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Introduction

The concept of a joint approach in regard to Multilevel Models and Stochas-
tic Frontiers developed in light of the increasing levels of interest in costs
related to health care services, including hospitals, over the last few years.
At the same time, both consumers and policy makers prioritize the quality
of these services, and a holistic approach is required to identify areas for
improvement in this regard. Quality in healthcare services means the ability
to meet specific requirements, and it is the result of scientific, technical and
technological, organizational, procedural and relational factors , where the
human variable plays a primary role, interacting closely in the production
process (Vittadini (2006)). In the present day many industrialized countries
have healthcare systems which designate resources to hospitals according to
predefined tariffs for each pathology. For example, the Lombardy Region
in Northern Italy establishes an annual tariff for Diagnostic Related Groups
(DRG). Therefore, the structure of the public health system depends on na-
tional and regional political decisions, but it becomes self-governing from an
operational point of view. Accordingly, hospitals can be compared to firms,
thus admitting functional models in an entrepreneurial way and introduc-
ing competition between the various healthcare structures. Hospitals try to
devise an organizational model which allows the reduction of costs by opti-
mising the use of available resources, while simultaneously increasing patient
satisfaction by providing optimal medical assistance. Healthcare is currently
following this trend and in many countries it is based on a mixed welfare sys-
tem made of private profit-oriented agents, private non-profit companies and
public hospitals. Consumers are free to choose between them. Within the
health care system in Lombardy, consumers have an open choice in deciding
where they prefer to receive care. Freedom of choice is a basic principle and
it is the basis for all other principles. The purpose of this work is to create
decisional models similar to those used in financial planning, with a large
number of variables, with the aim of estimating the risks involved in some
enterprises, and devising accordingly appropriate allocations of funds.



This study is on the basis of the following structure: the first chapter
is dedicated to the multilevel model. As there are several potential devel-
opments and applications of the multilevel, this section is effectively a de-
scription of its context and principal characteristics. The multilevel model is
contextualized in the measure of the health care, so the first aspect consid-
ered is the the adjustment of data according to patient-specific and hospital-
specific variables. It is also possible to use other techniques, like direct and
indirect standardization, linear and logistic models, but the most complete
technique is the application of the multilevel model. It is crucial to examine
the reasons behind not neglecting the real structure of the data, and the
various problems which arise if the structure is ignored. Furthermore it is
necessary to introduce a measure which is a descriptive statistic that can be
used when quantitative measurements are made on units that are organized
into groups. It describes how closely units in the same group resemble each
other. In this case we refer to the intra class correlation index. In our case
we have developed a three level analysis, so we describe the method behind
computing the coefficient for a three level model. At the end of the chapter
we also list some critiques addressing the incorrect application of multilevel.

The second chapter is dedicated to the stochastic frontier, and is a theo-
retic description of this model with a different possible application. In doing
this we underline the reasons which led us to use it for hospitals. The in-
teresting aspect is the possibility of seeing the hospital in terms of distance
from its frontier of optimality. In this way we take the economic aspects
of the structure into account, and we can see its effectiveness in terms of
efficiency. It is clear that inside the frontier there is no consideration for the
hierarchical structure of the data, but is important to not neglect the real
structure of data (as we have explained in the previous chapter). This is an
evident reason that allow us to consider both the models together, with all
the strength stressed, and all the weaknesses overcome.

Chapter number three is about the characterization of data. The first sec-
tion describes the data available and the sources, on a general basis. Then
we continue with a section analyzing variables of patients and a further sec-
tion on the hospitals variables. We have decided to describe the variables we
have utilized in the model solely, but - as is stated throughout the study - we
collated plenty of data, as well as other variables that we excluded from the
model as they were either not of interest for our actual research, or because
they impeded the convergence of the model. Although we considered and
modeled some of the variables which were not used, we concluded they were
not material or pertinent for the explanation of our model.

Chapter four comprises a description of the model that we have applied
to the data. In the first section we describe in general the concept; then we



continue by describing the two step methodology, and the two steps which
were implemented. For each step we explained the particular procedure
utilized with the peculiar feature which led us to it. For the second step we
also describe the two variables we introduced after the first step because are
the result just of the first step of the analysis. In addition we have proposed
a section with possible future developments that we have elaborated during
this work.

Finally chapter five is about the results we obtained through the analysis.
An initial section has comments on the first step, namely the multilevel.
These comments on the coefficient and the model itself can be utilized on their
own to obtain interesting results, but in this section we exploit their utility
for the subsequent application of the frontier. Therefore in the subsequent
section we comment on the results of the frontier.

The conclusion section contains some considerations we have made in
light of the whole work.






Chapter 1

Multilevel and Healthcare

We commence our discussion by describing the models that we will use during
the analysis: the first being the multilevel model, that takes into account the
hierarchical structure of the data and addresses performance; and the second
being the stochastic frontier model, which considers the maximum technical
efficiency achieved.

Multilevel Analysis is a way to analyze data with complex patterns of
variability, focusing the attention on nested source of variability. Classical
examples are pupils in schools or patients in hospitals. Considering variability
at each level is both useful, and allows us avoid errors in addressing incorrect
data.

Multilevel Analysis comprises statistical techniques and methodologies.
This type of analysis is mainly used in the fields of social science, like so-
ciology, education, psychology and economics. The Multilevel Analysis is
a stream which has two tributaries: contextual analysis and mixed effect
models (Snijders and Bosker (1999)).

Contextual analysis is a development in social science that focuses on
the effects of social context on individual behaviour. The individual and
the context have different sources of variability that have to be modeled as
random inferences.

The mixed effects models are all the statistical models that one finds
behind an analysis of variance or inside a regression analysis where some
coefficients are random and others are fixed.

The principal statistical model of multilevel analysis is the hierarchical
linear model. It can be viewed as an extension of the multiple linear regres-
sion model to a model that includes nested random coefficients.

After this general description of the multilevel analysis we are going to
context the multilevel model inside the set of instrument for the measurement
of healthcare services.



1.1 Measurement of Healthcare Services

When analyzing Healthcare Institutions it is necessary to purify the data
from the effects of case mix variables in order to facilitate comparisons be-
tween different healthcare institutions on a like for like basis . Specifically this
requires the adjustment of data according to patient-specific and hospital-
specific variables. We consider different Risk Adjustment Methodologies.
These techniques allow us to measure quality in terms of relative effective-
ness, without bias resulting from case mix influence.

1.1.1 Direct and indirect standardization

Direct standardization (Zaslavsky (2001)) is computed as follows: given yy;
health outcome observed in the k — eth status of the population patient and
Tk = Wii/ X wi;(k =1, ...,q), proportion of the k—eth case mix characteristic
in the j — eth health structure, the weights of the outcome. The observed
adjusted outcome is the weighted sum: y; = Y}, myr;. This type of stan-
dardization has limitations: it is not possible to compute a standardized
score for a stratum with no cases or with missing cases, and furthermore it is
not adapted to adjusting simultaneously for several variables or for continu-
ous variables. Another approach is the indirect standardization. Given the
weighted sum: §; = }p, 7Yk, where the weights 7;; are obtained from a stan-
dard theoretical population, in order to evaluate the relative effectiveness of
the j-eth health structure, we compare the observed adjusted outcomes with
the expected adjusted outcomes: u; = yj/y;. This standardization is not
suitable when there are several case mix indicators or when the indicators
are not discrete.

1.1.2 Linear and logistic models

Below we describe the linear and logistic models used as a method of risk-
adjustment. We can define: y;; = Bx;; +e;;, where y;; is the j-eth quantitative
outcome for i-eth patient, xz;; the corresponding patient characteristics, e;;
the error term, and [ is a vector of coefficients. The first term of the equa-
tion captures the effects of individual characteristics x on outcomes for the
patients of the same unit. In other cases a covariance analysis is proposed:
Yij = Bxi; +uj + €;;, where u; captures the hospitals heterogeneity in reach-
ing a given quality in healthcare services of the j-eth agent. In the simplest
formulation with dichotomic outcomes (the most commonly used is the hos-
pitals mortality risk), the logistic function models calculate the logit of the
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outcome p;; as a linear function of the case mix variables =, (k=1,...,p):

Pij
ln(l _;) =+ lelij + 62.]721']' + ...+ ﬂkmki]‘ = RSU
ij

with RS;; risk score associated to ¢ — eth patient of j — eth structure. It can
be illustrated in terms of probability:

i = e + (11j + ooy + o+ By e
/A - .
J 1+e*+ /611'11']' + 521‘21‘]‘ + ...+ ﬁkxm] 1+ €RS”

Where p;; is the observed probability (equal to 0 or 1) regarding the positive
or negative occurrence of the dichotomic outcome. By estimating the vector
of parameter 3 and substituting 3 we obtain the expected probability p;; =

TR Comparing p;; with p; we arrive at an estimation of the effectiveness
of the j —eth health structure for the ¢ — eth patient. Therefore the expected
value of p;; is obtained as: E (p;;) = Z?jl Di; and the correspondent value
of the observed probabilities Z?jl pi; the ratio u; = %ﬁ“, estimates the
effectiveness of the j — eth health structure.

In some cases logistic or linear models are not adequate for the calculation
of the relative effectiveness of health structures for the following reasons: first
a sample of agents is chosen in the agents population; and more importantly
secondly, the data often shows highly structured hierarchies because patients
or episodes of care are nested within health structures and the higher levels
of health institutions. In addition measures of quality are likely to differ for
subgroups of patients within a single broad category, where the variety in
numbers of secondary diagnoses, patients of different ages and sexes, and
previous medical histories are all likely to influence outcomes. The charac-
teristics of both patients and health structures need to be taken into account
(Normand et al. (1995)). The solution to all of these drawbacks is the use
of hierarchical models, and in particular we advocate the multilevel model,
following the finding of several authors.

1.1.3 The Multilevel Model

We now consider the most important element of risk adjustment. It is not
a technique, but a model that takes into account the hierarchical structure
of the data. This is a global method of adjustment of the data, and has a
strong assumption of linearity, but it is more complete. Multilevel models
are a particular specification of hierarchical models, that offer solutions for
studying the relationship between outcomes (such as mortality, health and
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quality of life ...) and contextual variables in complex hierarchical structures,
considering both individual and aggregate levels of analysis (Goldstein and
Rasbash (1996)). During the nineties several authors proposed the study of
“relative effectiveness” by means of Multilevel Model (Hox (1995)). Some
of these including Carlin et al. (2001), Goldstein and Spiegelhalter (1996),
Leyland (1995), Verbeke and Molenberghs (2009) and several others, use this
basic model.
The Multilevel model specified for the j — eth outcome is:

Yij = Boj + B Xij + €5

where Y;; measures the outcome relative to the i—eth subject inside the j—eth
hospital. Here (y; is the random coefficient interpretable as the hospitals-
specific heterogeneity with regard to outcome Y;; adjusted for patient char-
acteristics made up of fixed coefficients of patient covariates, a measure of
relative effectiveness; Xj;; is the vector of explicative variables whereas ¢;;
are the independent residual, with zero mean, at subject level. Casual pa-
rameters are usually obtained by means of bayesian inference (Leyland and
Boddy (1998)) and they can have prior distribution, above all, in the case of
patients. Subsequently, there must be particular focus on estimation param-
eter procedures as well as the statistical properties of the estimators with
respect to single model parameters and different parameter typologies (fixed
effects and variance components at different levels of hierarchical structure)
as a whole.

Given the hypothesis that the parameters 3y, and 3;; are random vari-
ables, with constant variance and known distribution, it is also possible to
insert into the model variables of superior level, so the multilevel model be-
comes:

Yij = [Y00 + 110Xi5 + 70175 + 711 Z; Xij] + [ua; X5 + uoj + €45]

with By = Yoo + Y012, + wo; and 3; = yi9 + Y1145 + u1j, where the Z; rep-
resent the explanatory variables at hospitals level. The distribution of the
dependent variable influences the choice of linear model -if we have a dichoto-
mous outcome- the linear model will have the characteristics of a logistic
regression model. The wg; is a random variable that identifies the relative
effectiveness of the j — eth hospital structure net of risk factors. We assume
that the residual of the model ¢;; are uncorrelated with null expected value:
E(e;;) = 0;Var(e;;) = 02, We assume that the casual parameter wug; has
®(ug;) distribution with constant variance : Var(ug;) = 2. This model is
particularly suited to evaluate relative effectiveness because it allows for the
specification of variability within and between groups.



The basic version of the Multilevel Model used by the authors previously
mentioned is subject to some restrictions which limit its utility in practice.
The basic version considers only one outcome at a time, like the response
variable; it does not consider hospital-specific characteristics as possible co-
variates; it makes the assumption of binomial distribution of the outcome and
of multinomial distribution of random disturbance and the random parame-
ter of effectiveness; and there is no correlation between the expected values
of the patients characteristic and the effectiveness of casual parameters, and
finally it is a static model with fix effects (multilevel with mix effects).

We can make some generalizations to assure the utility of the model in real
cases. In order to obtain solutions we avoid traditional structural equation
models, which lead to indeterminacy of latent scores. Instead Partial least
Squares and Regression Component Decomposition methods, which approx-
imate latent variables by means of linear combinations of their indicators,
can be utilized.

When the indicators are qualitative or mixed, we can intervene in or-
der to obtain quantified observable indicators and their quantitative linear
transformations simultaneously, or as an alternative multidimensional scal-
ing methods can be utilized. The Rasch model is suitable for the estimation
of latent outcomes as it allows the estimation of objective measurement of
performance with the most agreeable properties.

Relative effectiveness needs to be adjusted for hospital characteristics. We
can introduce further equations describing hospital characteristics, which a
second level equation that expresses the random parameters wj,,(j = 1,..,p;v =
1,...,q) as a function of hospital characteristics. We can employ families of
distribution other than normal or binomial, in order not to be too restrictive.

Mixed effects models assume that the random effects of agents are inde-
pendent and not correlated with the expected values of patient’s character-
istics. In complex models this assumption might not be realistic. Individual
heterogeneity can be modeled poorly by the available subject-level covari-
ates, and this can affect the estimation of random effects dramatically. In
the linear case, possible remedies are based on the use of fixed-effects mod-
eling in place of random effects, correcting the incidental parameter problem
caused by using one parameter for each subject. In non-linear cases, fixed-
effects estimation is too complicated; we cannot rely on exact conditioning to
eliminate the subject-specific parameter, and therefore this is only possible
in a generalized linear model with canonical link functions.



1.1.4 Why use a probability model

It is informative to justify the use of a probability model when we have all the
data of a population available. To do this we have to digress on the sampling
theory, where a distinction between design-based inference and model-based
inference exists. The design-based inference implies that the researcher draws
a probability sample from some finite population. And the way in which the
sample is drawn by the researcher implies a particular type of probability
model. Instead model-based inference implies that the researcher postulates
a probability model, usually aiming at inference to some large and sometimes
hypothetical population. At the end of this process it is necessary to check
if the probability model is adequate, in this case it is possible to base the
inference on it.

One may also use a probability model if no sample is drawn but an entire
population is observed. The use of a probability model assumes statisti-
cal variability, even though an entire research population was investigated.
This fact can be justified by noting that in this way the conclusions can be
extended to a wider population. The investigated research population is sup-
posed to be representative for this wider population, also in the applicability
is not automatic. The researcher has to argue carefully the reason for which
the research population can be considered to be representative for the larger
population. The inference is not about individuals, but about mechanisms
and processes (which can be social, behavioral or biological). In order to take
into account the factors that are not included in the explanatory variable we
have the random effect or residuals that play this role. It will be possible
to use the model-based inference until the assumptions will be an adequate
reflection of the effects that are not explicitly included with the observed
variable.

1.1.5 Sampling

The simple random sampling is not always a cost-efficient strategy and there
is also the possibility to do a multi-stage sample that can be more efficient.
In this case the researcher has to consider the clustering of the data during
the phase of data analysis. Usually the multi-stage samples are employed to
see the relations between variables at different levels in a hierarchical sys-
tem. The main interest is on the dependency of observations within groups,
because in this way is possible to find the aspects in which groups differ.

In standard statistical situation, observations should be sampled inde-
pendently from each other. Commonly the standard sampling design is the
simple random sampling with replacement, which assures a constant possi-
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bility of selecting a certain single unit across all units in the population. But
there are more cost-efficient sampling designs, based on the idea that prob-
abilities of selection should be known but do not have to be constant. One
of these sampling designs is the multi stage sample, where the population of
interest consists of subpopulations, and selection takes place via those sub-
populations. When only one subpopulation level exists, the design is a two
stage sample. It is possible to notice a mistake which is to ignore the fact that
the sampling scheme was a two-stage one, and to pretend that the secondary
units were selected independently. The researcher overlooks the fact that the
secondary units were not sampled independently from each other and the se-
lection of a primary unit increases the chances of selection of secondary units
from that primary unit. The correction is the use of multi-stage sampling
design, leading to dependent observations. In practice multi-stage samples
are also preferred because the costs of interviewing or testing persons are
reduced enormously if these persons are geographically or organizationally
grouped.

1.2 What if we ignore the multilevel struc-
ture of the data?

We have introduced the multilevel analysis because we sustain that it is the
best way of analyzing data. In this section we seek to support this assertion.
In order to prove the efficacy of hierarchical model we can consider some
statistical methods for multilevel data that do not use the hierarchical linear
model.

1.2.1 Aggregation
The shift of meaning

A common way in social research of two levels data is the aggregation of the
micro-level data to the macro level data. One can normally do this by working
with the averages for each macro-unit. The aggregation is not a mistake if
the researcher is only interested in the macro-level proposition. But he has
to bear in mind that the reliability of an aggregate variable depends on the
number of micro level units in a macro-level unit, amongst others factors and
that thus this will be larger for larger macro-units than for smaller ones.

It may be the case that the researcher is interested in macro-level or
micro-level propositions, and in this case the aggregation may result in gross
errors. Under this scenario it is possible to commit a potential error which is
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the shift of meaning. A variable that is aggregated to the macro level refers
to the macro-units, but not directly to the micro-units.

The ecological fallacy

It is also possible to commit a second type of potential error with the aggrega-
tion which is the ecological fallacy. The problem that can arise is that a cor-
relation between macro-level variables cannot be used to explain something
about micro-level relations. An example that Snijders and Bosker (1999) use
in their book is that the percentage of black inhabitants in a neighborhood
could be related to average political views in the neighborhood. The higher
the percentage of blacks in a neighborhood, the higher the proportion of
people with extreme right-wing political views may be. This does not give
us any clues about the microlevel relation between race and political con-
viction. In this case the shift of meaning leads to incorrect conclusions: the
percentage of black inhabitants is a variable that means something for the
neighborhood, and this meaning is distinct from the meaning of ethnicity as
an individual-level variable. In general terms we can assert that the ecological
fallacy is a problem that can arise when the researcher infers characteristics
of individuals from aggregate data referring to a population of which they
are members. Such aggregate data are frequently used in geographical work,
referring to the populations of defined areas (hence they are often termed
ecological data), so the problem is potentially serious for some forms of geo-
graphical analysis.

The fallacy was initially highlighted by Robinson (2009). Using 1930
US census data, he obtained a high correlation coefficient of 0.773 from a
regression of the proportion of a state’s population which was illiterate on
the proportion which was black. It could be inferred from this that blacks
were much more likely to be illiterate than non-blacks, but using data on
individuals from the same source, he found a correlation of only 0.203: there
was a higher level of illiteracy among blacks than non-blacks, but much less
than the state-level (ecological) analysis suggested. The conclusion was clear:
just because blacks were concentrated in the states with the highest levels
of illiteracy this did not necessarily mean a much higher level of illiteracy
among blacks.

Alker (1969) extended the ecological fallacy (of identifying spurious in-
dividual - level correlations from analyses of aggregate data) by identifying
five others types.

e The individualistic fallacy which assumes that the whole is no more
than the sum of its parts (see regionalism) many societies are more
than mere aggregations of their individual members;
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e the cross-level fallacy assumes that a relationship observed in one ag-
gregation of a population i.e. one set of spatial units applies to all
others, and is thus a universal feature of that population: research on
the modifiable areal unit problem has demonstrated that this is invalid;

e the universal fallacy assumes that the pattern observed in a selection
of individuals often not randomly selected according to the principles
of sampling holds for its population;

e the selective fallacy in which data from carefully chosen cases are used
to ‘prove’ a point;

e the cross-sectional fallacy is the assumption that what is observed at
one point in time applies to other times.

Recognition of these fallacies and their associated pitfalls indicates a need
for careful interpretation of the results of studies based on aggregate data.
An observed relationship may be consistent with a hypothesis, but a causal
relationship should never be assumed: as Robinson’s example showed, wrong
conclusions can be drawn by attempts to move from the particular to the
general.

The problem of drawing conclusions about individual - level correlations
from aggregate data has long concerned social statisticians. Most attempts to
resolve it have failed, because they cannot avoid the possibility of producing
“nonsense” answers, such as a population in which 120 % of the members
are illiterate. However King (1997) has solved this issue for a particular
situation. For example if one has information on the number of black people
and the number of illiterates in each sub-area of a larger area for which the
inference is to be drawn, then using the “method of bounds” it is possible
to produce robust estimates of the number of blacks who are illiterate, the
number of non-blacks who are literate etc., in that larger area as well as in
each of the sub-areas.

The neglect of the original data structure

There is another type of potential error which is the neglect of the original
data structure, and it happens especially when some kind of analysis of co-
variance is to be used. It is possible that the averages of all groups are almost
perfectly on the regression-line, and this can lead to the incorrect conclusion
that there are almost no differences between the group we are studying. But if
we go into the details we can find for example that the micro-groups formed
have different inclinations. Working with aggregate data “is dangerous at
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best, and disastrous at worst” (Aitkin and Longford 1986). Dealing with
multilevel data without aggregation is possible by distinguishing between
the within-groups and the between-groups regressions.

1.2.2 Disaggregation

We can treat our data at the micro level, and this is possible if we also
have a measure of a variable at the macro level, or if we have only measures
of micro-level variables. Inside the study of between-group differences the
disaggregation brings a serious risk: to commit the I type error. This error
is when, on the basis of the observations that there is a differences between
individuals belonging to a particular group, the researcher asserts that there
is no such relation. Instead inside the study of within-group differences,
disaggregation often leads to unnecessarily conservative tests, with low type
I error probabilities.

If we have measures only at the micro-level, analyzing data at the micro
level is a correct way to proceed, also if it is important to take into account
that the observations are within a macro-unit, and inside the macro-unit they
can be correlated. Considering this aspect we are considering the sampling
theory, and in particular the two stage samples.

The conclusion of this examination of the method is that a multilevel
approach, where the within-group relations are combined, is more difficult
to implement but much more productive. The main request is to specify
assumptions about the way in which macro and micro effect are put together.

1.3 The intraclass correlation

The intraclass correlation coefficient represents the degree of similarity be-
tween micro-units belonging to the same macro-unit. We use the term ‘class’
to refer to the macro-units in the classification system under consideration.
It is possible to define and to consider this coefficient in several ways, but we
declare now our assumptions on the sampling design. We assume a two-stage
sampling design, and infinite populations at either level. The groups are the
macro-units. A relevant model is the random effects ANOVA model:

}/;j:,u"'Uj-i'eij (11)

Where p is the population grand mean, U; is the specific effect of macro-
unit 7, and ¢;; is the residual effect for micro-unit ¢ within this macro unit.
We can state that the true mean of the macro unit j is p + U;, and each
measurement of a micro-unit within this macro-unit deviates from this true
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mean by some value called R;;. The U; is a random variable, represents
the effect of differences of the units from on another and gives the name
‘random effects model’. It is assumed that all variables are independent, the
group effects U; having population mean 0 and population variance o2 , that
is exactly the population between-group variance, and the residual having
mean 0 and variance o2, that is the population within group variance. For
example we can have as micro-units patients, and macro-units hospitals, then
the within group variance is the variance within the hospitals about their
true means, while the between-group variance is the variance between the
hospitals’” true means. This model is also known in the statistical literature
as the one-way random effects ANOVA. The total variance of the model is
given by the sum of these two variances:

var(Yy) = o2, +o?.

We can write the number of micro - units within the j’th macro - unit with
nj, and the number of macro unit in NV, moreover we have a sample size of
M =% ;n;. Given these conditions, the intraclass correlation coefficient pr is
defined as:

population variance between macro-units o2

total variance 02 +02 (12)
This can be seen like a sort of proportion of variance, at group level. This
parameter is called correlation coefficient, because it corresponds to the cor-
relation between values of two randomly drawn micro-units in the same,
randomly drawn, macro-unit. The population variance between macro-units
is not directly reflected by the observed variance between the means of the
macro-units. This is because in a two-stage sample, variation between micro-
units will also show up as extra observed variance between macro-units.

At this point it is interesting to show how the intraclass correlation can
be estimated and tested.

Within-group and between-group variance

In this section we consider the macro-units groups. The principal goal is
to discover all the information contained in the data about the population
between-group variance and the population within -group variance, and for
this goal we consider the observed variance of the two type of variance. First
of all we provide below the functional form of the means that we need to
utilize. The mean of the macro-unit j is:

1 "
Yi=— > Y
J
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The overall mean is:

1 N nj 1 N B
Y :M;;Y;J—M;nﬁ/]

This variance is different in each group. If we are interested in a single value
that resume the within variance, we need to have only one parameter that
expresses the within-group variability for all group jointly. For this task
it is possible to use the observed within group variance, or pooled within
group variance. This is a weighted average of the variance within the various
macro-units:

S?uithm = MEN Zjj\il ZZJI (Y;j - Yj)2
1 N (1.3)
= UoW el (n; - 1)3]2'

If the model 1.1 holds we can affirm that the expected value of the observed
within-group variance is exactly equal to the population within-group vari-
ance: Expected variance within= €S2, .. =02. Going to the between-group
variance arise some complications, because we have to take into account the
group size. For equal group size n; there are no issues, the observed between-

group variance is defined as the variance between the group means:

1 X —
S2 =— Y.-Y)? 1.4
between N-1 ]Z:; ( - ) ( )

But if we have unequal group size we have to take into account the contri-
butions of the various groups, with different weights. We can use as weight:

! {M_zjni}:ﬁ_s2<nj>

"N M Nn

where . = M /N is the mean sample size, and the variance of the sample size
is:
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The formula that uses weights useful for estimating the population between-
group variance is the following:

Sbetween: (N 1)2”](Y Y)2 (15)

The total observed variance is a combination of the within-group and the
between-group variances, and we can express it in the following way:

. N M4 X 7
observed total variance = ﬁ i 2ty (Yi = Y)?

_ M-N @2 n(N 1 ¢2
- M-1 Swzthm -1 Sbetween

The complications for the between group variance arise because we have the
contribution also at the micro-level of the residuals R;;. The theory tells us
that the expected between-group variance is:

Expected observed variance between =

true variance between + expected sampling error variance

For the case with constant n; the formula is:

, 02
6Sbetween Uuo + 7
The second term of the formula becomes small when n become large. So
we can conclude that for large group sizes the expected observed between
variance is practically equal to the true between variance. Instead when we
have small group sizes it tend to be larger than the true between variance
due to the random differences that also exist between the group means. It is
clear that we do not know the population value of the between and within
macro-units variances, we need to estimate them from the data. At this point
we report the estimation formula without going into the details:

~2 _ Q2
O¢ = Swithin

2
A2 _ S _ S’wzthzn
Uuo — Mbetween 7

and finally also the estimated intraclass correlation:

52
O'u0

P= =3
02 + 07
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We are able to write the standard error of this estimator for the case where
all the group sizes are constant, n; = n:

S0 = (1= )1+ (1= Dpry - (16)

The estimator that we have given above is the so-called analysis of variance
estimators (ANOVA). They can be represented by specific formulas. We
can also use maximum likelihood estimation (ML) and residual maximum
likelihood (REML). If we have equal sample sizes, ANOVA and REML are
the same; if we have unequal group sizes, MLL and REML are slightly more
efficient estimators than ANOVA. Multilevel software are able to compute
ML and REML estimates.

Utility of intraclass correlation coefficient

The intraclass correlation can assume two types of values: zero or positive.
We now present a statistical test which is useful to assess if a positive value
for this coefficient has to be attributed to chance. Often it can be possible
to assume that the within-group deviations R;; are normally distributed,
and in this case is possible to use an exact test for the hypothesis that the
intraclass correlation is 0, which means that the between group variance is 0.
We are speaking about the F-test for a group effect in the one-way analysis
of variance (ANOVA). The test statistic is the following:

F — ﬁ'S(l?etween

Slzuithin

and has a F-distribution, with N -1 and M — N degrees of freedom if the
null hypothesis holds. In light of this consideration the intraclass correlation
coefficient becomes:

F-1

_ 1.
F+n-1 ( 7>

b=

If we also have covariates it can be relevant to test whether there are group
differences in addition to those accounted for by the effect of the covariates.
Here we are referring to the analysis of the covariance (ANCOVA). The group
effects do emerge when controlling for the covariates.

Finally in order to verify if the multilevel model is useful in a particular
situation, and to test whether a given nesting structure in a data set calls
for multilevel analysis, one can use standard techniques from the analysis of
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variance. How is it possible? If there is neither evidence for a main effect nor
for interaction effects involving the group structure, then the researcher may
leave aside the nesting structure and analyze the data by uni-level methods
such as ordinary least squares regression analysis (OLS). Some problems can
arise both when the group size is not too large or when we have too many
groups, but the use of statistical multilevel software will help.

Reassuming

In statistics, the intraclass correlation (or the intraclass correlation coef-
ficient, abbreviated ICC) is a descriptive statistic that can be used when
quantitative measurements are made on units that are organized into groups.
It describes how strongly units in the same group resemble each other. While
it is viewed as a type of correlation, unlike most other correlation measures it
operates on data structured as groups, rather than data structured as paired
observations.

The intraclass correlation is commonly used to quantify the degree to
which individuals with a fixed degree of relatedness (e.g. full siblings) re-
semble each other in terms of a quantitative trait (see heritability). Another
prominent application is the assessment of consistency or reproducibility of
quantitative measurements made by different observers measuring the same
quantity.

Modern ICCs

Starting with Ronald Fisher, the intraclass correlation has been regarded
within the framework of analysis of variance (ANOVA), and more recently
in the framework of random effects models. A number of ICC estimators
have been proposed. Most of the estimators can be defined in terms of the
random effects model

Yij = p+ Ui + e,

where Y;; is the j'* observation in the i* group, p is an unobserved overall
mean, «; is an unobserved random effect shared by all values in group i, and
€;; is an unobserved noise term. For the model to be identified, the o; and €;;
are assumed to have expected value zero and to be uncorrelated with each
other. Also, the a; are assumed to be identically distributed, and the ¢;; are
assumed to be identically distributed. The variance of «; is denoted o, and
the variance of ¢;; is denoted o..
The population ICC in this framework is

2
L

2 2°
Oyy T 06
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An advantage of the ANOVA framework is that different groups can have
different numbers of data values, which is difficult to handle using the earlier
ICC statistics. It should also be noted that this ICC is always non-negative,
allowing it to be interpreted as the proportion of total variance that is between
groups. This ICC can be generalized to allow for covariate effects, in which
case the ICC is interpreted as capturing the within-class similarity of the
covariate-adjusted data values.

A number of different ICC statistics have been proposed, not all of which
estimate the same population parameter. There has been considerable debate
about which ICC statistics are appropriate for a given use, since they may
produce markedly different results for the same data.

1.4 Three-Levels models

Initially is not difficult to extend the two-level regression model to three
or more levels. There is an outcome variable at first, the lowest level. In
addition there may be explanatory variables at all higher levels. Problems
arise for three and more level models which can become complicated very
fast. In addition to the usual fixed regression coefficients, we must entertain
the possibility that regression coefficients for first-level explanatory variables
may vary across units of both the second and the third level. The possible
way to explain such variation is to include cross-level interactions in the
model. Regression slopes for the cross-level interaction between first-level
and second-level variables may themselves vary across third-level units. In
order to explain such variation we need a second-order interaction involving
variables at all three levels.

The equations for such models can be complicated without the use of the
compact summation notation. The resulting models are difficult to follow
from a conceptual point of view, as well as difficult to estimate in practice.
There are a considerable number of parameters to estimate, and at the same
time the highest level sample size tends to get relatively smaller. So we can
conclude that three and more level models have their place in multilevel anal-
ysis. Intuitively, three-level structures such as pupils in classes in schools,
or respondents nested within households, nested within regions, appear to
be both conceptually and empirically manageable. The idea that we want
apply to our study is to consider patients at the first level, Hospitals at the
second and time (years) at the third. With this approach we can analyze a
panel and check the effects over time. If the lowest level is repeated measures
over time, having repeated measures on pupils nested within schools, again
do not appear to be overly difficult Hox and NetLibrary (2002). In such
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cases, the solution for the conceptual and statistical problems mentioned is
to keep models reasonably small, and where it is not possible, to check for
the meaningful of the model. Specification of the higher level variances and
covariances should be driven by theoretical considerations. A higher-level
variance for a specific regression coefficient implies that this regression coef-
ficient is assumed to vary across units at that level. A higher-level covariance
between two specific regression coefficients implies that these regression co-
efficients are assumed to covary across units at that level. Especially when
models become large and complicated, it is suggested to avoid higher-order
interactions and to only include in the random part those elements for which
there is strong theoretical or empirical justification. This implies that an
exhaustive search for second-order and higher-orders interactions is not a
good approach. In general it is better to seek out higher-order interactions
only if there is strong theoretical justification for their importance, or if an
unusually large variance component for a regression slope calls for explana-
tion. Random part of the model has more convincing theoretical reasons for
the higher-level variance components than for the covariance components.
If the covariances are small and insignificant, analysts sometimes do not in-
clude all possible covariance in the model. But is important to underline
some exceptions: covariances between the intercept and the random slopes
are always included; covariances corresponding to slopes of dummy-variables
belonging to the same categorical variable have to be included and finally
covariances for variables that are involved in an interaction or belong to the
same polynomial expression.

1.4.1 Three-level intraclass correlations

In order to describe the intraclass correlation for the three-level multilevel
models we reiterate that in a two-level model, the intraclass correlation is
calculated in the intercept-only model using equation 1.2
o2,
P02 1 o2

The intraclass correlation is an indication of the proportion of variance at
the second level, and it can also be interpreted as the expected correlation
between two randomly chosen individuals within the same group. If we have
a three-level model, for instance pupils nested within classes, nested within
schools, there are several ways to calculate the intraclass correlation. The
first step is to estimate an intercept-only model for the three level data, for
which the single-equation model can be written as follows:

Yijk = Yooo + Vok + Ugjk + €4k (1.8)
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The variances at the first, second, and third level are respectively o2, o2 ,
and o2 . For the three-level we have available two different methods, that
are both correct. The first method (Davis and Scott (1995)) defines the
intraclass correlations at the class and school level as:

o2

class = - 1.9
Pel o2 +02 +0?2 (1.9)
and
2
Oy
Pschool = s (110)

2 2 2
Ot Oy +02

This method identifies the proportion of variance at the class and school
level. We can be interested in a decomposition of the variance across the
available levels, or we can be interested in how much variance is explained
at each level.

It is possible to also use a second method Siddiqui et al. (1996), that
defines the intraclass correlations at the class and school level as:

2 2
O'UO + O'uO

Pclass = B 2 2 (111>
O'UO +0_u0 +0g
and
2
o
0
Pschool = B B D) (112)
O'UO +0'u0 +0;

This method represents an estimate of the expected correlation between two
randomly chosen elements in the same group. So the p.,ss calculated in 1.11
is the expected correlation between two pupils within the same class, and
it correctly takes into account that two pupils who are in the same class
must also be in the same school. For this reason, the variance components
for classes and schools must both be in the numerator of equation 1.11. If
the two sets of estimates are different, which may happen if the amount of
variance at the school level is large, there is no contradiction involved. We
have described two different aspects of the data, which happen to coincide
when there are only two levels. We will see in the Results’ chapter the
particular application to our data

1.5 Critique

Two streams of critique exist relative to the multilevel model. Exactly they
are critique to the ranking and to the use of mortality rates to judge hospitals

22



performance. In recent years the authors Lilford and Pronovost moved these
two critiques to the use of the multilevel, it is incumbent to underline that
they are not critiques to the model itself.

1.5.1 The use of outcomes

In their paper Lilford et al. (2004) criticize the use of outcomes to compare
quality of care because this practice implies that the variation due to other
causes can be accounted for, such that any residual variation truly indicates
quality of care variation. They support the idea that outcomes are influ-
enced by definitions, data quality, patient case-mix, clinical quality of care
and chance. This assertion is certainly true, because it is possible to argue
about all these types of influence and align them with that are all power-
ful. For instance ranking of hospitals depends upon the data source used,
varying markedly, if the same outcome data were obtained from case records
or from administrative data sets. But the authors of the critique strongly
advocate that, even if an agreed risk-adjustment method could be derived,
outcomes could still vary systematically between providers as one can never
be certain that risk adjustment is not hampered by unmeasured prognos-
tic factors. Outcome is neither a sensitive nor a specific marker for quality
of care. Sanction and reward should not be applied to the ‘worst’ 5% of
providers on outcome, because these will not be the 5% with the worst qual-
ity. We need performance measures which better reflect the quality of care.
We would like to reach a continual non-judgment improvement structural
factors, those that cannot easily be affected at the organizational level be-
cause they depend on the release of substantial resources or changes in policy.
Monitoring clinical process has several advantages over outcome monitoring.
Clinical process monitoring needs access to information which, although ex-
pensive, is likely to be much more cost effective than outcome monitoring
process-based monitoring which is subject to potential bias due to the fact
that the opportunity for error varies by case-mix. Some process measures
are based on management data rather then adherence to clinical standards.
These measures include waiting lists, ambulance response times and delays in
accident and emergency departments. Such performance data are potentially
useful for quality improvement but when used for performance management
they often lead to a focus on changing the numbers rather than genuinely
improving the systems. The crux of the performance management problem,
however, is that you cannot know which of these factors is operating when
outcomes differ. Showing people that their outcomes are worse than others
does not automatically tell them what to do to improve or even whether they
have a greater need than others to improve. They conclude that the use of
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outcome data and throughput to judge quality of care should be diligently
avoided. We overcome these problems with analysis for the single DRG, be-
cause in this way we have a less generic correction. Moreover the Ranking is
not to use like a judgment that leads to sanctions, but we shoud consider it
like a signal that indicate what deepen.

1.5.2 The use of mortality rate

Another critique is the one to the use of mortality rates to judge hospital per-
formance, Lilford and Pronovost (2010). We are conscious that differences in
quality only explain a minimal part of the observed variance of mortality, and
we overcome this problem with the use of also others outcome. Death is an
outcome of care of undisputed importance, so mortality rates, especially over-
all hospital mortality rates, have therefore become the natural focus for the
measurement of clinical quality. Usually it is possible to use risk adjustment
techniques, that model preventable from inevitable deaths separately, but the
authors sustain that is incorrect for two reasons. Firstly, risk adjustment can
only adjust for factors that can be identified and measured accurately, Lilford
et al. (2007). The error of attributing differences in risk adjusted mortality
to differences in quality of care is the “case-mix adjustment fallacy”, Lilford
et al. (2004). Secondly, risk adjustment can exaggerate the very bias that
it is intended to reduce. This counterintuitive effect is called the “constant
risk fallacy” and it arises when the risk associated with the variable on which
adjustment is made varies across the units being compared, Nicholl (2007).
Moreover, the mortality rates can be very different from hospital to hospital.
The proposal that variance of this magnitude can be attributed to differences
in the quality of care is not clinically intuitive and does not respect some stan-
dards. For example Mant and Hicks (Mant and Hicks (1995)) showed that
differences in the quality of care could explain only half the observed variance
in heart attack mortality. The famous Harvard malpractice study found that
quality of care accounts for only a small proportion of the observed variance
in mortality between hospitals. Little or no correlation exists between how
well a hospital performs on one standard of safe and effective care and how
well it performs on another; differences in the quality of care within hospitals
are much greater than differences between hospitals, Jha et al. (2005). All
these features lead to the affirmation that hospital mortality rates are a poor
diagnostic test for quality and do not identify preventable deaths. Mortality
rates are neutral, it is the use to which they are put that has moral salience
and that will determine the balance of benefits and harms. The authors be-
lieve that the collection of mortality itself can be useful, but not using it like
a criterion for performance management, or as the basis for the imposition
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of penalties. It is important to take into account other additional factors,
because hospital mortality rates alone are silent about where problems may
lie.

The correct use of mortality rates is as signal to identify where further
investigation is necessary. But the investigation is also a sanction, so the use
of mortality rate in this way is not neutral. But the use of mortality rate
endure. This fact can be due to some decision makers, that believe mortality
reflects quality. Clearly preventing people from dying is a positive result, but
there also needs to be a search for robust measurements so as to avoid not
fixing prematurely on a parameter that offers false hope. A possible solution
to this problem should be to consider several outcomes (other than hospital
mortality) and clinical processes. But a few outcome measures appear to be
sensitive to quality. They ultimately assert that the use of mortality can be
considered a sub-optimal solution.

In conclusion although the critique could be considered as a borderline
source of proof, it reinforces the outcome we arrived at previously, namely the
insertion of the mortality rate inside a multilevel model. This fact also leads
us to consider the characteristics of the patients, and to take into account
the condition of departure.
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Chapter 2

The Stochastic Frontier

2.1 The stochastic frontier

The concept of stochastic frontier is introduced as a measure of the productive
efficiency. Indeed typically the microeconomic models develop costs models
and profit models, but not all the producers are successful in solving their
optimization problems. The point is that not all the producers succeed in
utilizing the minimum inputs required to produce the output they choose to
produce, given the technology their disposal. We can say that not all the
producers are technically efficient, we talk about technical efficiency. We can
repeat the same speech for the allocation of costs (cost efficiency) and for
the allocation of the output (not all producers are profit efficient). Results
evident the failure of some producers in optimize, and it is desirable to recast
the analysis of production, cost and profit going away from the traditional
way, and always much more near the frontiers.

A production frontier is characterized by the minimum input bundles re-
quired, given the technology, to produce various outputs. In this way we
can locate producers operating on their production frontier, that are labeled
technically efficient, and we can also locate producers operating beneath their
production frontier, that are labeled technically inefficient. The same discus-
sion is for cost, revenue and profit. The minimum expenditure required to
produce a given bundle of outputs is characterized by a dual cost frontier;
producers operating on their cost frontier are labeled ‘cost efficient’. The
econometric implication of this re-formulation -from functions to frontiers-,
is that symmetrically distributed error terms with zero means are no longer
appropriate when analyzing producer behavior. It is still possible that the
producer will end up above the deterministic kernel of an estimates produc-
tion, revenue, cost and profit frontier, due to an unusually favorable operating
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environment. Nevertheless is much more probable that a producer will end
up beneath an estimated production, revenue or profit frontier because there
are two factors that work in this direction.

Firstly it is interesting to consider the environmental effects. Typically is
assumed that they are random, in this case is possible to have an unfavorable
operating environment like a favorable one, and this cause a producer to end
up beneath an estimated production, revenue or profit frontier.

The second possibility that we take into account is the failure in optimiz-
ing. This also cause a producer to end up beneath an estimated production,
revenue, or profit frontier. We can conclude from these observations that the
error terms associated with frontiers are composed error terms, composed of
a traditional symmetric random noise component and a new one-sided inef-
ficiency component. These composed error terms are the focal point of the
dissertation, because they bring the major change to the traditional consid-
erations. They cannot be symmetric and they cannot have zero means, they
must be skewed and they must have non zero means. This re-formulation
make stochastic the production, cost, revenue and profit frontiers,due to ran-
dom variation in the operating environment. Deviations from these stochas-
tic frontiers are one-sided, due to various types of inefficiency. The error
components are symmetric, and are designed to capture the effects of ran-
dom variation and it is possible to conserve them in keeping with the older
least squares-based approach to the estimation of production, cost, revenue,
profit functions. So we introduce the one-sided error components designed
to capture the effects of inefficiency, like a new econometric contribution to
the estimation of production, cost, revenue and profit frontier. Consequently
we will refer to this part of work like to the ‘Stochastic Frontier Analysis’.

2.2 Technical efficiency

At first we can make an excursus on several models of analysis that the
stochastic frontier will use. The econometric analysis of productive efficiency
is make exploring various econometric models designed to provide estimates
of technical efficiency. The principal purpose of this section will be the esti-
mation of technical efficiency, under the assumption that producers produce
only a single output, both because they really produce a single output, and
because it is possible to aggregate their multiple outputs into a single one.
Production frontiers provide the standards against which producer per-
formance is evaluated, by means of an output oriented measure of technical
efficiency. The innovative aspect of the frontiers, differently from the func-
tions, is that frontiers explore stochastic distance functions. As first attempt
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we limit our discussion to single equation models. In these type of models the
parameters describing the structure of a production frontier are estimated,
and estimates of the output oriented technical efficiency of each producer are
obtained like a byproduct of the exercise. The data are the observations on
quantities of inputs employed and the output produced by each producer,
without price information or behavioral objective on the producers. We have
to discuss the estimation techniques, but they depend on the richness of the
quantity of data available.

2.2.1 Cross-sectional production frontier models

Let’s we start with cross sectional data. First of all a definition of cross
sectional data : Cross-sectional data or cross section (of a study population)
in statistics and econometrics is a type of one-dimensional data set. cross-
sectional data refers to data collected by observing many subjects (such as
individuals, firms or countries/regions) at the same point of time, or without
regard to differences in time. Analysis of cross-sectional data usually consists
of comparing the differences among the subjects.

In our case we assume that cross-sectional data on the quantities of N
inputs used to produce a single output are available for each of I producers.
We obtain the following production frontier model:

yi = f(2s; B)TE; (2.1)

with y; scalar output of producer i, i =1, ..., I; x;, a vector of N inputs used by
producer i; f(x;;3), production frontier; 5 a vector of technology parameters
to be estimated; finally T'E; is the output oriented technical efficiency of a
producer 7. Since we are interested in technical efficiency, we can obtain it
from the previous equation:

TE =2 (2.2)

f(xi;8)
which define the technical efficiency as the ratio of observed output to max-
imum feasible output. y; is the observed output, and achieves its maximum
feasible value of f(z;; /) if, and only if, TE; = 1. If this value is different, for
example T'F; < 1, we have a decrease of the observed output from maximum
feasible output. The definition of the production frontier f(x;;3) is such way
is the definition of a deterministic production frontier. In this case if we have
a shortfall of observed output y; from maximum feasible output f(z;;3), it
is attributed to technical inefficiency. This kind of specification ignores the
fact that output can be affected by random shocks that are not under the
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control of a producer. A clear example can be that a farmer cannot control
the rain! So it is interesting to incorporate producer-specific random shocks
into the analysis, and this process requires the specification of a stochastic
production frontier. So we can update our equation in the following way:

yi = f(xg; B)exp{v} T E; (2.3)

where [ f(z;; B)exp{v;}] is the stochastic production frontier. The first part
is the deterministic part, common to all producers; while the exp{v;} is a
producer-specific part, which captures the effect of random shocks on each
producer.

If the production frontier is specified as being stochastic, the equation
assume the following form:

o Yi
T = G Ben(o) 24)

that represent the technical efficiency as the ratio of observed output to
maximum feasible output in an environment characterized by exp{v;}. In
this case the y; assume the maximum feasible value of [ f(z;; 8)exp{v;}] if,
and only if, TFE; = 1, and we can notice again a shortfall of observed output
with T'FE; < 1, in an environment characterized by exp{v;}, which vary across
producers.

The estimation of the technical efficiency can be made using both the de-
terministic production frontier model and the stochastic production frontier
model. Obviously is preferred the last one because takes into account the
effect of random shocks. However also the deterministic production frontier
is wide spread.

Deterministic production frontiers

yi = f (25 B)exp{-u;} (2.5)

in this formulation the T'E; is equal to exp{-u;}. We have chanced the name
of the variable because we require that T'F; < 1, and this can happen in the
exponential function when we are in the negative quadrant so it has to be
that u; > 0.

Now we assume a particular form for the generic function f(z;;3), that
for easy of calculate, can be the Cobb-Douglas form. In this case the deter-

ministic production frontier will become

Iny; = o+ ), Bulnan; - u; (2.6)
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where the condition of u; > 0 guarantees that y; < f(x;;3). The previous
equation is a linear regression model with a non positive disturbance. We
want to obtain the estimates of the parameters vector 3, which contain the
description of the structure of the production frontier, and we want also to
obtain the estimates of the w;. These last estimate are used to obtain the
estimates of T'E; for each producer by means of T'E; = exp{-u;}. We can use
several method of estimation, but in all cases it must somehow incorporate
the restriction wu; > 0.

At this point three methods of estimation are proposed.

Goal Programming is an optimization program. It can be thought
as an extension or generalization of linear programming to handle multiple,
normally conflicting objective measures. Each of these measures is given a
goal or target value to be achieved. Unwanted deviations from this set of
target values are then minimized in an achievement function. This can be a
vector or a weighted sum dependent on the goal programming variant used.
As satisfaction of the target is deemed to satisfy the decision makers, an
underlying satisfaction philosophy is assumed.

Aigner and Chu (1968) showed that the deterministic production frontier
model can be converted to either of a pair of mathematical programming
models. The model is a linear programming model , in which the goal is
to calculate a parameter vector ( for which the sum of the proportionate
deviations of the observed output of each producer beneath maximum feasible
output is minimized. The subsequent step is the conversion of the deviations
into measures of technical efficiency for each producer. Linear programming
model:

min ) u; (2.7)
subject to
[Bo + Zﬁnlnxm] >Iny;,i=1,..,1 (2.8)

We can later on consider another type of goal programming, that is the
quadratic programming model. In this type of model the goal is to calculate
a parameter vector (# for which the sum of squared proportionate deviations
of the observed output of each producer beneath maximum feasible output
is minimized. The quadratic programming model:

min ). u? (2.9)
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subject to
[Bo+ > Balnay] > Iny;,i=1,...,1 (2.10)

The constraints that are appended to either model are non negativity con-
straints on the parameters (3,, n=1, ..., N. After the computation of the
parameter values, the technical efficiency of each producer can be calculated
from the slacks in the functional constraints.

The most problematic drawback of the goal programming is that the
parameters are calculated rather than estimated, which create problems with
statistical inference. It is possible solve this problem, and give a statistical
interpretation to the goal programming models, if a distributional assumption
is imposed on the wu;.

The estimates are maximum likelihood estimates of the parameters of the
deterministic production frontier if the u; > 0 follow an exponential distribu-
tion:

1 U
f(u) = —exp{-—} (2.11)
o Oy
than we can calculate the log likelihood

1
InL = -Ilno, — — ) |u] (2.12)

where I is the total number of entrepreneurs. The exponential distribution
is a single-parameter distribution, and it is easily portrayed graphically.

The estimates of the quadratic programming are maximum likelihood
estimates of the parameters of the deterministic production frontier if the
u; > 0 follow a half normal distribution

2

2 U
u) = erpy— 2.13
() = ——ern—gs) (213
than we can calculate the log likelihood distribution also in this case:
InL = constant - 1ln2 L You? (2.14)
2" 2024 '

Also the half normal distribution is a single-parameter distribution. The val-
ues computed with the goal programming techniques are calculated rather
than estimated like we have said prematurely, so the parameter vector 3 do
not come with standard error attached. The solution is to establish a link-
age between production frontiers calculated by goal programming methods
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and production frontiers estimated by maximum likelihood methods. This
connection supply the statistical foundation that we are looking for.

Schmidt noted that the statistical properties of the maximum likelihood
estimators cannot be obtained by traditional methods, due to the dependence
of Iny; on (3, which violates one of the regularity conditions for maximum
likelihood estimation.

Greene observed in a second instance that the Hessian of the log-likelihood
functions are singular under both exponential and half-normal distributions,
and this make impossible to estimate the precision of the maximum likelihood
estimators using an Hessian. So Greene suggested the use of an alternative
model, in which u; > 0 follows a gamma distribution, and which satisfies all
regularity conditions for obtaining asymptotic properties of the maximum
likelihood estimators. This is a possible solution, especially if one usually use
MLE, but the real problem is that there are no goal programming problems
that have the inefficiency distributed like a gamma. Finally these two goal
programming problems have two different drawbacks: if they have known
MLE counterparts, they also have statistical properties; whereas if the MLE
problem has desirable statistical properties, it can also has no known goal
programming counterpart.

Corrected Ordinary Least Squares (COLS)

A possible way of estimation of the deterministic production frontier model
is suggested by Farrell (1957): it could be an estimation in two steps. In the
first step ordinary least square (OLS) is used to obtain consistent unbiased
estimates of the slope parameters, and a consistent but biased estimate of
the intercept parameter. In the second step the biased OLS intercept 3, is
corrected shifting up. This correction is made to ensure that the estimated
frontier bounds the data from above. At this point the COLS intercept can
be estimated in a consistent way, and the estimation can be written in the
following way:

By = Bo + maz;{1;} (2.15)

where the u; are the OLS residuals and the Bo are the OLS estimation. The
intercept is moved up, whereas the new residual are modified in the opposite
direction.

* = ma;g{ﬁl} - ’LZZ (216)

= u; — maz{u;} (2.17)
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The COLS residual uAZ* are nonnegative, with at least one being zero, and
can be used to provide consistent estimates of the technical efficiency of each
producer by means of TE; = exp{-u;}. This technique is of easy computa-
tion, and generates an estimated production frontier that lies on or above
the data. The cons of this easy of calculation is that the estimated pro-
duction frontier is parallel to the OLS regression, because we correct only
the intercept. This is a restriction, because in this way the structure of
the ‘best practice’ production technology is the same as the structure of the
‘central tendency’ production technology. This is an undesirable property
of the COLS procedure, because the structure of best practice production
technology is permitted to differ from that of production technology just in
the middle of the data, where producers are less efficient than best practice
producers. Moreover the COLS frontier is not as closely as possible to the
data, since it is required to be parallel to OLS regression.

Modified Ordinary Least Squares (MOLS)

It can be interesting to take into account a variation in the COLS. This
variation has been proposed by Afriat (1972) and Richmond (1974). They
suggested to estimate the production frontier model with OLS, but this time
under the assumption that the disturbances follow an explicit one-sided dis-
tribution, such as exponential or half-normal. It is reasonable to expect that
the technical efficiency follows one of these distribution. The MOLS proce-
dure is identical to COLS one, with the unique difference that after the OLS,
the estimated intercept is shifted up by the mean of the assumed one-sided
distribution , instead of a shifting with the maximum value. The equation
become:

Biw = fo+ E(d;) (2.18)
and
—u* = ;- E(1;) (2.19)

and the OLS residual are used also here to provide consistent estimates of the
technical efficiency of each producer, exactly like in the COLS. The procedure
is so similar that also in this case is easy to implement. The cons are that
there are no guarantee that the modification of OLS shifts the estimated
intercept up by enough to ensure that all producers are really bounded from
above by the estimated production frontier, since it is possible that [d; —
E(4;)] > 0 for a producer. In this case you have to explain a technical
efficiency score greater than unity. Another possibility is that MOLS shift
the estimated intercept so far up that no producer is technically efficient.
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The last cons that we consider is that also in the MOLS case the production
frontier is parallel to the OLS regression, since also in this case we modify
only the intercept. The discussion is identical to the COLS case.

All these three techniques share the virtue of simplicity. But again all
these three techniques have a great deficiency: they all measure technical
efficiency relative to a deterministic production frontier. If we have a vari-
ation in output not associated with variation in inputs, it will be attribute
to technical inefficiency. None of these techniques considers the possibility
that there could be random shocks, that might contribute to variation in
output. On the other hand OLS estimation attribute all variation in output
not associated with variation in inputs, to random shocks, without consider
the technical inefficiency. Finally what is required is a model that is able
to attribute variations in output not associated with inputs both to random
shocks and to technical inefficiency, a combination.

Stochastic Production Frontiers

The stochastic production frontier models are introduced simultaneously in
Aigner and Lovell (1977) and by Meeusen and van Den Broeck (1977). The
pioneering work of Farrell (1957) took in serious consideration the possi-
bility of estimating so-called frontier production functions, in an effort to
bridge the gap between theory and empirical work. But his attempt have
not been completely successful,so Aigner and Lovell (1977) and Meeusen and
van Den Broeck (1977) suggested a new approach to the estimation of frontier
production functions, that allow for technical inefficiency, but also consider
the fact that exist random shocks outside the control of producers.

In the stochastic production frontier models the impact on output of
shocks due to variation in labor and machinery performance, changing of
the weather and also simply luck, can be separated from the contribution
of variation in technical efficiency. Also in this section we assume that the
function f(x;,3) tales the log-linear Cobb Douglas form, and the stochastic
production frontier model can be written in the following way:

Iny; = Bo + ), Bulnn; + v; — u; (2.20)

how we can notice the error term is composed by two components, the v;
represent the two-sided “noise” component, and wu; is the nonnegative techni-
cal inefficiency component. For this reason usually the stochastic production
frontier model is referred as a “composed error” model. Let’s comment on the
features of the error term: v; is assumed to be i7d and symmetric, distributed
independently from wu;. The global error term ¢; = v; — u; is asymmetric, be-
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cause u; > 0. Moreover we can assume without lose of meaning that v; and
u; are distributed independently of z;.

At this point arise a problem: with the OLS estimation we obtain con-
sistent estimates of the (3,s but not of [y since E(¢;) = —E(u;) <0, and also
we notice that OLS does not provide estimates of producer-specific technical
efficiency. Nevertheless OLS provide a simple test for the presence of techni-
cal inefficiency in the data. This test consist in checking if u; > 0, and in this
case the global error € = v; — u; is negatively skewed, and there is evidence of
technical inefficiency in the data. This observation is useful, since conduct
to construct a test for the presence of technical inefficiency based directly on
the OLS residuals. Schmidt and Lin (1984) proposed a test statistic:

ms
(m3y?)

where msy and ms are the second and third sample moments of the OLS
residuals. It is possible to notice that mg is simply the third sample mo-
ment of the w;, because v; is symmetrically distributed. Under the light of
this consideration if mg has a negative value ms < 0, than the OLS residuals
will be negatively skewed, and would suggest the presence of technical inef-
ficiency. If the mg assume a positive value mz > 0, the OLS residuals will be
positively skewed, but this case make no sense in this context, in a certain
sense we can think that positive skewness in the OLS residuals provides an
indication that the model is mispecified. The distribution of (b}/ 2) is not
so much used, thus Coelli (1995) proposed an alternative test statistic that
has the characteristic of being asymptotically distributed as N(0,1). Re-
sume, negative skewness occurs when mg < 3, a test of the hypothesis that
mg > 0 is appropriate. Considering the null hypothesis of zero skewness of
the errors, the test statistic mg/(6m3/I)'/? is asymptotically distributed as
N(0,1). These test are based on simple OLS results, and it is a strong ad-
vantage, but they are also based on asymptotic theory, that is a disadvantage
because usually the samples are relatively small. Fortunately Coelli (1995)
presented really encouraging Monte Carlo results concerning the power of his
OLS-based test. Under these considerations we assume that there is nega-
tive skewness in the OLS residuals, since this consideration bring evidence of
technical inefficiency in the data, and is does make sense to proceed to the
estimation of a stochastic production frontier. The objectives that we want
to achieve are mainly two: to obtain estimates of the production technology
parameters 3 in f(z;(3); and to obtain estimates of the technical efficiency
of each producer. A problem arise, it is necessary to know the two separated
estimates of statistical noise v; and technical inefficiency w;, instead of the
global error ¢; for each producer that we are able to know. We can assume

(by)'/? = (2.21)
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that the u; are distributed independently from the inputs, and OLS provides
consistent estimates of all production technology parameters except for the
intercept. But is not enough. Additional assumption are required, and also a
different estimation technique, in order to obtain a consistent estimate of the
intercept and estimates of the technical efficiency of each producer. The firs
method that we consider is a maximum likelihood method that can be used
to estimate ( and the u;. This method derive from the two-step procedure
that we have previously described, in which the first step involves the use
of OLS to estimate the slope parameters, and the second step involves the
use of maximum likelihood to estimate the intercept and the variances of
the two error components. The assumptions that we can make conduct to
several models.

The Normal-Half Normal Model
Let’s we start introducing the distributional assumptions that we make using
this model:

e v; ~iidN(0,02), conventional assumption

e u; ~ N*(0,02), nonnegative half normal, based on the plausible propo-
sition that the modal value of T'F is equal to zero, and increasing values
of technical inefficiency becoming increasingly less likely.

e v; and u; are distribute independently of each other, and of the regres-
sors. This assumption is crucial, because if producers know something
about their technical efficiency, this may influence their choice of in-
puts.

In order to compute the density function of the global error €, we remember
the functional form of the density function of u > 0.
The density function of u; >0 is:

f(u) = - e:vp{ uQ} (2.22)

9.2
2moy, 207

The density function of v is:

f() = {—U—2} (2.23)

We can obtain the form of the joint density function of v and v remem-
bering that the independence assumption allow to make the product of the
individual density functions:

flu,v) = 5 2 exp{—u—2 - U—Q} (2.24)

2 2
205 203
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We know that € = v —u, so it can be useful to rewrite the conjoint density
function substituting this quantity, for example we can get the value v = e+u

and:
exp{—u—2 - M} (2.25)

2 2
20% 20;

f(u,e) =

2T0,0,

At this point we can recall some statistical property and obtain the marginal
density function integrating u out of f(u,e€):

fle)=Jfy~ f(u,)du

= /e [1- ()] enp{-55z}

2o

= 20(5)2(-2)

We have applied a convenient re-parameterization, the value of o is ¢ =
(62 +02), A=0,/0,, and ®(.) and ¢(.) are the standard normal cumulative
distribution and density functions. In this way A gives indications about the
relative contribution of u e v to €. As A—0 , either 02—o00 or 02-0, and
the symmetric error component dominates the one-sided error component
in the determination of €. In this case we are again in an OLS production
function model with no technical inefficiency. As A—oo , either 02—o00 or
02—0 one-sided error component dominates the symmetric error component
in the determination of €. This time we are in the case of a deterministic
production frontier model with no noise. The normal-half normal models
contains two different parameters, that can be o, and o,, but can also be o
and .

The distribution parameters ¢ and A are estimated along with the tech-
nology parameters (3. It is desirable to conduct a statistical test of the hy-
pothesis that A = 0, based on the maximum likelihood estimate of A\. The
first test proposed is the Wald test, the second one a likelihood ratio test.
But it is important to notice that the value of A lies on the boundary of
the parameter space, and this made it difficult to interpret the test statis-
tic. Coelli has shown has found a different test, and has shown that in this
case is appropriate the utilize of a one-sided likelihood test statistic that is
asymptotically distributed as a mixture of x? distribution rather than as a
single distribution. The marginal density function f(e€) is asymmetrically
distributed, with mean and variance

E(e)=-E(u) =-0,\] — (2.26)

™
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V(e) = L_202 + 02, (2.27)
7r

u

Considering the various attempts of the researchers, we can assert that Aigner
and Lovell (1977) suggested [1 — E(u)] as estimator of the mean technical
efficiency of all producers. Instead Lee and Tyler (1978) proposed a more
complex form for the mean:

E(exp{-u})=2[1- CI)(UU)]exp{%QL} (2.28)

that is a better form because [1—u] includes only the first term in the power
series expansion of exp{-u}, and the proposal of Lee and Tyler is consistent
with definition of technical efficiency. Using the marginal density function of
1, we can write the log likelihood function for a sample of I producers:

InL = constant — Ilno + Z lnCID( ) oy Z 2 (2.29)
o

the previous formulation can be maximized with respect to the parameters
to obtain maximum likelihood estimates of all parameters. These estimates
are consistent as [—oo. At this point is desirable to be able to obtain the
estimates of the technical efficiency of each producer. We can make some
considerations on the estimates of ¢; = v; —u; that we have, and this quantity
contain information on wu;. If ¢, > 0, chances are that u; is not large, and
consequently the producer is relatively efficient. If ¢; < 0 chances are that
u; is large, which suggests that this producer is relatively inefficient. Arise
a problem: to extract the information that ¢; contains on wu;. An helpful
consideration is take into account the conditional distribution of w; given
€¢;, which contains whatever information ¢; contains concerning u;. Jondrow
et al. (1982) have considered the conditional distribution of u given € if u; ~
N*(0,02), and assume the following form:

f(ule) =

= —eap {~L 11 - o(-)]

where we have to explain the content of the letter with the *’, u, = —e02/0?
and o2 = 0202/02. f(ule) is distributed as a N*(u.,0?) also the mean and
the mode distribution are useful to estimate the u;.

E(uil€;) = pu; + 04 [—f&‘f;’i‘;}i)]

= [s55 - ()]
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and

—ei(2) if 6 <0
M(uiki): e(g) 1 ¢ <

0 otherwise

The use of the mean value is more frequent than the mode. Once we obtain
the estimates of u;, the estimates of technical efficiency of each producer can
be obtained from:

TE; = exp{-;}. (2.30)

where —; can be both E(u;le;) and M (u;le;). It is widespread a lot the
proposal of Battese and Coelli ):

1-®(0, — /o) { 1 2}
TE. = F —u;l€;) = —ly + = 2.31
’ (exp-u;le;) = B()o0) exps —fu. + 2(7,e (2.31)

We can chose several method of estimation but in each case the estimates
of technical efficiency are inconsistent because the variation associated with
the distribution of (ule;) is independent from 4. It is possible to counter
this problem obtaining confidence intervals for the point estimates of techni-
cal efficiency. Horrace and Schmidt (1996) have identified upper and lower
bounds on (u,l€;), and also many others researchers have worked on this sub-
ject. Finally they found negative bias in the estimated inefficiencies, and a
mean empirical coverage accuracy of the confidence intervals to be signif-
icantly below the corresponding theoretical confidence levels for all values
of A and for sample size less than 200. So we have based our analysis of
stochastic production frontiers on the assumption that v ~ N*(0,02), since
this distributional assumption is both plausible and tractable.

The Normal-Exponential Model
We now make some different distributional assumptions:

e v; ~ iid N (0,02
e u; ~ iid exponential

e u; and v; are distributed independently of each other, and of the re-
gressors.

The remarks are the same that for the normal-half normal model. We have
already mentioned the density functions for u; and for v;, and as consequence
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of the independence assumption, the joint density function of u and v is the
product of their individual density functions:

1 u U2
_ -— 2.32
V2ro,o, exp{ Oy 2012;} ( :

Joint density function of u and e:

Flu,e) = ;exp{—i s 6)2} (2.33)

Oy 202

fu,v) =

Finally the marginal density function of e is:

f(e) = fowf(u,e)du = (Uiu) o (_oiv - Z—:)emp{aiu + 20023} (2.34)

The marginal density function f(e) is asymmetrically distributed, with mean
and variance

E(e)=-E(u) = -0y

V(e)=02+02

As o,/0, increases, the distribution looks more and more like a negative
exponential distribution, as ¢,/0, increases, the distribution looks more and
more like a normal distribution.

We can write the log likelihood function for a sample of I producers in
the following way:

2
0y

InL = constant — Ilno, + I (2 2) + > In® (-A)+ > A (2.35)
Oy % i Ou

where A = —fi/o, and fi = —e - (02/0,)

In this model, point estimates of technical efficiency can be obtained
from either the mean or the mode of the conditional distribution of u given
€. These estimates will be unbiased but not consistent.

The Normal-Truncated Normal Model

It is a generalization of the Normal-half normal model, where we allow
u to follow a truncated normal distribution. In this case the distributional
assumptions will be:

e vu; ~iid N(0,02
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o u;~iid N*(u,02)

e u; and v; are distributed independently of each other, and of the re-
gressors.

The considerations are the same that for the normal-half normal, with the
unique exception that the truncated normal distribution assumed for u gen-
eralizes the one-parameter half normal distribution, by allowing the normal
distribution, which is truncated below zero, to have a nonzero mode. The
truncated normal distribution contains an additional parameter p to be esti-
mated, and for this reason is a more flexible representation of the data. The
density function of v is the same that in the other cases, while the density
function of the truncated normal is:

) | (-
flu)= 2mu<1><—u/ou)€xp{ 207 } (2:36)

i is the mode of the normal distribution, truncated below zero; ®(.) is the
standard normal cumulative distribution function. Definitely f(u) is the
density function of a normally distributed variable, with possibly nonzero
mean f, truncated below at zero.. If p = 0 the density function collapses
to the half normal density function. The truncated normal distribution is a
two parameter distribution depending on placement and spread parameters
i and o,. The way of proceed is the same that for the previous models.

We have to write a joint density function of v and v, that is the product
of their individual density functions:

flu,v) = ! easp{—(u_u)2 v } (2.37)

270,0,P(-p/0y) 202 202

We continue writing the joint density function of u and e:

Flu,e) = ! {— (u=p)® (e+u) } (2.38)

210,00, P(—p/0y,) “rp 202 202

The marginal density function of e:

fle)=fy" f(u,e)du

- \/ﬁmbt—y/au) ® (55 -2)exp {_ (62?2)2} (2.39)

= to() e (B -2)[e(-2)]"



where o = (02 +02)!/2 and \ = 0,/0, as in the normal-half model, and ¢() is
the standard normal density function. If u = 0 the previous marginal density
of € collapses to the half normal marginal density function. The normal-
truncated normal distribution has three parameters, a placement parameter
1 and two spread parameters o, and o,,.

The log likelihood function for a sample of I producers is:

% poooeAy 1 €+ )’

InL = constant—IIno—IIn® (——)+ In® (— - )—— ( ) 2.40

Oy EZ: o o] 2 zl: o (2.40)

where 0, = A\o/V/1 + A\2. In order to obtain the estimates of all the parameters

we can maximize the log likelihood function with respect to the parameters.
Now it can be interesting to proceed with the description of the use of

conditional distribution, since we will use it several times and for others

models but in the same way. The conditional distribution f(ule) is:

_ f(ule) 1 oo | (2= )
T =5 = Voo 1= ()] p{ 207 } (241)

we can notice that f(ule) is distributed as N* (f1;,02), where the specification
of the parameters are: fi; = (-o2¢; + po2) /o2 and 02 = 0202 /2. At this point
is possible to use both the mean or the mode of f(ule) to estimate technical
efficiency of each producer. We have:

N ¢(fii/o+)
E(UZ|€Z) =04 0'_* + m] (242)
and
pi i ;20

0 otherwise

We can obtain the technical efficiency by substituting either E(ule;) or
M (u;l€e;) into equation (2.31), or utilizing:

TE; = E(exp{-ule;} |e;)
(2.44)

_ 1-®[ox—(fis/0+)] ~ 1
141)(7;1/;/0*) erp {_“i + 503} ’

which is the same thing that (2.31) if g = 0. The use of (2.31)and (2.44)
produces unbiased but inconsistent estimates of technical efficiency.
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The Normal Gamma Model

We can consider also a generalization of the normal-exponential model,
assuming the u follows a gamma distribution. The normal gamma formula-
tion was introduced by Greene (1980) and Stevenson (1980) and extended
again by Greene (1990). In this case the distributional assumptions are:

o v; ~iid N(0,02)
e u; ~ iid gamma

e u; and v; are distributed independently of each other, and of the re-
gressors.

The exception of the Gamma distribution is that generalizes the one-parameter
exponential distribution by introducing an additional parameter to be esti-
mated, and this provides a more flexible representation of the pattern of
technical efficiency in the data. The Gamma density function f(u), for u >0
is:

um U
flu) = Wexp{—a—u}, m>-1. (2.45)
We can comment on the different values that m can assume. If we have m =0
the gamma density function collapses into an exponential distribution. If we
have —1 <m < 0, the gamma density has the shape of an exponential density,
the mass of the density remains concentrated near zero. If m > 0 the density
is concentrated at a point farther away from zero as m increases.

At this point is interesting to understand the importance of the distri-
butional assumptions. The sample mean efficiencies are apt to be sensitive
to the distribution assigned to the one-sided error component u. It is ev-
ident that there are a lot of examples of this sensitivity. But is still not
clear if a ranking of producers made by their individual efficiency scores,
or a composition of the top and bottom efficiency score deciles, is sensitive
to distributional assumptions. There are some example that show the non-
sensibility.

Method of Moments Approach
Resuming the estimation strategy that we have considered until now, it con-
sist in two steps: the first step is the maxim likelihood method used to
estimate all parameters of the model; the second step follows from the first
one, and considers all these maximum likelihood estimates to obtain techni-
cal efficiency. The procedure consist in the decomposition of the maximum
likelihood residual term into a noise component and a technical inefficiency
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component. In this paragraph we try to supply an alternative to the first
step. The first step can be break into two parts. The first part use the
OLS to generate consistent estimates of all the parameters describing the
structure of the production frontier, apart from the intercept. This part is
independent of distributional assumptions on either error component. The
second part use the distributional assumptions to obtain consistent estimates
of the intercept and the parameters describing the structure of the error com-
ponents. If we divide in two part the estimation procedure we apply a sort
of MOLS to a stochastic production frontier model. At this point we can
repeat the second step, in which the JLMS technique is used to estimate wu;
for each producer. The method of moments approach has been discussed for
normal-exponential, normal-gamma and normal-truncated model. For the
application we’ll see here what happen in the normal-half normal model.
Stochastic production frontier model:

Iny; = [Bo — E(wi)] + . Bulnan; +v; — [u; — E(w;)] (2.46)

We assume that v; is symmetrically distributed with zero mean and that
w; > 0. The error term {v; - [u; — E(u;)]} has zero mean and constant
variance. Let’s trace the various step that we have enunciated before. In the
first part of the estimation procedure OLS can be used to obtain consistent
estimates of the (3,s. In the second part of the estimation procedure it is
necessary to proceed with the estimation of Gy, 02 and o2. At this point
we need distributional assumptions on the error components v; and u;. We
assume that v; ~ N(0,02). Moreover we can assume that u; follows an half-
normal distribution, so F(u;) = \/2/moy, V(u;) = [7—2)/7]02, and we are also
interested in third moment, E(u?) = —/277(1-4/7)03. We can now compute
the moments of € = v; —u;, o =02+ [(7—2)/7]o? and ps = \/2/_77(1 —4/m)od.
This two moments are the same also for €/ = {v; — [u; — E(u;)]}, since E(u;)
is a constant. Continuing the estimates of 02 and o2 are:

2/3
52 = s 2.47
(¢2/_w<1—4/w>) 240
and
612,:m2—(1—%)[75 (2.48)

After all these passages we obtain a consistent estimate of Gy from
Bo = [Bo - B(i)] +/ 26
= OLS intercept + \/g?ju
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We now have consistent estimates of all parameters in the model. Finally we
can apply the JLMS technique to obtain either E(ule;) or M (u;le;).

Olson et al. (1980) noticed two potential problems with the method of
moments approach. First of all the third central moment p3 of the OLS dis-
turbances must be negative, but it is possible for the third central moment
i3 to be positive. This imply that &, is negative and the model is misspeci-
fied. It is necessary to respecified the model, a possible way is changing the
functional form or the variables of f(x;3). When these changing are not
possible it is natural to set , = 0 and this will lead to the conclusion that
there is no technical inefficiency in the data. This firs problem (o2 < 0) arise
when the true but unknown A = o, /0, is small.

Moreover arise a second potential problem when ms is negative, mg is
sufficiently large to cause 6, < 0. In this event it is appropriate to set 62 =0
and conclude that there is no noise in the data. this second problem instead
arise when A is large.

OSM made a Monte Carlo experiment and decide to base the type of
estimator on the value of A and on the sample size. For example, if we have
the sample size below 400 and A < 3.16 the method of moments estimator
outperforms MLE, instead Coelli found in a subsequent Monte Carlo study
that MLE outperform the method of moments when A is large. We have seen
that MOLS procedure generates consistent estimators for all parameters in
the model, but that they are inefficient compared to the MLE that are based
on distributional assumptions.

Stochastic Distance Functions

So far we have considered the single-output case in the estimation of a
stochastic production frontier, but it is possible to estimate a stochastic out-
put distance function in the multiple-output case. We notice the presence of
two main complications: there is no natural choice for a dependent variable
in the multiple-output case; the endogeneity of regressors is apt to pose a
problem. After solving these problems the estimation procedure will be the
same as the single-output case.

The procedure in the single-output case start writing a stochastic pro-
duction frontier:

yi = f(zi; B)exp{vi — u}, (2.49)

and in a different and useful form we can rewrite the same quantity:

Y eaplu; - wi). .
T i) (250

46



In the single-output case we had this formulation:

Yi
Do(i,yi58) = >~ 2.51
(o) = 50, 5) (25
consequently in the multiple-output version we have:
Do(zi,yi; B) = exp{v; — u;} (2.52)

and we can write it as a stochastic distance function model

1 = Do(;,yi; B)exp{u; —v;} (2.53)

The previous equation has to be converted into an estimable regression
model. This can be carry out remembering the property of homogeneity
of degree one of output distance functions:

Do(xi, Ayi; B) = ADo (24, yi; 3), A>0 (2.54)

Moreover we have to set A = |y;|™* = (X,, y2,)~"/?, the reciprocal of the Eu-
clidean norm of the output vector, that generates

Do(xi, yiflyil; B) = il ™ Do (i, y:; 5) (2.55)
from this we can obtain:
Do(z5, 35 5) = |yi|D0($iayi/|yi|§ﬁ) (2-56)

The substitution of this last equality into the (2.53), and the division of both
members by |y;| generate an estimable composed error regression model

lyil ™ = Do (%A %; 5) expiu; — vi}. (2.57)
(2
We can analyze all the components of this regression model, let’s start from
the dependent variable, that is the reciprocal of the norm of the output
vector; the regressors are the inputs and the normalized outputs; the v; is
the symmetric error component apt to capture the effects of random noise;
u; is the nonnegative error component, one-sided, and provides the basis
for a reciprocal measure of output oriented technical efficiency. The entire
analysis of the Stochastic Production Function can be applied to the last
equation, with a change in the sign of the wu;, from + to — and with an
appropriate flexible functional form selected for Dg (z;,v:/|y:|; 3). There can
be a serious problem with the outputs that can appear as regressors, and
also the normalized outputs appear as regressors and may not be exogenous.
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Finally it is interesting to stress the attention of the reader on the draw-
back of the cross sectional stochastic production frontier. First of all the
MLE of the stochastic production function model and the subsequent sepa-
ration of technical inefficiency from statistical noise, both require distribu-
tional assumptions on each error component. The robustness of inferences is
not proved , also if we are able to made some observations on it. A second
drawback is that MLE requires the assumption that the technical inefficiency
might be correlated with the input vectors producers select. The last obser-
vation is that the technical inefficiency of producers can be estimated using
the JLMS technique, but not consistently, because the variance of the condi-
tional mean or the conditional mode of (ule;) for each individual producer,
does not go to zero as the size of the cross section increase.

2.2.2 Panel data production frontier models

The strength of a panel data model is that all the limitations of the cross-
sectional models can be avoided. The possibility to know repeated obser-
vations on each producer can be equivalent of the strong distributional as-
sumption used with cross sectional data, that can - in this case - be relaxed.

A panel contains more information than does a single cross section. The
access to panel data enables us to adapt conventional panel data estimation
techniques to the technical efficiency measurement problems. The interesting
aspect is that there is not dependence from strong distributional assumption,
and moreover not all panel data estimation techniques require the assump-
tion of independence of the technical inefficiency error component from the
regressors. Repeated observations on a sample of producers serve indeed as
a substitute for the independence assumption. We can notice that adding
more observations on each producer generates information not provided by
adding more producers to a cross section. In short the technical efficiency
of each producer in the sample can be estimated consistently as 7" — oo, T’
is the number of observations on each producer. There is another benefit:
repeated observations on a sample of producers resolves the inconsistency
problem with the JLMS technique, but it is not so realistic because many
panels are relatively short.

In the first step of analysis we consider panel data production frontier
models in which technical efficiency is allowed to vary across producers, but
is assumed to be constant through time for each producer. We can find sev-
eral conventional panel data models that can be adapted to the problem of
estimating technical efficiency. However it can be considered restrictive to
assume the time invariance of technical efficiency, so in a second moment we
will consider panel data production frontier models in which technical effi-
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ciency vary across producer and across time for each producer. The use of
these model is not so widespread and rely on extending maximum likelihood
cross-sectional production frontier models. We assume throughout this sec-
tion that the panel is balanced - each producer is observed T times. Panels
can be also unbalanced, producer ¢ is observed T; < T' times, with not all T;
equal, and can be accommodate by each of the panel data models we discus.

Time-Invariant Technical Efficiency

The assumption that we made at first is that we have observations on I pro-
ducers, indexed by ¢ = 1,...1, through T time periods, indexed by t =1,...,;T.
We can write like simplified functional form for the production frontier a
Cobb-Douglas, with time-invariant technical efficiency:

Iny;e = Bo + Z Bulnngs + vir — uj, (2.58)

where v;; is the random statistical noise and u; > 0 represents technical in-
efficiency.The structure of production technology is assumed to be constant
through time, there is no consideration for technical change. This model
differs from cross-sectional production frontier model only for the time sub-
scripts to the output, to the inputs and to statistical noise. This model can
also be associated - for similarity of characteristics- to a conventional panel
data model, with producer effects but without time effects, but with the dif-
ference that producer effects are required to be nonnegative, because they
represent the technical inefficiency. It is possible to estimate the parameters
and the technical efficiency in several ways. Let’s go into the detail with a
list of some possible types of models.

The Fixed-Effects Model

The fixed effects model is the simplest panel data model. It is necessary to
modify one of the assumption in order to adapt such a model to the efficiency
measurement context. It is required now that u; > 0, and we can also assume
that the vy are iid(0,02) and are uncorrelated with the regressors. It is not
necessary to make distributional assumptions on the u; and we allow the u;
to be correlated with the regressors or with the v;;. We can assert that the
u; are treated as fixed effects, and they became producer specific intercept
parameters to be estimated along with the §,s. A way to estimate the model
is by applying OLS to

Inyi = Boi + ), Bulnnir + vig (2.59)
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where [y; = (8o — u;) are producer specific intercepts. The first step is the
estimation of the coefficients. There are three equivalent ways of estimation:
(i) by suppressing 3, and estimating I producer specific intercepts; (ii) by
retaining 3y and estimating (I — 1) producer specific intercepts; or (iii) by
applying the within transformation, in which all data are expressed in terms
of deviations from producer means and the I intercepts are recovered as
means of producer residuals. We can have several variants as least squares
with dummy variables, and we can express this variant with an abbreviation
of this type: LSDV. The second step is the employment of the following
normalization:

By = maz; {Bm‘} ; (2.60)
after that the u; are estimated from
i = o = o (2.61)

and this formulation ensures that all 4, > 0.
At this point we have all the elements to obtain the producer-specific
estimates of technical efficiency:

TE; = exp{-t;}. (2.62)

In the fixed effects model at least one producer is assumed to be 100%
technically efficient, and the technical efficiencies of other producers are mea-
sured relative to the technically efficient producer(s). The fixed effects model
is similar to the COLS model based on cross-sectional data because the trans-
formation is the same.

The LSDV estimates of the (3,,s are consistent as either I — oo or T — +00,
and the consistency property does not require that the u; be uncorrelated
with the regressors. We can comment also the LSDV estimate of the f,.
They are consistent as T' — +o0, although consistency of the LSDV estimates
of u; requires both I - co and T' — +o00. Neither consistency property requires
the assumption that the v; be normally distributed.

The fixed effects model has the virtue of simplicity and it has good con-
sistency properties, in particular the fixed effects panel data model provides
consistent estimates of producer-specific technical efficiency. We have also
to consider the drawback. The fixed effect u; capture the effects of all the
phenomena that vary across producers but are time invariant, but the intent
is to capture variation in time-invariant technical efficiency. So we have a
confounding effect that make not clear if other effects are included as regres-
sors or not. The solution is to use another panel data model, that we take
into account here later on.
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The Random Effects Model

In this model we assumed that the wu; are randomly distributed with
constant mean and variance, and are also uncorrelated with the regressors
and with the v;;. We don’t make distributional assumption also in this case
and we still require that the u; be nonnegative. The assumption are the
same that before also for the v;, they have zero expectation and constant
variance. With these modifications in the assumptions is possible to include
time-invariant regressors in the model. We can rewrite the model, adding
and subtracting the quantity E (u;):

Iny; = [ﬁo -F (Uz)] + 20 BplnTp + vy — [Uz -F (Uz)]

= B35 + X Bulnnis + vig — uj

The assumption that the u; are random allows some of the x,;; to be time
invariant. If we observe the model we can assert now that the random effect
model fits exactly into the one-way error components model in the panel data
literature. The method we can use to estimate this model is the standard
two-step generalized least squares (GLS). In the first step OLS is used to
obtain estimates of all parameters; it is possible to estimate the two variance
components with several methods. In the second step 3; and the (3,s are
estimated again using the feasible GLS. It is interesting to notice that 3;
does not depend on i, since E (u;) is a positive constant, so there is only
one intercept term to be estimated. After all these estimation we continue
estimating the u; from the residual in the following way:

. 1 " 5
u; = ? Z (lnyit - 50 - Zﬁnlnl'm't) . (2'63)

This is a temporal mean of the residuals. In order to obtain the one-sided
we make a normalization of this type:

w; = max; {u’} - 0. (2.64)

We can speak of consistency if both I and T go to infinity, I — oo and
T — oco. We obtain the estimates of producer-specific technical efficiency
by substituting @ into equation (2.62), the same process than in the fixed-
effects model. This bring to the conclusion that it is possible to obtain
consistent estimates of producer-specific technical efficiency using a random-
effects panel data model.

We can consider also an alternative estimator of w: the best linear un-
biased predictor (BLUP). It assumes the following form:

% 65 2% 4
= g |3 (e~ - L ) =)

t
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from which we obtain the estimator
w; = max; {u; } —u;, (2.66)

that can also be substituted into (2.62) in order to generate another estimate
of the technical efficiency. For T" large the different estimates became equiv-
alent, and we can affirm that both are consistent for I — oo and 1" — oo. The
general meaning is the same that for the fixed-effects model. It is required
that at least one producer is 100% technical efficient. Which method we have
to chose? GLS is appropriate when [ is large, because consistent estimator
of 02 requires I - co. and when the effects are uncorrelated with the regres-
sors, because the effect of uncorrelatedness is the increasing of efficiency in
estimation.

It is interesting also to introduce the Hausman test, on the uncorrelat-
edness hypothesis significance of the difference between the fixed-effects es-
timator and the GLS estimator.

Finally we can affirm that GLS allows the presence of time-invariant
regressors, and the impact of these regressors can be confounded with the
impact of variation in technical efficiency in the fixed-effects model, moreover
GLS require that the u; be uncorrelated with the regressors, whereas the
fixed-effects approach does not.

Maximum likelihood

Until this moment we have considered the panel data models because
they have the strength to avoid distributional assumptions and independence
assumptions. Nonetheless in some cases it is possible that such assumptions
are tenable in a panel data context, in these cases the maximum likelihood
estimation is feasible.

We begin now a close examination of the possible assumptions that we
can make to implement a maximum likelihood estimation. The maximum
likelihood estimation of a stochastic production frontier panel data model
with time-invariant technical efficiency is structurally similar to the same
procedure applied to cross-sectional data.

The first step of our examination is the introduction of a first set of
distributional assumption:

e vy ~1idN(0,02)
o u;~N*(0,02

e u; and v, are distributed independently of each other, and of the re-
gressors.
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These assumptions are parallel to the ones in the normal-half normal model
based on cross-sectional data, the only difference is that now the noise com-
ponent varies through time as well as across producers.

Pitt and Lee (1981) used the production frontier models and estimated
them with these assumptions, to obtain technical efficiency using panel data.
They used the dependence and independence assumptions, the density func-
tions and log-likelihood functions and the conditional distribution to obtain
the estimates.

Sensitivity of Results to the Estimation Method

We have showed three different approaches to the estimation of a produc-
tion frontier model when we have panel data: fixed-effects approach, based
on LSDV; random-effects approach based on GLS; maximum likelihood ap-
proach.

The selection of one approach rather than another, depend on the different
properties of the data, and on the requirements imposed by the approach.

With large I and small 7" or in presence of time-invariant regressors, a
random-effects approach based on GLS is clearly preferred to a fixed-effects
approach based on LSVD. Instead if we have as plausible independence as-
sumptions of effects and regressors, MLE is generally more efficient than ei-
ther LSDV or GLS, because utilize distributional information that the other
two do not do. In the literature all these approaches are used, the focal point
is to discover if they generate different results or if they are different ways
to reach the same conclusion. Gong and Sickles (1989) have implemented
a series of Monte Carlo experiments using all the three approach, and have
found that the three approach generate similar estimates of efficiency, that
are similar in terms of correlation and of rank correlation. Having equal re-
sults is preferable to use the approach that requires less assumptions and is
computationally easy. This lead to a preference for the fixed-effects model.
After this first finding Gong and Sickles have also noticed that as the com-
plexity of the underlying technology increases, the performance of all three
approaches deteriorate. Across the literature is possible to find several appli-
cation of these approaches, that find different result. However it is possible
to conclude that also if the evidence conflict sometimes, the approaches are
mostly similar, and generate similar efficiency ranking, in particular at the
bottom and at the top of the distribution, where the managerial interest is
concentrated.

Technical Improvement

The panel is useful if is long, but is important to observe an improvement
of the technology, that has not to remain constant. For this reason is im-
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portant to include time among the regressors, because time can be seen as
a proxy of the technical change. This practice is common in the estimation
of production functions based on panel data, but not so common in the es-
timation of production frontiers using panel data. The possible reason that
one can individuate is that in the panel data frontier models there are time-
varying technical efficiency specifications, and can be difficult to separate
the effects of technical change from the effects of technical efficiency change,
because both the effects are influenced from the passage of time. The next
step will be to consider the time-varying technical efficiency.

Time-Varying Technical Efficiency

We now relax the previous assumption that technical efficiency is constant
through time, because is a too strong assumption, especially if we operate in
a competitive environment. It is not so realistic to consider that technical
inefficiency remain constant through many periods of time. The longer the
panel, the more desirable it is to relax this assumption. It is possible to
take into account also the time, but the cost is of additional parameters to
estimate. Also with time is possible to use three different approaches: fixed
or random effects model and maximum likelihood.

Fixed-effects Models and Random-Effects Models
The model with time-varying technical efficiency was proposed first by
Cornwell et al. (1990) (CSS) and assume the following form:

Inyse = Bor + 2 Brlnpi + vig — wie
(2.67)
= Bit + 2o BnlnTpi + vy,

where [y is the production frontier intercept common to all producers
in period t, B;; = Bor — uy is the intercept for producer i in period t and
all the others variables are as previously defined. We can proceed as usual,
beginning with the estimation of the parameters describing the structure of
production technology; then we have to obtain producer-specific estimates of
technical efficiency.
In this case we have a IXT panel, and it is hard to obtain all the I'T" intercepts
Bit, the N slope parameters 3, and o2. CSS solve this problem through a
quadratic specification

Bit = Qua + Qigt + Qust?, (2.68)

this formulation reduces the number of intercepts and parameters to I3,
however the parameters to be estimated are still a lot, especially if the ratio
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(I/T) is large. The quadratic specification allows technical efficiency to vary
through time. Commenting on the values assumed by the (2 it is possible to
affirm that if ;5 = ;3 = 0 Vi, this model collapses to time-invariant technical
efficiency model; if ;5 = Q9 and ;3 = 23 Vi this model collapses to a fixed-
effects model. We can interpret this restricted version of the model such as
the technical efficiency is producer-specific and varies through time , but in
the same way far all producers. The interpretation can also be that technical
efficiency is producer-specific and time invariant, with the quadratic time
term capturing the effects of technical change. The problem is that it is not
possible to distinguish between the two different interpretation.

CSS describe different estimation strategies. Let’s start with the fized-
effects approach. Considering the model with time-varying technical effi-
ciency, first of all we have to delete u;; from the equation and estimate the
B,s from the residuals, then regress the residual on a constant ¢ and 2 to
obtain estimates of (£2;1, 2, $2;3) for each producer. Instead of this process
if I/T is relatively small we can include w; in the model with time-varying
technical efficiency and estimate the €2;; as coefficient of producer dummies,
and estimates ;5 and ;3 as coefficients of producer dummies interacted
with ¢ and 2. The following step is the creation of estimates of (3; and the
definition of BOt =max; {Bit}, the estimated intercept of the production fron-
tier in period t. The resulting technical efficiency is T E; = exp {—u;} where
Uiy = (Bot - th) The request is also in this case that in each period at least
one producer has to be estimated to be 100% technically efficient.

CSS developed a GLS random-effects estimator to overcome the problem
that time-invariant regressors cannot be included in the fixed-effects model
with time-invariant technical efficiency. For a fixed 7', GLS remain more
efficient than the fixed-effects estimator in the time-varying efficiency context.
But is necessary to stress the fact that GLS remain inconsistent if technical
efficiencies are correlated with the regressors. CSS developed an efficient
instrumental variables (EIV) estimator again to overcome this other problem.
EIV is consistent when efficiencies are correlated with regressors and allows
for the inclusion of time-invariant regressors. GLS and EIV proceed in the
estimation in the same way as before, with the only difference of the sets of
residuals that are used.

We can consider also an alternative formulation proposed by Lee and
Schmidt (1993), with a different and more generic formulation for the w;,
that are specified as:

uir = B(t)u (2.69)

where [3(t) is specified as a set of time dummy variables (3, for all the pro-
ducers of that year. This model is more flexible than the previous, because
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does not restrict the temporal pattern of the u; to any parametric form.
However LS is at the same time less flexible than CSS, because it restricts
the temporal pattern of the u; to be the same (/3;) for all producers. This
model is appropriate for short panels, since it requires estimation of 7' -1
additional parameters. LS consider fixed-effects and random-effects within
which time-varying technical efficiency can be estimated, and in both ap-
proaches the ;s are treated as coefficients of the effects of u;, that can be
fixed or random. Having the ;s and wu; it is possible to compute:

Uit = AT, {Btaz} - (Btsz) ) (2-7())

and consequently T'E;; = exp{-u;} can be calculated.

Maximum Likelihood

Ultimately we consider the maximum likelihood method of estimation,
we can use this approach when independence and distributional assumption
are tenable. The departure is from the production frontier model (2.67),
with uy = 0 - u;, where vy ~ iidN(0,02) and u; ~ 1idN*(0,02). We define
€it = Vit—Uy = Uy —[;-u;, where the vector ¢; assumes the form €; = (€1, ..., €;7)".
The density function for ¢; is:

fe) = [~ fle,w)du;
= [y L f (e = B - wi) f (wi)du;

u2
— (27T)(T+12)/20';1;U fo exp{ I:Zt (Ezto—vﬁt uz) %]}duz

20, ezp{— 504*1} f
0

(Qﬂ)(Tu)/ngUu

(2.71)

27m { ﬁ(ui—ﬂ*i)Q}dui,

where

1 2 ( N*i)
— o (Wi = i) pdu; =1 -2 - ;
[ 271'0* p{ QUE(U H ) } ¢ O

and in detail the elements with the ‘*’assume the following values:

(X B -€in)o?
(02+02%,52)

2 +2
2 _ Uvau

O = 5 5 <
2 2 27
Uv+0u2t t

1 2 _ oa(Xi B - €it)? .

E't
o2l " o2+oly,

pxi =

Qyi =
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Since we are facing maximum likelihood, now we have to write the log-
likelihood function, in order to obtain the maximum likelihood estimates

of B, By, 02 and o2:

I 1 I.T 1 i
InL = constant—ﬁlnoz—i Za*i—Tlnag—§lnaZ+Zln [1 _P (_N )],

O«

(2.72)

1

It is possible to show that u;|e; ~ N* (.4, 02), and obtain an estimator fo wu;
from the mean or the mode of ue;:

P(=pixifo) ]
1= ®(~piuifo.) |’

E(uile;) = pui + 0 l

Uy i Y e 20

0 otherwise

After the estimation of w; it is possible to estimate u;; from u; = ; -Bt, with
@; can be either from E(ujle;) and from M (u;e;), while the £, are maximum
likelihood estimates of (3, t = 1,...,T that can be normalized. Minimum
squared error predictor of technical efficiency is:

E(exp{-uy}le;) = E(exp{-u;- Bi}|€;)
(2.74)

1-P(Bt-0x—pixi/ox
= 1_((1:(_#“#/0*/) ). exrp {_ﬁt s T %ﬁtz ’ O-z} .

Two different specification of the model have been considered in the liter-
ature, the first one is by Kumbhakar (1990) with 3(y) = [1 + exp {7t + 6t2}] ",
that requires the estimation of the two additional parameters v and §. The
second alternative time-varying technical efficiency model was proposed by
Battese and Coelli (1992) and the specification for the [ is:

p(t) = exp{-~(t-T)},

that has only one additional parameter v to be estimated. We can notice that
the function [((t) satisfies the properties (i)5(t) > 0 and (i) 3(t) decreases
at an increasing rate if v > 0, increases at an increasing rate if v < 0 or
finally remain constant if v = 0. The specification of Battese and Coelli
continue with distributional assumptions: normal for v;, truncated-normal
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for u;. They use maximum likelihood to obtain estimates of all parameters
in the model. Under the light of these assumptions, the authors showed that:

ui|€i ~ iidN+(ﬂMia 0—3)7
o2-3'ejo?
where €; = v; = B+ u;; flewi = LG 02 = m and ' = (3(1), ..., 5(T)).
If technical efficiency is time invariant, v =0 = ((¢) = 1 and 5’3 =T, and the

expressions for fi,.; and o2 collapse to their time-invariant versions. Lastly
we write the minimum squared error predictor of technical efficiency:

E(exp-uitle;) = E(expf(t) - wile;)
(2.75)

1-® Ox *7 O'x—
= ST eap {5t + 55120}

Method of Moments

Also in this case is possible to estimate the production frontier model
using a method of moments approach. We rewrite the equation in a more
convenient form:

lnyzt = 60 - ﬁt \/70_11 + Z ﬁnlnzmt + U — (uit - E(uzt)) (276>

= ﬁt* + Zn ﬂnln'xmt + Vg — u;ta

where u;; = u; - §; and E(uy) = 5y - \/2/_7r -0,. The analysis start with a first
step, where OLS is performed on equation 2.76, with time dummies added.
The coefficients of the time dummies are the [3;s. The analysis continue with
a second step where the residuals of the first-step OLS regression (estimates
of € = vy —u}) are used to compute third moments for each ¢. The third
moments for each ¢ assumes the following form:

mae = B+ B(us = B(u)* = 7 - o - [V/2[r(1 - 4/m)]

and through the third moment we can compute :

- e 1/3
Broy = (1——) t=1,...T.
V2/[m Q

In order to obtain the estimates of o, and 3; we make the normalization
f1 = 1. For instance we can write an estimation of 3y from 5y = (1/T) ¥, 5} +
Bi0un/2/m. The analysis carry on with a third step: the estimation of the o?2.
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We know that the variance of €}, is [02 + 3202(1 - 2/7)], 02 can be estimated
in the following way:

22%*3——0 (1——)2@ (2.77)

We have a further step, the fourth step, where the estimated values of 3, f;,
o2 and 02 are used to obtain estimates of u; from E(u,le;) or from M (u;le;).
It is also possible to calculate the minimum squared error predicted like seen
previously in equation 2.75.

It is possible to make several different specifications, for instance Kumb-
hakar and Hjalmarsson (1993) proposed a specification of the time-varying
technical efficiency where wu;; is broken down into two components: a pro-
ducer specific component capturing producer heterogeneity, and a producer
and time specific component representing technical inefficiency. This ap-
proach avoid to impose distributional assumptions until the second step, but
has also a problem: any time-invariant component of technical inefficiency is
captured by the fixed effects, rather than by the one-sided error component,
where it really belongs. This subject is wide, and goes beyond the needs of
our actual analysis.
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Chapter 3

The Data

3.1 Generality

We have available a large administrative dataset covering the full population
of patients and hospitals operating in the Lombardy Region, one of the most
populated and richest regions in Italy. The dataset regards about the entire
population of hospitals within the Italian Lombardy Region. We have omit-
ted some hospitals because the information about them were not exhaustive.
We are speaking about 126 hospitals, and these hospitals have public and
private (profit and not-for-profit) ownership structures. We observed these
hospitals over a period of five years, from 2003 to 2007. We are speaking
about 4819606 admissions in this period. Given the fact that we use ad-
ministrative data to investigate the entire population and not a census of it,
the sample selection error component of causal estimation error vanishes, as
stated by Imai et al. (2008). The model is population based, at both Hospital
and Patient level.

In order to compute the quality of health care received by a single pa-
tient, we started from the Hospital Discharge Chart (HDC), where all the
information regarding patients’ characteristics and the treatments received
during the admission period are recorded. We have applied a few exclusion
criteria to avoid bias. These do not influence the correctness of the results.
For instance we have considered all the ordinary discharges, excluding the
day-hospitals and rehabilitations. In addition, to avoid bias connected with
the peculiarity of the case study, we have also excluded children under 2 years
old. Moreover we have keep inside the analysis only the hospitals for which
we have information along all the time period taken into account. This lead
to exclude roughly 8 hospitals, but is not source of error thanks to the big
number of data.

61



3.2 The variables

We have available two type of data: a type about the Hospitals, and a type
is about the patients. In order to have a clear map of all the information, we
give here a short description of the variables.

3.2.1 Patients’ variables

About patients we know the age, but is too much dispersive to take into
account this data. So after some attempts we have divided the population
into five classes of age. The classes are the following:

e class 1 include patients under 18;

e class 2 include patients from 18 to 35 included;
e class 3 include patients from 36 to 50 included;
e class 4 include patients from 51 to 70 included:

e class 5 include patients aged 71 and over.

1;6.44%

3;15.68%

Figure 3.1: Age classes

Another important variable is the DRG weight. DRG (diagnosis-related
groups) are prospective payment system. Medicare pays hospitals a flat rate
per case for inpatient hospital care so that efficient hospitals are rewarded
for their efficiency and inefficient hospitals have an incentive to become more
efficient. The DRGs classify all human diseases according to the affected
organ system, surgical procedures performed on patients, morbidity, and
sex of the patient. The Centers for Medicare & Medicaid Services (CMS)
assigns a unique weight to each DRG. The weight reflects the average level
of resources for an average Medicare patient in the DRG, relative to the
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average level of resources for all Medicare patients. The weights are intended
to account for cost variations between different types of treatments. More
costly conditions are assigned higher DRG weights.

About the personal information of the patients it should also be interest-
ing to know the gender, this variable assumes value 1 for the male and value
2 for the female, like the ISTAT coding. We have the 46.66% of male, and
the remaining 53.34% of female.

Figure 3.2: Gender

We can continue with the variable description, and we have now length
of stay in hospital. This variable collects the number of days that a patient
stay in hospital. We have decided to drop the permanence over 365 days
because is not representative for the purpose of our analysis. Patients that
stay so long in hospital are almost always psychiatric, and the kind of care
for psychiatric patients are very peculiar and don’t influence the quality of a
hospitals. The most of the stay are less then 28 days, it is about the 97.76%
of the stays.

Urgent is a dichotomous variable that assumes value 1 if the patients was
urgent at the moment of the hospitalize, and assumes value 0 in the opposite
case. The 94% of the case are not urgent, we have only a 6% of urgent cases,
that maybe are more serious.

Comorbility is concomitant but unrelated pathological or disease process.
This variable describes the number of diseases in the patient present at the
same time. It assumes value 0 if there is no comorbility; it assumes value 1
if there is one comorbility; it assumes value 2 if there is the presence of two
comorbility; it assumes value 3 if there is the presence of three comorbility;
it assumes value 4 if there is the presence of four comorbility and finally it
assumes value 5 if there is the presence of five comorbility in the patient.
We can see the distribution in the following figure 3.4. We have computed
the values of this variable through the Elixhauser Comorbidity Index that is
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Figure 3.3: Length of stay

defined like “A measurement tool that defines 30 comorbid (i.e., co-existing)
conditions using ICD-9-CM codes. This instrument is meant to be used with
large administrative data sets. The index has been updated for use with ICD-
10 coding 7 (Quan et al. (2005)).
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Figure 3.4: Comorbility

Finally we have decided to use two additional variables that are onco-
logical and cardiology. They are dichotomous variables that assume value
1 if the disease is of that type, and 0 otherwise. It can be interesting to
consider these two variables because they represent the majority of diseases.
Cardiology is the disease of the 17.87% of the population of patients, and
oncological is the disease of the 8.43% of the population.

We have considered also the variable that indicate the year of survey,
year; and a variable that give a codification to the particular hospital that
we are analyzing, COSP.
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3.2.2 Hospitals’ variables

For the second phase of the analysis we have the possibility of exploit the data
about the hospitals. The variables that we find again are Year and COSP.
Moreover we have emergency that indicates the presence (1) or the absence
(0) of the emergency inside the hospital. In particular for the 126 hospitals
that we have analyzed, we record that 79 hospitals have the emergency, and
this data correspond to the 62.7% of the whole population. The remaining
47 hospitals don’t have an emergency and they represent the 37.3% of the
population.

We can continue with the description of the variables, and we find the
variable mono-specialist that indicates if the hospital has only one special-
ization or more. In detail we have only 8 hospitals mono-specialist, and the
other are pluri.

The subsequent variable is university, and indicates if the hospital has
also a teaching part, and is connected with a university of medicine. Also
in this case the variable is dichotomous and indicates with a 1 the presence
of the characteristic and with a 0 the absence. In our data set we have 13
hospitals connected to a university and 113 no.

Until here the characteristic of the hospitals were unchanged during the
years, but the following one are different, maybe a little, from year to year.

The variable ward indicates the number of wards every hospital has.
There are some changes during the years. The number of wards indicate
how much the hospital is general. It will be interesting to check inside the
model if is better to have a lot of wards or a few. In figure 3.5 we can see
in the x-axis the number of wards in the hospitals, that goes from 1 to 31,
and with different colors of the columns we indicate the different years. In
the y-axis there is the number of hospitals that have that number of wards
in that year.

Then we can consider the number of beds, in which we resume all the
type of beds inside the hospital, the beds for the day hospital plus the bed
for ordinary discharge. The peculiarity that is important to notice is that
if we look inside the dataset the number of beds is not an integer. This
characteristic depend on the fact that the survey is made on the base of
particular standard of accreditation of beds during the years.

We have then three variables about the personnel of the hospital. First
of all we consider the phys, the number of physicians present in the hospital.
Also in this case is curious to notice that is not an integer number, and this
time is clear the reason: we have like reference the full-time physicians, and
we have to take into account also the part-time.

The same hold for the nurse and for the adm. The last one indicate the
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administrative personnel.

Ultimately we have also the data about the ownership of the hospital. We
have chosen to classify the hospitals with two variables: the first one divide
the public (indicated with a 1) from the private one (indicated with a 0), this
variable is named own. We have created also a second variable profit, that
divide the private - profit from all the others.

3.3 The choice of the outcome

To start the process we have to select the outcome to implement the multi-
level model. There are several possibilities available to compute a proxy for
the quality of care in hospital services. These are: in-hospital mortality, vol-
untary discharges, transfers between hospitals, repeated admissions for the
same MDC (Major Diagnostic Categories), return to the operating room,
mortality within 30 days from discharge and total mortality. The latter is
given by the sum of in-hospital mortality and mortality within 30 days from
discharge and also others. The latter is a measure of quality in healthcare
services received from hospitals that we adopted in our investigation, and
that we choose as the proxy for quality, in line with the desired outcome of
our study. It is a dichotomous variable that assumes only two values: 0 in
case of no event, 1 in case of death event. It is a not ambiguous variable,
because the researcher has only to observe the event of death, that is objec-
tive, there is not need of interpretation. There is a branch of literature that
criticizes the use of mortality rate like outcome.We have illustrated it at the
end of chapter one and now we are conscious of all the possible problems and
error that we can meet. But we have consider all the aspects and the way in
which we use the mortality is not incorrect.

After a series of considerations about the interpretation of the results we
have decided to reverse this variable, and instead of mortality we call it hope
of life. So we have 1 if the patients stay alive during the hospitalize and
after 30 days, and 0 if the patients die. The dichotomy nature of the variable
creates a necessity for a logistic multilevel model.

The data have a hierarchical structure as patients are classified within
different structures, and patients from the same hospital could have similari-
ties in terms of particular characteristics compared to patients from different
hospitals. Therefore it seems reasonable to take into account a set of char-
acteristics, covariates of the model, at both levels of the analysis.
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Chapter 4

The Model

Our study considers the Health care system like a branch of economic man-
agement. There is a current of thought that consider the working of Hospitals
like the working of firms. Under the light of this consideration it is interest-
ing to evaluate Hospitals from the economic point of view. Nevertheless this
evaluation became useful when is based not only on costs but also on the
performance.

4.1 The idea

The idea of the model born from the intuition that can be very interesting
to be able to take into account both the hierarchical structure of the data
and the distance of hospitals from their frontier of productivity. We can
say that our intent is to consider the effectiveness like an efficiency, with
all the economic and performance aspects correlated. Going into the detail
we underline again the new aspect from the economic point of view: the
hierarchical structure of the data is not neglect. We have widely explained
all the reasons and the strength inside the first chapter of this work. The
innovative way to look at the necessity of the accountability of hierarchical
structure is to not isolate it, and to use multilevel model together with others
models. It is possible to implement several different approaches, but the wide
availability of data have lead us to the utilize of two different models in two
subsequent moments. This choice supports the great possibility to use two
different statistical software, and above all to have not to consider restrictive
statistical conditions, and to calculate from the beginning algorithm and
technique of estimation. We use what yet exist, but in a different way,
with different applications and with a particular sequence of step. We have
plenty of punctual data, and it is a pity to not exploit all the capability. In
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light of the main purpose, we have to say that the better way could have
been the construction of a statistical model that keep both the features of
the models we have used in the two stage. But with a unique model it
is necessary to program a new procedure and is more difficult and maybe
impossible to utilize the about five millions of data. So in this first analysis
we have chosen to keep all the data and to see what happen, if the joint
approach of multilevel and stochastic frontier can be useful. We leave as
future aim a unique analysis, in which we have a unique multilevel model with
three source of error. In this case it means that we introduce the technical
inefficiency inside the model that considers the hierarchical structure of the
data. Moreover no piece of software will solves the challenging statistical issue
underlying decisions about model specification with complex data structures.
In our case the structure is not so complex but the plenty of data and the
importance of the possible results have conduct us to choose a two stage
model. It can be seen like a very hazarded decision, but is the one that we
have thought to verify eaven if with a major component of error.

4.2 Two step Method

The use of two methods in subsequent moments is not a new technique.
There is a current of thought that support the idea that the two step pro-
cedure is less time consuming and more flexible. This is because leave the
possibility to use different statistical software and drop the necessity to verify
contemporary conditions. Maybe is a simplification, but is well used in all
the social science, like scientific instrument available for everybody.

4.2.1 The first step: Multilevel model

During the first part of the analysis we have done a multilevel study of the
population. We start from a wide quantity of data, with the objective to reach
a good dataset containing all the information we desire to use. The variables
and the records available are even more then the ones we have used, but we
have to consider the coherence of the information,and the completeness of
the panel of the hospitals during the years.

In this step of the model we use SAS to implement the multilevel model.
SAS (statistical analysis software) cover from traditional statistical analysis
of variance and predictive modeling to exact methods and statistical visual-
ization techniques. This software is designed for both specialized and enter-
prise wide analytical needs, because provides a complete, comprehensive set
of tools that can meet the data analysis needs of the entire organization. The
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strength of this software is that is capable of keep and elaborate an enormous
quantity of data, in a reasonable time.

Glimmix

The GLIMMIX procedure fits statistical models to data with correlations
or non-constant variability and where response is not necessarily normally
distributed. These models are known as generalized linear mixed models
(GLMM). The GLMMs, like linear mixed models, assume normal (Gaussian)
random effects. Conditional on these random effects, data can have any dis-
tribution in the exponential family. The exponential family comprises many
of the elementary discrete and continuous distributions. The binary, bino-
mial, Poisson, and negative binomial distributions, for example, are discrete
members of this family. The normal, beta, gamma, and chi-square distribu-
tions are representatives of the continuous distributions in this family. In the
absence of random effects, the GLIMMIX procedure fits generalized linear
models (fit by the GENMOD procedure). GLMMSs can be useful for different
applications, for instance they allow to estimate trends in disease rates, or
modeling the proportion of infected plants on experimental units in a de-
sign with randomly selected treatments or randomly selected blocks. Others
applications can be the prediction of the probability of high ozone levels in
counties, modeling skewed data over time, analyzing customer preference and
finally joint modeling of multivariate outcomes.

Such data often display correlations among some or all observations as
well as non-normality. The correlations can arise from repeated observations
of the same sampling units, shared random effects in an experimental de-
sign, spatial (temporal) proximity, multivariate observations, and so on. The
GLIMMIX procedure does not fit hierarchical models with non-normal ran-
dom effects. With the GLIMMIX procedure you select the distribution of
the response variable conditional on normally distributed random effects.

Multilevel flexible specification of the production function in health
economics

Previous studies on hospitals efficiency often refer to quite restrictive func-
tional forms for the technology. In this work, referring to a study about the
hospitals in Lombardy Region, we formulate a convenient way to use sta-
tistical model together with economics models. More specifically, in order
to take into consideration the hierarchical structure of the data we propose
a multilevel model in a first stage. Then the analysis will continue with a
second stage, in order to not ignoring the one-side error specification, typical
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of stochastic frontier analysis. Given this simplification, the use of these two
models in two different moments, however, we have to to take into account
some typical econometric problems as, e.g. heteroschedasticity or the fact
that in the second stage we use estimated values. The estimated produc-
tion function can be used to identify the technical inefficiency of hospitals
(as already seen in previous works), but also to draw some economic con-
siderations without ignoring the real structure of the data. We formulate
convenient correctives to a statistical model based on the trans logarithmic
function, the most widely used flexible functional form.

The interpretation of the results is surely an interesting administrative
instrument for decision makers in order to analyze the productive conditions
of each hospital and also to decide the preferable interventions. We want to
analyze the effectiveness from an economic point of view but also considering
the outcome of the hospitalize.

4.2.2 The second step: Stochastic Frontier Analysis

Among the parametric techniques we chose to use the Stochastic Frontier
Model because takes into account the measuring errors and others stochastic
factors. This assumption is realistic in health care system, because several
qualitative factors are not catch by the utilized variable. The Stochastic
Frontier Model itself presents some problem, the principal problem is the
neglect of multidimensional and hierarchical structure of the data, Siciliani
(2006).

The better way we have thought to overcome this problem is to utilize
a frontier after have implemented a multilevel model. The Hospitals have
to reach the frontier of optimality, and we believe that we can consider the
distance between each hospital and the frontier. The utilization of data
from a multilevel implementation allows to take into account the hierarchical
structure of the data, since in the previous step we use a hierarchical model.
At this point we focus our attention on the hospitals and their performance,
but we have not neglected that inside a certain hospital we have exactly that
patient.

Further Variables

We have implemented a frontier, with the data available about hospitals. In
this second step, the data we are interested in are data about hospitals, and
not hospitalizes or patients. The data are along the five years, something
remain equal during all the period of observation, something else change
from year to year. For this reason we have a dataset of 630 records, one per
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hospital per year. We have reversed the variable of the multilevel model in
positive term, so the frontier is the optimality to reach, when the patients
has a wide probability to stay alive. We can obtain information about the
hospitals’ variable from chapter 4, but we have also to introduce two new
variables that we have derived from the multilevel.

The first variable derived that we introduce in this section is mherror.
We take initially the residuals of the multilevel model per hospital. This
error is distributed like a variable with mean zero and constant variance, and
can be used to make a sort of ranking of the hospitals. The major is this
residual the better is the performance of that hospital, positive value indicate
a performance over the mean. This type of classification has been made a
lot in previous works, also if it is not completely correct. We advocate the
fact that we use it only as link between the two model, and we correct with
the second model in some way the problems that can arise using an imper-
fect measure. We have another problem to solve: the residuals assume both
positive and negative values, but we want to use it as production outcome of
the frontier. A production, by definition, has to be positive, so we need to
transform our ranking. The solution we have applied is that we have shifted
the value up, in order to have only positive values. At each value we have
added the minimum value ever assumed. At this point we have obtained a
positive variable that we utilized like output of the frontier. Mherror corre-
spond to the error of the hospital along the time from the multilevel, and is
a ranking translated. Since is important to keep an order, with a shifting we
maintain the same ranking.

The second variable derived is the meanp, that correspond to the mean
probability of stay alive after an hospitalize. The probability of survival is
derived also from the multilevel model, but this probability is a data available
for each patients. It is a very interesting data that tells us just the probability
that a particular individual, with his particular characteristics, has to stay
alive. In this section we are analyzing hospitals data, so we need the data
aggregated. For this reason we make a mean of the probability for each
hospitals. We have tried to use it also for the implementation of a frontier,
but the entity of this variable dose not allow a lot manipulation because all
the records are near to the same value, always over 0.9 (luckily!).

Frontier 4.1

FRONTIER Version 4.1 was written by Tim Coelli. This program is used
to obtain maximum likelihood estimates of the parameters of a variety of
stochastic production and cost frontiers; and estimates of mean and individ-
ual technical or cost efficiencies. The program can accommodate:
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e cross-sectional or panel data;

e half-normal or truncated normal distributions;

e any functional form which is linear in parameters;
e time-invariant or time-varying efficiencies;

e inefficiency effects can be explicitly influenced by a number of firm-
specific factors.

This step of the analysis has been implemented with R, a software envi-
ronment for statistical computing and graphics. We have utilized the package
frontier, implemented by Coelli and Henningsen for the Stochastic Frontier
Analysis. It gives the Maximum Likelihood Estimation of Stochastic Fron-
tier Production and Cost Functions. With this package two specifications are
available: the error components specification with time-varying efficiencies
Battese and Coelli (1992) and a model specification in which the firm effects
are directly influenced by a number of variables Battese and Coelli (1995).

Our case is well suitable to Stochastic Frontier Production Functions, be-
cause we have no data about cost for now. We have chosen the interface fron-
tierQuad, because is convenient for estimating quadratic or translog stochas-
tic frontier functions. Among all the possible functions we have adopted
the trans log (transcendental logarithmic) because in economics and econo-
metric is the most flexible specification of the utility, production and cost
function. This class of function is named flexible because allow for the anal-
ysis of effects that depend on second derivative, like elasticity of substitution,

that usually are assumed given and constant in classical functional forms like
Cobb-Douglas and CES.

Battese Coelli frontier

The frontier we have chose to implement is the one proposed by Battese and
Coelli (1992). Once decided that the best functional form is the translog, we
have made the logarithmic transformations of all the variables, except that
for the endogenous one. We proceed specifying all the elements that play a
role in the frontier. In “yName”we have to put the name of the endogenous
variable, that in our case is mherror. With “xNames” we indicate a vector
of strings containing the names of the X variables (exogenous variables of
the production function) that should be included as linear, quadratic, and
interaction terms. It is possible to insert also the specification shifterNames,
a vector of strings containing the names of the X variables that should be
included as shifters only (not in quadratic or interaction terms). Moreover
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we have also “zNames” a vector of strings containing the names of the Z
variables (variables explaining the efficiency level). In our model a possible
variable of this type is own, that indicate the ownership of the hospital. The
data is a panel data frame, created with “plm.data”, and it is assumed that
these are panel data.

Function frontier is a wrapper function that calls sfa for the estimation.
The two functions differ only in the user interface; function frontier has the
old user interface and is kept to maintain compatibility with older versions
of the frontier package. One can use functions sfa and frontier to calculate
the log likelihood value for a given model, a given data set, and given param-
eters by using the argument “startVal” to specify the parameters and using
the other arguments to specify the model and the data. The log likelihood
value can then be retrieved by the “logLik” method with argument which
set to “start”. Setting argument “maxit” to 0 avoids the (eventually time-
consuming) ML estimation and allows to retrieve the log likelihood value
with the “logLik” method without further arguments.

4.3 Possible future development

During our research we have had way to think again to the choice of the two
step method. A deeper analysis have give light to another possible specifi-
cation of the same idea. The future application will be a multilevel model
with a further error component. The major problem with this specification is
that we have to re-write all the integral and computation of the algorithm of
estimation. The computational weight is not indifferent, so we have thought
to verify if worthy with the simpler process of two stage analysis. This is
only the basis for a detailed research, that we leave like next stage of our
analysis.

In order to model the probability of survive, function of aspects connected
to patient, hospital and inefficiency (of the hospital) it could be necessary
to reconsider the way of modeling the positive replay probability from the
patient’s side. Rather then a frontier with the probability of survive, we
can make a logit. The frontier so will assume a form that would contain
covariates, a-symmetric error and normal error. The better result that we
wish have from the previous model is to obtain the functional form of the
probability of survive, and estimate it directly. This approach would bring
to specify stochastic frontiers for dichotomous variables.

75



76



Chapter 5

Results

5.1 Multilevel Model

We now write comments to multilevel model. The three-level model reach
the convergence after 11 iteration, we allow a maximum number of iteration
of 30 in order to reach the convergence.

We are analyzing a model where the first level is the time, with a panel of
five years. After this level we have the hospital level, 126 Hospital along all
the five years, that are among the totality of the hospital of the Lombardy
Region. First of all have a look to the p-value: they are all meaningful.
This fact is not so reliable, because there are evidence that the significance
of the p-value is not crucial. Some variables can be reliable also without
these significance. But if we have it, is only a major confirmation that we
underline. The values that we have are all significantly different from zero,
it is reasonable to think that the model adequately fit the data.

Age classes are considered instead of the punctual data that are anyway
available. We have made this choice because the data are too much dispersive
with the punctual data and the model not converge. Accordingly to what
table 5.1 displays, the reference class is the number 2, (people aged from
18 to 35), people inside this class are stationary, they have not influence on
hope of life. The class number 1, (people aged from 1 to 17) has a positive
estimate of the coefficient, equal to 0.36. This means that the belonging to
this class has a positive influence on the hope of life , although not so high.
If we continue with this description following the natural order of the age,
we arrive at the third class, that include people aged from 36 to 50. This
class begins to be negative, meaning that the hope of life decrease belonging
to this class. The estimate of the coefficient is exactly —1.32. The value has
a certain importance also if it is designed to grow up with the increasing of
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Effect Estimate StdErr tValue Probt

Intercept 6.45 0.094 68.39  <.000
class3 -1.32 0.022 -59.0047  <.000
classh -3.18 0.020 -156.76  <.000
classl 0.36 0.044 8.12  <.000
class4 -2.23 0.021  -108.33  <.000
class2 0

DRG weight -0.13  0.0013  -106.58  <.000
length of stay -0.011  0.00020 -52.39  <.000
urgent -1.34  0.0058 -229.36  <.000
comorbility -0.23  0.0024 -96.96  <.000
genderF 0.15  0.0043 34.86  <.000

genderM 0

cardiology 0.13  0.0054 23.52  <.000
oncological -1.10  0.0057  -192.59  <.000

Table 5.1: Estimate of the coefficients

the age. In fact the class number 4 (people aged from 51 to 70) has also a
negative value of the coefficient and has also a greater value, equal to —2.23.
Ultimately we arrive at the last class - number 5 - that comprises all the
patients over 71. For this class the influence is again negative, the coefficient
is equal to —3.18, one can conclude that the belonging to this class has a very
consistent negative influence on the hope of life.

It should also be noted the influence of the others variable. The drg
weight has a coefficient of —0.13, this bring us to consider the gravity of the
disease like negative correlated with the hope of life. And it is a reassuring
result, because corresponds to our expectation. Indeed is natural to think
that the more is serious the illness the more the hope of life decreases. We
can switch to the subsequent variable: length of stay. Also this variable
has a negative coefficient, but of small entity, because it is equal to —0.011.
This leads us to think that the longness of stay in the hospital does not
bring to a succeed of the care. Going on we have the variable urgent, that
also has a negative coefficient with value —1.34. This means that if a case
is more urgent, the probability of remain alive decreases. We have also for
this variable an inverse proportionality. Comorbility is another variable with
inverse proportionality. Its coefficient assumes value —0.23, negative but not
so wide. Once again we have found an aspect with a bad influence on the hope
of life, and it is natural, because having more than one disease is for sure
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a bad way to implement hope of life. With the following variable instead
we underline a characteristic that has a positive influence on hope of life.
This variable with a positive coefficient is the gender. To be a female has
a positive influence, 0.15. Proceeding with the last two variable we have a
positive coefficient for cardiology, equal to 0.13. This indicates that this type
of disease has more hope of life because has a well developed way of care
and nowadays can be solved easy. Finally we have considered the variable
oncological, that has a negative coeflicient with value —1.10. We can expect
this result, because a cancer can be also not treatable.

At this point we can affirm to be satisfied by the results of this first step
of the analysis. First of all because the model reaches the convergence, then
is a good result to have all the coefficients meaningful, and with a correct
values and sign (correct because reasonable). Ultimately it not so usual that
the time is considered like a superior level of the hierarchy, and we notice
that his meaningful is not so high. This fact can be justified because Singer
affirms that the time starts to be meaningful like level of hierarchy if we ave
available almost ten years. We have only five years, bud we would anyway
stress the importance to be able to analyze a panel.

5.1.1 Computation of the intraclass correlation index

We have seen in the first chapter that to check the significance of the model
it useful to compute the intraclass correlation index. Going over the two-
level theory we need the three-level specification. In particular we recall the
formulas that we are going to use, 5.1 with the peculiarity that the major
level is time, so we change the subscript ‘k” with ‘¢":

Yijt = Yooo + Vot + Ugjt + €45t (5.1)

After that we take also the equation for the hospital level with the first
method mentioned:
o2

(5.2)

Phospital = 5 2 2
02 + 0% +0?

The complete model that we have implemented is the one with all the
variables of interest that we have mentioned before. For this model the
glimmixz procedure give the following coefficients, that correspond to the
value of the variances that we need for the computation of the intraclass
correlation index.

The estimate of the intercept for the year corresponds to o = 0.03788889;
the second value that we obtain is the estimate of the intercept of the influ-
ence of both year and hospital (remember that cosp is the code to identify the
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CovParm  Subject oldest StdErr ZValue ProbZ

Intercept year 0.03788889 0.03007 1.260054 0.104
Intercept cosp(year) 0.55183864 0.03569 15.46032  <.000
Residual 0.79169558 0.00051 1552.232 <.000

Table 5.2: Variances of the complete model

different hospitals), 02 =0.55183864 and finally the estimate of the residual
corresponds to the total variance of the residual, o2 = 0.79169558. Having all
the data available is possible to compute the coefficient that assumes value
Phospital = 0.39947.

There is a second possible approach to compute the same index, the
second method exposed in chapter 1:

2 2
Uvo +O'u0

(5.3)

Phospital =
P 02

2 2
20 +O'u0 +0g

We have to take the same value for the variances and now the intraclass
coefficient will be: ppospitar = 0.4239. Both are correct, with a nuance of
different meaning.

At this point we continue calculating the intraclass coefficient for the year.
The two method coincide in this case. We recall the formula 1.12:

2
(oph
= 5.4
Pyear o2 +02 +0? (54)
and we obtain a value equal to pyeq, = 0.02742.

It can be interest to compare this model to the only-intercept model, that
is the model without any explicative variable. So we repeat these operation
on it.

CovParm  Subject Estimate StdErr ZValue ProbZ

Intercept year 0.0255 0.02426 1.051 0.14663003
Intercept cosp(year) 1.06738  0.0672 15.88 <.000
Residual 0.98742  0.00064 1552 <.000

Table 5.3: Variances of the only intercept model

We can see that the variances assume value o7, = 0.0255 for the year;
o2, = 1.06738 for the common term to hospital and year and finally the
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estimate of the residual correspond to the total variance of the residual, o2 =
0.98742. The intraclass correlation index for the hospital for the first method
assumes value ppospitar(1) = 0.5131, and with the second method assumes value
Phospital (2) = 0.5254.

We can compute also for the only intercept model the intraclass coefficient
for the year. Recalling the previous formula 5.4 we obtain a value of pyeq, =
0.01226. The year is more meaningful for the complete model also if its
importance is very marginal and we can definitively say that there is no
variability along the years.

It is not totally satisfactory that the base model has better result then
the complete. But having so complex pattern of analysis is not so easy
to implement the structure of the data. Anyway the results are only a few
worst for the complete model, so it is not so worrying. Moreover the intraclass
correlation index for the year is better for the complete model rather then for
the only intercept one, and this fact give evidence of the good development of
our model. At this point we can affirm to have developed a good multilevel
model and we can switch to the model of the second stage.

5.2 Stochastic Frontier Model

The implementation of the stochastic frontier model is done through the fron-
tier package of R. We have charged also other libraries: nime, car, Imtest
and dse. After that we have charged the data. We have decided to implement
a translog function, so we have to transform the data in logarithmic form.
The subsequent step is to create the matrix where the frontier works, with the
plm.data function. At this point we are ready to make the frontier. Like first
attempt we use as dependent variable mherror. This is a variable that we have
create, derived from the multilevel implementation. In order to obtain the
best estimate possible we have used the last version of R 2.12.1 and moreover
the improved package of frontier, that the author himself: Arne Henningsen,
Coelli et al. (2009), had provided us. Recently he has found out that NAs in
the efficiencies can be caused by numerical instability, which often occurs on
digital computers, particularly when numbers get very large or small. In the
calculation of efficiencies, the problem can occur, because a denominator of
a fraction consisted of the normal density function, which returns zero if it is
applied to numbers smaller than minus 37. Henningsen solved this problem
in the frontier package by replacing “pnorm(a)/pnorm(b)” by something
like “exp(log(pnorm(a))—log(pnorm(b)))”, which is algebraically the same
but is numerically more stable. The results we obtain with this implemented
package are clearly better. The principal objective of this analysis is to be
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able to say something about the efficiency of the hospitals. We have imple-
mented several frontiers and now we are going to show the most meaningful
one.

5.2.1 Dependent mherror, without Z

The frontier that gave us better results is the one with output variable mher-
ror, and with input variables ward, beds, physicians, nurses and administra-
tive personnel. Unfortunately we can not keep the external variables for the
ownership, because in that case the model would not be meaningful. This
attempt give us a warning message that advice us of the possibility that
the residuals of the OLS estimates are right-skewed; this might indicate that
there is no inefficiency or that the model is misspecified. We have applied an
Error Components Frontier by Battese and Coelli (1992). In this frontier the
inefficiency decreases the endogenous variable (as in a production function)
and the dependent variable is logged. Iterative ML estimation terminate
after 37 iterations: log likelihood values and parameters of two successive
iterations are within the tolerance limit.

The table 5.4 report the results of the final maximum likelihood estimates
for the coefficient of the model. We have reported also the significance codes:
if the level of significance is very high and near to 0, three stars are displayed
on the table; if the level of significance is around 0.001, two stars are displayed
on the table; if we obtain a level of significance of 0.01 the table display only
a star; we can obtain also variables with level of significance of 0.05, and in
this case the table displays a point “.”; finally we can obtain also values with
a significance of 0.1 and in this case in the table will be an empty space.
After this technical explanation we switch our attention on the variables.

The first variable that enters in the model is wards, with a positive coeffi-
cient, meaningful and of a certain entity. The coefficient of the single variable
is equal to 2.15, and has a meaningful of two stars. We continue analyzing
the effect of wards on the frontier, and we can look at the interaction of wards
with the other variables. We have to say that we can look at the factor of
second level, but is non meaningful, and among the interaction is interesting
to underline the one with physicians, that is still meaningful (also if with
only a star) and positive, also if of small entity. Finally for the wards we
have to take into account another interaction: the one with administrative
personnel. This time the effect is negative, since the coefficient has value
-0.36 and a significance of a star. This is not a great result because if the
sign of all the coefficients for that variable is the same we can be sure of the
effect of that variable, in case of contrasting sign we are less certain.

We can switch to the second variable: beds. This variable has a quite
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Estimate Std. Error z value Pr(>|z|)

a_0 9.57 1.87 5.12 0.00 Hk*
a_l 2.15 0.74 2.91 0.00 **
a_2 -2.52 0.85 -2.95 0.00 **
a_3 0.08 0.61 0.13 0.90
a4 0.45 0.74 0.60 0.55
a_d -0.71 0.70 -1.02 0.31
b.1.1 0.05 0.21 0.24 0.81
b_1.2 -0.22 0.16 -1.36 0.17
b_1.3 0.22 0.10 2.10 0.04 *
b_14 -0.05 0.14 -0.38 0.71
b_1.5 -0.36 0.15 -2.36 0.02 *
b_2.2 0.74 0.28 2.59 0.01  **
b2.3 -0.16 0.17 -0.94 0.35
b_2.4 0.17 0.21 0.83 0.41
b_2.5 -0.15 0.19 -0.77 0.44
b_3.3 -0.20 0.12 -1.70 0.09
b.3.4 0.27 0.16 1.66 0.10
b_3.5 -0.04 0.16 -0.28 0.78
b.4.4 -0.92 0.32 -2.88 0.00  **
b_4.5 0.39 0.20 2.00 0.05 *
b_5.5 0.04 0.14 0.30 0.76
sigmaSq 2.11 0.30 7.11 0.00 ***
gamma 0.97 0.00 225.93 0.00 Hk*
time 0.01 0.00 1.44 0.15

Table 5.4: Final Mazimum Likelihood Estimates

high level of significance (two stars) but a negative influence on the good
efficiency of hospitals. Her coefficient assumes value equal to —2.52, and this
mean that hospitals has too much capacity of beds, that influence negatively
the performance. If we consider the second order of influence of beds we have
the surprise that this time it has a positive coefficient, with also a good level
of significance (two stars).

Going ahead we can see that the others variables are not meaningful
alone, but are meaningful the iterations or the second order factors. For
example the second order factor for physicians has a significance of 0.05,
the coefficient is negative and of small entity, but this result alone mean
that more physicians make the hospital less efficient. Also the interaction
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between physicians and nurses is a bit meaningful, with only a point, but the
coefficient this time is positive. This indicate that the cooperation between
physicians and nurses is positive and bring good results. We continue saying
that nurses become significant as factor of second order, nevertheless they
have a negative influence on the hospitals’ performance, since nurses have a
negative coefficient. The influence becomes positive also if less meaningful
for the interaction with administrative personnel. Finally is crucial to notice
that the sigma square has the maximum level of meaningful and also gamma.
Moreover the value that gamma assume: 0.97, indicate that our model is
good. The log likelihood value is equal to —219.3866, that is a negative value
but if we transform the log likelihood in likelihood we will obtain a value
between zero and one, that is not so high but positive.

At this point the program remember us that we have implemented a
panel data model, where we have 126 cross-section and 5 time periods, with
a corresponding total number of observations of 630.

5.2.2 Efficiency estimates

Since the whole model is meaningful in this case we are able to compute also
the efficiency estimates for all the panel and we arrive to have mean efficiency
of each year:

1 2 3 4 5
0.3315149 0.3335679 0.3356250 0.3376861 0.3397511

Table 5.5: Mean efficiency of each year

These mean efficiency are very low, and this fact indicates that there is
a great part of inefficiency. If we look into the efficiency estimates of all the
hospitals along the years we can notice that actually hospitals are different
one from each other. For example we can individuate the optimal hospitals
of the study, the ones with a very high level of efficiency, around 0.9.

The first hospital that we individuate is the number 22, it has an efficiency
estimate of 0.95. It is interesting to go into details in order to understand
which kind of hospital presents a good performance. This hospital is a public
hospital, with an emergency, and without connection with university. It has
11 wards in 2003 and 2004 that become 12 in the subsequent years. The mean
number of beds is 164.864, one can finds the details in table 7?7 the number
of physician grow along the years and happen the same for the number of
nurses, instead the administrative personnel start with a very high number

84



until arrive to an inferior one. This is not a typical profile, because going
ahead we find different typologies.

year beds phys nurs adm
2003  146.9 137.5037 287.3876 153.9007
2004 170.03 134.6132  309.794 125.5982
20056  173.3 122.8551 301.9282 118.1608
2006  171.1 146.4698 359.9635 140.8731
2007 162.99 146.4698 359.9635 140.8731

Table 5.6: Hospital 22

Another hospital with high efficiency is the number 41. It is a private
profit hospital, with three wards for all the periods of observation. This
hospital has a small number of wards but a lot of beds, a strange aspect is
that the number of physicians is very small, it has one physician for four
beds. The detailed numbers are displayed in table 5.7.

year beds phys nurs adm
2003 239 64 1575  123.5
2004 239 61 157.15 124.85
2005 236 58.6  158.8 126.45
2006 234 55.95 160.25 117.8
2007 248 55.95 160.25 117.8

Table 5.7: Hospital 41

Another hospital with a good efficiency is the number 46. The efficiency
grows throughout the years, from 0.89344522 to 0.89607815. It is a private
profit hospital, with 4 wards in the 2003 and three in the following years. It
has not emergency, it is not mono-specialized and not university. The strong
point can be that it has among one physician for each 2 beds and a small
number of administrative personnel. The detailed numbers are displayed in
table 5.8.

The subsequent hospital that we comment is the number 50, again a
private profit hospital, with five wards until 2006 and four in 2007. The
efficiency is really high, plus than 0.953 for each year, and growing along
the years. Again this hospital has not emergency, is not mono-specialized
and not university. The major change along the years is about the beds,
how is possible to see in table 5.9 that are much less in the last years, and

85



year beds phys nurs adm
2003 45.83 59.65 38 8.65
2004 50 64.65 40 10
2005  47.5 51.65 34 10.65
2006 50 51.65 37 9.65
2007 100 51.65 37 9.65

Table 5.8: Hospital 46

this is for sure due to the cut of a ward. Notwithstanding the cut of the
ward, the personnel remain about the same, both for physicians, nurses and
administrative. This means that the good work of the hospital is maintained
by an high number of worker.

year beds phys nurs adm
2003 162.33 96.65 116.55 94.25
2004 153.39 86.65 112.55 93.25
2005 158 90.65 101.85 91.85
2006 128.1 92.65 102.2 86.5
2007 108 92.65 102.2  86.5

Table 5.9: Hospital 50

Hospital number 52 has only one ward, is private profit and like the
previous has not emergency, is not mono-specialized and has not connection
with university. Table 5.10 Also shows the beds remain the same along all
the years. It is possible to observe a cut off of the number of administrative
personnel. For this hospital the efficiency of each year is around 0.94.

year beds phys nurs adm
2003 60 20.9 23 50
2004 60 18.9 24 47
2005 60 229 21 42
2006 60 22.9 20 24
2007 60 22.9 20 24

Table 5.10: Hospital 52
Finally we can comment the characteristics of the last hospital with high
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values of efficiency estimates. We are speaking about hospital number 113,
with an efficiency estimate of 0.94 for all the years. This hospital is public,
with 27 wards in the first year, 28 in 2004 and 2005, and again 27 wards
in 2006 and 2007. This hospital has an emergency, is pluri- specialized and
university. It a large number of nurses and administrative personnel.

At the end of this description of optima hospitals we notice that we have
find out two different kind of optimal hospitals: big public, and small private.
It can be interesting to deepen this aspect, and we consider the ownership in
the following subsection.

5.2.3 Test for ownership

An aspect of great interest is to distinguish the influence of the ownership
on the good performance. The way to achieve this objective can be make
a comparison between private profit hospitals versus public and private non
for profit hospitals. We Make a T-test on the mean, we would verify if
the public hospitals have a better performance than the private profit one.
It is desirable this result because would say that the public health is well
developed. At this point we take all the efficiency estimates and we divide
the population of the hospitals in two group: public and private. Then we
make the following mean test:

Hpub = Hpriv (5 5)
~ npub"'npri'u_Z .
\/ 52, (Ppuv=1)+52, ., (Mpriv=1)

Npub+Npriv

The hypothesis that we are going to test is that public hospital are more
efficient than private, Hy : tpup > flpriv- We make the test at level o = 0.05,
and the test has one tail. The refuse region is the right tail, so we refuse
the hypothesis if the value that we find is superior to the critique value. In
our case we are in the region of acceptation, so we have an evidence that
public hospitals are better. This is a reassuring result, because supports that
the health care system provided by the state is good, for the majority of
cases, also if we observe also a few point of excellence among the private
institutions.
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Conclusions

We analyzed in a combined way how the patients’ characteristics influence
the performance of health care at hospital level.

In the first level of our analysis we considered only the patients’ variable,
and with this variable we formulated a ranking of hospitals through a ranking
of the residuals from the multilevel model. This practice was criticized, but
it is still one of the most common. The error at hospital level is the most
interesting and useful variable we observed, and we did obtain some results
from this first step. But we went further on, because we wanted to provide
a new approach to this ranking: so we decided to make a second step ahead,
and analyze the relationship between the outcome and the input given, in
order to revise the ranking of hospitals.

It was interesting to see that inadequacy cannot be explained, but can
only be charged to technical inefficiency. This practice, used in Economics
with the stochastic frontier analysis, was integrated with the common prac-
tice used in Statistics to analyze hierarchical data.

The results showed that there are a lot of hospitals with poor performance,
while few are very good. Among these hospitals we identified two types
of excellence: large public hospitals and small private profit hospitals. In
general terms, with a t-test for the Mean we found out that public structures
are better than private ones.

This work is only a first attempt to combine two models or better two
scientific subjects: the statistical science and the social science of Economics.
We lack the study of the conditions in which we formulate the model, and
also the possibility to cooperate in a simultaneous model, as we propose in
a subsection for future development.

What we wish to keep as a result of the whole work, and as an innova-
tive contribution, is the concept of a model that takes into account both the
hierarchical structure of data and the distance of hospitals from their pro-
ductivity level. We can say that our intention was to consider effectiveness
as efficiency, along with the related economic and performance aspects.
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