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Chapter 1

Introduction - Section 1.
Immunobiology of Dendritic Cells and Macrophages

The decision to activate an immune response against invading
microorganisms is made by cells of the innate immune system, such
as macrophages and dendritic cells (DCs), which are quiescent until
they encounter inflammatory stimuli. They use a repertoire of non-
clonal receptors to transmit the information of what is present in the
environment (quality and quantity) and the duration of this signal.
This complex activity is regulated by transcriptional responses
involving the differential expression of thousands of genes and the
integration of a number of signaling pathways. The active
transcriptional response leads to the acquisition of diverse DC and
macrophages functional phenotypes, orchestrating the appropriate
immune responses. Following activation with inflammatory stimuli
DCs lose their antigen uptake capacity, but become particularly
efficient in antigen processing and acquire the ability to migrate to
the T cell areas of secondary lymphoid organs where they present
antigens to naive T cells to initiate primary adaptive responses.
Finally, after the achievement of their effector functions, DCs
undergo terminal differentiation and die by apoptosis'. On the other
hand, macrophages contribute to the initiation of the inflammatory
process in the tissue and, diversely from DCs, do not die following

activation. Tissue-resident macrophage survival is, indeed, crucial for



the resolution of inflammation. Late-activated macrophages produce
anti-inflammatory mediators, such as some lipid mediators and TGFp,

that extinguish the inflammatory process and start tissue repair.

Conventional DCs in homeostatic conditions

DCs can be subdivided in conventional DCs (cDCs), cells having
phenotypic and functional characteristics of DCs, and pre-DCs, which
require a further step of development to acquire phenotypic and
functional DC features>®. Conventional DCs are of hematopoietic
origin and are found in many different organs and tissues, including
the heart, liver, thyroid, pancreas, bladder, kidney, ureter, gut, lungs,
skin and mucosa. Fully developed DCs have also been observed in the
circulatory networks of the body, including blood and afferent
lymphatic vessels, and in lymphoid organs. DCs display a high degree
of plasticity within organs and lymphoid tissues and their effector
functions are often regulated by the tissue microenvironment®.
However, two broad groups of DCs can be defined on the basis of
their homeostatic location: those located in non lymphoid tissues,
such as skin, mucosa and internal organs (tissue-resident DCs), and
those found in lymphoid organs, blood and afferent lymphatic vessels
(lymphoid tissue-resident DCs).

Mucosal and skin DCs perform a sentinel function, continually
scanning the environment for the presence of incoming pathogens.
Different subtypes of conventional DCs have been identified in both

tissues. In the mouse the skin contains two populations of langerin®
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DCs: the epidermal Langerhans cells (LCs) and the dermal DCs (DDCs).
The dermis also contains migratory LCs and langerin” DCs. LCs and
langerin® DDCs can be distinguished on the basis of CD103 expression
(negative for LCs and positive for DDCs). Six different DC populations,
all expressing CD11c, have been identified in skin draining lymph
nodes: CD8'DEC205" resident DCs, CD8 DEC205  (both CD4™ and CD4")
resident DCs, CD8°“CD205™ DCs (migratory dermal DCs) and
CD8"°“DEC205"8" DCs (migratory Langerhans cells, LCs)>®. LCs are
almost immobile in the skin, displaying only occasional repetitive
dendrite movements known as dendrite surveillance extension and
retraction cycling habitude (dSEARCH)’. By contrast, DDCs are highly
motile, frequently finding their way into the dermal interstitial
space®, facilitating encounters with pathogens and favoring an
immediate response to danger signalss. Under homeostatic
conditions, DDCs and LCs undergo continuous, slow migration to the
draining lymph nodes’. A few motile immature LCs loaded with
tissue-specific antigens (e.g. components of apoptotic keratinocytes
and melanocytes, including melanin®) continually make their way to
the draining lymph node. These cells are presumably required to

7112 Y Indeed, recent

maintain the tolerance of T cells to self-antigen
data have suggested that skin DCs may be involved in tolerogenic
responses. For instance, stronger contact sensitivity responses have
been shown to occur in mice in the absence of langerin® cells®.
Moreover, in a transgenic mouse model in which a membrane-bound
form of ovalbumin is selectively expressed by keratinocytes, DDCs

and LCs have been shown to cross-present ovalbumin to ovalbumin-
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specific CD8" T-cells and to induce the deletion of these cells in
steady-state conditions™.

A large number of DCs, the lamina propria (LP) DCs, are present
immediately beneath the epithelium in the mucosa of the small
intestine in rodents and humans. Resident DCs are also present in the
Peyer’s Patches and isolated lymphoid follicles (ILFs). It has been
suggested that LPDCs are responsible for maintaining tolerance to
commensal bacteria, food and self-antigens in homeostatic
conditions™. Indeed, the continuous migration of LPDCs transporting
apoptotic bodies to mesenteric lymph nodes has been described in
rats'®. Moreover, the adoptive transfer of LPDCs recovered from
OVA-fed mice to naive mice reduces delayed-type hypersensitivity
reactions’’. A possible explanation for the immunoregulatory
function of these cells in the gut relates to their ability to
constitutively express interleukin-10 (IL-10) and type | interferons
(IFNs), but not IL-12". In the large intestine, very few DCs are present
in the LP, these cells being mostly concentrated in the subepithelial
regions and ILFs. In steady-state conditions, human DCs in the LP of
the colon produce large amounts of IL-10, presumably exerting
immunoregulatory functions in the gut through the control of T-cell
responses'®. Thus, a deregulation of DC function in the colon may
contribute to the development of inflammatory diseases, such as
inflammatory bowel disease (IBD)'®. Mesenteric lymph nodes (MLNs)
contain different populations of DCs originating from three different
sources: the PP, the LP and blood precursors. CCR7* LPDCs, which
migrate to MLNs via afferent lymphatic vessels, play a fundamental
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role in inducing tolerance to orally applied soluble antigens'. An
important new function has recently been attributed to conventional
cD11c"e" DCs residing in lymphoid organs in mice: the control of
homeostatic hematopoiesis. In the absence of CD11c"e" DCs, an
increase in secondary lymphoid organ cell content is observed, due
to a robust expansion of CD11b" myeloid cell population comprising

high neutrophilszo. In addition to the

Gr1™ monocytes and Grl
described conventional DC subtypes, a DC population producing large
amounts of type | IFN following microbial infections, named IFN-
producing plasmacytoid DCs (pDCs), has been described in mouse
blood and lymph nodes®. In steady state conditions, these cells can
be classified as preDC2 Upon activation they acquire not only the
capacity to produce large amount of type | IFNs but also some DC
antigen processing and presentation propertieszz. Compared to
mouse DCs, human DC phenotypes have been in general less well
typed. DCs expressing CD11b, CD11c and CD4 have been described in

the spleen and tonsils®. Human IFN-producing pDCs have been

described as CD45RA*CD123" and CD11c .

Conventional DCs in inflammatory conditions

Upon activation in response to an inflammatory stimulus (exogenous
or endogenous), migratory and lymphoid tissue-resident DCs display
a decrease in phagocytic activity, accompanied by an increase in
processing capacity and an upregulation of MHC and costimulatory

molecules at the cell surface®. Migratory DCs also acquire the
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capacity to migrate to lymph nodes, and spleen marginal zone DCs
begin to mobilize to the T-cell zone. Cells reaching the T-cell zone in
the lymph nodes and spleen have the most suitable phenotype for T-
cell activation®. This migration to the T-cell areas of the lymph nodes
and spleen is regulated by CCR7 expressionzs, which renders DCs
responsive to CCL19 and CCL21. In the absence of CCR7, DCs within
the spleen are mostly located in the marginal zone and outside the

white pulp®®?’

. Another molecule has recently been associated with
the regulation of DC migration in mice: the MHC class ll-associated
invariant chain or CD74%. LPS-activated, CCR7-expressing DCs move
faster in the absence of CD74, suggesting that antigen processing and
migration are jointly regulated. This coregulation may ensure the
efficient detection and uptake of the antigen by DCs in a defined
space before migration to the lymphoid organs®®. Once activated by

inflammatory stimuli, DCs acquire the ability to prime first NK cells

and then T cells®.
Early events, priming of NK cells

NK cells were originally described as cells with spontaneous cytotoxic
activity, but it has been consistently shown that a fraction of the NK
cells purified from human peripheral blood or mouse spleen has no
cytotoxic function®®. Thus, NK cells are in a resting state in
homeostatic conditions and their effector functions may be induced
by accessory cells. Cytokines released by DCs, such as type | IFNs, IL-
15 and IL-18, affect NK cell functions, such as IFNB production31,

migration®?, cytotoxic function®>, and proliferation®*. In particular, IL-
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18 seems to play an important role in enabling NK cells to migrate to
secondary lymphoid organs, where they interact with DCs*2. Human
NK cells exposed to IL-18 display rapid CCR7 induction and an
increase in responsiveness to CCL21, with no increase in lytic activity.
Once in the lymph nodes, these NK cells produce large amounts of
IFNB in response to IL-12, TNFa and IL-2. It has been shown in a
mouse model in which DC ablation can be induced that DC-derived
IL-15 and its presentation in trans are required to prime resting NK
cells recruited to the draining lymph nodes after peripheral Toll-like
receptor stimulation®>. The first reports of IL-2 production by
activated DCs in the hours immediately following stimulation® led to
suggestions of a possible physiological role of this early production of
IL-2 in NK cell activation. Following activation with Escherichia coli,
DC-derived IL-2 is required for the activation of NK cells, in terms of
IFNB production, both in vitro and in vivo. By contrast, type | IFNs and
other unknown factors are required for optimal NK cell cytotoxicity36.
Monocyte/DC-derived IL-2 has also been shown to play a role in NK
cell activation in humans. Newman et al.’’ demonstrated that the
capacity of human NK cells to produce IFNy in response to
stimulation with Plasmodium falciparum-infected red blood cells was
strictly dependent upon cell contact and IL-2/type | IFN-mediated

signals derived from monocytes and myeloid DCs.
Late events, priming of T cells

The requirement of DCs for T-cell activation in lymph nodes was

initially demonstrated in vivo for CD8" T Iymphocytes. Mice
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temporarily deprived of CD11c* DCs cannot mount efficient specific
CD8" T-cell responses to infections with the intracellular bacterium

Listeria monocytogenes, the parasite Plasmodium vyoelii, LCMV or

38,39 high

antigen immunization™"". It was subsequently shown that CD11c
cDCs are required for the priming of both CD8" and CD4" T-cells in
the spleen, whereas these cells are dispensable for CD4" T-cell
priming in lymph nodes. Indeed, within lymph nodes, pDCs can
replace cDCs for this function®”®. In the absence of cDCs, pDC-
mediated CD4" T-cell priming occurs, but is not associated with CD8"
T-cell activation, indicating that pDCs prime CD4" T-cell-dominated
immune responses only™.

DCs can enter the lymph node via the blood or lymph*'. Studies in
mice have shown that DCs arriving in the blood are initially found
clustered together, close to high endothelial venules (HEV). However,
their distribution subsequently changes, such that, one day after
reaching the lymph node, DCs are distributed throughout the T-cell
area®. The process by which DCs reach the lymph node via the lymph
and undergo redistribution has been well characterized in the mouse
skin compartment. Following skin inflammation, DDCs are the first
cells to migrate to the draining cutaneous lymph node, where they
are first detected after 24 hours, their levels peaking after two days.
LCs migrate to the lymph nodes slightly later, their numbers peaking
in the draining lymph nodes four days after the stimulus®. LCs and
DDCs are localized in different areas of the lymph node. Within the T-
cell area, DDCs are localized in the outer paracortex, just beneath the

B-cell area, whereas LCs are localized in the inner paracortex,
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suggesting that these two DC populations may have different
functions and encounter different T-cell subsets®. In cutaneous viral
infections, such as herpes virus infections, the antigen is transported
to the draining lymph node principally by DDCs, which transfer the
antigen to resident CD8" DCs in the cortex, leading to the activation
of CD8" T-cell responses through cross-presentation®. It has recently
been shown, in the mouse, that antigen processing and presentation
by both lymphoid resident and migratory DCs is required for CD4" T-
cell priming after skin antigen administration. Lymphoid tissue-
resident DCs initiate antigen-specific T-cell activation within the
draining lymph nodes, whereas migratory DC antigen presentation is
required to induce T-cell proliferation®.

The different DC subtypes present in the lymph nodes, whether
lymphoid tissue-resident or migratory, display considerable diversity
in terms of specialization for antigen presentation. For instance, CD8
33D1" DCs preferentially present antigens in association with MHC
class Il molecules and these cells increase the efficiency of the class Il
processing machinery when activated. Thus, these cells are
specialized in CD4" T-cell activation®®. By contrast, CD8"'DEC205" cells
efficiently present antigens to both CD4* and CD8" T cells*®. These
cells are the only cells able to prime CD8" T-cell responses in the
lymph node®. There is at least one other important difference
between the two DC subtypes. CD8'DEC205" DCs primarily trigger
Thl responses, whereas CD833D1" DCs induce the production of
either IL-4 alone or both IFNy and IL-4 by T-cells 4748 1L-12 has been
shown to be an essential cofactor for skewing toward Th1 responses
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in various experimental systems49. CD8'DEC205" DCs produce much
larger amounts of IL-12 than CD833D1" cells™®, However, these cells
are thought to induce Th1 skewing via the membrane-bound cofactor
CD70, a member of the tumor necrosis factor faminSl, in the

presence of TLR4 and TLR3 agonists, rather than through IL-12.

Apoptosis of DCs

Following activation and the achievement of terminal differentiation,
DCs progress toward apoptotic death. Once DCs have completed
their antigen presentation function, they are eliminated by apoptosis,
to dampen immune responses and to free the spaces they occupy
after migration®2. Significant DC accumulation has been observed in
patients with autoimmune lymphoproliferative syndrome type II,
who have a defect in apoptosis®, and in Ipr mice®*. These findings
suggest that defects in DC apoptosis may be responsible for the
development of autoimmunity. The mechanisms of DC apoptosis may
be FAS-dependent or FAS-independent®. Two different mouse
models have been generated for investigating the importance of DC
apoptosis in immune system homeostasis. In the first, DC apoptosis is
inhibited by constitutive expression of the baculoviral caspase
inhibitor, p35. This model consists of transgenic animals expressing
p35 exclusively in DCs, under the control of the CD11c promoter. No
marked DC or lymphocyte population expansion is observed in young

transgenic mice, whereas significant expansion of the DC population
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is observed in aged mice, indicating that the inhibition of DC
apoptosis in homeostatic conditions leads to the accumulation of
these cells. A remarkable decrease in the rate of DC apoptosis is
particularly evident in transgenic animals following the in vivo
administration of strong inflammatory stimuli, such as complete
Freund’s adjuvant, resulting in a higher efficiency of T-cell priming.
Consistent with this observation, DC-p35 mice spontaneously
developed autoimmune manifestations, such as anti-nuclear
antibody production, in old age®. Similar results were obtained by
inducing conditional DC-specific FAS ablation®®. In this case, several
manifestation of autoimmunity, including anti-nuclear antibodies,
hyperimmunoglobulinemia, splenomegaly and histological
modifications to the spleen and liver, were apparent at 12 months of
age. Thus, FAS ablation exclusively in DCs is sufficient to cause

autoimmunityse.

Macrophages in homeostatic conditions

The term “macrophage” was first used by Ellie Metchnikoff when he
inserted a rose thorn into a starfish larva and observed ameboid
phagocytosis around the foreign matter. Macrophages were
discovered more than 100 years ago and we now know a
considerable amount about them, although many of their features
remain to be clarified. The ancient unicellular eukaryotic entameba, a

protozoan parasite displaying active phagocytosis, is a prototype
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macrophage®’. This simple cell undergone considerable modification
during evolution and the macrophages of multicellular eukaryotic
organisms are complex cellular systems with diverse tissue
distributions and cell phenotypes. They have complex and, in some
cases, opposite functions in homeostasis, innate and adaptive
immunity. Macrophages are derived from myeloid precursors in the
bone marrow, spleen and fetal liver. Macrophages precursors
(monocytes) enter the bloodstream and are transported into the
peripheral tissues, where they encounter a large number of different
agents (including cytokines, chemokines, hormones and other
molecules), which determine the functional and phenotypic
characteristics of the fully differentiated cell, the tissue-resident
macrophage®. During an inflammatory response, some of the
features of tissue-resident macrophages change and these cells,
together with newly recruited monocytes destined to become
inflammatory macrophages, contribute to the innate and subsequent

adaptive immune response.
Monocyte heterogeneity

Monocytes originate in the bone marrow from a common myeloid
precursor that also gives rise to neutrophils. They enter the
bloodstream, in which they circulate for several days before entering
peripheral tissues to replenish the pool of tissue-resident
macrophages™. Murine monocytes can be identified as F4/80"
CD11b" cells and can be subdivided into two subpopulations as a

function of their expression profiles for CCR2, CD62L, Ly6C, and
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CX3CR1. One subset is CCR2', CD62L*, Ly6C’, and CX3CR1"°%
(corresponding to “classic” human monocytes, which are CD14"&"
CD16’), whereas the second subset expresses CX3CR1 at high levels
but no Ly6C, CCR2 or CD62L (corresponding to CD14" CD16" human
monocytes)eo. CCL2 (also known as MCP1) is released in inflamed
tissues and induces the recruitment of CCR2*CX3CR1" monocytes.
This subset of monocytes is therefore considered to be the
“inflammatory” subset®®'. CCR2'CX3CR1"°“ monocytes do not
survive long after adoptive transfer and are difficult to detect in
peripheral tissues. However, as expected, they are strongly recruited
to tissues in which inflammation has been experimentally induced ®°.
The CCR2'CX3CR1"&" subset persists for longer periods after transfer
and can replenish, at least partially, the tissue-resident populations
of macrophages and some of the DCs. Following the experimental
depletion of monocytes®’, the first population to reappear is the
CCR2" (inflammatory) subset, suggesting that these monocytes are
generated before those of the CCR2™ subset. Thus, it is currently
thought that CCR2'CX3CR1°Y monocytes are released into the
bloodstream, where their phenotype is altered such that the cells are
in an intermediate CCR2'CCR7'CCR8'Ly6C™? state. Both these
populations can respond to inflammatory stimuli and are recruited to
inflamed tissue, where they can differentiate into inflammatory
macrophages or DCs. In the absence of inflammation, monocytes
enter tissues and become tissue-resident monocytes (CCR2

CX3CR1highLy6C’) able to replenish populations of tissue
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macrophages. They can also give origin to a subpopulation of DCs,

the monocyte-derived DCs®.
Tissue-resident macrophages

Macrophages play a key role in controlling tissue homeostasis, by
controlling the metabolic activity of adipocytes, regulating the
turnover of epithelial cells, tissue repair and the engulfment of

63,64

apoptotic debris”™"". Cells dying purposefully by programmed death
processes are taken up by mechanisms that do not induce an
inflammatory response. Apoptotic cells provide “eat me signals”
ensuring that they are efficiently and rapidly engulfed and preventing
the release of noxious agents. Macrophages may recognize different
apoptotic cell structures, including, in particular, the exposed anionic
phospholipid phosphatidylserine, which is normally located in the
inner leaflet of the plasma membrane but is exposed during
apoptosis®. The release of pro-inflammatory cytokines is inhibited in
macrophages that have ingested apoptotic cells®®. Apoptotic cells are
thus eliminated in a silent manner during normal tissue homeostasis.
Macrophages constitute a highly heterogeneous population of cells.
This heterogeneity reflects the specialized functions of these cells in
different peripheral tissues and anatomical locations within a given
tissue, such as in the spleen or central nervous system. The
macrophages present in adults are thought to be derived from
circulating monocytes, which continually replenish the population of
tissue-resident cells. Local proliferation has also been shown to play a

major role in maintaining macrophage homeostasis in non-
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inflammatory conditions, whereas the dependence on monocyte
precursor recruitment to support tissue macrophage replenishment

becomes more marked during inflammatory processes.

Osteoclasts. Osteoclasts are probably the best example of a
differentiated lineage of tissue-resident macrophages. Bones
undergo a continual process of bone resorption and synthesis known
as remodeling. Bone remodeling is the principal metabolic process
regulating bone structure and osteoclasts play a key role in this
process. An osteoclast is a tissue-specific macrophage polykaryon
created by the differentiation of monocyte/macrophage precursor
cells at or near the surface of the bone. Two hematopoietic factors
are both necessary and sufficient for osteoclastogenesis: the TNF-
related cytokine RANKL and the polypeptide growth factor M-CSF®’.
The end-stage cell is clearly differentiated and displays cell body
polarity. However, macrophages can be rapidly induced to express
osteoclast genes and to reabsorb bone. Osteopetrotic (op/op) mice
have a genetic defect resulting in a total absence of functional M-
CSF®®. The phenotype of op/op mice is very marked, with an
absence of teeth, low body weight, slow growth and many skeletal

defects. These mice are osteopetrotic because they lack osteoclasts.

Kupffer cells. Kupffer cells are specialized macrophages present in the
liver. Their principal function is to clean the blood in the portal
circulation, by phagocytosis. Kupffer cells have both C3 complement
receptors and Fc receptors and can take up a wide variety of

opsonized and non-opsonized particles by phagocytosis. Unlike
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hepatocytes, these cells can be induced to express high levels of
heme oxygenase-1, an enzyme required to break heme down into
biliverdin and, subsequently, into bilirubin’>. The functional
phenotype of Kupffer cells depends on their proximity to the portal
vein and differences may be observed in the receptors, enzymes and
subcellular structures present in different subpopulations of cells. For
example, Kupffer cells in periportal regions are more phagocytic and

larger than those in centrilobular regions.

Alveolar macrophages. Alveolar macrophages reside within the
alveolus and are often seen protruding from the alveolar epithelial
walls into the lung lumen. Their position within the body is unique,
because they are in close contact with both air- and blood-derived
substances. Alveolar macrophage populations are probably
maintained by the proliferation of local precursors, and it seems
likely that precursors (probably monocytes) are recruited from blood
and proliferate in situ only in cases of major cell loss (e.g. after
irradiation in bone-marrow transplantation)“. Alveolar macrophages
play a key role in the regulation of many physiological processes, as
highlighted by studies of GM-CSF-deficient mice. GM-CSF is another
key hematopoietic growth factor required for the correct
proliferation and differentiation of neutrophils, DCs and
monocytes/macrophages. The key characteristic of these mice is
their development of abnormalities in the lungs resembling those
observed in the human disease pulmonary alveolar proteinosis (PAP).

This disease is characterized by an accumulation of lung surfactant
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that, at least in some forms of PAP, is considered to be due to the
impaired phagocytosis of surfactant by alveolar macrophages. The
administration of rGM-CSF to patients with this disease restores
alveolar macrophage function, demonstrating the major role of this
growth factor as a stimulator of terminal differentiation and
highlighting macrophage key function in the control of homeostasis

by resident macrophages in the lung’®.

Intestinal macrophages. The intestine is the most abundant reservoir
of macrophages in the body. The location of the intestinal
macrophages, in close contact with the resident intestinal bacteria,
provides an interesting example of the microenvironmental control
of macrophage differentiation. Intestinal macrophages are derived
from monocyte precursors continually recruited to the lamina
propria by endogenous chemoattractants. These precursors are then
induced, under the influence of TGFB in particular, to differentiate
into non-inflammatory macrophages. These cells have normal levels
of MHC class Il molecules, but lack many innate receptors, including
those for Fc, complement and LPS. Their pro-inflammatory functions
are thus strongly downregulated. Despite these features, intestinal
macrophages maintain a high capacity for phagocytosis. Thus, these
cells retain their host defense functions, but simultaneously promote
the absence of inflammation typical of the intestine, despite the

presence of the intestinal flora’.

Microglia. The central nervous system contains a wide variety of

macrophages with different functions. Some are located close to
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neurons (microglia), whereas others are found near the blood vessels
(perivascular macrophages) or in the meninges (meningeal
macrophages). Although derived from monocytes, the microglial cells
of the CNS have few of the features of fully differentiated
macrophages. For example, microglia cells express only low levels of
the membrane receptors essential for macrophage function. In
normal brain, ramified microglial cells with down-regulated
macrophage function may be useful for cleaning up the extracellular
environment. In conditions in which the brain is faced with some kind
of threat (presence of foreign or endogenous signals, such as
microbes or T-cell activation), microglial cells take on the
characteristics of active macrophages, displaying changes in
morphology and proliferation and the upregulation of surface
molecules (i.e. increase in the expression of CR-3, MHC class | and II).
Activated microglia are involved in inflammation, the removal of cell
debris and wound healing, and may also play a role in neural
regeneration and revascularization. There is also evidence to suggest
that activated ramified microglial cells are involved in T-cell apoptosis
and are therefore important for control of the extent of damage

during the inflammatory response73'75.

Spleen macrophages. The rodent spleen is a clear example of
macrophage’s heterogeneity. The spleen is rich in different
macrophages subpopulations differing in function, location and
receptor expression profile. In the red pulp (the region of the spleen

responsible for hematopoietic functions and for the filtration and
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degradation of red blood cells) a population of F4/80" macrophages
is actively involved in the clearance of dying erythrocytes. At the
interface between the spleen circulation and lymphoid tissue (the
marginal zone) there are two other subpopulations: the metallophilic
macrophages (with a function currently unknown but thought to be
important during systemic infections) and the phagocytic marginal
zone macrophages. These macrophages express many different
pattern recognition receptors and interact with soluble or particulate
antigens. Another subpopulation present in the white pulp is the
“tingible body” macrophage population that plays an important role
in clearing the apoptotic B-cell debris produced in the germinal

7
center ®,

Tissue-resident macrophages in inflammatory conditions

In response to endogenous or exogenous inflammatory signals,
macrophages initiate  specialized and polarized genetic
reprogramming, leading to the development of specific functional

properties that are similar in most cases in human and mice.
Early events

During the initial phases of inflammation, macrophages acquire
specific properties as a function of the stimulus they encountered
and become polarized. It has long been recognized that CCR2*Ly6C*

inflammatory monocytes are strongly recruited to infection sites.
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Once they have reached the tissue, inflammatory monocytes stop
expressing CCR2, begin to express CCR1 and CCR5 and differentiate
into macrophages, to sustain the activity of tissue-resident cells.
Polarized macrophages have been broadly classified into two groups,
mirroring the Th1/Th2 nomenclature used for T cells: M1 and M2
macrophages. M1 macrophages are induced by the combination of
IFNy and a microbial stimulus (such as LPS) or a cytokine (GM-CSF
and TNFa), in an activation process described as “classical”. M2
macrophages constitute a heterogeneous group of macrophages
activated via “alternative” (IL-4 and IL-13) pathways or by encounters
with immune complexes or TLR ligands (also called type I
macrophages, induced during “innate” activation processes)®®”’.
Furthermore, deactivated macrophages that have previously come
into contact with IL-10 are also often classified as M2 macrophages
and play an important role in tissue remodeling and repair, which will

be described below %,

M1 macrophages. Classical macrophages can produce large amounts
of various cytokines (IL-12, IL-23, TNFa, and IL-1B, the production of
this last cytokine requiring efficient activation of the caspase system),
reactive oxygen species (ROS), and, through efficient activation of the
inducible form of NO synthase (iNOS), they also release large
amounts of nitric oxide. They also have the capacity to present
antigens and to upregulate costimulatory molecules, such as CD80
and CD86. Thus, M1 macrophages are actively involved in Thl

immune responses, killing microorganisms and tumor cells and
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producing copious amounts of proinflammatory cytokines. They also
produce many different chemokines of major importance during
inflammation. IFNy and LPS strongly induce CXCL9 (also known as
MIG), CXCL10 (also known as IP-10) and CCL5. These chemokines
recruit cytotoxic CD8" T-cells and NK cells, strongly enhancing
immunity against intracellular bacteria and tumors. Studies in IFN
receptor-deficient mice and STAT1-deficient mice have shown that
IP-10 induction in response to LPS is secondary to IFNB induction and

7981 Macrophages activated in the

subsequent STAT activation
presence of IFNy and TNFa produce large amounts of CXCL1 and
CXCL16, transmembrane chemokines acting on Thl T-cells and NKT

cells®*83

and favoring a positive feedback loop leading to efficient Th1
immune responses. M1 macrophages exert key functions during
bacterial infections, as highlighted by experiments with Listeria
monocytogenes. L. monocytogenes is a gram-positive bacterium that
causes disease in pregnant women and immunocompromised hosts.
It is normally efficiently controlled by M1 responses, which prevent
phagosomal escape and stimulate the killing of the bacteria®®. L.
monocytogenes can replicate in non-polarized macrophages, in
which it escapes from the phagosome. Activated M1 macrophages
kill the bacterium by blocking phagosome escape through the
generation of ROS and NO soon after bacterial uptake. Mice lacking
the M1-polarizing TNFa and IFNy cytokines or receptors succumb to
L. monocytogenes infection. The IL-12 pathway and, more recently,

85,86

the IL-23 pathway of M1 macrophages have been shown to be
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essential for immune responses directed against Mycobacterium

tuberculosis and Salmonella.

M2 macrophages. M2 cells generally express high levels of mannose,
galactose and scavenger receptors. The “alternative” activated
macrophages do not produce IL-12, IL-23 and TNFa, but produce
large amounts of IL-1 receptor antagonist (IL-1ra), a decoy receptor
for IL-1 and IL-10. Alternative activated M2 macrophages upregulate
MHC class Il molecules, but inefficiently present peptides to T-cells.
Indeed, in many cases they have been shown to inhibit T-cell
proliferation. These macrophages also display inhibitory activity with
mitogen-activated T-cells, which proliferate to a lesser extent and
have a weaker secretory response in the presence of alternatively
activated macrophages than in the presence of classical
macrophages®’. These cells may provide negative regulatory signals
in the lung, protecting the host against excessive inflammatory
responses to environmental stimuli®. The ability of M2 alternative
macrophages to kill intracellular microbes is compromised by their
lack of NO production, due to their expression of arginase. When
macrophages are exposed to IL-4 and IL-13, arginase is induced and
transforms arginine, normally used by iNOS to produce NO, into urea
and ornithine. It has been clearly demonstrated that arginase levels
are correlated with diseases due to the presence of schistosome
eggs, Whereas iNOS levels are inversely correlated with these
diseases®®. Thus, alternatively activated macrophages may have more

regulatory and recovery functions than classically activated
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macrophages, which tend to be more involved in effector killing
functions. Type Il macrophages, induced by immune complexes and
TLR or IL-1R ligands, by contrast, retain some of the features of M1
macrophages. Indeed, these cells produce large quantities of IL-10
and small amounts of IL-12 but maintain the ability to secrete TNFa,
IL-1 and IL-6. They promote humoral and Th2 immunity and protect
against LPS toxicity. Their name, “type ll-activated macrophages”, is
derived from their preferential induction of Th2 adaptive immune
responses. Whereas IL-12 secretion by classically activated
macrophages induces IFNy production by T cells, IL-10 secretion by
type Il macrophages results in IL-4 production by T-cells®. The
influence of type Il macrophages on antibody responses has been
investigated by injecting type Il or classical macrophages loaded with
ovalbumin in mice and assessing the antibody response. Mice treated
with classical macrophages have only low IgG titers’. By contrast,
mice treated with type Il macrophages produce much larger amounts
of 1gG, particularly of isotype 1, which is classically associated with
Th2 immune responses. This observation suggested that the
presence of type Il macrophages was sufficient to induce Th2 IgG1
class switching. Binding to the Fc receptor on activated macrophages
induces the production of IL-4 by T-cells, which, in turn, induces the
production of 1gG1 by B cells in response to the antigen. Protection
against LPS endotoxemia was demonstrated by injecting mice with
type Il macrophages generated in vitro and treating these animals
with a lethal dose of LPS. The mice that received type Il macrophages
remained completely healthy, whereas control mice succumbed to
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lethal endotoxemia®®. The secretion of large amounts of IL-10 by M2
cells of this type suggests that this protective effect might be due to
the production of this cytokine. This hypothesis was tested in parallel
experiments with type ll-activated macrophages from IL-107" mice.
These macrophages failed to prevent the death of these mice. Thus,
the IL-10 secreted by type |l macrophages has a potent anti-
inflammatory effect that can be used to prevent acute diseases, such

as LPS toxicity.
Late events

The resolution of inflammation is an active process in which
endogenous mediators induce the phagocytosis of apoptotic cells
and anti-inflammatory cytokines and simultaneously abolish cell
recruitment  and pro-inflammatory  cytokine production.
Inflammation is a beneficial host response to tissue injury” but, if
prolonged, it may result in pathological processes, such as asthma,
rheumatoid arthritis and myocardial infarction. Thus, after entering
tissues, the cells that promote inflammation induce the switch from
proinflammatory prostaglandins and leukotrienes to lipoxins,
cyclopentenone prostaglandins94 and resolvins and protectins

95,96

derived from omega-3 polyunsaturated fatty acids™ ", which initiate

the “termination” process. These events coincide with a decrease in
neutrophil recruitment and an increase in neutrophil apoptosis®>°.
Macrophages have long been recognized to play a central role in the
resolution of inflammation and tissue repair. Macrophage activation

has been shown to be plastic and reversible, highlighting the dynamic
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nature of macrophage populations, allowing a given cell to contribute
to the induction of inflammation and then to its resolution. M2
macrophages often have anti-inflammatory properties and have
been detected during the resolution of inflammatory responses and
in wound healing. It has also been shown that M1 cells can revert to
M2 cells, switching from pro-inflammatory to anti-inflammatory
functions®’. Macrophages play a key role in the termination process.
Indeed, these cells are responsible for the phagocytosis of apoptotic
neutrophils and the release of anti-inflammatory and reparative
cytokines, including TGFB. Endogenous anti-inflammatory mediators
seem to play a key role in inducing the switch in macrophage
function. On the one hand, lipoxins and cyclopentenone
prostaglandins affect cell recruitment, decreasing neutrophil
recruitment and increasing the recruitment of monocytes that could
potentially become anti-inflammatory macrophages’>*%®. On the
other hand, lipoxins strongly promote the phagocytic clearance of
apoptotic cells by macrophages™®, whereas cyclopentenone
prostaglandins efficiently inhibit the production of pro-inflammatory

102,103

cytokines by activated macrophages , simultaneously promoting

cell apoptosis'®*'®

. Neutrophil apoptosis is normally rapid but may
be slowed in inflammatory settings'°®. However, the arrival of pro-
inflammatory macrophages at the site of infection may counteract
this anti-apoptotic effect, by triggering the release of “death
mediators” or Fas ligand'®’. The recognition of apoptotic cells'® by
macrophages induces a shift in the transcription program, resulting in

the production of TGFB and abolition of the production of pro-
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inflammatory cytokines'®*

. This process has been demonstrated,
through the experimental transfer of apoptotic cells into LPS-treated
lungs. This treatment results in a TGFB-dependent decrease in
proinflammatory cytokine production and leukocyte recruitment™°.
Furthermore, the impaired clearance and uptake of apoptotic bodies
has been correlated with various diseases, including systemic lupus

erythematosus and cystic fibrosis™**">

. The recognition of dying cells
by phagocytes involves a complex molecular mechanism. First,
bridging molecules, such as thrombospondin 1, may facilitate the
binding of apoptotic cells. Phagocyte receptors (CD36, integrins and
phosphatidylserine receptors) may then be responsible for initiating

14 These molecules also play an important role in

phagocytosis
inducing the production of TGFB and vascular endothelial growth

factors essential for epithelial and endothelial injury repair.
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Introduction - Section 2.
Sensing and Signaling Strategies of Toll-like Receptors

Although the seminal discovery of phagocytosis by Elie Metchnikoff
dates back to 1883, the field of innate immunity has gained the
appropriate attention only in recent years, thanks to Janeway’s
theory of innate immune recognition®. Until the early 90s, the
investigation of adaptive immunity and antigen-specific receptors
was the major focus of almost all immunologists, the “clonal
selection” and the “two signals” theories being the milestones of self-
nonself discrimination. However, the adjuvant and immunogenic
properties of LPS and other microbial stimuli, together with the
typically innate mechanisms of phagocytosis, degranulation, and ROS
production were well appreciated at the time. What was lacking was
a unifying view that could synthesize these two otherwise absolutely
distinct branches of immunology. In 1989 Janeway proposed that the
costimulatory signal for lymphocyte activation was provided by
antigen presenting cells (APCs) that had been previously primed by
conserved pathogen-associated molecular patterns (PAMPs). PAMPs
were postulated to be selectively recognized by pattern-recognition
receptors (PRRs) different from the antigen receptors'. Nevertheless,
the formal demonstration for this brilliant hypothesis came only
about a decade later, when Medzhitov and Janeway cloned the first
Toll-like receptor, known as TLR4, and linked its ectopic expression to
activation of NF-kB, expression of the costimulatory molecules B7.1

and B7.2 as well as several proinflammatory cytokines®. For this
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discovery Medzhitov took advantage of a previously published work
by Hoffmann and colleagues showing that the Drosophila
melanogaster Toll receptor, known for its role in dorso-ventral
development, was indeed essential for antifungal defense in flies>.
The identification of a human homolog of Drosophila Toll that was
involved in immune defense represented a major breakthrough in
immunology, as it suggested that TLRs could couple innate immune
recognition with activation of adaptive immunity. However, the
ligand for TLR4 was not known at that time and human Toll was
proposed to function, similar to the Toll-Spatzle axis in flies,
downstream of a proteolytic cascade triggered by microbial
recognition. Finally, in 1998, Beutler and colleagues positionally
cloned the TIr4 genetic locus showing a correspondence with the Lps
locus in the C3H/HeJ) and C57BL/10ScCr mouse strains4, previously
shown to be hyporesponsive to LPS-induced septic shock. These
findings, implemented by the generation of TLR4ko mice>, definitively
established TLR4 as the long sought-after receptor for LPS and paved
the way for a whole new line of research in immunology, i.e. the
identification of other members of the TLR family and the
characterization of their signaling pathways. So far, more than a
dozen of different TLRs have been identified, of which TLRs 1-9 are
conserved among humans and mice, TLR10 is selectively expressed in
humans and TLR11 is functional in mice®. Although much research
has provided a considerable wealth of information about the
biological functions and modes of action of TLRs 1-9 and 11, we still
lack a basic knowledge on the physiology of the newly discovered
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family members TLRs 10, 12 and 13, which will be therefore not
discussed further in this thesis. In the first part of this work | review
and update our current knowledge on the structural biology and
ligand recognition strategies of TLRs. In the following sections, by
using it as model system for the whole TLR family, | attempt to
provide a comprehensive description of the signal transduction
pathways triggered by TLR4, with a particular emphasis on the

molecular and cell biological aspects regulating its function.

TOLL-LIKE RECEPTORS
TLR structure

TLRs are type | transmembrane glycoproteins composed of an
extracellular, a transmembrane and an intracellular signaling
domain’. The extracellular domains of TLRs are responsible for ligand
recognition and contain 16-28 leucine-rich repeat (LRRs) modules,
which provide the TLR ectodomains with a characteristic horse-shoe-
shaped folding®. TLRs are “typical” LRR proteins, displaying 24 aa-long
LRR  modules with the conserved hydrophobic motif
“YLXXLXXLXLXXNXLXXLPxxxFx"°. The N- and C-terminal LRRs (LRRNT and
LRRCT, respectively) do not have real LRR motives but frequently
contain clustered cysteines forming disulfide bonds. These modules
stabilize the protein by protecting its hydrophobic core from
exposure to a polar solvent’. The “LxxLxLxxN’”’ motives are located in

the inner concave surfaces of the horseshoe-like structure formed
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from parallel b strands. The variable parts of the modules form the
convex surface generated by parallel 310 helices, b turns, and/or
loops’. The resultant structure is exemplified by TLR3, and probably
TLR5, TLR7, TLR8 and TLR9, with a flat and uniform horse-shoe-like
shapem'lz. Notably, the ectodomains of TLR1, TLR2 and TLR4, and
perhaps TLR6 and TLR10, show two sharp structural transitions in the
b sheets that define three distinct subdomains, the central markedly
deviating from standard values in terms of radius, twist and tilt

anglesls’15

. This atypical conformation seems to be generated by
unusual, non-uniform, LRR modules distribution in the central
domain and may provide some degree of ligand or co-receptor
specificity to these TLRs.

Ligand binding by TLR ectodomains readily triggers homo-/hetero-
dimerization between TLRs, and resulting in the recruitment of
different adaptor proteins to intracellular TIR (Toll/Interleukin-1
Receptor) domains. As suggested by the denomination, TIR domains
share homology sequence with the intracellular domain of IL-1R and
typically consist of a five-stranded b-sheet surrounded by five a-
helices, folding into a globular structure. Of particular importance for
receptor dimerization and adaptor recruitment is the BB loop that
connects the second b-sheet and the second a-helix. Indeed, a single
point mutation (Pro681His) in the BB loop of TLR2 TIR domain has
been shown to impair the recruitment of the adaptor MyD88®,
resulting in a defective signaling in response to yeast and Gram-
positive bacteria’’. Notably, the Pro681His mutation in TLR2 TIR

corresponds to the Pro712His mutation in TLR4 TIR domain originally
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identified in the LPS hyporesponsive C3H/Hel mouse strain®. Even
though some TIR domains have been successfully crystallized, namely
TLR1, TLR2 and TLR10'®*, what is still lacking is a deeper knowledge
on how interactions between TIR domains take place. In this regard,
it has been predicted that the major binding force may be the
electrostatic complementarity between interacting portions of TIR

domains?®#

. This hypothesis is intriguing, as it could provide a
structural explanation to why some TLRs directly recruit the adaptor
proteins MyD88 and TRIF upon ligand-induced dimerization whereas
others require the intermediate adaptors TIRAP and TRAM (see

below).

TLR ligand specificity

TLR1, TLR2 and TLR6. Contaminating lipoproteins in the LPS
preparations used in early experiments generated the misleading
hypothesis that TLR2 could be the receptor for LPS?%. This statement
was later shown to be incorrect, with bacterial lipoproteins being the
actual TLR2 Iigandszs. Since then TLR2 has been demonstrated to
have a crucial role in the recognition of a wide variety of bacterial,
fungal as well as host ligands**. The broad specificity of TLR2 ligand
recognition relies on its ability to function as a heterodimer with TLR1
or TLR6”?’, TLR1/2 heterodimer recognizes lipoproteins and
lipopeptides from a wide panel of bacteria including mycobacteria

26-27

and meningococci’®?’, OspA lipoprotein from Borrelia burgdoferi®®,
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PorB porin from Neisseria meningitidis®> as well as the synthetic
lipoprotein structure Pam3CSK4?’. TLR2/6 heterodimer recognizes
micoplasma lipoproteins (e.g. MALP-2), zymosan®>, lipoteichoic acid*
and possibly peptidoglycan27. The major feature conferring these
ligand specificities has been identified in the differential recognition
of diacylated versus triacylated lipoproteins by TLR1/2 and TLR2/6,
respectively. Accordingly, most bacterial lipoproteins and Pam3CSK4
are triacylated whereas MALP-2, lipoteichoic acid and peptidoglycan
are usually diacylated. In addition to what reported above, a role for
TLR2 independently of TLR1 or TLR6 has been demonstrated in the
recognition of many other microbial ligands including: cell wall
preparations and lipotheichoic acid from Gram-positive bacteria®*?,
mycobacterial lipoarabinomannan®, a phenol-soluble staphylococcal
modulin®®, glycoinositolphospholipids from Trypanosoma cruzi®,
glycolipids from Treponema maItophiIum?’G, atypical LPS from
Leptospira interrogans37, Porphyromonas gingivalis38, Legionella
pneumophila and Bordetella pertussis>. TLR2 also plays an important
role in the recognition of some endogenous danger signals as
HSP60/70** hyaluronan42 and, in coordination with TLR6 and the
co-receptor CD14, the proteoglycan versican®. Importantly,
hyaluronan and versican are highly expressed in lung cancer and it
has been shown that versican recognition by TLR2 generates an
inflammatory environment that in turn promotes tumor metastasis™.
As described above, the breadth of TLR2 ligand repertoire is
impressive and can be only partially explained with the ability of TLR2

to form heterodimers. Maximum flexibility and specificity in ligand
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recognition is achieved through the usage of the co-receptors CD36
and CD14. CD36 is a double-spanning plasma membrane protein
belonging to the class B scavenger receptor family that has been
shown to function as a crucial sensor of microbial dyacilglicerides
that signal through the TLR2/6 heterodimer, namely MALP-2 and
lipoteichoic acid®. The structural and functional features of CD14 will
be described below in this section. The observation that TLR2
functions independently of TLR1 or TLR6 in response to a
considerable number of ligands strongly suggests that TLR2 may form
homodimers or, alternatively, that it may interact with additional
TLRs (candidates include TLR11, TLR12 and TLR13) or other non-TLR
proteins to recognize these molecular species. Although in vitro
studies would exclude the first hypothesis®®> a formal demonstration

of its inconsistency is still lacking.

TLR3. The potent immunostimulatory activity exerted by virus
infections has long been known to depend on the recognition of
peculiar nucleic acids. One such molecule is double-stranded RNA
(dsRNA), which can be considered a bona fide marker of viral
infection. Indeed, dsRNA molecules are never generated during the
physiological life cycle of uninfected cells but can be synthesized as a
consequence of the infection by both RNA and DNA viruses. The
source of dsRNA could be: (i) the genome itself, as well as mRNA
secondary structures, for dsRNA viruses; (ii) replicative intermediates
for ssRNA viruses and (iii) the overlapping convergent transcription

for DNA viruses**. Viral infections can be experimentally mimicked by
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using a synthetic analog of viral dsRNA, polyribocytidylic acid
[poly(I:C)], which has been shown to be the main ligand for TLR3™.
Few other TLR3 ligands have later been identified in addition to viral
dsRNA, namely endogenous cellular mRNA®, and sequence-
independent small interfering RNAs*’. Despite the ability of TLR3 to
recognize a universal marker of viral infection suggests it may play a
major role in recognizing and limiting infections by virtually all viral
species, various studies heavily questioned its real biological role®,
which is now restricted only to a limited selection of viruses. This lack
of requirement for TLR3 in response to many viral infections can be
easily explained by the overlapping activities of other nucleic acid-
sensing TLRs (TLR7, TLR8 and TLR9, see below) as well as a growing
number of cytosolic receptors for DNA and RNA®. It is interesting to
note that also TLR3 makes use of CD14 as a co-receptor, even though
the mechanistic details of this interaction are quite different from
TLR2 and TLR4. Indeed, it has been demonstrated that CD14 binds to
poly(l:C) on the cell surface and then actively promotes its uptake
and delivery into the endosomal compartment where TLR3 is

located™.

TLR4. TLR4 is the most thoroughly studied TLR because of its
outstanding role in antibacterial defense and its peculiar modes of
signal transduction. It is well established that LPS from Gram-
negative bacteria is the main ligand for TLR4", even though TLR4
alone is not sufficient for mounting an effective immune response to

LPS. LPS recognition is indeed a complex process that is orchestrated
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by numerous players other than TLR4 itself, the most important
being the LPS-binding protein LBP and the co-receptors CD14 and
MD-2. However, due to the massive body of information about LPS
recognition and considered the physiological importance of these
interactions, the features of this particular sensing system will not be
described here, but a section of this introduction will be specifically
dedicated to this aspect (see below). Apart from LPS, TLR4 has been
implicated in the recognition of several other ligands, both of
exogenous or endogenous origin. The plant product taxol from Taxus
brevifolia is commonly used in cancer chemotherapy due to its
potent anti-mitotic activity. Interestingly, taxol shows a marked LPS-
mimetic immunostimulatory activity in mice that is dependent on
TLR4 and MD-2, with no contribution from CD14°Y3. TLR4 has also
been shown to contribute to the antiviral response, through the
recognition of the fusion protein of respiratory syncytial virus®*, and
the envelope proteins of mouse mammary tumor virus and Moloney
murine leukemia virus>>. TLR4 seems to play a role in the recognition
of several endogenous danger signals. Heat shock proteins primarily
function as chaperone for nascent misfolded proteins and are highly
expressed upon a variety of stress conditions, including heat shock,
UV radiation and microbial infections. Upon cellular damage, HSPs
are released and can activate innate immune cells™®. HSP60/70 of

758 35 well as from Chlamydia pneumoniae®,

endogenous origin
Gp96% and the small HSP family members oA crystalline and HSPB8®!
have all been shown to be recognized through TLR4, although some
of these ligands may require a contribution from TLR2. Extracellular
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matrix components are produced and released upon tissue injury and
may constitute potent inflammatory signals that act through TLR4
stimulation. Accordingly, TLR4 is involved in the recognition and
response to type Il repeat extra domain A of fibronectin®,
oligosaccharides of hyaluronic acid®, polysaccharide fragments of
heparan sulfate®, fibrinogen® and, together with TLR2, hyaluronan

6567 TLR4 has also been shown to participate

fragments and biglycan
in the recognition of HMGB1 released by necrotic cells in a model of
hepatic ischaemia reperfusion injury68, murine B-defensin 2%
minimally modified LDL, lung surfactant protein-A’* and the
phagocyte-specific $100 proteins Mrp8 and Mrp14’>. TLR4 has
recently been reported to mediate the recognition of oxidized LDL
and B-amyloid, two endogenous proinflammatory signals underlying
atherosclerosis and Alzheimer’s disease’>. Notably, these interactions
are dependent on CD36, which acts as a common receptor for these
disparate ligands, and triggers inflammation through a TLR4:TLR6
heterodimer’®. The ability of TLR4 to recognize this number of ligands
highlights its importance in the induction of an inflammatory state,
even in a “sterile” pathogenic setting. However these data must be
interpreted cautiously because, due to technical difficulties in
isolating highly purified quantities of endogenous ligands, it remains
possible that they are contaminated with traces of true TLR ligands
such as LPS, flagellin or peptidoglycan. Indeed, it should be noted
that all of these endogenous ligands activate TLR4 only at high doses,

sharply contrasting with the low concentrations required for LPS.
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TLR5. TLR5 was identified as the receptor for flagellin, a bacterial
protein that constitutes the main bacterial motility apparatus, the
flagellum’®. Despite proteins do not generally make good PAMPs due
to the difficulty in discriminating their origin between self and non
self, flagellin fulfills Janeway’s criteria by virtue of a highly conserved
central core structure that is essential for protofilament assembly
and that constitutes the actual TLR5 ligand”. The TLR5 recognition
site of flagellin is normally masked in the flagellum, which suggests
that flagellin can only be recognized as a monomer. Different from
other TLRs, TLR5 does not seem to require any co-receptorial
contribution but rather directly binds its ligand at residues 386-407 of

the ectodomains’®.

TLR7 and TLR8. Mouse TLR7 was originally described for its ability to
detect imiquimod and R-848’7, two synthetic compounds with potent
antiviral and antitumor activities belonging to the class of
imidazoquinolines. Both human TLR7 and TLRS8, but not mouse TLRS,
have been shown to recognize R-848’%"°. Additional variants of R-848
have been generated that specifically activate TLR7 (3M-001), TLR8
(3M-002) or both (3M-003)®. Loxoribine and bropirimine, other
immunomodulator compounds with a strong type | IFN-inducing
activity, have also been shown to stimulate immune cells through
TLR7%. Notably, all of these small compounds are nucleic acid base
analogs, showing high structural similarity with adenosine, guanosine
and pyrimidine. This observation is consistent with the features of

the natural ligand for TLR7 and TLR8, which has been reported to be
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single-stranded RNA®2® TLR7 and TLRS are therefore involved in the
recognition of different viral species, including human
immunodeficiency virus (HIV), influenza virus, Newcastle disease
virus (NDV), vesicular stomatitis virus (VSV), Coxsackie virus and

82°86 However, also siRNA has been shown to

human parechovirus 1
activate immune cells through TLR7 and TLRS8, raising the possibility
that both receptors may also recognize dsRNA¥’. Even though a
complete understanding of the relationship between the sequence of
the stimulatory RNA and the recognition by TLR7 and TLR8 is still
lacking, the presence of uridines seems to be crucial for these
interactions. Additionally, enrichment in guanosines or adenosines
appears to differentially target the ssRNA to TLR7 or TLRS,

88 It should also be noted that the recognition of

respectively
ssRNA by TLR7 and TLR8 is strongly inhibited by the incorporation of
modified nucleosides, such as  5-methylcytosine, N6-
methyladenosine,  5-methyluridine,  2-thiolated uridine or
pseudouridine, which are commonly found in endogenous but not in
bacterial or viral RNA®. This observation clearly suggests a system to

discriminate between self and non-self ligands and therefore

preventing autoimmune reactions.

TLR9. Bacterial DNA has been demonstrated to have a potent
immunostimulatory activity, which is dependent on the presence of
unmethylated CpG dinucleotides in a particular base context named

f90

CpG motif™. Differently from bacteria, where CpG motifs are found

at the expected rates and are normally non-methylated, the
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vertebrate genome is poor of CpG motifs (a strategy called “CpG
suppression”)®. Additionally, in vertebrates cytosines in CpG motifs
are highly methylated, suggesting that the differential expression and
methylation of CpG motifs could account for a rather specific self-non
self discrimination between host and microbial or viral DNA®. CpG-
containing oligonucleotides (CpG-ODN) are recognized by means of
TLR9%, which is accordingly known to play a role in the recognition of
viruses, including murine cytomegalovirus (MCMV and herpes-
simplex virus 1 and 2 (HSV-1 and HSV-2)*%¢ and bacteria®” .
However, recent studies questioned the paradigm stating that DNA
recognition by TLR9 is strictly CpG-dependent. By using CpG-ODN
containing natural phosphodiester linkages (PD-CpG-ODN) instead of
the commonly used, DNase-resistant, phosphothioate-stabilized ODN
(PS-CpG-ODN), it was shown that activation of TLR9 by DNA is
actually determined by recognition of the DNA sugar backbone®.
Base-free PD 2’deoxyribose backbone is a basal TLR9 agonist, and its
activity is enhanced by sequence-aspecific base addition. On the
contrary, base-free PS 2’deoxyribose backbone acts as an antagonist
for TLR9, and its activity is transformed into stimulatory only by
addition of CpG motifs®. In light of these findings, TLR9 should not
be considered as different from the other nucleic acid-sensing TLRs,
which all recognize general chemical and structural, rather than

sequence-specific, features of DNA or RNA.

TLR11. TLR11 plays a crucial role in the response to uropathogenic

E.coli infections in mice, although the precise ligand is unknown'®.
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However, it is believed that TLR11 recognizes a protein ligand since
the immunostimulatory activity of these bacteria is sensitive to

190 Other TLR11 ligands include a class of

proteinase K treatment
profilin-like molecules from protozoan'®’. Notably, human TLR11 is
nonfunctional, due to the presence of a stop codon in its genetic

sequence.

TLR localization

The TLR family members described above can be classified into two
groups according to their subcellular localization. Namely, TLR1,
TLR2, TLR4, TLR5, TLR6 and TLR11 are expressed on the plasma
membrane, whereas TLR3, TLR7, TLR8 and TLR9 are found in the
endolysosomal compartment. Although this distinction is based on a
mere phenotypical analysis, recent research showed that it is highly
informative of the functional role played by the two categories.
Plasma membrane TLRs bind lipid or protein structures that are
expressed on the surface of pathogens and are therefore readily
available for recognition in the extracellular space. Instead, the
distinctive trait of intracellular TLRs is the shared ability to bind
nucleic acids, which are normally confined inside invading pathogen
but can be encountered by immune cells upon phagocytosis or
endocytosis and subsequent fusion with TLR-containing vesicles with
phagosomes, endosomes or macropinosomes. It should be noted

that this nucleic acid sensing strategy, although unavoidable since
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viruses lack conserved non-nucleic patterns, is not costless’®?. The
inappropriate TLR activation by host DNA or RNA in pathologic
circumstances may indeed contribute to the emergence of

autoimmune disorders, including SLE'®

. However, it has been shown
that the intracellular localization of TLR9 is crucial for discriminating
between self and non-self DNA, a hypothesis that may well be

104 " An additional

extended to the other nucleic acid sensing TLRs
strategy that limits the possibility of host DNA/RNA recognition has
been identified in the proteolytic processing of TLR7 and TLR9
ectodomains that specifically occurs in endolysosomes and that is
required for the generation of a functional receptor'®™*%.
Accordingly, a pool of full-length TLR7 or TLR9 can still be found on
the cell membrane but these receptors are not able to recruit the

downstream adaptor MyD88 upon ligand binding'®®

. A thorough cell
biological approach has recently been used to study the features of
TLR4 signaling, despite its apparently static localization on the plasma
membrane. As it turned out, also the functions of TLR4 strictly rely on
basic cellular mechanisms that regulate the ability of TLR4 to

dimerize and recruit the adaptors MyD88 and TRIF'°>. A detailed

description of that will be provided in the following sections.
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TOLL-LIKE RECEPTOR 4: A CASE STUDY

Since its discovery, TLR4 has been the focus of much attention
because of its peculiar features in terms of ligand recognition and
signal transduction, two key aspects that this section will specifically
deal with. TLR4 shows a highly orchestrated usage of co-receptors to
discriminate between ligands and this multifaceted receptor system
additionally plays a role in triggering several signal transduction
pathways through the sequential recruitment of at least four adaptor
proteins. Since the resultant biological outcomes recapitulate the
whole spectrum of TLR responses, | will use TLR4 as a model to
describe the molecular events linking receptor stimulation with

downstream activation of transcription factors.

LPS Structure

Lipopolysaccharide (LPS) is a highly expressed component of the cell
wall of all Gram-negative bacteria, and it plays a crucial role in
maintaining the structural and functional integrity of the outer
membrane'®”. Due to its vital biological importance, the general
structure of LPS is conserved among all Gram-negative bacteria,
making it a prototypical PAMP to be recognized by the innate arm of
the immune system. LPS recognition by innate immune cells triggers
the rapid release of proinflammatory cytokines (e.g. TNFa, IL-6),
which promote a local inflammation that is beneficial for bacterial

clearing. However, if the response to LPS is spatially uncontrolled, a

42



systemic inflammatory reaction can occur, leading to multiorgan

h'%, LPS from most

failure, endotoxic shock and potentially deat
Gram-negative bacteria conforms to a general architecture
composed of three separate regions, namely the lipid A, the core
region and the O-chain. The lipid A moiety is highly hydrophobic and
it is largely responsible for the endotoxic activity of the whole LPS
molecule, which can be effectively mimicked by a synthetic lipid A.
Lipid A is inserted into the external face of the outer membrane of
the bacterial cell wall and it is typically composed of a B-D-GIcN-(1,6)-
o-D-GlcN disaccharide bearing two phosphates at positions 1’ and 4.
This structure is further modified by the attachment to the
disaccharide module of up to four primary acyl chains, which can in
turn be substituted by additional fatty acids. The number and lengths
of acyl chains or the phosphorylation state of the lipid A represent
the major factors contributing to its endotoxicity. Accordingly, lipid A
structures either lacking a phosphate group or showing a wrong
number of acyl chains are much less active than classic E.coli lipid
A 1t appears that the lipid A structure associated with the highest
endotoxic activity is the E.coli-like diphosphorylated B(1,6)-linked D-
GlcN dimer with six acyl chains, as evidenced by the observation that
deviations from this pattern invariably reduce the activity of the

molecule'®

. Consistent with this hypothesis are at least three
clinically relevant observations. First, the compound Eritoran (E5564),
a synthetic derivative of the lipid A from the non pathogenic LPS of
R.sphaeroides bearing only four lipid chains, acts as a strong
antagonist of TLR4:MD-2""° and is currently in a phase IIl trial for the
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treatment of sepsis. Second, lipid IVa (compound 406), an
intermediate in E.coli LPS biosynthesis, is an antagonist of TLR4:MD-2
in humans but a mild agonist in mice and horses**™*3. Third,
monophosphoryl lipid A (MPLA) from S.enterica is a variant form of
lipid A that awaits approval for use as a vaccine adjuvant, since it
generates clinically useful immune responses associated with a very

1% The core region is a rather conserved

low toxicity compared to LPS
polysaccharidic structure that can be formally subdivided into inner
and outer core. The inner core is proximal to the lipid A and it
contains unusual sugars, such as Kdo and heptose, which are
absolutely required for bacterial viability and therefore are well
conserved among all LPS species. The variability of the whole region
is concentrated in the outer core, which typically consists of common
hexose sugars. In particular, depending on the degree of completion
of the core oligosaccharide, five unique structures have been
determined and classified from Ra to Re in E.coli. The hydrophilic O-
chain is the outer region of the LPS molecule and it provides bacteria
with an effective protection against hydrophilic antibiotics or
complement proteins. The O-chain is a highly variable region
composed by repeating saccharidic units formed by up to eight
glycosyl residues that differ between bacterial strains in terms of
sugars, sequences, linkages and substitutions used. Additionally,
these forming units can be repeated up to 50 times and a single
organism will produce a wide range of these lengths due to
incomplete synthesis of the chain. Since the O-chain is also generally

targeted by antibodies it is also referred to as O-antigen, and the
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serology of O-antigens has become an effective tool in typing strains
of organisms and LPSs. Around 170 serotypes of E.coli LPS have been
identified, demonstrating the high degree of variability of the O-
antigen. However, the O-chain is not ubiquitous, as some Gram-
negative strains seem to express a truncated version of LPS. Notably,
bacteria carrying mutations in the genes involved in the synthesis and
attachment of the O-chain do not express it at all. These mutants are
called “rough” (R-) because of the morphology of the colonies they
form in a plate that is different from what observed for wild-type,

“smooth” (S-)bacteria.

LPS sensing machinery

Well before the definitive discovery of TLR4 as the transducing
receptor for LPS, some of the key players involved in its recognition
had already been discovered and characterized. After the isolation
and cloning of LBP (LPS binding protein)'™®, it was shown that its
primary function was to extract monomers of LPS from aggregates or
bacterial membranes™'® and facilitate LPS recognition by the receptor
cD14". However, since CD14 is a GPl-anchored protein that lacks an
intracellular domain for canonical signal transduction, it appeared
evident that it could not function as the sole receptor for LPS*%. The
seminal discoveries of TLR4>* and its associated co-receptor MD-2
(myeloid differentiation protein 2)*°, contributed to establish a

model in which CD14 acts as an LPS sensing receptor that accepts LPS
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monomers from LBP and then transfers them to the TLR4:MD-2

complex, thereby promoting its ligand-induced dimerization.

LBP. LBP is a 58-60 kDa glycoprotein that is secreted in the serum
mainly by hepatocytes as an acute phase protein. It belongs to the
family of lipid transfer/LPS binding protein (LT/LBP) and, among all
the members, it shows the highest sequence similarity with BPI
(bactericidal permeability increasing protein)*'®. The crystal structure
of murine BPI has been determined, which allows the construction of

120 'BP| has a boomerang-

a reliable tertiary structural model of LBP
shaped structure composed by two barrel domains, connected by a
proline-rich linker, each of which can accommodate a
phosphatidylcholine molecule’®. The LPS binding site of LBP has
been identified by mutagenesis analysis and it consists of a cluster of
cationic residues that bind the phosphorylated head of the lipid A

moiety121

. Based on the crystal structure of BPI, the LPS binding site
of LBP is fully exposed at the N-terminal tip of the protein'?,
whereas the C-terminal domain is required for the interaction of LBP

with the cell membrane or with CD1416:123-124

. At low concentrations,
LBP has been shown to facilitate the recognition of LPS by extracting
it as a monomer from aggregates or bacterial membranes*?>*?®. LBP
then catalyzes the transfer of LPS to both membrane-bound and
soluble cD1471% by means of a first order enzymatic reaction'?1%°,
Notably, acute-phase high serum concentrations of LBP strongly
inhibit LPS recognition, protecting the host from LPS- or Gram-

negative bacteria-induced septic shock’*’. LBP is believed to exert
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this inhibitory role at least partly by transferring LPS to serum

lipoproteins such as HDL™!

or by forming inactive aggregates with
LPS™32, It is interesting to note that, although the inhibitory effect on
LPS signaling by high LBP concentrations is equally observed for all
LPS chemotypes, the features of LPS clearance seem to be rather
specific. Indeed, it has been shown that S-form LPS is predominantly
cleared by the LBP-dependent transfer to serum lipoproteins,

whereas R-form LPS is cleared by means of both mCD14-dependent

and —independent mechanisms™>3.

CD14. CD14 is a 55 kDa glycoprotein expressed on the surface of
myelomonocytic cells as a GPl-anchored receptor or secreted in a
soluble form™*. Sequence and crystallographic analyses revealed that
CD14 contains 11 LRR modules folding into a truncated horse shoe-
shaped tridimensional structure. Notably, CD14 has been crystallized
as a dimer in which two monomers are bound by means of their C-
terminal regions and the total number of LRRs in the CD14 dimer is
similar to that in TLR4, suggesting that the overall shape of the two

3% The concave surface is largely composed of

proteins may coincide
B-sheets, whereas the convex face contains an irregular pattern of
helices and loops. This structure implies the presence of a number of
grooves and pockets that are crucial for ligand binding. The LPS
binding site of CD14, identified by mutagenesis and epitope mapping

. 136-1
experiments 36-138

, is located at the N-terminal region of the protein
in a large hydrophobic pocket with a cluster of positively charged

residues at the rim that accommodates the phosphorylated lipid A
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moiety ~". Additionally, since also the carbohydrate portion of LPS

118

contributes to the binding to CD14"", it has been proposed that the

LPS binding site extends beyond the N-terminal pocket to include

135 such an

additional hydrophilic grooves in the neighboring area
irregular and flexible structure provides CD14 with the ability to bind
different forms of LPS with a comparable high affinity139, and
probably explains its ligand promiscuity. CD14 has indeed been
involved in the recognition of a number of other ligands, acting as a
co-receptor for TLR1, TLR2, TLR6, TLR4 and TLR3 (see sections above).
CD14 functions as an LPS sensing receptor whose role is to enhance
the sensitivity of innate immune cells to LPS by binding to picomolar
concentrations of LPS and facilitating its recognition by TLR4:MD-2.
This was demonstrated by studies showing that CD14-deficient mice
are highly resistant to LPS- or Gram-negative bacteria-induced septic
shock!! and that CD14-deficient macrophages display heavily

142 Nevertheless,

impaired sensitivity to low concentrations of LPS
the detailed mechanism of how LPS is transferred to TLR4:MD-2 has
not been completely unraveled. The simplest scenario would be that
CD14 directly contacts TLR4:MD-2 and operates the LPS presentation.
Alternatively, since CD14 has been consistently shown to catalyze the

143144 it is plausible to

rapid insertion of LPS into the cell membrane
envisage a model in which CD14 leaves the LPS molecule in the cell
membrane to be picked up by TLR4:MD-2. In support of both
hypotheses is the identification of several residues of CD14 that are

145146 3nd that could

not required for LPS binding but for its signaling
mediate the interaction with TLR4:MD-2. Furthermore, it has been
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shown that LPS is brought by CD14 in close proximity of TLR4:MD-

147 148
2

and it is released before CD14 internalization™. Although its
crucial role in the recognition of low LPS doses is established, CD14
has been shown to be largely dispensable for the response to high
concentrations of LPS, which occur almost normally in CD14-deficient

142

macrophages™“. This notable observation suggests that an excess of

LPS can be also sensed by means of a CD14-independent pathway,
which possibly implies either direct LPS recognition by TLR4:MD-2*
or the participation of different LPS binding proteins150 (discussed
below). Nevertheless, the biological relevance of these CD14-
independent pathways in response to high doses of LPS must be
cautiously analyzed, since the LPS concentrations measured during
bacterial infections in vivo are several orders of magnitude lower
than the ones used in the in vitro experiments described above. In
addition to its concentration, the chemotype of LPS determines the
extent of CD14 requirement for ligand recognition. It has been
demonstrated that the O-glycosylated, S-form LPS typically triggers a
response in terms of TNFa production that relies on CD14 activation,
whereas CD14 is at least partially dispensable for the response to R-

131 This observation has

form LPS, which lacks a typical O-antigen
been confirmed by a phenotypic screening of N-ethyl-N-nitrosurea-
mutated mice, which showed that mice carrying a truncated version
of CD14 (Heedless) lose the ability to activate the MyD88-dependent
pathway and produce TNFa after stimulation with S-LPS but not with
R-LPS or lipid A% These data suggest that CD14 is essential for the
presentation of S-LPS to TLR4:MD-2, whereas R-LPS or lipid A can be
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directly sensed by the receptor complex, consistent with other

reports**¥1>3

. Strikingly, Heedless mice are also unable to produce
type | IFNs, a TRIF-dependent class of cytokines, when challenged
with both S- or R-LPS and lipid A% Therefore, it appears that CD14 is
strictly required for the induction of the TRIF-dependent signaling
pathway irrespective of the LPS chemotype. Even though different
selection of each pathway by different LPS chemotypes has been
observed™, it should be stressed that the discrimination between
LPS chemotypes seems to rely largely on TLR4:MD-2 rather than
CD14 itself, since specific responses are observed even in the
absence of CD14. The latter retains the ability to effectively bind both
S- and R-LPS and its physiological expression nullifies their distinction

in terms of signaling™?

. It has been proposed that CD14 specifically
promotes TRIF-dependent signaling by acting as a chaperone or by
inducing a conformational change in TLR4:MD-2 that results in the

engagement of TRIF*?

. Regardless of the molecular mechanism, the
observation that CD14 selectively regulates the production of type |
IFNs can be interpreted as a major objection to the long-standing
dogma that CD14, as a GPl-anchored receptor, can not have a direct
signaling capability. As a matter of fact this theory needs to be
revisited, also in light of recent reports showing that various GPI-
anchored proteins, exemplified by CD59, transiently recruit and
activate downstream kinases after antibody-mediated cross-

. . 155-1
linking*>*>

. Notably, GPI-lated CD14 itself has been demonstrated
to trigger a phospholipase C (PLC)-dependent calcium mobilization
following treatment with cross-linking antibodies™’. Even though the
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biological significance of these findings could be argued due to the
artificial clustering of the GPl-anchored proteins, we recently
established a direct signaling role for CD14 in triggering a DC-specific

158 The features

pathway after recognition of its natural ligand S-LPS
of this CD14-dependent and TLR4-independent signaling pathways

will be described in detail in Chapter 2 of this thesis.

MD-2. MD-2 is a 25-30 kDa glycoprotein that can be classified into
the ML superfamily of lipid-binding proteins. It has been identified as
a TLR4-interacting molecule that is essential for conferring LPS
responsiveness to cells expressing TLR4'". Among all the TLR4
accessory molecules MD-2 is the only one that is absolutely required
for the response to LPS, as evidenced by the observation that MD-2-
and TLR4-deficient mice display the same LPS unresponsive

>139 "Even though it has been demonstrated that MD-2 is

phenotype
the LPS binding componentleo, it is not clear whether TLR4 may also
directly bind LPS, as suggested by genetic evidence and recent

structural studies*

. Nevertheless, the TLR4:MD-2 complex binds
LPS with higher affinity than MD-2 alone or CD14*" and the binding
affinity of MD-2 or MD-2:LPS complex for TLR4 is the same'®,
suggesting that either CD14 or soluble MD-2 may shuttle LPS to
TLR4:MD-2. MD-2 has also been identified in the form of covalently
linked oligomerslez. However, the biological function of MD-2
oligomers has remained elusive, since it has been shown that only

the monomeric form of MD-2 is competent for binding LPS and

forming a stable LPS:MD-2 complex able to transduce the signal
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through TLR4™%'3 The crystal structure of MD-2 has recently been
solved , both alone and complexed with TLR4'**>*** MD-2 is a B cup-
folded protein with two antiparallel B-sheets that are separated on
one side, with the internal hydrophobic core forming a large internal
pocket, lined with cationic residues, which can accommodate LPS.
The interaction between MD-2 and TLR4 relies on hydrogen and
electrostatic bonds between two complementary charged patches
located on each molecule™ that have been identified as crucial for

165167 The crucial role of

the formation of the TLR4:MD-2 complex
MD-2 in LPS recognition has been identified in its being instrumental
for ligand-induced receptor dimerization'®®. In initial structural
analyses, MD-2 has been complexed with the antiendotoxic, tetra-

14164 Both studies

acylated phospholipids Eritoran and lipid IVa
showed that the four acyl chains of the molecules completely fill the
hydrophobic pocket of MD-2 and that additional electrostatic
interactions are operated between the phosphate groups and the
cluster of positively charged residues at the edge of the pocket.
Notably, Eritoran was shown not to make direct contact with TLR4
and not to promote TLR4 dimerization'®. It was proposed that the
binding of a bigger, agonistic LPS molecule carrying six acyl chains
could have resulted in a major conformational change of MD-2, thus
exposing otherwise hidden interaction sites (Phe126, Gly129, His155)
for binding to the C-terminal domain of a second TLR4 molecule'**®.
The authors alternatively hypothesized that four of the six acyl chains
of LPS could insert into the hydrophobic pocket of MD-2, whereas

the two remaining lipid could protrude from the molecule and
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directly interact with a second TLR4 molecule. As a compendium of
both models, the recently reported structure of a crystallized
TLR4:MD-2:LPS complex clearly revealed that, upon LPS binding, a
symmetric “m”-shaped multimer composed of two TLR4:MD-2
heterodimers is formed™. The hydrophobic pocket of MD-2
accommodates five acyl chains of LPS, with the remaining chain
exposed to interact with a secondary TLR4 by means of hydrophobic
interactions. The phosphate groups also contribute to the
dimerization by interacting with cationic residues of primary MD-2
and TLR4, as well as secondary TLR4™®°. Additionally, LPS binding
induces a localized structural change in MD-2, triggering the
protrusion of its Phel126 loop that makes hydrophilic contact with a
secondary TLR4™. In light of these recent findings, it seems that
many local forces and interactions determine the extent of receptor
dimerization and the resultant signaling. This experimental
framework will be essential to systematically investigate how the
TLR4:MD-2 system discriminates between different LPS molecules

and how specific recognition is achieved.

Accessory Molecules and Structures. Despite the crucial importance
of the LBP:CD14:TLR4:MD-2 system described above, an LPS sensing
machinery composed of such a small number of proteins may be an
oversimplification that hardly explains the whole complexity of the
LPS response. How a system will react to LPS may indeed vary
significantly according to a number of parameters, including the host

species, the cell type or the cell differentiation/activation state and
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the nature, the concentration or the duration of the stimulus.
Additionally, the toxicity of an uncontrolled LPS response inevitably
requires a panel of negative regulators. A growing list of accessory
molecules, either positively or negatively involved in LPS recognition,
has been identified that may compose a combinatorial cluster
whereby the differential usage of co-receptors results in a specific

LPS response15°’17°.

RP105 (radioprotective 105 kDa protein) is an LRR-containing type |
transmembrane protein that shows significant homology with TLR4.
However, in contrast to TLRs, RP105 lacks a TIR domain but its
cytoplasmic portion is composed of a short sequence consisting of 6-
11 aminoacids*’*. Similarly to TLR4, whose proper function requires
MD-2, RP105 both surface expression and activity are strictly

172

dependent on the MD-2 homologue, MD-1""“. RP105 was originally

identified and characterized in B cells as a protein governing anti-
RP105-mediated  proliferation’’®.  Since  RP105-deficient B

lymphocytes display a blunted LPS-driven proliferative response’’*

75 RP105 is believed to positively regulate TLR4-mediated LPS

recognition in this cell type. Nevertheless, the role of RP105 in cells
of the myeloid lineage appears to be quite different, since it has been

reported as a negative regulator of TLR4 in cell lines or in primary DCs

176

and macrophages™"". No ligand for RP105 has been reported nor any

direct interaction between RP105 and LPS has been demonstrated’®

v suggesting that RP105 may not function as a sensor or as a

molecular sink for LPS. On the other hand, RP105:MD-1 and
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TLR4:MD-2 co-immunoprecipitate  bidirectionally and these
interactions seem to be directly mediated by MD-1 and MD-2""°.
These observations led to the hypothesis that in myeloid cells, where
TLR4 is highly expressed, RP105 may inhibit the LPS binding ability of
TLR4:MD-2 by forming heterodimeric complexes. In B cells, where
TLR4 expression is limiting, the formation of these heterodimers may
facilitate TLR4 multimerization instead’®. However, formal proof for
this theory is lacking and additional experiments will be required for

explaining the opposite effects of RP105 in LPS signaling between

different cell types.

TIR8, also known as SIGIRR (single Ig IL-1-related receptor) is a IL-1R-
like glycoprotein with a single Ig domain, an atypical TIR domain
lacking two cysteines that are normally conserved and play essential
roles in IL-1R signaling, and an additional cytosolic tail whose

179-180

function is unknown . It is widely expressed in a number of

tissues, as well as B lymphocytes and innate immune cells'®*™# but
its transcription is downregulated upon LPS stimulation'®. Even
though no specific ligand has been reported'’®, TIRS is a well known
negative regulator of the signaling triggered from some IL-1R and TLR
family members, including TLR4, TLR7 and TLR9™*. The inhibitory
mechanism differs between the two receptor families, as both the Ig
and the TIR domain are required for inhibiting IL-1R signaling but only
the TIR domain is necessary to block LPS signaling'®. Indeed,

whereas the mutated TIR domain of TIR8 affects both IL-1R and TLR4

signaling by interfering with the recruitment of downstream
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components, namely IRAK1 and TRAF6, the Ig domain is selectively

responsible for inhibiting the heterodimerization of IL-1R™8.

ST2 (suppressor of tumorigenicity 2) is a transmembrane negative
regulator of TLR signaling that sequester downstream adaptor
proteins, namely TIRAP and MyD88, through its TIR domain®®®. The
extracellular domain of ST2 contains three Ig-like domains that do
not bind LPS, but have been reported to recognize the IL-1 family

187

member IL-337"". ST2 also exists in a soluble form, sST2, that inhibits

TLR signaling through binding to a putative ST2 receptor and

suppressing the transcriptional expression of TLR4®8,

The complement receptors CR3 (also called Mac-1 or CD11b/CD18)
and CR4 (CD11c/CD18) are transmembrane glycoproteins that belong
to the B2-integrin family’®. At variable extents and combinations,
they are expressed by neutrophils, monocytes, macrophages and NK
cells, and they play a major role in a number of cellular functions,
including cell adhesion, cell migration and phagocytosis'®’.
Additionally, CR3 and CR4 have been reported to bind LPS*****! and
to trigger LPS-induced, serum-independent, NF-kB activation after
heterologous expression in the TLR4-expressing CHO cell line®#1%3,
Direct interaction between CR3 and CD14 has also been shown in
neutrophils stimulated with LPS in the presence of serum or LBP,
implying a receptor crosstalk'®*. This observation led to a model of
CR3 function in which LPS-induced CD14 clustering increases the local

concentration of LPS and CR3, thereby potentiating the binding of

LPS to CR3. This in turn results in a marked increase of CR3 adhesive
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properties, bridging bacteria to the surface of phagocytes'®®, and in

194 "which then transfers LPS

the subsequent detachment from CD14
to TLR4:MD-2. Notably, CR3-mediated adhesion and phagocytosis
that are up-regulated by LPS require its cytoplasmic domain, whereas
a tail-less CR3 mutant can still contribute to NF-kB activation'®>. This
suggests that CR3 may function, similarly but less efficiently than
CD14, by presenting LPS to TLR4:MD-2. However, the significance of
CR3 in mediating the cellular response to LPS has been questioned by
a study reporting that CD18-deficient human monocytes and
macrophages respond normally to LPS treatment in terms of TNFa
and IL-1B production'’. These data are in agreement with other
reports showing that monoclonal antibodies against CD11b or CD18

195-196

do not impair TNFa release by human monocytes . On the other

hand, CR3 has been shown to be important for the production of

1
% 35 well as for the

TNFa by membrane-bound, particulate LPS
expression of a panel of LPS-induced genes, including COX-2, IL-
12p35, IL-12p40*” and IL-6'%8. A recent report also points to a crucial
role for CD11b in regulating LPS signaling in macrophages, whose

implications will be described below'®.

Lipid rafts are nanoscaled, spatially defined, assemblies of
sphingolipid and cholesterol that fluctuate in lipid bilayers'®®. The
lipid raft concept is opposed to the classical model of the cell
membranes as a uniform and passive solvent for proteins. Instead, it
proposes the existence of discrete microdomains that are laterally

segregated from the cell membrane in which they navigate, due to
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the preferential interaction between certain lipids. The raft
hypothesis originated from the observation that the lipid
composition between the apical and the basolateral membrane of
epithelial cells are distinct, but only recently the technological
advances in the field of fluorescence and electron microscopy
demonstrated their existence in living cells. The lateral organization
of lipid rafts, which renders them resistant to Triton X-100
solubilization at 4°C, stems from the close association of
sphingolipids bearing saturated hydrocarbon chains in which
cholesterol molecules intercalate. Accordingly, cholesterol-depleting
agents have been used as a tool for disrupting lipid raft in order to
study their biological function. The key feature of lipid rafts is that
they incorporate proteins: GPl-anchored, doubly acylated,
cholesterol-linked and palmitoylated but also some transmembrane
proteins have been reported to show a significant raft affinity*®.
Selective protein residency in lipid rafts mainly defines their secretion
route as well as their mode of endocytosis®®’. However, for the
purposes of this thesis, the most interesting aspect of lipid rafts is
that they act as signaling platform by increasing the local
concentration of receptors and downstream effectors. A crucial role
for raft-mediated protein clustering has been clearly demonstrated
for the induction of IgE and TCR signaling, but recent works also
included the LPS sensing molecules in the list of receptors whose
activity is regulated by their localization into microdomains. As a GPI-
anchored protein, CD14 normally resides in lipid rafts together with
hsp70 and hsp90'#2°2%_ ypon LPS stimulation, TLR4:MD-2, CXCR4,
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and GDF5 as well as MAPKs are transiently recruited and segregated
to microdomains, as determined by biochemical and FRAP

202-205

measurement Consistent  with  these  observations,

pharmacological disruption of raft integrity sensibly impairs the
cellular response to LPS in terms of cytokine production2°3’2°6. A
significantly reduced TLR4 mobilization into lipid rafts has also been
observed in LPS-pretreated cells, suggesting that the regulation of

. . . . 207
this mechanism may contribute to endotoxin tolerance®

. Notably,
we have recently shown that the sub-localization of CD14 in lipid
microdomains is crucial for its own, TLR4-independent, signaling
induced by LPS™®.

As described above, a conspicuous number of regulators of TLR4
signaling has been identified that exert their function by acting at
each step of receptor activation. Ligand binding affinity, receptor
sublocalization, clustering and dimerization as well as downstream
effector recruitment and activation are all subjected to both positive
and negative forces that altogether shape the host response to LPS.
In light of the complexity of this recognition system, further
experiments are required to fully appreciate the relative contribution
of each participant and to characterize how the interplay between
them relates to the different, highly specific response triggered by

bacterial infections.
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TLR4 SIGNALING PATHWAYS

Upon ligand binding, TLRs trigger several signaling pathways that
culminate in the activation of specific transcription factors.
Independently of the nature of the pathogenic stimulus, every TLR
stimulates the production of proinflammatory cytokines (e.g. TNFa,
IL-6, prolL-1B) whose transcriptional regulation depends on NF-kB
(nuclear factor-kB) and AP-1 (activator protein-1). All TLR family
members, except from TLR3, signal NF-kB and AP-1 activation by
means of the adaptor MyD88 (myeloid differentiation primary
response gene 88). In the case of TLR3, the same biological output is
obtained through the usage of a different adaptor, TRIF (TIR-domain
containing adaptor inducing IFN-beta). Whereas the activation of NF-
kB and AP-1 is a common feature of the signaling induced by all TLRs,
only a subset of them is additionally able to trigger the production of
type | interferons (IFNa and IFNB), a class of cytokines with potent
antiviral and antibacterial activities. Indeed, only the intracellular,
nucleic acid-sensing TLRs (TLR3, TLR7, TLR8 and TLR9) can activate
the transcription factors IRF (interferon regulatory factor)3 and IRF7,
which largely regulate the expression of type | IFNs. This implies that
the induction of type | IFNs is TRIF-dependent for TLR3, whereas it is
MyD88-dependent for TLR7, TLR8 and TLR9.

A notable exception to the rules outlined above, i.e. (i) a single TLR
can signal through either MyD88 or TRIF and (ii) only intracellular
TLRs trigger a type | IFN response, is represented by TLR4. Indeed,
TLR4 recruits both MyD88 and TRIF to induce the activation of NF-kB
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and AP-1 and, similarly to TLR3, it uses TRIF to stimulate the
production of type | IFNs, though in response to non-nucleic acid
ligands. Furthermore, TLR4 requires the two additional upstream
adaptors TIRAP (TIR-domain containing adaptor protein) and TRAM
(TRIF-related adaptor molecule), which mediate the recruitment to
TLR4 of MyD88 and TRIF, respectively. TLR1,2 and 6, (but not TLR5,
7,8 and 9) share the usage of TIRAP as a MyD88 bridging adaptor,
whereas TRAM is specifically recruited to TLR4 (and not TLR3). These
features of TLR4 effectively synthesize the complexity of TLR
signaling, making it a prototype for the whole family. The next
section will deal with the signaling pathways emanating from TLR4 in
response to LPS, describing the modes of adaptor recruitment as well

as the downstream cascades that lead to the biological outcome.

TLR4 Adaptor Recruitment

Originally showed to mediate IL-1R-dependent activation of NF-kB*%®

209 MyD88 is now known to play a crucial role for the signaling
pathways induced by almost every TLRI9>210-211 MyD88 has a
modular structure®*?, which consists of a C-terminal TIR domain that
is responsible for the interaction with the TIR domain of recruiting
TLRs, an intermediate domain, and an N-terminal death domain (DD)
that performs homotypic interactions with downstream proteins of

the IRAK family’®?%. Whereas MyD88 can be directly recruited to

some TLRs (TLR5, 7, 8 and 9), it is not able to efficiently interact with
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TLR4 (and TLR1, 2 and 6), probably due to a lack of electrostatic
complementarity between the respective TIR domains®. Therefore,
TLR4 (and TLR1, 2 and 6) requires the intermediate adaptor TIRAP,
also known as MAL (MyD88 adapter-like), to bind MyD88*"**!,
Limited to TLR4 and TLR2 stimulation, the phenotypes of MyD88- and
TIRAP-deficient mice are largely overlapping, with a completely
abolished proinflammatory cytokine production that demonstrates a
crucial role for TIRAP upstream of MyD88 in signaling by TLR4 and
TLR2 but not by TLR9, IL-1R or IL-18R***2*. However, despite their
total inability to produce proinflammatory cytokines, a reduced and
delayed activation of NF-kB and AP-1 is still detectable in MyD88- or
TIRAP-deficient mice after TLR4 but not TLR2 stimulation*"**>®,
This late wave of NF-kB activation, as well as the expression of type |
IFN genes, is a hallmark of the MyD88-independent signaling
pathway that is specifically triggered by TLR4 by means of the
adaptor TRIF, also known as TICAM-1 (toll-like receptor adaptor

216-217
molecule 1)*

. Accordingly, TRIF-deficient mice do not produce
measurable amounts of proinflammatory cytokines in response to
TLR4 or TLR3 stimulation, but the early activation of NF-kB is still
observed after LPS treatment. Any response to LPS is instead totally
eliminated in mice doubly deficient for MyD88 and TRIF, showing
that TRIF accounts for the MyD88-independent aspect of TLR4
signaling. Furthermore, no detectable expression of type | IFNs
induced by TLR4 or TLR3 is observed in TRIF-deficient mice®*®2%.
Additionally, a fourth adaptor, TRAM (or TICAM-2), is specifically
required for TLR4 to recruit TRIF and thereby promote TRIF-
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dependent NF-kB and IRF3/7 activation®’?* two biological
processes that are inhibited by the TIR-containing protein SARM

221 SARM is thought to negatively

(sterile a- and armadillo-motif)
regulate TRIF, but not MyD88, by directly binding to it and to prevent
the recruitment of key downstream effectors.

Since TIRAP and TRAM are TIR-containing proteins that do not
possess any obvious effector domain (i.e. DD) they are believed to
function as bridging adaptors for MyD88 and TRIF, respectively.
Recently, this hypothesis has been experimentally validated by
several studies that also provided a detailed molecular description of

the early events triggered by LPS recognition'*®**

. Opposite to the
common view of TIR-containing adaptors as cytosolic proteins that
are recruited to membranes by means of TIR-TIR interactions with
dimerized TLRs, TIRAP is normally found at actin-rich membrane
ruffles as well as in intracellular vesicles and its localization is TIR-

independent198

. Instead, both its localization and its function rely on
an N-terminal phosphatidylinositol 4,5-bisphosphate (PI(4,5)P,)-
binding domain that is essential for targeting TIRAP to the membrane
microdomains where TLR4 is located'®®. Since MyD88 is cytosolic, the
biological function of TIRAP is to recruit MyD88 by means of a TIR-TIR
interaction and to sort it to specific PI(4,5)P,-rich membrane

198 " Consistent with the

microdomains where signaling can initiate
role of TIRAP as a sorting adaptor, MyD88-deficient macrophages, in
which the localization of TIRAP is normal, do not produce cytokines
after LPS stimulation. Instead, forced localization of MyD88 to
PI(4,5)P,-rich membrane microdomains restores the response to LPS
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in TIRAP-deficient cells, demonstrating that MyD88 is the signaling
adaptor'®. PI(4,5)P, is a phospholipid that plays many critical
functions in the cytoplasmic leaflet of the plasma membrane, of

which it is a minor constituent (about 1%)**

. Apart from being the
source of the second messengers inositol 1,4,5-trisphosphate
(1(1,4,5)P3), diacylglycerol (DAG) and PI(3,4,5)Ps, it regulates several
processes at the cell membrane, including endocytosis, exocytosis,
actin polymerization and cytoskeletal rearrangements and enzyme
activation?®*. Many of these functions are operated by virtue of its
ability to recruit proteins that bear a suitable PI(4,5)P,-binding
domain, such as the PH (pleckstrin homology) domain. It is believed
that PI(4,5)P, is concentrated in lipid raft, although this claim is
somehow controversial and it can not be taken as a general
assumption. Nevertheless, several reports have consistently shown
that PI(4,5)P, is concentrated in nascent phagosomes and membrane

ruffles?242%

. The observations that TLR4 relocates to lipid rafts after
activation?®® and that the PI(4,5)P,-binding protein TIRAP colocalizes
with TLR4™® strongly suggest that PI(4,5)P, may indeed be found in
TLR4-containing microdomains. Further evidence for this is provided
by our discovery of a CD14-dependent pathway induced by LPS that
promotes the activation of PLCy2 , whose substrate is PI(4,5)P,™%.
One of the mechanisms that can explain the existence of pools of
PI(4,5)P, at the plasma membrane is the localized synthesis of this
lipid through the phosphorylation of PI(4)P by a phosphatidylinositol
4-phosphate 5-kinase (PI(4)P5K)*°. Interestingly, it has been
reported that ARF6 (ADP-ribosylation factor 6), a known positive
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regulator of PI(4)P5K**® is essential for the localization of TIRAP and

198 ARF6 activation is in turn inhibited

for the resultant TLR4 signaling
by AIP1, a newly described ARF6-GAP (GTPase-activating protein)®*’.
Since B2 integrins can promote PI(4,5)P, synthesis at least partly by
activating ARF6™  the observation that CD11b-deficient
macrophages show a defective TIRAP localization and an impaired IL-
6 production in response to LPS suggests a model in which LPS
recognition by CD11b, probably mediated by CD14 (see above),
stimulates an ARF6-dependent acute synthesis of PI(4,5)P,. This
allows TIRAP to locally concentrate and sort a pool of cytoplasmic
MyD88 to the membrane microdomains where activated TLR4 is
recruited™®®. It should be noted that this mode of integrin function,
although convincingly demonstrated, is not consistent with previous
reports showing that a tail-less version of CD11lb is unable to
promote phagocytosis but still activates NF-kB after LPS
stimulation'®®. However, these discrepancies may result from an
unphysiological behavior of CD11b-transfected cells as well as from a
differential membrane organization between the cell types (CHO and
primary macrophages) used. Based on the observation that CD11b is
the only B2 integrin expressed in macrophages but DCs also express
CD11c**®, one might speculate that in the latter cell type the two
integrins may act comparably, since both have been shown to bind
LPS*% 191 specific experiments will be required to test this
hypothesis. Additionally, it is plausible that a similar MyD88
recruitment strategy might be shared by TLR2, which also requires

229

TIRAP to signal MyD88-dependent activation of NF-kB““". Consistent
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with this hypothesis, also TLR2 relocates to lipid raft after
stimulation®®, it uses CD14 as a co-receptor and it is assisted by B2
integrins in the recognition of Gram-positive bacteria®*°.

The functional distinction of TIRAP and MyD88 acting as a sorting and
signaling adaptor has recently been shown to hold true also for the
TRAM-TRIF axis, even though the modes by which the two adaptor
pairs are recruited to TLR4 vary significantlyzzz. The resultant model
that describes the early phases of LPS-induced signal transduction is
in sharp contradiction with the long-standing dogma that TLR4
simultaneously induces the TIRAP-MyD88 and the TRAM-TRIF
pathways from the cell membrane. Indeed, unlike TIRAP, TRAM is

1

found both at the plasma membrane®®' and in the Rab5' early

222 The peculiar localization

endosomal compartment in resting cells
of TRAM is totally TIR-independent but it is due to an N-terminal
bipartite domain that contains a myristoylation motif??>?3!

222 A careful deletion

(aminoacids 1-7) and a polybasic region (8-20)
analysis has revealed that both halves of the bipartite motif are
required for targeting TRAM to the plasma membrane but only the
myristoylation site is necessary for endosomal localization®?. A
myristoylation-deficient TRAM (either by deletion of the first 7
aminoacids or by substitution of a crucial glycine residue) is indeed
uniformly distributed in the cytosol?’***' whereas a TRAM version
lacking the polybasic region selectively resides in early endosomes®*%.
Strikingly, unlike the cytosolic or a strict plasma membrane version,
the endosome-targeted TRAM is able to fully restore the production

of TRIF-dependent cytokines, such as IL-6 and RANTES, in TRAM-
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222 This notable observation

deficient macrophages treated with LPS
suggests that the LPS-induced TRAM-TRIF signaling occurs from
endosomes, rather than the cell membrane. In resting cells, TLR4 is
found predominantly at the plasma membrane but it also recycles to
Rab5" early endosomes by means of a dynamin-dependent
mechanism that is different from the one used by TRAM, whose
localization is insensitive to dynamin inhibition??2. Within 15-30
minutes of LPS stimulation, TLR4, together with CD14 and LPS, is
actively endocytosed through a dynamin-dependent

mechanism?2%232:233

. Although it has been reported that the main
function of LPS-induced TLR4 internalization is to promote its
degradation®?, the inhibition of TLR4 endocytosis results in a
selective impairment of TRAM-TRIF signaling, as measured by IRF3

activation and IFNB productionm.

This suggests that, after LPS
stimulation, plasma membrane TLR4 moves into endosomes to
interact with TRAM, which in turn recruits TRIF to trigger MyD88-
independent NF-kB and IRF3 activation. Not only these findings
demonstrate that the TIRAP-MyD88 and TRAM-TRIF signal
transduction pathways occur from spatially separated cellular
locations, but that they also originate sequentially in time. Therefore,
a new model for the initiation of TLR4 signaling can be envisaged
whereby initial LPS recognition by CD14 at the plasma membrane
triggers the recruitment of TLR4 into PI(4,5)P,-rich lipid rafts, as well
as the acute synthesis of PI(4,5)P, through CD11b- and ARF6-
mediated activation of PI(4)P5K. Here, TIR-TIR interactions drive the
recruitment to TLR4 of the PI(4,5)P,-binding protein TIRAP, which in
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turn sorts MyD88 to TLR4. This leads to the MyD88-dependent early
wave of NF-kB and AP-1 activation. Soon after LPS stimulation,
dynamin-dependent receptor endocytosis is initiated. At this early
phase of membrane rearrangement, a synthesis of PI(4,5)P, is
observed, probably because it provides docking sites for cytoskeletal
components that regulate actin capping and nucleation?*?3*,
However, a subsequent drop in the local concentration of this
phospholipid is required for the severing and the cytosolic release of

a vesicle??*#*

containing LPS, as well as TLR4 and CD14. Since this
compartment is then devoid of PI(4,5)P,**°, TIRAP detaches from the
endosomal membrane, leaving the TIR domain of TLR4 available for
interaction with TRAM. TLR4-bound TRAM acts as a sorting adaptor
for TRIF, which is recruited to TLR4 at the endosome to signal late NF-
kB and AP-1 activation as well as IRF3 nuclear translocation. As the
early endosome matures to Rab7a’, a splicing variant of TRAM, TAG
(TRAM adaptor with GOLD domain), inhibits TRAM-TRIF signaling by
competing with TRIF for binding TRAM?*. Instead of TRAM bipartite
motif, TAG has an N-terminal GOLD domain that targets it to the
endoplasmic reticulum as well as early endosomes in resting cells.
Upon LPS stimulation TAG moves to late endosomes, where it
functions as a signal switch-off by displacing TRIF from TRAM and by
promoting the endolysosomal degradation of TLR4%** **®. Triad3A is
an E3 ubiquitin ligase that also promotes TLR degradation, even
though the mechanisms regulating its participation to TLR trafficking

is unknown?®’

. How LPS-induced TLR4 endocytosis is initiated and
which receptor proteins govern it, what is the role of PI(4,5)P, in this
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mechanism and how PI(4,5)P, metabolism is regulated remain key
questions that will need to be addressed by specific experimental
approaches. Additionally, the functional reason for TRAM to localize
at plasma membrane instead of residing exclusively in early
endosomes remains unclear. A likely explanation comes from the
analysis of the N-terminal bipartite domain of TRAM. This
unstructured motif is also found on several proteins that are known
to shuttle between the plasma membrane and the endosomes®?.
Among them the most notable is MARCKS (myristoylated alanine-rich
protein kinase C substrate), a protein that shows a particular affinity
for acidic phospholipids as PI(4,5)P, or PI(3,4,5)P3238. Since the
myristoyl group alone is not sufficient for anchoring proteins to the
plasma membrane, a second signal is required for effective protein
localization. Basic residues in the polybasic region of the N-terminal
unstructured domain of MARCKS have been reported to interact with
the negatively charged heads of three molecules of PI(4,5)P,%*° and
MARCKS has been proposed to contribute to the lateral
sequestration of PI(4,5)P, in the cell membrane. According to this
model, there are two ways to displace MARCKS and release PI(4,5)P,
at the cell membrane, both of which result in the disruption of the
electrostatic interactions between the two molecules: (i) a Ca**-
activated calmodulin binds the polybasic region of MARCKS, and (ii)
phosphorylation of three serines in the effector domain by a PKC?*%.
Similar to MARCKS, membrane-bound TRAM preferentially
colocalizes with TLR4 in PI(4,5)P,-rich microdomains. Interestingly, a

serine residue in the basic domain of TRAM is phosphorylated by
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PKCe after LPS stimulation and this event has been shown to play an
important role in TRAM signaling®*. Since the initial colocalization
with TLR4 allows TRAM to be co-endocytosed with the receptor and
that phosphorylation by PKCe may well be important for their
internalization , it is likely that this is a system for maximizing TLR4-
TRAM interactions in endosomes. It is also tempting to speculate that
TRAM initially acts as a “pipmodulin” that concentrates PI(4,5)P, at
the cell membrane and that, upon PKCe phosphorylation, it releases
PI(4,5)P, favoring its lateral dispersion, a condition for effective
endocytosis.

Finally, a recent study has reported the striking ability of TLR2 to
signal type | IFN production in response to viral ligands, although only
in Ly6Chi inflammatory monocytes®*'. Receptor internalization has
been shown to be crucial for TLR2-induced type | IFN production®*,
suggesting that also TLR2 induces distinct signal transduction
pathways from both plasma membrane and intracellular locations.
However, since TLR2 does not use TRAM or TRIF as adaptors, it is
plausible that a PI(4,5)P,-consuming endocytosis as the one proposed
for TLR4 may not function for TLR2, as this would result in TIRAP-
MyD88 detachment. Still, this observation reinforces the idea that
TLR signaling must be studied from a cell biological point of view in
order to integrate innate immune responses with the cellular

infrastructure in which they operate® (Fig. 1).
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Fig. 1. Cell biology of TLR4 adaptor recruitment. Upon LPS recognition,
CD14 mediates endotoxin transfer to TLR4 and promotes its
homodimerization. CD14 also triggers CR3 activation by LPS, resulting in a
localized ARF6-dependent synthesis of PI(4,5)P2 through phosphorylation
of PI(4)P by PIP5K. Activation of the latter by ARF6 is negatively regulated
by AIP1. Newly generated PI(4,5)P, allows TIRAP recruitment and
consequent sorting of MyD88 to the activated TLR4:CD14 complex, which
signals early NF-kB/AP-1 activation from the plasma membrane. LPS
recognition by TLR4:CD14 also promotes receptor endocytosis through a
dynamin-dependent process that is initially promoted by PI(4,5)P, synthesis
but requires PI(4,5)P, consumption for its termination. As a consequence of
the drop in PI(4,5)P, concentration, whose regulation is currently unknown,
TIRAP:MyD88 detach from PI(4,5)P,—depleted Rab5" early endosomes,

thereby freeing TLR4 for subsequent interaction with TRAM:TRIF. Due to its
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bipartite localization domain, TRAM resides both in early endosomes that
fuse with TLR4:CD14-containing vesicles upon recycling and is
coendocytosed with the receptor complex. This allows TRAM to sort TRIF to
TLR4:CD14, resulting in the TRIF-dependent late wave of signaling to NF-
kB/AP-1 and IRF3. As Rab5" early endosomes mature, TAG, which resides in
Rab7" late endosomes, displaces TRIF from TRAM and thereby inhibits TRIF-

dependent signaling.
MyD88-dependent Signaling Pathway

General features of NF-kB and MAPK activation. NF-kB and AP-1 are
crucial transcription factors that regulate a plethora of biological
functions in both physiological and pathological conditions, including
cell proliferation, cell development and inflammation. Since much
research has focused on these key regulators of cell physiology in
recent years, we refer the readers to other review articles for an

extensive and comprehensive description of the subject®**2*°

. Briefly,
the NF-kB family of transcription factors is composed of five
members, p50 (NF-kB1) and its precursor p105, p52 (NF-kB2) and its
precursor p100, RelA (p65), RelB and c-Rel all of which share an N-
terminal Rel-homology domain (RHD) that mediates homo- and
heterodimerization as well as sequence-specific DNA binding. Only
RelA, RelB and c-Rel contain a transactivation domain (TAD) that
regulates gene transcription, whereas p50 and p52 act as
dimerization or DNA-binding partners. NF-kB transcriptional activity

is largely regulated by subcellular localization, as in resting cells NF-

kB dimers are typically sequestered in the cytosol by the “classical”
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IkB (inhibitor of NF-kB) proteins, namely IkBa, IkBP and IkBe. IkBa is
the most studied family member and it is involved in the regulation
of the NF-kB dimer RelA:p50 that is activated in response to
inflammatory stimuli. IkBs bind NF-kB dimers through multiple
ankyrin repeats and, albeit incompletely, mask their nuclear
localization sequence (NLS). The strong nuclear export sequence
(NES) of IkBs results in an apparent steady-state cytoplasmic
localization of I-kB:NF-kB complexes that derives from their constant
shuttling between the nucleus and the cytosol. Receptor stimulation
triggers a rapid K48-linked ubiquitination of IkB proteins and their
subsequent degradation by the proteasome, resulting in the release
of NF-kB proteins that translocate into the nucleus to promote gene
expression. Notably, one of the earliest genes induced by NF-kB upon
LPS stimulation is IkBa, which negatively regulates NF-kB activation
by means of a negative feedback loop. IkB degradative ubiquitination
is dependent on a previous site-specific phosphorylation event that is
operated by an activated IKK (IkB kinase) complex, composed of two
kinase subunits (IKKa and IKKB) and a regulatory component
(IKKy/NEMO). IKKB accounts for the largest part of kinase activity in
canonical NF-kB signaling, with IKKa playing a minor role that is still
sufficient to compensate for IKKB deficiency. NEMO (NF-kB essential
modaulator) is absolutely required for classical NF-kB activation, since
it interacts with both IKKs and it induces the formation of a
hexameric (NEMO)2:(IKKa:IKKB)2 complex upon stimulus-induced
dimerization. The biochemical details of how IKK catalytic activity is
achieved are still unclear, but it probably results from IKK trans-
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autophosporylation in the activation loop as a consequence of
NEMO-mediated oligomerization of IKK complexes. Alternatively, this
initial phosphorylation step may be operated by an upstream IKK
kinase, namely TAK1 (TGFB-activated kinase 1), whose activation is
linked to receptor stimulation. Regardless of the molecular
mechanism of IKK activation, post-translational modifications other
than phosphorylation (K63-linked polyubiquitination, see below) are
necessary for recruiting NEMO to the activated receptor and thus

linking extracellular signals to intracellular responses.

AP-1 is a dimeric transcription factor that is composed by members
of the Jun, Fos, Maf and ATF subfamilies of basic leucine zipper (bZIP)
proteins. AP-1 activation is regulated by various mechanisms
affecting transcriptional expression, protein turnover, and dimer
formation of AP-1 subunits. In this process, a crucial role is
additionally played by post-translational modifications, namely
phosphorylation by MAPKs (mitogen activated protein kinases) in the
nucleus. AP-1 activation by inflammatory stimuli is mostly mediated
by the JNK (Jun N-terminal kinase), p38 and ERK (extracellular signal-
related kinase) groups of MAPKs, which are in turn phosphorylated
by the MAPK-kinases (MAPKK) MKK4/7, MKK3/6 and MKK1/2,
respectively. A MAPKK-kinase (MAPKKK), namely TAK1, which is
directly linked to the signaling pathway emanating from the
stimulated receptor, mediates upstream activation of MAPKK. It has
to be stressed that, whereas stimulus-induced MAPKKK activation

may occur upon recruitment to the receptor complex at the plasma
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membrane, MAPKKs and MAPKs are localized in the cytosol, the
cellular compartment where they can be most efficiently activated
and where they can encounter substrates. Therefore, the cytosolic
translocation of receptor signaling complex is a prerequisite for
MAPK cascade activation. As we will describe below, this represents a
key signaling event whose tight regulation ensures a full biological

response to TLR stimulation (Fig. 2).

IRAKs. The first effectors downstream of MyD88 are the IRAK (IL-1
receptor-associated kinase) family proteins. Originally identified as

signaling partners of IL-1R**’

, IRAKs have later been shown to play
crucial roles also in TLR-mediated responses (except from TLR3).
However, much of our current knowledge about how IRAKs work is
still based on early observations of IL-1R signaling pathways. Four
different IRAKs have been identified in humans and mice, all of them

248 Al IRAKs have an N-terminal

sharing a basic domain organization
DD, which is typically responsible for recruitment to MyD88 and a
central kinase domain (KD) that differentially confers them the ability
to function as serine/threonine kinases. Between this two domains is
located a region with an unknown function, named undetermined
(UD). Functionally, IRAKs transduce signals from the activated
receptor to their downstream effector TRAF6, although each
member plays a specific role in this process. IRAK-4 is the first protein
to interact with MyD88, and it is the only IRAK that is absolutely

249-250

essential for TLR/IL-1R signal transduction . Another feature that

renders IRAK-4 unique among the family is that its biological activity
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strictly relies upon a functional kinase activity’”. Indeed, IRAK-4-
deficient mice show profoundly impaired responses to IL-1 as well as
TLR ligands®>° and overexpression of a kinase-deficient IRAK-4 in cells

inhibits NF-kB activation®*.

IRAK-4 functions as a typical Ser/Thr
kinase that, upon stimulation, phosphorylates the activation loop of
IRAK-1%4°, thereby triggering a massive autophosphorylation of IRAK-
1247231 This phosphorylation event appears to be negatively targeted
by the phosphatase SHP1 (SH2-containing protein tyrosine
phosphatase 1), which therefore inhibits NF-kB and MAPK

activation®>?

. The recruitment of IRAK-1 to MyD88 occurs with a
slower kinetics than IRAK-4, due to the initial interaction of
unphosphorylated IRAK-1 with the adaptor Tollip (Toll interacting
protein)®>. In resting cells, Tollip binds IRAK-1 in the cytosol and
suppresses its kinase activity, consistent with an inhibitory effect of

Tollip overexpression®*2>*

. Upon activation, Tollip interacts with
both TLR and IL-1R complexes, bridging IRAK-1 to MyD88 and
favoring IRAK-1 signal transduction®®. IRAK-1 and IRAK-4 do not form
heterodimers®* but they are brought into close proximity by means
of MyD88, which acts as a signaling platform®®. Accordingly, in the
presence of MyD88s, a shorter splice variant of MyD88 that is
induced by LPS, IRAK-4 is not recruited to MyD88 and no IRAK-1
phosphorylation is observed®®. Upon hyperphosphorylation, IRAK-1
weakens its binding affinity for MyD88, while increasing its ability to
bind TRAF6 (TNF-R-associated factor 6)*®® 2*’. This results in a rapid
and transient recruitment of TRAF6 to a conserved C-terminal motif

of IRAK-1, followed by their dissociation from the receptorzss. IRAK-1
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and TRAF6 initially remain at the plasma membrane, where TRAF6
interacts with a pre-assembled complex composed of TAK1, an
important downstream effector kinase (see below), and the TAK1
binding proteins (TAB)1, TAB2 and TAB3%*%*°. Upon binding to the
IRAK-1:TRAF6 complex, TAK1 and TAB2 are phosphorylated by an
unknown kinase, even though the meaning of this modification is not
clear since it is not able to induce TAK1 kinase activityzss. Catalytically
active TAK1 is only observed in the cytosol, where TAK1, together
with TAB1, TAB2, TAB3 and TRAF6, is released shortly after

interacting with IRAK-1%°%

. The process regulating the cytosolic
translocation of the putative TRAF6:TAK1:TAB1:TAB2:TAB3
multimeric complex is poorly defined, although it has been shown to
depend on IRAK-1%%2%92°1 |nterestingly, IRAK-1 itself does not move
into the cytosol but it remains at the cell membrane where it is

degraded®' through a mechanisms that conflicting reports have

251 262

reported to be either proteasome-dependent™" or -independent™".
In this regard it should be noted that IRAK-1 contains two PEST
sequence in its UD region, which might be involved in IRAK-1
degradation. It is plausible that IRAK-1 degradation functions as a
system to promote the cytosolic release of the signaling complex
containing TRAF6 and TAK1 and also as a negative feedback control
that regulates excessive activation by TLR/IL-1R.

Despite the model depicted above may imply an essential role of
IRAK-1 in inflammatory signal transduction, it is known that it is not
sufficient in this process. IRAK-1-deficient mice are more resistant

than wild-type to the toxic effects of LPS but their phenotype is much
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less evident than IRAK-4- or MyD88-deficient mice, also in terms of

263-264

cytokine production . This suggests that other IRAK family
members may take over IRAK-1 functions and compensate for its
absence. Additionally, although IRAK-1 is undoubtedly functional as a
kinase, it has been reported that IL-1-induced activation of NF-kB in
cells lacking IRAK-1 can be fully restored by transfection of a kinase-
deficient version of IRAK-1%>. Therefore, rather than by
phosphorylating substrates, IRAK-1 (and also IRAK-2 and IRAK-M, see
below) appears to exert its role through protein-protein interactions,
basically behaving as a signaling adaptor. Since its discovery, IRAK-2
has always been though to share functional, other than structural,
properties with IRAK-1. Similarly to IRAK-1, IRAK-2 interacts with both
MyD88 and TRAF6 and its overexpression in cells activates NF-kB*®.
The two proteins seem to act redundantly, as IRAK-2 can largely

265

restore IL-1-induced NF-kB activation in IRAK-1-deficient cells”™, and

266

they can also form heterodimers™. However, the physiological role

of IRAK-2 has only recently been unveiled, thanks to the generation

257 The mechanical features of IRAK-2 function

of gene-targeted mice
are comparable to those of IRAK-1, as also IRAK-2 is recruited to
MyD88, where the initial phosphorylation by IRAK-4 triggers IRAK-2
own kinase activity and subsequent interaction with TRAF6°®’. IRAK-2
differs from IRAK-1 in that its action is delayed and it is important for
sustaining NF-kB activation, rather than inducing it. Accordingly, cells
from IRAK-2-deficient mice show an impaired cytokine production
upon TLR/IL-1R stimulation as a result of a defective late-phase

transcriptional expression267. This sustained activity of IRAK-2 is
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consistent with a prolonged half-life of the protein, which is not
degraded upon activation. Interestingly, the UD region of IRAK-2
lacks the PEST sequences that are observable in IRAK-1 and that may
regulate its destruction. Although IRAK-1 and IRAK-2 act in a
kinetically distinct fashion, they can largely compensate for each
other’s functions. This is clearly demonstrated by the observation
that genetic ablation of either IRAK-1 or IRAK-2 in mice generates
only a partially impaired phenotype compared to mice doubly
deficient in IRAK-1 and IRAK-2, which are almost totally unresponsive

257 An additional feature of IRAK-2 is that its

to TLR/IL-1R stimulation
biological function seems to depend on an intact kinase activity*®’.
This observation is notable because the kinase domain of IRAK-2 is
predicted to be non-functional, due to a mutation in a critical

266 However, further experiment will be required to

catalytic residue
assess the real significance of IRAK-2 kinase activity, since it has been
hypothesized that experimental artifacts may contaminate these
data®®®. The fourth member of the IRAK family is IRAK-M, a kinase-
inactive protein that is selectively expressed in monocyte and
macrophage populations®*®?®°. Although early studies have shown
that its overexpression leads to NF-kB activation®*>**®, IRAK-M has
been reported to negatively regulate signaling through TLR/IL-1R by
inhibiting the dissociation of IRAK-4 and IRAK-1 from the receptor”°.
IRAK-M expression is strongly increased upon LPS stimulation and it
seems to play a crucial role in endotoxin tolerance, as shown by the
observation that pre-stimulated IRAK-M deficient macrophages are

not hyporesponsive to a second LPS administration®’°.
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In addition to IRAKs, several other tyrosine kinases regulate TLR4
signaling”’!. The Src-family kinase members Src, Hck and Lyn have
been shown to phosphorylate TLR4 upon LPS stimulation, although
the functional significance of this modification is unclear’’?. Btk
(Burton’s tyrosine kinase) is also involved in TLR4 signaling through
phosphorylation of TIRAP, an event that is important for NF-kB

activation®”®

as well as for the SOCS1 (suppressor of cytokine
signaling 1)-mediated TIRAP degradation resulting in inhibition of

TLR4 signaling®’.

TRAF6. The TRAF family comprises seven family members that play
important roles in the signal transduction to NF-«kB triggered by a
number of receptors, including TNF-R, IL-1R, TLRs, BCR and TCR?”.
The distinctive feature of all TRAF proteins is a C-terminal domain,
termed TRAF?’®, which is in turn composed by an N-terminal coiled-
coil region (TRAF-N) and a C-terminal B-sandwich (TRAF-C)*”’. The
TRAF domain mediates protein-protein interactions, with TRAF-N
regulating self-oligomerization and TRAF-C conferring binding to
upstream molecules®’’. Apart from TRAF1, all TRAFs contain a RING
finger domain at their N-termini, followed by a variable number of

2’6 The effector function of the RING domain has been

zinc fingers
revealed by biochemical studies on TRAF6, the crucial TRAF protein
for MyD88-depedent NF-kB activation?’®. TRAF6 acts as an E3
ubiquitin ligase that, in coordination with the E2 ubiquitin-
conjugating complex UevlA:Ubcl3, promotes the attachment of

Lysine-63(K63)-linked polyubiquitin chains to several substrate
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molecules, including TRAF6 itself”’®. Notably, K63-linked
polyubiquitination  differs from the classical  K48-linked
polyubiquitination in that it does not constitute a signal for
proteasomal degradation®®, but it functions as a signaling moiety in
many NF-kB regulatory pathways. This regulatory role relies upon the
ability of a number of signaling molecules to recognize and interact
with K63-linked polyubiquitin chains through specific ubiquitin-
binding domains®. Therefore, K63-polyubiquitinated proteins act as
scaffolds that recruit downstream effector molecules by providing
them with suitable docking sites. Consistent with a crucial role of this
post-translational modification in NF-kB signaling, many proteins
involved in this pathway have been shown to function either as
acceptor or interacting partners for K63-linked polyubiquitin chains.
Key targets for K63-linked polyubiquitination in the TLR/IL-1R-
induced MyD88-dependent pathway include TRAF6 itself*”?, IRAK-
1°°? and TAK1?*?, whereas TAB2 and TAB3°** and NEMO****** have
been shown to bind K63-linked polyubiquitins through specific
ubiquitin-binding domains. These data have led to a model of
MyD88-dependent signal transduction whereby, upon TLR/IL-1R
stimulation, TRAF6 is recruited by IRAK-1 at the cell membrane. Here,
due to the clustering of receptors and adaptors, several TRAF6
molecules oligomerize via their TRAF domains in a process that is
assisted by the TRAF6-interacting protein TIFA (TRAF-interacting
protein with forkhead-associated domain)?®®%’. Multimerized TRAF6
triggers its own E3 ubiquitin ligase activity288 and, after interacting
with Ubcl3 and UevlA®® promotes its auto-K63-linked
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polyubiquitination. K63-linked polyubiquitinated TRAF6 directly binds
to TAB2 and TAB3%%*?%° that, together with TAB1, interact with TAK1
at the cell membrane. Upon IRAK-1 degradation, this TRAF6-
nucleated complex is released into the cytosol, where the interaction
between TRAF6 and TAB2/TAB3 is though to result in TAK1
oligomerization mediated by TAB2/TAB3, followed by TAK1
transactivation®®,

Oligomerization of proteins is a driving force for many signaling
pathways because it allows the formation of platforms where auto-
or cross-interactions can take place. The TLR/IL-1R pathway is no
exception to this rule, as MyD88 and IRAK-4 have been shown to
form large complexes with 7:4 or 8:4 stoichiometry, the

7291

“Myddosome”“”", and artificial clustering of MyD88 is sufficient to

mediate NF-kB and AP-1 activation without the need for receptor

. . 292
stimulation®®

. Therefore, it should be kept in mind that this signaling
pathway generally does not act linearly (protein A activates protein
B), but it rather relies on multiple, cooperative interactions that
altogether bring molecules in close proximity to each other. In this
context, K63-linked polyubiquitin chains represent a means for
modified proteins to perform additional, long-range interactions.
Despite the model of TLR/IL-1R-induced TAK1 activation is strongly
based upon the role of K63-linked polyubiquitination of target
proteins, a direct experimental evidence for this assumption has
been provided only recently. Various studies have reported
conflicting data about the importance of Ubc13 for the activation of

NF-kB, at least in some signaling pathways, suggesting the existence
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29329 The formal demonstration for an

of additional E2 enzymes
essential function of K63-linked polyubiquitination in NF-kB
activation has also been hampered by technical difficulties in
mutating the multiple ubiquitin genes in vivo. However, the recent
generation of a tetracycline-inducible ubiquitin replacement system
in human cells has ultimately shown that Ubc13-mediated K63-linked
polyubiquitination is essential for NF-kB activation by IL-18 (and
presumably also by TLRs)**®. Also the in vivo importance of the E3
ubiquitin ligase activity of TRAF6 has remained controversial®’.
However, another recent report has shown that, in a cell-free system,
the essential role of TRAF6 for TAK1 activation depends on its ability
to generate free, unanchored K63-linked polyubiquitin chains that act
as second messengers to promote TAB2/TAB3-mediated TAK1
oligomerization without the need for a direct interaction with
TRAF62%®. This seminal study identifies a novel regulatory apparatus
for activation of protein kinases by ubiquitin and it suggests a
mechanism for NF-kB activation in vivo. Regardless of the molecular
details of how K63-linked polyubiquitin polymers participate in cell
signaling, the biological relevance of this post-translational
modification is underlined by the existence of K63-specific
deubiquitinating enzymes®®. A20 is a crucial regulator of the
inflammatory response, a role that it exerts by deconjugating K63-
linked polyubiquitin chains from TRAF6 and RIP1*®. Downstream of
TLRs, A20 inhibits the E3 ligase activity of TRAF6 by promoting
degradative K48-linked polyubiquitination of the E2 enzymes Ubc13

and UbcH5c¢®™. It is possible that a similar biological function is
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played by CYLD (cylindromatosis), which is likely to act redundantly
with A20°%,

TRAF3 is another MyD88-interacting TRAF protein®?® whose
function in TRIF-dependent TLR4 signaling is well established (see
below). However, how it works in MyD88-dependent TLR4 signaling
has remained elusive until recently. Differently from TRAF6, which
promotes both NF-kB and MAPK activation, TRAF3 has been shown
to play no role in NF-kB signaling but to act as a negative regulator of
MAPK activation by CD40** and TLR4*®. MAPK signaling occurs in
the cytosol and it depends on prior intracellular translocation and
consequent activation of TAK1, which acts as a MAPKKK in TLR
signaling. Upon recruitment to the activated receptor complex at the
plasma membrane, TRAF3 exerts its negative function by preventing
the cytosolic release of the TRAF6-nucleated signaling complex
containing TAK1*®. Either directly or indirectly, MyD88 also recruits
the E3 ubiquitin ligases clAP(cellular inhibitor of apoptosis)1 and
clAP2, which specifically catalyze the transfer of K48-linked

polyubiquitin chains to TRAF304-305

. K48-linked polyubiquitination of
TRAF3 by clAP1/2 serves as a signal for its proteasomal degradation,
an essential event for the detachment of the TAK1-containing
signaling complex from the cell membrane and the subsequent TAK1
activation. How TRAF3 is recruited to MyD88 is unclear, but it is
plausible that, similarly to TRAF6, it interacts with IRAK1 at the cell
membrane. Since IRAK-1 has been proposed to undergo both non-
degradative K63- (see below) and degradative K48-linked

306

polyubiquitination through a process of ubiquitin editing™", this
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hypothesis raises the possibility that clAP1/2 may also promote IRAK-
1 degradation through K48-linked polyubiquitination. This would
provide a mechanistic explanation for the clAP1/2-dependent
dissociation of the TRAF6-nucleated, TAK1-containing signaling
complex. It is notable that clAP1/2 catalytic activation depends on
their previous K63-linked polyubiquitination mediated by TRAF6°®,
which therefore links TLR4 stimulation with the relieving of TRAF3-
mediated inhibition of MAPK signaling. Although neither E3 ubiquitin
ligase activity nor K63-linked polyubiquitination of TRAF3 are
observed in MyD88 signaling, TRAF3 works differently in TRIF-

dependent signaling, where its alternative, non-K48-linked

polyubiquitination provides it with an important signaling function.

TAK1. TAK1 is a crucial signaling intermediate in TLR/IL-1R and TNFa
signaling to NF-kB and AP-13°3% 3 function that derives from its
ability to induce IKK as well as MAPK activation®®®. Therefore, TAK1
constitutes the point in which MyD88-dependent pathway diverges
into the NF-kB and AP-1 signaling branches. These biological
processes regulated by TAK1 strictly rely on co-expression of TAB1,
TAB2 and TABS3, since overexpression of TAK1 alone does not result
in significant NF-«kB activation®®?82°  TAB1 aids in TAK1
autophosphorylation acting as an activating subunit in the TAK1
complex309, whereas TAB2 and TAB3 play redundant roles in
facilitating TAK1 recruitment to TRAF6 through specific binding to
K63-linked polyubiquitin chains. The physiological importance of
TAB2 and TAB3 in TLR signaling is underlined by the observation that
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the function of these two proteins is negatively regulated by the
RING finger-containing TRIM30a*'°. TRIM30a promotes TAB2 and
TAB3 degradation through the endolysosomal compartment, rather
than by catalyzing K48-linked polyubiquitination®'°. Although TAK1 is
undoubtedly required for NF-kB activation by proinflammatory
stimuli, the mechanism by which TAK1 activates IKK is still unclear.
TAK1 has been shown to function in vitro as an IKK-K by
phosphorylating IKKB in its activation loop®®. In light of this
observation, a model of TAKl-mediated IKK activation has been
proposed in which TRAF6 K63-linked polyubiquitin chains recruit both
TAK1 and NEMO, as NEMO contains an ubiquitin binding domain
named NUB that confers specificity for K63-linked polyubiquitin

chains and is required for NF-kB activation®®* 31

. Through this
interaction, NEMO brings the catalytic subunits IKKa and IKKB into
close proximity with TAK1 at the receptor complex, thereby
facilitating IKK activation through direct phosphorylation by TAK1.
Notably, TAK1 itself has been recently reported to undergo TRAF6-
mediated K63-linked polyubiquitination, a modification that is
important for IKK recruitment®®?. As anticipated above, also IRAK-1 is
a substrate for K63-linked polyubiquitination and modified IRAK-1
interacts with NEMO to promote NF-kB activation?®***2. The E3
ubiquitin ligase responsible for K63-linked polyubiquitination of IRAK-
1 has been identified as TRAF6*2 or Pellino isoforms**® in conflicting
studies. Importantly, Pellinos appear to be activated through
phosphorylation by IRAK-1 and IRAK-4, whose kinase activity might
be at least initially required to promote IRAK-1 K63-linked
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polyubiquitination. All these observations suggest that TAK1-
dependent IKK activation occurs at the plasma membrane through
the concomitant recruitment of TAK1 and IKK at the receptor
complex. However, formal demonstration for the existence and the
biological significance of TAK1 phosphorylation of IKKB in vivo is still
lacking. Instead, several evidences point to a role of TAK1 in
activating IKK that is independent of its kinase activity. Catalytically
active TAK1 is only observed in the cytosol”® after clAP1/2-
dependent detachment of TAK1-containing complex from the plasma

304305 "\whereas IKK activation is though to occur at the cell

membrane
surface. Accordingly, inhibition of the cytosolic translocation of this
complex by interfering with clAP1/2 functionality completely blocks
TAK1 catalytic activation, as measured by MAPK phosphorylation, but
has no consequence on IKK activation, which proceeds normally*®.
These results strongly suggest that, whereas MAPK signaling is strictly
dependent on TAK1 kinase activity, activation of NF-kB relies on TAK1
functions other than phosphorylation. As the relative importance of
K63-linked polyubiquitination on specific proteins involved in IKK
activation is difficult to ascertain, due to a certain degree of
redundancy between potential scaffolding adaptors, all these
observation are consistent with a model whereby K63-linked
polyubiquitin chains act as second messenger to generate a complex
molecular net that facilitates protein-protein interactions. Further
complicating the picture is the discovery that additional E2 enzymes
with different ubiquitin linkage specificity may participate in NF-kB
activation. The E2 UbcH5c can interact with TRAF6 to synthesize
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ubiquitin polymers containing both K48 and K63 linkages that trigger
IKK activation by NEMO recruitment®®®. Interestingly, linear head-to-
tail polyubiquitin chains can activate NF-kB by binding to another
ubiquitin-binding region of NEMO>* or by modifying NEMO itself*"*,
even though this type of ubiquitin polymer has been reported to
inefficiently activate IKK in vitro®®.

Differently from its role as an IKK-K, TAK1 function as a MAPKKK is
solidly documented. Upon cytosolic activation, TAK1 phosphorylates
crucial substrates that in turn promote activation of MAPK signaling.
TAK1 has been reported to phosphorylate MKK3/6%%® and MKK43'®,
thereby promoting subsequent activation of p38 and INK,
respectively. ERK activation, which is regulated by MKK1/2 is believed
to occur independently of TAK1 but to rely on the Tpl2 (tumor
progression locus 2) MAPKKK. Interestingly, Tpl2 activation is
promoted by IKK-dependent phosphorylation and subsequent
degradative ubiquitination of p105, a negative regulator of TpI2317.
Additional MAPKKK whose activation is induced by TLRs and that may
contribute to classic MAPK signaling include MLK (mixed lineage
kinase)2 and MLK3, at least for p38 and JNK**®. Finally, MEKK3 is an
important MAPKKK that is believed to function similarly to TAK1 in
TNFR-induced NF-kB and MAPK signaling®*®. An important role for
MEKK3 has also emerged in TLR4 and IL-1R signaling, as its deficiency
abrogates NF-kB as well as p38 and JNK MAPK activation®*°. MEKK3 is
recruited to TRAF6 upon receptor stimulation, and it appears to
function as the same hierarchical level of TAK1, albeit with a delayed

321

activation kinetics™". This partial redundancy may explain why the
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requirements for TAK1 in promoting NF-kB and MAPK activation vary

3% However, the molecular

significantly from cell type to cell type
mechanisms regulating MEKK3 activation remain to be determined,
particularly with respect to the role of K63-linked polyubiquitination

of MEKK3.
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Fig. 2. MyD88-dependent NF-kB and AP-1 activation. a) MyD88 mediates
recruitment to TLR4 of IRAK4, IRAK1 (through Tollip) and IRAK2 by means of
a homotypic death domain (DD) interaction. This results in the activation of
IRAK4 (by autophosphorylation), IRAK1 and IRAK2, which are initially
phosphorylated by IRAK4 and then undergo additional
autophosphorylation. Recruitment of IRAK4 and IRAK1 phosphorylation by
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IRAK4 are negatively regulated by MyD88s and SHP1, respectively.
Phosphorylated IRAK1 shows an increased binding affinity for TRAF6, which
is in turn recruited to the receptor. TIFA-dependent oligomerization of
TRAF6 stimulates its E3 ubiquitin ligase activity and, in coordination with
the E2 complex UevlA:Ubcl13, TRAF6 catalyzes the attachment of K63-
linked polyubiquitin chains on a number of substrates, including itself, in a
process that is inhibited by CYLD and A20. Ubiquitinated TRAF6 interacts
with TAK1 via TAB2/3. TRAF6 also promotes K63-linked polyubiquitination
of IRAK1 and TAK1, which directly recruit NEMO to the receptor complex.
Ubiquitination of IRAK1 may also be operated by Pellino, which is in turn
activated by IRAK4 and IRAK1 itself (not shown). Upon corecruitment at the
receptor complex, TAK1 promotes IKKa/B activation through a process that
is independent on TAK1 kinase activity and that occurs at the plasma
membrane. This ultimately results in MyD88-dependent activation of NF-
kB. Even if not shown, it has to be noted that IRAK2 is likely to behave
similarly to IRAK1 in promoting sustained NF-kB activation after IRAK1
degradation (see below). b) In addition to TRAF6, IRAK1 probably mediates
the recruitment of TRAF3 and clAP1/2 to the receptor complex where
TRAF6 catalyzes K63-linked polyubiquitination of clAP1/2. K63-linked
polyubiquitinated clAP1/2 is enzymatically active as an E3 ligase that
promotes degradative K48-linked polyubiquitination of TRAF3 and possibly
IRAK1. Upon subsequent proteasomal degradation of TRAF3 and IRAK1, the
TRAF6-nucleated complex containing TAK1 dissociates from the receptor
and is released into the cytosol in a process that is inhibited by IRAK-M.
Once in the cytoplasm (the cellular compartment where TAK1 substrates
are located), TAK1 triggers effective MAPK activation by initiating a cascade
of phosphorylating events. The kinase activity of TAK1 is therefore

absolutely required for cytosolic MAPK activation.
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TRIF-dependent Signaling Pathways

RIP1-dependent NF-kB activation. The adaptor TRIF is structurally
different from MyD88 in that it does not contain a DD but it has an N-
terminal domain that has been reported to directly bind TRAF6 to
promote NF-kB activation*2. However, several studies in TRAF6-
deficient cells have contradicted this observation, ruling out any

278292 ' |nstead, the

contribution for TRAF6 in this biological process
key player for TRIF-dependent NF-kB activation induced by TLR3 and
TLR4 is the kinase RIP1 (receptor-interacting protein 1), which
interacts with TRIF via a RHIM (RIP homotypic interaction motif)
domain that is located at the C-terminal region of TRIF*?3. This
process is inhibited by RIP3, a related, inactive protein that competes
with RIP1 for TRIF bindingm. Proinflammatory cytokine, but not type
I IFN production is impaired in RIP1-deficient cells after TLR3 or TLR4
stimulation, showing a selective involvement of RIP1 in NF-«kB

. . 23-324
actlvatlon3 33

. RIP1 is known to play a crucial role in TNFR-induced
NF-kB activation, where it is recruited to the receptor complex
through a homotypic DD interaction with the adaptor TRADD (TNFR1-

325327 vjja its intermediate domain,

associated death domain protein)
RIP1 then binds the E3 ubiquitin ligase TRAF2/5 that, analogously to
TRAF6, catalyzes the K63-linked polyubiquitination of RIP1 and the

subsequent recruitment of NEMO?*3%

. Polyubiquitinated RIP1 also
interacts with TAK1 via TA82283, and with MEKK3, which in turn
activate IKKs. Recent studies have reported that the way in which

RIP1 drives TRIF-dependent signaling to NF-kB after TLR stimulation is
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reminiscent of what has been described for TNFR. After TLR
stimulation, TRIF directly recruits RIP1, which in turn interacts with
the adaptor TRADD via a homotypic DD interaction®**>?’. RIP1 then
undergoes K63-linked polyubiquitination®** independently of TRAF6,
a process that facilitates IKK activation through TAB2:TAK1
recruitment. TRADD is functionally involved in TRIF-dependent NF-kB
activation, as TRADD-deficient cells are impaired in their ability to
produce proinflammatory cytokines wupon LPS or poly(l:C)

326-327.329 ow TRADD acts at a molecular level in TLR

stimulation
signaling is still unclear, as TRAF2, which is a typical TRADD binding
partner, plays no role in this pathway. It is tempting to speculate that
TRADD may act as a scaffolding adaptor for an E3 ubiquitin ligase
different from TRAF6 that mediates K63-linked polyubiquitination of
RIP1. In this regard, a recent report has identified Pellinol as a non-
redundant E3 enzyme that, upon interaction with RIP1, catalyzes its
post-translational modification and regulates NF-kB activation®°.

In addition to the pathway described above RIP1 can also promote
NF-kB activation through a different mechanism involving FADD (Fas-
associated death domain protein) and caspase 8. The FADD-caspase 8
axis is a well established regulatory system for the initiation of death
receptor-induced extrinsic apoptosis. According to this paradigm,
FADD and the inactive pro-caspase 8 are part of a death-induced
signaling complex (DISC) that drives pro-caspase 8 oligomerization

»331 Activated, self-cleaved

and its “proximity-induced self activation
caspase 8 functions as an initiator caspase that triggers the catalytic
activity of downstream executioners caspases, which in turn cleave a
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large panel of substrates, leading to apoptotic cell death®*%
Interestingly, FADD and caspase 8 have been shown to mediate the
pro-apoptotic effect of TRIF overexpression, a cellular process that

333

relies on RIP1 recruitment by TRIF™™". The TRIF-mediated, caspase 8-

dependent, pathway has also been reported to contribute to the
early apoptosis of bacterially infected innate immune cells***3%
through a mechanism that is distinct, but not mutually exclusive,
from the DC-specific CD14-NFAT pathway described below™®.
However, several studies have shown that, in addition to its pro-
apoptotic effect, caspase 8 can contribute to NF-kB activation upon
overexpression>>° or stimulation of TRIF-dependent TLRs. Activation
of NF-kB by TLR3 and TLR4, but not TLR9, is significantly impaired in
caspase 8-deficient B cells, due to a delayed nuclear translocation of
the transcription factor®*’%, Additionally, both caspase 8 and FADD
have been involved in TLR3- and TLR4-induced proliferative B cell
response, suggesting that they act together upon TLR stimulation®*
339 How caspase 8 participates to NF-kB signaling is unclear, but it is
believed that caspase 8 acts as a scaffold to recruit the IKK complex

336, 338 Nevertheless, these

independently of its protease activity
observations can be synthesized in a model of TRIF-dependent NF-kB
activation that relies on RIP1 binding to TRIF. The DD of RIP1 then
interacts with the DD of FADD, which in turn recruits caspase 8 via a
death-effector domain (DED). Caspase 8 brings the IKK to TAK1,
whose recruitment to the signaling complex is dependent on RIP1
K63-linked polyubiquitination (see above). It has to be noted that
TRADD is also recruited to RIP1 and it can potentially bind FADD via a
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DD-DD interaction. Therefore it remains to be determined whether
TRADD participates to FADD-caspase 8 recruitment downstream of
RIP1. Although further experimental support will be required to
substantiate this model of caspase 8-dependent NF-kB activation, its
biological importance is likely to be relevant, as this pathway seems
to be activated also by other, non-TLR, virus-sensing receptors (RIG-I

and MDAG5)* (Fig. 3).
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Fig. 3. TRIF-dependent NF-kB/AP-1 activation. TRAM and TRIF are recruited
to endosomal TLR4 after TIRAP:MyD88 dissociation from the internalized
receptor. Through its RHIM, TRIF mediates direct recruitment of RIP1,

which acts as a scaffold for the DD-containing proteins FADD and TRADD.
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Inactive RIP3 negatively regulates this process by competing with RIP1 for
binding TRIF. TRADD binds Pellinol, an E3 ligase that catalyzes K63-linked
polyubiquitination of RIP1. NF-kB/AP-1 activation is operated through the
concomitant recruitment to the receptor complex of TAK1, which interacts
with modified RIP1 via TAB2/3, and IKKs. IKK recruitment is thought to
occur by means of uncleaved caspase 8, which bridges FADD and NEMO.
TAK1 in turn mediates IKK activation independently of its kinase activity,

which is instead required for downstream MAPK activation.

TRAF3-dependent IRF3/7 activation. Type | IFNs are pleiotropic
cytokines that regulate critical cellular functions, most notably innate
immune antiviral and antibacterial defense. IFN-a and IFN-B are the
most representative and biologically relevant family members, as
they are released upon viral or bacterial insults to signal

340 Type I IFN production is controlled

auto/paracrine cell activation
at the transcriptional level by the IRF family of transcription factors,
with IRF3 and IRF7 acting as key regulators of type | IFN gene
expression. In resting cells, a conformationally inactive monomer of
IRF3 (and IRF7) localizes in the cytosol. Upon receptor stimulation,
IRF3 undergoes phosphorylation by a stimulus-activated kinase,
followed by homo- or heterodimerization with IRF7. IRF3:IRF3 or
IRF3:IRF7 dimers then translocate into the nucleus, where they
promote specific gene expression programs>*'. IRF3 and IRF7 are

differentially involved in TRIF-dependent signaling, as they are both

required for TLR3-mediated type | IFN production but IRF3 only is
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activated downstream of TLR4. However, under certain conditions
(i.e. IFN-B pre-treatment) IRF7 can participate to TLR4 signaling342'344.
IRF3 phosphorylation induced by TLR3 and TLR4 is operated by two
IKK-related protein kinases, TBK1 (TANK-binding kinase) and IKKe**>
37 with TBK1 being the major contributor to IRF3-dependent type |

348349 TBK1 is also the target of negative regulation by

IFN production
the phosphatase SHP23°, Although TBK1 and IKKe share significant
sequence and structure homology with IKKa and IKKB, their role in
NF-kB activation is unclear, and probably limited to a direct, IKKB-
independent, phosphorylation of the p65 subunit leading to an
increase in NF-kB transcriptional activity®'. IRF3 activation by TBK1
and IKKe has been proposed to rely on the upstream adaptors TANK

352

(TRAF-associated NF-kB activator)™*, NAP1 (NAK-associated protein

1)*! and SINTBAD (similar to NAP1 TBK1 adaptor)®®. TANK is a

2 4
352,354 35 well as for

binding partner for several TRAF family members
TBK1 and IKKe**>3*®, and it has been reported to regulate virus- and
TLR-induced type | IFN production by bridging TBK1 and IKKe with
TRAF3 in vitro®>’3*®, TANK has also been shown to interact with
NEMO®* and to promote the formation of a functional IKK complex
that is required for IRF3 activation by RIG-I’®°. Also NAP1 and
SINTBAD, which share several structural features with TANK, have
consistently been shown to be required for IRF3

35336132 and they are likely to play nonredundant

phosphorylation
roles in bridging TBK1 and IKKe to upstream activators. IRF3
activation by TLR3 or TLR4 is strictly dependent on the recruitment to
TRIF of the adaptor TRAF3%°%°®, 3 protein whose additional role in
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limiting MyD88-dependent MAPK activation has already been
described in this chapter. The function of TRAF3 in TLR-induced IRF3
activation is to recruit TBK1 and IKKe into the receptor complex as a
consequence of the interaction of TRAF3 with TANK (or a TANK-
related adaptor). Once at the receptor, the resultant oligomerization
of TBK1 and IKKe mediated by TRAF3 probably triggers their own
kinase activity through a previous trans-autophosphorylating event.
However, the molecular mechanism by which TRAF3 exerts its task is
the subject of much current research, since TRAF3 also retains an E3
ubiquitin ligase activity that is essential for proper IRF3 activation.
Upon receptor-induced clustering, TRAF3 promotes its own K63-
linked polyubiquitination through a process that only partially

395 An additional contribution to

involves Ubcl3 as the E2 enzyme
TRAF3 polyubiquitination is likely to come from Ubc5, which a recent
study identified as the major E2 in RIG-I/MDA5 antiviral signaling®®.
The discovery of DUBA (deubiquitinating enzyme A) as a negative
regulator of K63-linked polyubiquitination of TRAF3 further witnesses
the importance of this post-translational modification in TRIF
signaling to IRF3*®*%. Similarly to TRAF6 in MyD88-dependent
signaling, K63-linked polyubiquitination of TRAF3 is believed to
promote the recruitment of ubiquitin-binding proteins. One such
protein is NEMO, which has been shown to interact in vitro with TBK1
and IKKe through TANK®** and to be essential for RIG-I-induced IRF3
activation®® through its ubiquitin binding ability*®®>. Notably, K63-
linked polyubiquitination of TANK has also been reported358,

suggesting that TRAF3 and/or TANK K63-linked polyubiquitination
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triggers TBK1 and IKKe recruitment through binding NEMO, which in
turn interacts with TANK. Nevertheless, this mechanical model can
not be considered consistent at the moment, since several points are
still obscure or contradicting. First of all, no contribution of NEMO for
IRF3 activation by TLR3 or TLR4 has been reported yet but all data
have been generated using RIG-I as the activating receptor.
Additionally, the generation of TANK-deficient mice has revealed that
TANK is not involved in type | IFN response but it acts as a negative
regulator of TLR-induced proinflammatory cytokine production,
probably through suppression of K63-linked polyubiquitination of
TRAF6°®. The observation that TANK is dispensable for IRF3
activation in vivo®® raises the question of whether NAP1 or SINTBAD
may operate this function by binding NEMO. Another possibility is
that TBK1 itself recruits NEMO, as TBK1 has recently been shown to
be the target of K63-linked polyubiquitination by the E3 ligase
Nrdp1366. Further clarification of these points will result in a reliable
knowledge of how IRF3 is mechanically activated by K63-linked
polyubiquitination of TRAF3 following TRIF stimulation (Fig. 4).

All type I IFN-inducing TLRs trigger IRF activation from an endosomal
location, a generalization that includes the TRIF-dependent TLR4
signaling pathway. Functional specialization of receptors is therefore
underlined by spatial separation, even though the molecular
determinants that mediate site-specific signal transduction are still
not perfectly clear. TRAF3 is thought to discriminate between plasma
membrane and endosomal signaling, since it is shared by all
intracellular (including the TRIF branch of TLR4), but not cell
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membrane TLRs (including the MyD88 branch of TLR4). TRAF3 has
been reported to localize in pleiomorphic cytosolic structures, a
subcellular distribution that precludes its interaction with MyD88 at
the cell surface®®”. Artificial targeting of TRAF3 to the plasma
membrane allows TLR2 to induce type | IFN expression, suggesting
that TRAF3 localization per se regulates the ability of endosomal TLRs

222 However, it has to be noted that TRAF3

to activate IRFs
localization might not be the only discriminating element, since
TRAF3 can be recruited at the plasma membrane by some
receptors®?, including TLR4 itsel’®. As described above, TRAF3
efficiently interacts with MyD88 upon LPS stimulation where it
prevents cytosolic MAPK activation until it gets degraded as a
consequence of K48-linked polyubiquitination by the E3 enzymes
clAP1/23%. After TLR4 endocytosis, TRAF3 is recruited to TRIF, where
it is K63-linked polyubigutinated by Ubc13 (and possibly Ubc5) to

395 Therefore, it appears that the localized

trigger NF-kB activation
differential functionalization of TRAF3 through K48- or K63-linked
polyubiquitination, rather than its simple subcellular distribution, is
responsible for inducing IRF activation from endosomal locations (Fig.
4). A careful investigation will be required to validate this model also

for other TLRs and to unveil the mechanisms regulating the selective

localization (or activation) of specific ubiquitinating enzymes.
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Fig. 4. TRIF-dependent IRF3 activation. TRIF mediates direct recruitment of
TRAF3 to endosomal TLR4 and promotes its consequent oligomerization,
resulting in Ubc13/Ubc5-dependent K63-linked polyubiquitination of TRAF3
and possibly of the downstream adaptors TANK/NAP1/SINTBAD. K63-linked
polyubiquitination of TRAF3 is negatively regulated by the deubiquitinase
DUBA. TRAF3 and/or one of the TRAF3-interacting adaptors recruit TBK1
and IKKe via the ubiquitin binding domain of NEMO, thereby linking
upstream signaling with IRF3 activation. The interaction of TBK1 with NEMO

is also favored by Nrdpl-dependent K63-linked polyubiquitination of TBK1.
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Upon transautophosphorylation, TBK1/IKKe get activated and
phosphorylate IRF3 monomers, which in turn dimerize and translocate into

the nucleus to promote type | IFN gene expression.

Scope of the thesis

This doctoral thesis has been aimed at the identification of signal
transduction pathways underlying DC-specific biological functions in
response to LPS. The identification of one such pathway will be
described in Chapter 2, together with its molecular and functional
characterization. Cell-specific differences in the ability to activate this
signaling pathway will also be reported, with a particular attention to
dissimilarities between DCs and macrophages. The content of
Chapter 3 will uncover an additional important biological function
that DCs carry on by means of this newly-described pathway and it
will also suggest important therapeutic application, which will be

discussed in Chapter 4.
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Chapter 2

CD14 regulates the dendritic cell life cycle after LPS exposure

through NFAT activation
Published in: Nature, 2009 Jul 9;460(7252):264-8
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Toll-like receptors (TLRs) are the best characterized pattern
recognition receptors®. Individual TLRs recruit diverse combinations
of adaptor proteins, triggering signal transduction pathways and
leading to the activation of various transcription factors, including
nuclear factor-kB (NF-kB), activating protein 1 (AP-1) and interferon
regulatory factors (IRFs)>. Interleukin-2 (IL-2) is one of the molecules
produced by mouse dendritic cells after stimulation by different
pattern recognition receptor agonists®> . By analogy with the events
after T-cell receptor engagement leading to IL-2 production, it is
therefore plausible that the stimulation of TLRs on dendritic cells
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may lead to activation of the Ca®*/calcineurin and nuclear factor of
activated T cells (NFAT) pathway. Here we show that mouse
dendritic cell stimulation with lipopolysaccharide (LPS) induces Src-
family kinase (SFK) and phospholipase Cy2 (PLCy2) activation, influx
of extracellular Ca** and calcineurin-dependent nuclear NFAT
translocation. The initiation of this pathway is independent of TLR4
engagement, and dependent exclusively on CD14. We also show
that LPS-induced NFAT activation via CD14 is necessary to cause the
apoptotic death of terminally differentiated dendritic cells, an event
that is essential for maintaining self-tolerance and preventing
autoimmunity”®. Consequently, blocking this pathway in vivo
causes prolonged dendritic cell survival and an increase in T-cell
priming capability. Our findings reveal novel aspects of molecular
signaling triggered by LPS in dendritic cells, and identify a new role
for CD14: the regulation of the dendritic cell life cycle through NFAT
activation. Given the involvement of CD14 in disease, including
sepsis and chronic heart failure®'®, the discovery of signal
transduction pathways activated exclusively via CD14 is an
important step towards the development of potential treatments

involving interference with CD14 functions.

Wild-type LPS, termed smooth LPS (the form of LPS used here),
comprises three covalently linked moieties: lipid A, rough core
oligosaccharide and an O-antigenic side chain determining serotype
specificity. The TLR4:MD-2 complex and the CD14 co-receptor are

necessary and sufficient for a full response to smooth LPS'. Both
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CD8a" and CD8a’ mouse dendritic cells express CD14, although at
lower levels than expressed by macrophages (Supplementary Fig. 1).
We tested whether LPS-induced IL-2 production by dendritic cells
was dependent on NFAT. Ca®* mobilization is the first event in NFAT
activation. We observed that LPS was able to induce Ca** flux in bone
marrow-derived dendritic cells (BMDCs) and in a homogeneous
dendritic cell line, D1 cells® (Fig. 1, Supplementary Fig. 2 and

Supplementary Movies).

. D1 WT BMDCs

= v 100 .

100 - 80 S

3 60 ¥ =+

g €0 40 .

E 20 20 m

TR : , 0

2 NT LPS ATP NT10 1 0.1 ATP
10 ug mi~ LPS (ug mi-)

Fig. 1. Percentage of D1 cells and BMDCs showing Ca” mobilization in the absence

(NT) and presence of LPS or ATP. *, P < 0.05 versus NT.

Next, we investigated the features of Ca®* mobilization by LPS in
BMDCs in detail, by recording Ca** transients in individual cells. The
intracellular calcium concentration ([Ca®'];) was increased by LPS and
ATP (P <0.05 versus untreated cells, Fig. 2a). Experiments in Ca**-free
medium demonstrated that the increase in [Ca®*]; induced by LPS was
due to the influx of extracellular Ca** (Fig. 2b, responding cells in

Ca’*-free medium less than 1%). To determine the molecular
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component of the LPS receptor responsible for Ca?* flux directly, we
measured Ca”* influx in TLR4- and CD14-deficient BMDCs. Ca**
transients were fully preserved in TLR4-deficient BMDCs (43 + 6% of
cells responding, Fig. 2c), whereas they were completely abolished in

CD14-deficient BMDCs (< 1% of cells responding, Fig. 2c).
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Fig. 2. (a, b, ¢) Ca®" transients in wild-type and mutant. Point 0 indicates the
time of stimulus administration. Means and s.d. for a minimum of 30 cells
are shown. Experiments were repeated at least three times. The ratio of
fluorescence emissions at 400 nm/40 nm band-pass to those at 500 nm/20

nm band-pass was recorded (F400/F500) and used as an index of [Ca*]..

To confirm that TLR4 is not involved in this process, Ca** mobilization
was tested in each of the following mutant cell types: MyD88-, MD-2-
and TRIF-deficient, and MyD88/TRIF- and TLR4/TLR2-double-deficient
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BMDCs. In all of these mutant cells Ca** mobilization was fully
preserved (Supplementary Fig. 3), confirming that CD14 was the
receptor responsible for Ca*" influx after LPS activation. Also, there
was no Ca** mobilization in BMDCs in response to taxol (responding
cells < 1%), a selective TLR4 agonist13 (Fig. 2c); this is further
confirmation of the involvement of CD14. We next conducted various
tests to ensure that the results obtained concerning Ca”* transients
could not have been due to the presence of contaminants in our LPS

preparations (see Supplementary Fig. 4).

CD14 is a glycosylphosphatidylinositol-anchored receptor (GPI-AR).
Cross-linking of GPI-ARs, such as CD59', triggers the activation of the
intracellular inositol-1,4,5-trisphosphate (Ins(1,4,5)P3)/Ca** pathway
through the association with lipid rafts and SFK activation®™.
Therefore, we investigated whether CD14 membrane localization,
presence of lipid rafts and SFK activation were conditions required to
obtain Ca®* mobilization. As shown in Fig. 3, soluble CD14 did not
restore extracellular Ca?* influx in CD14-deficient dendritic cells, and
disruption of lipid rafts by cholesterol depletion totally impaired Ca**
mobilization. Thus, consistent with previous results’®, CD14
localization in lipid rafts'’ seems to be required for LPS-induced Ca**
mobilization. Moreover, SFK inhibition completely abolished Ca*
mobilization (Fig. 3), indicating direct involvement of SFK in this
process. The induction of Ca®' transients by LPS was also fully

dependent on PLCy2 (responding PLCy2-deficient BMDCs <1%; Fig.

3). Consistent with these results, PLCy2 activation was observed in
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wild-type but not in CD14-deficient BMDCs on LPS exposure
(Supplementary Fig. 5).
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Fig. 3. Ca’* transients in wild-type and mutant BMDCs and wild-type BMDCs
in the presence of the SFK inhibitor (SU6656, 260 nM) or soluble CD14 (2 ug

ml™) and upon cholesterol depletion/replenishment.

We then analyzed NFAT activation after LPS treatment in wild-type
and CD14-deficient BMDCs. As shown in Fig. 4, NFATc2 nuclear
translocation occurred in wild-type but not in CD14-deficient BMDCs.
In agreement with the Ca** mobilization studies, NFAT was
translocated to the nucleus in wild-type, TLR4-, MD-2- and
MyD88/TRIF-deficient BMDCs but not in CD14- and PLCy2-deficient

BMDCs or in wild-type BMDCs stimulated with LPS in the presence of
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the SFK inhibitor (Supplementary Fig. 6). These observations
demonstrate that CD14 is directly responsible for activating, in
dendritic cells, a TLR4-independent, SFK- and PLCy2-dependent signal

transduction pathway leading to NFAT activation.

Immunocytochemistry
NT LPS (1 ug mi-)

WT BMDCs

Cd14~- BMDCs

Fig. 4. NFATc2 translocation before (NT) and after LPS challenge for 2 h in
BMDCs. Blue, DAPI; red, anti-NFATc2; original magnification, X630.

This is in addition to CD14 enhancing cellular responses to low doses
of LPS™' and being required for the LPS-induced recruitment of
TRAM and TRIF?®. We observed that, diversely from macrophages®
(Fig. 5), the production of TNFa and IL-6 by dendritic cells after LPS
stimulation was TRIF-independent and, consequently, it was also
CD14-independent™®, at least at high LPS doses (Fig. 5). It is
therefore possible that the selective engagement of TLR4 without

CD14 activation allows the production of NF-kB-dependent and
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NFAT-independent cytokines, such as TNFa?? and IL-6%3, whereas it
selectively prevents the production of cytokines, such as IL-2, that are

transcriptionally dependent on NFAT, in addition to NF-kB and AP-1.

D nimin mmmimemtas cnm o omgomombn oo e om o DAANN A B \NT
DUlIe-Iannouw inauviopiiayes DIILUWLS LI
M A14-/-
LJvaie
14 0NN, 12 NNN W A 4. . Joo-/-
_1eUUY 1 12,000 I m Myd88
== 4nnnnl 1 | _ | | | e A
- B | T ml 1 8.000fwml 1 L | & r B (LIHN
WwE Al N oM 11 | im0 LE 4
Z m O,UUU1 | 11 d m AnnnBITTHT B I B I
—a ikl Ml B B ihaid! RENE RENN NRNE B
= 2.000im| N| Bl N B B NL el T
NHL = | | Wi = g N NN N NER N NEN N o NEN . N
"1 "01 005 001 0 "1 01 0.05001 O
6,000 14,000
—_ ' I L 1 | 1 '
oI aoo0ln N1 10,000{y 1 & L& AL .
Y E 711l Il | [ anns/BITHITTE || B I
= = annn N Bl W] [ | SUUWUIRITT BITT LT BT
X «VUVIN | Bl HI [ sl RNl RRNN RRNEN PR
= L BUTERINEN « Z2000/0L1 BT HWI Full =
~ 1 01 005001 0 -1 0.1 0.05 001 O
LPS (ug mi-) LPS (ug mi-)

Fig. 5. TNFa and IL-6 production by bone-marrow macrophages and BMDCs
stimulated with LPS for 24 h. Results are representative of at least three

experiments. Error bars represent standard errors.

We analyzed the behavior of CD14-deficient BMDCs after LPS
stimulation and that of wild-type BMDCs after activation with the
TLR4-selective stimulus taxol to confirm the existence of a CD14-
specific pathway. IL-2 production was impaired after the stimulation
of CD14-deficient BMDCs with various concentrations of LPS,
including very high concentrations at which the production of TNFa
and IL-6 was largely preserved (Fig. 6a). Similarly, stimulation of wild-
type BMDCs with taxol induced the production of TNFa and IL-6, but
not IL-2 (Fig. 6a). Nevertheless, coupling TLR4 stimulation with Ca**

mobilization, using thapsigargin, restored IL-2 production (Fig. 6a and
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Supplementary Fig. 8). Similar results were obtained in vivo

(Supplementary Fig. 8).
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Fig. 6. (a) Cytokine production by BMDCs stimulated with LPS or taxol (Tx,
100 uM) and LPS- or taxol-induced IL-2 production by BMDCs with and
without thapsigargin (Tpg, 50 nM). (b) LPS-induced cytokine production by
BMDCs with and without soluble CD14 (2 pg ml™"). Results are
representative of at least three experiments. Error bars represent standard

errors.

We used various inhibitors blocking the NFAT pathway to confirm
CD14-dependent activation of the Ca**/calcineurin pathway induced
by LPS. In particular, inhibition of the influx of external Ca** by the
Ca’* chelator EGTA selectively impaired IL-2 production but did not
downregulate TNFa or IL-6 synthesis (Supplementary Fig. 9a). This

was also observed in the presence of thapsigargin (Supplementary
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Fig. 9b). Inhibition of SFK, PLCy2 or calcineurin downregulated IL-2
production; however, the production of TNFa and IL-6 was
unaffected by the treatment (Supplementary Fig. 9a, c). We also used
the VIVIT peptide® to inhibit NFAT proteins and obtained similar
results (Supplementary Fig. 10). In agreement with the Ca**
mobilization data, addition of soluble CD14 to CD14-deficient BMDCs
restored TNFa production, as already observed in macrophageszo,
but not IL-2 production at either low or high LPS concentrations (Fig.
6b). This observation supports the notion that a membrane
localization of CD14 is required to activate the Ca®* pathway. As NFAT
proteins are major regulators of many biological processes, we
investigated the physiological role of CD14-mediated NFAT activation
in dendritic cells, in addition to IL-2 production. We performed a
kinetic microarray analysis to identify genes modulated specifically by
NFAT in LPS-treated dendritic cells (see Supplementary Fig. 11 for
details). From this analysis we hypothesized that LPS-activated
dendritic cells in conditions allowing NFAT activation were exhausted
cells with little or falling gene transcription and protein translation; in
contrast, dendritic cells activated with LPS in conditions inhibiting
NFAT activation were transcriptionally and translationally active,
presumably not exhausted and not undergoing apoptosis (see
Supplementary Table 1 for details). To test whether CD14-mediated
activation of the NFAT pathway was required to induce apoptotic
death of terminally differentiated cells, wild-type BMDCs and CD14-,
NFATc2- and PLCy2-deficient BMDCs were activated with LPS and the
percentage of living cells measured at various times thereafter. The
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c2 isoform of NFAT was chosen because it has a pro-apoptotic
function in T- and B-cells®. Less than 30% of wild-type BMDCs
survived after activation, whereas 70-100% of CD14-, NFATc2- and
PLCy2-deficient BMDCs were still alive five days after exposure to LPS
(Fig. 7). CD14- and PLCy2-deficient BMDC death after LPS activation
was restored by thapsigargin (Fig. 7); thapsigargin alone had no
effect (data not shown). Similar results were obtained using different

LPS doses and LPS from different sources (Supplementary Fig. 12).
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Fig. 7. BMDC survival after incubation with LPS (1 ug ml™, P < 0.00001, wild-
type versus mutant BMDCs) or LPS plus thapsigargin (50 nM). Survival of
unstimulated cells kept in culture with GM-CSF is also shown. Results are
representative of at least three experiments. Error bars represent standard

errors.

A new microarray experiment performed at later time points (48 and
60 h) allowed us to identify four putative pro-apoptotic genes
specifically modulated by NFAT: nur77, Gadd45g, Ddit3 and Tial

(Supplementary Table 2). In vivo, splenic dendritic cell numbers
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declined quickly in wild-type C57BL/6 mice upon LPS administration,
whereas absolute dendritic cell numbers remained almost constant
in CD14-deficient and NFATc2-deficient mice after the same
treatment (Fig. 8). Although we cannot exclude an indirect effect in
vivo, these findings provide further evidence that NFAT pathway
activation via CD14 is required for dendritic cell apoptosis. The partial
dendritic cell decline observed in NFATc2-deficient mice may have
been the consequence of the effect of other NFAT isoforms with

overlapping functions.
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Fig. 8. Absolute numbers of CD11c" cells in spleens after intravenous LPS (1
mg g7) injection (P < 0.0006, wild-type versus mutant mice). Data are

representative of two independent experiments (four mice per group).

Apoptotic death is the terminal step of fully matured dendritic cells.
This process is essential for regulating peripheral tolerance because
dendritic cell accumulation resulting from apoptosis deficiency can

induce over-activation of responder lymphocytes, resulting in
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systemic autoimmunity7'8. We tested whether blockade of the
CD14/NFAT pathway leading to dendritic cell persistence after
activation could be responsible for an increase in T-cell priming in

vivo.
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Fig. 9. Top panel: antigen-specific T-cell proliferation in vivo. Lower panel:
IFNy production after in vitro re-stimulation. The experiment was repeated

twice with similar results. Error bars represent standard errors.

Wild-type, CD14- and NFATc2-deficient mice were injected with LPS
and anti-DEC205-0OVA conjugate26 and 8 h later received
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carboxyfluorescein diacetate succinimidyl ester (CFSE)-labelled CD4"
T-cells from OVA-specific OT-Il mice. As shown in Fig. 9, T-cell
proliferation in vivo was stronger in mutant than wild-type mice and,
consistently, the capacity to produce IFNy after re-stimulation in vitro
was stronger when T-cells were recovered from mutant than wild-
type mice. Thus, mutant mice had an enhanced capacity to induce T-

cell-specific immune responses.

Diversely from dendritic cells, macrophages do not die after
activation with LPS but simply become refractory to a further
rechallenge, a process known es endotoxin tolerance®’. Additionally,
tissue-resident macrophage survival after activation is crucial for the
resolution of inflammation and the tissue repair response?.
Therefore, we asked whether macrophage survival after LPS
encounter was due to their inability to activate the Ca®* pathway.
Bone marrow-derived macrophages were unable to mobilize ca®
(Fig. 10a). Moreover, Supplementary Fig. 13 shows that after LPS
encounter NFAT activation and NFAT-dependent gene transcription
were not measurable in macrophages. To investigate whether the
lack of Ca”-NFAT pathway activation in macrophages was
responsible for their survival upon LPS encounter, we induced Ca**
mobilization with thapsigargin concomitantly with LPS stimulation. In
these conditions, bone marrow macrophage death could be induced
in an NFATc2-dependent manner (Fig. 10b). In addition, splenic
macrophages (which were identified as CD11b*CD11c™ cells) did not
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decline in number after a single intravenous injection of LPS (Fig.

10b).
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Fig. 10. (a) Ca®* transients in bone marrow macrophages. Point O indicates
time of stimulus administration. Means and s.d. of 30 cells minimum are
shown. Experiments were repeated at least three times. (b) Left panel:
survival of wild-type and mutant bone marrow macrophages after
incubation with LPS (1 pug ml™) or LPS plus thapsigargin (50 nM). Right
panel: absolute numbers of CD11b*CD11c™™ cells in spleens of wild-type
and CD14-deficient mice after intravenous LPS injection (30 mg/mouse).

Data represent two independent experiments (four mice per group).
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nur77 expression (48 h)
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Fig. 11. Fold increase of nur77 expression in stimulated versus unstimulated

wild-type and mutant cells.

As shown in Fig. 11, nur77 was not modulated in macrophages after
LPS stimulation. Nevertheless, nur77 messenger RNA upregulation
could be induced in an NFAT-dependent manner after macrophage
co-stimulation with LPS and thapsigargin. Moreover, in this validation
experiment, we also confirmed that the upregulation of nur77 mRNA
in dendritic cells after LPS stimulation was dependent on NFATc2
(Fig. 11). These observations further corroborate our findings
concerning the functional consequences of CD14-mediated Ca'
influx and NFAT activation in dendritic cells. Nevertheless, they
highlight significant differences in the signal transduction pathways
induced by LPS in dendritic cells and macrophages. By revealing novel
aspects of molecular signaling triggered by LPS in dendritic cells, this
work provides insights into the complexity of cellular responses to

bacterial infections.
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Materials and Methods

Calcium Measurement. [Ca2+]i was determined by a fluorometric
ratio technique. Cells were loaded with 2 uM indo-1 (Molecular
Probes) by incubation at 37 °C for 20 min. Cells were then washed
three times with PBS to allow for intracellular de-esterification of
indo-1. A direct optical microscope (Olympus, BX51) with a two-
photon Ti-Sapphire laser source (720-nm wavelength; Mai Tai,
SpectraPhysics) was used for indo-1 excitation. The fluorescence
signals emitted by indo-1-loaded cells were digitized at 200 Hz and
recorded every 0.5-0.8 s. The ratio of fluorescence emissions at 400
nm/40 nm band-pass to those at 500 nm/20nm band-pass was
recorded (R400/500) and used as an index of [[Ca®'],. Data were
normalized to baseline. This approach overcame possible problems
of uncertainty related to the calibration of fluorescent Ca®'
indicators. In some cases, cells were analyzed in calcium-free PBS or
calcium-free PBS supplemented with thapsigargin (50 nM). Images of

2+ .
Ca” responses were measured by a laser-scanning confocal system

using the membrane-permeable dye Fluo4-AM.

Dendritic cells and macrophages. D1 cells and fresh bone marrow
cells from C57BL/6 or mutant mice were cultured as previously

described®.

Mice and cells. C57BL/6 mice were purchased from Harlan. Cd14”
mice were purchased from CNRS. OT-Il mice were purchased from

Charles River. TIr4” mice were provided by S. Akira. Plcg2'/'
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129XC57BL/6 and wild-type 129XC57BL/6 mice were provided by M.
Colonna. TLR2/TLR4-doubledeficient mice were provided by C.
Kirschning. NFATc2-deficient mice were provided by E. Serfling, and
MD2-deficient mice were provided by K. Miyake. All animals were
housed under pathogen-free conditions. All experiments were
carried out in accordance with the relevant laws and institutional

guidelines.

Antibodies and chemicals. All the antibodies used for FACS analysis
were purchased from BD Biosciences. TLR4-grade LPSs (Escherichia
coli, 055:B5 and Salmonella Typhimurium S-form) were purchased
from Alexis Corporation; non-TLR4-grade LPS (E. coli O55:B5) was
purchased from Sigma. Recombinant soluble CD14 was purchased
from CellSciences and SFK inhibitor SU6656 from Sigma.
Tacrolimus/FK506 (Fujisawa Pharmaceutical) was used at a
concentration of 10 ng ml™. Partial depletion and replenishment of
cholesterol in the plasma membrane was performed according to ref.
14. Indo1-AM and Fluo4-AM (Molecular Probes) were dissolved in
DMSO. Stock solutions were diluted in Tyrode solution (154mM NaCl,
4mM KCI, 2mM CaCl2, 1mM MgCI2, 5mM HEPES-NaOH, 5.5mM D-
glucose, adjusted to pH 7.35). The concentration of DMSO in the

medium did not exceed 0.1%.

Western blot analysis. Wild-type and Cd14”" BMDCs were stimulated
for the indicated times with LPS (1 pg ml™) and lysed in the presence
of Protein Inhibitor Cocktail (Sigma) and Phosphatase Inhibitor

Cocktails (Sigma). Proteins from cell lysates were separated by
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standard SDS—PAGE and analyzed by immunoblotting with antibodies
specific for phosphorylated PLCy2 (Cell Signaling) and for B-actin
(Sigma).

Electrophoretic mobility shift assay (EMSA). 32P-labelled DNA
oligonucleotide probes were incubated for binding with 5 mg of
nuclear extracts®® for 20 min at room temperature in a buffer
containing 5% glycerol, 50mM NaCl, 20mM Tris pH7.9, 0.5mM EDTA,
5mM MgCl, ImM dithiothreitol, 100 ng mlI21 poly(dl-dC), and 50 ng
ml™? bovine serum albumin (BSA) in a final volume of 15 ml. The
protein—DNA complexes were then separated on a 5%
polyacrylamide gel (29:1 acrylamide/bisacrylamide ratio) and were
visualized by autoradiography. The sequences of the oligonucleotide
probes (sense strand) used in the gel shift assay were as follows:
NFATc consensus site, 5'-GCCCAAAGAGGAAAATTTGTTTCATACAG-3’;
NFATc mutant site, 5’-GCCCAAAGCttAAAATTTGTTTCATACAG-3’; Oct
consensus site, 5’-TCGTCAAACTCTGCTAATTAGCAATGCTGAGAAA-3'.

Immunocytochemistry. Cells were fixed in formaldehyde and spun
onto glass slides (2X10° cells per slide in 200 pl) at 300 r.p.m. for 5
min. Cells were then permeabilized in chilled methanol and washed
extensively with PBS. Fc block antibody (CD16/CD32, BD
Pharmingen), rabbit anti-mouse NFATc2 (1:250, ImmunoGlobe),
rabbit anti-mouse NFATc3 (1:250, Santacruz) and donkey anti-rabbit
Alexa Fluor 555 antibodies (1:500, Molecular Probes) diluted in PBS

plus 0.1% BSA were added and incubated at room temperature. DAPI
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(1:1,000, Sigma Aldrich) was added and the samples incubated for 5

min at room temperature.

IL-2, TNF-a and IL-6 measurements. ELISAs were performed with the

DuoSet kits (R & D).

Plasmids and retroviral infection of dendritic cells. VIVIT-GFP DNA
was inserted into the PINCO retroviral vector®}, using the Hindlll and
Notl restriction sites. Standard molecular biology methods were used
for cDNA cloning. All the reagents used were from Invitrogen. The
production of high-titre vectors and the D1 infection protocol have
been described elsewhere®'. Transduction efficiency was evaluated
by FACS analysis and was generally around 30%. GFP1 cells were

sorted and cultured as previously described*".

In vivo production of IL-2 and TNF-a by spleen cells. Aliquots of 10
pg of LPS or 10 pg of LPS and 5mM Tpg (in a final volume of 50 ul)
were injected into mouse spleens. After 3 h, spleens were removed
and single-cell suspensions prepared. The cell suspensions were
incubated with brefeldin A (10 pg ml™, Sigma-Aldrich) for 5 h. The
cells were fixed using BD Phosflow Lyse/Fix buffer (BD Biosciences),
permeabilized with BD Phosflow Perm Buffer Ill (BD Biosciences) and
stained with PE-labelled anti-CD11c, APC-labelled anti-IL-2 and anti-
TNFa monoclonal antibodies or APC-labelled isotype control
antibody. Cells were then analyzed on a FACScalibur (Becton

Dickinson).
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Microarray experiment. Total RNA was extracted by the double
extraction protocol: RNA isolation by acid guanidinium thiocyanate-
phenol-chloroform extraction (Trizol Invitrogen) followed by a Qiagen
RNeasy clean-up procedure. Total RNA integrity was assessed with a
Agilent Bioanalyser and the RNA Integrity Number (RIN) was
calculated. Only high-quality RNA preparations, with RIN greater than
8.5, were used for microarray analysis. Three micrograms of total
RNA were used for cRNA target preparation according to the
Affymetrix GeneChip Expression Analysis Technical Manual
(Affymetrix) using the one cycle target labelling kit and according to
the manufacturer’s instructions. Ten micrograms of biotinylated
cRNA was hybridized to the Affymetrix GeneChip Mouse Genome
430A 2.0 arrays. Bioconductor32 was used for most data handling.
The Guanine Cytosine Robust Multi-array Analysis GCRMA33 method
was used to calculate probe set intensity. The normalization method

applied was the quantile.

In vitro survival assay. Cells were seeded in 96-well plates at a
concentration of 0.5X10° cells mI™ in 100 ul of complete IMDM plus
GM-CSF (for BMDCs) or M-CSF (for bone-marrow macrophages) in
the presence or absence of LPS (1 ug ml™) and/or thapsigargin (50
nM). After 24 h, 100 pl of complete IMDM was added to the culture.
Survival of cells was measured using the CellTiter-Blue Cell Viability

Assay (Promega).

In vivo survival assay. Four-to-six-week-old mice, showing an

average of 90 million total spleen cells, were injected intravenously
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with 1 mg g of LPS. At various times thereafter, spleens were
collected, single-cell suspensions produced and total spleen cells
counted. Absolute numbers of dendritic cells were determined by
FACS analysis using CD11c—APC-conjugated, CD8a—PE-conjugated,
and CD11b—FITC-conjugated antibodies.

T-cell activation. Mice were injected intravenously with LPS (1 mg g
') and anti-DEC205—-OVA complex (10 pg) and 8 h later received CFSE-
labelled CD4" T cells (4X10°) from OT-Il mice. T-cell proliferation was
measured in the spleen after 48 h. One week after immunization
total CD4" T-cells were recovered and re-stimulated in vitro with OVA
peptide in the presence of splenic APCs. IFNy production was

measured by ELISA after 48 h of culture.

Real-time quantitative PCR. Total RNA was extracted from 10° cells
using the TRIZOL reagent according to the recommended procedure
(Gibco-BRL). Single-strand cDNA was synthesized using High-capacity
cDNA Reverse Transcription Kits (Perkin-Elmer, Applied Biosystems
Division). The NanoDrop (ThermoScientific) was used to titre mRNA
and amplification was performed using the Power Sybr Green PCR

Master Mix (Perkin Elmer).

Statistical analysis. Means were compared by paired or unpaired t-
tests. Data are expressed and plotted as means * s.d. values.
Statistical significance was defined as P,0.05. Sample sizes for each
experimental condition are provided in the figures and the respective

legends.
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Supplementary information
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Supplementary Fig. 1. CD14 is expressed by CD8a’ and CD8a’ DCs. RT-qPCR
was performed on the indicated ex vivo sorted populations and on BMDCs.
Ex vivo T cells were used as negative control. RNA 18s was used as loading

control. The experiment was repeated twice with similar results.
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Supplementary Fig. 2. Ca** mobilization in DCs. Representative images of
D1 cell and BMDC fields in control conditions and after steady-state

superfusion with LPS and ATP; the Ca’* concentration is indicated by
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colored bars. We used confocal images acquired before and during stimulus
superfusion to determine whether LPS induced Ca** flux in BMDCs and in
D1 cells. Basal Ca®* activity was recorded, and the cells were then
superfused with LPS for up to 2 min. ATP at a saturating dose of 200 uM
was used as a positive control’. In both cell types, a small number of
elements displayed spontaneous sub-baseline Ca®** activity, which was
significantly increased by LPS (P < 0.05). The response to LPS was stronger
in D1 cells than in BMDCs (P < 0.05), due to the greater homogeneity of D1

cells.
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Supplementary Fig. 3. Ca** mobilization in wild-type and mutant DCs

following LPS treatment. Means and standard deviations for a minimum of
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30 cells are shown. Experiments were repeated at least three times for

each set of conditions, with similar results.
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Supplementary Fig. 4. Introductory explanation. It is possible that LPS

preparations are contaminated with different bacterial components, such

as lipoproteins

and peptidoglycan. We could exclude the presence of TLR2

ligands (lipopetides) by using TLR2/TLR4-double deficient cells (see

Supplementary

Fig. 3). To exclude the eventuality that the observed TLR4-

independent and CD14-dependent Ca** mobilization was due to

peptidoglycan contaminants we used the following approach. It has been
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shown that insect cells can be activated by peptidoglycan while they are
unresponsive to LPS’. Therefore, contaminant peptidoglycan in LPS
preparations can induce insect cell activation measured in terms of anti-
microbial peptide transcript upregulation. We, thus, exploited insect cells to
analyze the presence of peptidoglycan in different LPS samples. We treated
insect cells with LPS from Sigma (non-TLR4 grade, positive control) and LPS
from Alexis (TLR4 grade) and we measured the upregulation of the anti-
microbial peptide attacin B transcript (ATTB) by quantitative real time (qRT)
PCR. The results are shown in (a). While a clear peptidoglycan
contamination was observable in the LPS preparation from Sigma, the
Alexis LPS showed a much-reduced level of contaminant peptidoglycan,
near the detection limit. The Sigma LPS was then re-purified according to
Kaneko et al.? and the level of contamination analyzed again. As shown in
(a) the re-purified LPS (ultrapure) showed a sensibly reduced level of
peptidoglycan. Notably, Alexis LPS and re-purified LPS had a similar level of
contamination. A dose of peptidoglycan corresponding to the amount of
contaminant present in 1 pg/ml of LPS (Alexis) was never capable of
stimulating Ca2+ fluxes (data not shown). Consistent with the data obtained
using LPS from Alexis, ultrapure LPS was able to induce Ca** mobilization in
a TLR4-independent, CD14-dependent manner (b, upper panels). To further
prove that the observed phenomenon was not due to peptidoglycan
contamination, we analyzed the ability of peptidoglycan to induce Ca*'
mobilization in BMDCs. As shown in (b), peptidoglycan was able to induce
Ca®* mobilization but in a CD14-independent manner, thus with a modality
completely different from LPS. As IL-2 production by BMDCs can be strongly
induced by Zymosan®“, we analyzed the ability of this microbial product to

induce Ca®* fluxes. As shown in (b), Zymosan is able to induce Ca**
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mobilization but in a CD14-independent manner. This highlights the

existence of a specific pathway for LPS.

Figure legend. (a) Amounts of peptidoglycan (PGN) contamination in the
indicated LPS preparations. S2 insect cells have been incubated with graded
amounts of PGN for 3h after 24h of differentiation with the insect hormone
20-hydroxyecdysone. A dose-response curve has been produced by
correlating the amount of PGN to the antimicrobial peptide attacin B (ATTB)
transcript levels as measured by gRT-PCR. The amount of contaminant PGN
in LPS preparations has been determined by comparing ATTB mRNA level
induced in LPS treated S2 cells with the PGN dose-response curve. (b) Ca**
mobilization in wt and mutant DCs following LPS, peptidoglycan and
Zymosan treatment. Time point 0 indicates the time at which the stimulus
was administered. Means and standard deviations for a minimum of 30

cells are shown. Experiments were repeated at least three times for each

set of conditions, with similar results obtained in each case.
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Supplementary Fig. 5. PLCy2 is activated in wt but not in CD14-deficient
BMDCs. WT and CD14-deficient BMDCs were treated with LPS at the

indicated time points and equal amounts of lysates were immunoblotted
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with anti-phospho-PLCy2 antibody. The experiment was repeated twice
with similar results obtained in each case. Left panel, western blot analysis;

right panel, western blot analysis quantification. NT, untreated cells.
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Supplementary Fig. 6. NFAT nuclear translocation in BMDCs. NFAT nuclear
translocation was determined by EMSA in wt, the indicated mutant BMDCs
and BMDCs in presence of the SFK inhibitor (SU6656, 260nM) before (NT)
and after LPS treatment. Thapsigargin (tpg) was used as a positive control.
Quantification analysis indicating the fold-difference in nuclear NFAT is also
shown. Data were normalized to the nuclear abundance of the unrelated

transcription factor, Octl, that remains constant during activation.
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Supplementary Fig. 7. NFATc2 nuclear translocation induced by

thapsigargin. Left panel, NFATc2 nuclear translocation determined by
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immunofluorescence analysis in wt and CD14-deficient BMDCs before (NT)
and after challenge with thapsigargin (Tpg) for 2 h. Stained cells were
analyzed by confocal microscopy. Blue, DAPI; red, anti-NFATc2; original
magnification, X 630. Right panel, percentage of wt and CD14- deficient
BMDCs showing NFATc2 inside the nucleus before and after thapsigargin
treatment. Data represent means and standard errors of ten fields
(containing around 50 cells each) analyzed in two independent

experiments.
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Supplementary Fig. 8. Introductory explanation. We used IL-2 and TNF-a as
reporter genes to evaluate whether CD14 was required to activate the
NFAT pathway in DCs in vivo. Consistent with in vitro observations, in vivo
treatment of CD14-deficient mice with LPS did not induce IL-2 production

by CD11c" splenic DCs. Nevertheless, the concomitant administration of
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thaspigargin with LPS restored the ability of CD11c" splenic DCs to produce
IL-2. Similarly, in vivo TNFa production by DCs following LPS administration
in both wt and CD14-deficient mice was observed. These findings confirmed
that CD14 was required to transduce Ca**-mediated signals in DCs following

LPS stimulation in vivo.

Figure legend. IL-2 production in vivo following LPS administration depends
on CD14. Upper panel, percentage of CD11c" cells producing IL-2 identified
by FACS analysis in the spleen of wt and CD14-deficient mice after the intra-
splenic administration of LPS or LPS plus thapsigargin. * = P < 0.05. NT,
untreated mice; Tpg, mice treated with thapsigargin; Isotype, splenocytes
stained with the isotype control antibody; IL-2, splenocytes stained with the
anti-IL-2 antibody. Data are representative of three independent

experiments conducted with four mice per group.
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Supplementary Fig. 9. Blocking the Ca** pathway at different levels inhibits
IL-2 production. (a) IL-2, TNF-a and IL-6 production by wt BMDCs stimulated

by incubation for 18 h with LPS in the presence or absence of the calcium
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chelator EGTA (2 mM) or the calcineurin inhibitor tacrolimus (FK, 50 nM).
(b) IL-2 production by wt and CD14-deficient BMDCs stimulated by
incubation for 18 h with LPS and thapsigargin (Tpg) in the presence or
absence of EGTA. (c) IL-2, TNF-a and IL-6 production by PLCy2-deficient
BMDCs and by wt BMDCs in presence of the indicated concentrations of the
SFK inhibitor (SU6656). Experiments were repeated at least three times for

each set of conditions, with similar results obtained in each case.
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Supplementary Fig. 10. Introductory explanation. The VIVIT peptide
selectively interferes with the calcineurin-NFAT interaction, without
affecting calcineurin phosphatase activity’, by binding the calcineurin-
docking motif of NFAT. Thus, the VIVIT peptide specifically inhibits the
production of cytokines dependent on NFAT activation, without inhibiting
the production of cytokines that require calcineurin but not NFAT?. D1 cells
transduced with the VIVIT peptide fused to the green fluorescent protein
(GFP) produced very little IL-2 following activation with LPS. In contrast,
TNF-a production and the upregulation of activation markers were not

affected.
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Figure legend. IL-2 production by VIVIT-GFP-transduced D1 cells. (a) GFP
expression by D1 cells transduced with the empty vector and with the
VIVIT-GFP vector. (b) IL-2 production by D1 cells transduced with the VIVIT-
GFP chimeric protein (D1 GFP-VIVIT) or with the GFP protein as a control
(D1 GFP), after 6 h of stimulation with LPS. (c) TNF-a production by D1 cells
transduced with the VIVIT-GFP chimeric protein after stimulation with LPS
for 18 h. (d) Upregulation of activation markers at the surface of VIVIT-GFP-
transduced D1 cells 24 hours after stimulation with LPS, as measured by
FACS analysis. Isotype, cells stained with isotype control antibodies; NT,

unstimulated cells. The experiment was repeated twice, with similar results.
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selectively modulated by NFAT, comparative kinetic microarray analyses
were performed in the following conditions: 1) CD14-deficient BMDCs
stimulated with LPS; 2) wtBMDCs stimulated with LPS in presence of EGTA;

3) wtBMDCs stimulated with LPS. This experimental setting allowed us to
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select for effects due to Ca”* fluxes and exclude the effects due to other
causes, particularly the block of TRIF recruitment in CD14-deficient cells and
the EGTA effects unrelated to Ca** chelation. Thus, we selected those genes
showing a fold change higher than 4 with respect to the basal level in any
kinetic time points in wt BMDCs and not showing any change (fold change
lower than 1.5) in EGTA-treated BMDCs (a). These genes were further
selected for not showing any change in CD14-deficient cells. The selected

genes are shown in the panels b.

Figure legend. Comparative global gene expression analyses showing the
NFAT regulated genes. (a) Signal Log Ratio plots of genes expressed by wt
BMDCs at different time points after LPS vs LPS-EGTA treatments. Red dots
represent genes showing a fold change in the expression levels higher than
4 with respect to the basal level in LPS treated cells and a fold change lower
than 1.5 in EGTA plus LPS treated cells. (b) Expression regulation of genes
showing a fold change higher than 4 with respect to the basal level in any
kinetic time points in wt BMDCs and not showing any change in EGTA-

treated wt BMDCs and in CD14-deficient cells.
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Supplementary Fig. 12. Survival curves of wt and mutant BMDCs following

incubation with the indicated doses of Alexis LPS or 1 pg/ml of re-purified

(ultrapure) Sigma LPS (see Fig. S-4).
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Supplementary Fig. 13. Introductory explanation. We performed an EMSA

analysis in BM-macrophages to investigate NFAT activation. This analysis

showed only a minimal NFAT p

resence in the nucleus of BM macrophages
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compared to DCs following LPS stimulation. To further investigate whether
the Ca®*-NFAT pathway played any role in LPS-stimulated macrophages, we
performed a comparative kinetic microarray analysis in the same conditions
used for DCs (see Fig. S-11): 1) CD14-deficient macrophages stimulated with
LPS; 2) wt macrophages stimulated with LPS in presence of EGTA; 3) wt
macrophages stimulated with LPS. Based on the previous analysis, we
reduced the kinetic to 0, 6 and 24 h following LPS stimulation. Microarray
analysis was performed with the same procedure used for DCs (see
Supplementary Fig. 11). As shown in this supplementary figure, very few
genes were modulated in LPS-treated compared to EGTA and LPS-treated
wt macrophages at 6 and 24 h, indicating that the EGTA treatment had a
minimal or no effect. When we further selected the obtained genes for not
showing any change in CD14-deficient cells, no genes remained. Moreover,
none of the genes regulated by NFAT in DCs were modulated in
macrophages following LPS stimulation (data not shown). All together these
results indicate that, diversely from DCs, the Ca®*-NFAT pathway does not

play any role in macrophages following LPS stimulation.

Figure legend. (a) NFAT nuclear translocation determined by EMSA in BM-
macrophages 2 h after the indicated treatments. LPS-treated BMDCs were
loaded onto the same gel for positive control. Quantification analysis
indicating the fold difference in nuclear NFAT is also shown. Data were
normalized to the nuclear abundance of an unrelated transcription factor
that remains constant during activation. (b) Signal Log Ratio plots of genes
expressed by BM macrophages at 6 and 24 h after LPS vs LPS-EGTA
treatments. The analysis has been done as described in Supplementary Fig.

11.
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Supplementary Table 1

Selected NFAT-modulated genes in DCs following LPS stimulation

Gene | Protein Function Regulation | Rel.
Tfb2m | TFB2M 1s a mithocondrial auxihiary factor necessary Down 6.7
for promoter recognition by mithocondrial RNA
polymerase (POLRMT)
K17 KL7 is involved in growth arrest and cell differentiation Up §
Mystd | MYSTs are a family of histone acetyltransferases Down o110
involved in activation of gene transcription
Pcaf | PCAF 1s a hystone-modifying co-factor involved in Up 112
regulation of differentiation
Xpot | Exportin T 1is the tRNA transport from nucleus to Down S
cytoplasm
Supplementary Table 2
Apoptosis genes regulated by NFAT in DCs following LPS stimulation
Gene Protein Function Regulation | Ref
Nur77 The encoded protein acts as a nuclear transcription Up 1
factor and mediates apoptosis.
Ddit3 When the functions of the ER are severely impaired, Up 16
transcription 1s upregulated for the induction of cell
apoptosis
Gadd45g | Stress responsive gene, involved in the elimination of Up v
activated Tyl cells by promoting apoptosis and
mnhibiting proliferation.
Tial Regulator of alternative pre-mRNA splicing of FAS, Down 18,19
upregulated in presence of Cyclosporin A

Experimental setting used. To

identify apoptosis genes selectively

modulated by NFAT, a comparative kinetic (time points 0, 48 and 60 h)
microarray analysis was performed in the following conditions: 1) wt
BMDCs stimulated with LPS; 2) CD14-deficient BMDCs stimulated with LPS;
3) wt BMDCs stimulated with LPS in presence of thapsigargin; 4) CD14-
deficient BMDCs stimulated with LPS in presence of thapsigargin. Thus, we
selected apoptosis genes showing a fold change higher than 4 with respect
to the basal level in any kinetic time points in wt BMDCs stimulated with
LPS. Among these genes we further selected those showing the same

modulation additionally in wt and CD14-deficient BMDCs costimulated with
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LPS and thapsigargin. From this subgroup we then selected those genes not

showing any change (fold change lower than 1.5) in CD14-deficient BMDCs
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Chapter 3

CD14-NFAT signaling in dendritic cells regulates PGE, synthesis and

edema formation in response to LPS
Manuscript submitted
Zanoni I.*, Ostuni R.*, Costa B. and Granucci F.

Department of Biotechnology and Bioscience, University of Milano-

Bicocca, Piazza della Scienza 2, 20126 Milan, Italy.

*Equal contribution

Prostaglandin E, (PGE;) is a proinflammatory mediator whose
biosynthesis is targeted by non-steroidal anti-inflammatory drugs
(NSAID). Here we show that dendritic cells (DCs) are the main
source of PGE, in a model of lipopolysaccharide (LPS)-induced
inflammation and that CD14-NFAT pathway regulates this function.
Therefore, CD14 signaling in DCs is a valuable target for the
development of a novel class of anti-inflammatory compounds,
alternative to COX-2 inhibitors, selectively blocking PGE,

production.

PGE, is a potent eicosanoid lipid mediator involved in numerous

homeostatic and inflammatory processes, most notably the induction
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of inflammatory swelling through its vasodilating activity'. Its
production, together with that of pro-inflammatory cytokines, is
triggered by Toll-like receptor (TLR)-driven pathogen recognition®™.
Upon LPS recognition, TLR4-expressing innate immune cells mediate
the initial release of PGE;, through a multistep biosynthetic process
requiring the coordinated up-regulation of cyclooxygenase-2 (COX-
2)° and microsomal PGE synthase-1 (mPGES-1)*".In a scrutiny of data
sets identifying genes regulated by the DC-specific CD14-NFAT
signaling pathway triggered by LPS®, we identified Ptgesl as a
potential transcriptional target (Supplementary Fig.1). We validated
this observation by gRT-PCR in mouse bone marrow-derived DCs
(BMDCs) and observed a strong induction of mPGES-1 mRNA in wild-
type (wt) BMDCs after LPS stimulation, a response that was greatly
impaired in CD14”" BMDCs (Fig. 1).
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Fig. 1. Left panel: qRT-PCR analysis of mPGES-1 mRNA induction
kinetics by wt BMDCs stimulated with LPS (1 pg/ml). Right panel: Up-
regulation of mPGES-1 mRNA after LPS administration by wt and
CD147" BMDCs Values represent at least three independent
experiments performed in duplicate + s.e.m. ** P < 0.01, N.S. not

significant.
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Blocking NFAT activation in wt BMDCs by pre-incubating cells with
the Ca** chelator EGTA or the calcineurin inhibitor FK506 also
resulted in a blunted mPGES-1 expression (Fig. 2), suggesting that
CD14-dependent NFAT activation regulates this process. We
excluded that a reduced activation of NF-kB accounted for the
defective mPGES-1 up-regulation in cD14” BMDCs® by using doses of
LPS (1 pg/ml) that allowed direct agonist detection by TLR4 without
an absolute requirement for CD14, as evidenced by the ability of
CD14”7 BMDCs to normally secrete TNF-a (Fig. 3). Similarly, an
impairment of IRF3 activation®® could not explain our observations on
mPGES-1 transcription, since co-administration of IFN-B did not

restore mPGES-1 induction in LPS-treated CD14”" BMDCs (Fig. 2).
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Fig. 2. Up-regulation of mPGES-1 mRNA after LPS administration by wt
BMDCs pre-treated with PBS, FK506 (0,5 mM) or EGTA (2 mM) (left) and by
wt and CD147 BMDCs treated or not with IFN-B (50 U/ml) 2 hours after LPS
(right). Values represent at least three independent experiments performed

in duplicate + s.e.m. ** P < 0.01, N.S. not significant.

Supporting the hypothesis of NFAT being the key factor, mPGES-1
induction by LPS correlated with production of IL-2, a bona fide

marker for NFAT activation in DCs®*, but not of TNF-a (Fig. 3).
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Fig. 3. Production of IL-2 (left) and TNF-a (right) by wt and CD14”" BMDCs
treated with LPS or LPS plus thapsigargin (50 nM) in the presence/absence
of EGTA or FK506. Values represent at least three independent experiments

performed in duplicate + s.e.m. ** P < 0.01, N.S. not significant.

PGE, release in vitro was also strongly impaired in cD14” BMDC s, as
well as in EGTA- or FK506-pre-treated wt BMDCs relative to controls
(Fig. 4). However, we were able to restore PGE, production in cp14”
BMDCs by coupling LPS stimulation with the artificial NFAT activation
obtained by administration of thapsigargin and this effect was NFAT-
dependent since it could be blocked by EGTA or FK506 (Fig. 4).
Thapsigargin co-treatment additionally restored IL-2 production in
CD14” BMDCs (Fig. 4). Another key enzyme for PGE, production is
COX-2, whose transcriptional expression has been reported to be
regulated by NFAT in other experimental settings'2. However, COX-2
induction by LPS in BMDCs was not affected by CD14 deficiency

(Supplementary Fig. 2). These data show that, by regulating LPS-
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mediated mPGES-1 (but not COX-2) induction, CD14-NFAT signaling
drives the in vitro production of PGE, by BMDCs.

300' 300_
'EZE’U' =250 A
8150 1 £150 A
gmo- ui' 100 A
0_50' 850_
0 0 -
n O © D gL @ 0w 0 < © W N <« Y
Q = O Q= O
L8085 8 D2hL3Y505 3
w o w o w o w i
LPS LPS LPS + Tpg
4 A
T3 A
£
22
(o]
=11
0 T T
W < » <
= =
i o) o o
L w
LPS LPS + Tpg
BwT
O cd14-

Fig. 4. Upper panel: PGE, production by wt and CD14” BMDCs treated with
LPS or LPS plus thapsigargin (50 nM) in the presence/absence of EGTA or
FK506. Lower panel: production of IL-2 by wt and CD147" BMDCs in the
indicated conditions. Values represent at least three independent
experiments performed in duplicate + s.eem. ** P < 0.01, N.S. not

significant.
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Before migrating to draining lymph nodes, activated DCs are likely to
participate to the inflammatory process in vivo, as described for

1314 Given their ability to produce PGE,, which

monocyte-derived DCs
regulate edema formation through local vasodilation', we
investigated whether DCs participate to LPS-induced tissue swelling.
Using the CD11c.DOG transgenic mouse model, in which expression
of the CD11lc promoter (active in DCs) controls the expression of
diphtheria toxin receptor (DTR)", we were able to conditionally
ablate DCs in lymphoid and non-lymphoid organs and tissues
(including the skin) by consecutive DT injections (Fig. 5 and
Supplementary Fig. 3). Importantly, such treatment did not cause any
significant alteration in either macrophage or granulocyte

populations, as measured by qRT-PCR of cell-specific mRNAs'® in the

whole footpad (Fig. 5).
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Fig. 5. gRT-PCR analysis of CD11c (DCs), F4/80 (macrophages) and Gr-1
(granulocytes) mRNA in the footpad of CD11c.DOG mice before
(CD11c.DOG-NT) or after 3 rounds of DT (16 ng/g) treatment (CD11c.DOG-
DT). Values represent at least two independent experiments (n=5) + s.e.m.

** P <0.01, N.S. not significant.
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We compared paw edema formation after a single injection of LPS
into the footpad of CD11c.DOG mice that were previously
administered DT (CD11c.DOG-DT) or PBS (CD11c.DOG-NT). Notably,
DC depletion strongly impacted on tissue edema formation (Fig. 6),

indicating that DCs play a major role in this process.
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Fig. 6. Inflammatory swelling in the footpad of CD11c.DOG-NT and
CD11c.DOG-DT mice measured at the indicated time points after s.c.
injection of LPS (25 pug/mouse). Values represent at least three independent
experiments performed in duplicate + s.e.m. ** P < 0.01, N.S. not

significant.

Inflammatory swelling was mainly induced by tissue-resident DCs,
since no local recruitment of DCs, macrophages or granulocytes was
observed early after LPS administration (Supplementary Fig. 4). These
results are consistent with the faster kinetics of tissue edema
formation (30-60 minutes) as compared to immune cell recruitment,
and they are supported by the observation that in vitro LPS-
stimulated BMDCs secrete much higher levels of PGE,, as well as TNF-

o, than bone marrow-derived macrophages (Supplementary Fig. 5).
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According to this model, alterations in the PGE, biosynthetic pathway
of DCs should recapitulate the LPS-unresponsive phenotype in terms
of tissue swelling of DC-depleted mice. To this purpose, we compared
LPS-induced paw edema in wt and CD14” mice and observed that
CD14”" mice did not develop significant swelling as compared to wt
controls (Fig. 7). The phenotype could be restored by co-treating
CD14”" mice with LPS and thapsigargin, indicating a role for NFAT
activation also in this in vivo model of PGE,-dependent inflammation
(Fig. 7). Thapsigargin alone did not trigger a detectable inflammatory

response in the paw (Supplementary Fig. 6).
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Fig. 7. Inflammatory swelling in the footpad of wt and CD14”" mice treated
with LPS (25 ug/mouse) in the presence or absence of thapsigargin (5 uM)
measured at the indicated time points. Values represent at least three
independent experiments performed in duplicate + s.e.m. ** P < 0.01, N.S.

not significant.

Mechanistically, the reduction in paw edema observed in mice in
which DCs were either depleted or impeded in their CD14-NFAT

signaling pathway was due to a defective mPGES-1 up-regulation,
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and consequently flawed PGE, production, in response to LPS. The in
vivo analysis of mPGES-1 mRNA in the footpad of wt mice revealed a
global 3-fold transcriptional induction of this gene upon LPS
treatment that was lost in CD14”" mice (Fig. 8). TNF-a mRNA in the
whole tissue was similarly up-regulated in the two mouse strains (Fig.
8), showing that reduced footpad swelling in CD14”" mice was indeed

due to a defective PGE, production, rather than to a general defect in

LPS sensing.
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Fig. 8. gTR-PCR analysis of mPGES-1 (left) and TNF-a (right) mRNA induction
in the footpad of wt and CD14”" mice 1 hour after LPS treatment (25
pug/mouse) Values represent at least two independent experiments (n=5) +

s.e.m. ** P < 0.01, N.S. not significant.

Depletion of DCs in CD11¢c.DOG-DT mice also affected in vivo mPGES-
1 up-regulation in the paw after LPS treatment (Fig. 9). However,
local induction of TNF-a mRNA was considerably reduced in this

condition (Fig. 9), strongly reinforcing the idea that DCs are crucial
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innate immune players that directly regulate the onset of

inflammation.
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Fig. 9. gRT-PCR analysis of mPGES-1 (left) and TNF-a (right) mRNA induction
in the footpad of CD11c.DOG mice pre-treated (-DT) or not (-NT) with DT
and stimulated with LPS. Values represent at least two independent

experiments (n=5) + s.e.m. ** P < 0.01, N.S. not significant.

Prostanoid synthesis is a key target of NSAIDs, which typically act as
COX-2 inhibitors. However, the usage of such drugs has been limited
by the existence of severe toxic secondary effects related to their

. .. . 171
systemic route of administration'”*®

. This suggests that inhibitors of
the DC-specific CD14-NFAT pathway might act to relieve the
symptoms of an ongoing inflammatory pathology. As a proof-of-
principle experiment to investigate the potential anti-inflammatory
effects of pharmacological inhibition of CD14-NFAT pathway, we
administered daily FK506 to wt mice systemically (intraperitoneally)
or locally (subcutaneous injection in the footpad) for two days. After

LPS treatment in the footpad, we measured the local up-regulation of

mPGES1 and TNF-a mRNAs. As shown in Fig. 10, the induction of
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mMmPGES1 mRNA in the footpad triggered by LPS was almost
completely abolished by both FK506 treatments. Importantly, no
significant impairment of TNF-a mRNA induction was observed as a

consequence of calcineurin inhibition (Fig. 10).
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Fig. 10. qRT-PCR analysis of mPGES-1 (left) and TNF-a (right) mRNA
induction in the footpad of wt mice pre-treated with 3 mg/Kg of FK506 in
the footpad (s.c.) or systemically (i.p.) and stimulated with LPS. Values
represent at least two independent experiments (n=5) + s.e.m. ** P < 0.01,

N.S. not significant.

DCs are antigen-presenting cells that link innate and adaptive
immune responses. However, their ubiquitous localization in
peripheral tissues, as well as the existence of DC-specific innate
immune pathways, makes them suitable for local proinflammatory
purposes. Our data show that DCs are the major regulators in a
model of LPS-induced inflammation in vivo and they exert this role
through their peculiar ability to respond to LPS through a CD14-NFAT

pathway that transcriptionally regulates mPGES-1 expression and
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PGE, synthesis. Since the usage of COX-2 inhibitors as anti-
inflammatory drugs® has been hampered by the existence of severe

1718 "our findings suggest that targeting CD14-

toxic secondary effects
NFAT signaling in DCs may constitute a strategy to overcome such
problems by selectively blocking the biosynthesis of PGE, in specific

inflammatory settings.
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Materials and Methods

Mice and cells. C57BL/6 mice were purchased from Harlan. cd14”
mice were purchased from CNRS d’Orléans (Orléans Cedex 2,
France). N. Garbi kindly provided CD11c.DOG mice. All animals were
housed under pathogen-free conditions and all experiments were
carried out in accordance with the relevant laws and institutional
guidelines. Dendritic cells and macrophages were derived from bone

marrow progenitors of wt or mutant mice as previously described®.

Antibodies and chemicals. Antibodies against mouse CD11b and
CD11c used for FACS analysis were purchased from BD Biosciences.
TLR4-grade smooth LPS (Escherichia coli, 055:B5) were purchased
from Alexis Corporation. EGTA, FK506 and thapsigargin were
purchased from Sigma Aldrich. Recombinant murine IFN-B and
diphtheria toxin were purchased from R&D Systems. Antibody

against murine COX-2 was purchased from Cayman Chemical.

Cytokine measurement. Concentrations of IL-2 and TNF-a in
supernatants were assessed by ELISA kits purchased from R&D
Systems. PGE; levels were assayed with a monoclonal EIA Kit from

Cayman Chemical.

In vitro mRNA expression level measurement. Cells (2*106) were
lysed with the TRIZOL\ reagent (Applied Biosystems) and total mRNA
was extracted with an RNeasy Mini Kit (Qiagen) according to the
manufacturer’s instructions. NanoDrop spectrophotometer

(ThermoScientific) was used to quantify mRNA and to assess its
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purity. 600 ng of mMRNA were retro-transcribed to cDNA using a High-
capacity cDNA Reverse Transcription Kit (Applied Biosystems). 10 ng
of cDNA were amplified using the Power Sybr Green PCR Master Mix
(Applied Biosystems) in a 7500 Fast Real-Time PCR System (Applied
Biosystems) and data were analyzed using the built-in software.
Primer pairs used were: 5'-ACGACATGGAGACAATCTATCCT-3’ and 5’-
TGAGGACAACGAGGAAATGT-3’ (mPGES-1), 5’-
CGAAAGCATTTGCCAAGAAT-3’ and 5-AGTCGGCATCGTTTATGGTC-3’
(18s). 18 mMRNA was used as internal reference for relative

guantification studies.

DC depletion. Diphtheria toxin (16 ng/g) was administered daily to
CD11c.DOG mice through an i.p. injection for 3 consecutive days.
Control mice were given PBS. Effective DC depletion was assessed by

FACS and gRT-PCR analysis.

Tissue edema. Following anesthesia with pentobarbital (60 mg/kg),
sex- and age-matched mice were subcutaneously injected with LPS
(25 pg/25 pl), LPS plus thapsigargin (5 uM) in the footpad or PBS as a
control. The paw volume of the LPS-, as well as the PBS-treated
contralateral paw was then measured by a plethysmometer (Ugo
Basile) at the indicated time points. At the 2 h time point, most of the
animals had recovered from the anesthesia, and at the 4 h time point
all animals had recovered. The volume of the contralateral paw was
subtracted from the volume of the injected paw, to obtain the edema

volume.
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In vivo mRNA expression level measurement. Whole footpad tissue
from treated or control mice was cut, briefly washed in cold PBS and
immersed in RNAlater\ solution (Ambion) at 4°C for 24 hours. Paws
were then lysed in TRIZOL\ and mechanically disrupted using a
TissuelLyser (Qiagen) (30 shakes/sec for 3 minutes). Subsequent
mRNA processing was performed as described above. Primer pairs

used were: 5 -TTTGTTTCTTGTCTTGGCTTCAA-3’ and 5’-

TTAGTGGCTTTTATTTCCTTTGGT-3’ (CD11c), 5’-
CACCTTCATTTGCATCAACA-3’ and 5'-TCTGAAAAGTTGGCAAAGAGAA-
3" (F4/80), 5-TGCTCTGGAGATAGAAGTTATTGTG-3 and 5'-
TTACCAGTGATCTCAGTATTGTCCA-3’ (Gr-1). Primer pairs for mPGES-1
and 18s are indicated above. Pre-validated Quantitect\ primer pairs

for TNF-a and HPRT1 (reference gene) were purchased from Qiagen.

In vivo calcineurin inhibition. Mice were administered 3 mg/Kg
FK506 (dissolved in Castor oil, Sigma) once a day for two consecutive
days. FK506 was given through i.p. or s.c. (footpad) injections and LPS
stimulation was performed as described above one day after the end

of FK506 treatment.

Western blot. Cells were lysed with a buffer containing 50 mM Tris-
HCl pH 7.4, 150 mM NaCl, 10% glycerol, 1% NP-40 supplemented
with protease and phosphatase inhibitor coktails (Roche). Cell debris
were removed by centrifugation at 16,000 x g for 15 minutes (4°C)
and proteins were quantified using a BCA assay (Thermo Scientific).
10 pg of cell lysate were run on a 10% polyacrilamide gel and SDS-
PAGE was operated following standard procedures. After protein
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transfer, nitrocellulose membranes (Thermo Scientific) were
incubated with the indicated antibodies and developed using an ECL

substrate reagent (Thermo Scientific).
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Supplementary Information
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Supplementary Fig. 1. mPGES-1 is a potential target of CD14/NFAT signaling
in DCs. GeneChip analysis of mPGES-1 mRNA expression by wt BMDCs +/-
EGTA (2mM) or CD14”7 BMDCs stimulated with LPS (1 ug/ml) at the

indicated time points.
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Supplementary Fig. 2. COX-2 up-regulation in response to LPS is CD14-
independent in DCs. Western blot analysis of COX-2 induction by wt and

CD14”7 BMDCs treated with LPS (1 pg/ml) at the indicated time points.
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Supplementary Fig. 3. DCs are effectively depleted from the spleen of
CD11c.DOG mice after DT treatment. Representative flow cytograms of
splenocytes from CD11c.DOG mice before (CD11c.DOG-NT) or after 3
rounds of DT (16 ng/g) treatment (CD11c.DOG-DT). CD11c" CD11b"" DC

populations are shown.
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Supplementary Fig. 4. LPS stimulation does not induce significant
recruitment of inflammatory cells after 1 hour. Real-Time PCR analysis of
CD11c, F4/80 and Gr-1 mRNA in the footpad of CD11c.DOG mice before

and after 1 hour of s.c. LPS injection (25 ug/g).
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Supplementary Fig. 5. Differential responsiveness of DCs and macrophages
to LPS stimulation in vitro. PGE, and TNF-a production in vitro by wt BMDCs

and bone marrow macrophages (BMMFs) after LPS stimulation.
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Supplementary Fig. 6. Thapsigargin alone does not induce tissue edema.
Inflammatory swelling in the footpad of wt mice measured at the indicated

time points after s.c. injection of LPS (25 pug/mouse) or thapsigargin (5 uM).
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Chapter 4

Summary, Conclusions and Future Perspectives.
CD14: a co-receptor with crucial signaling functions

In the introduction to this thesis | have described the known
functions of CD14 as a sensing receptor for TLR4, as well as other
TLRs. However, we have described a novel signal transduction
pathway induced by LPS that exclusively relies on CD14 for activation
of the transcription factor NFAT (nuclear factor of activated T cell) in
DCs'. These findings provide the definitive demonstration that CD14
can act independent of TLRs as a transducing receptor (Fig. 1).

DCs retain the ability to release IL-2 upon stimulation with several
pattern recognition receptors, including TLR4*>, a key event for
natural killer (NK) cell activation®. Since in T lymphocytes IL-2
expression is regulated at the transcriptional level by NFAT®, we have
undertaken a study to assess whether LPS stimulation in DCs is also
able to induce activation of this transcription factor. As it turned out,
CD14 is responsible for the induction of a rapid and transient influx of
Ca’* ions in LPS-stimulated DCs. The consequent increase in the
cytosolic Ca®* concentration ([Ca*']) triggers the activation of
calcineurin, a phosphatase that in turn removes phosphate groups
from cytosolic, inactive NFAT proteins. Constitutive phosphorylation
by GSK3B (glycogen synthase kinase 3B) in resting cells is a strategy
for sequestering NFAT in the cytosol through masking its NLS. LPS-

induced activation of calcineurin relieves inhibition of NFAT, thereby
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promoting its nuclear translocation. Strikingly, experiments in DCs
doubly deficient in TLR4 and TLR2 as well as MyD88 and TRIF clearly
reveal that activation of NFAT by LPS in DCs occurs with no
contribution at all from TLR4 or any other TLR. Instead, CD14 is
necessary for inducing Ca?* influx and NFAT activation after LPS
stimulation in DCs. The downstream effectors of this CD14-
dependent pathway have also been identified, with Src family kinases
(SFKs) and PLCy2 playing essential roles in triggering Ca** influx and
NFAT activation. These and other data, in addition to previous
knowledge, allow the definition of a reliable model for CD14-
dependent signal transduction in DCs whereby LPS stimulation
triggers the clustering of CD14 molecules in lipid rafts. Through anill-
defined mechanism, CD14 clustering results in SFK activation
(possibly Lyn), which in turn activates PLCy2 by phosphorylation.
PLCy2 acts by hydrolyzing its substrate PI(4,5)P, into the second
messengers 1(3,4,5)P; and diacylglycerol (DAG). Whereas DAG
probably signals NF-kB activation through PKCs (protein kinase C),
1(3,4,5)Ps triggers the opening of 1(3,4,5)Ps-regulated ion channel
receptors on the cell surface, resulting in a single wave of
extracellular Ca®* influx that ultimately promotes calcineurin
activation, NFAT dephosphorylation and nuclear translocation. Apart
from describing a novel signaling ability of CD14, this model raises a
number of interesting questions about the regulation of this pathway
at the molecular level. For example, how does CD14 transduce the
LPS recognition signal intracellularly? In this regard it has to be noted
that CD14 appears to signal NFAT activation through its GPl-anchor,
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rather than by presenting LPS to an unknown transmembrane
protein other that TLR4. Indeed, soluble CD14 (sCD14) restores
sensitivity to low doses of LPS in CD14-deficient DCs in terms of
proinflammatory cytokine production but not in terms of Ca**-NFAT
signaling. Furthermore, disruption of lipid raft integrity with a
cholesterol-depleting agent abolishes the ability of wild-type DCs to
induce a Ca®' response to LPS. These observations strongly support
the hypothesis that membrane-anchored CD14 that resides in lipid
rafts directly promotes NFAT activation, although we can not
formally exclude the involvement of additional transmembrane
players. We propose that the clustering of CD14 induced by LPS
promotes the aggregation and consequent activation of other lipid
raft-associated signaling proteins, namely SFKs, which in turn activate
PLCy2. Consistent with this hypothesis is the recent finding that
colloidal gold-induced cross-linking of the GPIl-anchored receptor
CD59 results in the transient lateral immobilization in lipid rafts of
Lyn and Ga2, which triggers the activation of Lyn and, consequently,
PLCv26'7. An additional feature of CD14-dependent signaling to NFAT
that merits further investigation is the mechanism by which an
increase of [Ca’']i is obtained upon LPS stimulation in DCs. T cell
receptor-induced calcineurin activation is typically operated through
a two-step Ca®* mobilization system called store-operated Ca** entry
(SOCE). According to the SOCE paradigm, 1(3,4,5)Ps promotes the
opening of specific ion channel receptors (IP3-R) localized on the
endoplasmic reticulum (ER). Since the [Ca2+] in the ER is higher than
in the cytosol, this results in a transient wave of Ca®* mobilization
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from the ER. The consequent depletion of the Ca®" store is then
sensed and communicated to the plasma membrane by means of the
STIM-Orail system, where additional ion channels allow a second,
sustained wave of Ca®* influx®. Interestingly, LPS induces a single and
transient influx of extracellular Ca2+, with no contribution from
intracellular Ca** stores, which is still sufficient to activate NFAT. This
suggests that LPS-induced ca® signaling in DCs does not rely on a
classical SOCE mechanism, but that 1(3,4,5)P; may trigger direct
activation of functional plasma membrane IP3-Rs, as already
observed in B cells®.

The CD14-dependent NFAT activation induced by LPS plays a crucial
function in regulating the life cycle of activated DCs, which undergo
apoptosis shortly after stimulation. Stimulus-induced apoptosis of
DCs represents a strategy to limit T cell activation in lymph nodes and
to prevent an excessive immune response. We have shown that,
upon DC stimulation with LPS, activated NFAT proteins (namely
NFATc2 and NFATc3) promote the expression of several genes with a
pro-apoptotic function that altogether induce cell death. Among
these genes we identified Nur77 as an NFAT-dependent regulator of
DC apoptosis. It has to be noted that, although NFAT activation is
normally observed in TLR4-deficient DCs after LPS treatment, no
appreciable gene expression occurs in these conditions, suggesting
that cooperation with NF-kB and AP-1 is a pre-requisite for NFAT to
exert its biological function. We also found that macrophages, which
do not undergo LPS-induced apoptosis, do not show a ca® response
or activation of NFAT wupon LPS stimulation. However,
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pharmacological activation of NFAT is sufficient to induce the cell
death of macrophages upon LPS treatment, further supporting a role
for NFAT as a master regulator of the cell life cycle. Although we still
do not know the point where the CD14-dependent pathway is
blocked in macrophages, this differential signaling ability between
DCs and macrophages provides a molecular explanation for their
peculiar life cycle, which is in turn responsible for their diverse

biological functions.
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Fig. 1. CD14-dependent and TLR4-independent NFAT activation in dendritic
cells. In addition to its role in LPS recognition and presentation to TLR4 and
CR3 CD14 has autonomous signaling functions DCs. Upon LPS-induced
clusterization, CD14 transiently recruits and activates a Src family kinase
(SKF) member through an ill-defined mechanism that relies on CD14 GPI
anchor and on its residency in lipid rafts. Active SFK then phosphorylates

PLCy2, which in turn catalyzes the hydrolisis of PI(4,5)P, into the second
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messengers DAG and IP;. Whereas the biological role of DAG in this system
has not been investigated, it is likely to contribute to NF-kB activation
through PKCs (not shown). On the other side, IP; directly triggers Ca** influx
by acting on plasma membrane Ca®* channel receptor (IP3R3?). The
increased [Ca“]i stimulates  activation of calcineurin, which
dephosphorylates NFAT and promotes its nuclear translocation. Active
NFAT cooperates with NF-kB to drive the expression of the genes coding for
IL-2, several proapoptotic proteins as well as mPGES-1 (not shown). It has
to be noted that, although LPS-induced activation of NFAT in DCs is TLR4-
independent, no change in gene expression is observed in the absence of
TLR4, which is therefore required for full transcriptional activity of NFAT

through activation of NF-kB.

The CD14-NFAT pathway regulates pro-inflammatory functions of DCs

The identification and characterization of the CD14-NFAT pathway
led us to discovery another function with important pharmacological
applications, i.e. the production of PGE, by DCs through the
regulation of mPGES-1 expression. PGE, is a crucial mediator of
inflammation that regulates biological processes as diverse as tissue
swelling, inflammatory pain and fever. Therefore, the biosynthesis of
this molecule (mainly through inhibition of COX-2) is targeted by non-
steroidal anti-inflammatory drugs (NSAIDs). Recent clinical studies
have reported that widely used COX-2 inhibitors have serious
secondary effects due to the systemic blockade of this enzyme, which

plays important roles also in homeostatic conditions.
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Microsomal PGE synthase-1 (mPGES-1) has emerged as a more
selective and safer target for inhibition of PGE; synthesis, but in order
to minimize the toxicity of such treatment it is necessary to limit the
action of the drug to relevant PGE,-producing cell types. Our data,
based on a model of inflammation induced by LPS in vivo, clearly
point to a major role of DCs in the production of PGE, and, therefore
in the regulation of tissue edema formation. In conditions in which
DCs were either absent or genetically impeded in their CD14-NFAT
pathway, no significant LPS-induced inflammation was observed.
Importantly, local administration of NFAT inhibitors reduced mPGES-
1 mRNA induction by LPS, revealing a novel possible usage of such
molecules as anti-inflammatory drugs in specific pathological
settings. However, since NFAT inhibitors are immunosuppressive and
not devoid of severe secondary effects, we propose that their usage
should be limited to local and time-limited treatments. It should be
noted that the full therapeutical importance of our discoveries will be
fully understandable only when strategies to target NFAT inhibitors

specifically to DCs will be devised.
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CD14 regulates the dendritic cell life cycle after LPS
exposure through NFAT activation
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Toll-like receptors (TLRs) are the best characterized pattern recog-
nition receptors'. Individual TLRs recruit diverse combinations of
adaptor proteins, triggering signal transduction pathways and
leading to the activation of various transcription factors, including
nuclear factor kB, activation protein 1 and interferon regulatory
factors’. Interleukin-2 is one of the molecules produced by mouse
dendritic cells after stimulation by different pattern recognition
receptor agonists®°. By analogy with the events after T-cell recep-
tor engagement leading to interleukin-2 production, it is therefore
plausible that the stimulation of TLRs on dendritic cells may lead
to activation of the Ca*>*/calcineurin and NFAT (nuclear factor of
activated T cells) pathway. Here we show that mouse dendritic cell
stimulation with lipopolysaccharide (LPS) induces Src-family
kinase and phospholipase Cy2 activation, influx of extracellular
Ca** and calcineurin-dependent nuclear NFAT translocation. The
initiation of this pathway is independent of TLR4 engagement, and
dependent exclusively on CD14. We also show that LPS-induced
NFAT activation via CD14 is necessary to cause the apoptotic
death of terminally differentiated dendritic cells, an event that is
essential for maintaining self-tolerance and preventing autoim-
munity”®. Consequently, blocking this pathway in vivo causes pro-
longed dendritic cell survival and an increase in T-cell priming
capability. Our findings reveal novel aspects of molecular signal-
ling triggered by LPS in dendritic cells, and identify a new role for
CD14: the regulation of the dendritic cell life cycle through NFAT
activation. Given the involvement of CD14 in disease, including
sepsis and chronic heart failure>'’, the discovery of signal trans-
duction pathways activated exclusively via CD14 is an important
step towards the development of potential treatments involving
interference with CD14 functions.

Wild-type LPS, termed smooth LPS (the form of LPS used here),
comprises three covalently linked moieties: lipid A, rough core oli-
gosaccharide and an O-antigenic side chain determining serotype
specificity. The TLR4-MD2 complex and the CD14 co-receptor are
necessary and sufficient for a full response to smooth LPS''. CD14 is
expressed by both CD8x* and CD8u~ mouse dendritic cells,
although at lower levels than expressed by macrophages
(Supplementary Fig. 1). We tested whether LPS-induced interleu-
kin-2 (IL-2) production by dendritic cells was dependent on
NFAT. Ca** mobilization is the first event in NFAT activation.
We observed that LPS was able to induce Ca®" flux in bone-
marrow-derived dendritic cells (BMDCs) and in a homogeneous
dendritic cell line, DI cells' (Fig. la, Supplementary Fig. 2 and
Supplementary Movies). Next, we investigated the features of
Ca®" mobilization by LPS in BMDCs in detail, by recording Ca*"

transients in individual cells. The intracellular calcium concentration
([Ca®*];) was increased by LPS and ATP (P < 0.05 versus untreated
cells, Fig. 1b). Experiments in Ca®>"-free medium demonstrated that
the increase in [Ca**]; induced by LPS was due to the influx of
extracellular Ca®* (Fig. ¢, responding cells in Ca®*-free medium
less than 1%). To determine the molecular component of the LPS
receptor responsible for Ca®* flux directly, we measured Ca®" influx
in TLR4- and CD14-deficient BMDCs. Ca®>" transients were fully
preserved in TLR4-deficient BMDCs (43 = 6% of cells responding,
Fig. 1d), whereas they were completely abolished in CD14-deficient
BMDCs (=1% of cells responding, Fig. 1d). To confirm that TLR4 is
not involved in this process, Ca®>* mobilization was tested in each of
the following mutant cell types: MyD88-, MD2 (also called LY96)-
and TRIF (also called TICAM1)-deficient, and MyD88/TRIF- and
TLR4/TLR2-double-deficient BMDCs. In all of these mutant cells
Ca®" mobilization was fully preserved (Supplementary Fig. 3), con-
firming that CD14 was the receptor responsible for Ca’" influxes
after LPS activation. Also, there was no Ca** mobilization in BMDCs
in response to taxol (responding cells =1%), a selective TLR4 ago-
nist"> (Fig. 1d); this is further confirmation of the involvement of
CD14. We next conducted various tests to ensure that the
results obtained concerning Ca>" transients could not have been
due to the presence of contaminants in our LPS preparations (see
Supplementary Fig. 4).

CD14 is a glycosylphosphatidylinositol-anchored receptor (GPI-
AR). Cross-linking of GPI-ARs, such as CD59 (ref. 14), triggers the
activation of the intracellular inositol-1,4,5-trisphosphate
(Ins(1,4,5)P5) Ca** pathway through the association with lipid rafts
and Src kinase activation'. Therefore, we investigated whether CD14
membrane localization, presence of lipid rafts and Src kinase activa-
tion were conditions required to obtain Ca® " mobilization. As shown
in Fig. le, soluble CD14 did not restore extracellular Ca** influx in
CD14-deficient dendritic cells, and disruption of lipid rafts by cho-
lesterol depletion totally impaired Ca** mobilization. Thus, consis-
tent with previous results'®, CD14 localization in lipid rafts'” seems to
be required for LPS-induced Ca** mobilization. Moreover, Src
kinase inhibition completely abolished Ca®" mobilization (Fig. le),
indicating direct involvement of Src kinases in this process.

The induction of Ca®" transients by LPS was also fully dependent
on phospholipase C (PLC)-y2 (responding PLC-y2-deficient
BMDCs =1%; Fig. le). Consistent with these results, PLC-v2 activa-
tion was observed in wild-type but not in CD14-deficient BMDCs on
LPS exposure (Supplementary Fig. 5).

We then analysed NFAT activation after LPS treatment in wild-
type and CD14-deficient BMDCs. As shown in Fig. 2a, NFATc2
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Figure 1| CD14-dependent Ca?* mobilization in dendritic cells following
LPS treatment. a, Percentage of D1 cells and BMDCs showing Ca**
mobilization in the absence (NT) and presence of LPS or ATP. Asterisk,

P < 0.05 versus NT. b—e, Ca>* transients in wild-type and mutant BMDCs
and wild-type BMDC:s in the presence of the Src kinase inhibitor (SU6656,
260 nM) or soluble CD14 (2 pg ml ). In e Ca®" transients were recorded

nuclear translocation occurred in wild-type but not in CDI14-
deficient BMDCs. In agreement with the Ca’" mobilization studies,
NFAT was translocated to the nucleus in wild-type, TLR4-, MD2-
and MyD88/TRIF-deficient BMDCs but not in CD14- and PLC-y2-
deficient BMDC:s or in wild-type BMDCs stimulated with LPS in the
presence of the Src kinase inhibitor (Supplementary Fig. 6). These
observations demonstrate that CD14 is directly responsible for activ-
ating, in dendritic cells, a TLR4-independent, Src-kinase- and PLC-
v2-dependent transduction pathway leading to NFAT activation.
This is in addition to CD14 enhancing cellular responses to low doses
of LPS'®" and being required for the LPS-induced recruitment of
TRAM and TRIF*.

We observed that, diversely from macrophages™ (Fig. 2b), the
production of tumour-necrosis factor (TNF)-o and IL-6 by dendritic
cells after LPS stimulation was TRIF-independent (Fig. 2b) and, con-
sequently, it was also CD14-independent'"*’, at least at high LPS
doses (Fig. 2b). It is therefore possible that the selective engagement
of TLR4 without CD14 activation allows the production of NF-kB-
dependent and NFAT-independent cytokines, such as TNF-o** and
IL-6, whereas it selectively prevents the production of cytokines,
such as IL-2, that are transcriptionally dependent on NFAT, in addi-
tion to NF-kB and activation protein 1 (AP1).

after cholesterol depletion and replenishment. Point 0 indicates the time of
stimulus administration. Means and s.d. for a minimum of 30 cells are
shown. Experiments were repeated at least three times. The ratio of
fluorescence emissions at 400 nm/40 nm band-pass to those at 500 nm/20
nm band-pass was recorded (F400/F500) and used as an index of [Ca®*];.

We analysed the behaviour of CD14-deficient BMDCs after LPS
stimulation and of wild-type BMDC:s after activation with the TLR4-
selective stimulus taxol to confirm the existence of a CD14-specific
pathway. IL-2 production was impaired after the stimulation of
CD14-deficient BMDCs with various concentrations of LPS, includ-
ing very high concentrations at which the production of TNF-oc and
IL-6 was largely preserved (Fig. 2¢). Similarly, the stimulation of
wild-type BMDCs with taxol induced the production of TNF-o
and IL-6, but not IL-2 (Fig. 2¢c). Nevertheless, coupling TLR4 stimu-
lation with Ca*" mobilization, using thapsigargin, restored IL-2 pro-
duction (Fig. 2d and Supplementary Fig. 8). Similar results were
obtained in vivo (Supplementary Fig. 8).

We used various inhibitors blocking the NFAT pathway to con-
firm CD14-dependent activation of the Ca®"/calcineurin pathway
induced by LPS. In particular, inhibition of the influx of external
Ca®>* by the Ca®" chelator EGTA selectively impaired IL-2 produc-
tion but did not downregulate TNF-oo or IL-6 synthesis
(Supplementary Fig. 9a). This was also observed in the presence of
thapsigargin (Supplementary Fig. 9b). Moreover, inhibition of Src
kinases, PLC-y2 and calcineurin downregulated IL-2 production,
although TNF-o0 and IL-6 production was unaffected
(Supplementary Fig. 9a, ¢). We also used the VIVIT peptide™* to
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Figure 2 | CD14-dependent activation of NFAT in BMDCs after LPS
treatment. a, NFATc2 translocation before (NT) and after LPS challenge for
2 h. Blue, DAPI; red, anti-NFATc2; original magnification, X630.
Percentages represent means and standard error of five fields (~50 cells
each) in two experiments. b, LPS-induced TNF-o and IL-6 production by
bone-marrow macrophages and BMDCs. ¢, LPS- or taxol (Tx, 100 uM)-

inhibit NFAT proteins and obtained similar results (Supplementary
Fig. 10).

In agreement with the Ca>* mobilization data, addition of soluble
CD14 to CD14-deficient BMDCs restored TNF-o. production, as
already observed in macrophages™, but not IL-2 production at either
low or high LPS concentrations (Fig. 2e). This observation supports
the notion that a membrane localization of CD14 is required to
activate the Ca®" pathway.

As NFAT proteins are major regulators of many biological pro-
cesses, we investigated the physiological role of CD14-mediated
NFAT activation in dendritic cells, in addition to IL-2 production.

O0Cd147-BMDCs OCd14-- BMDCs + soluble CD14

induced cytokine production by BMDCs. d, LPS- or taxol-induced IL-2
production by BMDCs with and without thapsigargin (Tpg, 50 nM). e, LPS-
induced cytokine production by BMDCs with and without soluble CD14
2pg ml ). b, ¢, d, eare representative of three experiments. Error bars in
b-e represent standard errors.

We performed a kinetic microarray analysis to identify genes modu-
lated specifically by NFAT in LPS-treated dendritic cells (see
Supplementary Fig. 11 for details). From this analysis we hypothe-
sized that LPS-activated dendritic cells in conditions allowing NFAT
activation were exhausted cells with little or falling gene transcription
and protein translation; in contrast, dendritic cells activated with LPS
in conditions inhibiting NFAT activation were transcriptionally and
translationally active, presumably not exhausted and not undergoing
apoptosis (see Supplementary Table 1 for details).

To test whether CD14-mediated activation of the NFAT pathway
was required to induce apoptotic death of terminally differentiated

a b c
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Figure 3 | Ca®*-NFAT-mediated regulation of dendritic cell death.

a, BMDC survival after incubation with LPS (1 g ml ', P <0.00001, wild-
type versus mutant BMDCs) or LPS plus thapsigargin (50 nM). Survival of
unstimulated cells kept in culture with granulocyte-macrophage colony-
stimulating factor (GM-CSF) is also shown. b, Apoptosis genes regulated by
NFAT after LPS stimulation. ¢, Absolute numbers of CD11c ™" cells in spleens
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after intravenous LPS (1 ugg™ ') injection (P =< 0.0006, wild-type versus
mutant mice). Data are representative of two independent experiments (four
mice per group). d, Left panel: antigen-specific T-cell proliferation in vivo.
Right panel: IFN-y production after in vitro re-stimulation. The experiment
was repeated twice with similar results. Error bars in a, ¢, d represent
standard errors.
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cells, wild-type BMDCs and CD14-, NFATc2- and PLC-y2-deficient
BMDCs were activated with LPS and the percentage of living cells
measured at various times thereafter. The c2 isoform of NFAT was
chosen because it has a pro-apoptotic function in T and B cells*. Less
than 30% of wild-type BMDCs survived after activation, whereas 70—
100% of CD14-, NFATc2- and PLC-y2-deficient BMDCs were still
alive five days after exposure to LPS (Fig. 3a). CD14- and PLC-y2-
deficient BMDC death after LPS activation was restored by thapsi-
gargin (Fig. 3a); thapsigargin alone had no effect (data not shown).
Similar results were obtained using different LPS doses and LPS from
different sources (Supplementary Fig. 12). A new microarray experi-
ment performed at later time points (48 and 60h) allowed us to
identify four pro-apoptotic genes specifically modulated by NFAT:
nur77, Gadd45g, Ddit3 (also called gadd153 and CHOP-10) and Tial
(Fig. 3b, see Supplementary Table 2 for details).

In vivo, splenic dendritic cell numbers declined quickly in wild-
type C57BL/6 mice upon LPS administration, whereas absolute
dendritic cell numbers remained almost constant in CD14-deficient
and NFATc2-deficient mice after the same treatment (Fig. 3c).
Although we cannot exclude an indirect effect in vivo, these findings
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Figure 4 | Ca®>* mobilization and survival of macrophages after LPS
treatment. a, Ca’>" transients in bone marrow macrophages. Point 0
indicates time of stimulus administration. Means and s.d. of 30 cells
minimum are shown. Experiments were repeated at least three times. b, Left
panel: survival of wild-type and mutant bone-marrow macrophages after
incubation with LPS (1 ugml™") or LPS plus thapsigargin (50 nM). Right
panel: absolute numbers of CD11b" CD11c¢%™ cells in spleens of wild-type
and CD14-deficient mice after intravenous LPS injection (30 pg). Data
represent two independent experiments (four mice per group). ¢, Fold
increase of nur77 expression in stimulated versus unstimulated wild-type
and mutant cells. Error bars in b and c represent standard errors.
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provide further evidence that NFAT pathway activation via CD14 is
required for dendritic cell apoptosis. The dendritic cell decline
observed in NFATc2-deficient mice may have been the consequence
of the effect of other NFAT isoforms with overlapping functions.

Apoptotic death is the terminal step of fully matured dendritic
cells. This process is essential for regulating peripheral tolerance
because dendritic cell accumulation resulting from apoptosis defi-
ciency can induce over-activation of responder lymphocytes, result-
ing in systemic autoimmunity”®. We tested whether blockade of the
CD14/NFAT pathway leading to dendritic cell persistence after
activation could be responsible for an increase in T-cell priming
in vivo. Wild-type, CD14- and NFATc2-deficient mice were injected
with LPS and anti-DEC205-OVA conjugate®® and 8 h later received
carboxyfluorescein diacetate succinimidyl ester (CFSE)-labelled
CD4™" T cells from OVA-specific OT-II mice. As shown in Fig. 3d,
T-cell proliferation in vivo was stronger in mutant than wild-type
mice and, consistently, the capacity to produce IFN-y after re-stimu-
lation in vitro was stronger when T cells were recovered from mutant
than wild-type mice. Thus, mutant mice had an enhanced capacity to
induce T-cell-specific immune responses.

Diversely from dendritic cells, macrophages do not die after
activation with LPS but simply become refractory to a further re-
challenge”. Tissue-resident macrophage survival after activation is
crucial for inflammation resolution®. We asked whether macro-
phage survival after LPS encounter was due to their inability to activ-
ate the Ca®" pathway. Bone-marrow-derived macrophages were
unable to mobilize Ca®" (Fig. 4a). Moreover, Supplementary Fig.
13 shows that after LPS encounter NFAT activation and NFAT-
dependent gene transcription were not measurable in macrophages.
To investigate whether the lack of Ca>*-NFAT pathway activation in
macrophages was responsible for their survival upon LPS encounter,
we induced Ca®>" mobilization with thapsigargin concomitantly with
LPS stimulation. In these conditions, bone-marrow macrophage
death could be induced in an NFATc2-dependent manner (Fig. 4b).
In addition, in wvivo splenic macrophages (identified as
CD11b*CD11c%™ cells) did not decline in number after intravenous
injection of LPS (Fig. 4b).

Using real-time quantitative PCR we analysed the expression
modulation in bone-marrow macrophages of nur77, one of the
best-characterized pro-apoptotic genes selected by microarray ana-
lysis in dendritic cells. As shown in Fig. 4c, nur77 was not modulated
in macrophages after LPS stimulation. Nevertheless, nur77 messen-
ger RNA upregulation could be induced in an NFAT-dependent
manner after macrophage co-stimulation with LPS and thapsigargin.
Moreover, in this validation experiment, we also confirmed that the
upregulation of nur77 mRNA in dendritic cells after LPS stimulation
was dependent on NFATc2 (Fig. 4¢).

These observations further corroborate our findings concerning
the functional consequences of CD14-mediated Ca®" influx and
NFAT activation in dendritic cells (Supplementary Fig. 14).
Nevertheless, they highlight significant differences in the signal trans-
duction pathways induced by LPS in dendritic cells and macro-
phages.

By revealing novel aspects of molecular signalling triggered by LPS
in dendritic cells, this work provides insights into the complexity of
cellular responses to bacterial infections.

METHODS SUMMARY

Calcium measurements. [Ca®"]; was determined by a fluorometric ratio tech-
nique. Cells were loaded with 2 pM indo-1 (Molecular Probes) by incubation at
37°C for 20 min. Cells were then washed three times with PBS to allow for
intracellular ~de-esterification of indo-1. A direct optical microscope
(Olympus, BX51) with a two-photon Ti-Sapphire laser source (720-nm wave-
length; Mai Tai, SpectraPhysics) was used for indo-1 excitation. The fluorescence
signals emitted by indo-1-loaded cells were digitized at 200 Hz and recorded
every 0.5-0.8s. The ratio of fluorescence emissions at 400 nm/40 nm band-pass
to those at 500 nm/20 nm band-pass was recorded (R400/500) and used as an
index of [Ca®"];. Data were normalized to baseline. This approach overcame
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possible problems of uncertainty related to the calibration of fluorescent Ca®*
indicators.

In some cases, cells were analysed in calcium-free PBS or calcium-free PBS
supplemented with thapsigargin (50 nM).

Images of Ca’* responses were measured by a laser-scanning confocal system
using the membrane-permeable dye Fluo4-AM.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS

Dendritic cells and macrophages. D1 cells and fresh bone marrow cells from
C57BL/6 or mutant mice were cultured as previously described.

Mice and cells. C57BL/6 mice were purchased from Harlan. Cd14 /"~ mice were
purchased from CNRS. OT-II mice were purchased from Charles River. Tlr4 /"~
mice were provided by S. Akira. Pleg2 ™/~ 129XC57BL/6 and wild-type
129XC57BL/6 mice were provided by M. Colonna. TLR2/TLR4-double-
deficient mice were provided by C. Kirschning. NFATc2-deficient mice were
provided by E. Serfling, and MD2-deficient mice were provided by K. Miyake.
All animals were housed under pathogen-free conditions. All experiments were
carried out in accordance with the relevant laws and institutional guidelines.
Antibodies and chemicals. All the antibodies used for FACS analysis were pur-
chased from BD Biosciences. TLR4-grade LPSs (Escherichia coli, 055:B5 and
Salmonella Typhimurium S-form) were purchased from Alexis Corporation;
non-TLR4-grade LPS (E. coli O55:B5) was purchased from Sigma.
Recombinant soluble CD14 was purchased from CellSciences and Src inhibitor
SU6656 from Sigma. Tacrolimus/FK506 (Fujisawa Pharmaceutical) was used at
a concentration of 10ngml ™",

Partial depletion and replenishment of cholesterol in the plasma membrane
was performed according to ref. 14.

Indo1-AM and Fluo4-AM (Molecular Probes) were dissolved in DMSO.
Stock solutions were diluted in Tyrode solution (154 mM NaCl, 4 mM KCl,
2mM CaCl,, 1 mM MgCl,, 5mM HEPES-NaOH, 5.5 mM D-glucose, adjusted
to pH 7.35). The concentration of DMSO in the medium did not exceed 0.1%.
Western blot analysis. Wild-type and Cd14~/~ BMDCs were stimulated for the
indicated times with LPS (1 pugml™') and lysed in the presence of Protein
Inhibitor Cocktail (Sigma) and Phosphatase Inhibitor Cocktails (Sigma).
Proteins from cell lysates were separated by standard SDS-PAGE and analysed
by immunoblotting with antibodies specific for phosphorylated PLC-y2 (from
Cell Signaling) and for B-actin.

NFAT activation. Electrophoretic mobility shift assay (EMSA). **P-labelled
DNA oligonucleotide probes were incubated for binding with 5mg of nuclear
extracts® for 20 min at room temperature in a buffer containing 5% glycerol,
50 mM NaCl, 20mM Tris pH7.9, 0.5 mM EDTA, 5mM MgCl, 1 mM dithio-
threitol, 100 ng ml ™! poly(dI-dC), and 50 ng ml ™! bovine serum albumin (BSA)
in a final volume of 15 ml. The protein-DNA complexes were then separated on a
5% polyacrylamide gel (29:1 acrylamide/bisacrylamide ratio) and were visua-
lized by autoradiography. The sequences of the oligonucleotide probes (sense
strand) used in the gel shift assay were as follows: NFATc consensus site,
5'-GCCCAAAGAGGAAAATTTGTTTCATACAG-3"; NFATc mutant site, 5'-
GCCCAAAGCttAAAATTTGTTTCATACAG-3';  Oct  consensus  site, 5'-
TCGTCAAACTCTGCTAATTAGCAATGCTGAGAAA-3'.
Immunocytochemistry. Cells were fixed in formaldehyde and spun onto glass
slides (2 X 10 cells per slide in 200 pl) at 300 r.p.m. for 5 min. Cells were then
permeabilized in chilled methanol and washed extensively with PBS. Fc block
antibody (CD16/CD32, BD Pharmingen), rabbit anti-mouse NFATc2 (1:250,
ImmunoGlobe), rabbit anti-mouse NFATc3 (1:250, Santacruz) and donkey
anti-rabbit Alexa Fluor 555 antibodies (1:500, Molecular Probes) diluted in
PBS plus 0.1% BSA were added and incubated at room temperature. DAPI
(1:1,000, Sigma Aldrich) was added and the samples incubated for 5 min at room
temperature.

IL-2, TNF-a and IL-6 measurements. ELISAs were performed with the DuoSet
kits (R & D).

Plasmids and retroviral infection of dendritic cells. VIVIT-GFP DNA was
inserted into the PINCO retroviral vector’, using the HindIII and NotI restric-
tion sites. Standard molecular biology methods were used for cDNA cloning. All
the reagents used were from Invitrogen.

The production of high-titre vectors and the D1 infection protocol have been
described elsewhere®'. Transduction efficiency was evaluated by FACS analysis
and was generally around 30%. GFP™ cells were sorted and cultured as prev-
iously described?.

nature

In vivo production of IL-2 and TNF-a by spleen cells. Aliquots of 10 pig of LPS
or 10 pg of LPS and 5mM Tpg (in a final volume of 50 ul) were injected into
mouse spleens. After 3 h, spleens were removed and single-cell suspensions pre-
pared. The cells suspensions were incubated with brefeldin A (10 pgml™",
Sigma-Aldrich) for 5 h. The cells were fixed using BD Phosflow Lyse/Fix buffer
(BD Biosciences), permeabilized with BD Phosflow Perm Buffer III (BD
Biosciences) and stained with PE-labelled anti-CD11c, APC-labelled anti-IL-2
and anti-TNF-o. monoclonal antibodies or APC-labelled isotype control anti-
body. Cells were then analysed on a FACScalibur (Becton Dickinson).
Microarray experiment. Total RNA was extracted by the double extraction
protocol: RNA isolation by acid guanidinium thiocyanate-phenol-chloroform
extraction (Trizol Invitrogen) followed by a Qiagen RNeasy clean-up procedure.
Total RNA integrity was assessed with a Agilent Bioanalyser and the RNA
Integrity Number (RIN) was calculated. Only high-quality RNA preparations,
with RIN greater than 8.5, were used for microarray analysis.

Three micrograms of total RNA was used for cRNA target preparation accord-
ing to the Affymetrix GeneChip Expression Analysis Technical Manual
(Affymetrix) using the one cycle target labelling kit and according to the man-
ufacturer’s instructions. Ten micrograms of biotinylated cRNA was hybridized
to the Affymetryx GeneChip Mouse Genome 430A 2.0 arrays.

Bioconductor® was used for most data handling. The Guanine Cytosine
Robust Multi-array Analysis GCRMA* method was used to calculate probe
set intensity. The normalization method applied was the quantile.

In vitro survival assay. Cells were seeded in 96-well plates at a concentration of
0.5 X 10° cellsml ™" in 100 pl of complete IMDM plus GM-CSF (for BMDCs) or
M-CSEF (for bone-marrow macrophages) in the presence or absence of LPS
(1pg ml™ ") and/or thapsigargin (50nM). After 24h, 100l of complete
IMDM was added to the culture. Survival of cells was measured using the
CellTiter-Blue Cell Viability Assay (Promega).

In vivo survival assay. Four-to-six-week-old mice, showing an average of 90
million total spleen cells, were injected intravenously with 1 ugg™" of LPS. At
various times thereafter, spleens were collected, single-cell suspensions produced
and total spleen cells counted. Absolute numbers of dendritic cells were deter-
mined by FACS analysis using CD11c—APC-conjugated, CD80—PE-conjugated,
and CD11b-FITC-conjugated antibodies.

T-cell activation. Mice were injected intravenously with LPS (1 ug g~ ') and anti-
DEC205-OVA complex (10 pig) and 8 h later received CFSE-labelled CD4™ T
cells (4 X 10°) from OT-II mice. T-cell proliferation was measured in the spleen
after 48 h. One week after immunization total CD4" T cells were recovered and
re-stimulated in vitro with OVA peptide in the presence of splenic APCs. IEN-y
production was measured by ELISA after 48 h of culture.

Real-time quantitative PCR. Total RNA was extracted from 10° cells using the
TRIZOL reagent according to the recommended procedure (Gibco-BRL).
Single-strand ¢cDNA was synthesized using High-capacity ¢cDNA Reverse
Transcription Kits (Perkin-Elmer, Applied Biosystem Division). The
NanoDrop (TermoScientific) was used to titre mRNA and amplification was
performed using the Power Sybr Green PCR Master Mix (Perkin Elmer).
Statistical analysis. Means were compared by paired or unpaired t-tests. Data
are expressed and plotted as means * s.d. values. Statistical significance was
defined as P < 0.05. Sample sizes for each experimental condition are provided
in the figures and the respective legends.
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Irene, in bocca al lupo e spacca tutto!!! Grazie a Matteo e alla Civi per

tutte le perle di saggezza.

Simo, Pinco Panco ti ha lasciato la sua eredita e sai che non é cosa da
poco... Franka, ti voglio tanto bene e ti prometto che almeno una
volta mangeremo insieme! Oh ragazze... avete pianto per tutti e per

tutto, se non lo fate anche per me mi incazzo.

Grazie di cuore, lvan. Questi anni non li scorderd perché li ho

condivisi con un amico vero...
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