in the
task, and if the inputs needed by the task are available, then a range of jobs
is selected from the task and passed to the CRABServerWorker by firing the
toCSW transition (again under the supervision of the system net). The mod-
eling and the simulation of the TaskRegister net has highlighted some relevant
defects and bugs. In case of failure the TaskRegister component was not able

81

to set properly the status of the jobs in a task to fail. This macroscopic lack
in the system design implied different side effects. The server was not able to
discriminate whether to retry automatically the registration process or to give
up and notify the user about the impossibility to proceed (b3). In addition, the
system could not tell if the registration has been attempted previously. This
implies that the client transfers the input data every time a registration failure
appears, with a waste of network resources (b4). Both the defects have been
solved by introducing the proper synchronization between the fail transition in
the component with submission failed in the job net. Mapping the synchroniza-
tion into the server code has granted that the status of the jobs is set to the
correct failure state and that the submission counters are properly incremented
(being implementative details the counter is not reported in the Job net). With
this modification the server becomes aware that a first try has been executed
and also network transfers are exploited more efficiently. A second bug has been
identified thanks to the study of the synchronization among the transitions for
the client, the jobs and the TaskRegister nets. In detail, the handling of the kill
commands presents some issues. If a user requires to kill some jobs while the
task is being registered, the system cannot distinguish properly which jobs have
to be killed and therefore it applies an over-killing strategy by halting the whole
task (b5). This happens because the code performs some sort of synchronization
with the Task net instead of having rendezvous with the related transitions into
the lists of killing jobs.

The killing of Grid jobs is a demanding action, both in terms of network
communications and in terms of coordination among the different services in-
volved in a Grid. Furthermore the killing of an analysis job is a permitted but
infrequent action. For these reasons the CRAB developers have decided to sup-
press this early job termination feature in order to avoid the bug. Now users are
allowed to kill jobs only once they have been actually submitted to the Grid.

CRABServerWorker, and SubmissionWorkers

In our model the result of a submit operation is that the CRABServerWorker
component, shown in Figure 8.6, receives a structured token in the place ac-
cepted. If the submit was the first, transition newTaskRegistered is fired after
the task has been registered by the TaskRegister component by means of transi-
tion toCSW, which is synchronized with transition newTaskRegistered through
the overall system. If the submit is not the first, the task has been already reg-
istered, therefore transition subsequentSubmission is fired. After receiving the
range of jobs, the CRABServerWorker component schedules these jobs for the
execution on the Grid infrastructure. The practical effect of this component is
to break the task into lists of jobs in order to improve the performance thanks
to bulk interactions with the Grid middleware. The Submission Worker thread
spawned by the component monitors the actual submission process of the jobs.
We have modeled this fact by creating a Submission Worker net for each one
of the jobs in the list. Indeed, transition triggerSubmissionWorker creates a
new Submission Worker assigned to the variable sw and synchronizes it with a
transition labeled init.

The thread is responsible both for tracking the submission to the Grid in-
frastructure, and for resubmitting jobs when a failure occurs. Failures can occur
for different reasons: network communication glitches, unavailable compatible

82

schedule
j j

sw

:acceptTR(j1,j2)
newTaskRegistered

acceppted

triggerSubmissionWorker

:clean()
clean

subsequentSubmission
:subsequentSubmission(j1,j2)

j

sw: init(j)
sw: new SubmissionWorker

j1 j2

j2j1

Figure 8.6: The CRABServerWorker Net

resources, etc. Some types of failures are recoverable and in those cases the
Submission Worker automatically tries to resubmit the job a three times. This
value can be configured in the code, but in the model we only used the actually
employed value of three. If the failure persists the job is permanently marked as
failed. The net shown on the right in Figure 8.5 is our model of the submission
worker component.

The study of the synchronization between the job and the Submission Worker
nets allowed us to identify another bug in the code. The submission success
transition in the job net (Figure 8.4) synchronizes with the submit Submission
Worker’s transition (right of Figure 8.5). This means that the CRAB Server
marks the submission as successful just after the interactions with the Grid.
Actually the network latencies could delay the propagation of the job failure
message (b6) and, therefore, the correct rendezvous should be enacted between
submission success and evaluateOutcome.

It is relevant to observe that the approach followed for the modeling of the
CRAB Server submission chain is a particular case for a quite general class of
Grid systems. All the Grid middlewares rely on jobs that are represented by
finite state automata and that are concurrently managed by the different services
involved in the Grid. In addition, the intermediate action of a broker like the
CRAB Server is becoming a common pattern with the diffusion of scientific
gateways: programmatic portals that abstract the user applications from the
complexities of the distributed infrastructures acting as back end.

The adoption of the nets-within-nets paradigm has provided a natural and
effective way to model subtle interactions among the different net levels. It
would have required a significantly greater effort to discover the same problems
with a flat net approach. In the following subsection details about the process
of deriving the models from the documentation and the code are given.

8.0.6 Details on the model derivation process

The model was derived from the code by analyzing both the official documen-
tation and the source code of the system. The Job net is directly built from
the documentation. A finite state automata which describes the Job is re-
ported explicitly. After that, simply by using pattern matching we analyzed the
source code relevant for the submission use case by searching for interaction with
jobs. Each source module is modeled as a net (e.g.: CRABClient, TaskRegister,

83

CRABServerWorker etc), and the interactions with the Job nets are modeled
using the Renew uplink/downlink mechanism. A modification of the status of
a job in the code is modeled as a pair of synchronized transitions in the model
itself: one in the job net and one in the net that models the component changing
the job status.

To ensure that the model is an accurate representation of the software, we
made several task submissions with the CRAB tool and monitored the status
of the jobs during the evolution. The request parameters were set up so that
different behaviours of the system are tested. For example, jobs lacking of input
files, job submitted by users with expired credentials, and jobs killed before the
completion of task registration process are test cases that have been considered.
After that, we simulated each submission on the model, taking care that the
simulation of the status of the job net was consistent with the actual job status
in the system.

84

Chapter 9

Tools For Hierarchical Nets

The verification of properties of a concurrent system is very important. Specifi-
cations critical to the correct execution of a system need to be verified in order
to guarantee them after deployment. Unfortunately, as it has been discussed in
Chapter 7, for many high level models important Petri net properties are un-
decidable. Therefore it is impossible to verify them using the known Petri net
techniques. This is a common problem for high level Petri net models: proper-
ties which are computable with low-level formalisms become undecidable, and
thus cannot be verified anymore, in some high-level models.

However, it is always possible to first restrict these formalisms in some way,
so that they can later be translated into low-level formalisms, which in turn can
be verified again. In the rest of this Chapter it will be described which features
of reference net should be used, and which features should not be used if you
want to use the Renew plugin for modeling hypernets. The advantage of doing
so is that hypernets can easily be translated into 1-safe nets, and then they can
be analysed.

The main result regarding this work is the implementation of a Renew
hypernet plugin which incorporates features for computing S-invariants, and
features for model checking a hypernet. As far as I know, this is the first time
that analysis techniques typical of Petri nets has been implemented in a tool
which support the nets-within-nets paradigm, and it is mature enough to be
used in a real application context.

In the rest of the Chapter when we will talk about invariants we are always
referring to S-invariants.

9.1 A Renew Plugin For Drawing And Analyz-
ing Hypernets

9.1.1 Restricting Reference Nets to Hypernets

Restricting reference net is probably the most intuitive way to use verification
techniques in Renew. In particular, the use of a nets-within-nets formalism
like hypernets as a restriction permits the use of the nets-within-nets paradigm,
which is probably the most intresting feature in Renew. The original contribute
of the paper is to show how this plugin allows the use of verification techniques,

85

like invariants and CTL model checking, to check properties of systems which
are suitable to be modeled with the the nets-within-nets paradigm.

9.1.2 The Hypernet Plugin

From a technical point of view the implementation of a new formalism in Renew
is done using a plugin mechanism. The most important method contained in
the classes implementing the plugin is a compile method which takes as input
a shadow net, a set of Java objects containing all the information about the
net the user has drawn in the graphical editor of Renew, and transform it in
a set of Java objects used by the simulator engine to simulate the net. This
compile method is responsible for checking that the net drawn by the user is an
actual hypernet in our case. In particular, in order to be able to use Renew as
a hypernet simulator, the arc and transition inscriptions used in the modeling
process must be restricted in such a way that the drawn net is a hypernet.
Therefore the restrictions applied in the plugin are the following:

• Inscriptions (tokens) inside places can only be in the following forms: iden-
tifier or identifier:netType. In the first case the identifier represent the
name of an empty net, and will be treated by the simulator engine as an
black token; in the second case a new instance of the net netType will be
created and placed inside the place.

• Inscriptions on arcs are restricted to single variables only. Each arc must
contain exactly one variable inscription.

• The inscriptions of input (output) arcs must not be duplicated. In this
way it is possible to preserve the identity of nets: duplication of tokens is
forbidden.

• Balancing of transition has to be checked, i.e.: the set of variable names
used to inscribe input arcs must coincide with the set of variable names
used to inscribe output arcs.

• Communication places are deleted, and are simulated by means of syn-
chronous channels. These channels are counted when checking transition
balance.

For example, the airport agent shown in Figure 3.2 can be drawn as a hy-
pernet in Renew using the net shown in Figure 9.1. The traveler empty tokens
are place inscriptions T1 and T2, and the plane net instance is created by the
P1 : place inscription. Each transition is balanced. For example transition
deplane in the airport has a bidirectional arc labelled pl, and an output arc la-
belled pa for which there is a correspondant downling, namely pl : deplane(pa).
Each communication place is deleted, and it is replaced with a synchronous chan-
nel. Land and takeoff transitions are equipped with two uplink because they
were connected to two up-communication places. Deplane and board transitions
contain two downlinks because they were connected to down-communicating
places. The module name used to label communicating places is used to re-
trieve the variable name used in the downlink.

The P1 agent of Figure 3.1 is drawn in the hypernet plugin of Renew with
the net in Figure 9.2. Again, up-communication places are replaced by channels,

86

pl
:land(pl) :takeoff(pl)

plplplplpl

pa pa

pl

lg bg

l

rf

T2

pl:to_rf()

to_bg takeoffland to_rf

deplane board

pl

pl:board(pa)pl:deplane(pa)

P1:plane

Figure 9.1: The airport agent drawn with the hypernet plugin of Renew

and transition to rf must synchronise with the corresponding transition in the
airport agent.

chk

pa:board(pa) :deplane(pa) :to_rf()

to_rfdeplaneboard

chk

pa

chk

chk

seat
T1

chk

CK

freeplaces

numPass

Figure 9.2: The plane agent drawn with the hypernet plugin of Renew

As we already mentioned, thanks to the expansion to 1-safe nets it is possible
to use verification techniques defined for this class of net to analyse system
modelled with a hypernet. Two of the most useful techniques are invariants
analysis, and model checking. We explored two possibilities of using them in
the plugin we implemented: internal implementation in Renew, or exporting
the 1-safe net in a format understandable by other tools. Since implementing
these analysis techniques in an efficient way is a difficult task (some tools are
very elaborated, and have been implemented over several years), and since very
efficient open source tools are available for free, we decided to use external tools
to implement invariant analysis, and model checking of a hypernet.

In the following sections we will show how the extensions and incorporation
can be used in a practical example.

9.2 Example

The invariant analysis, and the model checking extensions we implemented in
Renew can be used to prove properties of a system. We have chosen the
external tools LoLA (see http://www2.informatik.hu-berlin.de/top/lola/
lola.html) and INA (see http://www2.informatik.hu-berlin.de/~starke/
ina.html) for analysing purposes. Starting from the airport example of Chapter

87

3 shown in Figure 3.2, we will prove using invariants that there is never more
than one passenger on the plane, and we will prove using the model checker that
a plane never refuels if there are a passenger on board.

By running the invariant analysis we get the following invariants:

T2@l T2@seat CHK@pass P1@lg P1@rf P1@bg CHK@freepl T1@seat T1@l
0 0 0 1 1 1 0 0 0
1 1 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 1 1
1 0 1 0 0 0 0 0 1
0 1 0 0 0 0 1 1 0

The first four invariants are those which guarantee the truth of “law of
conservation of agents”, achieved thanks to the state machine decomposition in
the formalism. For each agent there is a corresponding invariant indicating the
places in which that agent can be located. Since the places of each invariant
contains only one token in the initial marking, it is mathematically proved that
each agent can be only in certain places: the places which are of the same sort
of the agent itself. Moreover, these four invariants can also be used to prove
that the net is 1-safe: they cover all places of the net, and contain only one
token in the initial marking.

The fifth invariant is {〈T2, l〉, 〈CHK,numPass〉, 〈T1, l〉} and contains two
tokens in the initial marking. Together with the second and the fourth invariants
it can be used to prove that if the place 〈CHK,numPass〉 is marked then one
of the two passenger is seated on the plane. The place is not marked only if
both passenger are in the airport.

The sixth invariant is the counterpart of the fifth, and states that only
one of the following places can be marked: {〈T2, seat〉, 〈CHK, freeplaces〉,
〈T1, seat〉}. The information is clear: only one passenger can be in the seat
place of the plane. If none of them is in the plane 〈CHK, freeplaces〉 is marked.

In Figure 9.3 a screenshot of Renew after the computation of invariants is
shown.

Figure 9.3: A screenshot of the invariants computed inside Renew

88

While invariants analysis can be launched, and the computed invariants can
be analysed to extract information about the system, in order to analyze the
system using model checking a formula specified in a temporal logic is needed.
Since we choose LoLA, which is a CTL model checker, we need to specify the
property we want to verify using this logic. For example, checking the property
“if the plane is located in the place representing the refueling station then no
passenger is on board” can be done by entering as input of the Renew plugin
we implemented the following CTL formula:

ALLPATH ALWAY S

NOT ((T1.seat = 1 AND P1.rf = 1) OR (T2.seat = 1 AND P1.rf = 1))

The formula checks that in every reachable state (ALLPATH ALWAY S) the
situation in which both placed 〈T1, seat〉 and 〈P1, rf〉 are marked never occurs
(and the same for places 〈T2, seat〉 and 〈P1, rf〉). The analysis performed
confirms that the truth value of the formula is true, which is enough to guarantee
that the property is true for the system.

As it can be seen in this simple example, the advantage of using model check-
ing is that it is possible to express, and consequently to verify, more properties
compared to invariant analysis. In our example, the information that a plane
never refuels if a passenger is on board is not present in the computed invariants,
but can be verified using the model checking. However, the drawback is that
it is necessary to explore the whole state space of the system in order to verify
a property. Invariants are computed on the static structure of the net, which
is usually exponentially smaller compared to the state space of the system. In
general, in real huge application both the techniques are useful: invariants give
a quick overview of some properties of the system, model checking take more
time and it can be used to verify specific properties of the system.

89

90

Chapter 10

Conclusions and Future
Developments

In this dissertation the problem of modeling systems of mobile agents with the
hypernet formalism has been addressed. The main contributions and results of
the thesis can be categorized in four fields: a study of the model focused on
improving its flexibility; the study of properties of the model; the modeling of
a real application; the development of a prototype which allows to draw and to
analyze a hypernet.

The need of a generalization of the basic model arose in [5], when it was
not possible to model with basic hypernets a class of membrane systems, com-
putational models based upon the architecture of a biological cell. The model
of generalized hypernets has been studied in this thesis, and it has been shown
that the main characteristics of the basic model, like the preservation of the
tree-like structure of the marking, are preserved. It has also been proven that,
starting from a generalized hypernet, it is possible to build a one safe net with
an equivalent behavior.

One of the main results of the thesis concerns the definition of the notion of
unfolding for a generalized hypernet. Unfoldings are mathematical structures
which explicitly represent concurrency and casual dependence between actions,
but hide information about all the possible interleavings of concurrent actions.
The result is a compact representation of the state space of a hypernet, which
can be exploited by behavioral techniques which explore all the possible states,
like model checking.

The thesis also covers a real and concrete application context. The nets-
within-nets paradigm has been used to model a component of the Grid tool for
High Energy Physics data analysis used by scientists working at the Compact
Muon Solenoid experiment at the CERN of Geneva. The interactions between
jobs which need to be executed on the Grid infrastructure, and the software
components of the tool were modeled explicitly and in a natural way using
nets-within-nets and Renew.

Finally, the implementation of a Renew hypernet plugin which incorporates
features for computing S-invariants, and features for model checking a hypernet
was one of the subject of this thesis. This plugin checks if the net drawn by the
user is a hypernet, and warns the user if hypernet constraints have not been

91

obeyed. The modeled system can be simulated using the internal simulator of
Renew. The most important feature of the plugin is that it provides function-
alities for analyzing a hypernet. The tool can generate the 1-safe net equivalent
to a given hypernet, and then it can invoke external tool to perform analysis on
the 1-safe net.

Future developments will concern the study of how to further extend the
generalized hypernet model by adding mechanism to create new agents. This
is a major change in the formalism. In fact, the expansion toward 1-safe net
will not be more possible if creation of agents is possible, and the state space
will not be limited anymore. As a consequence, decidability issues may arise
because and properties which are decidable with the current model may become
undecidable

Another future line of research regards the definition of a logic for expressing
properties of generalized hypernets considering both the temporal evolution of
agents and their structural correlation. The starting point for this thread of
research are the work on agent aware transition systems [4, 1], where two classes
of logic capable of expressing the dynamic evolution of the structural correlation
have been defined, and glued together in a powerful language called CTL2.

Having a software which support the formalism and which implements anal-
ysis techniques is very important for the success of a model, and allows people
to use the formalism in real application contexts. Because of that, the last line
of research I want to explore concerns the optimization of the unfolding algo-
rithm presented in Chapter 6, and its implementation in the plugin presented
in Chapter 9.

92

Bibliography

[1] M Bednarczyk, L Bernardinello, W Paw lowski, and L Pomello. Modelling
and analysing systems of agents by agent-aware transition systems. In
F. Fogelman-Soulie, editor, Mining Massive Data Sets for Security: Ad-
vances in Data Mining, Search, Social Networks and Text Mining, and
their Applications to Security, volume 19, pages 103–112. IOS Press, 2008.

[2] Marek A. Bednarczyk, Luca Bernardinello, Wies law Paw lowski, and Lucia
Pomello. Modelling mobility with Petri Hypernets. In Recent Trends in
Algebraic Development Techniques, volume 3423/2005 of Lecture Notes in
Computer Science, pages 28–44. Springer Berlin / Heidelberg, 2005.

[3] Marek A. Bednarczyk, Luca Bernardinello, Wies law Paw lowski, and Lucia
Pomello. From Petri hypernets to 1-safe nets. In Proceedings of the Fourth
International Workshop on Modelling of Objects, Components and Agents,
MOCA’06, Bericht 272, FBI-HH-B-272/06, 2006, pages 23–43, June 2006.

[4] Marek A. Bednarczyk, Wojciech Jamroga, and Wieslaw Paw lowski. Ex-
pressing and verifying temporal and structural properties of mobile agents.
Fundam. Inform., 72(1-3):51–63, 2006.

[5] Luca Bernardinello, Nicola Bonzanni, Marco Mascheroni, and Lucia
Pomello. Modeling symport/antiport p systems with a class of hierarchical
Petri nets. In Membrane Computing, volume Volume 4860/2007 of Lecture
Notes in Computer Science, pages 124–137. Springer Berlin / Heidelberg,
2007.

[6] E. Best and C. Fernandez. Nonsequential Processes–A Petri Net View, vol-
ume 13 of EATCS Monographs on Theoretical Computer Science. Springer-
Verlag, 1988.

[7] R.E. Bryant. Graph-based algorithms for boolean function manipulation.
Computers, IEEE Transactions on, C-35(8):677 –691, aug. 1986.

[8] Luca Cardelli and Andrew D. Gordon. Mobile ambients. In Maurice Nivat,
editor, Foundations of Software Science and Computation Structures, vol-
ume 1378 of Lecture Notes in Computer Science, pages 253–292. Springer
Berlin / Heidelberg, 1998.

[9] G. Castagna, J. Vitek, and F. Zappa Nardelli. The seal calculus. Informa-
tion and Computation, 201(1):1 – 54, 2005.

93

[10] CERN. Worldwide LHC Computing Grid.
http://lcg.web.cern.ch/lcg/public/. Accessed May, 2010.

[11] Soren Christensen and Niels Damgaard Hansen. Coloured petri nets ex-
tended with channels for synchronous communication. Lecture Notes in
Computer Science, 815/1994:159–178, 1994. Application and Theory of
Petri Nets 1994.

[12] Edmund M. Clarke, Orna Grumberg, and David E. Long. Model checking
and abstraction. ACM Trans. Program. Lang. Syst., 16(5):1512–1542, 1994.

[13] P.M. Cohn. Universal Algebra. Springer, Berlin, 1981.

[14] Jordi Cortadella and Wolfgang Reisig, editors. Applications and Theory of
Petri Nets 2004, 25th International Conference, ICATPN 2004, Bologna,
Italy, June 21-25, 2004, Proceedings, volume 3099 of Lecture Notes in Com-
puter Science. Springer, 2004.

[15] R. De Nicola, G.L. Ferrari, and R. Pugliese. Klaim: a kernel language for
agents interaction and mobility. Software Engineering, IEEE Transactions
on, 24(5):315 –330, may. 1998.

[16] Reinhard Diestel. Graph Theory (Graduate Texts in Mathematics).
Springer, 2005.

[17] Joost Engelfriet. Branching processes of petri nets. Acta Inf., 28(6):575–
591, 1991.

[18] Javier Esparza and Keijo Heljanko. A new unfolding approach to LTL
model checking. In Ugo Montanari, José D. P. Rolim, and Emo Welzl,
editors, ICALP, volume 1853 of Lecture Notes in Computer Science, pages
475–486. Springer, 2000.

[19] Javier Esparza and Keijo Heljanko. Implementing LTL model checking
with net unfoldings. In Matthew B. Dwyer, editor, SPIN, volume 2057 of
Lecture Notes in Computer Science, pages 37–56. Springer, 2001.

[20] Javier Esparza and Keijo Heljanko. Unfoldings: A Partial-Order Approach
to Model Checking. EATCS Monographs on Theoretical Computer Science.
Springer Publishing Company, Incorporated, 2008.

[21] Javier Esparza and Keijo Heljanko. Unfoldings: A Partial-Order Ap-
proach to Model Checking (Monographs in Theoretical Computer Science.
An EATCS Series). Springer, 2008.

[22] Javier Esparza, Stefan Römer, and Walter Vogler. An improvement
of McMillan’s unfolding algorithm. Formal Methods in System Design,
20:285–310, 2002. 10.1023/A:1014746130920.

[23] P. Frisco. About p systems with symport/antiport. Soft Computing,
9(9):664–672, September 2005.

94

[24] Serge Haddad and Denis Poitrenaud. Theoretical aspects of recursive
Petri nets. In S. Donatelli and J. Kleijn, editors, Proceedings of the
20th International Conference on Application and Theory of Petri Nets
(ICATPN’99), volume 1639 of Lecture Notes in Computer Science, pages
228–247, Williamsburg, Virginia, USA, June 1999. Springer Verlag.

[25] Serge Haddad and Denis Poitrenaud. Modelling and analyzing systems
with recursive Petri nets. In Proceedings of the 5th Workshop on Discrete
Event Systems (WODES’2000), pages 449–458, Ghent, Belgium, August
2000. Kluwer Academic Publishers.

[26] Serge Haddad and Denis Poitrenaud. Checking linear temporal formulas
on sequential recursive Petri nets. In Proceedings of the 8th International
Symposium on Temporal Representation and Reasonning (TIME’01), pages
198–205, Cividale del Friuli, Italie, 2001. IEEE Computer Society.

[27] Serge Haddad and Denis Poitrenaud. Recursive Petri nets – Theory and
application to discrete event systems. Acta Informatica, 44(7–8):463–508,
December 2007.

[28] Kathrin Hoffmann, Hartmut Ehrig, and Till Mossakowski. High-level nets
with nets and rules as tokens. In Gianfranco Ciardo and Philippe Daron-
deau, editors, ICATPN, volume 3536 of Lecture Notes in Computer Science,
pages 268–288. Springer, 2005.

[29] Victor Khomenko, Maciej Koutny, and Walter Vogler. Canonical prefixes of
Petri net unfoldings. Acta Informatica, 40:95–118, 2003. 10.1007/s00236-
003-0122-y.

[30] Michael Kishinevsky, Alex Kondratyev, Alexander Taubin, and Victor Var-
shavsky. Analysis and identification of speed-independent circuits on an
event model. Formal Methods in System Design, 4(1):33–75, 1994.

[31] Michael Köhler and Berndt Farwer. Object nets for mobility. In Jetty
Kleijn and Alexandre Yakovlev, editors, ICATPN, volume 4546 of Lecture
Notes in Computer Science, pages 244–262. Springer, 2007.

[32] Michael Köhler, Daniel Moldt, and Heiko Rölke. Modelling mobility and
mobile agents using nets within nets. In Wil M. P. van der Aalst and Eike
Best, editors, ICATPN, volume 2679 of Lecture Notes in Computer Science,
pages 121–139. Springer, 2003.

[33] Michael Köhler and Heiko Rölke. Properties of object Petri nets. In Cor-
tadella and Reisig [14], pages 278–297.

[34] Michael Köhler-Bußmeier. Hornets: Nets within nets combined with net
algebra. In Giuliana Franceschinis and Karsten Wolf, editors, Applications
and Theory of Petri Nets, volume 5606 of Lecture Notes in Computer Sci-
ence, pages 243–262. Springer Berlin / Heidelberg, 2009.

[35] Michael Köhler-Bußmeier and Frank Heitmann. On the expressiveness of
communication channels for object nets. Fundamenta Informaticae, 93(1-
3):205–219, 2009.

95

[36] Olaf Kummer. Referenznetze. Logos-Verlag, 2002.

[37] Olaf Kummer, Frank Wienberg, Michael Duvigneau, Jörn Schumacher,
Michael Köhler, Daniel Moldt, Heiko Rölke, and Rüdiger Valk. An ex-
tensible editor and simulation engine for Petri nets: Renew. In Cortadella
and Reisig [14], pages 484–493.

[38] Charles Lakos. A Petri net view of mobility. In Farn Wang, editor,
FORTE, volume 3731 of Lecture Notes in Computer Science, pages 174–
188. Springer, 2005.

[39] Irina A. Lomazova. Nested Petri nets - a formalism for specification and
verification of multi-agent distributed systems. Fundam. Inform., 43(1-
4):195–214, 2000.

[40] Irina A. Lomazova and Ph. Schnoebelen. Some decidability results for
nested Petri nets. In Dines Bjørner, Manfred Broy, and Alexandre V.
Zamulin, editors, Ershov Memorial Conference, volume 1755 of Lecture
Notes in Computer Science, pages 208–220. Springer, 1999.

[41] Carlos Mart́ın-Vide, Andrei Păun, and Gheorghe Păun. On the power of
P systems with symport rules. Journal of Universal Computer Science,
8(2):317–331, 2002.

[42] Carlos Mart́ın-Vide, Andrei Păun, Gheorghe Păun, and Grzegorz Rozen-
berg. Membrane systems with coupled transport: Universality and nor-
mal forms. Fundamenta Informaticae, 49(1-3):1–15, January 2002. Special
Issue: Membrane Computing (WMC-CdeA2001) Guest Editor(s): Carlos-
Mart́ın-Vide, Gheorghe Păun.

[43] K. McMillan. Using unfoldings to avoid the state explosion problem in the
verification of asynchronous circuits. In Gregor von Bochmann and David
Probst, editors, Computer Aided Verification, volume 663 of Lecture Notes
in Computer Science, pages 164–177. Springer Berlin / Heidelberg, 1993.

[44] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile
processes, i. Information and Computation, 100(1):1 – 40, 1992.

[45] Andrei Păun and Gheorghe Păun. The power of communication: P systems
with symport/antiport. New Generation Computing, 20(3):295–305, May
2002.

[46] Andrei Păun, Gheorghe Păun, and Grzegorz Rozenberg. Computing by
communication in networks of membranes. International Journal of Foun-
dations of Computer Science, 13(6):779–798, December 2002.

[47] Gheorghe Păun. Introduction to membrane computing. In First brain-
storming Workshop on Uncertainty in Membrane Computing, Palmade
Mallorca, Spain, 2004.

[48] Rüdiger Valk. Nets in computer organisation. In Wilfried Brauer, Wolfgang
Reisig, and Grzegorz Rozenberg, editors, Advances in Petri Nets, volume
255 of Lecture Notes in Computer Science, pages 218–233. Springer, 1986.

96

[49] Rüdiger Valk. Petri nets as token objects: An introduction to elementary
object nets. In Jörg Desel and Manuel Silva, editors, ICATPN, volume
1420 of Lecture Notes in Computer Science, pages 1–25. Springer, 1998.

[50] Rüdiger Valk. Object Petri nets: Using the nets-within-nets paradigm.
In Lectures on Concurrency and Petri Nets, volume 3098/2004 of Lecture
Notes in Computer Science, pages 819–848. Springer Berlin / Heidelberg,
2004.

[51] Kees M. van Hee, Irina A. Lomazova, Olivia Oanea, Alexander Serebrenik,
Natalia Sidorova, and Marc Voorhoeve. Nested nets for adaptive systems.
In Susanna Donatelli and P. S. Thiagarajan, editors, ICATPN, volume 4024
of Lecture Notes in Computer Science, pages 241–260. Springer, 2006.

[52] Kees M. van Hee, Olivia Oanea, Alexander Serebrenik, Natalia Sidorova,
Marc Voorhoeve, and Irina A. Lomazova. Checking properties of adaptive
workflow nets. Fundam. Inform., 79(3-4):347–362, 2007.

[53] Pierre Wolper and Patrice Godefroid. Partial-order methods for temporal
verification. In Eike Best, editor, CONCUR’93, volume 715 of Lecture
Notes in Computer Science, pages 233–246. Springer Berlin / Heidelberg,
1993.

97

