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Introduction

The use of models to study the behavior of systems is common to all fields:
from wind-tunnel to Navier-Stokes equations to circuit diagrams to finite
models of buildings, engineers in all disciplines construct and analyze mod-
els [68]. A behavioral model formalizes and abstracts the view of a system

and gives insight about the behavior of the system being developed.

In the software field, behavioral models can support software engineer-
ing tasks. In particular, models that represent the behavior of the program
during its execution can be used to reason about questions like: “What did
happen during program executions?, How program should have behave?,
What will happen afterwards?”. Relevant uses of behavioral models are in-
cluded in all the main analysis and testing activities: models are used in
program comprehension to complement the information available in speci-
fications, are used in testing to ease test case generation, used as oracles to
verify the correctness of the executions, and are used as failure detection to
automatically identify anomalous behaviors.

Unfortunately, it is extremely effort demanding to produce and main-
tain behavioral models. Fortunately, when behavioral models are not part
of specifications, automated approaches can automatically derive behav-
ioral models from programs. The degree of completeness and soundness
of the generated models depends from the kind of inferred model and the
quality of the data available for the inference. When model inference tech-
niques do not work well or the data available for the inference are poor, the
many testing and analysis techniques based on these models will necessar-
ily provide poor results.

This PhD thesis concentrates on the problem of inferring Finite State
Automata (the model that is likely most used to describe the behavior of
software systems) that describe the behavior of programs and components
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INTRODUCTION

and can be useful as support for testing and analysis activities. The thesis
first empirically investigates the limitations and the capabilities of state of
the art techniques, and then defines two complimentary approaches that
can produce accurate behavioral models from software systems.

More in detail, this thesis contributes to the state of the art by:

e Empirically studying the effectiveness of techniques for the inference
of FSAs when a variable amount of information (from scarce to good)

is available for the inference.

e Empirically comparing the effectiveness of techniques for the infer-
ence of FSAs and Extended FSAs.

e Proposing a white-box technique that infers FSAs from service-based
applications by starting from a complete model and then refining the

model by incrementally removing inconsistencies.

e Proposing a black-box technique that infers FSAs by starting from a
partial model and then incrementally producing additional informa-

tion to increase the completeness of the model.

A proper technique between the white-box and black-box approaches
can be selected depending from both the availability of the source code and

the quality aspect (completeness or soundness) that is more relevant

The thesis is organized as follows:

Chapterl

This chapter discusses the key role played by behavioral models to support
software testing and analysis. The chapter first presents a classification
of the techniques according to their role in the software life cycle. Then it
surveys the main behavioral model-based testing and analysis techniques.
It finally discusses the open issues about the inference of high-quality be-

havioral models.

Chapter2

This chapter surveys the most effective and well-known techniques that
can infer finite state behavioral models. The chapter first presents tech-

niques that produce models of sequences of events. Then it introduces
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Introduction

a technique to derive models from data values, and discusses techniques
that extract FSA annotated with constraints and data-flow information. It
concludes by surviving techniques that generate models that represent the

ordering of the events.

Chapter3

This chapter presents an empirical comparative study between techniques
that infer Finite State Automata and techniques that infer Finite State
Automata annotated with constraints and data-flow information. It inves-
tigates the effectiveness of these techniques when applied to traces with
different levels of sparseness, produced by different software systems. It
terminates by discussing complementarities, strengths and weaknesses of
the approaches providing a roadmap for developing better model-inference

solutions.

Chapter4

This chapter presents a static analysis technique that extracts models of
the service interaction protocol. It also presents a novel refinement strategy
to eliminate infeasible behaviors that reduce the usability of statically de-
rived models. It terminates by providing some empirical data from the ex-
perience of the technique with an application that interacts with the eBay

Web Services.

Chapter5

This chapter presents a black-box technique that incrementally improves
the completeness of dynamically inferred behavioral models. It first de-
scribes how the technique uses machine learning to explore the execution
space. Then, it terminates by showing, with the help of a case study, that
the inferred model is precise and incrementally more complete, according
to the degree of exploration that is achieved.

13






Chapter 1

Testing and Analysis by

Means of Inferred
Behavioral Models

The extensive adoption of test and analysis techniques can improve the
quality of the developed software but traditional methodologies are not al-
ways applicable. For example, many verification and validation techniques
require source code or specifications to be successfully applied, but these
requirements limit their applicability when systems are provided without
source code or with incomplete specifications.

Novel testing and analysis techniques, based on the synthesis of behav-
ioral models from program executions, have been recently defined. These
techniques take advantage of the automatically generated models in a num-
ber of ways: to derive test cases, to recognize failures, to debug failures, etc.

In the following we emphasize the key role played by behavioral models
to support software testing and analysis.

1.1 The use of behavioral models: a classifica-
tion

Models of the program behavior can effectively support software test and

analysis activities. Behavioral models can be used to verify protocols [16l,
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to detect anomalies [41] [71]], to generate test cases [43], to capture unex-
pected event sequences [87], to verify program properties [26] [65] and to
check the compatibility between software components both statically and
dynamically [59] [62].

We classified techniques into 3 groups according to their role in the soft-

ware life cycle:

e program comprehension: Understanding the behavior of a pro-
gram requires the understanding of its specifications. Unfortunately,
most programs do not come with precise and complete specifications,
and even when high quality specifications are produced they tend to
become obsolete while the software evolves. As a consequence, sev-
eral works studied the problem of documenting the program behav-
ior. Mining behavioral models from program executions is an effective
way to automatically obtain specifications. Mining specifications from

programs is known as program comprehension.

e testing: Specifications play a critical role in testing. For instance,
specifications are the main source of information for test case gen-
eration, implementation of oracles and test suite maintenance. Un-
fortunately, specifications are often incomplete or outdated, and the
lack of suitable specifications can harm the effectiveness of testing
and analysis of software systems. The automatic inference of behav-
ioral models can reduce the risks related to lack of specifications. In
particular, the behavioral models automatically extracted from pro-
grams can play the same role of specifications. The benefits of model
inference in testing results in both an increased effectiveness and a

reduced effort of test cases design and execution.

e anomaly detection: Anomaly detection techniques can identify a-
nomalous behaviors by looking for behaviors that differ from the ones
observed during successful executions. The analysis of the behavioral
deviations guide developers in the identification of faults and reduce
the time between patches. The strength of this solutions is strictly
related to the availability of models of the correct behaviors. Although
models of correct behaviors are rarely available, they can be easily

automatically derived.

16



1.2 Program comprehension

The following sections discusses the main program comprehension, test-
ing and anomaly detection techniques based on inferred behavioral models.

1.2 Program comprehension

When specifications are not consistent and complete, behavioral models di-
rectly inferred from programs can help developers to avoid misinterpreting
the functionalities.

In the following we discuss techniques for specification mining of prop-
erties that programs likeley satisfy during executions. The term specifica-
tion normally refers to a description that indicates the behavior expected
from the system. Specifications are written before the system is imple-
mented. Here, consistently with the literature in specification mining, we
use specification to refer to behavioral properties automatically extracted
from program artifacts during development and maintenance phases. The

inferred properties can be used like specifications.

Dynamic and static analysis techniques can infer program specifications
in the form of interaction protocols and contracts. Interaction protocols de-
scribe sequence of messages that two components can exchange. Contracts

represent constraints on the values that can be assigned to variables.

To the best of our knowledge, the first paper that can be labelled as pro-
gram comprehension technique, can be tracked back to as early as 1972 [20]
when finite state machines was used to synthesize execution traces. The
technique describes a method for deriving a behavioral model that spec-
ifies the legal finite set of possible input-output pairs. Since then, this
type of software analysis has grown resulting in several interesting con-
tributions. Ammons et al. [16] discover temporal and data dependencies
relationships that the program satisfies when it interacts with an appli-
cation programming interface (API) or abstract data-type (ADT). To infer
the model, a specification miner monitors the interactions of a running pro-
gram and uses the recorded data to derive a general rule about how the
program interacts with the API or ADT. Ernst et al. also proposed auto-
matic deduction of formal specifications [35]. Daikon works by learning
likely invariants from dynamic traces and produces contracts that hold at

specific program points. Lorenzoli et al. and Lo et al. derive different kinds
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of finite state automata [55] [53]. These techniques produce compact mod-
els that summarize the observed behaviors. The technique implemented by
Yang et al. in the tool Perracotta [87]] addresses the challenge of mining
specifications from large programs. Perracotta infers temporal API rules
by using an analysis technique for detecting dominant behaviors from im-
perfect traces.

Good examples of recent work in the static analysis area are the pro-
posals of Shoham et al., who derive models of the usage protocol for se-
curity analysis [76l, and of Wasylkowski et al. who statically learns how
objects can be used in general from actual usages that occur in the applica-
tion [80]. The latter technique discovers the interaction patterns that can
occur within single methods with an intra-procedural analysis, but does not
support inter-procedural analysis, thus it cannot discover interactions that
derive from the execution of multiple methods. Caso et al. generate models
of operation contracts [32], i.e., from operations specified with pre and post
conditions. Dallmeier et al. derive object usage specifications [29] while
Bertolino et al. generate models of operation dependencies [19]. Dataflow
models abstract from many details about the program structure and only
represent the definitions and uses of variables across a program [38]]. Static
slicing algorithms build program slices, i.e., sets of instructions, that repre-
sent the program statements that can affect a given statement [81]. Mari-
ani et al. [60] present SEIM, a static analysis technique that derives accu-
rate models of the interactions between applications and the Web Services
integrated in them.

Finally, the technique implemented in the Dysy [27] tool, proposes an
hybrid approach, by means combining dynamic and static analysis, to infer

contracts with greater precision than Daikon.

1.3 Testing

The potential benefits of automatic specification mining, and the necessity
to overcame the lack of specifications, has encouraged novel forms of testing
which lay directly on the use of inferred behavioral models.

In the following we summarize some representative works, in the field
of testing, to demonstrate the effectiveness of inferred behavioral models

as replacement of specifications.
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1.3 Testing

If both the source code and the specification are not available, e.g., sys-
tems that integrate COTS components, we need to infer the information
necessary to effectively apply testing techniques from the programs. Both
Wu, Pan and Chen [82] and Mariani, Pezzé and Willmor [61] automatically
derive a model of interactions that can be used for selecting test cases. The
former technique derives the model statically, while the latter derives the
model dynamically. Wu, Pan and Chen use a model, called Component In-
teraction Graph (CIG), that captures interactions and dependencies among
components. A CIG consists of a graph where nodes can represent both
interfaces and events, and edges can represent both control-flow and data-
dependencies among interfaces and events. Wu, Pan and Chen defined a
family of adequacy testing criteria that can be formulated in terms of enti-
ties in the CIG. They do not provide a technique for generating test suites
that satisfy the adequacy criteria, but conducted early experimental stud-
ies to identify the cost-effectiveness of the different criteria in the family.
Mariani, Pezzé and Willmor developed a technique for the dynamic con-
struction of a test suite by recording the stimuli that generate relevant
interactions. Relevance of an interaction is defined in terms of the inferred
model. In particular, if an interaction increases coverage of entities of the
inferred model, it is selected as test case. Registration of relevant inter-
actions and inference of the model can be incrementally performed at the

same time.

When at least a deficient test suite is available, the generation of test
suites can benefits of the synergy between the pre-existing set of tests
and mined behavioral specifications. Substra [88] is a framework to gen-
erate test cases based on inferred constraints on components interfaces.
Constraints are inferred on the bases of information on shared states be-
tween method calls and define-use relationships between parameter val-
ues of method calls. During execution of test cases, Substra uses Daikon
to collect object state and infers call-sequence constraints. A call-sequence
constraint is for example a define-use constraint that tells that a variable
can only be used after its definition. Then Substra uses the generated con-
straints to guide an automatic generation of integration tests. The result is
a sequences of method-call with randomly generated input values. Harder
et al. [43] developed a test case selection technique for augmenting, min-

imizing, and generating test suites in cooperation with an automatically
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inferred behavioral model. The used model is expressed in the form of
an operational abstraction, that is a property of the program’s run-time
operation inferred with Daikon. The generation process of the test suite
starts with an empty test suite and an empty operational abstraction that
are augmented, run-by-run of the available test cases, when available test
cases change the operational abstraction. Test cases that do not serve for
operational abstraction are retained, under the assumption that an oper-
ational abstraction generated from a larger test suite is better. When n
candidate cases have been consecutively considered and rejected, the pro-
cess is complete. The value chosen for n is a trade-off between the running
time of the generation process and the desired quality of the test suite.
Developers who want to test their own code can use Agitator [21]. It
is a tool that automatically generates initial tests, infers operational ab-
straction like observations, lets developers to promote these observations to
assertions, and generates more tests to violate the inferred and confirmed
observations. When developers are satisfied by the inferred models, they
can create tests cases that express the behavior contained into the asser-
tions. Also Xie et al. proposed a technique that take advantage of of behav-
ioral models to produce unit tests [85]. The technique start to execute an
existing unit-test suite and monitor the program using Daikon, which was
modified to generate design-by-contract (DbC) annotations. The DbC anno-
tations represent conditions at entry and exit of methods in the program.
Additional unit tests are created to try to violate DbC invariants. Finally,
developers examine the generated tests and define the unit-test suite.

Behavioral models can also be used to add assertions into a test suite
so that the augmented test suite has an improved capability of guarding
against faults. The Orstra approach [83] augments a set of automatically
generated test inputs with assertions useful to detect regression faults.
Orstra works by first running the given test suite to collect the return val-
ues and receiver object states after the execution of each method under
test. Then, based on the collected information, it synthesizes constraints
that are injected into the existing test cases as new assertions that will be
checked in the future regression testing sessions. Other works addressed
this same problem with different strategies [43] [21].

When the quality of a test suite is measured in term of the amount of

code elements executed by test cases with respect to the total program code,
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1.4 Anomaly detection

it is important to identify and discard the infeasible program elements to
be excluded from the computation of the structural coverage. To cope with
this obstacle, Baluda et al. [17] exploited the use of a model, inferred from
the control flow graph of the program, to define a new generation of struc-
tural testing techniques and to compute accurate structural coverage mea-
surements. The model is a labelled rooted graph where nodes represent
abstract states and are annotated with predicates over the program vari-
ables, while edges are annotated with the corresponding statements. The
role of the models is to distinguish executable paths from infeasible paths:
it incrementally guides the construction of new test cases that increase
code coverage, and discovers infeasible code elements that can be therefore
excluded from the coverage count.

Another way to improve the quality of unit tests is proposed by the
Abstra tool [84]]. The tool helps developers to inspect unit test execution
results by inferring a set of object state machines (OSM). An OSM is an
abstract view of the tested software where each state represents an object
state of the tested classes and each transition represents a method call.
The OSM can help testers in the identification of the untested areas of the
software under test.

1.4 Anomaly detection

Anomaly detection techniques use models of the application behavior to
identify anomalies in failing executions. To overcome the lack of complete
specifications these techniques use models inferred by monitoring correct
executions to detect the likely causes of the failures. Anomaly detection
techniques output the identified anomalies to developers. The analysis of
the deviations from standard behavior guides developers in the localization
of the fault.

In the following we summarize some representative anomaly detection

techniques.

Anomaly detection techniques vary for the kind of models that is in-
ferred and the type of data that is used for the inference. Diduce [42] and
Carrot [69] infer boolean expressions that describe potential data invari-
ants by applying a predefined set of rules to data values collected during

program executions. For example, these techniques can detect that the in-
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teger value returned by a method is always positive. Other approaches
instead do not consider data values but focus on method calls to identify
anomalies. In [30], sequences of method invocations are collected to derive,
for every class of the system, the input and output protocols, that is the
sequence of invocations that the classes can accept and the sequences of in-
vocations that the classes can execute. Pachika [31] and Behavior Capture
and Test [59] instead focus on both data and invocation sequences. Pachika
infers automata that model the object usage protocol: states are identified
by inferring invariants over object attributes, and transitions correspond
to methods that caused the transition from one state to another. Faults are
identified by comparing models of faulty executions with models of correct
executions. Behavior Capture and Test (BCT) instead infer Finite State Au-
tomata that generalize the sequences of interactions between components,
and data invariants on the parameters exchanged in different invocations.

The technique is used to identify integration problems.

Lee et al. in [49] derive association rules that, given a sequence of
k events, predict the event at position k£ + 1. Violations of the rules are
treated as anomalies. Association rules do not model the order of the ob-
served events. For this reason they cannot be applied to detect faults char-
acterized by the wrong order of executions of the operations. Warrander
et al. in [79] infer Hidden Markov Models (HMMs) that generalize the se-
quences of events observed at run-time. Each state of the model represents
a different sequence of events of length k (k is a parameter defined by de-
velopers), while each transition describes the probability to reach a given
state from another state. The inferred HMMs are then used at run-time to
identify anomalous events that lead to unusual state transitions. The main
limitation of HMMs is constituted by the time needed to build the model
which can take several days for complex executions. Other techniques iden-
tify anomalies not as deviations from expected behaviors but by matching
the actual execution with models of known faulty behaviors. These mod-
els are built through supervised learning algorithms that use information
collected during both correct and faulty executions. Chen et al. for exam-
ple use decision trees to identify failures in large internet sites [90]. The
authors derive decision trees that can detect if a failure is occurring at
run-time. This technique permits only to identify problems that already oc-
curred and does not help in case of failures never experienced before. Since

fault localization usually regards problems not diagnosed in the past, the
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1.5 Discussion

applicability of supervised learning approaches for fault localization is lim-
ited.

1.5 Discussion

The many research works in testing and analysis, based on the inference
of behavioral models, demonstrate the relevance of this research direction.
The need of inferring behavioral models is emphasized by the new software
development methodologies (i.e reuse of COTS components), the diffusion
of software with scarce documentation and by the scalability of the novel
model inference techniques. However, testing and analysis technique based
on inferred models have to tolerate some model imprecision and incom-
pleteness that might be otherwise responsible for poor testing and analysis
results.

In our classifications, we showed that models can be derived in two main
ways: from the source code or from program executions. Both approaches
suffer of some limitations. Techniques that statically identify and discover
behavioral models exhaustively analyze the program code, thus cannot al-
ways distinguish feasible from infeasible executions, and consequently the
resulting models can include infeasible behaviors. Techniques that derive
models from executions analyze only the observed behaviors, thus do not in-
clude infeasible behaviors but consequently the inferred models may miss
some feasible behaviors that have been never executed. A promising re-
search direction is hybrid approaches which combine static and dynamic
analyses to effectively explore program behaviors, by mitigating the disad-
vantages of either techniques. These solutions are extremely effective, but
also extremely expensive because they require the integration of complex
techniques as theorem provers and constraint solvers [18] [40]. Moreover,
these techniques are often limited by presence of complex (non-linear) ex-
pressions and complex language constructs (aliases, pointers and polymor-
phism) in programs.

It is clear that, nevertheless the high efficacy of behavioral models to
support software testing and analysis, there is a need to develop new tech-

niques to discover more thorough and more precise behavioral models.

23






Chapter 2

Inference of Behavioral
Models

Manually specifying and maintaining software behavioral models is expen-
sive, error prone and require specific skills that are not always available
in development teams. To reduce the effort required to generate models,
many model-based test and analysis techniques use models that are auto-
matically generated [22] [59] [70l.

Several kind of behavioral models can be automatically generated. The
main representatives vary from finite state automata [20], to grammar in-
ference [1]], to describe relations between events, from patterns of events [50]
[73l, temporal logic rules [51] [87] to graph transformations [39], to de-
scribe temporal relation between events, and data-flows properties [36], to
describe program states.

A kind of model that is both commonly used to represent the program
behavior and largely supported by automatic model generation techniques
is finite state automata. Finite state automata can be easily inferred from
program traces. The inferred finite state automata can also integrate data-
flow information to represent how data values affect the operations exe-
cuted by programs.

This chapter surveys the most effective and well-known techniques that
can infer finite state automata and have been used to support software en-
gineering tasks. In particular, we first present the kTail [20] and kBehavior
techniques [59] that produce models of sequences of events, then we de-

scribe how the Daikon [35]] technique derive models from data values, and
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finally we discuss the gkTail [55] and KLFA [57] techniques that, taking ad-
vantage of kTail, kBehavior and Daikon, extract FSA annotated with infor-
mation about attribute values to capture both the relations among events
and among attributes. We conclude the chapter by surviving techniques

that generate models that represent the ordering of the events.

2.1 Finite state automata

The problem of inferring an FSA that accepts a language that contains a
given set of samples is well known and has been extensively studied. There
exist several techniques whose applicability depends both on the nature of
the samples and the knowledge about the FSA to be inferred. Some tech-
niques requires only positive samples, that is samples that belong to the
language to be inferred [23] [53], while other techniques require both pos-
itive and negative samples, that is both samples that belong and samples
that do not belong to the language to be inferred [66]. Other techniques
take advantage of additional information like teachers that answer to mem-
bership queries, that is they assume to know if any specific sample does or
does not belong to the language to be inferred [22]].

In the following we describe techniques that generate FSA from a set of
positive samples. We restrict the survey to the case of positive samples be-
cause in applications to software engineering tasks it is extremely difficult
to obtain a significative number of negative samples. We also presents a
running example that is used to illustrate the various inference processes

discussed in this section.

2.1.1 A running example

This Section presents the example that we use to illustrate the techniques
that generate FSA from positive samples.

Let us consider the pseudo-code in Listing[2.1] which represents a sam-
ple Purchase component that manages requests issued from users. The
code represents the confirmation of the purchase for all the products in the
cart. The service first retrieves both the content of the cart and the user
details, and then tries to execute the transaction with a bank. If the trans-
action fails, the method generates an error message, otherwise it modifies

the content of the database (if quantities are low, products are immediately
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1 public void performPurchase () {

2

3

4

5 orderedItems=0;

6 cartItems = cart.getCart();

7 user userMng.getUser () ;

8 result = transManager.doBankTrans( cart, user.getBankAccount (), myBank
)i

9

10 if (!result.pass) errorWindow (result);

11

12 for (i=0; i<cartItems.getLength(); i++) {

13 gtOK = storage.removeQt (cartItems[i].id, cartItems[i].qt);

14

15 if (!gtOK.pass) {

16 dt=orderMng.addProduct (cartItems[i].id, gtOK.qt);

17 timeTable.items[orderedItems++] = dt;

18 }

19 }

20

21 returnOrder (cart, timeTable, user)

25}

27 private void returnOrder (CartItems cart, TimeTable tt, User usr) {

29 for (i=0; i<cartItems.getLength(); i++) {

30 itemDetails[i] = catalog.getItemDetail (cart[i].id);
31 }

32

33 generateHTMLPage (itemDetails, tt, usr);

37 }

Listing 2.1: A sample source code of a Purchase component that manages the
purchase of items in a cart.

ordered from producers). Finally, the service visualizes all the information
about the purchase.

The execution of the service includes several interactions with the com-
ponents Cart, UserMng, TransManager, Storage, OrderMng and Cata—

log. If we monitor run-time interactions between components, a possible
trace file is shown in Table

2.1.2 KkTail

kTail is a technique that generates a FSA from a set of positive sample in
two step [20].

It first builds an initial FSA, called prefix tree automaton, that accepts
all the individual samples by creating a branch for each trace. Eventually,
two branches can share the prefix. In the second phase, kTail merges two

states if they accept the same k-future, i.e., the two states accept the same
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Execution 1

getCart —getUser —doBankTrans —removeQT —removeQT
—removeQT —getltemDetail —getltemDetail —getItemDetail

Execution 2

getCart —getUser —doBankTrans —removeQT —removeQT
—addProduct —removeQT —removeQT —removeQT —getItemDetail
—getltemDetail —getltemDetail —getltemDetail —getIltemDetail

Execution 3

getCart —getUser —doBankTrans —removeQT —addProduct
—removeQT —addProduct —removeQT —getItemDetail —getIltemDetail
—getItemDetail

Execution 4

getCart —getUser —doBankTrans

Execution 5

getCart —getUser —doBankTrans —removeQT —addProduct
—removeQT —addProduct —getltemDetail —getltemDetail

Execution 6

getCart —getUser —doBankTrans —removeQT —removeQT
—removeQT —removeQT —removeQT —getltemDetail —getltemDetail
—getltemDetail —getltemDetail —getltemDetail

Execution 7

getCart —getUser —doBankTrans —removeQT —addProduct
—removeQT —removeQT —removeQT —getltemDetail —getItemDetail
—getItemDetail —getltemDetail

Execution 8

getCart —getUser —doBankTrans —removeQT —removeQT
—removeQT —addProduct —getltemDetail —getItemDetail —getIltemDetail

Table 2.1: Traces recorded during the execution of the program shown in Listing
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set of strings of length k. The second phase can require several iterations
to find all the states that must be merged.

The initial FSA that is built in the first step from traces in Table [2.1]is
shown in Figure Each branch is a different trace and common prefixes
are merged. The root is the initial state, while leafs are accepting state.
Then, the second phase is executed and states are merged. The output
obtained with kTail for k=2 is shown in Figure

addProduct

removeQT * 3

getitemDetail * 4

getitemDetail

Figure 2.1: The prefix tree automaton that is built from the trace file shown in
Table The symbol * indicates that there is a repetition of the same label, and the
length of the sequence is specified with the associated number.

It is possible to notice that the inference engine generated a FSA that
accepts more behaviors than the ones directly represented in the traces.
For instance, state 10 accepts an infinite repetition of removeQT. However,

many legal sequences are still rejected by the FSA. For instance, consider

29



Inference of Behavioral Models

removeQT getltemDetail

removeQT

getltemDetail

liejoquiappeh

removeQT addProduct

T
removeQ getltemDetail

Figure 2.2: The output obtained by running kTail with k = 2 on the trace file shown

in Table

any execution that starts with the sequence getCart, getUser, doBank-
Trans, removeQT, removeQT, removeQT, removeQT, removeQT, remove—
QT or getCart,getUser, doBankTrans, removeQT, removeQT, remove—
QT, removeQT, addProduct. kTail succeeds in detecting that get Item-
Detail is possible only at the end of the behavior, but often the number
of getItemDetail that can be generated does not correspond to the in-
teraction sequences that can be executed. The quality of the result can be
improved if the number of behaviors represented in the traces is increased.
However, in the real cases it is frequently hard to generate additional exe-

cutions.

Cook and Wolf’s extension

kTail is not suitable to infer end of loops because it creates many redundant
nodes [23]. This effect is clear from the automaton in Figure where
the loop of get ItemDetail is represented by many redundant nodes (see
nodes 42, 33, 34).

Cook and Wolf extended the kTail technique by adding a third phase
where all nodes of the FSA are analyzed. In this step, if a node S; has
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outgoing edges ¢; ...e, to states S; ...S, with the same label on edges,
and there exists a state S, that can accept a set of symbols subsuming all
symbols that can be accepted by the other states S; ...S,, then all states
S1 ...S, can be merged with S,,. This step merges redundant nodes and

improves the quality the model.

If we run the Cook and Wolf’s extension with the example trace shown
in Table we obtain the FSA in Figure The inferred FSA over-
generalizes the behavior observed in the traces and after the initial se-
quence getCart, getUser, doBankTrans allows any combination of re—
moveQT, addProduct and get ItemDetail. Therefore, it fails in capturing
that only one addProduct is possible after an removeQT and that repeated

getItemDetail are possible only at the end of the execution.

addProduct

getCart getUser doBankTrans

removeQT

getltemDetail

Figure 2.3: The FSA inferred by the Cook and Wolf’s extension on the input traces

shown in Table

Reiss and Renieris’ technique

Reiss and Renieris proposed another variant of the kTail technique that
uses a merging criterion that is weaker than the kTail, that is it merges
more states than kTail. [72]. In this case, two states are merged if one
state shares some k-future with another state.

We used this criterion with the traces in Table and we obtained the
same FSA of the Cook and Wolf’s extension that is shown in Figure|2.3

2.1.3 kBehavior

kBehavior [59] is a technique that, starting from an empty FSA, incremen-

tally generates a FSA that accepts all the observed samples.
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At each iteration, kBehavior extends the current FSA A with a string o
by iteratively executing the following steps: identification of the prefix of «
already generated by A; identification of a suitable behavioral pattern p (a
behavioral pattern is a sub-string of o already generated by a sub-machine
of A); extension of A by connecting the state reached by generating the
prefix with the state of A that generates the p so that a is generated up to

p; if a behavioral pattern cannot be identified, a new branch is added to A

Identification of the prefix

Given a new string «, kBehavior determines the longest prefix of o that
is already generated by A. If A generates the whole input string, no ex-
tensions are necessary and the algorithm returns. Otherwise, a behavioral
pattern must be identified for extending the current FSA. The identification
of a behavioral pattern represents the identification of a known sequence

of interactions that can be already generated by A and that is part of «.

Identification of the behavioral pattern

The identification of the behavioral pattern consists of decomposing « into
three parts: a prefix ;, the behavioral pattern p and the tail v. The be-
havioral pattern must be already generated by a sub-machine of A. There
are two possible search strategies: searching for (1) the decomposition that
contains the longest behavioral pattern, or (2) the first decomposition with
a behavioral pattern longer than a parameter k,. Detecting the longest
behavioral pattern can be time consuming, therefore the selection of a be-
havioral pattern that is closer to the current state and is longer than %, can
be an effective optimization of the search. The parameter %, represents the
minimal length of a behavior that can be considered good enough to stop
the search.

If the decomposition does not exist, there are no behavioral patterns
and it is not possible to assume that part of the observed behavior can be
generated by A. In this case a new branch is added to A.

Extension

If the behavioral pattern is identified, A can be extended. The extension
takes place by adding a FSA A’ from the current state to the initial state of

the sub-machine that generates the behavioral pattern. A’ must generate
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the part of the string that is included between the prefix and the identified
behavior, i.e., the sub-string u.

Figure [2.4] shows a simple example of extension of a FSA that detects
behavioral patterns of minimal length 2, by using the first two execution
traces of the Figure Table Do not consider the transition and states in-
side gray zones as part of the initial FSA. The input trace is getCart, get—
User,doBankTrans, removeQT, removeQT, addProduct, removeQT, re—
moveQT, removeQT, getItemDetail, getItemDetail, getItemDetail,
getItemDetail,getItemDetail. The first step consists of identifying
the already generated prefix, which in this case is getCart, getUser, do-
BankTrans, removeQT, removeQT. Then, a behavioral pattern is search-
ed. In this case, a behavior of length 6 corresponding to the sub-string re-
moveQT, removeQT, removeQT, getItemDetail, getItemDetail, get—
ItemDetail is generated by the sub-machine rooted in the state 3. The
FSA is then extended by suitably connecting the prefix with the behavioral
pattern, therefore the edge in the gray zone 1 is added. Then the tech-
nique continues in the same way from state 9 with the remaining part of
the string: getItemDetail. The FSA is extended with a new edge that

corresponds to the branch in the grey area 2.

Figure 2.4: An example of extension of a FSA with kBehavior.

Finally, if the remaining part of the trace is not empty, i.e., v ! = A, the
algorithm iteratively continues from the current state with the remaining
part of the input string. Otherwise, the computation is completed and the
final state can be added to the set of final states.

If we consider the example traces in Table and we execute kBehav-
ior, we obtain the FSA shown in Figure The inferred FSA correctly

captures the initial addCart, addUser, doBankTrans sequence and the
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sequence of get TtemDetail that is executed only at the end of the compu-
tation. The loop starting from state 6 correctly allows an arbitrary amount
of get ItemDetail. We notice that the set of traces is enough for correctly
identifying the loop and the possible behaviors inside the loop. In fact,
any sequence of removeQT is possible, an addProduct is accepted after
each removeQT, and no more than one addProduct can be generated in
each state with the exception of the state 7 that can generate a second
addProduct. We must notice that the automaton inferred by kBehavior
both includes all possible behaviors and little over-generalizes the possible
sequences with respect to the other techniques.

getltemDetail

getltemDetail getitemDetail

removeQT

addProduct

getCart

doBankTrans

getUser

removeQT removeQT

removeQT

Figure 2.5: The FSA that is obtained by running the kBehavior technique on the
traces shown in Table

2.2 Program invariants

The idea of inferring invariants from program traces has been introduced
for the first time by Ernst et al. [35]. Invariants are typically in the form
of boolean expressions representing a set of monitored program variables
at specific program points, e.g, method entries and exits. The methodol-
ogy through which program invariants are detected mainly differ for the
used resources: there exist techniques that use only information available

at run-time, while other consider also the source code. The firsts are tech-
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niques that define program invariants from a set of predefined templates by
choosing only the invariants with a statistically significant confidence that
their occurrence is not incidental [35] [42]. The other techniques instead
build invariants by simultaneously considering the run-time values of the

variables and invariants derived from conditions in branch statements [27].

In the following we describe the Daikon invariant inference tool de-
veloped by Ernst at the MIT. We decided to present it for two reasons:
the first because Daikon is the first and most mature representative tool
for the dynamic inference of invariants, with the widest use in other re-
searches [21] [25] [34] 1371 [48] [86l, and the second because it is used by
the gkTail techniques, presented in the next session, to infer annotated

FSA. We also presents a running example for a better understanding.

2.2.1 A running example

Let consider the Item class shown in Listing which is part of an e-
commerce system. The class implements methods both for the check out
(getTotalCost ()), and to manage stock (setQuantity () ) of all the prod-
ucts sold by the system.

To collect the information required to infer invariants, we monitor pro-
gram variables respectively at line 10, 11, 18, 23 and record data values at
method entry and exit. Table shows examples of values observed for
each variable before and after methods execution.

Statement Variable Value before exec. Value after exec.
Ttem.23 \result - {30,45,2,7,...,90,5,7,2}
quantity {2,...,3,7,3} {2,...,3,7,3}
price {6,15,...,13,5,7,3} {6,15,...,13,5,7,3}
Ttem.18 this.quantity {4,2,7,...,4,8,1} {2,7,...,4,8,1}
quantity {2,7,...,4,8,1} {2,7,...,4,8,1}
Ttem.11 this.price {6,15,...,13,5,7,3} {15,...,13,5,7,3}
pre {15,...,13,5,7,3} {15,...,13,5,7,3}
Item.10 this.quantity {0,2,...,3,7,3} {2,...,3,7,3}
aty {2,...,3,7,3} {2,...,3,7,3}

Table 2.2: Example of variables values recorded during execution of the code shown

in Listing
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1 private class Item ({

2

3 private int itemId;

4 private int quantity = 0;

5 private int price = 0;

6

7 public Item(int id, int gty, int prc) {
8

9 this.itemId = id;

10 this.quantity = qgty;

11 this.price = prc;

12 }

13

14

15

16 public void setQuantity (int quantity) {
17

18 this.quantity = quantity;
19 }

20

21 public int getTotalCost () {

22

23 return quantity * price;

Listing 2.2: An example of an Item class of an e-commerce system.

2.2.2 Daikon

Daikon is a machine learning inference technique that infers likely invari-
ants from execution traces. Daikon discovers likely program invariants by
instrumenting the target program to trace variables of interest, executing
the instrumented program, and generating the invariants over the instru-
mented variables. The generated invariants are expressed in the form of
boolean expressions that represent properties involving a single variable,
that is a constraint that holds over its values, or multiple variables, that is

a relationship among the values of the variables.

Daikon works on a set of (variable, value) pairs and automatically gen-
erates relations that are satisfied by all the recorded pairs. The generated
relations are filtered by probability thresholds to exclude incidental rela-
tions. Daikon initializes a set of expressions obtained by instantiating a
predefined set of operators (the default is about 75 operators but user can
extend the list of operators) on the considered variables, and then incre-
mentally analyzes each variable and removes those expressions that are
not satisfied by all the recorded (variable, value) pairs. For each of the re-
sulting predicates, it computes a statistical index that indicates the proba-

bility that expressions are incidentally verified.
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If we consider data collected for the class Item, at program points re-
ported in Table Daikon can infer invariants over each (variable, value)
pair as shown in Table

Statement Variables Invariants
Item.23 \result \result > 0
this.quantity this.quantity > 0
this.price this.price > 0
\result = quantity * price
Item.18 this.quantity this.quantity > 0
this.quantity’ | this.quantity’ = quantity
quantity quantity > 0
Item.11 this.price this.price > 0
this.price’ this.price’ = prc
pre prc >0
Item.10 this.quantity this.quantity > 0
this.quantity’ this.quantity’ = qty
qty qty >0

Table 2.3: Example of invariants inferred using Daikon.

For example, the invariants associated with each variables at line 10
indicates the following relations over the data observed:

e \result > 0: return value is always greater than 0

e this.quantity > 0: variable this.quantity is always greather than
0

e this.price > 0: variable this.price is always greather than 0

e \result = quantity * price: the return value is always equals to

this.quantity * this.price

The relation between multiple variables is represented as a boolean ex-
pression obtained as a conjunction of terms, where each term is a single

inferred property. So, the invariants associated with Ttem. 10 is:

\result > 0 A quantity > 0 A this.price > 0 A \result = quantity x
price
2.3 Finite state automata with annotations

FSAs can model sequences of events but they do not capture other impor-

tant behavioral elements, like conditions and relations between values. To
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build accurate behavioral models that integrate different aspects, for ex-
ample event order and data flow information, classic inference techniques
have been extended to generate annotated FSA [58]. There exist techniques
that annotate FSA by adding information into the state, that is constraints
that specify the concrete state of the program [29], techniques that anno-
tate the transition with data about its probability, that is the likelihood of
a transition to occur [70] [16], and other techniques that add information
to the transition, that is constraints on the values that are assigned to the
attributes associated with the events modeled by the transitions.

In the following sections, we discuss two techniques that can derive FSA
annotated with data-flow information. The first is gkTail, which derives
constraints that specify the concrete values that can be assigned to at-
tributes. The second is kLFA, which labels transitions to represent the re-
peated occurrence of the attribute values across events, regardless of their
concrete values. We firstly presents a running example that is used to il-

lustrate the inference processes of annotated FSA of gkTail and kLFA

2.3.1 A running example

This Section presents the example that we use to illustrate the gkTail and
kLFA approaches.

Let consider the code in Listing that represent the component Re-
serveFlight that interacts with several Web Services to reserve flights
for a number of people. In particular, it implements the logic to reserve the
cheapest flight that allows a party of people to fly together from the start to
the final destination. If there are no flights that allow the party of people
to flight together from the start to the final destination, the application
reserves different flights for different subsets of people. The application
interacts with other components responsible for communicating with the
Web Services required to finalize the job.

An interaction trace is a sequence of method invocations represented
with the name of the invoked method, the values of the parameters and
the return values, if any. For instance, the method findBestSolution
returns an object of type SingleSolution, which includes a field total-
SeatsAvailable. So, when executing findBestSolution, the trace will
contain the pair (returnvalue.totalSeatsAvailable, 6), which indi-
cates that the field totalSeatsAvailable of the object returned by the
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public class Booking {

List<Flight> allInOneFlight = new ArrayList<>();
List<Flight> splittedInMultipleFlights = new ArrayList<>();

public void bookFlight ( int persons, String from, String to, Date
departure, Date back) {

Iterator<Airline> it = CompaniesRegistry.INSTANCE.
getCompanbiesIterator () ;

if ( !it.hasNext () ){
ErrorLogger.configurationError () ;

}

while ( it.hasNext () ) {
Airline airline = it.next();
processAirline (airLine);

}

if ( allInOneFlight.size() > 0 ) {
SingleSolution solution = findBestSolution (
allInOneFlight);
reservationMaker.book (solution);
} else {
CompositeSolution solution = findCompositeSolution (
splittedInMultipleFlights);
reservationMaker.book (solution);

}

private void processAirline ( AirLine airLine,int persons, String from
, String to, Date departure, Date back ) {

List<Flight> flights = airLine.getAvailableFlights (persons,
from, to,departure, back) ;
Iterator<Flight> it = flights.iterator();
while ( it.hasNext () ) {
Flight flight = it.next();

if ( flight.getAvailableSeats() >= persons ) {
allInOneFlight.add(flight);

} else {
splittedInMultipleFlights.add(flight);

}

Listing 2.3: An excerpt of the ReserveF1ight component.
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Execution 1
bookFlight
persons=7
from=MXP
to=NYC

depDate= 03/18/10
retDate= 04/02/10

—getCompanieslterator
return=Iterator

—hasNext
return=true

—hasNext —next
return.name

—“KLM”

return=true

—getAvailableFlights  —iterator —hasNext —next
persons=7 return=Iterator return=true return.availSeats=8
return.flightNo=KL1017
. —add .
—getAvailableSeats . } —hasNext —hasNext —size
object.availSeats=8
return=8 ) . return=false return=false return=1
object.flightNo=KL1017
—findBestSolution —book
alllnOne=List solution.seats="7
return.seats=7
Execution 2
bookFlight —getCompaniesIterator —hasNext —hasNext —next
persons=4 return=Iterator return=true return=true return.name
from=BGY =“Ryanair”
to=JFK

depDate= 03/22/10
retDate= 03/31/10

—getAvailableFlights
persons=4

—getAvailableSeats
return=9

—findBestSolution
alllnOne=List
return.seats=4

—iterator
return=Iterator

—add
object.availSeats=9
object.flightNo=KL1027
—book
solution.seats=4

—hasNext
return=true

—hasNext
return=false

—next
return.availSeats=9
return.flightNo=KL1027
—hasNext —size

return=false return=1

Table 2.4: 1 of 2 - Traces of the execution of method bookF1ight.

method findBestSolution has value 6.

Tables show four traces recorded during the execution of method

bookFlight. Values of the attributes associated with the invoked methods

are reported below the name of the method.

2.3.2 gkTail

gkTail [55] is a technique that automatically generates Extended Finite
State Automata (EFSA), that is automata augmented with constraints on
transitions. gkTail derives EFSA from a set of interaction traces (positive

samples) that include information about both the ordering of the events
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Execution 3
bookFlight

persons=10

from=BGY

to=JFK

depDate= 03/22/10
retDate= 03/31/10
—getAvailableFlights
persons=10

—getAvailableSeats
return=4

—getAvailableSeats
return="7

—getAvailableSeats
return=5

—size
return=0

—getCompaniesIterator
return=Iterator

—iterator
return=Iterator

—add
object.availSeats=4
object.flightNo=K1.1022

—add
object.availSeats="7
object.flightNo=K1.1028
—add
object.availSeats=5
object.flightNo=KL.1058

—findCompositeSolution
allInOne=List
return.seats=10

—hasNext
return=true

—hasNext
return=true

—hasNext
return=true

—hasNext
return=true

—hasNext
return=false

—hasNext —next
return.name

—“KLM”

return=true

—next
return.availSeats=4
return.flightNo=KL1022
—next
return.availSeats=7
return.flightNo=KL1028

—next
return.availSeats=5
return.flightNo=KL1058
—hasNext
return=false

—book
solution.seats=10

Execution 4
bookFlight
persons=6
from=BDS

to=CIA

depDate= 03/16/10
retDate= 03/20/10

—getCompaniesIterator
return=Iterator

—hasNext
return=true

—configurationError

Table 2.5: 2 of 2 - Traces of the execution of method bookF1ight.
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and the values of the attributes associated with the events, such as the
ones shown in Tables gkTail processes traces in four steps. In the
first step, gkTail identifies similar traces, namely traces with the same se-
quences of method invocations and possibly different values of the parame-
ters, and merges sets of similar traces into traces where method invocations
are annotated with sets of attribute values. In the second step, gkTail de-
rives constraints that represent the set of attribute values associated with
the same method invocation. In the third step, gkTail creates an initial
EFSA from interaction traces annotated with constraints. In the fourth
step, gkTail iteratively merges states that can accept similar sequences of

method calls.

Merging similar traces

In the first step, gkTail processes a sequence of interaction traces. Each
interaction trace is a sequence of inter-component method invocations. Ta-
bles show four examples of interaction traces collected from the

execution of the running example.

When the monitored component executes similar tasks, we obtain sim-
ilar traces, namely traces that share the same sequence of method invo-
cation and differ only for the values of the parameters and return values.
For example, the first and second traces in Table are similar. To produce
models that capture the general nature of the interactions, gkTail identifies
and merges sets of similar traces and produces traces where each method
is associated with a set of parameter values. The set of values associated
with a method in the merged traces corresponds to the parameter values
associated to the same method in the original traces. For example, merging
the first and second trace in Table produces a trace whose first element
is a call to the method bookF1ight associated to a set that includes the fol-
lowing two items: { persons=7 from=MXP to=NYC depDate=03/18/10
retDate=04/02/10, persons=4 from=BGY to=JFK depDate=03/22
/10 retDate=03/31/10}.

Tables show the merged traces obtained from the interaction
traces shown in Tables
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Execution 1-2
—getCompanieslIterator

bookFlight
{persons=7 from=MXP freturn=Iterator,
tooNYC return=Iterator}

depDate=03/18/10
retDate=04/02/10, per-
sons=4

from=BGY

to=JFK
depDate=03/22/10
toDate=03/31/10}

—getAvailableFlights —iterator —hasNext
{persons=7, {return= {return=
persons=4} Iterator, true,
return= return=
Iterator} true}
—getAvailableSeats —add
{return=8, {object.availSeats=8
return=9} object.flightNo=KL.1017,
object.availSeats=9
object.flightNo=KL1027}
—findBestSolution —book

{allInOne=List
return.seats=7,
alllnOne=List

return.seats=4}

{solution.seats=7,
solution.seats=4}

—hasNext —hasNext —next

{return= {return= {return.name
true, true, =“KLM”,
return= return= return.name
true} true} =“Ryanair”}
—next

{return.availSeats=8
return.flightNo=KL1017,
return.availSeats=9
return.flightNo=KL1027}

—hasNext —hasNext —size

{return= {return= {return=1,
false, false, return=1}
return= return=

false} false}

Table 2.6: 1 of 2 - The set of merged traces obtained from the traces in Table
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Execution 3
bookFlight
{persons=10
from=BGY
to=JFK

depDate= 03/22/10
retDate= 03/31/10}

—getAvailableFlights
{persons=10}

—getAvailableSeats
{return=4}

—getAvailableSeats
{return=7}

—getAvailableSeats
{return=5}

—size
{return=0}

—getCompaniesIterator —hasNext —hasNext —next

{return=Iterator} {return=
true}
—iterator —hasNext
{return=Iterator} {return=
true}
—add —hasNext
{object.availSeats=4 {return=
object.flightNo=KL.1022}  true}
—add —hasNext
{object.availSeats=7 {return=
object.flightNo=KL1028}  true}
—add —hasNext
{object.availSeats=5 {return=
object.flightNo=KL.1058}  false}

—findCompositeSolution
{alllInOne=List
return.seats=10}

{return= {return.name
true} =“KLM"}
—next

{return.availSeats=4
return.flightNo=
KL1022}

—next
{return.availSeats=7
return.flightNo=
KL1028}

—next
{return.availSeats=5
return.flightNo=
KL1058}

—hasNext
{return=
false}

—book
{solution.seats=10}

Execution 4
bookFlight
{persons=6
from=BDS

to=CIA

depDate= 03/16/10
retDate= 03/20/10}

—getCompaniesIterator —hasNext

{return=Iterator} {return=

true}

—configurationError

Table 2.7: 2 of 2 - The set of merged traces obtained from the traces in Table
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2.3 Finite state automata with annotations

Generating constraints

Transition constraints are predicates that specify the values that can be
assigned to the attributes associated with the events. In the case of the
running example, constraints represent the values that can be assigned
to parameters and return variables. gkTail generates predicates from in-
teraction traces using Daikon. gkTail uses Daikon to transform the set of
merged traces into a set of traces annotated with constraints.

Daikon can infer the predicate z > 0 from the values associated with

the event book as shown in Figure|2.6

book book
solution.seats =7 F
solution.seats = 4 solution.seats > 0

solution.seats = 4

Figure 2.6: An example predicate generated by Daikon.

Initializing EFSA

In the third step, gkTail builds an initial EFSA by simply creating a tree
where each branch of the tree accepts a different merged trace. The initial
EFSA is refined in the fourth and last step. Figure shows the initial
EFSA built from the traces in Tables

Merging equivalent states in EFSA

In the previous steps, gkTail generalizes the values of the attributes and
produces transition constraints. In the last step, gkTail generalizes the
ordering of the events and produces compact EFSA. The initial EFSA pro-
duced in the third step accepts only sequences of method calls that corre-
spond to the input traces. However in general, the finite set of input traces
is a sample of the infinitely many behaviors of a component. By generaliz-
ing the ordering of the events in the initial EFSA, gkTail extends the model

of the program behavior including a possibly infinite set of sequences of
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getCompanieslterator findBestSolution
bookFlight ~ 'élurn =iterator  getAvailableFlights return.seats > 0 book
ersons >0 persons > 0 .
f,—orrl,)= MXP’'BGY’ getAvailableSeats size solution.seats > 0
A N, return > 0 return = 1
bookFlight
persons =6

from = ‘BDS’ getCompanieslterator hasNext

return = iterator return = true configurationError \
D wo 41 »( 42 @

findCompositeSolution
getAvailableFlights getAvailableSeats return.seats = 10
bookFlight persons =10 getAvailableSeats return = 7 size -
persons = 10 return = 4 return =0
from ="'BGY’

book
solution.seats = 4

Figure 2.7: The initial EFSA obtained from the traces in Tables @

method calls. gkTail generalizes the ordering of the events with a heuristic
inspired from the heuristics proposed in the kTail technique that iteratively
merges likely equivalent states.

The heuristics adopted by gkTail suggests to merge states that accept
equivalent sets of behaviors up to a maximum length k (k-future(s)). The
heuristic is based on the observation that the initial version of the model
may include multiple representations of a same logical state, and merging
states with the same future can expand and generalize the set of behaviors
accepted by the model, likely increasing the model accuracy as well.

gkTail modifies the initial EFSA by iteratively merging the states with
an equivalent k-future. gkTail merges states according to three equivalence
criteria: equivalence, weak subsumption, and strong subsumption.

Two states are equivalent if the sequences of events in their k-future(s)
are the same, and the predicates associated with each pair of corresponding
events are equivalent. Figure[2.8/shows two states that are 2-equivalent in
the running example.

A state s, weakly subsumes a state s; if the sequences of event in the
k-future of s; and s, are the same, and the constraints in the k-future of s;
are more general than the corresponding constraints in the k-future of ss.
Given a pair of corresponding events and their associated constraints P;

and P, P, is more general than P, if whenever P; holds P, holds as well.
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getCompaniesiterator hasNext getCompanieslterator ~ hasNext
return = iterator return = true return = iterator return = true

6 6 6 6 6 ©

Figure 2.8: Two 2-equivalent states.

Figure shows an example of a state (4) that weakly subsumes another
state (20) for k& = 2.

next
return.name = ‘KLM'  getAvailableFlights ‘ next_ KL getAvailableFlights
return.name = ‘Ryanair’ persons > 0 return.name = persons = 10

Figure 2.9: State 4 weakly subsumes state 20.

A state s; strongly subsumes a state s», if the sequences of event in the
k-future of s, includes the sequences of events in the k-future of so, and the
predicates in the k-future of s; are more general than the corresponding
predicates in the k-future of s,. Figure shows an example of a state (4)
that strongly subsumes another state (20) for k = 2.

getAvailableFlights
persons >0 iterator next getAvailableFlights
return = iterator return.name = ‘KLM’ persons = 10

O ® OO

Figure 2.10: State 4 strongly subsumes state 20.

next
return.name = ‘KLM’
return.name = ‘Ryanair’

Given a merging criterion and a value for k, gkTail iteratively merges
pairs of equivalent states until there are no equivalent states according to
the given equivalence criterion. gkTail merges two states s and s’ by re-
moving the state s, adding to s’ all incoming and outgoing transitions of
s, and replacing the specific predicates with the more general predicates

on the transitions (if strong or weak subsumption is applied). If a merg-
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ing step produces an EFSA with two or more transitions that share input
and output state, gkTail merges these transitions into a unique transition
annotated with the OR disjunction of the predicates of the original transi-
tions. Finally, if any of the merged states is a final state, the merged state
is final. Figure shows the EFSA obtained from the initial EFSA shown
in Figure [2.7|with £ = 2 and weak subsumption.

bookFlight getAvailableFlights size
frorr?ir’sl\;;;?’gGY' persons > 0 retum =1 fndBestSolution
' ) getAvailableSeats return.seats > 0 book
getCompanieslterator return > 0 solution.seats > 0

return = iterator

O OO0 OO EE® ® O

findCompositeSolution
S, tAvailableS return.seats = 10

bookFlight
persons = 10
from ="'BGY’

= return =7
return =4 size
return =0 book
..... solution.seats = 4

bookFlight
persons = 6
from = ‘BDS’

XO)

® O WGOE & O

hasNext

getCompanieslterator return = true configurationError .
return = iterator \

Figure 2.11: The EFSA produced by gkTail from the interaction traces in Tables
by using weak subsumption and k = 2 as merging criterion.

gkTail correctly generalized some of the observed behaviors. For in-
stance, the transition between states 37 and 38 shows that the component
under analysis looks for composite solutions only if no normal solutions ex-
ist. On the other hand, the constrains associated to some transitions have
limited validity with respect to the system. For instance, the model indi-
cates that an invocations to bookf1light method is accepted only for some
specific values of the departure and destination airports, while the system
behavior is more general. This is a typical effect of monitoring a limited set
of executions of the component under analysis. This effect can be reduced

by generating the model from a more thorough set of executions.
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2.3.3 KkLFA

KLFA is a technique that derives FSAs annotated with data-flow infor-
mation [57]. While gkTail focuses on the values that are assigned to at-
tributes, kKLFA focuses on the patterns of occurrence of values across events
within the same trace (we call these recurrences data-flow patterns). KLFA
represents data-flow patterns by replacing the monitored events (both the
event names and their attribute values) with new labels that do not in-
clude attribute values but incorporate information about the occurrence of
the attribute values within the labels, as illustrated in the example in Fig-
ure KLFA includes rewriting strategies that can identify different
data flow patterns: global ordering, relative to instantiation and relative to
access rewriting strategy.

The KLFA inference process consists of two phases: data preprocessing
and model generation. In the data preprocessing phase, KLFA rewrites
traces. In the model generation phase, KLFA infers a FSA that incorpo-

rates data-flow information from the preprocessed traces.

Preprocessing data

kLFA rewrites the events in the traces in three steps.

In the first step, kLFA identifies clusters of related attributes, that is
attributes that refer to homogeneous types. This step avoids identifying
data-flow patterns that incorrectly relate heterogeneous quantities. For in-
stance, it may make sense to relate occurrences of values that represent
distances, but it does not make sense to relate occurrences of values that
represent distances with values that represent names of persons. For ex-
ample, one of the data clusters that KLFA automatically identifies from
the execution traces in Tables is composed of the following at-
tributes: attribute persons of event bookFlight, attribute persons of
event getAvailableFlights, attribute return.seats of event find-
BestSolution, attribute return.seats of event findCompositeSolu-

tion, and attribute solution.seats of event book.

In the second step, each cluster with homogeneous attributes is rewrit-
ten according to three rewriting strategies implemented by kLFA, thus pro-
ducing three versions of each data cluster (global ordering, relative to in-

stantiation and relative to access rewriting strategies).
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The global ordering rewriting strategy replaces all occurrences of the
same concrete value with a number. kLFA incrementally introduces num-
bers according to the order of appearance of new values. Thus, the first
concrete value that occurs in a data cluster is rewritten with a 1, the second
concrete value is rewritten with a 2 if never observed before, otherwise the
same number is consistently used, and so on for all attribute values within
a data cluster. The numbers represent the re-occurrence by abstracting
from concrete values. The new event labels are obtained by concatenat-
ing the event names with the numbers produced by the global rewriting
strategy.

Since the attributes of the events bookFlight, getAvailableFlights,
findBestSolution, findCompositeSolution and book belong to the
same data cluster, the global rewriting strategy will replace all attributes
with the same symbolic value. Table shows the symbolic values used to
replace the concrete values associated with these attributes: column # in-
dicates the position of the event in the original trace in Tables col-
umn Events reports the name of the event, column A¢tributes indicates the
name of the rewritten attribute, while columns Actual Values and GO show
the value associated to the attribute in the trace and the symbolic value de-
rived by applying the global rewriting strategy. Table shows that in all
the four considered executions the global ordering rewriting strategy gen-
erates the same symbolic values for all the values in the data cluster thus
suitably identifying their re-occurrence.

The relative to instantiation rewriting strategy aims to explicitly repre-
sent the re-occurrence of the generation and use of values rather than the
re-occurrence of the same concrete values, to obtain a compact representa-
tion of produce-consume behavioral patterns. The relative to instantiation
rewriting strategy rewrites values following the generation and use of the
new values. Each time a new value occurs in a trace, it is rewritten with 0.
If an existing value occurs in the traces, the value is replaced with a num-
ber that indicates the number of new values that have been introduced
from its first occurrence plus 1.

Let us consider the sequence of events next, get SeatsAvailable, and
add that occurs three times in the third trace in Table 2.5l The three
occurrences of the sequence share a common data-flow pattern that indi-
cates that the number of seats available remains constant within a cycle
but changes among different cycles. Table shows the attribute values
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# Events ‘ Attributes ‘ Actual Values ‘ GO
Execution 1

1 bookFlight persons 7 1
6 getAvailableFlights persons 7 1
15 findBestSolution return.seats 7 1
16 book solution.seats 7 1
Execution 2

1 bookFlight persons 4 1
6 getAvailableFlights persons 4 1
24 findBestSolution return.seats 4 1
16 book solution.seats 4 1
Execution 3

1 bookFlight persons 10 1
6 getAvailableFlights persons 10 1
23 findCompositeSolution return.seats 10 1
16 book solution.seats 10 1
Execution 4

1 ‘ bookFlight ‘ persons ‘ 6 1

Table 2.8: Common patterns that spans over different executions.

within these sequences (we omit the attribute values that do not belong to
the same data-flow cluster to keep the table small). The column # shows
the position of the event in the trace 3 in Table The column Events
reports the event names. The column Attributes indicates the names of at-
tributes. The columns Actual Values and GO specify the attribute values
and the corresponding symbols generated by the global ordering rewriting
strategy. The last column RI reports the symbols generated by the relative

to instantiation rewriting strategy.

The relative to access rewriting strategy replaces the first occurrence of
a concrete value with 0, and the subsequent occurrences with a number
that indicates the number of events observed from its last occurrence. Col-
umn RA in Table shows the values produced by the relative to access
rewriting strategy. We can observe that these values capture well the pat-

terns occurring in these traces.

In the third step, kKLFA heuristically identifies the best rewritten ver-
sion of each cluster, among the three available alternatives. kLFA may
select different rewriting strategies for different data clusters in the same

system. The choice of a strategy mainly depends on the nature of the ob-
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hasNext
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Table 2.10: Capturing patterns with repeated values.

Attributes

return.availSeats
return
flight.availSeats

return.availSeats
return
flight.availSeats

return.availSeats
return
flight.availSeats

Attributes

return.availSeats
return
flight.availSeats

return.availSeats
return
flight.availSeats

return.availSeats
return
flight.availSeats

Actual Values

Table 2.9: A pattern of data reuse.

Actual Values

'y
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served behaviors and on the collected data. KLFA automatically identifies
the best rewriting strategy for each data cluster, based on the observation
that the effectiveness of a rewriting strategy depends on the ability of cap-
turing the regularity of the data flows. kKLFA measures such regularity as
the number of symbols used by a rewriting strategy to rewrite a data clus-
ter: the smaller the number of symbols used to rewrite the concrete values,
the better the rewriting strategy capture the regularity of the data flow.

Generating models

The rewritten traces are traces of event names where the attributes are
implicitly represented as part of the event labels. Thus, we can generate
models with classic engines to infer automata from traces.

KLFA uses the KBehavior incremental inference engine to infer au-
tomata. At each step, KBehavior reads a trace and updates the current
FSA according to the content of the trace. The updated FSA generates all
the traces that have been analyzed.

etCompanieslterator
bookFlight_C1 ¢ P getAvailableFlights_C1

hasNext next

hasNext

add_A1_B1

next_A0_B0

getAvailableSeats_A1

next_A4_B0
book_C1 findBestCompositeSolution_C1 - -

Legend

We added a letter that identifies the cluster before the number that rewrites a concrete value
to increase the readability of the model. The strategies used to rewrite each cluster are:

A Relative to Access rewriting strategy

B Relative to Instantiation rewriting strategy

C Global Ordering rewriting strategy

Figure 2.12: A kLFA model of the behavior of method bookF1ight.
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Figure shows the automaton that kLFA derives from the traces
recorded during the execution of the running example. The model includes
only the attributes reported in the traces of Tables

The automaton in Figure [2.12] suitably represents data-flow informa-
tion. For example, KLFA used the relative to instantiation strategy to rewrite
the second attribute (return. f1igtNo) of the two transitions from state 8
to state 9. The resulting automaton indicates that new values are always
introduced at that point of the execution (due to the presence of label B0),
thus a new flight number is produced every time the loop through states 7,
8, 9 and 10 is covered.

Similarly, kKLFA used the relative to access strategy to rewrite the first
attribute (return.availSeats) associated with the transitions from state
8 to state 9. The symbolic values show that return.availSeats can be
associated with either a new value (symbolic value equals to A0) or a value
observed two iterations before (symbolic value equals to A4).

The transition from state 10 to state 7 shows that the two attributes
of event add, object.flightNo and object.availSeats, are always
equal to attributes return.fligthNo and return.availSeats associ-
ated with the event next (A1 and B1 denote the reuse of concrete values).

Finally, transitions from state 0 to state 1, from state 12 to state 13,
and from state 13 to state 15 show an example of attributes rewritten
with Global Ordering. Symbols associated with these values show that
persons, return.seats, and solution.seats have the same values

across all executions.

2.4 Models of the ordering of the events

We already discussed techniques that generate FSAs, invariants, and anno-
tated FSAs from execution traces. Here we conclude this chapter by briefly
discussing another kind techniques that generate behavioral models repre-

senting the ordering of the events.

Some mining techniques derive models different from FSA to represent
information about the ordering of events. Some techniques simply derive
a visual representation of the execution traces without mining any extra

information that is not already in the traces. These technique are useful to
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simplify the manual inspection of execution traces, but do not derive com-
pact representations of the (general) program behaviors. For instance, tech-
niques presented in [45] [63]] can represent execution traces as sequence
diagrams.

Other techniques analyze execution traces to derive frequent patterns
of events [73] [50] [33]. Frequent patterns can be useful to discover anoma-
lous behaviors, but their usage is restricted to anomalies that impact the
frequent events. On the contrary, FSAs represent the entire behavior of
a software program and can include all the events recorded in execution
traces. Thus, FSAs can discover anomalies impacting any behavior of a
software program, regardless the frequency of these behaviors. The cost of
this wider scope of the model is a stronger dependency of the quality of the
model on the completeness of the samples used to infer the model.

Other techniques mine temporal rules that capture a set of dependen-
cies between events [51] [87]. These models focus on the relations between
key events, rather then the exact ordering of the single events. Tempo-
ral rules have an interesting complementarity with respect to FSA: tem-
poral rules can suitably represent relations between events occurring at
arbitrary points of an execution, while FSAs can well represent relations
between non-consecutive events only by suitably representing the relations
between the intermediate events, which is typically harder to achieve. This
complementarity has been exploited in [53] [78] to derive FSAs that sat-
isfy inferred relations between events that occur at arbitrary points within
traces.

Yet other techniques mine algebraic specifications and graph transfor-
mations from program traces. They rely on a ground mathematical back-
ground and can compactly represent a large number of behaviors [47] [39I,
but so far, they have been applied only to rather simple software compo-
nents (single classes and containers), while FSAs have been shown to be
useful with a broader set of applications.
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Chapter 3

An Empirical Assessment
of FSA Inference

Techniques

If we want to study the effectiveness of behavioral inference techniques,
with specific emphasis on finite state automata, we have to understand
which kinds of models can be more effectively inferred. In fact, there exists
at least two kinds of automata: simple automata and annotated automata.
Annotated FSAs are automata that integrate information about the data-
flow to also represent how data values affect the operations executed by
programs.

The integration of information about operation sequences and data val-
ues into a unique model is indeed conceptually useful to accurately repre-
sent the behavior of a program. However, even if these models can repre-
sent behaviors that simple FSAs cannot represent, it is yet unclear whether
extended models are generally more accurate than simple FSAs or not.

In this chapter, we present an empirical comparative study between
techniques that infer FSAs and techniques that infer extended FSAs [54]].
The goal is to understand the most promising research direction, in term of
the kind of automata, for testing and analysis techniques based on inferred
models. To compare the two classes of techniques, we use, as case studies,
the techniques described in the previous chapter, that is kBehavior [59],
kTail [20], gkTail [565] and KLFA [57]. In particular, we want to study the
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trade-off between these two classes of techniques with specific reference to
models extracted from software systems. The empirical study evaluates the
performance of these techniques while varying the set of available traces
from sparse, which is an extremely common case when traces are collected
by testing software systems, to dense, which only happens for thoroughly
tested systems. We compare the techniques that infer FSAs and extended
FSAs according to the quality of the inferred models and the time required

to obtain them.

3.1 Goals of the assessment

To better show the differences between using simple FSA and annotated
FSA, let us consider the FSA in Figure which represents how an appli-
cation uses a file. The real usage of the file is abstracted on several aspects.
The choice between reading only or reading and writing values is presented
as a non-deterministic choice, while in reality it is determined by the open-
ing mode. This lack of information can result in imprecise model-based
analysis. For instance, such FSA, when used for analysis, cannot detect
that an application opens a file with read mode and then illegally attempts

to write values into the file.

open

read

close write

Figure 3.1: A simple FSA that describes the usage of a file. This king of FSA can be
inferred by both kTail and kBehavior.

FSAs can be extended with the additional information required to rep-
resent constrained behaviors like the one exemplified above. For example,
a more accurate model for the file reading/writing scenario is shown in Fig-
ure Although this extension is indeed useful on a conceptual point

of view, there exist no comparative and quantitative empirical study that
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confirms the presence of a greater accuracy for extended models compared
to simple FSAs. In addition, the inference of extended FSAs is more chal-
lenging than the inference of FSAs. An extended FSA, due to its capability
to represent complex behaviors that cannot be represented with a simple
FSA, may be poorly learned and cause inaccuracies in the representation
of simple behaviors that are well captured by simple FSAs. The goal of our

empirical validation is to understand and quantify these trade-offs.

open
mode =1

write

Figure 3.2: An extended FSA that describes how a file is used taking into account
how the file is opened. This king of FSA can be inferred by gkTail.

In particular, our empirical comparison investigates the following three

research questions:

R1 Do inference techniques producing extended FSAs generate models that
can better identify legal behaviors as compared to those producing
simple FSAs?

R2 Do inference techniques producing extended FSAs generate models that
can better reject illegal behaviors as compared to those producing sim-
ple FSAs?

R3 What is the performance difference between the generation and the

checking of extended FSAs as compared to those of simple FSAs?

These research questions are extremely important when these models
are used to support automated software analysis, but are not necessarily
critical research questions for every possible domain. For instance if the
models must be manually inspected, human readability can be more rele-

vant than model accuracy. We refer interested readers to [24] for a survey
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of dynamic analysis techniques that can be used to support program com-

prehension.

3.2 Empirical setup

To answer each research questions, kTail, kBehavior, gkTail and KLFA are
used to learn 7 models extracted from 7 real software systems: JFreeChart
[6], Lucane [8], Thingamablog [13l, Jeti [5], Columba [2], Open Hospi-
tal [9], and Rapid Miner [10]. We concentrate on models that represent
the method invocations that can be generated when executing a method of
the program. We choose such scale of models, opposed to models that rep-
resent the entire execution flow of a program, for two reasons: (1) many
testing and analysis techniques use model inference to produce models of
that scale [28] [16] [72] [55], thus it is an important scale in the practice; (2)
we can manually produce the ideal models from the source code. A repre-
sentation of the ideal models that must be learned is necessary to measure
the quality of the inferred models. Considering huge models that represent
the entire behavior of an application would introduce the issue of deriving
the ideal models, in addition of being a scale that is seldom used in the
practice.

Since all the inference techniques considered in this study must have a
fair chance to be effective, we identified program models complex enough
to include: behaviors that can only be represented with FSAs produced by
KLFA, behaviors that can only be represented with EFSAs produced by
gkTail, and several behaviors that can be represented with simple FSAs.
To avoid collecting data biased by a single application, instead of using
several models obtained from a same application, we only used one model
per application ending up with 7 models.

To obtain a representation of the ideal models that should be inferred,
we carefully inspected the applications’ code, hand-draw models that repre-
sent the execution flow of methods that invoke other methods, and double-
checked the correctness of the models with respect to the corresponding
code. To choose the methods from which we extracted the execution flow,
we looked for a complex method that satisfies the fairness principle men-
tioned above.

We represented the ideal models extracted from the source code as EF-

SAs according to the following semantics:
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Application N. States | N.Trans. | N. Const. Method Name
JFreeChart 11 26 38 ChartFactory.createPieChart
Lucane 11 16 26 MessageHandler.run
ThingamaBlog 10 18 18 ParagraphComboHandler.actionPreformed
Jeti 12 18 38 Jeti.actionPerformed
Columba 13 18 14 FetchNewMessagesCommand.execute
OpenHospital 23 32 23 PatientBillEdit.getJButtonSave
Rapid Miner 19 32 16 DBScan.generateClusterModel

Table 3.1: Data about the reference EFSAs.

e transitions labels are method signatures and represent method invo-

cations.

e transition constraints are boolean expressions that represent con-
straints on the values that can be assigned to program variables and
parameters. For example, a constraint file.status == 0 associ-
ated with the transition label open (file, mode) indicates that only

closed files are accepted as a parameter.

e parameter names have global semantics, that is if the same variable
name reoccurs in different signatures and constraints, its value in the
same execution must always be the same. This semantics allows the
generation of traces that are both coherent with the behavior of the
programs and potentially useful to KLFA to identify recurrences of
concrete values. If a parameter with the same name must be assigned
with different values in different transitions, we simply change the
name of the parameter in the different transitions to preserve the
global semantics.

For the rest of the chapter, we refer to these ideal EFSAs as the reference
EFSAs. Detailed data about the EFSAs used for the empirical assessment

is presented in Table

Column Application indicates the application

that has been used to obtain the reference model. Columns Num States,

Num Transitions and Num Constraints specify the number of states, transi-

tions and constraints in the reference model, respectively. Column Method

Name indicates the name of the method that can produce the sequence of

method calls represented in the corresponding model. An example of ref-
erence EFSA, derived from Lucane, is shown in Figure Table

show the corresponding mappings.
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Edge | Method Constraints
t1 ml {
t2 ml {}
t3 ml {c1,c2,c3}
t4 ml {c1,c2,c3}
t5 m2 {c4}
t6 m3 {lel,!c2,!c3,!c4}
t7 m4 {c5}
t8 mb {c6}
t9 mé6 {c7}
t10 m5 {1}
t11 m7 {c5, c7, c8}
t12 m8 {c6, 9}
t13 m9 {c8, ¢9, lc10}
t14 m9 {c8, ¢9, c10}
t15 ml0 {}
t16 mll {

Table 3.2: Mapping from transition to method and constraint ids.

Identifier Definition
ml run()
m2 handleServerMessage()
m3 handleServiceMessage()
m4 getName()
mb getApplication()
m6 ServiceManager.getInstance().getService()
m7 getUser()
m9 Store.getServiceStore().getService()
m10 isAuthorizedService()
mll sendAck()
ml2 process()
cl lisAlreadyConnected
c2 lisAuthenticationMessage
c3 lisServerInfoMessage
c4 message.getApplication().equals("Server")
c5 userName
c6 serviceName
c7 s
c8 user
c9 service
cl0 isAuthorizedService

Table 3.3: Mapping from ids to actual methods and constraints.
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Figure 3.3: The reference EFSAs extracted from Lucane.

The effectiveness of the techniques experienced in our evaluation is in-
fluenced by two main factors: the value of the parameter %k, which deter-
mines how much the inference techniques generalize the behavior repre-
sented by traces, and the completeness of the set of traces used to infer
the models. In this study, the primary goal is to evaluate the effectiveness
of the inference techniques when varying the completeness of the avail-
able traces. Intuitively it corresponds to measuring the effectiveness of the
techniques according to the thoroughness of the test suites available for
executing the program under analysis. We do not intend to study the sensi-
tivity of the techniques to the choice of the parameter k, especially because
there exist a number of studies that already show that small values of k,
usually 2 or 3, are good choices when the inferred models are used to sup-
port software engineering tasks [72] [23] [59]. In line with these results,
we run the inference techniques with a value of k equals to 2.

To study the effectiveness of the technique according to different levels
of completeness of the traces, we inferred the models from traces that sat-
isfy three coverage criteria: state coverage, transition coverage, 2-transition
coverage. Intuitively state coverage corresponds to a sparse set of execu-
tions that do not exercise all the method invocations, i.e., transitions, but
partially sample the behavior of the program. Transition coverage corre-
sponds to a good set of executions that sample all methods invocations, but
does not invoke the methods in all the possible execution contexts, e.g.,

loops are not necessarily executed multiple times. 2-transition Coverage
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corresponds to a thorough test suite that samples each method invocation
at least twice increasing the chance to execute method invocations in dif-
ferent contexts. We do not consider stronger coverage criteria because they
would represent unrealistic scenarios with fairly complete sets of execu-
tions that are extremely hard to obtain in the practice.

We produce traces from a reference model by randomly traversing the
EFSA from the initial state to a final state. If a final state has outgoing
transitions, we randomly choose if ending the trace or continuing producing
a longer trace. When traversing a transition that has one or more parame-
ters, we randomly generate a value that satisfies the constraints associated
with the transition. We continue generating traces until the selected cri-
terion is satisfied. We produce traces based on a random strategy to avoid
obtaining empirical data biased by the strategy used to cover models.

A final remark is about the constraints considered in the reference EF-
SAs. In the specific case of gkTail, we do not go into the issue of considering
the inference of constraints that include operators that cannot be repre-
sented by gkTail. We are not interested in exploring the complexity of the
constraints that gkTail cannot identify, but rather to evaluate its effective-
ness to produce the right constraints, when there is a chance to do that.
Thus, the reference EFSAs only include constraints that can potentially be
inferred by gkTail.

In the following paragraphs, we describe the empirical process that we

follow to answer the three research questions.

3.2.1 RQ1: Do inference techniques producing extend-
ed FSAs generate models that can better identify
legal behaviors as compared to those producing
simple FSAs?

To answer the first research question, we compute the recall (also known
as true positive rate) of the models inferred with kTail, kBehavior, gkTail
and KLFA, for all the coverage levels and reference models considered in
our empirical assessment. Recall is a common measure used in information
retrieval [56]. In our setting it measures the ability of the model in identi-
fying correct behaviors. The intention here is to verify whether considering
models more complex than simple FSAs result in an increment or a loss in

recall.
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Figure 3.4: The empirical process for the computation of the recall.

To produce this quantification, we followed the process shown in Fig-
ure We first generated three training sets from the reference models.
The training sets satisfy the coverage criteria that have been previously
described. We applied the four model-generation techniques considered in
this study to infer models from the training sets. To compute the recall of
the inferred models we generated a new set of traces, namely the evalua-
tion traces, from the reference models. To deeply compare the reference and
inferred models, the evaluation traces satisfy 10-transition Coverage, i.e.,
traces cover each transition at least 10 times. We finally computed the re-
call of the inferred models as the fraction of the evaluation traces that are
correctly accepted by the inferred models. The more traces are accepted,
the higher the recall of the inferred model is.

3.2.2 RQ2: Do inference techniques producing extend-
ed FSAs generate models that can better reject
illegal behaviors as compared to those producing
simple FSAs?

In order to answer this research question, we measure how many illegal

behaviors are erroneously included into the models inferred by kTail, kBe-
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Figure 3.5: The empirical process for the computation of precision and specificity.

havior, gkTail and KLFA. In our context, a behavior can be illegal for any
of the two following reasons: it includes an illegal sequence of operations,
or it includes an illegal parameter value. Since only extended models can
detect illegal parameter values, we evaluate the quality of the models with
respect to these two classes of illegal behaviors separately. In this way, we
can specifically compare and measure how much the capability of rejecting
illegal behaviors due to the presence of illegal parameter values, which is
a unique capability of extended FSAs, impacts on the capability to reject
illegal behaviors due to the presence of illegal sequences of operations.

Figure [3.5| shows the process that we followed to study this research
question. To measure how many illegal sequences of operations are er-
roneously included into inferred models we compute precision [56]. The
precision quantifies the percentage of illegal behaviors that have been (er-
roneously) incorporated into the inferred models. A low precision indicates
that many illegal behaviors are present in the inferred model, thus com-
promising its rejection capability. A high precision indicates that few il-
legal behaviors are present in the model, thus the model has an excellent
rejection capability. Precision is computed by generating traces from the
inferred models and checking the fraction of those traces that are accepted
by the reference model.

To obtain a precise value of the precision, we generate traces until cov-

ering all transitions in the inferred model 10 times. Thus, the generated
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traces cover each single operation in multiple contexts of use. When gen-
erating traces from extended models, we only generate traces with event

sequences ignoring the parameter values, which are studied separately.

To study the capability to reject illegal behaviors due to illegal parame-
ter values we measure specificity. Specificity (also known as true negative
rate) [56l is obtained by producing illegal traces from the reference model
and checking the fraction of traces that are correctly rejected by the in-
ferred models. In this case, we did not use precision because the models
inferred by KLFA do not specify the values that can be assigned to param-
eters, but they only specify how those values reoccur across events. Trying
to produce traces (that include parameter values) from such models would
result in traces with no-sense values, e.g., parameters with numeric values
even if a string is expected by the reference model. The measure of the
precision for KLFA would thus be biased.

To produce the traces with illegal parameter values, we mutated the
reference automata by producing automata that exactly match the original
ones with the exception of a randomly selected constraint that is negated.
We then generate traces from the automata with the requirement to cover
each transition 10 times. Finally, we filter those traces that do not traverse
the mutated constraint, and we measure the fraction of traces correctly
rejected by the inferred automata. We perform this evaluation only for
gkTail and KLFA because we know in advance that kTail and kBehavior

cannot reject any trace based on the parameter values only.

3.2.3 RQ3: What is the performance difference between
the generation and the checking of extended FSAs
as compared to those of simple FSAs?

To answer this research question, we measured both the time spent by the
techniques to perform the inference and the time required to check traces.
These measures give hints about the possible uses of the techniques. For
instance, techniques that require a long time to generate models can be
used when the set of the traces is quite stable over time, and cannot be ef-
fectively used when this set frequently changes. Similarly, techniques that
require a substantially long time to check traces can be used in a human-

driven environment, e.g., to support most of the known model-based anal-
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ysis techniques, but might not be suitable to be used in a deployed systems
as they can compromise performance. Note that the reported inference time
includes all the operations necessary to obtain the models from the traces.
For example, in the case of KLFA, this includes the time needed to run the

rewriting strategy.

3.3 Toolset
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Figure 3.6: The toolset that supported our empirical validation.

To support the empirical validation, we extended existing tools and im-
plemented new ones. In particular, we developed a trace generation tool,
which implements the coverage criteria described in section 2, we devel-
oped a tool to mutate EFSAs and we extended the QUARK [52] platform.
QUARK is a tool that can compare an inferred FSA with a reference au-
tomaton to compute some goodness measures. We extended the QUARK
tool to support such analysis for the models inferred by gkTail and KLFA. In
particular, we added the capability to compute recall, precision and speci-
ficity, for EFSAs, like the ones generated by gkTail, and FSAs with data
flow information incorporated into labels, like ones generated by KLFA. Fi-
nally, the four inference techniques have been integrated in our toolset as
black box components. Figure shows the toolset.
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3.4 Empirical results

Recall

To answer the first research question we computed the recall of the inferred
models for a total of 21 cases per technique, obtained by experimenting the
three coverage levels (state, transition, 2-transition) for each of the 7 case

studies.
. KkTail kBehavior
Application
state trans 2-trans state trans 2-trans

JFreeChart 0.31 0.54 0.82 0.71 1 1
Lucane 0.79 0.87 0.92 0.92 0.98 0.97
ThingamaBlog 0.92 0.98 0.99 0.94 1 1
Jeti 0.8 0.83 0.95 0.95 0.9 0.98
Columba 0.68 0.88 0.85 1 1 1
OpenHospital 1 1 1 1 1 1
Rapid Miner 0.76 0.85 0.93 0.92 0.98 0.99
Average 0.76 0.85 0.93 0.92 0.98 0.99

Table 3.4: 1 of 2 - Empirical data about recall.

L. gkTail KLFA
Application
state trans 2-trans state trans 2-trans

JFreeChart 0.26 0.4 0.61 0.3 0.59 0.7
Lucane 0.79 0.87 0.91 0.81 0.83 0.88
ThingamaBlog 0.91 0.97 0.99 0.88 0.99 0.99
Jeti 0.76 0.87 0.9 0.8 0.68 0.82
Columba 0.68 0.88 0.85 0.46 0.76 0.54
OpenHospital 0.95 1 1 0.9 0.92 0.97
Rapid Miner 0.74 0.85 0.89 0.84 0.97 0.91
Average 0.74 0.85 0.89 0.71 0.82 0.83

Table 3.5: 2 of 2 - Empirical data about recall.

Tables shows the empirical data about recall. Figure[3.7]graph-
ically shows the value of the recall for each technique, grouped by the cov-
erage level. Each box associated with a technique spans from the the min-
imum to the maximum value of the recall observed among the 7 case stud-
ies, while the solid line indicates the average value of the recall computed
among the 7 case studies. Gray boxes show the recall for techniques that
do not work with data-flow information (i.e., kTail and kBehavior), while
white boxes show the recall for techniques that infer data-flow information
(i.e., gkTail and KLFA).

We can immediately notice from the plot that considering data-flow in-

formation causes a loss of recall. In case of gkTail compared to kTail the
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Figure 3.7: Recall for different coverage levels.

loss is moderate (0.03 in average), while it is relevant between KLFA and
kBehavior (0.18 in average). We have a similar loss on the size of the boxes,
which represents how varying the recall is. The recall of gkTail is slightly
more variable than the recall of kTail, while the recall of KLFA varies a lot
compared with the recall of kBehavior, which is quite close to its average
value. These results indicate that it is harder to correctly learn how data
values reoccur across events, as KLFA does, than learning constraints on
data values, as gkTail does.

Even if gkTail performs slightly worse than kTail according to recall,
the difference of recall between gkTail and kBehavior is relevant (0.15 in
average). The small relative distance between kTail and gkTail might let us
suppose that kBehavior could be ideally extended with heuristics similar to
the ones used by gkTail to effectively work with constraints without losing
much recall. Unfortunately there is no obvious way to adapt the heuristic
incorporated in gkTail to kBehavior.

If we look at the trends of the techniques when the level of coverage in-
creases, we have another relevant information. The recall and the stability
of the results improve faster for the techniques that do not consider data-

flow information (boxes are smaller and closer the top of the diagram). The
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slow improvement of gkTail and KLFA is due to the amount of extra infor-
mation needed by those techniques to produce accurate models: covering
twice each transition is not always sufficient to discover enough data-flow
information to significantly improve the model.

We now discuss the recall of the techniques in absolute terms. When
traces only provide state coverage, kBehavior is the only technique with a
high average recall. The results are more encouraging for all the techniques
- especially for kTail and kBehavior - when traces provide transition cov-
erage (average values are above 0.75 and 3 out of 4 techniques have boxes
entirely above 0.5), and are definitely good for 2-transition coverage. These
results suggest that FSAs with good recall can be effectively extracted even
from a sparse set of executions, while extended FSAs require thoroughly
tested software to derive models with good recall. An important research
direction is thus the definition of techniques that can produce test cases
that well exercise the program under analysis, as early investigated in [28]].

Finally, a minor observation coming from the detailed data reported in
Tables We can expect that inference techniques produce better
models when more traces are available, but this is not always true for
KLFA. In fact, data can be sometime confounding for the heuristics that
extract data-flow relations. Consider for instance the empirical data re-
ported for Jeti, Columba and Rapid Miner, where an increased coverage

causes the generation of models with smaller recall.

Precision and specificity

To answer the second research question, we measured both the fraction of
illegal sequences of operations that can be erroneously accepted by the in-
ferred models and the fraction of operation sequences that include illegal
parameter values that are correctly rejected by the inferred models. The
former quantification is given by the precision and has been computed for
all the techniques. The latter quantification is given by specificity and has
been only computed for the techniques that can infer extended FSAs.

Tables shows the empirical data about precision. Figure [3.8
graphically shows the value of the precision for each technique, grouped by
the coverage level. Boxes and solid lines have the same semantic as those

in Figure(3.7
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L. kTail kBehavior

Application
state trans 2-trans state trans 2-trans

JFreeChart 1 1 1 0.41 0.23 0.49
Lucane 1 1 0.99 1 0.97 0.47
ThingamaBlog 1 1 1 0.29 0.19 0.96
Jeti 1 1 1 0.86 1 1
Columba 1 1 1 0.83 1 0.58
OpenHospital 1 1 1 0.69 0.07 0.1
Rapid Miner 0.92 0.94 0.86 0.38 0.18 0.1
Average 0.99 0.99 0.98 0.64 0.52 0.53

Table 3.6: 1 of 2 - Precision (limited to operation sequences).

.. gkTail KLFA
Application
state trans 2-trans state trans 2-trans

JFreeChart 1 1 0.67 1 0.06 0.09
Lucane 1 1 1 1 1 1
ThingamaBlog 1 1 1 0.96 0.1 0.89
Jeti 1 1 1 0.96 1 1
Columba 1 1 1 1 0.52 0.66
OpenHospital 1 1 1 0.54 0.68 0
Rapid Miner 1 1 1 0.07 0.19 0
Average 1 1 0.95 0.79 0.51 0.52

Table 3.7: 2 of 2 - Precision (limited to operation sequences).

The empirical data about precision show that extending techniques for
the inference of FSAs with the capability of handling data-flow information
positively affects the precision of the inferred model when the traces par-
tially cover the reference model (compare gkTail with kTail for the state
and transition coverage, and KLFA with kBehavior for state coverage),
while it negatively affects precision when the set of available traces well
cover the reference model (compare gkTail with kTail for the 2-transition
coverage, and KLFA with kBehavior for transition and 2-transition cover-
age). In other words, techniques that infer simple FSAs can over-generalize
the observed behaviors even when a limited number of traces is available,
but they can also effectively handle an increasing number of traces. Tech-
niques that infer extended models require more traces before producing
over-generalized models, but after a while precision decreases quite fast.
Overall, all the techniques show a worsening precision moving from tran-
sition coverage to 2-transition coverage. This can sound surprising, but
many traces (e.g., traces that satisfy 2-transition coverage) can be difficult
to handle compared to a good and limited set of traces (e.g., traces that

satisfy transition coverage).
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Figure 3.8: Precision for different coverage levels.

If we compare gkTail with KLFA, we can notice a significant difference
on the precision (0.37 in average). This confirms the results already ob-
tained with recall: learning how data values reoccur across events is harder
than learning constraints.

If we look at the results in absolute terms, we can notice two main facts.
First, gkTail and kTail have better precision than the other techniques.
This suggests that when precision is important compared to other aspects
(e.g., recall), one of these two algorithms should be selected, depending on
the eventual necessity to have data-flow information incorporated in the
inferred model. Second, the heuristic used to generalize the behavior about
operation sequences strongly affects precision when parameter values are
also handled. In fact, kTail and gkTail (which use a heuristic based on itera-
tive state merging) have similar precision, kBehavior and KLFA (which use
a heuristic based on incremental merging of sequences of operations) have
similar precision as well, but the two classes of approaches show a very
different precision. This is likely a consequence of defining mechanisms
to handle data-flow information as an extension of existing heuristics that
reason on the sequences of operations. It would be relevant to investigate

the possibility to extend techniques that infer data-flow relations with the
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capability to consider operation sequences, to build extended FSA. An early
step into this direction is given by [29], which uses relations on attribute
values to identify the states of the inferred FSA. It would be interesting to
investigate how this approach can be further extended to derive extended
FSAs.

Finally, we provide a comment looking at the detailed data reported in
Tables The precision is not strictly decreasing when the number
of available traces increases. Sometime increasing the number of traces
causes over-generalization. This is true for kTail (e.g., see data for Rapid
Miner), but it is definitely more evident for kBehavior and KLFA. It would
be interesting to deeper investigate the relation between the characteris-

tics of the traces and the precision of the inferred models.

.. gkTail KLFA
Application
state trans 2-trans state trans 2-trans

JFreeChart 0.79 1 1 0.92 0.68 0.51
Lucane 1 1 1 0.66 0.63 0.63
ThingamaBlog 0.94 1 1 0.59 0.07 0.01
Jeti 1 1 1 0.55 0.65 0.47
Columba 1 1 1 0.63 0.24 0.55
OpenHospital 1 0.91 0.91 1 1 1
Rapid Miner 1 1 1 0.96 0.42 0.46
Average 0.96 0.99 0.99 0.76 0.53 0.52

Table 3.8: Specificity (limited to parameter values).

Table shows the empirical data about the specificity of the inferred
models, computed with traces that should be rejected because they include
illegal parameter values. We only report data about gkTail and KLFA be-
cause the specificity is 0 for kTail and kBehavior. Models inferred by gk-
Tail had high-specificity in all the cases, while models inferred by KLFA
provided very variable results, from extremely low specificity (0.01) to ex-
tremely high specificity (1).

The specificity of models obtained with gkTail indicates that most of
the constraints have been correctly identified. On the contrary, KLFA well
represented only part of the constraints, with a decreasing specificity when
the number of traces increase (as already noticed this is due to the difficulty
of properly handling a large amount of information).

Results show that gkTail is more effective than KLFA with parameter

values, but we have to add some remarks. As mentioned in Section 2, we
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considered reference models so that both gkTail had a chance to infer the
constraints present in the model and KLFA had a chance to determine the
recurrence of the parameter values. However, while all the constraints can
be potentially identified by gkTail, not all the parameter values reoccur
multiple times in a model. Thus, KLFA can necessarily identify illegal
parameter values only when the illegal values are assigned to parameters
that reoccur multiple times.

In general, software executions do not necessarily use parameter values
constrained by expressions that can be inferred by gkTail. Illegal values
assigned to parameters constrained with expressions that cannot be in-
ferred by Daikon [35] would be hardly detected by gkTail. In the empirical
evaluation, we decided to not consider the case of reference models with
constraints not supported by Daikon because the validity of the empirical
data would fall short. In fact, the set of constraints that can be inferred by
gkTail can be easily extended by adding new operators to Daikon, making
the obtained empirical data outdated. We think it is a more valuable and
durable knowledge to know the specificity that can be expected when the
“right” operators are supported by gkTail, leaving the issue of defining a set
of operators that is appropriate for the kind of traces that must be analyzed
open.

gkTail appears to be more effective than KLFA when applied to our
reference models. However, this conclusion cannot be generalized to any
domain because gkTail and KLFA focus on complimentary aspects (param-
eter values versus parameter recurrence), they can detect different kind of
anomalous behaviors and different domains can better adapt to one tech-
nique than the other, e.g., log file analysis demonstrated to be a domain
well suited for KLFA [57].

Inference and checking time

kTail | kBehavior | gkTail | KLFA
Inference 5 sec 2 sec 38min 3sec
Checking 7 sec 6 sec 11sec 2sec

Table 3.9: Average time to infer and check models.

To answer the third research question we computed the average time
spent by kTail, kBehavior, gkTail and KLFA to produce the models and
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evaluate traces for acceptance (see Table [3.9). The average is computed
over the 21 cases (7 case studies analyzed with 3 coverage levels each) con-
sidered for each technique. For the evaluation, we used a standard desktop
computer (Intel Core Duo, 2GB RAM).

The generation of the models is fast for all the techniques (in average
less than 5 seconds to process hundreds of traces), with the exception of
gkTail that required an average of 38 minutes to generate the models. The
long inference time is due to the many executions of the Daikon learner [35]]
that is integrated in gkTail and is used to produce the constraints included
in the PTA. Thus gkTail can be effectively used only if the traces used to
generate the models are quite stable over time, while the other techniques
can be used more flexibly.

All the techniques can check traces fast. We have an exceptional time
for KLFA, while we have longer times for kBehavior and kTail. This dif-
ference is mostly related to KLFA that integrates an optimized version of
kBehavior, while the implementation of kTail and the stand-alone version
of kBehavior are not optimized. We have reason to believe that these dif-
ferences would not occur if all the algorithms had been implemented in
an optimized way. gkTail requires more time than the other techniques to
check traces because it must execute a constraint solver to verify if data
values satisfy constraints. We can also observe that checking constraints
impacts the performance, but it has no dramatic effect, according to our

empirical experience.

3.4.1 Threats to validity

A threat to validity is related to the limited number of case studies an-
alyzed in this empirical evaluation. Even if the results obtained with 7
models cannot be fully generalized, the empirical observations that we col-
lected are confirmed by each single case study. Moreover, the case studies
have been carefully selected to be both realistic (they have been extracted
from real software systems) and relevant for the comparison (they include
an interplay of aspects relevant for all the compared techniques). We thus
think that the empirical experience reported in this work provides relevant
insights on the inference of extended models from software and highlights
important aspects that should be taken into account when using model in-

ference techniques that extract extended models.
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Another threat to the validity of the empirical validation is related to
the exclusion of some of the configurations that are acceptable for the tech-
niques from the analysis. For instance, we consider one heuristics out of the
three that are defined for gkTail and one rewriting strategy out of the three
defined for KLFA. Even if the empirical evaluation is partial, we consid-
ered comparable configurations for all the techniques. This choice results
in a focused evaluation of the effects related to the inclusion of data-flow
information into the inferred models. The analysis of other configurations
is surely interesting, but it would introduce differences due to the choice of
weaker or stronger generalization criteria hiding the effect related to the
introduction of data-flow information into models.

Similarly, we run the empirical experience for a single value of the pa-
rameter k, supported by all the techniques. Even if the value of & affects
the inference, we relied on the numerous application of model inference to
software engineering tasks to run the comparison with a meaningful value.
Studying the impact of the choice of k, to the results even if interesting, is
outside the scope of this work. We plan to empirically analyze this aspect
in the future.

3.5 Discussion

The main conclusions that can be derived from our empirical work are:
Including data-flow information in the inferred models is expen-
sive. In this empirical study, techniques that infer extended FSAs showed
a number of shortcomings compared to techniques for the inference of sim-
ple FSAs: they always lose recall, they lose precision when many traces are
available, and constraints requires a large amount of time to be inferred
(this last point is true for gkTail only). Thus, unless your analysis really
needs to infer data-flow information, avoid using techniques for inferring
extended models. On the other hands, extended FSAs well represent data-
flow information (see data about specificity). Thus, if your analysis really
needs data-flow information, techniques like gkTail and KLFA can be help-
ful.

Generally, some “good” traces are better than many “good” traces.
We can expect that the more traces we have the better the techniques work.

However, this empirical validation showed that it is not true in general,
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even if traces do not increment only in number but also in quality (intended
as providing additional levels of coverage). Recall tends to strictly increase
when the coverage of the reference model increases, but precision decreases
from a certain point. Thus, continuously accumulating traces can be harm-
ful for inference techniques. This study suggests that collecting a proper
number and type of traces is a relevant aspect, and defining techniques
for the design of test suites that properly support model inference is an im-
portant challenge. This is especially true for techniques that infer extended
models because they perform quite bad both when there are few traces (i.e.,
bad recall for traces that satisfy state coverage) and many traces (i.e., bad

precision for traces that satisfy 2-transition coverage).

Sometimes many “good” traces are better than some “good” traces.
The strictly increasing recall is an important element of this study. Several
analysis techniques use inferred models to check executions and identify
anomalous behaviors. This specific application of inferred models usually
requires the generation of few false positives, which are particularly an-
noying for users, despite the possibility to miss some relevant anomalous
executions. Such requirement demands techniques that learn models with
high recall (i.e., remembers correct behaviors) even at the cost of a mod-
erate precision (i.e., accepts some bad behaviors). In this empirical study,
the scenario that better satisfies this requirement is the case of traces that
satisfy 2-transition coverage. Thus, specific domains can demand specific

strategies.

Data-flow patterns are harder to be inferred than constraints. KLFA
showed to be less effective than gkTail: less recall, less precision, less speci-
ficity and less stable results. This result tells us that learning data-flow
patterns is difficult and more research is needed into this direction to in-
crease the quality of the inferred models. We also have to say that KLFA
has been designed to analyze the log files typically recorded by enterprise
applications, which are quite different from the traces we considered in this
study. Thus, we cannot reasonably expect different results when KLFA is

applied to log file analysis.

Constraints can be conveniently learned only from stable sets of

traces. The inference time required by gkTail is several order of magni-
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tude larger than the time required by the other techniques. This result
indicates that it is not convenient to apply gkTail to sets of traces that
frequently change, rather it should be applied to a set of traces that is rea-

sonably stable over time.

The size of the model appears to be relatively important. In this
study, techniques obtained better results with the two largest models (Open
Hospital and Rapid Miner). This supports the intuitive idea that the size
of the reference model is only moderately important, rather the complexity
of its structure influences more the results. However, we also noticed that
the precision produced by kBehavior and KLFA for the two largest models
is the lowest. Thus, this intuitive notion needs additional focused empiri-
cal studies to understand if and to what extent the size of the model can
influence the quality of the inference.

In summary, even if annotated FSAs can be useful, this empirical inves-
tigation shows that their inference is definitely harder than the inference
of simple FSAs. Techniques for the inference of annotated FSAs need to
be further improved before being applicable in settings where executions
partially sample the model to be inferred, which is a common scenario for
software systems. For these reasons, our research focused on the definition
of strategies to improve the inference of simple FSAs from software (see
Chapter 4 and 5), leaving the definition of similar strategies for annotated
FSAs for the future.
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Chapter 4

White-box Detection of
Interaction Models from
Service-Based

Applications

In this chapter, we present a white-box technique, called SEIM [60], for the
inference of precise behavioral models that represent interactions between
an application and a third-party service, provided as Web Service.

Accurate models of the interaction protocols, i.e., models of the interac-
tions between applications and the integrated Web services, can facilitate
both manual and automatic inspection and analysis, and can support the
many existing model-based verification and validation techniques [46].

Extracting interaction protocols from service-based applications consist
in describing the set of interactions that can be executed when a system
interacts with the integrated services.

SEIM statically derives accurate models of the interactions between
applications and Web Services, in the form of Finite State Automata (ac-
cording to the empirical study, presented in the previous chapter, the in-
ference of simple FSAs should be preferred to the inference of annotated
FSAs, unless annotations are of critical relevance for the models). SEIM
contributes to the state-of-the-art in two major ways: it proposes a model

refinement technique to identify and eliminate many infeasible behaviors
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from inferred models, thus alleviating the problem of false positives that
reduces the effectiveness of many static analysis approaches [74]; it gen-
erates models that distinguish the likely feasible interactions from the in-
teractions with an unknown level of feasibility, thus allowing engineers to

distinguish the relevance of the produced information.

4,1 Static extraction of interaction models

SEIM is specifically effective for service-based applications thank to the fol-
lowing aspects that facilitate the static extraction of the interaction models:

Independent states: client applications cannot share their state with Web
Services, i.e., executing Web Service operations does not alter the

state of the client application.

Easily identifiable services: in client applications, the interactions with
Web Services are usually mediated by stubs that are easily automati-
cally identifiable.

Easily distinguishable services: client applications usually instantiate
a different type of stub for each used Web Service, thus, the stub type
identifies the target Web Service.

The SEIM technique produces an FSA model of the synchronous re-
quests that the application under analysis produces when interacting with

a set of Web Services. SEIM works in three main steps, as shown in Fig-

ure [4.1]

FSA of likely
1 ACFG ACFG feasible behaviors
analysis , FSA Initial FSA FSA a b d
targets €Xtraction Generation g Refinement %
) ) ¢ Tl /)
. c d
T;rogram FSA of unknown
source behaviors

code

Figure 4.1: The main steps of the SEIM technique.

In the first step, SEIM derives an Annotated Control Flow Graph (ACFG

extraction). Software engineers indicate the program to be analyzed and
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the analysis targets, which restrict the set of service operations that can
be included in the inferred model. This step produces an ACFG, that is an
inter-procedural control flow graph of the program under analysis, where
the nodes that represent service invocations are annotated with the name
of the invoked operations. This model includes all the service invocations
and the information about the possible execution flow, and it is the basis of
our analysis.

In the second step, SEIM generates the initial FSA (FSA generation). It
first reduces the ACFG by removing all the nodes and the transitions that
are not relevant for the analysis. In particular, it preserves only the nodes
and transitions that are related to either calls to service operations or to
the application control flow. It then transforms the reduced ACFG into an
equivalent FSA.

In the third step, SEIM prunes infeasible sequences of calls, and gen-
erates two FSAs that distinguish likely feasible sequences of calls from se-
quences of calls whose feasibility is not known (FISA refinement). One of the
FSA produced by SEIM accepts only likely feasible sequences of calls, while
the other FSA accepts sequences of calls whose feasibility is not known.
SEIM marks a sequence of calls as a sequence with unknown feasibility
when it cannot determine if there exists a concrete execution that corre-

sponds to that sequence.

In the following, we first present a running example of an application
that integrates eBay Web Services to provide searching and trading oper-
ations [3]. Then, we present the analysis of the running example to show
how SEIM can extract a precise representation of the interactions between
the application and the eBay Web Services.

4.1.1 A running example

This Section presents an excerpt of two methods of a Java application, that
provide searching and trading operations for eBay Web Services.

The two methods that we analyze are findBestExpiringItem and
getTtemByBid. The method findBestExpiringItem searches an eBay
auction and finds the product with the lowest cost among the ones that
satisfy the following requirements: they match the description passed as
parameter, have an actual cost below a given threshold, and are offered
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by sellers with positive feedbacks. The method get ItemByBid adds the
product passed as argument to the user watchlist, and makes an offer for
the item to beat the best offer. Listing[4.1]shows an excerpt of the methods

4.1.2 ACFG extraction

In the ACGF extraction step, SEIM produces an annotated control flow
graph of the target system. The inputs of this step are the component to be
analyzed and the analysis targets that include both a list of stub types and
a usage protocol.

SEIM interprets interactions with stubs as interactions with the Web
Services, i.e., an invocation of a method implemented by a stub represents
an invocation of a Web Service operation. The usage protocol is given as
a FSA, where transitions are labeled with the names of methods imple-
mented by the interface of the component under analysis.

In our running example, the stub types are EBayAPIInterface and
ShoppingInterface, the interface methods that are analyzed are find-
BestExpiringItem and getItemByBid, and the usage protocol is spec-
ified by the FSA shown in Figure (software engineers are welcome to
specify other usages of interest. They may for example look for invocations
executed within a loop or for the independent execution of the two methods
under analysis).

SEIM generates the ACFG by first generating the Inter-Procedural Con-
trol Flow Graph (ICFG) of each interface method, and then combining the
ICFGs according to the usage protocol. The generation of the ACFG dif-
fers from the standard generation of an ICFG in the way the methods
implemented by the stub objects are analyzed. When an invocation of a
method implemented by a stub object is considered, SEIM does not gen-
erate the ICFG corresponding the method, but simply annotates the node
that corresponds to the method invocation with the name of the invoked
method. SEIM does not add the ICFG of the method to the ICFG under
construction either. Note that the construction of the ACFG requires the
analysis of all the methods invoked from the interface methods. We im-
plemented the ACFG extraction step for Java programs by extending the
SOOT toolkit [11]. The ACFG extracted from the running example is too
large to be shown in the paper. Figure shows a reduced ACFG.

SEIM combines the ACGF's of the single methods by simply replacing
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public static String findBestExpiringItem(String productDescr, Double price)
Long positiveFeedback = null;
SimpleItemType bestItem = null;
String itemToBuy = "";

FindItemsAdvancedResponseType items;

items = findItemsAdvanced (productDescr, price);
for (SimpleItemType item : items.getItem()) {
if (item.isReserveMet ()) {

{

SimpleItemType detailedItem = getSingleItem(item.getItemID())

7
GetUserProfileResponseType sellerInfo = getUserProfile(
detailedItem.getSeller () .getUserID());

if (positiveFeedback == null) {
bestItem = detailedItem;
positiveFeedback = sellerinfo.getFeedbackHistory ().
getUniquePositiveFeedbackCount () ;
} else {

if (sellerinfo.getFeedbackHistory().
getUniquePositiveFeedbackCount () > positiveFeedback) {
bestItem = detailedItem;
positiveFeedback = sellerinfo.getFeedbackHistory ().
getUniquePositiveFeedbackCount () ;

}

if (bestItem!=null) {
bestItem = getSinglelItem(bestItem.getItemID());

if (bestItem.getListingStatus () == ListingStatusCodeType.ACTIVE) {
itemToBuy = bestItem.getItemID();
}

return itemToBuy;

}

public void getItemByBid() {

if (isInWatchList != true) {
addToWatchList (itemToBuy) ;
}

ItemType biddenItem;
biddenItem = getItem(itemToBuy) ;

if (isInWatchList != true) {

if (biddenItem.getSellingStatus () .getMinimumToBid () .getValue () <=
maxBid) {
placeOffer (itemToBuy, maxBid) ;
} else {
removeFromWatchList (itemToBuy) ;

}
} else {
if (! (biddenItem.getSellingStatus () .getHighBidder () .getUserID() .
equals (getUser()))) {
placeOffer (itemToBuy, maxBid) ;
} else {

}

Listing 4.1: An excerpt of findBestExpiringItemand getItemByBid.
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findBestExpiringltem getltemByBid

J

Figure 4.2: Usage protocol for the interface methods analyzed in the running exam-

ple.

the transitions in the usage protocol given as input with the ACFG of the
methods that correspond to the label of the transitions. In particular, given
a transition ¢ from a state s; to a state s, labeled with an interface method
m, and the ACFG acfg(m) extracted from the analysis of the method m,
SEIM removes the transition ¢, merges s; with the entry node of acfg(m),

and merges s» with the exit node of acfg(m).

4.1.3 FSA generation

In this step, SEIM transforms the ACFG produced in the former step into
an FSA that represents the interactions between the component under
analysis and the target services.

SEIM starts by eliminating data that are irrelevant for the analysis.
The only data in the ACFG that are relevant for identifying sequences of
requests are invocation and control nodes. Invocation nodes represent the
invocation of Web service operations and are annotated with the opera-
tion names. Control nodes represent non-sequential execution flows, and
are the nodes with more than 1 incoming edge or more than 1 outgoing
edge. SEIM removes from the ACFG all nodes except invocation and con-
trol nodes. Figures and show the reduced ACFG, respectively for
the methods findBestExpiringItem and get ItemByBid.

After eliminating irrelevant nodes, SEIM transforms the ACFG into an
equivalent FSA. An ACFG is a Moore machine [64]], i.e., an automaton
whose outputs depend only on the state. We can produce an equivalent
FSA, i.e., an FSA that accepts the same language accepted by the ACFG,
in few trivial steps. We first add a new final state to the ACFG. We then
connect all former final states of the ACFG to the newly added final state
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Legend
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exit node
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getUserProfile

Figure 4.3: The reduced ACFG for the findBestExpiringItem method.

with transitions, and we label all the transitions with the label of the source
node, if not empty, or with the empty label ¢ otherwise. We finally transform
the FSA in a deterministic one. The obtained FSA represents the interac-
tions between the component under analysis and the Web Services when
the component under analysis is executed according to the usage protocol
passed as parameter to SEIM. Figure shows the FSA obtained for the

running example.

4.1.4 FSA refinement

The FSA produced by the second step over-approximates the behavior of
the target component: it models the possible interactions with the speci-
fied Web services along with many infeasible ones. In the third step, SEIM
ranks sequences of operations as infeasible, likely feasible, and with un-
known feasibility, eliminates the infeasible sequences, and split the FSA
into two FSAs that distinguish likely feasible sequences from sequences
with unknown feasibility.

In a nutshell, the process works as follow. SEIM generates a finite set
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removeFromWatchList placeOffer placeOffer

Figure 4.4: The reduced ACFQG for the get ItemByBid method.

of sequences from the current FSA, passes these sequences to a concrete ex-
ecution discovery engine that provides information about the feasibility of
the sequences, and refines the FSA according to the collected information.
A concrete execution discovery engine is any technique that can identify
concrete executions that satisfy certain properties. In our experiments, we
considered the property that consists of covering specific sets of statements
an exact number of times and in a given order. This criterion is stronger
than statement coverage, but weaker than path coverage, because it ig-
nores the coverage of sub-paths that do not include calls to Web services.
The effectiveness of the concrete execution discovery engine is extremely
important for the effectiveness of SEIM.

Several analysis techniques can play the role of concrete execution dis-
covery technique, for instance concolic execution [75], symbolic execution [7],
and random testing [67]]. The current SEIM prototype implementation uses
the JPF symbolic executor [7] as concrete execution discovery engine.

In the following we illustrate how SEIM generates a finite set of se-
quences from the current FSA, how SEIM obtains information about the
feasibility of the sequences, how SEIM refines the FSA according to the col-
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Yo

getSingleltem

Figure 4.5: The interaction protocol produced for the running example.

lected information, and the result obtained for our running example.

Sequence generation

The concrete execution discovery engine (JPF) works on a finite set of be-
haviors (sequence of calls to Web Service operations) that cover a given set
of FSA elements. SEIM is not bounded to a specific coverage criterion, but
can use different criteria depending on the goals. In SEIM, the goal is to
identify and eliminate as many infeasible behaviors as possible within rea-
sonable execution boundaries. We thus decided to cover not only all the
statements and the elementary control flows of the FSA (node and state-
ment coverage), but also a sample of repeated sub-behaviors (loop cover-
age). In this way, SEIM collects enough information to successively elimi-
nate infinitely many infeasible behaviors from the FSA, when the unbound
repetition of some loops in the FSA is infeasible. In the running example,
we generated a set of behaviors that covers all loops of the FSA that tra-
verse the same state no more than L times. Our experience with SEIM
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indicates that with L = 3 SEIM can already identify and eliminate many
infeasible behaviors efficiently. The choice of a proper value for L may de-
pend on the application domain and the nature of the code. Tuning the
choice of the coverage criterion and the parameter values is part of our
ongoing research work. For the running example, SEIM produces 252 call
sequences (behaviors to be checked for feasibility) that cover all loops up to
a depth of 3 (L = 3).

Feasibility analysis

To determine the feasibility of a given sequence of calls, SEIM attempts to
generate a concrete execution that traverses the statements that call the
Web Services the number of times and in the order indicated by the se-
quence. In the following, we indicate these statements as call statements
for brevity. SEIM uses JPF to explore the set of behaviors extracted from
the FSA according to the chosen coverage criterion. Here we illustrate the
process by referring to a single sequence of statement calls. Generaliz-
ing the process to a finite set of sequences complicates the presentation but
does not include complex technical steps. To check for the feasibility of a se-
quence of call statements, SEIM modifies the program under analysis by in-
troducing a string variable that represents the sequence of call statements
traversed by the current execution. SEIM initializes the string to an empty
value, and incrementally adds to the string the call statements traversed
while executing the program with JPF. JPF drives the symbolic exploration
of the execution space by trying to produce a string that matches the target
searched sequence. Thus, when the string variable added to the program
does not match the prefix of the target sequence, JPF can immediately ex-
clude the corresponding portion of the execution space. For instance, if
SEIM looks for a sequence with calls to m1, m2 and m3, JPF looks for ex-
ecutions that produce a value "m1 m2 m3" for the added string. When
the value of the string is inconsistent with the searched value, for example
"ml m3", JPF can exclude the corresponding portion of the execution space
without further exploring it.

In summary, the overhead introduced by JPF is limited by three main
factors: SEIM invokes JPF only once for the whole set of sequences to be an-
alyzed, limits the exploration of the execution space by binding the number
of loop executions to L, and prunes the portions of the space to be explored
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according to the given sequences as discussed above.

For each call sequence, the concrete discovery engine, in our case JPF,
can produce three results: feasible, infeasible or unknown. SEIM classi-
fies a call sequence as feasible, if JPF finds at least a concrete execution
that matches the sequence. SEIM classifies a call sequence as infeasible, if
JPF can show that there exists no concrete execution that matches the se-
quence. SEIM classifies a call sequence as unknown, if JPF does not reach
a conclusion. Typically, this happens when JPF does not terminate because
it cannot handle some symbolic expressions derived during the exploration
of the execution space.

Refinement

SEIM uses the information about infeasible and unknown sequences to
generate two FSAs representing these two classes of sequences. Here we il-
lustrate the process of building the two FSAs. We first build two Prefix Tree
Acceptors (PTA): 1-pPTA for infeasible sequences, and U-PTA for unknown
ones, with the classic algorithm described by Bierman and Feldman in [20].
Paths in a PTA represent single executions with no loops, thus simply re-
fining the FSA produced after the second step by removing the behaviors
accepted by the I-PTA and the U-PTA can eliminate at most a finite set of
infeasible behaviors. To generalize the finite set of executions and prune a
possibly infinite set of executions, SEIM transforms the PTAs in FSAs by
using the heuristic of the kTail inference algorithm proposed by Bierman
and Feldman [20]. The kTail heuristics merges sets of likely equivalent
states that are defined as pairs of states that accept the same behaviors up
to length k. This heuristic produces two automata that include loops and
other complex behaviors: 1A from I-PTA, and UA from U-PTA, respectively.
Since SEIM explores concrete executions by exploring loops up to length
L, it makes sense to assign a similar value to the k parameter of the kTail
heuristic. In the running example, we use k = 4.

SEIM uses T2 and UA to refine the automaton A produced after the sec-
ond step into two final automata F-Aut and U-Aut. The automaton F-Aut
accepts the likely feasible behaviors of the program under analysis, and is
defined as F-Aut = (A\ IA)\UA. The automaton U-Aut accepts only the be-
haviors with unknown feasibility, and is defined as U-Aut = UA N A. In the
formula above N represents the intersection between automata, and A \ B
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is defined as A N B, where B is the complement operator [44]. The two au-
tomata provide a detailed representation of the behaviors of the component
under analysis, together with important information about the feasibility
of the behaviors.

4.2 Discussion

In our running example, JPF terminates the analysis of all the 252 se-
quences, thus it does not find sequences with unknown feasibility. This
result depends on the ability of JPF to handle all the statements in the
component under analysis, but is not necessarily true for an arbitrary pro-
gram. JPF classifies 198 sequences as infeasible, and 54 as feasible. The
large amount of infeasible sequences, which represent behaviors that ap-
pear to be feasible from the ACFG, but are not feasible when analyzing the
concrete execution conditions in the code, depends on restrictions in the
combination of methods. As in many industrial cases, several behaviors
that are feasible at the component level depend on the specific combination
of the single units. The ACFG simply combines different behaviors accord-
ing to the static structure of the code and thus cannot reveal the many
infeasible combinations. On the contrary, SEIM refines the initial ACFG
with an estimation of the feasibility of the call sequences, and can correctly
identify many infeasible combinations. Thus, it produces a more accurate
model.

For example, one of the execution flows of method findBestExpiring-
Item returns an empty string that prevents further requests to Web ser-
vices in method get ItemByBid. The ACFG contains many infeasible se-
quences that include a call to method findBestExpiringItem, which re-
turns an empty string, followed by calls to method get ItemByBid, while
SEIM prunes all these infeasible sequences.

Figure shows the refined model produced for the running example.
The readers may notice that the FSA in Figure |4.5| seems to be easier to
inspect by software engineers because of its regularity and correspondence
to the code. However, the FSA before refinement shown in Figure is
less precise than the refined FSA in Figure and thus the FSA before
refinement is much less useful than the refined FSA for verification and
validation. To confirm this intuition, we measure the quality of the model
extracted by SEIM in the running example in terms of precision and recall
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before and after the refinement. We obtained the data with the QUARK
framework [52]] that can automatically generate traces from an inferred
and a reference model, and compute precision and recall with respect to
the FSA that exactly matches the behavior of the program. Table sum-

marizes the results.

precision | recall
FSA before refinement 0.32 1
FSA after refinement 0.9 0.92

Table 4.1: Precision and Recall.

The precision and recall of the FSA built before the refinement step
confirm that this FSA is a complete (recall = 1), but imprecise (precision
= 0.32) representation of the possible interactions of the component under
analysis. The precision and recall of the refined FSA confirm that the SEIM
effectively removes most infeasible sequences (precision = 0.9) missing only
few correct behaviors (recall = 0.92) The absence of an FSA with unknown
behaviors in the case study indicates that the SEIM refinement step has
been precise.
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Figure 4.6: The refined FSA for the running example.



Chapter 5

Black-box Detection of
Interaction Models from
GUI-Based Systems

In Chapter 4 we presented SEIM [60], a static analysis technique that ex-
tracts interaction models for Web Service applications. SEIM effectively
limits models imprecision by identifying and eliminating many infeasi-
ble behaviors from the inferred models. SEIM also generates information
about the precision of the identified behaviors by distinguishing likely fea-
sible behaviors from interactions whose feasibility is unknown. Figure|5.1
graphically shows the kind of improvement introduced by SEIM.

Static analysis techniques require source code to be successfully ap-
plied. Unfortunately this requirement hinders the applicability of these
techniques, because systems can be provided without source code. Further-
more static analysis techniques produce scarce results when source code
contains complex programming structures (for instance, the use of polymor-
phism, dynamic class loading, and aliases reduces the effectiveness of the
analysis). When systems cannot be effectively analyzed with static analy-
sis, an effective approach is to use information available at run-time. This
complementary approach uses only dynamic behaviors without deriving a
model that accepts a super-set of the possible behaviors and then refining
it. Rather an inference strategy based on dynamic information builds mod-
els from behaviors observed at run-time. Such strategy can be completely
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Interactions accepted by the FSA before refinement

Interactions accepted by the FSA before refinement

Figure 5.1: Model refinement with SEIM.

based on a black-box data.

In this chapter, we present a black-box technique that incrementally
produces new executions useful to increase the completeness of the inferred
models. The technique uses machine learning [77] to explore the execution

space.

5.1 Overview of the technique

Deriving complete models from program executions requires the extensive
exploration of the execution space. The key idea of the technique presented
in this chapter is the use of machine learning to emulate the activity of the
user, automatically understands how an application can be used, and thus
extensively sample the execution space.

The process to generate a behavioral model is composed of two phases:
the exploration phase, which discovers and produces new executions, and
the inference phase, which generates an FSA from traces recorded during
the exploration phase.

In the exploration phase, the technique uses reinforcement learning [77]
to understand how to interact with the application and incrementally pro-

duce new executions. Reinforcement learning includes learning and decision-
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making. The former is used to learn how the target application can be used
and the latter is used to produce new executions. While new executions are
produced, our technique records traces. In this chapter, we illustrate the
technique with specific reference to the derivation of a model that repre-
sents interactions between an application and Web Services. Thus, traces
consist in sequence of invocations of web service operations.

In the second phase, the technique generates behavioral models that
summarize interactions with Web Services in the form of finite state au-
tomata.

In the following, we first present a running example of an application
that integrates the Twitter Web Service. Then, we detail how the technique
works. Finally, we present the empirical results obtained from the analy-
sis of the running example, which show that the technique can extract a
precise and complete model of the usages of the Tweeter Web Service, by
interacting with the GUI of the application.

5.2 Running example

The running example is Twitthere [15], a desktop client Java application
that implements a GUI for interacting with the Twitter Web Service. Fig-
ure shows a screenshot of the GUI implemented by Twitthere. At the
startup of the application, no tweets appear in the GUI. Tweets can be
added by using the GUI, and thus interacting with the Tweeter Web Ser-
vice.

The operations of the Twitter Web Service that are used by the Twit-
there application are shown in Table The first column describes the
action that can be executed by using the widgets specified in the second
column. The second column indicates the GUI elements that must be used
to produce the service invocation indicated in the last column. The num-

bers in the second column refer to the widgets in Figure 5.2

5.3 Learning from system interactions

During the exploration phase the technique uses a learner and decision-
maker to execute the target system and records behavioral information.
Exploration is treated as a reinforcement learning problem. The learner
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Figure 5.2: A screenshot of the Twitthere application.

and decision-maker are both implemented in a single component that it
is called agent. The agent interacts interacts with an environment, that
in our case is the GUI of the application. A GUI [89] is composed of a
set of widgets W = {ws,...,w,} consisting of executable GUI elements,
e.g., buttons, text fields, etc.. Each widget w; € W has a set of properties
Pvi = {p}",...,p¥}, e.g., color, size, font, etc., and each property p;"* € P
can assume a set of values VPi& = {vl’?i,...,vizw}, e.g., red, bold, 16pt,
etc.. Interactions consist in the execution of the widgets, e.g. clicking a
botton, filling in a text field, and marking a check box. The reaction of the

environment consists in a new screen that is presented to the agent.

The structure of an agent-environment interaction is shown in Figure|5.3|
where at each time step ¢, the agent receives the current representation of
the GUlI-state s; € S, where S is the set of all possible GUI-states. Given
the current GUI-state, the agent selects a GUI-action, a; € A(s;), where
A(s;) is the set of actions available in state s;. One time step later the
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WS Action Widget combination API (twitter4j [14])
mention a tweet 1;5 Twitter.retweetStatus (statusID)
reply to a tweet 2;5 Twitter.updateStatus (text, statusID)
cancel an own tweet 3 Twitter.destroyStatus ()
write a tweet 4;5 Twitter.updateStatus (text)
refresh 6 Twitter.getHomeTimeline ()

Table 5.1: The actions that can be executed with Twitthere, the widgets that must
be used to perform these actions and the corresponding Web Service operation that

is executed.

agent receives a numerical reward [77] r;;1, and the GUI reaches a new

state s¢y1.
Agent
reward GUI-state GUI-action
lt+1 St +1 at
GUI

Figure 5.3: The agent-environment interaction in reinforcement learning.

In particular, a GUI-state s; € S is composed of a set of triples and is
defined as:

{(wy, PYr, ST, L (wn, PUm, ST

SP"" is the set of values of the properties in P** for each widget w; € W.
It is defined as {v} i e, vf’nfl +. A GUlI-action is a function a;(s;) = sy that
changes the GUI-state. s;y; is the GUI-state resulting from the execution
of action a; on GUI-state s;. The reward function computes the reward r; 1
by mapping each GUI-state transition to a value that varies from 0 to 1 and

is defined as:

#NewElems(Wi11, W) + - ew, ., nw, rateChangedProps(w,t + 1, t)
(Wit

where

#NewElems(WtH, Wt) = ‘Wt—i-l \ Wt|,
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Dif f(PW,SF" sP"
RateChangedProperties(mt+1,t):# ZEA |PW‘H1 L ),

and #Dif f(PW, Sﬁrvlv,Sf ") returns the number of properties in PV that
have a different value in the sets S7 and S/ .

The reward estimates how good it is to perform a given GUI-action in a
given GUI-state (or how good it is for the agent to be in a given GUI-state).
Since the long-term objective of the agent is to maximize the total reward it
receives, and since our goal is discovering new ways to execute the system,
the return value is higher when the GUI-state resulting from the execution
of an action significantly differs from the previous state. Intuitively a high
value corresponds to the possibility to access a completely different area of
an application, thus giving high chance to discover new executions.

At each time step, the agent has a given probability of selecting each
possible GUI-action. This probability results from a policy [77l, 7;, where
m¢(s,a) is the probability that a; = a if s; = s. The policy defines how the
agent interacts with GUIs. A policy is a mapping from perceived GUI-states
of the environment to a set of probabilities for the actions enabled at that
state. The agent alternate the selection of the action with the highest prob-
ability to random actions and changes its policy as a result of its experience.
The goal is to maximizing the total amount of reward it receives over the
long run, that is the optimal policy. The agent finds the optimal policy by
computing the action-value function Q*(s,a) or value function V*(s) [[77]
that return the value of taking a GUI-action a in a GUI-state s under a
policy 7. A policy 7 is defined to be optimal if it returns values greater than
or equal to that of any other policy 7/, for all GUI-states.

In order to execute the system and record interaction traces, the tech-
nique runs steps within episodes. A simple step is a time step as shown
in Figure (thus a single action is executed in a time step), and episodes
end when a maximum number of steps is reached. Each step represents
a simple system interaction and an episode produces an interaction trace.
All episodes share the same initial GUI-state s,.

Once traces have been collected, the behavioral model can be inferred
with any inference technique that works with positive traces. Here we used
the kTail inference technique proposed by Biermann and FeldMan [20]].
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5.4 Toolset

5.4 Toolset

To implement the technique described in this chapter, we defined the tool
showed in Figure [5.4]that integrates IBM Rational Functional Tester [4]], a
suite for functional and regression testing, and Teachingbox [12]], a toolbox
for training robots. IBM Functional Tester is used to interact with GUIs of
desktop applications independently from the specific library that has been
used to implement the application under analysis. Teachingbox [12] in-

cludes the reinforcement learning algorithm.

service request .\A\Ieb Service

service response

interaction
trace

observed state
action
[
model
inference
s
Inferred model b3 @
] 8 s ¢
- & N
3 g |9
@
TEACHINGBOX
b =
g
¢ S
[eb]
K]
=
Black-box detection of interaction models b

Figure 5.4: The implemented tool.

To permit our tool to concretely interact with GUIs of the analyzed ap-
plication, we defined and implemented the support for set of widgets and
corresponding actions. Table shows the set of supported widgets. The
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set of widgets is sufficient to analyze the most of desktop applications that

use GUIs. However it can be easily extended any time a new widget is

discovered.
Widget Actions
TextField setText
TabbedPain click
TextArea setText
CheckBox clickSelect; clickSelect
MenuBar click
TextPane setText
RadioButton clickSelect; clickSelect
Table multiSelect; doubleClick
Menultem click
CheckBoxMenultem | click
Spinner click
ComboBox clickFirst; clickAtHalf; clickLast; click
Tree halfSelector
List clickFirst; clickAtHalf; clickLast; click
Menu click
Slider click
FormattedTextField setText
Button click; drag
Label click
ScrollBar scroll

Table 5.2: The set of widgets and the corresponding methods implemented in our

tool.

5.5 Results from the running example

The goal of the empirical validation is to explore a large portion of the ex-
ecution space of the program and thus infer a model of the communication
between Twitthere and the Twitter Web Service. The hard job is that not all
the interactions with Web Service are executed with a single GUI-action,
as shown in Table For example, a single interaction with the GUI is
sufficient producing simple invocations to Web Service, such as GUI-action
cancel an own tweet or refresh, but many other interactions require the ex-
ecution of a combination of GUI-actions. Therefore, the agent has to learn
how to execute the right combinations of GUI-actions.

To record Web Service invocation, we instrumented the application with
the java library twitter4j [14].

By running 500 episodes with 10 steps each, the techniques discovered
all the GUI-actions and their combination. To run all the episodes we took
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2 days by using a standard desktop computer (Intel Core Duo, 2GB RAM).
We generated behavioral models from traces. To evaluate the quality of the
model extracted, we measure model precision and recall. To obtain values
of precision and recall, we use the QUARK framework [52] that can au-
tomatically generate traces from an inferred and a reference model, and
compute precision and recall with respect to a reference FSA that repre-
sents the real the behavior of the program. For the purpose of this valida-
tion, we derived the reference FSA manually by inspecting the code of the
application.

We obtained a precision of 1 and a recall of 61.55. Values show that the
behavioral model well represents correct uses of the system (precision = 1),
but does not include all the possible correct Web Service interactions (re-
call = 61.55). This limitation is caused by the length of episodes. In the
reference model all states are final states, so the behaviors accepted by the
reference model includes behaviors of length 1 or 2, while the execution of
long episodes only prevents the generation of short interaction sequences
(in fact the shortest sequence that has been recorded has length 3). How-
ever, the short interaction traces are rejected by the inferred model only
because of a few missing final states. The interpretation of the results sug-
gests that using episodes of different length, including very short episodes,
can strongly improve the completeness of generated models.
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Conclusions

Behavioral models play an important role in software development. In test-
ing and analysis behavioral models have been used to complement specifi-
cations, to generate test cases, to define oracles, and to identify anomalous
behaviors. In many cases behavioral models are not available and must be
extracted automatically from the system under analysis. When models are
automatically inferred, the effectiveness of testing and analysis techniques
strongly depends from the quality of the model, and thus from the quality

of the inference.

Since a model that is widely used to represent the behaviors of software
programs and that can be easily inferred is Finite State Automata, this
PhD thesis investigates the problem of inferring Finite State Automata
that support programs analysis and testing. In particular, the thesis first
presents an empirical assessment of state of the art inference techniques,
then introduces a white-box technique that detects fairly complete models,
and finally it describe a black-box technique for the inference of fairly sound

models.

The empirical comparative study investigates the trade-offs between
techniques that infer Finite State Automata and those that infer extended
Finite State Automata and discusses complementarities, strengths and
weaknesses of the existing techniques providing some useful elements to
decide the inference technique to use depending on the kind of information
that should be accurately represented into the Finite State Automata. In
particular, we evaluate kTail, kBehavior, gkTail and kLFA with a set of
case studies extracted from real software systems that include behaviors

that can be uniquely captured with extended models.

The white-box technique can extract interaction models from program

code by pairing a generation step with a refinement step to identify and
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eliminate many infeasible elements from the static model. Moreover, the
technique generates precise models by distinguishing likely feasible behav-
iors from behaviors whose feasibility is not known.

The black-box technique can generate interaction models from program
execution by incrementally producing new executions with a machine learn-
ing approach that systematically explores the execution space. The inferred
models are precise, because behaviors are dynamically identified, and in-
crementally more complete, depending from the degree of exploration.

Results obtained from the empirical comparative study show that tech-
niques that infer extended models are too expensive and imprecise to be
applicable in many real scenarios. Rather the inference of simple FSAs is a
good compromise between the precision of the model and the applicability
of the techniques.

Results obtained with SEIM when applied to an application that inter-
acts with the eBay Web Services show that it is possible to generate Finite
State Automata that are fairly complete and with good precision, because
the technique effectively removed most infeasible sequences missing only
few correct behaviors.

Results obtained from the experience of the black-box technique with
an application that interacts with the Twitter Web Service show that the
behavioral model generated with a black-box approach can represent the
real behavior of a system with a fairly sound and complete model.

Even if both techniques can produce good models, the empirical results
show that the white-box approach privileges completeness to soundness,

while the black-box approach privileges soundness to completeness.

We are currently working to extend the empirical validation with addi-
tional cases to produce results that can be better generalized, to integrate
the two complementary techniques and use the extracted models in verifi-

cation, validation and conformance analysis of service-based applications.
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