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Chapter 1

Introduction

Metamaterials are defined as a class of ordered composites that exhibit

exceptional properties that arise from qualitatevely new response func-

tions, that are not observed in the constituent materials and result from

the inclusion of artificially fabricated, extrinsic, low dimensional inho-

mogeneities.

This means that if properly engineered, metamaterials can exhibit

tailored values of response functions such as the dielectric function ε

or the magnetic permeability µ. Tuning the optical proprerties in this

way, metamaterials can be used to control electromagnetic waves and

structures that can even cloak an object from incident radiations can be

fabricated.1

Modifying the values of ε and µ has as a direct consequence the

modification of the value of the index of refraction n of the metamaterial,

which in turn is another response function that can be tuned in this

particular class of materials.

It has to be noted though that the index of refraction n can be tuned

without varying the values of ε and µ throughout the entire structure,

but also simply using two (or more) constituent materials with different

response function, ordered in a lattice. This is precisely what happens in

photonic crystals, ordered structures made of dielectric or metals, that

can be realized in one, two or three dimensions.2
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1.1 Photonic Crystals

In order to define what is a photonic crystal, we rely on an analogy

with electronic materials, where a crystal is a periodic arrangement of

atoms or molecules. The pattern with which the atoms or molecules

are repeated in space is the crystal lattice. The crystal presents a pe-

riodic potential to an electron propagating through it, and both the

constituents of the crystal and the geometry of the lattice dictate the

conduction properties of the crystal. Electrons propagate as waves, and

waves that meet certain criteria can travel through a periodic poten-

tial without scattering, unless the crystal is not perfect: in presence of

defects and impurities electron waves will be scattered.

The lattice can also prohibit the propagation of certain waves. There

may be gaps in the energy band structure of the crystal, meaning that

electrons are forbidden to propagate with certain energies in certain di-

rections. If the lattice potential is strong enough, the gap can extend to

cover all possible propagation directions, resulting in a complete band

gap. For example, a semiconductor has a complete band gap between

the valence and conduction energy bands.

The optical analogue is the photonic crystal, in which the atoms or

molecules are replaced by macroscopic media with differing dielectric

constants, and the periodic potential is replaced by a periodic dielectric

function. Following the analogy with electron waves propagating in a

crystal, light waves traveling in periodic structures will be described in

terms of photonic bands with the possibility of the existence of frequency

gaps where the propagation of electromagnetic waves is forbidden.

If, for some frequency range, a photonic crystal prohibits the propa-

gation of electromagnetic waves of any polarization traveling in any di-

rection from any source, we say that the crystal has a complete photonic

band gap. A small amount of disorder in an otherwise periodic medium

will not destroy a band gap, and even a highly disordered medium can

prevent propagation in a useful way through the mechanism of Anderson
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localization.3,4

More or less ordered photonic crystals have been recognized in recent

years to be largely diffused in nature, where they provide an immense

variety of structural colorations to coleopters, butterfly wings, etc.,5–7

and a source of inspiration for novel bio-mimetic nanotechnologies for

color engineering and photonic devices.8 Among the interesting non-

periodic classes of materials that can have complete phononic band gaps

there are the quasi-crystalline structures.

1.2 Quasicrystals

Discovered not a long time ago,9,10 quasicrystals are quasiperiodic struc-

tures, in the sense that they are non-crystalline materials with perfect

long-range order, but without any kind of translational periodicity.

Even in the absence of lattice periodicity, quasicrystals exhibit sharp

discrete peaks in the diffraction diagram, indicating the presence of ro-

tational symmetry and long-range order. Of particular interest is the

possible inclusion of rotational symmetries such as 5, 8, 10 or 12-fold

that are incompatible with periodicity.

Quasicrystals exists in one, two or three dimensions but their de-

scription in terms of reciprocal lattice vectors and diffraction patterns

requires moving to a higher dimensional space where they can be treated

as a periodic structure. Another way to tackle the problem of describ-

ing quasiperiodic systems rely on the concept of periodic approximants,

where a portion of the quasicrystal is considered appropriate to represent

the whole infinite structure.11

1.3 Photonic Quasicrystals

Photonic quasicrystal are simply an extension of the concept of pho-

tonic crystal: instead of being based on a periodic lattice, they rely on a

quasiperiodic pattern of the dielectric media. The peculiar properties of
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the quasiperiodic order in photonic structures, such as higher rotational

symmetry and intrinsic presence of defects, recently attracted some in-

terest.12–18

In this thesis we focus our study on metamaterials based on 12-fold

photonic quasicrystal from the computational point of view trying to

have an insight of their optical properties and response, with the aim of

providing informations and ideas useful to the realization of new photonic

devices.
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Negative Refraction

Recently, negative refraction has attracted a great deal of attention,

largely due to the realization that this phenomenon could lead to the

development of a perfect lens, also called superlens.19 A perfect lens

is supposed to be able to focus all Fourier components, i.e. both the

propagating and evanescent modes, of a two dimensional image without

missing any details or losing any energy. Althought such a lens has yet to

be shown possible either physically and pratically, the interest has gen-

erated considerable research in electromagnetism and various interdisci-

plinary areas in terms of fundamental physics and material science.20,21

Negative refraction, as a physical phenomenon, may have much broader

implications than making a perfect lens: different approaches used to

achieve negative refaction may involve very different physics and may

find unique applications in different technology areas.

The group velocity of a wave, vg(ω,k) = dω/dk, is often used to

describe the direction and the speed of its energy propagation. For an

electromagnetic wave, strictly speaking, the energy propagation is de-

termined by the Poynting vector S. For a quasimonochromatic wave

packet in a medium without external sources and with negligible distor-

sion and absorption, the direction of S does concide with that of vg.
22

The angle between vg and wave vector k distinguish two types of media:

when the angle is acute or k · vg > 0, it is said to be a right-handed

medium (RHM); when the angle is obtuse or k · vg < 0, it is said to be

a left-handed medium (LHM).23

Unusual physical phenomena are expected to emerge either in an

individual LHM, as a reversal of both the group velocity and Doppler
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shift, or in combination with an RHM, where the interface of the two

media gives rise to negative refraction.23 This latter effect is the one

that attracted most attention lately ad relies on the property k · vg < 0

in the LHM.

2.1 Negative Refraction with Double Neg-

ativity

The simplest way to produce LH behaviour is to use a medium with

both ε < 0 and µ < 0, since double negativity requires energy to flow

away from the interface and into the medium.23 Furthermore, it was

demonstrated23,24 that a LH medium has a negative refractive index√
n =

√
ε · √µ, leading to negative refraction at the interface with an

RHM.

Real material however have ε < 0 only near the resonant frequency

of a polariton; without damping the spectral region of ε < 0 is totally

reflective for materials with µ > 0. µ < 0 is also known to exist near

magnetic resonances, but is not known to occur in the same material

and the same frequency region where ε < 0 is found.

In recent years, metamaterials have been developed to extend ma-

terial response and thus allow effective ε and µ to be negative in an

overlapped frequency region.21 The hybridization of the metamaterials

with εeff < 0 and µeff < 0 has made it possible to realize double negativ-

ity or neff < 0 in a small frequency window, and to demonstrate negative

refraction successfully.25,26

In this type of artificial materials, since they operate near the mag-

netic resonance, high loss is expected; furthermore, the wavelength is

much larger than the lattice constant, and for this reason the push to

higher frequencies may be limited to the THz range.27–29 The physics

behind this limit is that any material will have µ → 1 since the electrons

will not keep pace with the frequency of visible light.30
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2.2 Negative Refraction using Photonic Crys-

tals

Another class of material that can show negative refraction are photonic

crystals, often described as artificial periodic structures,2 made of dielec-

tric or metal, designed to control photons simliar to the way a solid-state

crystal controls electrons. It has been proposed that negative refraction

can be achieved in photonic crystals with lattice constant comparable to

the wavelength.31,32

Locally both ε, µ > 0 everywhere in photonic crystals; the physical

principles that allow negative reference arise from the dispersion charac-

teristics of wave propagation in a periodic medium, and are very different

from that of the double negative materials previously described. To have

the desired dispersion characteristic for negative refraction, large dielec-

tric constant contrast could be required, but this doesn’t impose any

fundamental limit on pushing negative refraction in photonic crystals

towards visible frequency range, infrared spectral range being already

reported.33

Photonic crystals exhibit a diffractive behaviour where electromag-

netic waves behave following dispersion relations ωn(k), where n is the

band index, and k is the wave vector in the first Brillouin zone, as will

be described more in detail in section 4.4.

For a two or three dimensional photonic crystal, the direction of the

energy flux, averaged over the unit cell, is determined by the group

velocity dωn(k)/dk. If the dispersion is isotropic, the condition q ·
dωn(q)/dq < 0 where q is the wave vector measured from a local ex-

tremum, must be satisfied to have LH behaviour. This condition allows

the occurrence of negative refraction at the interface of air and photonic

crystal as well as the imaging effect with a flat photonic slab.31,32,34,35
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2.3 Superlensing

Pendry pointed out that the distinguishing feature of double negativ-

ity matierals, compared to other schemes that can achieve negative re-

fraction, was the potential for realizing a perfect lens beyond negative

refraction.19

However, such a perfect lens, in addition to negative refraction, should

possess three crucial features: zero dissipation, amplification of evanes-

cent waves and matching of the dielectric parameters at the interface

between the lens and air. Exactly zero dissipation it unfortunately phys-

ically impossible for any real material, and even a very weak absorption

will certainly make the lens imperfect.

Mathematically, double negativity materials are the only ones that

provide a correct amount of amplification for each evanescent wave.19

On the other hand, this type of materials become problematic at high

frequencies because of the ambiguity in defining nonunity µ at high fre-

quencies.30,36 Photonic crystals may also amplify the evanescent com-

ponents when the effective refractive index neff < 0 keeping in mind

that some complications are present, tipically the amplification magni-

tude might not be exactly correct or the resolution is limited by the

periodicity of the photonic crystal.37

One important requirement of negative refraction for making a per-

fect lens is matching the dielectric parameters of the two media to elim-

inate reflection and aberration: in the case of double negativity mate-

rial, this condition becomes n1 = −n2. Another limitation comes from

frequency dispersion, which prohibits the matching condition of the di-

electric parameters to remain valid in a broad frequency range; in the

case of photonic crystals also the effective index is frequency dependent.

Therefore, even for the ideal case of vanishing damping, the matching

condition can be found at best for discrete frequencies.

However, even with the practical limitations on these three aspects -

damping, incorrect magnitude of amplification and dielectric mismatch
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- one can still be hopeful of achieving a finite improvement in focusing

light beyond the usual diffraction limit,38 in addition of the benefits of

having a flat lens. The primary advantage of the superlens seems to

be the ability to achieve subwavelength focusing with both the source

and image at far field. Thus far, using negative refraction, there have

been only a few experimental demonstration of non-near-field imaging

with improved resolution.14,39 On a side note, plasmonic systems such

as ultra thin metal films have also been used to achieve subwavelength

imaging in near field,40,41 although not necessarily related to negative

refraction.

The focusing power of a lens usually refers to the ability to provide

an image smaller than the object. What the hypothetical flat lens can

do is exactly reproduce the source at the image site or, in other words,

spatially translate the source by a distance 2d where d is the thickness

of the slab. Thus, mathematically, a δ-function source will give rise to

a δ-function image, without being subjected to the diffraction limit of a

regular lens λ/2.42 Such a superlens in principle can resolve two objects

with any nonzero separation, overcoming the Rayleigh criterion of 0.61λ

for the resolving power of a regular lens.42

However, what this superlens cannot do is focus an object greater

than λ to an image smaller than λ. Therefore it might not be appropriate

to call such optical device with no magnification a lens. In practice, a

superlens could be used to map or translate a light source, while retaining

its size that could be already below the diffraction limit.

2.4 Negative Refraction and Imaging with

Quasicrystals

Relating to imaging and focusing there are two relevant aspects: posi-

tion (in near-field or non-near-field region) and resolution (full width at

half maximum of the focus spot). The position of the image depends on

the effective refractive index neff of the sample and the homogeneity of
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the materials. In the case of neff = −1 and single-mode transmission,

the imaging behavior depends on the slab thickness and the object dis-

tance, explicitly following the well known wave-beam negative refraction

law.43–45

However, due to the anisotropy of dispersion in some 2D photonic

crystals, the refraction angles are not linearly proportional to the inci-

dent angles when a plane wave is incindent from vacuum to the photonic

crystal. This is the reason why only the near-field images were observed

in some works.32,34,35,46–50 The position of the image does not depend on

whether or not the evanescent waves are amplified, and the focus and the

image can still be observed if only the propagating waves are considered.

In such a case, the image resolution cannot overcome the diffraction

limit. The superlensing effect comes from the evanescent waves: the

excitation of surface mode (or the appearance of resonant transmission)

can improve the image resolution.32,48

It becomes evident that the anisotropy of the dispersion is dipendent

on the symmetry of the photonic crystal lattice. In order to obtain

homogeneous dispersion and realize the non-near-field focus, we should

use the structures with high symmetry to construct a flat lens. However,

the highest level of symmetry that can be found in a periodic lattice is six.

On the other hand, the geometric symmetry in photonic quasicrystals

can reach 12 (or even higher symmetries). It has been noted that the

presence of a photonic band gap, one of the most peculiar features of

photonic crystals, shows up in photonic quasicrystals too.12,51,52 For

these reasons it seems interesting to investigate photonic quasicrystals to

see if they exhibit negative refraction and if this property is less sensitive

to the angle of incidence of the electromagnetic wave.

The study of photonic quasicrystals though implies some complica-

tions from both the theoretical and the computational point of view,

compared to the study of standard periodic photonic crystal. As seen in

chapter 1.2, quasicrystals are not periodic, don’t have any translational

symmetry and thus all the Bloch derived concepts and theory that will
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be examined in detail in chapter 4 should be used with care. Calculation

based on rational approximants,53 on extended zone schemes in the re-

ciprocal space54,55 or on constituent parts of the quasicrystal13 have been

used to investigate properties of photonic quasicrystals, showing band

gaps at lower frequencies (in comparison to photonic crystals), gaps at

multiple operational frequencies, higher isotropy and ultimately negative

refraction and subwavelength focusing effects.14,56





Chapter 3

Electromagnetism in mixed media

In order to study the propagation of light in a photonic crystal, we

begin with the Maxwell equations. We restrict ourselves to the case

of a mixed dielectric medium and we cast the Maxwell equations as a

linear Hermitian eigenvalue problem. This brings the electromagnetic

problem into a close analogy with the Schrödinger equation, and al-

lows us to take advantage of some well-established results from quantum

mechanics. One way in which the electromagnetic case differs from the

quantum-mechanical case is that photonic crystals do not generally have

a fundamental scale, in either the spatial coordinate or in the potential

strength (the dielectric constant). This makes photonic crystals scalable

in a way that traditional crystals are not, as we will show in section 4.6.

3.1 The macroscopic Maxwell equations

All of macroscopic electromagnetism, including the propagation of light

in a photonic crystal, is governed by the four macroscopic Maxwell equa-

tions. In SI units, they are

∇ · B = 0 ∇× E +
∂B

∂t
= 0

∇ · H = ρ ∇× H − ∂D

∂t
= J

(3.1)

where (respectively) E and H are the macroscopic electric and mag-

netic fields, D and B are the displacement and magnetic induction fields,

and ρ and J are the free charge and current densities.
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We will restrict ourselves to propagation within a mixed dielectric

medium, a composite of regions of homogeneous dielectric material as

a function of the (cartesian) position vector r, in which the structure

does not vary with time, and there are no free charges or currents. With

this type of medium in mind, in which light propagates but there are no

sources of light, we can set ρ = 0 and J = 0.

Next we relate D to E and B to H with the constitutive relations

appropriate for our problem. Quite generally, the components Di of the

displacement field D are related to the components Ei of the electric

field E via a power series,

Di/ε0 =
∑

j

εijEj +
∑

j,k

χijkEjEk + O(E3), (3.2)

where ε0 ≈ 8.854× 10−12 Farad/m is the vacuum permittivity. How-

ever, for many dielectric materials, it is reasonable to use the following

approximations. First, we assume the field strengths are small enough

so that we are in the linear regime, so that χijk (and all higher-order

terms) can be neglected. Second, we assume the material is macroscopic

and isotropic, so that E(r, ω) and D(r, ω) are related by ε0 multipled by

a scalar dielectric function ε(r, ω), also called the relative permittivity.

Third, we ignore any explicit frequency dependence (material disper-

sion) of the dielectric constant. Instead, we simply choose the value of

the dielectric constant appropriate to the frequency range of the physical

system we are considering. Fourth, we focus primarily on transparent

materials, which means we can treat ε(r) as purely real and positive.

Assuming these four approximations to be valid, we have D(r) =

ε0ε(r)E(r). A similar equation relates B(r) = µ0µ(r)H(r) (where µ0 =

4π × 107 Henry/m is the vacuum permeability), but for most dielectric

materials of interest the relative magnetic permeability µ(r) is very close

to unity and we may set B = µ0H for simplicity. In that case, ε is the

square of the refractive index n that may be familiar from Snell’s law

and other formulas of classical optics (in general, n =
√

εµ).
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With all of these assumptions in place, the Maxwell equations become

∇ · H(r, t) = 0 ∇× E(r, t) + µ0
∂H(r, t)

∂t
= 0

∇ · [ε(r)E(r, t)] = 0 ∇× H(r, t) − ε0ε(r)
∂E(r, t)

∂t
= 0.

(3.3)

In general, both E and H are complicated functions of both time

and space. Because the Maxwell equations are linear, however, we can

separate the time dependence from the spatial dependence by expanding

the fields into a set of harmonic modes. In this and the following sections

we will examine the restrictions that the Maxwell equations impose on

a field pattern that varies sinusoidally (harmonically) with time. This is

no great limitation, since we know by Fourier analysis that we can build

any solution with an appropriate combination of these harmonic modes.

Often we will refer to them simply as modes or states of the system.

For mathematical convenience, we employ the standard trick of using

a complex-valued field and remembering to take the real part to obtain

the physical fields. This allows us to write a harmonic mode as a spatial

pattern (or mode profile) times a complex exponential:

H(r, t) = H(r)e−iwt

E(r, t) = E(r)e−iwt.
(3.4)

To find the equations governing the mode profiles for a given fre-

quency, we insert the above equations into 3.3. The two divergence

equations give the conditions

∇ · H(r) = 0, ∇ · [ε(r)E(r)] = 0, (3.5)

which have a simple physical interpretation: there are no point sources

or sinks of displacement and magnetic fields in the medium. Equiva-

lently, the field configurations are built up of electromagnetic waves that

are transverse. That is, if we have a plane wave H(r) = a exp(ik · r), for

some wave vector k, equation 3.5 requires that a · k = 0. We can now
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focus our attention only on the other two of the Maxwell equations as

long as we are always careful to enforce this transversality requirement.

The two curl equations relate E(r) to H(r):

∇× E(r) − iωµ0H(r) = 0

∇× H(r) − iωε0ε(r)E(r) = 0.
(3.6)

We can decouple these equations in the following way. Divide the

bottom equation of 3.6 by ε(r), and then take the curl. Then use the

first equation to eliminate E(r). Morever, the constants ε0 and µ0 can

be combined to yield the vacuum speed of light, c = 1/ε0µ0 . The result

is an equation entirely in H(r):

∇×
(

1

ε(r)
∇× H(r)

)
=
(w

c

)2

H(r). (3.7)

This is the master equation. Together with the divergence equation

3.5, it tells us everything we need to know about H(r). Our strategy

will be as follows: for a given structure ε(r), solve the master equation

to find the modes H(r) and the corresponding frequencies, subject to

the transversality requirement. Then use the second equation of 3.6 to

recover E(r):

E(r) =
1

ωε0ε(r)
∇× H(r) (3.8)

Using this procedure guarantees that E satisfies the transversality

requirement ∇ · εE = 0, because the divergence of a curl is always zero.

Thus, we need only impose one transversality constraint, rather than

two. The reason why we chose to formulate the problem in terms of

H(r) and not E(r) is merely one of mathematical convenience. We note

that we can also find H from E via the first equation of 3.6:

H(r) = − i

ωµ0

∇× E(r) (3.9)
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3.2 Electromagnetism as an Eigenvalue Prob-

lem

As discussed in the previous section, the heart of the Maxwell equations

for a harmonic mode in a mixed dielectric medium is a differential equa-

tion for H(r), given by equation 3.7. The content of the equation is

this: perform a series of operations on a function H(r), and if H(r) is

really an allowable electromagnetic mode, the result will be a constant

times the original function H(r). This situation arises often in mathe-

matical physics, and is called an eigenvalue problem. If the result of an

operation on a function is just the function itself, multiplied by some

constant, then the function is called an eigenfunction or eigenvector of

that operator, and the multiplicative constant is called the eigenvalue.

In this case, we identify the left side of the master equation as an op-

erator Θ̂ acting on H(r) to make it look more like a traditional eigenvalue

problem:

Θ̂H(r) =
ω2

c2
H(r) (3.10)

We have identified Θ̂ as the differential operator that takes the curl,

then divides by ε(r), and then takes the curl again:

Θ̂H(r) , ∇× 〈 1

ε(r)
∇H(r)〉 (3.11)

The eigenvectors H(r) are the spatial patterns of the harmonic modes,

and the eigenvalues ω2

c2
are proportional to the squared frequencies of

those modes. An important thing to notice is that the operator Θ̂ is a

linear operator. That is, any linear combination of solutions is itself a

solution; if H1(r) and H2(r) are both solutions of 3.10 with the same

frequency ω, then so is αH1(r) + βH2(r), where α and β are constants.

For example, given a certain mode profile, we can construct another le-

gitimate mode profile with the same frequency by simply doubling the

field strength everywhere (α = 2, β = 0). For this reason we consider
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two field patterns that differ only by an overall multiplier to be the same

mode.

Our operator notation is reminiscent of quantum mechanics, in which

we obtain an eigenvalue equation by operating on the wave function

with the Hamiltonian. A reader familiar with quantum mechanics might

recall some key properties of the eigenfunctions of the Hamiltonian: they

have real eigenvalues, they are orthogonal, they can be obtained by a

variational principle, and they may be catalogued by their symmetry

properties.

All of these same useful properties hold for our formulation of elec-

tromagnetism. In both cases, the properties rely on the fact that the

main operator is a special type of linear operator known as a Hermitian

operator. In the coming sections we will develop these properties one by

one. We conclude this section by showing what it means for an operator

to be Hermitian. First, in analogy with the inner product of two wave

functions, we define the inner product of two vector fields F(r) and G(r)

as

(F,G) ,

∫
d3rF∗(r) · G(r) (3.12)

where denotes complex conjugation. Note that a simple consequence

of this definition is that (F,G) = (G,F)∗ for any F and G. Also note

that (F,F) is always real and nonnegative, even if F itself is complex.

In fact, if F(r) is a harmonic mode of our electromagnetic system, we

can always set (F,F) = 1 by using our freedom to scale any mode by an

overall multiplier. Given F(r) with (F,F) 6= 1, we can create

F(r) =
F′(r)√

(F′(r),F′(r))
(3.13)

From our previous discussion, F(r) is really the same mode as F′(r),

since it differs only by an overall multiplier, but now we have (F,F) = 1.

We say that F(r) has been normalized. Normalized modes are very

useful in formal arguments. If, however, one is interested in the physical
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energy of the field and not just its spatial profile, the overall multiplier

is important.

Next, we say that an operator Ξ is Hermitian if (F, ΞG) = (ΞF,G)

for any vector fields F(r) and G(r). That is, it does not matter which

function is operated upon before taking the inner product. Clearly, not

all operators are Hermitian. To show that Θ̂ is Hermitian, we perform

an integration by partsa twice:

(F, Θ̂G) =

∫
d3rF∗ · ∇ ×

(
1

ε
∇× G

)

=

∫
d3r(∇× F)∗ · 1

ε
∇× G

=

∫
d3r

[
∇×

(
1

ε
∇× F

)]∗
· G = (Θ̂F,G)

(3.14)

In performing the integrations by parts, we neglected the surface

terms that involve the values of the fields at the boundaries of integra-

tion. This is because in all cases of interest, one of two things will be

true: either the fields decay to zero at large distances, or the fields are

periodic in the region of integration. In either case, the surface terms

vanish.

3.3 General Properties of the Harmonic

Modes

Having established that Θ̂ is Hermitian, we can now show that the eigen-

values must be real numbers. Suppose H(r) is an eigenvector of Θ̂ with

eigenvalue (/c)2 . Take the inner product of the master equation 3.7

with H(r):

aIn particular, we use the vector identity that ∇(F×G) = (∇×F)·G−F·(∇×G).

Integrating both sides and applying the divergence theorem, we find that F·(∇×G) =

(∇ × F) · G plus a surface term, from the integral of ∇ · (F × G), that vanishes as

described above.
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Θ̂H(r) = (ω2/c2)H(r)

=⇒ (H, Θ̂H) = (ω2/c2)(H,H)

=⇒ (H, Θ̂H)∗ = (ω2/c2)∗(H,H)

(3.15)

Because Θ̂ is Hermitian, we know that (H, Θ̂H) = (Θ̂H,H). Addi-

tionally, from the definition of the inner product we know that (H, Ξ̂H) =

(Ξ̂H,H)∗ for any operator Ξ. Using these two pieces of information, we

continue:

(H, Θ̂H)∗ = (ω2/c2)∗(H,H) = (Θ̂H,H) = (ω2/c2)(H,H)

=⇒ (ω2/c2)∗ = (ω2/c2)
(3.16)

It follows that ω2 = (ω2)∗ , or that ω2 is real. By a different argument,

we can also show that ω2 is always nonnegative for ε > 0. Set F = G =

H in the middle equation of 3.14, to obtain

(H,H)
(ω

c

)2

(H, Θ̂H) =

∫
d3r

1

ε
|∇ × H|2 (3.17)

Since ε(r) ≥ 0 everywhere, the integrand on the right-hand side is

everywhere nonnegative. The operator Θ̂ is said to be positive semi-

definite. Therefore all of the eigenvalues ω2 are nonnegative, and ω is

real.

In addition, the Hermiticity of Θ̂ forces any two harmonic modes

H1(r) and H2(r) with different frequencies ω1 and ω2 to have an inner

product of zero. Consider two normalized modes, H1(r) and H2(r), with

frequencies ω1 and ω2:

ω2
1(H2,H1) = c2(H2, Θ̂H1) = c2(Θ̂H2,H1) = ω2

2(H2,H1)

=⇒ (ω2
2 − ω2

1)(H2,H1) = 0
(3.18)
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If ω1 = ω2 , then we must have (H1,H2) = 0 and we say H1 and H2

are orthogonal modes. If two harmonic modes have equal frequencies

ω1 = ω2 , then we say they are degenerate and they are not necessarily

orthogonal. For two modes to be degenerate requires to have precisely

the same frequency: usually there is a symmetry that is responsible for

the coincidence. For example, if the dielectric configuration is invariant

under a 120 rotation, modes that differ only by a 120 rotation are ex-

pected to have the same frequency. Such modes are degenerate and are

not necessarily orthogonal.

However, since Θ̂ is linear, any linear combination of these degener-

ate modes is itself a mode with that same frequency. As in quantum

mechanics, we can always choose to work with linear combinations that

are orthogonal. This allows us to say quite generally that different modes

are orthogonal, or can be arranged to be orthogonal.

3.4 Magnetic vs. Electric Fields

The idea at the beginning of this chapter was that for a given frequency,

we could solve for H(r) and then determine the E(r) via equation 3.8.

But we could have equally well tried the alternate approach: solve for

the electric field in 3.6 and then determine the magnetic field with 3.9.

By pursuing this alternate approach, one finds the condition on the

electric field to be

∇×∇× E(r) =
(ω

c

)2

ε(r)E(r) (3.19)

Because there are operators on both sides of this equation, it is re-

ferred to as a generalized eigenproblem. It is a simple matter to convert

this into an ordinary eigenproblem by dividing 3.19 by ε, but then the

operator is no longer Hermitian. If we stick to the generalized eigenprob-

lem, however, then simple theorems analogous to those of the previous

section can be developed because the two operators of the generalized

eigenproblem, ∇×∇× and ε(r), are easily shown to be both Hermitian
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and positive semi-definiteb. In particular, it can be shown that ω is real,

and that two solutions E1 and E2 with different frequencies satisfy an

orthogonality relation: (E1, εE2) = 0.

The E eigenproblem has one feature that turns out to be undesirable

for numerical computation: the transversality constraint ∇ · εE = 0

depends on ε. We can restore a simpler transversality constraint by

using D instead of E, since ∇ ·D = 0. Substituting D/ε0ε for E in 3.19

and dividing both sides by ε (to keep the operator Hermitian) yields

1

ε(r)
∇×∇× 1

ε(r)
D(r) =

(w

c

)2 1

ε(r)
D(r) (3.20)

This is a perfectly valid formulation of the problem, but it seems

unnecessarily complicated because of the three factors of 1/ε (as opposed

to the single factor in the H or E formulations). For these reasons of

mathematical convenience, we tend to prefer the H form for numerical

calculations.

3.5 Scaling Properties of the Maxwell Equa-

tions

One interesting feature of electromagnetism in dielectric media is that

there is no fundamental length scale other than the assumption that

the system is macroscopic. In atomic physics, the spatial scale of the

potential function is generally set by the fundamental length scale of the

Bohr radius. Consequently, configurations of material that differ only

in their overall spatial scale nevertheless have very different physical

properties. For photonic crystals, there is no fundamental constant with

the dimensions of length, since the master equation is scale invariant.

bThe ε(r) operator on the right-hand side is actually positive definite: (E, εE) is

strictly positive for any nonzero E. This is necessary for the generalized eigenproblem

to be well behaved.
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This leads to simple relationships between electromagnetic problems that

differ only by a contraction or expansion of all distances.

Suppose, for example, we have an electromagnetic eigenmode H(r)

of frequency ω in a dielectric configuration ε(r). We recall the master

equation 3.7:

∇×
(

1

ε
(r)∇× H(r)

)
=
(ω

c

)2

H(r) (3.21)

Now suppose we want to calculate the harmonic modes in a config-

uration of dielectric ε(r) that is just a compressed or expanded version

of ε(r) : ε(r) = ε(r/s) for some scale parameter s. We make a change of

variables in 3.21, using r = sr and ∇ = ∇/s:

s∇′ ×
(

1

ε
(r′/s)s∇′ × H(r′/s)

)
=
(ω

c

)2

H(r′/s) (3.22)

But ε(r′/s) is none other than ε′(r′). Dividing out the s’s shows that

∇′ ×
(

1

ε

′

(r′)∇′ × H(r′/s)

)
=
(ω

c
s
)2

H(r′/s) (3.23)

This is just the master equation again, this time with mode profile

H′(r′) = H(r′/s) and frequency ω′ = ω/s. What this means is that the

new mode profile and its corresponding frequency can be obtained by

simply rescaling the old mode profile and its frequency. The solution

of the problem at one length scale determines the solutions at all other

length scales.

This simple fact is of considerable practical importance. For exam-

ple, the microfabrication of complex micron-scale photonic crystals can

be quite difficult. But models can be easily made and tested in the

microwave regime, at the much larger length scale of centimeters, if ma-

terials can be found that have nearly the same dielectric constant. The

considerations in this section guarantee that the model will have the

same electromagnetic properties.
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3.6 Electrodynamics and quantum mechan-

ics compared

For the benefit of those readers familiar with quantum mechanics, we

now present some similarities between our formulation of electrodynam-

ics in dielectric media and the quantum mechanics of noninteracting

electrons.

Quantum mechanics Electrodynamics

Field Ψ(r, t) = Ψ(r)e−iEt/~ H(r, t) = H(r)e−iωt

Eigenvalue problem ĤΨ = EΨ Θ̂H =
(

ω
c

)2
H

Hermitian operator Ĥ = − ~
2

2m
∇2 + V (r) Θ = ∇× 1

ε(r)
∇×

In both cases, we decompose the fields into harmonic modes that

oscillate with a phase factor e−iωt. In quantum mechanics, the wave

function is a complex scalar field. In electrodynamics, the magnetic field

is a real vector field and the complex exponential is just a mathematical

convenience.

In both cases, the modes of the system are determined by a Her-

mitian eigenvalue equation. In quantum mechanics, the frequency ω is

related to the eigenvalue via E = ~ω, which is meaningful only up to

an overall additive constant V0. In electrodynamics, the eigenvalue is

proportional to the square of the frequency, and there is no arbitrary

additive constant.

One difference we did not discuss, but is apparent from Table 3.6,

is that in quantum mechanics, the Hamiltonian is separable if V (r) is

separable. For example, if V (r) is the sum of one-dimensional func-

tions Vx(x) + Vy(y) + Vz(z), then we can write Ψ as a product Ψ(r) =

X(x)Y (y)Z(z) and the problem separates into three more manageable
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problems, one for each direction. In electrodynamics, such a factorization

is not generally possible: the differential operator, Θ̂, couples the differ-

ent coordinates even if ε(r) is separable. This makes analytical solutions

rare, and generally confined to very simple systems. To demonstrate

most of the interesting phenomena associated with photonic crystals, we

will usually make use of numerical solutions.

In quantum mechanics, the lowest eigenstates typically have the am-

plitude of the wave function concentrated in regions of low potential,

while in electrodynamics the lowest modes have their electric-field en-

ergy concentrated in regions of high dielectric constant. Both of these

statements are made quantitative by a variational theorem.

Finally, in quantum mechanics, there is usually a fundamental length

scale that prevents us from relating solutions to potentials that differ by

a scale factor. Electrodynamics is free from such a length scale, and

the solutions we obtain are easily scaled up or down in length scale and

frequency.





Chapter 4

Symmetries and Solid-State

Electromagnetism

If a dielectric structure has a certain symmetry, then the symmetry offers

a convenient way to categorize the electromagnetic modes of that system.

In this chapter, we will investigate what various symmetries of a system

can tell us about its electromagnetic modes. Translational symmetries

(both discrete and continuous) are important because photonic crystals

are periodic dielectrics, and because they provide a natural setting for

the discussion of band gaps. Some of the terminology of solid-state

physics is appropriate, and will be introduced. We will also investigate

rotational, mirror, inversion, and time-reversal symmetries.

4.1 Using Symmetries to Classify Electro-

magnetic Modes

In both classical mechanics and quantum mechanics, the symmetries

of a system allow one to make general statements about that system’s

behavior. Because of the mathematical analogy we pursued in the last

chapter, it is not too surprising that Careful attention to symmetry in

fact helps to understand the properties of electromagnetic systems. We

will begin with a concrete example of a symmetry and the conclusion we

may draw from it, and will then pass on to a more formal discussion of

symmetries in electromagnetism.

Suppose we want to find the modes that are allowed in the two-
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dimensional metal cavity shown in figure 1. Its shape is somewhat arbi-

trary, which would make it difficult to write down the exact boundary

condition and solve the problem analytically. But the cavity has an im-

portant symmetry: if you invert the cavity about its center, you end

up with exactly the same cavity shape. So if, somehow, we find that

the particular pattern H(r) is a mode with frequency ω, then the pat-

tern H(−r) must also be a mode with frequency ω. The cavity cannot

distinguish between these two modes, since it cannot tell r from −r.

Recall from chapter 3 that different modes with the same frequency

are said to be degenerate. Unless H(r) is a member of a degenerate

family of modes, then if H(−r) has the same frequency it must be the

same mode. It must be nothing more than a multiple of H(r): H(−r) =

αH(r). But what is α? If we invert the system twice, picking up another

factor of α, then we return to the original function H(r). Therefore

α2H(r) = H(r), and we see that α = 1 or −1. A given nondegenerate

mode must be one of two types: either it is invariant under inversion,

H(−r) = H(r), and we call it even; or, it becomes its own opposite,

−H(−r) = H(r), and we call it odda. These possibilities are depicted

in figure 4.1. We have classified the modes of the system based on how

they respond to one of its symmetry operations.

With this example in mind, we can capture the essential idea in more

abstract language. Suppose I is an operator (a 3×3 matrix) that inverts

vectors (3 × 1 matrices), so that Ia = a. To invert a vector field, we

use an operator ÔI that inverts both the vector f and its argument r:

ÔIf(r) = If(Ir). What is the mathematical expression of the statement

that our system has inversion symmetry? Since inversion is a symmetry

of our system, it does not matter whether we operate with Θ̂ or we first

invert the coordinates, then operate with Θ̂, and then change them back:

aThis is not automatically true of degenerate modes. But we can always form

new modes that are even or odd, by taking appropriate linear combinations of the

degenerate modes.
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Figure 4.1: A two-dimensional metallic cavity with inversion symmetry. Red

and blue suggest positive and negative fields. On the left, an even mode

occupies the cavity, for which H(r) = H(−r). On the right, an odd mode

occupies the cavity, for which H(r) = −H(−r).

Θ̂ = Ô−1
I Θ̂ÔI (4.1)

This equation can be rearranged as ÔIΘ̂ − Θ̂ÔI = 0. Following this

cue, we define the commutator [Â, B̂] of two operators Â and B̂ just like

the commutator in quantum mechanics:

[Â, B̂] , ÂB̂ − B̂Â (4.2)

Note that the commutator is itself an operator. We have shown that

our system is symmetric under inversion only if the inversion operator

commutes with Θ̂; that is, we must have [ÔI , Θ̂] = 0. If we now operate

with this commutator on any mode of the system H(r), we obtain

[ÔI , Θ̂]H = ÔI(Θ̂H)−Θ̂(ÔIH) = 0 =⇒ Θ̂(ÔIH) = ÔI(Θ̂H) =
ω2

c2
(ÔIH)

(4.3)

This equation tells us that if H is a harmonic mode with frequency

ω, then ÔIH is also a mode with frequency ω. If there is no degeneracy,

then there can only be one mode per frequency, so H and ÔIH can be

different only by a multiplicative factor: ÔIH = αH. But this is just the

eigenvalue equation for ÔI , and we already know that the eigenvalues

α must be either 1 or -1. Thus, we can classify the eigenvectors H(r)
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according to whether they are even (H → +H) or odd (H → −H) under

the inversion symmetry operation ÔI .

Whenever two operators commute, one can construct simultaneous

eigenfunctions of both operators. One reason why this is convenient is

that eigenfunctions and eigenvalues of simple symmetry operators like

ÔI are easily determined, whereas those for Θ̂ are not. But if Θ̂ com-

mutes with a symmetry operator Ŝ, we can construct and catalogue the

eigenfunctions of Ŝ properties. In the case of inversion symmetry, we

can classify the Θ̂ eigenfunctions as either odd or even.

4.2 Continuous Translational Symmetry

Another symmetry that a system might have is continuous transla-

tion symmetry. Such a system is unchanged if we translate everything

through the same distance in a certain direction. Given this information,

we can determine the functional form of the system’s modes.

A system with translational symmetry is unchanged by a translation

through a displacement d. For each d, we can define a translation op-

erator T̂d which, when operating on a function f(r), shifts the argument

by d. Suppose our system is translationally invariant; then we have

T̂dε(r) = ε(r − d) = ε(r), or equivalently, [T̂d, Θ̂] = 0. The modes of Θ̂

can now be classified according to how they behave under T̂d.

A system with continuous translation symmetry in the z direction is

invariant under all of the T̂d’s for that direction. We can prove that a

mode with the functional form eikz is an eigenfunction of any translation

operator in the z direction:

T̂de
ikz = eik(z−d) = (e−ikd)eikz (4.4)

The corresponding eigenvalue is eikd. With a little more work, one

can show the converse, too: any eigenfunction of T̂d for all d = dẑ must

be proportional to eikz for some k.b. The modes of our system can be

bIf f(x) 6= 0 is such an eigenfunction, then f(xd) = λ(d)f(x) for all d and some
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chosen to be eigenfunctions of all the T̂d’s, so we therefore know they

should have a z dependence of the functional form eikz (the z dependence

is separable). We can classify them by the particular values for k, the

wave vector. (k must be a real number in an infinite system where we

require the modes to have bounded amplitudes at infinity.)

A system that has continuous translational symmetry in all three

directions is a homogeneous medium: ε(r) is a constant ε (= 1 for free

space). Following a line of argument similar to the one above, we can

deduce that the modes must have the form

Hk(r) = H0e
ik·r (4.5)

where H0 is any constant vector. These are plane waves, polarized

in the direction of H0 . Imposing the transversality requirement (see

equation 3.5 of chapter 3) gives the further restriction k · H0 = 0. The

reader can also verify that these plane waves are in fact solutions of the

master equation with eigenvalues (ω/c)2 = |k|2/ε, yielding the dispersion

relation ω = c|k|/√ε. We classify a plane wave by its wave vector k,

which specifies how the mode is transformed by a continuous translation

operation.

Another simple system with continuous translational symmetry is an

infinite plane of dielectric material. In this case, the dielectric function

varies in the z direction, but not in the x or y directions: ε(r) = ε(z).

The system is invariant under all of the translation operators of the

xy plane. We can classify the modes according to their in-plane wave

vectors, k = kxx̂ + kyŷ. The x and y dependence must once again be a

complex exponential (a plane wave):

Hk(r) = eik·ρh(z) (4.6)

The function h(z), which depends on k, cannot be determined in

eigenvalues λ(d) Scale f(x) so that f(0) = 1 and thus f(x) = f(0[x]) = (x). There-

fore, f(x + y) = f(x)f(y), and the only anywhere-continuous functions with this

property are f(x) = ecx for some constant c
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the same way, because the system does not have translational symmetry

in that direction. Althought the transversality condition implies one

restriction on h: substitution of 4.6 into ∇·Hk = 0 gives k·h = i∂hz/∂z.)

The modes can be classified by their values of k and can be lined up

in order of increasing frequency for a given value of k. Let n, called the

band number, stand for a particular mode’s place in line of increasing

frequency, so that we can identify any mode by its unique name (k, n).

If there is degeneracy, then we might have to include an additional index

to name the degenerate modes that have the same n and k.

4.3 Discrete Translational Symmetry

Photonic crystals, like traditional crystals of atoms or molecules, do not

have continuous translational symmetry. Instead, they have discrete

translational symmetry. That is, they are not invariant under transla-

tions of any distance, but rather, only distances that are a multiple of

some fixed step length.

The basic step length is the lattice constant a, and the basic step

vector is called the primitive lattice vector a = ax̂i. Because of this

discrete symmetry, ε(r) = ε(r±a). By repeating this translation, we see

that ε(r) = ε(r + R) for any R that is an integral multiple of a; that is,

R = la, where l is an integer. The dielectric unit that is repeated over

and over is known as the unit cell.

For simplicity’s sake let’s examine the case of a one dimensional pho-

tonic crystal, repetitive only in the y direction. Because of the transla-

tional symmetries, Θ̂ must commute with all of the translation operators

in the x direction, as well as the translation operators for lattice vectors

R = laŷ in the y direction. With this knowledge, we can identify as si-

multaneous eigenfunctions of both translation operators. As the modes

of Θ̂ before, these eigenfunctions are plane waves:
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T̂dx̂e
ikxx = eikx(x−d) = (eikxd)eikxx

T̂Reikyy = eiky(y−la) = (eikyla)eikyy
(4.7)

Inserting two modes that differs for 2π/a into 4.7 shows that they

have the same T̂R eigenvalues. In fact, all of the modes with wave vectors

of the form ky + m(2π/a), where m is an integer, form a degenerate set;

they all have the same T̂R eigenvalue of ei(kyla) . Augmenting ky by an

integral multiple of b = 2π/a leaves the state unchanged. We call b = bŷ

the primitive reciprocal lattice vector.

Since any linear combination of these degenerate eigenfunctions is

itself an eigenfunction with the same eigenvalue, we can take linear com-

binations of our original modes to put them in the form

Hkx,ky
= eikxx

∑

m

cky ,m(z)ei(ky+mb)y

= eikxx · eikyy ·
∑

m

cky ,m(z)eimby

= eikxx · eikyy · uky
(y, z)

(4.8)

where the c’s are expansion coefficients to be determined by explicit

solution, and u(y, z) is (by construction) a periodic function in y: by

inspection of equation 4.8, we can verify that u(y + a, z) = u(y, z).

The discrete periodicity in the y direction leads to a y dependence for

H that is simply the product of a plane wave with a y-periodic function.

We can think of it as a plane wave, as it would be in free space, but

modulated by a periodic function because of the periodic lattice:

H(. . . , y, . . .) ∝ eikyy · uky
(y, . . .) (4.9)

This result is commonly known as Bloch’s theorem: in solid-state

physics, the form of 4.9 is known as a Bloch state.57 Bloch states with

wave vectors that differ by integral multiples of b = 2π/a are not different
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from a physical point of view. Thus, the mode frequencies must also be

periodic in ky : ω(ky) = ω(ky + mb). In fact, we need only consider ky

to exist in the range π/a < kyπ/a. This region of nonredundant values

of ky is called the Brillouin zone.

The modes of a three-dimensional periodic system are Bloch states

that can be labelled by a Bloch wave vector k = k1b1 + k2b2 + k3b3

where k lies in the Brillouin zone. Each value of the wave vector k inside

the Brillouin zone identifies an eigenstate of Θ̂ with frequency ω(k) and

an eigenvector Hk of the form

Hk(r) = eik·ruk(r) (4.10)

where uk(r) is a periodic function on the lattice: uk(r) = uk(r + R)

for all lattice vectors R.

4.4 Photonic Band Structures

All of the information about Bloch states described by equation 4.10 is

given by the wave vector k and the periodic function uk(r). To solve for

uk(r), we insert the Bloch state into the master equation 3.7 of chapter

3:

Θ̂Hk = (ω(k)/c)2Hk

∇× 1

ε(r)
∇× eik·ruk(r) = (ω(k)/c)2eik·ruk(r)

(ik + ∇) × 1

ε(r)
(ik + ∇) × uk(r) = (ω(k)/c)2uk(r)

Θ̂kuk(r) = (ω(k)/c)2uk(r)

(4.11)

Here we have defined Θ̂k as a new Hermitian operator that appears

in this substitution and depends on k:

Θ̂k , (ik + ∇) × 1

ε(r)
(ik + ∇). (4.12)
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The function u and the mode profiles are determined by the eigen-

value problem in the fourth equation of 4.12, subject to transversality

(ik + ∇) · uk = 0 and the periodicity condition

uk(r) = uk(r + R). (4.13)

Because of this periodic boundary condition, we can regard the eigen-

value problem as being restricted to a single unit cell of the photonic

crystal, leading to a discrete spectrum of eigenvalues. The frequency of

each band, for a given n, varies continuously as k varies and this allows

us to describe the modes of a photonic crystal as a family of contin-

uous functions, ωn(k), indexed in order of increasing frequency by the

band number. The information contained in these functions is called the

band structure of the photonic crystal. Studying the band structure of

a crystal supplies us with most of the information we need to predict its

optical properties.

4.5 Mirror Symmetry and the Separation

of Modes

Under certain conditions mirror reflection symmetry allows us to sepa-

rate the eigenvalue equation for Θ̂k in a photonic crystal into two sepa-

rate equations, one for each field polarization. In one case Hk is perpen-

dicular to the mirror plane and Ek is parallel; while in the other case, Hk

is in the plane and Ek is perpendicular. This simplification is convenient,

because it provides immediate information about the mode symmetries

and also facilitates the numerical calculation of their frequencies.

Considering again a dielectric photonic crystal periodic only in the y

direction, we focus our attention on the reflections Mx on the yz plane,

where Mx changes x̂ to −x̂ and leaves ŷ and ẑ alone. Let’s define a

mirror reflection operator ÔMx
, which reflects a vector field by using Mx

on both its input and its output:
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ÔMx
f(r) = Mxf(Mxr) (4.14)

Two applications of the mirror reflection operator restore any system

to its original state, so the possible eigenvalues of ÔMx
are +1 and −1.

Because the dielectric is symmetric under a mirror reflection in the yz

plane, ÔMx
commutes with Θ̂ : [Θ̂, ÔMx

] = 0. As before, if we operate

on Hk with this commutator we can show that ÔMx
Hk is just the Bloch

state with the reflected wave vector Mxk:

ÔMx
Hk = eiφHMxk (4.15)

Here, φ is an arbitrary phase. This relation does not restrict the

reflection properties of Hk very much, unless k happens to be pointed in

such a way that Mxk = k. When this is true, 4.15 becomes an eigenvalue

problem and, using 4.14, we see that Hk must obey

ÔMx
Hk(r) = ±Hk(r) = MxHk(Mxk) (4.16)

The electric field Ek obeys a similar equation, so that both the elec-

tric and magnetic fields must be either even or odd under the ÔMx
op-

eration. But Mxr = r for any r in our dielectric (taken in the two-

dimensional yz plane). Therefore, since E transforms like a vector and

H transforms like a pseudovector,58 the only nonzero field components

of an ÔMx
even mode must be Hx, Ey , and Ez . The odd modes are

described by the components Ex, Hy , and Hz.

In general, given a reflection M such that [Θ̂, ÔM ] = 0, this separa-

tion of modes is only possible at Mr = r for Mk = k. Note from 4.11

that Θ̂k and ÔM will not commute unless Mk = k. These conditions can

always be met for two-dimensional photonic crystals. Two-dimensional

crystals are periodic in a certain plane, but are uniform along an axis

perpendicular to that plane. Calling that axis the z axis, we know that

the operation ẑ → −ẑ is a symmetry of the crystal for any choice of

origin. It also follows that Mzk‖ = k‖ for all wave vectors k‖ in the two-

dimensional Brillouin zone. Thus the modes of every two-dimensional
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photonic crystal can be classified into two distinct polarizations: either

(Ex, Hy, Hz) or (Hx, Ey, Ez). The former, in which the electric field is

confined to the xy plane, are called transverse-electric (TE) modes. The

latter, in which the magnetic field is confined to the xy plane, are called

transverse-magnetic (TM) modes.

4.6 Time Reversal Symmetry

Another interesting feature of the photonic bands is the time reversal

symmetry, that tells us that any photonic band structure has inversion

symmetry even though the crystal structure does not have inversion

symmetry. If we take the complex conjugate of the master equation for

Θ̂ (equation 3.7 of chapter 3), and use the fact that the eigenvalues are

real for lossless materials, we obtain

(Θ̂Hkn)∗ =
ω2

n(k)

c2
H∗

kn

Θ̂H∗
kn =

ω2
n(k)

c2
H∗

kn

(4.17)

By this manipulation, we see that H∗
kn satisfies the same equation as

Hkn, with the very same eigenvalue. But from 4.10 we see that H∗
kn is

just a Bloch state at −k. It follows that

ωn(k) = ωn(−k) (4.18)

The above relation holds for all photonic crystals. The frequency

bands have inversion symmetry even if the crystal does not. Taking the

complex conjugate of Hkn is equivalent to reversing the sign of time t in

the Maxwell equations, as can be verified from equation 3.5 of chapter

3. For this reason, we say that 4.18 is a consequence of the time-reversal

symmetry of the Maxwell equations.
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4.7 Group Velocity and Equifrequency Sur-

faces

In the case of a homogeneous, isotropic medium, k is the direction in

which the wave propagates, but this is not necessarily true in a periodic

medium. Rather, the direction and the speed with which electromagnetic

energy passes through the crystal are given by the group velocity vg,

which is a function of both the band index n and the wave vector k:

vg,n(k) , ∇kωn ,
∂ωn

∂kx

x̂ +
∂ωn

∂ky

ŷ +
∂ωn

∂kz

ẑ (4.19)

where ∇k is the gradient with respect to k.

The propagation direction and the group velocity vector are always

normal to the Equifrequency Surface (EFS), which is a construction

made in reciprocal space that consists in a surface connecting all the

k−points with the same frequency ω.

Figure 4.2: EFS plots for the TM modes of a square lattice of dielectric

columns with ε = 12 in vacuum. On the left, the EFS radius increases with

the frequency, because we are in the frequency range of the first band that

rises from Γ with ω = 0. On the right, the EFS radius shrinks with increasing

frequency, indicating a negative gradient and thus a negative group velocity.

As an example, we show in figure 4.7 some equifrequency surfaces for

the TM modes of a two-dimensional square lattice of dielectric columns

(ε = 12) in vacuum in two different frequency ranges. We choose a 2D
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case because it’s simpler to visualize and because we will stick to 2D

systems throughout this thesis.

In the left panel when the frequency grows, the radius of the EFS in-

creases, meaning that the group velocity vg is positive, while in the right

panel the situation is reversed: a shrinking EFS radius with increasing

frequency denotes negative group velocity.

Equifrequency surfaces are a usfeul tool to understand whether the

group velocity is positive or negative and thus determine is negative

refraction can happen.

4.8 Electrodynamics and Quantum Mechan-

ics compared

Following the analogies with quantum mechanics underlined in chapter

3, in table 4.8 we compare the system containing an electron propagating

in a periodic potential with the system of electromagnetic modes in a

photonic crystal.

Quantum mechanics Electrodynamics

Discrete translational V (r) = V (r + R) ε(r) = ε(r + R)

symmetry

Commutation [Ĥ, T̂R] [Θ̂, T̂R]

relationships

Bloch’s theorem Hkn(r) = ukn(r) · eikr Ψkn(r) = ukn(r) · eikr

In both cases, the systems have translational symmetry: in quantum

mechanics the potential V (r) is periodic, and in the electromagnetic case

the dielectric function ε(r) is periodic. This periodicity implies that
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the discrete translation operator commutes with the major differential

operator of the problem, whether with the Hamiltonian or with Θ̂.

Using the translation operator eigenvalues we can index the eigen-

states (Ψkn or Hkn ) and be label them in terms of the wave vectors

and bands in the Brillouin zone. All of the eigenstates can be cast in

Bloch form: a periodic function modulated by a plane wave. The field

can propagate through the crystal in a coherent manner, as a Bloch

wave. In the same way electrons behave like free particles in of conduct-

ing crystals, a photonic crystal provides a synthetic medium in which

light can propagate, but in ways quite different from propagation in a

homogeneous medium.



Chapter 5

Calculating Photonic Bands

5.1 Plane-wave Expansion

Because of the spatial periodicity of ε(r) = ε(r + R), we can expand

ε−1(r) in a Fourier series. Introducing the reciprocal lattice vectors G:

G = m1b1 + m2b2 + m3b3 (5.1)

where mi are arbitrary integers. ε−1(r) is expressed as

1

ε(r)
=
∑

G

κ(G)eiG·r (5.2)

and because we assumed that the dielectric function is real, κ(−G)κ∗(G).

From 4.10 we know that also Hk(r is periodic in space, so it can be ex-

panded in Fourier series too, leading to the following form of the eigen-

function

Hkn(r) =
∑

G

Hkn(G)eik+G·r. (5.3)

Substituting 5.2 and 5.3 into 3.7, we obtain the following eigenvalue

equations for the expansion coefficient Hk(G):

−
∑

G′

κ(G−G′)(k+G)× [(k+G′)×Hkn(G′)] =
ω2

n(k)

c2
Hkn(G). (5.4)

By solving these equation numerically, we can obtain the dispersion

realtion of the eigenmodes, or the photonic band structure.59
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This numerical method, which is based on the Fourier expansion of

the electromagnetic field and the dielectric function, is called the plane-

wave expansion method. In the actual numerical calculation of the pho-

tonic bands, the summation in 5.4 is calculated up to a sufficiently large

number of N of G′, and an eigenvalue problem for each k is solved, which

is equivalent to the diagonalization of the matrix defined by the left hand

side of 5.4. The dimension of the matrix that should be diagonalized is

2N for Hkn(G), since Hkn should be perpendicular to k + G according

to 3.3 and 5.3, and its degree of freedom is two.

The CPU time that is necessary for the diagonalization is usually

proportional to to the cube of its dimension. Hence, the CPU time for

photonic band calculation by means of the plane-wave expansion method

is proportional to N3. This fact can lead to convergence problems in case

of 3D systems or complex 2D systems such as photonic quasicrystals,

where a supercell is needed. To overcome this issue several solutions

were proposed.60–64

Because Hk(G) is perpendicular to k + G, it can be expressed by a

linear combination of two orthogonal normal vectors,65 eG1 and eG2 :

Hkn(G) = hG1
kn eG1 + hG2

kn eG2 . (5.5)

We assume without loss of generality that

{
eG1 , eG2 ,

k + G

|k + G|

}
(5.6)

constitute a right-hand system. From 5.4 we derive the following

equation:

∑

G′

2∑

j=1

Λij
k
(G,G′)h

G′
j

kn =
ω2

n(k)

c2
h

G′
i

kn (5.7)

where Λk(G,G′) is given by
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Λk(G,G′) = |k + G||k + G′|κ(G − G′) ×
(

eG2 · eG′
2
, −eG2 · eG′

1

eG2 · −eG′
1
, eG1 · eG′

1

)

(5.8)

which is an Hermitian matrix:

Λij
k
(G,G′) = Λij∗

k
(G′,G). (5.9)

The eigenvectors hk are thus orthogonal to each other:

∑

G′

2∑

i=1

hGi∗
kn · hGi

kn′ = δnn′ (5.10)

where δij is the Kronecker delta. From this equation we obtain

∫

V

drH∗
kn(r) · Hkn′(r)

=

∫

V

dr
∑

G

′∑

G

H∗
kn(G) · Hkn′(G′)ei(G′−G)·r

=
∑

G

H∗
kn(G) · Hkn′(G)

= V δnn′ ,

(5.11)

where V denotes the volume of the photonic crystal. On the other

hand, if k 6= k′,

∫

V

drH∗
kn(r) · Hk′n′(r) =

∫

V

drv∗
kn(r) · vk′n′(r)ei(k′−k)·r. (5.12)

Because both k and k′ are wave vectors in the first brillouin zone,

k′ − k cannot coincide with a reciprocal lattice vector. The periodicity

of the function v∗
kn(r) ·vk′n′(r) thus lead to the above integral vanishing.

Hence, we finally obtain
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∫

V

drH∗
kn(r) · Hk′n′(r) = V δkk′δnn′ . (5.13)

This orthogonality is a direct consequence of the fact that the matrix

Λk defined by 5.8 is Hermitian. The latter is, on the other hand, a

consequence of the fact that Θ̂ defined by 3.7 is an Hermitian operator.

5.2 MIT Photonic Bands

The program used to calculate the photonic bands throughout this thesis

is the MIT Photonic Bands (MPB) code,64 which is available as a free

and flexible computer program downloadable from the Web.66

This method can described as a fully-vectorial, three-dimensional

method for computing general eigenmodes of arbitrary periodic dielec-

tric systems, including anisotropy, based on the preconditioned block-

iterative solution of Maxwells equations in a planewave basis. An effec-

tive dielectric tensor for anisotropic systems is introduced.

The approach is to expand the fields as definite-frequency states in

some truncation of a complete basis (e.g. planewaves with a finite cutoff)

and then solve the resulting linear eigenproblem.

The choice60,62,67–70 is to use a planewave basis |bm〉 in the form of 5.3

|bm〉 = eiGm·r for some reciprocal-lattice vectors Gm; the truncation N

is determined by choosing a maximum cutoff for the magnitude of Gm.

Strictly speaking, a cutoff magnitude would result in a spherical volume

of G vectors, but the method expands this into a parallelopiped volume

so that the transformation between planewave and spatial representa-

tions takes the convenient form of a Discrete Fourier Transform (DFT).

(Such an extension also removes an ambiguity of the order in which to

invert and Fourier-transform ε.67,68) The planewave set then has a du-

ality with a spatial grid, which is often a more intuitive representation.

The basis functions are:
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|bm1,m2,m3〉 = ei
P

j mjGj ·r (5.14)

with mj = [Nj/2] + 1, · · · , [Nj/2], N = N1N2N3, and the equation

5.3 for the spatial field becomes:

Hk

(
∑

k

nkRk/Nk

)
=
∑

{mj}

h{mj}e
i

P

j,k mjGj ·nkRk/Nk

=
∑

{mj}

h{mj}e
2πi

P

j mjnj/Nj .

(5.15)

Here, nk = 0, · · · , Nk − 1 describe spatial coordinates on an N1 ×
N2×N3 affine grid along the lattice directions. This is precisely a three-

dimensional DFT, and can be computed by an efficient Fast Fourier

Transform (FFT) algorithm71 in O(N log N) time.

Thus, in a planewave representation, the product Θ̂H(r) from equa-

tion 3.10 can be computed in O(N log N) time by taking the curl in

wavevector space (just the cross-product with k + Gm), computing the

FFT, multipling by ε̃−1, computing the inverse FFT, and taking the curl

again.67,68

5.3 The Effective Dielectric Tensor

When computing the product Θ̂H(r) in a planewave basis, the multipli-

cation by ε−1(r) is done in the spatial domain after a Fourier transform,

so one might simply use the inverse of the actual dielectric constant at

that point.

To calculate the band structure for a simple 2D system such an ap-

proach is feasible,72 writing the Fourier coefficient κ(G‖) of 5.8 in the

form:73

κ(G‖) =

{
1
εa

f + 1
εb

(1 − f), G‖ = 0(
1
εa

− 1
εb

)
1
ac

∫
A

d2r‖e
−iG‖·x‖ , G‖ 6= 0

(5.16)
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where f is the filling fraction of a dielectric medium εa embedded in

another dielectric εb, defined as f = aA/ac, and aA is the area of the

domain A (i.e. the cross-sectional area) over the area of the 2D unit cell

ac.

Unfortunately, this can lead to suboptimal convergence of the fre-

quencies as a function of N, due to the problems of representing discon-

tinuities in a Fourier basis. It has been shown, however, that using a

smoothed, effective dielectric tensor near dielectric interfaces can circum-

vent these problems, and achieve accurate results for moderate N.67,68

In particular, near a dielectric interface, one must average the dielectric

in two different ways according to effective-medium theory, depending

upon the polarization of the incident light relative to the surface normal

n̂. For an electric field E ‖ n̂, one averages the inverse of ε while for

E ⊥ n̂, one takes the inverse of the average of ε. This results in an

effective dielectric tensor ε̃−1:

ε̃−1 = ε−1P + ε−1(1 − P ) (5.17)

where is the projection matrix onto n̂ : Pik = ninj. Here, the aver-

aging is done over one voxel (cubic unit grid) around the given spatial

point: if ε is constant, equation 5.17 simply reduces to ε−1.

5.4 Preconditioner and Iterative Eigensolver

We won’t describe in detail the choice of neither the preconditioner nor

the iterative eigensolver, for an exhaustive discussion we suggest reading

the article where the MPB code is presented.64 The basic idea is to use

a preconditioning operator to improve the performance of the iterative

eigensolver: the requirement is to supply an approximate inverse Θ̃−1 of

Θ̂ such that Θ̃−1h can be computed quickly.

The iterative eigeinsolver used is an extension74 of the conjugate-

gradient Rayleigh-quotient method, that solves for all of the eigenvalues

at once. The Rayleigh quotient is the variational problem minimized
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by the smallest eigenvalue λ0 and the corresponding eigenvector y0 of a

Hermitian matrix A:

λ0 = min
y†

0Ay0

y†
0By0

(5.18)

where † denotes the conjugate transpose.

5.5 Complementary Method: Finite Dif-

ference Time Domain

In addition to the plane-wave expansion method we also perform calcu-

lations with a Finite Difference Time Domain (FDTD) code that can act

as a simulated experiment and offer an immediate picture of the time

evolution of a system in presence of an electromagnetic source.

FDTD is a widely used technique in which space is divided into a dis-

crete grid and then the fields are evolved in time using discrete time steps.

As the grid and the time steps are made finer and finer, this becomes a

closer and closer approximation for the true continuous equations, and

one can simulate many practical problems essentially exactly.75

The time-dependent Maxwell’s equations in partial differential form:

∂B

∂t
= −∇× E − JB − σBB B = µH

∂D

∂t
= ∇× H − J − σDD D = εE

(5.19)

are discretized using central-difference approximations to the space

and time partial derivatives. The resulting finite-difference equations

∇ · B = −
∫ t

∇ · (JB(t′) + σBB)dt′

∇ · D = −
∫ t

∇ · (J(t′) + σDD)dt′ = ρ

(5.20)
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are solved in either software or hardware in a leapfrog manner: the

electric field vector components in a volume of space are solved at a given

instant in time; then the magnetic field vector components in the same

spatial volume are solved at the next instant in time and the process is

repeated over and over again until the desired transient or steady-state

electromagnetic field behavior is fully evolved.76

All the simulations we will show were performed using a freely avail-

able FDTD software package with subpixel smoothing for increased ac-

curacy77 using open boundary conditions.

To simulate open boundary conditions, one would like the boundaries

to absorb all waves incident on them, with no reflections. This is imple-

mented with something called perfectly matched layers (PML).78 PML

is, strictly speaking, not a boundary condition: rather, it is a special

absorbing material placed adjacent to the boundaries. PML is actually

a fictitious (non-physical) material, designed to have zero reflections at

its interface. Although PML is reflectionless in the theoretical continous

system, in the actual discretized system it has some small reflections

which make it imperfect. For this reason, one always gives the PML

some finite thickness in which the absorption gradually turns on.

With this additional tool we can have some first confirmations to any

hypotesis we are extracting from the dispersion curves or the equifre-

quancy surfaces obtained with the plane-wave expansion code.



Chapter 6

Two-Dimensional Photonic Crystals

When the crystal is periodic in two directions and homogeneous in the

third, photonic band gaps appear in the plane of periodicity. For light

propagating in this plane, the harmonic modes can be divided into two

independent polarizations, each with its own band structure. We will

see also how the presence of defects gives rise to light modes localized in

two dimensions.

6.1 Two-Dimensional Bloch States

A two-dimensional photonic crystal is periodic along two of its axes and

homogeneous along the third axis, since we imagine the entire struc-

ture to be infinitely tall. For certain values of the lattice constant, a

frequency range where no electromagnetic eigenmode exists can appear.

Frequency ranges of this kind are called photonic bandgaps : in this case,

a 2-D photonic crystal can have a photonic band gap in the xy plane.

That means that inside this gap, no extended states are permitted, and

incident light is reflected.

As always, we can use the symmetries of the crystal to characterize

its electromagnetic modes. Because the system is homogeneous in the z

direction, we know that the modes must be oscillatory in that direction,

with no restrictions on the wave vector kz . In addition, the system

has discrete translational symmetry in the xy plane. Specifically, ε(r) =

ε(r + R), as long as R is any linear combination of the primitive lattice

vectors ax̂ and aŷ. By applying Bloch’s theorem, we can focus our
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attention on the values of k‖ that are in the Brillouin zone. As before, we

use the label n (band number) to label the modes in order of increasing

frequency.

Indexing the modes of the crystal by kz,k‖, and n, they take the

form of Bloch states

Hkz ,k‖,n(r) = eik‖·r‖eikzzukz ,k‖,n(r‖) (6.1)

In this equation, r‖ is the projection of r in the xy plane and u(r‖)

is a periodic function, u(r‖) = u(r‖ + R), for all lattice vectors R. The

parallel wavevector k‖ is periodic in the xy plane and restricted to the

Brillouin zone and kz is unrestricted.

Any modes with kz = 0 (i.e. that propagate strictly parallel to the xy

plane) are invariant under reflections through the xy plane. As discussed

in chapter 4, this mirror symmetry allows us to classify the modes by

separating them into two distinct polarizations. Transverse-electric (TE)

modes have H normal to the plane, H = H(r‖)ẑ, and E in the plane,

E(r‖) · ẑ = 0. Transverse-magnetic (TM) modes have just the reverse:

E = E(r‖)ẑ and H(r‖) · ẑ = 0.

The band structures for TE and TM modes can be completely dif-

ferent. It is possible, for example, that there are photonic band gaps for

one polarization but not for the other polarization.

For the TE case, the maxwell equations 3.3 simplify to:

∂

∂y
Hz(r‖, t) = ε0ε(r‖)

∂

∂t
Ex(r‖, t) (6.2)

∂

∂x
Hz(r‖, t) = −ε0ε(r‖)

∂

∂t
Ey(r‖, t) (6.3)

∂

∂x
Ey(r‖, t) −

∂

∂y
Ex(r‖, t) = −µ0(r‖)

∂

∂t
Hz(r‖, t) (6.4)

eliminating Ex and Ey we obtain the wave equation for Hz(r‖, t):
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Θ̂(2)Hz(r‖) , −
{

∂

∂x

1

ε(r‖)

∂

∂x
+

∂

∂y

1

ε(r‖)

∂

∂y

}
Hz(r‖) =

ω2

c2
Hz(r‖)

(6.5)

where the differential operator Θ̂(2) for the 2D case is defined by the

first equality in the above equation.

Substituting 6.1 into 6.5, we obtain the following eigenvalue equations

for the expansion coefficients:73

∑

G′
‖

κ(G‖ − G′
‖)(k‖ − G‖) · (k‖ − G′

‖)Hz,k‖n(G′
‖) =

ω2
n(k‖)

c2
Hz,k‖n(G‖).

(6.6)

If we define a matrix Λk‖
as we did in 5.7

Λk‖
(G‖,G

′
‖)κ(G‖ − G′

‖)(k‖ − G‖) · (k‖ − G′
‖), (6.7)

we see it is Hermitian:

Λk‖
(G‖,G

′
‖) = Λ∗

k‖
(G′

‖,G‖). (6.8)

The eigenvalue equation 6.6 is thus expressed as

∑

G′
‖

Λk‖
(G‖,G

′
‖)Hz,k‖n(G′

‖) =
ω2

n(k‖)

c2
Hz,k‖n(G‖). (6.9)

As we derived the orthogonality of Hkn(r) in 5.13, we can prove that

∫

V (2)

dr‖H
∗
z,k‖n(r‖)Hz,k′

‖
n′(r‖) = V (2)δk‖k

′
‖
δnn′ , (6.10)

where V (2) denotes the 2D volume of the photonic crystal. This or-

thogonality relation is a consequence of the fact that Θ̂(2) is a Hermitian

operator.
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6.2 2D Square Lattice of Dielectric Rods

in Air

Consider light that propagates in the xy plane of a square array of di-

electric columns, such as the structure depicted in figure 6.1, with lattice

constant a. The band structure for a crystal of dielectric (ε = 12) rods

in air, with radius r/a = 0.2, is plotted in figure 6.2. The calculations

were made using the MPB code64 described in chapter 5.

Figure 6.1: On the left, a cross-

sectional view of the dielectric func-

tion of the 2D square photonic crys-

tal; on the right, the correspond-

ing 2D Brillouin Zone, with the irre-

ducible zone highlighted and delim-

ited by high symmetry points.

Both the TE and the TM band structures are shown, with the fre-

quency expressed as a function of the ratio c/a, since the problem is

scalable as discussed in section 3.5. The abscissa shows the value of the

in-plane wave vector k‖. As we move from left to right, k‖ moves along

the triangular edge of the irreducible Brillouin zone, from Γ to X to M

and back to Γ, as shown in figure 6.1.

As we can see, the TM dispersion curves show a photonic bandgap

over the entire Brillouin zone between the first and second band, while

the TE modes don’t have any complete bandgap.

To get an insight of the behaviour of electromagnetic fields inside the

structure, it can also be useful to visualize the field distribution for both

the electric and magnetic field.

Figure 6.2 show the electric field distribution for the first three bands

of the TM dispersion curves seen in fig. 6.2 taken at k-point M. As before,

the image show a cross-sectional view of the two-dimensional system, so

the color indicates the intensity of the electric field in the z direction
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Figure 6.2: Photonic band structure for a 2D PC with dielectric rods in a

square lattice. The rods have dieletric constant of ε = 12 and radius r = 0.2a.

Red bands are TM modes and blue bands are TE modes. Frequencies ω are

expressed as dimensionless unit c/a and must be scaled to the corresponding

lattice constant a to obtain experimental frequency in Hz. TM modes presents

two photonic gaps while TE modes have none. Calculation made with MPB.64

perpendicular to the page plane. White means zero field intensity, so

white areas are nodal planes for the modes. Figure 6.2 shows instead

the magnetic field distribution for the same system.

6.3 2D Hexagonal Lattice of air Holes in a

Dielectric Matrix

We focus our attention now to another system, a triangular lattice of air

columns in a dielectric matrix of ε = 12. The columns have radius 0.45



54 6. Two-Dimensional Photonic Crystals

Figure 6.3: Electric field distribution for the first three bands of the TM

modes of fig. 6.2 at k-point M. The second and third mode are degenerate.

In each image, color indicates the amplitude of the field (either positive or

negative) along the z axis and white means zero field.

Figure 6.4: Magnetic field distribution for the first three bands of the TE

modes of fig. 6.2 at k-point M. The second and third mode are degenerate.

so the matrix is made up of thin dielectric veins: the structure and the

corresponding Brilloiun zone are depicted in figure 6.5.

As we did in the previous section, we show the dispersion curves both

of TM and TE modes all over the high symmetry path delimiting the

irreducible Brillouin zone.

In this case we can clearly see that there is a frequency region where

neither TM nor TE modes exist, giving rise to a complete bandgap that

extend itself all over the k‖ path in the irreducibile Brillouin zone.

Again we can visualize the electric and magnetic field distribution to

see how the modes look like below and above the gap.
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Figure 6.5: On the left, a cross-

sectional view of the dielectric func-

tion of the 2D triangular photonic

crystal; on the right, the correspond-

ing 2D Brillouin Zone, with the irre-

ducible zone highlighted and delim-

ited by high symmetry points.

6.4 Surface States

Until now the discussion has concerned the interior of photonic crystals

of infinite extent, not taking into account the fact that real crystals are

necessarily bounded by surfaces. For a surface mode, light is localized at

a surface plane and the field amplitudes decay exponentially away from

the surface. They decay within the crystal because of the band gap, and

they decay within the air region because they lie below the light line

ω = ck‖.

We can characterize a given surface by its inclination and its termina-

tion. Surface inclination specifies the angles between the surface normal

and the crystal axes. Surface termination specifies exactly where the sur-

face cuts across the unit cell; for example, we can end a two-dimensional

lattice of circles by stopping after some whole number of circles, or by

cutting each circle in half at the boundary, or by cutting off some arbi-

trary fraction.

We will focus on the surface states of a square lattice of dielectric

columns, but many of the arguments and results that we present can be

extended to other cases and considered quite general. We will examine

the same square array of alumina rods with ε = 9.2 that experimentally

showed focusing properties.34 Consider the TM band structure, which

has a photonic band gap between the first and second bands. For our

surface inclination, we choose planes of constant x, otherwise known as

the (10) surface of the square lattice according to the Miller indices.57

This structure has continuous translational symmetry in the z direc-
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Figure 6.6: Photonic band structure for a 2D PC with air columns in a dielec-

tric matrix. The matrix has dieletric constant of ε = 12 and the holes have

radius r = 0.45a. Red bands are TM modes and blue bands are TE modes.

Frequencies ω are expressed as dimensionless unit c/a and must be scaled to

the corresponding lattice constant a to obtain experimental frequency in Hz.

Both TM and TE mods present a photonic band gap in the same frequency

region, highlighted. Calculation made with MPB.64

tion, so we can describe the modes by a kz wave vector, but we restrict

ourselves to kz = 0. We have broken translational symmetry in the x

direction but have maintained it in the y direction in the plane. Thus, ky

is conserved, but kx is not conserved. Therefore, it is useful to compute

the projected band structure of the infinite crystal, in which (ky, ω) is

plotted for each ωn(kx, ky).

Figure 6.4 shows the projected band structure of the constant−x

surface of the square lattice of dielectric rods. In order to understand

it, we first consider the projected band structures of the outside air and
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Figure 6.7: Electric field distribution for the first three bands of the TM

modes of fig. 6.3 at k-point K. The first two modes are degenerate, and the

third is just above the complete photonic band gap.

Figure 6.8: Magnetic field distribution for the first three bands of the TE

modes of fig. 6.3 at k-point K. The second and third mode are degenerate.

the photonic crystal separately.

For a given ky, there are light modes at all frequencies above the light

line: these modes where ω ≥ c|ky| are the mode belonging to the light

cone.

Along the light line ω = cky, the light travels parallel to the surface,

and increasing ω at fixed ky corresponds to increasing kx. The union

of light cone with the photonic bands of the slab calculation (shaded

in light blue) represents the projected band structure of the photonic

crystal. Note that the photonic crystal contains a TM band gap.

Now we can distinguish among the three types of surface states of the

projected surface Brillouin zone: light that is transmitted (slab photonic

bands above the light cone), light that is internally reflected (slab pho-

tonic bands below the light cone), and light that is externally reflected

(the region of the light cone where no photonic bands belonging to the

slab exist). In the region of (ω, ky) where the modes are extended in
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Figure 6.9: Projected band structure of the square lattice slab of alumina rods

in air. Photonic bands belonging only to the slab are shaded in light blue. The

crystal is terminated as shown in the inset; this type of termination doesn’t

support any surface state.

both the air and in the crystal, it is possible to transmit light with those

parameters through the crystal. In the region where the modes are in the

crystal, but they are beneath the light line of the air modes, the light can

extend into the crystal, but decays exponentially into the surrounding

air. This is nothing but the familiar phenomenon of total internal reflec-

tion. In the reflective region instead, the situation is reversed. There,

the modes can extend into the air, but they decay exponentially into the

crystal.

Finally, there might exist surface modes, which decay exponentially

away from the surface in both directions, but the terminated square

array doesn’t support any of those modes. Such a mode appears if we

introduce another type of defect, cutting in half the columns that belong
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Figure 6.10: Projected band structure of the square lattice slab of alumina

rod in air terminated with an array of columns cut in a half. This kind of

termination gives rise to the surface mode clearly visible in the middle of the

gap.

to the surface. Figure 6.4 shows the band structure of such a surface

structure. The localized surface modes in the are below the light line

of the air modes, and are also within the band gap of the crystal. The

fields therefore decay exponentially in both directions, and the mode is

pinned to the surface plane, as shown in figure 6.4. By exciting such

modes, we can imprison light at the surface of the crystal.
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Figure 6.11: Electric field distribution in the z direction associated with a

localized surface state, originated by truncating a square lattice of alumina

rods in air, cutting each rod of one of the two surfaces delimiting the slab.

The mode shown corresponds to a surface parallel wavevector of ky = π/a.

The calculation run to obtain this field pattern uses a separation between two

periodic replica of the slab equivalent to 4 times the slab thickness, which is

10 layers of columns.



Chapter 7

Two-dimensional 12-fold Photonic

Quasicrystal

We proceed now to study a two-dimensional photonic quasicrystal, in

particular a 12-fold system obtained by Stampli inflation79 and already

examined by experimental techniques and calculations.14,16 Alumina

rods with dielectric constant ε = 8.6 and radius r = 0.3a are placed

at the vertices of this type of tiling which is made up of squares and

equilateral triangles both with side a, as shown in figure.7.1

Figure 7.1: Illustration of the Stampfli in-

flation rule. Starting from the parent tiling

represented by the gray-shaded central do-

decagon, a big parent (red dashed lines) is

generated by applying an inflation factor of√
3+2 and filled up by copies of the original

dodecagon placed at its vertices.

Previous investigations showed that a portion of this type of qua-

sicrystal cut in shape of a wedge14 or a slab16 exhibits negative refraction

and focusing properties at a particular frequency. It’s still not precisely

clear though what is the physics that gives rise to these phenomena,

since further investigations17 show a strong dependance on slab thick-

ness, surface termination and position of the incident light beam.

With the calculation of dispersion curves and equifrequency surfaces
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of this kind of systems we try to get an insight of its optical properties.

x

y

a

Figure 7.2: Dielectric distribution of the supercell approximant used for the

calculations. The supercell consist of 116 columns of alumina with ε = 8.6,

radius r = 0.4 and lattice constant a = 1.33. Periodic boundary conditions

in x and y direction are imposed, introducing translational symmetry that

doesn’t belong to the concept of quasicrystal.

We don’t want to perform simulations of a huge quasicrystalline sys-

tem because it would be computationally demanding, so we restrict our-

selves to a smaller portion cut from the 12-fold tiling and, due to the

nature of the planewave code, we use it as a supercell and replicate it

with boundary conditions on the two dimensions, as shown in figure 7.2.

In this way we are introducing translational symmetry in our system,

so strictly we shouldn’t speak anymore of quasicrystals, but it has been

reported that many properties of quasicrystals already show up in small

constituent parts of the tiling.13

7.1 Single Slab: Results of the Calcula-

tions

The TM band structure calculation for the photonic bands of such a

supercell is plotted in figure 7.3. This structure exhibits a complete

band gap for this polarization over a wide frequency range, of the order

of 0.1c/a. We want to point out that the other polarization, i.e. the TE

modes, doesn’t have any band gap. We add a GigaHertz scale to give
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Figure 7.3: Photonic bands of TM modes for the 12-fold quasicrystal approx-

imant of fig. 7.2. The main feature is the wide (in frequency) complete band

gap. The bands grow thicker and thicker as the frequency rises also because

of band folding. The GHz scale on the right corresponds to a system with

lattice constant a = 1.33 cm. It should be noted that there is no gap for TE

polarization in this system.

an idea of the frequency ranges for this system when we keep the same

parameters used in previous investigations,16,17 namely a cylinder radius

r = 0.4 cm on a lattice constant a = 1.33 cm.

We performed additional calculations to see whether experimental

deviations from the ideal conditions could affect the dispersion charac-

teristics of the system. Deviations in the value of the source frequency

used for experimental measurements can be ruled out since its precision

can reach 10−6c/a. The two other sources of discrepancies to an ideal

situation are a random error in the positioning of the cylinders, that are

tipically displaced by an automated robot with an error of ±0.1 mm,
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and a deviation in the value of the dielectric constant declared by the

manufacturer of the alumina cylinders, that can reach ∆ε = 0.1.80

To introduce a random error on the cylinders’ position we choose

to move each element by a displacement (in both x and y coordinates)

extracted from a gaussian distribution with σ = 0.1 mm. To check the

effect of a deviation in the value of ε we recalculate the photonic bands

changing its value to 8.5 and 8.7 in all the cylinders. In each of the

aforementioned situations there is no evidence of changes in the disper-

sion characteristics of the systems, since the eigenfrequencies undergo a

maximum shift of 10−4c/a.
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Figure 7.4: Photonic bands of TM modes for the 12-fold quasicrystalline slab.

Breaking the translational symmetry with the insertion of the vacuum region

completely fills up the photonic bandgap with defect states.

We now move to a calculation of a supercell that closely resemble

the experimental setup where focusing occurs,16 introducing a vacuum

region in one direction to simulate the properties of a slab cut from a
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bigger parent tiling. The new supercell consist of the same supercell

depicted in figure 7.2 plus a vacuum region with twice the thickness of

the slab, that separates two replica of the slab.

As expected, the presence of a vacuum region gives rise to a number of

defect states that completely fill up the TM photonic bandagp as can be

seen in figure 7.4. This time there is not an immediate way to distinguish

among states propagating only in air, only in the photonic quasicrystal,

in both of them or surface localized, due to the entanglement of the

dispersion curves. The only way to look for the presence of surface

modes is to examine the field distribution of the modes in the frequency

range of the gap seen in the photonic bands of figure 7.3.

The analysis of filed patterns shows that there are no surface localized

states, so that negative refraction and focusing cannot be traced back to

the presence of such states. We thus try to give an interpretation of the

optical properties in terms of negative group velocity and shape of the

equifrequency surfaces (EFS).

 0.38

 0.385

 0.39

 0.395

 0.4

 8.6

 8.7

 8.8

 8.9

 9

ω
 (

c/
a)

ω
 (

G
H

z)

Γ X K Γ

Figure 7.5: Magnification of the photonic bands of figure 7.4 around the

frequency ω = 0.392c/a, indicated by the red line. On the right, the EFS plot

in the frequency range of interest.

We fix our attention to the frequency value that was used to obtain

focusing in the first place,14,16 that is ω = 0.392c/a. If we look at the red
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Figure 7.6: Simulated intensity field maps for a Gaussian pulse centered on

frequency ω = 0.392c/a with normal incidence, directed to the center of the

central dodecagon of the 12-fold quasicrystalline structure. The source is

located at the right of the slab (big dark spot) at a distance that is a half of

the slab thickness, the focus comes out on the opposite side. Intensity units

are arbitrary.

line in figure 7.5 that crosses a magnified region of the dispersion curves,

it seems indeed that the bands at that particular frequency have negative

curvature and thus negative group velocity. The FDTD simulation in

figure 7.6 of the system in those same conditions confirms once more the

formation of a focus.

Further investigations17,56 set the optimal frequency to get focusing

to ω = 0.394c/a: from the magnified dispersion diagram of Fig. 7.7 we

can see that this frequency too crosses bands with negative curvature,

again from the FDTD calculation (Fig. 7.8) we get a confirmation of the

formation of a focused spot that is a bit more intense than the previous

one.

Looking at another magnified region of the dispersion bands in Fig.

7.9, we choose another frequency where we find more bands with neg-

ative curvature, for example ω = 0.403c/a: the corresponding FDTD

simulation shows a more intense focus, as can be seen in figure 7.10 and
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Figure 7.7: Magnification of the photonic bands of figure 7.4 around the

frequency ω = 0.394c/a, indicated by the red line. On the right, the EFS plot

in the frequency range of interest.

in 7.11 where we do a comparison among the spot intensities of the three

cases studied above.

The lack of experimental measurements at the higher frequencies we

are examining prevents a further confirmation of the predictivity of our

approach. Still, we can rely with a good degree of confidence on the

FDTD simulations since they are considered a robust technique.

The use of dispersion bands and EFS to predict focusing are tools

that must be used with care though, because in some frequency regions

that apparently look favorable to obtain focusing, such as ω = 0.407c/a

in figure 7.12, the focus almost disappears in the FDTD simulation of fig-

ure 7.13. This is probably due to contributions coming from some parts

of the photonic bands where the curvature is positive, something that

it’s hard to discern when the band structure has so many neighbouring

states.

In conclusion, wa saw that the analysis of dispersion curves and

equifrequency surfaces can give an insight into the focusing properties

even of an object with the degree of complexity of a quasicrystal. Due

to the lack of translational symmetry in quasicrystalline systems and
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Figure 7.8: As in figure 7.6, but for ω = 0.394c/a.

the consequent necessity to use an approximant and thus a supercell ap-

proach, both the dispersion curves and the EFS are characterized with

a great density of data.

Obtaining precise information from these entangled data is not straight-

forward, so we suggest to use these computational tools with some care,

especially for the supelensing and focusing properties. We will see in

the following sections that there are other properties of quasicrystalline

slabs besides superlensing and focusing that can be explored with the

methods used here.
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Figure 7.9: Magnification of the photonic bands of figure 7.4 around the

frequency ω = 0.403c/a, indicated by the red line. On the right, the EFS plot

in the frequency range of interest.

Figure 7.10: As in figure 7.6, but for ω = 0.403c/a.
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Figure 7.11: Spot inten-

sities for the focusing at

ω = 0.392, 0.394 and

0.403 respectively. In-

tensity units are arbitrary

but on the same scale.
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Figure 7.12: Magnification of the photonic bands of figure 7.4 around the

frequency ω = 0.407c/a, indicated by the red line. On the right, the EFS plot

in the frequency range of interest.
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Figure 7.13: As in figure 7.6, but for ω = 0.407c/a. At this frequency, focusing

intensity is negligible.



72 7. Two-dimensional 12-fold Photonic Quasicrystal

7.2 Special solutions for the Single Slab

and Microcloaking

Since the dispersion curves for this 12-fold quasicrystalline single slab

are too dense and entangled, the only way to determine whether this

system supports localized modes in the surface region is to look through

all the images that show the electric field distribution.

As we pointed out in Section 7.1, we found no such localized states in

the slab, but the modes we examined from the electric field distribution

show interesting features nonetheless.

Figure 7.14: Electric field patterns of two modes at k-point Γ with frequencies

0.290 and 0.305 c/a, respectively. It’s evident from the field distribution that

they propagate only in the vacuum region, decaying into the slab.

In the frequency range 0.26−0.35 c/a, where the 12-fold quasicrystal

exhibits a complete photonic band gap (see Fig. 7.3), there exists no

modes. When we introduce the vacuum region, thus creating a slab,

the gap becomes completely filled with defect modes. Examining the
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electric field patterns, those modes predictably propagate only in the

vacuum region, looking like the ones shown in Fig. 7.14.

In such a complex system as this 12-fold quasicrystalline slab, field

patterns become increasingly weird and unpredictable with increasing

frequencies. While the search for surface localized modes is unsuccessful,

browsing all the possible field distributions gives us a hint to exploit this

kind of photonic quasicrystal for other purposes than superlensing.

In the field of metamaterials and their applications to electromagnetic

waves, the realization of the cloak in the microwave frequencies1 is surely

one of the most fascinating examples.

In Section 7.1 we saw that incident electromagnetic radiation from

a source may give rise to a focus on the other side of the slab. In

the frequency range useful for focusing, the EM radiation propagates

through the whole slab, as can be seen in the FDTD simulations shown

in Fig. 7.6 and following.

In a frequency range above the gap we found several modes that live

in air and only in some regions of the quasicrystalline slab, excluding

one or more dielectric cylinders from the propagation of EM waves, as

illustrated in Fig. 7.15.

In analogy to the microwave cloak case, we can imagine the quasicrys-

talline structure of the slab as a cloak operating at a precise frequency,

hiding determined areas of the slab itself from EM waves.

What we suggest as a possible application is to use the slab presented

here as a strip containing data, stored or embedded in some way within

the slab, that can be read with EM waves at a fixed frequency. If we

want to prevent some data from being read, they can be located in the

cloaked area at that particular frequency; these hidden data would then

need EM waves at a different frequency to be accessed.

Maybe the quasicrystalline slab presented here doesn’t seem to be

a proper invisibility cloak, since is not engineered with the purpose of

steering EM waves around an object.

We would like to point out though that this kind of quasicrystalline
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Figure 7.15: Electric field patterns of four modes at k-point Γ with frequencies

0.355, 0.362, 0.367 and 0.376 c/a, respectively. These modes propagate outside

the slab and inside the slab they live only in some areas, excluding one or more

cylinders from EM waves.

structure, compared to a periodic crystalline material, is characterized

by a large amount of intrinsic defects that are able to guide waves in

a nontrivial way, achieving the same aim of a cloak, hiding an area of

space from the propagation of those very waves.

This example suggested us to investigate if the peculiar properties

of systems based on quasicrystals could be further explored in other

configurations, and a different and interesting physical property will be

discussed in the following section.
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7.3 Double Slab and Photon Localization

Besides superlenses, other devices based on 12-fold quasicrystals have

been studied, such as antennas18 or resonant cavities,15 so we move on

to investigate another possible configuration based on the same 12-fold

slab.

We choose to examine the behaviour of a system made up of two

12-fold quasicrystalline slabs seen before, separated by a vacuum layer

thick a half the thickness of one slab, as depicted in figure 7.16. We

therefore calculate the TM photonic bands for this system, using as

usual a supercell with the slab and a vacuum region.

Figure 7.16: Dielectric function of

the supercell used for the calcula-

tion, replicated twice in both di-

mensions. A single supercell is

highlighted, which is divided in

three parts to show that the thick-

ness of the vacuum region is exactly

half the thickness of the slab.

The dispersion curves of Fig. 7.17 show some interesting features.

The smaller vacuum layer leads to only a few defect states in the fre-

quency range of the photonic band gap, but we want to point out the

presence of a particular band just below ω = 0.3c/a that is completely

flat, and thus dispersionless, over the whole brillouin zone.

No dispersion suggests a very strong localization of such a mode, so

we proceed to check its behaviour looking at the electric field distribution

within the structure.

Figure 7.18 shows indeed a strongly localized field pattern in the vac-

uum region between two slabs. The mode appears like a dipole confined

between two indentations of the slab surface. In particular, the mode

lives only in proximity of those indentations made up of four cylinders,
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Figure 7.17: TM photonic bands for the supercell seen in figure 7.16, where

the nearest replica of the slab is separated by a vacuum region with a thickness

that is the half of the slab’s thickness. A few defect modes in the frequency

range of the gap are distinguishable and a single flat mode can be seen just

below ω = 0.3c/a (the calculation gives ω = 0.298519c/a at Γ and ω =

0.298615c/a at K and X).

that are a kind of intrinsic surface defects that come out naturally once

the surface itself is created from a quasiperiodic system.

The presence of intrinsic defects is a key feature of quasicrystals which

can be exploited to study new properties and phenomena. In periodic

photonic crystal these would show up only in presence of engineered

defect that must be created and tuned on purpose, because they don’t

belong to the original lattice.
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Figure 7.18: Electric field pattern for the localized mode at ω = 0.299c/a

seen in figure 7.17, visualized at k−points Γ and K (center and corner of

the Brillouin zone, respectively). The mode is clearly localized in the vacuum

region between two slabs in proximity of an indentation of the slab surface that

rises naturally from the creation of the surface itself. The field distribution in

different k−points is exactly the same, with only a difference in phase between

neighbouring replicas when k‖ 6= 0.

7.4 Characterization of the Localized Pho-

tonic Mode

The next step is to see whether this localized mode survives at different

slab separations (i.e. different thickness of the vacuum layer). We thus

add a little more of vacuum, first a layer with a/2 and then with a, and

recalculate the photonic bands to see if the dispersion of this mode is

affected.

Looking at figure 7.19 it becomes evident that the dispersion of the

localized mode is affected even by a small change in the thickness of the

vacuum region.

When we add a vacuum layer of a/2 (left panel) the localized mode

lowers its frequency (ω = 0.276c/a) and if we add another a/2 it dis-

appears from the dispersion bands (right panel), going below the gap

frequency range and mixing with the continuum of the photonic bands.

If we instead reduce the vacuum region between the two slabs, we
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Figure 7.19: TM photonic bands for a supercell similar to the previous one,

where the vacuum region separating to slabs is expanded by half a lattice

constant a (left panel) and a whole a (right panel). The dispersion curves

are magnified in the frequency range of the photonic gap. The localized

mode shifts to a lower frequency of about ω = 0.276c/a in the first case, and

disappears in the latter.

obtain the opposite effect: the localized mode is pushed towards higher

frequencies. In figure 7.20 we plot the frequency dependence of the local-

ized mode on the vacuum layer thickness: it appears that the frequency

decreases linearly when increasing the distance between two slabs.
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Figure 7.20: Frequency dependence

of the dispersionless localized mode

on the distance between the two

slabs. The vacuum layer thickness

is expressed as a function of the slab

thickness. The mode frequency de-

creases linearly with increasing vac-

uum layer thickness. Blue shaded

areas are the band continuum below

and above the photonic bandgap.
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7.5 Excitation of the Localized Photonic

Mode

In this case FDTD simulations should give us an insight of how such a

localized photonic mode can be excited. We then perform a calculation

where a gaussian pulse centered precisely at the frequency of the localized

mode is normally incident to the slab and observe the time evolution of

the system.

Figure 7.21: Snapshots of the time evolution of a gaussian pulse centered on

frequency ω = 0.299c/a normally incident on the surface of the quasicrys-

talline slab. The source is located at the left of the two slabs, each time

at the same distance from the surface but with a different lateral position:

the localized photonic mode appears excited every time in two different but

geometrically equivalent indentations of the surface.

As can be seen in figure 7.21 the localized mode can indeed be ex-

cited and its excitation doesn’t seem to be related to the position of the

source with respect to the local geometry of the quasicrystalline slab, in

opposition to what happens in the case of superlensing.17

We perform FDTD simulations changing the lateral positions of the

gaussian pulse: we start putting the source in front of the center of

the 12-fold symmetry of the quasicrystalline geometry, then we move

it in two steps towards the indentation of the slab surface where the

localization takes place.
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Apart from differences in relative field intensity and phase, the pho-

tons are localized in two geometrically equivalent positions, that are the

same defective areas of the slab surfaces we identified in the field distri-

bution of Fig. 7.18 obtained with the planewave calculation.

Figure 7.22: Snapshots of the time evolution of the same gaussian pulse cen-

tered on frequency ω = 0.299c/a as before, but with the source always in

the same position and distance, while in the right image the vacuum layer

between two slabs is thicker by a/2. The excited modes are propagating in

the vacuum region, since the localized mode lowered its frequency.

If we stick to the same incident frequency but insert again an addi-

tional vacuum layer of a/2, we are no more exciting the localized mode

because it shifts to a lower frequency, following the linear dependence

we found out in Fig. 7.20.

We are instead exciting modes that propagate in the vacuum region,

as shown in figure 7.22, where we compare the response of the two slabs

at the same distance of Fig. 7.21 with those where we inserted a vacuum

layer a/2 thick.
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A further confirmation of the effective localization of photons in the

system we are studying can be given examining snapshots of its time

evolution in presence of a gaussian source.

We keep in mind (Section 5.5) that in the FDTD simulation we put

perfect matching layers at the boundaries of the simulation cell. This

boundary condition is chosen to avoid reflections and mimic open bound-

aries, thus absorbing the electromagnetic waves that comes in contact

with the PML layer.

If we observe the sequence of snapshots in Fig. 7.23, all taken keeping

the same arbitrary field intensity scale, we clearly see that the intensity

of localized photon does not fade with time. Once the localized photonic

mode has been excited by the incoming gaussian pulse, it continues os-

cillating with time without any attenuation.

The lack of intensity attenuation of the localized photon can be fur-

ther confirmed by a comparison with the time evolution of the propa-

gating modes of Fig. 7.24. In this sequence of snapshots we let evolve

the photonic modes excited by the usual gaussian pulse centered at

ω = 0.299c/a when the two slabs are separated by a further a/2 with

respect to the previous case.

We use the same time scale of the series of snapshots of Fig. 7.23 and

we can clearly see that in half of the time the field intensity has already

faded considerably.

To be sure that perfect matching layers do act as open boundary

conditions we perform a FDTD simulation inserting an additional layer

of free space at the sides of the double slab, and we excite the propagating

modes in the cavity, just like we did in the simulation of Fig. 7.24.

We can see in Fig. 7.25 that after the gaussian source has faded,

the propagating modes become excited in the vacuum region and they

radiate out of the cavity from the open side into free space, with fading

intensity.

This just confirms that if we excite propagating modes between the

two slabs, they will continue propagating with the vacuum layer acting
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as a waveguide, and they will eventually radiate out of its open end.

If we instead excite a localized mode, there is no chance for the

electromagnetic radiation to propagate in the vacuum waveguide, since

photons will be stuck between the defective indentations of the surfaces.

The different behaviour of the system for localized and propagating

modes suggests thus a possible use as a two state device, i.e. a switch.

As an example, this peculiar feature of the double quasicrystalline

photonic slab could be exploited to build devices that can couple a me-

chanical (or vibrational, depending on the dimensions of the device)

displacement that varies the distance between the two slabs with an in-

cident TM polarized electromagnetic wave, acting as an optomechanical

switch.

Here, the coupling takes place when the displacement acting on the

relative positions of the two slabs causes either the localization or prop-

agation of photons.

Recently, optomechanical coupling has been reported81 in devices

based on photonic crystals, which instead rely on radiation force ex-

erted by band-edge modes that induces resonant vibrational modes in

the system. This kind of coupling is reversed with respect to the ef-

fect we are proposing, but shows the current interest in how interaction

between light and matter can be exploited using photonic crystals (or

quasicrystals, in our case).

7.6 Point Defects and Cloaking

We now investigate also the double slab system for cloaking properties,

as we did previously for the single slab in Section 7.2.

We focus our attention to possible effects on the photon localiza-

tion due to defects in the quasicrystalline structure. If we want to hide

some information, we can store it in a cylinder of the slab, and it could

be that this information may alter the dielectric constant of the same

cylinder. We could also think to use the defective cylinder itself to code
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some information. In both cases it is crucial to see whether the photon

localization is kept or destroyed by the presence of such a defect.

We perform two FDTD simulations with the same configuration for

source frequency and vacuum separation of the central image of Fig.

7.21, only taking the alumina cylinder located at the center of the 12-

fold rotational symmetry, first replacing it with a cylinder with ε = 20.0

and then removing it from the structure.

We show in Fig. 7.26 the results of these simulations. From the

comparison among the three different cases it becomes evident that the

presence of a point defect does not affect in any way photon localization,

since the field distribution pattern is exactly the same, independently of

the dielectric material seen by the incoming electromagnetic radiation.

Field patterns not only look identical, they have also the same intensity

since they are all plotted with the same color scale.

We can therefore conclude that the double quasicrystalline slab can

hide objects and act as a cloak also when photon localization occurs.

These combined effects surely suggest interesting perspectives for possi-

ble implementation in photonic devices.
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Figure 7.23: Snapshots of the time evolution of the same gaussian pulse cen-

tered on frequency ω = 0.299c/a as before, taken every 4000 timesteps (2.218

ns) of the simulation run. The two slabs are separated by a vacuum layer

thick a half of the slab thickness. All the images have the same field intensity

scale. This set of snapshots starts at a point where the gaussian pulse is fad-

ing and the localization of the photon is starting. The subsequent snapshots

show the oscillation of the localized photonic mode without any attenuation

of intensity. The evolution appears to be over one period but actually the

localized mode oscillates over 200 times in the lapse shown here.
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Figure 7.24: Snapshots of the time evolution of the same gaussian pulse cen-

tered on frequency ω = 0.299c/a as before, taken at every 4000 timesteps

(2.218 ns) of the simulation run. The two slabs are separated by a vacuum

layer thick a half of the slab thickness plus a/2. All the images have the same

field intensity scale. This set of snapshots starts at a point where the gaussian

pulse is fading and the photon starts propagating in the vacuum region. The

subsequent snapshots show the oscillation of the photonic modes with conse-

quent decaying of field intensity due to absorption from the perfect matching

layers at the boundaries of the simulation cell.
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Figure 7.25: Snapshots of the time evolution of the very same system of Fig.

7.24 where we put some additional free space on one side of the double slab.

The images are insets located near the boundary of the simulation cell and

they all have the same field intensity scale. This set of snapshots starts at

a point where the gaussian pulse is fading and the photon starts propagat-

ing in the vacuum region. The subsequent snapshots show electromagnetic

waves coming out from the spacing between the two slabs, in addition to the

oscillation of the photonic modes in the cavity and the consequent decaying

of intensity.
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Figure 7.26: Presence of a point defect does not have any effect on photon

localization. In the first image all the cylinders have the same dielectric

constant ε = 8.6, in the second image the cylinder located at the center of the

12-fold rotational symmetry (in black) is replaced with one with ε = 20.0, and

in the last image is removed. Snapshots are taken at the same instant during

the time evolution of the system and with the same field intensity scale. The

electric field distribution of the localized mode is exactly the same in any of

the three cases, with or without the point defect.
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7.7 Conclusions and Further Work

So far, we verified that metamaterials based on photonic quasicrystals

can have superlensing properties and that the same type of material, in

a different configuration, is able to localize photons and thus suggests

the possibility to build new photonic devices, namely optomechanical

switches.

We saw that a slab cut from a two dimensional 12-fold quasicrys-

talline tiling constitutes a metamaterial because of its effective refactive

index that becomes negative in some frequency ranges. These regions of

the spectrum where negative refraction and superlensing occurr can be

found with the help of computational methods that calculate dispersion

curves, equifrequency surfaces and electromagnetic field distribution of

the system under study. In the particular case of quasicrystals, where the

lack of translational symmetry forces to use big supercells, the amount

of data and information contained in the dispersion curves and equifre-

quency surfaces is very dense and sometimes difficult to disentangle,

suggesting particular care when predicting the behaviour of the physical

system without the experimental counterpart.

Examiming the electromagnetic field patterns of the quasicrystalline

slab we found that several modes could be useful for cloaking, since they

do not propagate in the whole structure but they are inhibited to go

through certain regions, that remain hidden at particular frequencies.

We think that other configurations of this kind of metamaterial give

rise to interesting physical properties, more easily predictable, that can

lead to the realization of new photonic devices. If we place two 12-fold

quasicrystalline slabs together, separated by a vacuum layer of a precise

thickness, we obtain the right conditions to localize photons between

the two slabs. The localization takes place between two indentations of

the slabs’ surfaces, that are a kind of intrinsic defects formed when the

surface are created from the bigger quasicrystalline lattice. This type of

defects is unique to quasicrystalline systems and originates from their
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lack of translational periodicity. The capability of localizing photons

opens up the possibility of building devices exploiting this feature: for

instance, we could realize a photonic switch with two states, one where

the photon is localized and the other where the photon propagates, and

as we discussed, the choice between these two states can be made only

varying the distance between the two slabs.

This double slab system seems to be exploitable for cloaking too,

since we saw that point defects in the lattice, characterized by a different

dielectric constant, do not affect the localization properties of the device.

As a further work many of the results shown in this thesis should be

experimentally verified even if we are confident that FDTD simulation

gave a reliable confirmation. Furthermore, the realization of devices

based on the localization of photons should be made with a practical

application in mind, and therefore different dielectric materials could be

explored.
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