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To the Universe,
to its laws and wonders,
and to the most precious wonder: life.






Abstract

Membrane Computing is a branch of computer science that was born after
the introduction of Membrane Systems (or P systems) by a seminal paper
by Gh. Padun. Membrane systems are computing devices inspired by the
structure and functioning of living cells as well as from the way the cells
are organized in tissues and higher order structures. The aim of membrane
computing is to abstract computing ideas and models imitating these products
of natural evolution. A typical membrane system is composed by a number
of regions surrounded by membranes; regions contains multisets of objects
(molecules) and rules (cellular processes) that specify how objects must be
re-written and moved among regions.

In spite of the fact that the initial primary goal of membrane systems
concerned computability theory, the properties of membrane systems such as
compartmentalisation, modularity, scalability /extensibility, understandabil-
ity, programmability and discreteness promoted their use for an important
task of the current scientific research: the modelling of biological systems
(the topic “systems biology, including modelling of complex systems,” has
now appeared explicitly in the Seventh Framework Programme of the Euro-
pean Community for research, technological development and demonstration
activities). To accomplish this task some features of membrane systems (such
as nondeterminism and maximal parallelism) have to be mitigated while
other properties have to be considered (e.g. description of the time evolution
of the modelled system) to ensure the accurateness of the results gained with
the models.

Many approaches for the modelling and simulation of biological sys-
tems exist and can be classified according to features such as continu-
ous/discrete, deterministic/stochastic, macroscopic/mesoscopic/microscopic,
predictive/explorative, quantitative/qualitative and so on. Recently, stochas-
tic methods have gained more attention since many biological processes, such
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as gene transcription and translation into proteins, are controlled by noisy
mechanisms. Considering the branch of modelling focused at the molecular
level and dealing with systems of biochemical processes (e.g. a signalling
or metabolic pathway inside a living cell), an important class of stochastic
simulation methods is the one inspired by the Gillespie’s stochastic simula-
tion algorithm (SSA). This method provides exact numerical realisations of
the stochastic process defined by the chemical master equation. A series of
methods (e.g. next reaction method, tau leaping, next subvolume method)
and software (StochKit and MesoRD), belonging to this class, were developed
for the modelling and simulation of homogeneous and/or reaction-diffusion
(mesoscopic) systems.

A stochastic approach that couples the expressive power of a membrane
system (and more precisely of Dynamical Probabilistic P systems or DPPs)
with a modified version of the tau leaping method in order to quantitatively
describe the evolution of multi-compartmental systems in time is the 7-DPP
approach.

Both current membrane systems variants and stochastic methods inspired
by the SSA lack the consideration of some properties of living cells, such as
the molecular crowding or the presence of membrane potential differences.
Thus, the current versions of these formalisms and computational methods
do not allow to model and simulate all those biological processes where these
features play an essential role.

A common task in the field of stochastic simulations (mainly based on
numerical rather than analytical solutions) is the repetition of a large number
of simulations. This activity is required, for example, to characterise the
dynamics of the modelled system and by some parameter estimation or
sensitivity analysis algorithms.

In this thesis we extend the 7-DPP approach taking into account addi-
tional properties of living cells in order to expand 7-DPPs modelling (and
simulation) capabilities to a broader set of scenarios. Within this scope, we
also exploit the main European grid computing platform as a computational
platform usable to compute stochastic simulations, developing a framework
specific to this purpose, able to manage a large number of simulations of
stochastic models.

In our formalism, we considered the explicit modelling of both the objects’
(or molecules) and membranes’ (or compartments) volume occupation, as
mandated by the mutual impenetrability of molecules. As a consequence,
the dynamics of the system are affected by the availability of free space.
In living cells, for example, molecular crowding has important effects such
as anomalous diffusion, variation of reaction rates and spatial segregation,
which have significant consequences on the dynamics of cellular processes.

At a theoretical level, we demonstrated that the explicit consideration of
the volume occupation of objects and membranes (and their consequences
on the system’s evolution) does not reduce the computational universality



of membrane systems. We achieved this aim showing that is it possible to
simulate a deterministic Turing machine and that the volume required by
the membrane systems that carry out this task is a linear function of the
space required by the Turing machine.

After this, we presented a novel version of both membrane systems (desig-
nated as ST-DPPs) and stochastic simulation algorithm (S7-DPP algorithm)
considering the property of mutual impenetrability of molecules. In addi-
tion, we made the communication of objects independent from the system’s
structure in order to obtain a strong expressive power. After showing that
the ST-DPP algorithm can accurately reproduce particle diffusion (in a com-
parison with the heat equation), we presented two test cases to illustrate
that ST-DPPs can effectively capture some effects of crowding, namely the
reduction of particle diffusion rate and the increase of reaction rate, con-
sidering a bidimensional discrete space domain. We presented also a test
case to illustrate that the strong expressive power of ST-DPPs allows the
modelling and simulation (by means of the ST-DPP algorithm) of processes
taking place in structured environments; more precisely, we modelled and
simulate the diffusion of molecules enhanced by the presence of a structure
resembling the role of a microtubule (a sort of “railway” for intracellular
trafficking) in living cells.

Subsequently, we further extended ST-DPPs and the respective evolution
algorithm to explicitly consider the membrane potential difference and its
effect over charged particles and voltage gated channel (VGC, a particular
type of membrane protein) state transitions. In fact, the membrane potential
difference exhibited by biological membranes plays a crucial role in many
cellular processes (e.g. action potential and synaptic signalling cascades).
Similarly to what we did for the ST-DPPs, we presented the novel version of
both the membrane systems (designated as EST-DPPs) and the stochastic
simulation algorithm (ES7-DPP algorithm) to capture the additional prop-
erties we had considered. In order to describe the probability of charged
particle diffusion in a discrete space domain, we defined a propensity function
starting from the deterministic and continuous description of charged particle
diffusion due to an electric potential gradient. We showed by means of a
focused test case that a model for ion diffusion between two regions, in which
the number of ions is maintained at two different constant values and where
an electric potential difference is available, correctly reaches the expected
state as predicted by the Nernst equation. To describe the probability of
transition between two VGC states, we derived a propensity function taking
into consideration the Boltzmann-Maxwell distribution. We considered a
model describing the state transitions of a VGC and we showed that the
model predictions are in close agreement with the experimental data collected
from literature.

Lastly, we presented the framework to manage a large number of stochastic
simulations on a grid computing platform. While creating this framework,
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we considered the parameter sweep application (PSA) approach, in which
an application is run a large number of times with different parameter
values. We ran a set of PSAs concerning the simulations of a stochastic
bacterial chemotaxis model and the computation of the difference between
the dynamics of one of its components (as a consequence of model parameter
variation) compared to a reference dynamics of the same component. We then
used this set of PSAs to evaluate the performance of the EGEE project’s grid
infrastructure (Enabling Grid for the E-sciencE). On the one hand, the EGEE
grid proved to be a useful solution for the distribution of PSAs concerning the
stochastic simulations of biochemical systems. The platform demonstrated
its efficiency in the context of our middle-size test, and considering that the
more intensive the computation, the more scalable the infrastructure, grid
computing can be a suitable technology for large scale biological models
analysis. On the other hand, the use of a distributed file system, the
granularity of the jobs and the heterogeneity of the resources can present
issues.

In conclusion, in this thesis we extended previous membrane systems
variants and stochastic simulation methods for the analysis of biological
systems, and exploited grid computing for large scale stochastic simulations.
ST-DPPs and ES7-DPPs (and their respective algorithms to calculate the
temporal evolution) increase the set of biological systems that can be investi-
gated in silico in the context of the stochastic methods inspired by the SSA.
In fact, compared to its precursor approach (7-DPPs), ST-DPPs allow the
stochastic and discrete analysis of crowded systems, structured geometries,
while EST-DPPs also take into account some electric properties (membrane
electric potential and its consequences), enabling, for example, the modelling
of cellular signalling systems influenced by the membrane potential. In fu-
ture, we plan to improve both the formalisations and the algorithms that we
presented in this thesis. For example, ST-DPPs can not model and simulate
objects bigger than a single compartment, which conversely can be convenient
for the analysis of big crowding agents in a tightly discretised space domain;
instead, EST-DPPs are, for instance, currently limited to the modelling of
systems composed by two compartments separated by a boundary that can
be assumed to act as a capacitor (e.g biological membranes). Moreover, we
plan to optimize the parallel (MPI) implementation of both the ST-DPP and
ES7T-DPP algorithms, which are presently based on a one-to-one relationship
between processes and compartments, a limiting factor for the simulation of
discrete spaces composed by a high number of compartments. Lastly, as grid
computing demonstrated to be a useful approach to handle a large number of
simulations, we plan to develop a solution to handle the simulations required
in the context of sensitivity analysis.
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Introduction

Motivation and aims

Membrane Computing is an area of computer science that was initiated after
the introduction of Membrane Systems (or P systems) with a seminal paper
by Gh. Paun [87]. Membrane systems are computing devices inspired to the
structure and functioning of living cells as well as from the way the cells are
organized in tissues and high order structures, and the aim of membrane
computing is to abstract computing ideas and models imitating these products
of natural evolution. Hence, membrane computing is part of the broader
field of natural computing, like genetic algorithms, neural networks and
DNA computing. Despite the initial primary goal of membrane systems
was devoted to computability theory, the membrane systems domain started
to be useful for biological and medical applications [90]. In this context,
membrane computing is used to construct models of biological systems and
to generate data of interest for the study of the process considered.

The modelling of biological systems is addressed in the multidisciplinary
field named systems biology. Systems biology concerns the study of biological
systems adopting a system-level approach [64], and can be rooted in two
distinct lines of inquiry in molecular biology: on one hand the formal analysis
of molecule systems and on the other hand the evolution of molecular biology
[104]. Automated DNA sequencers made possible the genomic revolution
(a massive explosion in the amount of biological information concerning
genomes) and, subsequently, other types of high-throughput technologies
(e.g. microarray platforms, methods for protein-protein interactions) led
to the generation of additional “omics”! data types. Nowadays, all these
technologies allow to collect (approximated) snapshots of the cell state,
providing list of parts and interactions among parts. While a list of parts of a
(complex) system does not tell how the system actually works (and this can

!The term “omics” (usually a suffix) refers to a large scale study of an aspect (specified
as a prefix) of living cells: genomics concerns genes, proteomics focuses on proteins,
metabolomics studies the metabolites and so forth.
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be true even for simple systems), the list of interactions allows, at least, to
understand the system structure. However, to gain a deeper understanding
of biological systems also their dynamical properties have to be considered.
In fact, systems biology approaches are comprehensive quantitative analysis
of the manner in which all the components of a biological systems interact
functionally over time [1].

In this context, the development of models to represent a given biological
system and carry out computer simulations to uncover its (dynamical and
structural) properties [63] is a crucial task (the multidisciplinary topic “sys-
tems biology, including modelling of complex systems,” has now appeared
explicitly in the Seventh Framework Programme of the European Community
for research, technological development and demonstration activities).In fact
biological systems are complex systems [95], and show emergent properties
[34] which are hardly understandable without relying on models. Models
are essential since allow to investigate the described system in normal and
perturbed conditions and by means of in silico experiments that lead to
useful predictions. Importantly, these investigations if on the one hand
reduce expensive and long in vivo and/or in vitro studies, on the other hand
suggest new experiments according to the predictions collected. Clearly, a
deeper understanding of biological systems is the fundamental basis for the
development of better treatments for diseases.

Considering cellular processes, several modelling approaches have been
proposed based on different formalisms. All these approaches can be classified
considering the choices facing the experimenter when deciding which strategy
or strategies may be most appropriate for a given problem [63]. For example,
ordinary differential equations (ODEs) are a continuous and deterministic
approach. According to this formalism a pathway of biochemical processes
is represented describing the rate of variation of each system variable (the
concentration of a molecular species) with an ODE. This approach should
be used whenever the well-stirred assumption is reasonable (the compart-
ment in which the processes take place is homogeneous with respect to the
molecular species concentration) and the molecular species concentrations
are sufficiently high [31].

Recently, the role of noise has been underlined in many biological pro-
cesses, such as transcription and translation [76, 41], E. coli response to phage
A infectious [7] and nervous system processes [43]. Noise plays a major role
when the molecular quantities involved is small [78]. Conversely, when the
number of stochastic elements in a system is sufficiently high the randomness
is eliminated. However, this assumption may require a reassessment, as
small biochemical and electrochemical fluctuations can significantly affect
a whole cell response, for example in presence of regulatory mechanisms
that are characterized by high gain amplification and positive feedbacks [43].
Two different kind of noise can be identified in biological systems: extrinsic,
related to experimental conditions, and intrinsic, due to stochastic events
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occurring inside the system itself [41, 93].

As already said, membrane systems have recently found application to
the formal description and modelling of biological phenomena. However,
some of membrane systems properties (such as nondeterminism and maximal
parallelism) have to be mitigated, while a physically correct procedure to
calculate the time evolution of the system has to be used. A membrane
systems variant that adopts this strategy is called 7-DPPs [27], where dy-
namical probabilistic p systems have been coupled with a modified version
of the tau leaping stochastic simulation method to obtain a quantitative
time streamline. This approach has a number of interesting features. As
it is stochastic and discrete, it can deal explicitly with noise. Moreover, it
is multicompartmental, and thus can be used to study spatially extended
systems. The algorithm for the temporal evolution is inspired to one of the
most important methods for stochastic simulations, the Gillespie stochastic
simulation algorithm (SSA) [53], and, more precisely, to a more efficient
implementation, the tau leaping [22]. Therefore, it takes into account the dis-
creteness of the quantity of the molecular species and the inherently random
character of the phenomena, is in agreement with theories of thermodynamics
and stochastic processes and, lastly, is appropriate for the description of
systems characterised by instability [101]. 7-DPPs have been used to study a
signal transduction pathway in yeast [28] and other biological processes [25].

As we noticed that nor current membrane systems neither current stochas-
tic simulation methods inspired by the SSA provide an explicit consideration
of objects (molecular species) volume and compartments volume we started
to work on this topic, Figure 1. The explicit representation of volumes enable
the analysis of crowded systems and structured spaces. One of these is the
cytoplasm of living cells, a “crowded world” [91], where the volume excluded
by macromolecules and other entities such as organelles leads to important
effects such as anomalous diffusion, variation of reaction rates and spatial
segregation, which have significant consequences on the dynamics of cellular
processes [105, 40]. Partly due to crowding and partly an intrinsic properties
of living cell structure, the intracellular environment is a structured space.
In this environment, cell components such as microtubules (a sort of intra-
cellular “railway”) control the trafficking of objects as macromolecules and
vesicles.

Another important feature of living cells, but not currently considered
by membrane systems and stochastic methods inspired by the SSA, is the
membrane electric potential (an electric potential difference between two
compartments separated by a cellular membrane, such the extracellular and
intracellular environments or, in mithocondria, the intermembrane space
and the matrix). There are many examples of biological processes in which
living cells take advantage from the presence of a membrane potential [94].
Considering nervous systems, one only needs to think at the action potential
and its relation to pre- and post-synaptic signalling cascades: in response to
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membrane potential variations, neurotransmitters or sensory stimuli (temper-
ature, mechanical) voltage gated channels (VGCs, membrane proteins that
are sensitive to membrane potential difference variation) establish ion fluxes
leading to action potentials or the activation of signalling cascades, e.g. in
case of the calcium ion (one of the most important second messengers?) [12].
Another example is the mitochondrial membrane potential, the alteration of
which can be related to cell growth, cell differentiation and cell motility [30],
stress [103] and ageing [97].

Another issue related to the modelling of biological systems is the need of
repeating a potentially large number of computer simulations. For example, it
is important to collect data about the model dynamics according to different
parametrisations, and this can be a task included by parameter estimation
algorithms and sensitivity analysis methods. A possible solution to handle a
large number of independent simulations is the exploitation of grid computing,
a kind of high-throughput computing, where a combination of computer
resources are used to reach a common goal. The difference between the Grid
computing and the classic high performance computing, such as a cluster
of processors, is that the computational resources shared in a grid tend to
be loosely coupled, heterogeneous and geographically dispersed. The term
was firstly introduced in the mid 90 to denote a distributed computing
infrastructure for advanced science and engineering [44]. The advantage of
using a grid approach for large computational challenges relies on the high-
end scalability of this technology. As the communication among independent
grid jobs is a factor that decreases the grid performance, data parallel
applications are the best candidate for grid computing. These applications
split the computation of the input data in a series of independent processes
and collect the results at the end of the computation.

In this thesis we take into consideration some possible extensions of
the current formalisms and computational methods for the modelling and
simulation of biological systems, in order to capture a more comprehensive
set of biological systems properties. More precisely, we consider 7-DPPs as
a starting point for our aim and we study how to extend such approach in
order to enable the analysis of crowded systems, structured geometries and
membrane potential effects. Moreover, we study a solution to manage a large
number of simulations and we consider EGEE project’s grid infrastructure
(Enabling Grid for the E-sciencE) as it is the main European grid platform.

Overview

The thesis is structured as follows. In the first part (Chapters 1-3), we
introduce the preliminary notions that constitute the background of the

2Second messengers are components of signal transduction cascades; in this context,
they greatly amplify the strength of the signal.
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Figure 1: Graphical overview of the work presented in this thesis. tP systems:
tissue P systems; DTM: deterministic Turing machine. See the text for the
other acronyms.

work. In the second part (Chapters 4-6), we present the results of the work,
Figure 1.

Chapter 1 is an introduction to the membrane computing field. We
describe the basic version of membrane systems (that was designated as tran-
sition P systems), the large panoply of variants and the universality. Chapter
2 deals with the stochastic modelling of biological systems. We present the
stochastic simulation algorithm by Gillespie and then its modifications to
decrease the computational cost. Then, we consider the approaches for the
simulation of spatially extended systems. Lastly, we present 7-DPPs, the
main basis of the work of this thesis. In Chapter 3 we introduce the notion
of parameter sweep applications (PSAs) and show how to deal with PSAs
using grid computing, and more precisely EGEE project grid.

In Chapter 4 we define an extension of 7-DPPs, that we designate as St-
DPPs, in which we consider both molecules and compartments that occupy
a finite amount of volume and, moreover, we decouple the communication
possibilities inside the systems from the system’s structure, in order to obtain
a strong expressive power. At a theoretical level, we study the consequences
of objects’ and membranes’ volume occupation on the computational univer-
sality. We present the modified version of the parallel (MPI) algorithm for
the simulation of ST-DPPs and then we illustrate with some test cases that
S7-DPPs can be used to incorporate some effects of molecular crowding and
structured spaces on diffusion and reaction rates.

In Chapter 5 we further extend ST-DPPs in order to obtain EST-DPPs,
where we consider some electrical properties. In particular, we include in
the formalism object charges and membrane electric potential. We derive
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two novel classes of propensity functions to compute the probability that a
charged particle will diffuse to a neighbouring region under the force due to
an electric potential gradient (class II) and that a voltage gated channel will
change its current state as a consequence of an electric potential difference
(class IIT). We present the modified version of the parallel (MPI) algorithm
to compute the temporal evolution of EST-DPPs, and we illustrate with two
test cases the correct functioning of the EST-DPP algorithm.

In Chapter 6 we present a framework for the management of PSAs using
the EGEE project grid (Enabling grid for E-sciencE). We describe a set
of PSAs distributed over the EGEE project grid infrastructure, in which
we compare the dynamics of a bacterial chemotaxis model under different
parametrisation with a reference dynamics. Moreover, we carry out the grid
infrastructure performance analysis highlighting critical factors.

Lastly, in Chapter 7 a discussion about the presented work is proposed.
Insights concerning some possible improvements and future directions for
research are also briefly described.

Published works

The work presented in this thesis is partly described in the following publica-
tions:

e E. Mosca, I. Merelli, P. Cazzaniga, D. Pescini, G. Mauri, L. Milanesi,
(2010) Grid computing for parameter sweep applications in systems
biology models, International Journal of High Performance Computing
Applications (submitted)

e E. Mosca, P. Cazzaniga, D. Pescini, G. Mauri, L. Milanesi, (2010)
Modelling Spatial Heterogeneity and Macromolecular Crowding with
Membrane Systems, Proceedings of the Eleventh International Confer-
ence on Membrane Computing (CMC11), M. Gheorghe, T. Hinze, G.
Paun, pp305-325. To appear in Lecture Notes in Computer Science.

e P. Cazzaniga, G. Mauri, L. Milanesi, E. Mosca, D. Pescini, (2010), A
Novel Variant of P Systems for the Modelling and Simulation of Bio-

chemical Systems, Membrane Computing, Lecture Notes in Computer
Science, 5957, pp210-226

e E. Mosca, L. Milanesi, (2010), Modelling Biochemical Pathways, Math-
ematical Approaches to Polymer Sequence Analysis and Related Prob-
lems, Springer.

e E. Mosca, P. Cazzaniga, I. Merelli, D. Pescini, G. Mauri, L. Milanesi,
(2009), Stochastic Simulations on a Grid Framework for Parameter
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Prerequisites






Membrane computing

Membrane Computing is an area of computer science that was initiated after
the introduction of Membrane Systems (or P systems) with a seminal paper
by Gh. Paun [87]. Membrane systems are computing devices inspired to
the structure and functioning of living cells as well as from the way the
cells are organized in tissues and high order structures, and the aim of
membrane computing is to abstract computing ideas and models imitating
these products of natural evolution. Hence, membrane computing is part
of the broader field of natural computing, like genetic algorithms, neural
networks and DNA computing.

Shortly, a membrane systems is composed by a membrane structure that
defines a series of regions where objects evolve according to given rules. The
system evolves by applying the rules in a nondeterministic and maximally
parallel manner until any rule can be applied. The result of a computation
is composed by the objects placed in a specific region or expelled from the
membrane structure. Nowadays, many variants of membrane systems exist,
which differ due to properties associated to the various elements of the basic
definition.

One of the fundamental ingredients of P systems is the membrane struc-
ture, Figure 1.1(a). It is a set of hierarchically arranged membranes contained
in a external membrane (or skin membrane). Each membrane is identified
with a label and defines a region where objects and one or more membranes
can be placed. The whole membrane structure is defined by means of a rooted
tree, where the root is the skin membrane while the leaves are the elementary
membranes Figure 1.1(b). Symbolically, the membrane structure is defined
using a string with matching parentheses; considering the membrane systems
represented in Figure 1.1 we have:

(T2 (s {115 [J6la]u-

Each region (or equivalently membrane, as there is a one-to-one corre-
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spondence between membranes and regions) contains multisets of objects. A
multiset is a generalisation of a set, such that a multiset can contain multiple
copies of the same element. A multiset can be represented in many ways and
one of these is a string of symbols. For example, the string w = a?bc? defines
a multiset that contains 2, 1, 3 copies of the objects a, b, ¢, respectively (all
the permutations of w defines the same multiset). The number of times an
object appears in a multiset is the multiplicity of the object in that multiset.

Moreover each region contains a finite set of evolution rules. Given an
alphabet of objects O, the general form of a rule is v — v, where! v € OF
while v = v/ or v = v/d where v € (O x {here, in;,out}) where j runs over
the number of membranes; “here” indicates that the multiset v should be
placed in the same membrane in which the rule is occurring, “in;” is used to
move the multiset to the membrane labelled j and included in the current
membrane, “out” indicates that the multiset must be sent out from the
current membrane, and lastly § specifies the dissolution of the corresponding
membrane; whenever a rule of this type occurs, the corresponding membrane
and its set of rules disappear (the dissolution of the skin membrane is
prohibited), while the objects it contains are assigned to the surrounding
membrane. The evolution rules are associated to partial order relations (e.g.
r1 > 12) that define rules priority during rule application. For instance, the
rule r; belonging to the membrane j,

”

71 : a*bc — (a, here)(a, ing)(c, out)

acts on the multiset a®bc and sends a copy of a in the nested membrane 2
and a copy of ¢ in the membrane surrounding membrane j.

Given a membrane structure, multisets and rules, the system evolves by
applying the rules in the mazimally parallel manner, nondeterminstically
choosing the rules and the objects. In other words, all objects to which a rule
can be applied must be subject to a rule application. A rule is applicable
if there are copies of the objects specified in its left side and if there is
not a rule with higher priority in the same membrane that can be applied
during the current transition, irrespective of which objects it involves (strong
interpretation). In case more than one different rules having the same priority
can be applied, the rule to be applied is nondeterministically chosen among
them. Rule application takes place in parallel, synchronously in all the
membranes: a universal clock is assumed to exist.

!By ©* we indicate the set of all strings over an alphabet ¥ and by ©+ we denote the
set 3% — A, of all non-empty strings over X.
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1.1 Transition P systems

In this Section we describe formally a basic type of membrane systems.
In particular we report the definition given in [87], the article in which
membrane systems were introduced as transition P systems.

Definition 1.1.1. A transition P system of degree n is the tuple:

II= (V7 W, Wy, w2, . . . Wy, (Rlv pl)a (RZa pQ)a SRR (an pn)v iO) (1'1)
where:
e V is an alphabet and its elements are called objects;

e 1 is a membrane structure of degree n, and the regions are labelled in
a one-to-one manner with element in a given set A

o w;, 1 € {1,2,...,n}, are strings from V* representing multiset over V
associated with the regions 1,2,...,n of p

o R, i€{l1,2,...,n}, are finite sets of evolution rules over V associated
with the regions 1,2,...,n of u; p; is a partial order relation over R;,
specifying a priority relation among rules of R;. An evolution rule
is a pair (u,v), which is usually written in the form u — v, where u
is a string over V and v = v’ or v = v'§, where v' is a string over
(V x {here, in;, out}), and 6 is a special symbol not in V'; the length of
u s designated as the radius of the rule u — v

e iy is a number between 1 and n which specifies the output membrane.

Definition 1.1.2. A configuration of a transition P system Il is the tuple

C= (Mla w;p cety w7l,'k7 (Ri17pi1)7 KRN (le7 sz)) (12)
where 1’ is obtained removing from u all membranes different from iy, ..., 1
(of course the skin membrane is not removed), {i1,...,ix} € {1,...,n}.

Note that the membranes preserve the initial labelling in all subsequent
configurations and, in this way, the correspondence between membranes,
multisets, and sets of evolution rules is well specified by the subscripts of
these elements.

1.2 A large panoply of possible extensions

The versatility and the flexibility of the formalism of membrane computing
determined the extension of the variant reported in Definition 1.1.1, and
nowadays a high number of P systems variants are available in literature. In
the following we mention some of these extensions.
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Membrane systems with symport/antiport rules consider only commu-
nication rules that move objects between membranes, and define a special
type of rule (antiport rule) that acts over objects located in two different
membranes [86]. Another extension concerns the assignment of electrical
polarizations {+, —, 0} to objects and/or membranes [88].

An important class of membrane systems is the one of P system with
active membranes [89], whose membranes are the main active components,
in the sense that they directly mediate the evolution and the communication
of objects and, moreover, the membranes can multiply themselves by divi-
sion. Other P system variants consider further operations over membranes
(other than dissolution and division), such as creation, merge, endocyto-
sis/exocytosis? [66] and gemmation [17].

Beside cell-like P systems, in which the structure of the membranes is
inspired to the one of living cells, tissue P systems were introduced in [75].
Tissue P systems resemble the way in which living cells are organised in a
tissue and the membrane structure is defined by a directed graph, where the
nodes are the membranes and the objects are communicated along the edges
of the graph. Neural-like P systems were introduced in [74], where some
ideas from neurobiology are incorporated and subsequently were extended
to spiking neural P systems [61]. Moreover, population P systems were
introduced in [10] and consider operations such as communication by means
of the environment, cell bonding and cell differentiation.

1.3 Universality

According to language and automata theory, a computing model can reach
the power of Turing machines as it has two major properties: (i) enough
context-sensitivity, in order to send information at any distance in the data
structure used, and (ii) erasing capabilities in order to use an arbitrary large
workspace [90]. As the biochemical reactions (rules) of the form u — v
(see Def. 1.1.1) ensure context sensitivity and the possibility to throw waste
products (objects) in the environment ensure erasing capabilities, living cells
seem to satisfy these two requirements.

Consequently, most classes of membrane systems are computationally
universal and share the same power of Turing machines. Just to mention a
couple of cases, this equivalence was demonstrated for multisets re-writing
systems with at least two catalists® [46] and for symport /antiport P systems

2Endocytosis is a process by means of which living cells absorb substances from the
extracellular region and is based on the invagination of a membrane leading to a formation
of a vesicle. Conversely, esocytosis is the process by means of which the content of a vesicle
is expelled and is based on the fusion between the vesicle and the plasma membrane.

3A catalyst is a substance that modify (increase or decrease) the rate of a chemical
reaction and, conversely from a reactant, is not consumed by the reaction. Hence, in the
context of membrane computing, catalysts are objects which are present in the rules but
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[4]. The conclusion is that a living cell is a very powerful “computer”[90].

are not modified by the rule application.



Stochastic modelling of biological systems

When the intrinsic fluctuations of the chemical system play a major role in
the dynamics, as is the case for many systems of interest for biology, a master
equation approach is more suitable than the deterministic and continuous
approach based on ordinary differential equations [9, 52].

The chemical master equation formulation adopts a mechanistic perspec-
tive on the chemical system describing it as a sequence of collision events
among molecules. Each of these scattering events can lead either to a new
compound (reactive collision) or to an elastic scattering (diffusive collision)
which does not alter the chemical species distributions but only the particles
speed and direction. Which of the two collisions pathways will be followed
by each scattering event is determined by the energy involved in the process:
if this energy exceed the Arrhenius threshold (activation energy) then the
two molecules will react to form the new compound. The existence of an
activation energy imposes that the diffusive events are the most probable ones
and, if the environment in which the reactions take place is homogeneous,
this picture corresponds to a well stirred reactor and the dynamics can be
tracked by means of a stochastic simulation algorithm such as the Gillespie’s
one [52]. Otherwise, other methods are required to keep track of the position
of particles within the system.

In this chapter we review the most important approaches for the modelling
of both homogeneous and spatially extended systems, focusing on stochastic
approaches; we conclude describing membrane systems as modelling tools
and, more precisely, the 7-DPP approach.

2.1 Modelling homogeneous systems

In this Section we consider well stirred or spatially homogeneous systems,
meaning that the chemical species abundances do not vary with respect to
space. This assumption seems to be hardly justified within cells, where there
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is a very crowded environment leading to spatial segregation of molecular enti-
ties. However, whether the well mixed assumption is a good approximation or
not depends on the time scale of the considered biological process. In the case
in which the biological process involves a time scale that is greater than the
molecules diffusion time scale, the well-stirred approximation is justified. In
many cases, such as cell cycle regulation or circadian rhythms, the well-stirred
assumption is appropriate and well-stirred models have been successfully
used to obtain a deeper understanding of these biological processes [2, 69].

2.1.1 The chemical master equation and the stochastic
simulation algorithm

Let us consider a well-stirred system of chemical species S = {s1,...,8,}
interacting by means of chemical reactions R = {ri,...,m,}. According
to the classic chemical notation, the general form to describe a chemical
reaction is

181+ ...+ ansn — B181+ ...+ Bnsn (2.1)

where the natural numbers aq, ..., ay,, 81,..., 8, are the stoichiometric coef-
ficients and define the amount of molecules that are involved in the process.
Moreover let us consider that system’s volume and temperature constant.

Each chemical reaction is characterized by two quantities. The first is the
state change vector v = (v1j,...,v,) T, where v; ; is the change (in terms
of molecule numbers) in the s; population due to the reaction r;; the state
change vectors form the stoichiometric matrix: N = [vy,...,vy].

The second is the propensity function a(x), that is a function such that
a(x)dt gives the probability that one reaction of the type r; occurs in the
next infinitesimal time interval [t, ¢ + dt], given the state x = (z1,...,2,)7,
where z; is the number of molecules of species s;. The definition of the
propensity function is derived by considering the fundamental hypothesis of
the stochastic formulation of chemical kinetics [52], i.e. the existence of a
constant ¢; such that the product c;dt gives the average probability that a
molecule (for uni-molecular reactions) or a randomly chosen combination of
molecules (for reaction with more than one reactant) will react in the next
infinitesimal time interval d¢. According to this argument it is possible to
obtain a;j(x) by multiplying ¢; with the number of reactants or combination
of reactants h;:

CLJ‘ = Cj . ]’Lj (22)
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where h; will bel

T if?"jisl—)...
hj = %xl(:pl —-1) if rj:is1+s1—... (2-3>
T1T2 if?“j:81+32—>...

where x1 and xo are, respectively, the number of molecules of species s; and
S92.

Using the laws of probability [55], it is possible to deduce a time equation
for describing the time evolution of the system’s state (given a particular
initial condition xg) :

d (X t|X0,t0 i

[a;(x p(x — vj,t|xo,t0) — a;(x)p(x, t|xo, to)]
7j=1
where p(x, t|xq, to) is the conditional probability of the system to be at state
X, time ¢ given the initial state xo at time tg. This set of first-order differential
equations is the so-called chemical master equation (CME). It is easy to see
that the CME consists in a number of ordinary differential equations (ODEs)
equal to the number of possible states. As the state values are typically
unbounded the number of ODEs is infinite. Therefore the analytical solution
is possible only in few cases and, unfortunately, also the numerical solutions
are usually very computationally intensive.

To overcome this limitation Gillespie’s proposed the stochastic simulation
algorithm (SSA) [53]. This algorithm is a Monte Carlo strategy and provides
exact numerical realizations of the stochastic process defined by the CME.
Since its introduction this procedure has been representing a reference
point for the development of many approaches (such as the Next Reaction
Method [51] or the tau-leaping [54], for a review see [71]) and has been
implemented in many software tools (such as Copasi[60], CellWare [36] and
StochKit [71]). Nowadays, the class of methods inspired to the original SSA
is one of the most important in the field of stochastic simulations.

The theoretical basis of the SSA is the function p(7, j|x,t) that is defined
so that p(7, j|x, t)d7 is the probability, given the state X (¢) = x, that the next
reaction in the system will occur in the infinitesimal time [t + 7, + 7 + d71)
and will be a reaction r;. The function p(7,j|x,t) is therefore the joint
probability density function of the two random variables 7 (the time to the
next reaction) and j (the next reaction), considering the system in the state
x. By applying the laws of probability, it is possible to derive the following
analytical expression (details in [52]):

p(7,jlx.t) = aj(x)e” 00T (2.4)

!We limit the possible values of h; to bimolecular reactions as the cases in which more
than two molecules take part in a reactive collision to produce one or more products are
rare.
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where ag(x7) = 3220 | ax(x). Equation 2.4 is the mathematical basis for the
stochastic simulation approach and implies that p(7, j|x,t) can be written
as the product

~ag(xer) | 95(X) (2.5)

a(x) '

between a 7-density function and j-density function. Therefore 7 is an
exponential random variable with both mean and standard deviation equal
to 1/ap(x), and j is a statistical independent integer random variable with
point probabilities a;(x)/ao(x).

There are several equivalent methods to generate samples of 7 and j. The
simplest method to achieve this aim is the so called direct method in which
two random numbers r; and r9 are drawn from the random distribution in
the unit interval [0,1] and the values of 7 and j are calculated as follows:

p(7, 1%, t) = ap(x)e

1 1
T = mln(r—l) (2.6)

j
J is the smallest integers satisfyingz aj (x) > roap(x) (2.7)

/

J

Considering the direct method, the SSA algorithm can be summarized
as follows:

1. initialise the time ¢ = ¢ty and set the initial amount of molecules to
X = Xg;

2. evaluate all the propensity functions a;(x) and their sum ag(x);

generate the values 7 and j according to Equations 2.6-2.7;

- W

update the system: x :=x+v; and ¢t :=t + 7;

5. if the termination criteria is satisfied, then end the simulation, else
return to step 2.

The main advantages of the use of the SSA rely in the fact that it is
logically equivalent to the CME, provides an exact trajectory of the system
and considers a step 7 which is exact (and not an approximation as for
example, for ODE solvers). On the other hand, the main disadvantages of
the SSA are related to its computational cost, which depends on the reaction
and molecule numbers. As a consequence, the SSA is hardly useful to
study complex biological pathways, that are characterised by many different
types of molecules and reactions. The presence of this computational issue
encouraged the development of different modified versions of the original SSA
procedure in order to speed up its computation, such as the first reaction
method [53], the next reaction method [51], the optimized direct method [23]
and the sorting direct method [77].
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However, to achieve a significant speed up, approximations are required
over the SSA procedure [71]. In the next subsection we will describe one of
the most prominent approximation procedures: the tau leaping technique.

2.1.2 The tau leaping simulation method

The tau leaping method was initially introduced in [54] in order to decrease
the computation cost of stochastic simulation of biochemical systems. The
basic idea of this simulation technique is to fire more than one reaction
events after a pre-selected time step 7. Moreover, this quantity must satisfy
the leap condition, according to which the change in the system’s state due
to the occurring of the selected reactions must be sufficiently small such
that no propensity function will suffer an appreciable change in its value.
The gain obtained at the computational level is paid with the introduction
of an error on the systems dynamics that is no longer exact, as in the
SSA, but approximated. Many versions of the tau-leaping technique have
been introduced to improve the initial procedure. Problems related to the
generation of negative amount of molecules and to the efficient tau selection
have been worked out in the tau-leaping version described in [21] and [22]
respectively, and we consider these two versions in the following.

As long as the leaping condition is satisfied, the number of firings of
reaction j in the time interval [¢,t + 7) can be approximated with a Poisson
random variable P(a;(x),7) of mean and variance equal to a;(x)r. This
argument leads to the basic update formula for the system’s state considering
the time increment 7:

m
X(t+7)=x+ Y viPia;(x),7) (2.8)
j=1
where the values P;j(j = 1,...,m) are Poisson random numbers with the

indicated means. However, to face issues such as the negative amount
of molecules and the efficient tau selection, the actual algorithm is more
complicated than the generation of Poisson random numbers and the system’s
state update according to Equation 2.8. Each iterative step of the tau leaping
procedure can be divided into six stages:

1. initialisation of the time ¢ = t¢ and the initial amount of molecules to
X = X0;

2. generation of the maximum change of each molecule number that satisfy
the leap condition; this step is carried out in order to bound the relative
changes of the propensity function within a number 0 < ¢ < 1; a value
€; is calculated for each species s; considering the highest order of the
reactions in which s; appears as reactant (see [22] for more details);
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3. calculation of the mean and variance of the expected changes in the
propensity functions; this step involves the identification of the sets of
critical and noncritical reactions, where a critical reaction is charac-
terised by having a positive propensity function and by involving (at
least one) reactant which is available in a few molecules and noncritical
reactions are all the other;

4. 7 value computation using quantities calculated in the previous steps;

5. sampling of the number of firings k; for each reaction r; using the
Poissonian distributions;

6. system’s state update, by replacing t :=t+ 7 and x :=x + Z;nzl kjv;.

7. if the termination criteria is satisfied, then end the simulation, else
return to step 2.

As already said the tau leaping is faster (but less correct) than any
of the SSA versions available. The tau leaping version introduced in [22]
requires a computational time proportional to 2m (where m is the number of
reactions defined in the molecular reacting system), and is more efficient then
the original tau leaping version, that is associated to a computational cost
proportional to m?. Considering this evidence, the tau leaping procedure
introduced in [22] was used as a reference point for the implementation of
the 7-DPP simulation approach [27], which will be described in Section 2.3
and is the starting point for the work described in this thesis.

2.2 Modelling spatially extended systems

Living cells are very far from the homogeneous and diluted compartment
that is often used for their modelling. These requirements can be considered
satisfied in many cases without taking them explicitly into account; however,
there are several processes in which the effects of spatial heterogeneity
(due to diffusive processes) and crowding (caused by the presence of big
macromolecules and other entities such as organelles [47]) must be considered
in order to capture the correct system dynamics [91].

Reaction-diffusion (RD) systems are mathematical models used to de-
scribe those chemical systems for which the spatial distribution of chemicals
influences the overall dynamics. Their name is self-explanatory concern-
ing the processes used to describe their dynamics: diffusion (the spread of
particles due to random motions leading to gradual mixing of matter) and
reactions.

Computational approaches aimed at studying spatially heterogeneous
systems have to deal with the tabulation of spatial position of particles as a
function of time. Several modelling frameworks can be used to analyse such
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kind of systems [98]. We report hereafter the classic and most used methods,
taking also in consideration the possible explicit or implicit modelling of
crowding effects.

2.2.1 Deterministic and continuous approach

The standard approach to describe the dynamics of an RD system exploits a
continuous time and space domain description of the system where the mass
transport, the chemical kinetics and the conservation laws, together with the
boundary conditions, are embedded within the same set of equations that
can be solved analytically or numerically.

The two fundamental continuum equations describing diffusion are the
conservation of mass:

Is|(r, )
ot

where? [s] is the concentration of species s at location r at time ¢ and J is
the flux of s; and the Fick’s first law:

—_v.J (2.9)

J=-D,V[s](r,t) (2.10)

where Dg is the diffusion coefficient of s. Combining Equation 2.9 and
Equation 2.10 we obtain the diffusion equation, which describes the temporal
variation of s concentration in every location r within a given space domain:

Is|(r, 1)
ot
where Dg([s],r) is the collective diffusion coefficient for concentration [s]
at the spatial coordinates r. In case the molecular species is also involved
in one or more reaction processes leading to a rate R([s](r,t)) we obtain a
reaction-diffusion equation

Is](r, 1)
ot

This deterministic and continuous description represents the classical
method used to model RD systems. Equation 2.12 relates the variation of a
species concentration at each space coordinate in a given space domain to the
variation of the flux and the reaction rate. Crowding effects can be implicitly
represented acting on diffusion coefficients (e.g., by lowering their values)
and kinetic constants (e.g., by increasing their values). PDEs are usually
solved using numerical methods (only in a few cases the analytical solution

= V- (Ds([s],r)V[s](r, 1)) (2.11)

= V- (Ds([s],x)V[s](r, 1)) + R([s](r, 1)) (2.12)

2The del operator represented with the nabla symbol V is used to denote (con-
sidering the three dimensional Cartesian coordinate system) the gradient Vf =
(Df /0x 1,8f /Dy §,0f/0z k) of a scalar field f(z,y,z), and the divergence V -v =
(Ov, [z, Buy /By, B, /0z) of a vector field v = v,1 + vy + v.k.
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is available); moreover, as the time-step and the sub-volume size (the space
domain is usually divided in a number of elements) are reduced, the solutions
becomes more accurate while the computational effort increases.

2.2.2 Reaction-diffusion master equation

A natural extension of the chemical master equation to keep track the amount
of substance in different location of a space domain €2 consists of dividing
Q) into smaller sub-compartments i, each one with a characteristic length [
(V; =14, being d € {1,2,3} the spatial dimensions), such that each of these
sub-compartments can be considered homogeneous.

The condition for homogeneity by diffusion is that:

l2

t.
> 94D,

(2.13)

where t; is the average time between two reactions involving species s; and
D; is the diffusion coefficient of s;. To satisfy Equation 2.13 the reaction
rate must be much slower than particle diffusion between sub-compartments.
As the right term of Equation 2.13 scales with [, the validity of the above
inequality improves as [ is reduced. At the same time, [ must be much larger
than the mean free path. As this mean free path is usually very short in
living cells, due to the high concentration of non-reactive molecules, this
condition is easily satisfied [67]. Lastly, the compartment size must be much
larger than the reaction radii [67].

In this context the system’s state changes from x to {x} = {x1,...,Xmn}
where each vector x; defines the number of molecules in each of the m
compartments. Diffusion is modelled as a memory lacking random walk in a
discretized space, where molecules diffuse between neighbouring compart-
ments. The diffusion rate constant for a molecule of type s; which moves
between compartment k£ and k + 1 is

D.

AP = - (2.14)
and enable the connection between the microscopic description of the master
equation with the macroscopic Fick’s diffusion coefficient.

Considering these arguments it is possible to define a Reaction-Diffusion
Master Equation (shortly RDME) [49]. The final form of the RDME is
analogous to a semi-discrete form of the reaction-diffusion PDE with the
diffusion term discretized using a second-order centered scheme [11]. As in
the case of the CME, analytical approaches to RDME are too complicated,
especially in the field of the modelling of biological pathways, where we
have to deal with many different species and many reactions. An alternative
approach relies on the use of a Monte Carlo method to sample trajectories
of the Markov process associated to the RDME.
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Bernstein showed that SSA can be used to simulate reaction-diffusion
systems, even if the space domain is dived into a set of differently sized
compartments and a space dependent diffusion coefficient is considered [11].
To model diffusion between three adjacent compartments k — 1,k and k + 1
the author considers the following set of mono-molecular reactions

s(h— 1) 2% (k) (2.15)
s(k) ALy ok — 1) (2.16)
s(k) R g 4 1) (2.17)

s(k 4+ 1) 2k gy (2.18)

where a(b) — a(d) indicates that the object a is moved from region b to region
d. The quantities di_1, dig k-1, dik+1 and dp41 ) are kinetics constants
that must be set as
~ Dijn
lijlli = 1]
where D; ; is the diffusion coefficient evaluated at the boundary between ¢ and
j and values [; — le is the distance between the centres of sub-compartments
i and j. Note that Equation 2.19 reduces to Equation 2.14 if ¢ and j have
the same length (uniform grid).

An important procedure introduced in this field is the Next Subvolume
Method [39] which is implemented in MesoRD [59] and SmartCell [5] software.
The NSM is an adaptation of the SSA [53] and the next reaction method [51]
to compute the dynamics of a reaction-diffusion systems according to the
RDME. Given an initial system’s state the time for the first event (reaction
or diffusion) inside each subvolume is sampled from a respective distribution
(that takes into account the rates of reaction and diffusion in the subvolume);
these time values are used to sort the subvolume in a priority queue, according
to when the events are scheduled to appear. If the first occurring event (top
ranking subvolume) is a reaction event, the rates in the respective subvolume
must be recalculated and the subvolume placed accordingly in the queue. If
the event is a diffusion event, than two subvolumes are involved and hence
two elements in the priority queue must be reordered. The NSM requires a
computational time which scales logarithmically (rather than linearly) with
the number of subvolumes.

To speed up the NSM the binomial tau-leap spatial stochastic simulation
algorithm (B7-SSSA) has been introduced in [72]. The BT-SSSA exploits the
binomial tau-leap algorithm [99] and a modified version of the NSM [39]. The
comparison of the number of operations required to execute a single iteration
show that the Br-SSSA has a higher complexity than the NSM [25]. However,
as the BT-SSSA can execute more than one reaction and/or diffusion event
for a given time step 7, the efficiency of the simulations is increased, and in

Ci’]' (219)



18 Stochastic modelling of biological systems

fact it is reported that Br-SSSA is from 2 to 100 times faster than NSM (in
the examples provided by the authors) [72].

A limitation of these stochastic methods consists in the fact that the size
of chemicals and of the compartments in which reactions take place is not
considered during the simulation of the system dynamics. As a consequence,
it is not possible to reproduce crowded conditions because volume exclusion
due to crowding molecules cannot be represented explicitly when they are
depicted as point particles [98].

2.2.3 Other approaches

The Molecular Dynamics (MD) approach traces the positions and velocities
of all atoms and, therefore, provides detailed trajectories. On the other hand,
this method is computationally too expensive to simulate systems formed by
a large number of atoms or with time scales above us. Consequently, MD
has only been used in problems involving time-scales of ns and space-scales
of tens of nm [98].

The Brownian dynamics (BD) is a particle-based stochastic approach used
to describe the time and space motion of molecules. As the solvent is treated
as a continuum medium and the trajectories of the modelled particles are
described by random walks (due to the collisions with the solvent molecules),
the computational cost is decrease dramatically compared to MD. In BD,
time and space are continuous. Crowded media can be explicitly described
since it is possible to represent crowding molecules. However, as the number
of particle collisions increases, the BD simulations demands a very high
computational cost due to the relatively small time step required to resolve
collision events leading to chemical reactions. Examples of methodologies
based on BD are the Green’s function reaction dynamics algorithm [102],
Smoldyn [6] and MCell [96].

The last class of methods we want to cite are those based on Cellular
Automata (CA). A CA consists of a grid of cells (in any number of dimensions),
where each cell has a finite set of states, and evolves according to the
neighbours state. CA can be used to simulate RD systems at both microscopic
and mesoscopic scales, depending on the number of molecules associated with
each cell of the lattice. Crowding can be explicitly represented by considering
crowding molecules or fixed barriers. For instance, people of the CyberCell
project modelled a virtual cell membrane using discrete automata [18].

2.3 Membrane systems as modelling tools

In this Section, we describe a framework for the modelling of biological
systems which is the results of the conjugation of Dynamical Probabilistic P
Systems [85] with a modified version of the tau leaping algorithm. Before
presenting this approach, introduced in [27] and designated as 7-DPP, we
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briefly describe, on one hand, the useful properties of membrane systems as
a tool for the modelling of biological systems, and, on the other hand, the
ingredients that have to be added/discarded in order to achieve an accurate
description of the modelled systems.

Despite the initial primary goals of membrane computing was computabil-
ity and natural computing in particular, these devices started to be useful for
the modelling of biological systems. Just to mention a few, there are applica-
tions related to intracellular signalling [92, 48] and metapopulations® [16].
These applications are possible due to a series of properties that promote
the use of membrane computing as a tool for the modelling of biological
systems [90]:

e compartmentalisation: compartmentalisation plays an important role
in many biological processes, such as the cell cycle regulation [38], and
membrane systems, by definition, capture this property;

e modularity: a crucial property for the functioning of living systems [58]
and an intrinsic feature of membrane systems, as each membrane or
sets of membranes can be seen as modules;

e scalability/extensibility: membranes and rules can be added to or
discarded from an existing system without the need for changing the
way of working with the system;

o understandability: rules can be used to represent many dynamical
processes (such as reaction and diffusion) using the simple notation of
chemical reactions;

e programmability: it is easy to implement membrane systems into
programs and certain languages, such as CLIPS, are perfectly fitted to
such a job.

e discreteness: a useful feature for modelling many systems (such as
reaction-diffusion systems, cell or individual populations), that en-
ables the identification of patterns that can not be accounted using a
continuous approximation [100].

On the other hand, some aspects of membrane systems are not adequate to
achieve a proper description of the biological reality. The maximal parallelism
of rule application, which consists in the execution of all the applicable rules
at each step (according to the availability of objects inside the system) must
be adjusted, as the biochemical reactions are not synchronised by a global
clock, but occur in time on the basis of the system state and properties
related to the biochemical processes themselves (e.g. the intrinsic catalytic

3Metapopulations, or multi-patch systems, are models describing the interactions and
the behaviour of populations living in fragmented habitats.
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activity of an enzyme). At the same way, the nondeterministic selection of
concurrent rules must be handled differently, as at the molecular level, events
are not so uniformly accidental. Lastly, the merely topological arrangement
of membranes, since also physical dimensions and spatial coordinates respect
to a reference system matter.

2.3.1 Dynamical probabilistic P systems

Dynamical Probabilistic P Systems (DPPs) [85] were introduced for the
description and analysis of biological or chemical systems. In DPPs, the
maximal parallelism has been mitigated by defining a rule application strat-
egy that makes use of probability values associated with the rules. These
probability values depend on the multisets of objects and change during
the evolution of the system. Hence, DPPs provide a stochastic and discrete
description of the system’s dynamics, that is, DPPs allow to reproduce the
stochastic variations of the elements (e.g. chemical species, individuals)
occurring in the system. We recall the formal definition of DPP given in [85].

Definition 2.3.1. A Dynamical Probabilistic P system (DPP) of degree n
18 a construct

II = (V, O,,u, M(), e ,Mn_l, Ro, ey Rn—lyE; I) (220)
where:

o V is the alphabet of the system, O CV is the set of analysed symbols;

e 1 is the membrane structure consisting of n membranes labelled with
the numbers 0,...,n — 1. The skin membrane is labelled with 0;

o M;, i =0,...,n— 1 is the multiset over V initially present inside
membrane i;

e R;,i=0,...,n—1 is a finite set of rules associated with membrane i,

an evolution rule is of the form u LN v, where u is a multiset over V.,
v is a string over V x ({here, out} U {inj|]1 < j <n—1}), and k € RT
s a constant associated with the rule;

o = (Vg, Mg, Rg) is called the environment, and consists of an alpha-
bet Vg CV, a feeding multiset Mg over Vg, and a finite set of feeding
rules R of the type r : u — (v, ing) for u,v mutlisets over Vg;

I CH{0,...,n—1}U{oc} is the set of labels of the analysed regions
where the label co corresponds to the environment.

As the DPPs were introduced for the analysis of complex systems, we
recall also the definitions of the set of parameters of a DPP and of the concept
of family of DPPs. It is in fact important to investigate the relation between
the parameters and dynamics of a model representing a complex system.
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Definition 2.3.2. The set of parameters P of a dynamical probabilistic P
system I consists of

1. the multiplicities of all symbols appearing in the multisets My, ..., My
iniatially present in w, and of those appearing in the feeding multiset
Mg

2. the constants associated to all rules in Rg, ..., Rp—1

Hence, while multiplicities and rule constants are parameters, all the
other components appearing in Definition 2.3.1 constitute the main structure
of a DPP.

Definition 2.3.3. Let Il be a DPP and Par be a family of sets of parameters
for II. The family of DPPs defined by I1 and Par is F(II, Par) consisting of
all DPP’s with the main structure of II and the set of parameters P € Par;
such a DPP is denoted by (II,NP).

Thus, a family of DPPs can be used to analyse the dynamics of a complex
system modelled using II under different parametrisations, P;, P2 and so on,
where it holds P; # Ps for a choice of at least one value in P; and Ps.

The evolution of a DPP is obtained by means of the simultaneous ap-
plication of all the applicable rules Hence, the parallelism is maximal and
a universal clock is assumed to exist. Objects are assigned to the rules
according to probability values, that are calculated considering rule constants
and objects availability.

The probability p; ; associated with each rule r; : u LAY (belonging to
the set R;) is calculated starting from the pseudo probability p; ;(r;):

~ 0 if M;(ap) < ay, for some h € H
pi,j(rj> = {k ) 1—[ M;(ap) if M'(a ) > £ he H
heH apl(M;(ap)—an)! ilap) Z ap tor some n €
(2.21)
where M;(ap) is the number of objects of type aj in the multiset M,
H = {1,...,s} contains the positions of the symbols a in the string
u = aj',...,a*. Equation 2.21 tells us that the pseudo-probability of

a rule is null if the number of any of the objects it acts on is not sufficient.
Otherwise the pseudo-probability is the product of all the possible combi-
nations of the objects the rule acts on, multiplied by the rule constant k.
Note the equivalence between Equation 2.21 and the propensity function
calculation in the context of the SSA algorithm, Equation 2.2 (that was
defined considering only strings u containing at most three objects). In other
words, a pseudo-probability corresponds to the possible collisions among
reactants in a well-stirred compartment. The pseudo-probability is then
normalised considering all the oter rules of same membrane, thus obtaining
the rule probability p(r;).

A simulator to describe the dynamics of DPP was introduced and used
to study the Lotka-Volterra system and metapopulations systems in [85].
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2.3.2 The 7-DPP approach

To bridge the gap between membrane systems and real world properties,
some additional details must be added. An approach that achieves this
aim is the 7-DPP, introduced to provide a quantitative description of a
system dynamics [27], by extending the single-compartment algorithm of
tau-leaping [22].

The 7-DPP methodology is based on a class of stochastic membrane
systems, DPPs (Section 2.3.1). The system’s evolution described by a DPP
is only qualitative, in the sense that an effective (physical) time streamline
cannot be directly associated to the evolution steps of the system. As the
7-DPP approach describes the system’s evolution by means of a modified
version of the tau-leaping procedure, it overcomes this limitation.

The 7-DPP is a computational method which can be used to describe
and perform stochastic simulations of complex biological or chemical systems.
The “complexity” of the systems that can be managed by means of 7-DPP,
resides both in the number of the (chemical) reactions and of the species
involved, and in the topological structure of the system, that can be composed
by many membranes (also referred to as compartments). For instance,
cellular pathways involving several spatial compartments (as the extracellular
ambient, the cytoplasm, the nucleus, etc.), or multicellular systems like
bacterial colonies, or multi-patched ecological systems as metapopulations,
are all examples of complex systems that could be investigated with 7-DPP.

The correct behaviour of the whole system is achieved by letting all
compartments evolve in parallel, and by using the following strategy for the
choice of time increments. At each iteration of -DPP, we consider the current
state of each compartment (determined by the current number of molecules),
and we calculate a time increment independently in each compartment
(according to the standard tau-leaping algorithm [22]). Then, the smallest
time increment is selected and used to evaluate the next-step evolution of the
entire system. Since all compartments locally evolve according to the same
time increment, 7-DPP is able to correctly work out the global dynamics of
the system. Moreover, by adopting this procedure, the simulated evolutions
of all compartments get naturally synchronized at the end of each iterative
step. The synchronization is also necessary — and exploited together with
a parallel update of all compartments — to manage the communication of
molecules among compartments (i.e., diffusive events), whenever prescribed
by specific (communication) rules.

The system is defined by means of a set of n compartments organised
according to the hierarchy specified by the membrane structure. The state of
the whole system is characterised by all multisets W; occurring inside each
compartment p; (1 <i<mn).

Inside the compartments, the sets of rules Ry, ..., R, are defined along
with the sets of stochastic constants C,...,C,.
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Each compartment p; can contain two different kinds of rules, termed in-
ternal and communication rules. An internal rule describes the modification,
or evolution, of the objects inside the single compartment where it is applied,
while a communication rule sends the objects from the compartment where
it is applied to an adjacent compartment (possibly modifying the form of
these objects during the communication step).

More precisely, internal rules have the general form a;s; + agse + -+ +

AmSm — B151+ Pasa+ -+ + BmSm, where s1,..., s, belong to the set of dis-
tinct object types ¥, and oy, ..., Qm, 51, - .., Bm € N. For instance, s1,..., S,
can correspond to molecular species, and, in this case, a1, ..., am, 81, ..., Bm

represent stoichiometric coefficients. The objects appearing in the left-hand
side of the rule are called reagents, while the objects on the right-hand side
are called products. Note that, usually, we will consider the case where (at
most) three objects appear in the reagents group. The rational behind this
is that we require biochemical reactions to be (at most) of the third-order,
since the simultaneous collision and chemical interaction of more than three
molecules at a time, has a probability to occur close to zero in real biochem-
ical systems. Moreover, the interaction among more than three molecules
can be modelled by using a set of successive reactions with lower order. In
what follows, we will refer to rules or reactions without distinction.

When dealing with communication rules inside a compartment, besides
defining the sets of reagents and products, it is necessary to specify the
target compartment where the products of this rule will be sent*. Formally,
a communication rule has the form® a1s1 + agss + -+ + QmSm — (B1s1 +
B282 + +++ 4+ BmsSm,tar), where si,...,8, € X are distinct object types,
A1y e ey O, B, -+ -5 Bm € N, and tar represents the compartment where the
products of the reaction diffuse.

A complete an extensive description of the 7-DPP algorithm and some
applications is available in [27, 25].

In order to correctly describe the behaviour of a system, 7-DPP runs in
parallel inside each membrane (or compartment). A modified version of the
tau-leaping procedure presented in [22] is exploited to compute the length of
the step 7. In this novel version of the simulation algorithm, the least value
for the time increment, among those computed inside each compartment,
is used to sample the number of reactions to execute (as in the original
tau-leaping algorithm). Thanks to this “common” time increment, shared by
all compartments, the simulation is synchronized at each step, allowing the
correct passage of the molecules involved in communication rules (diffusion
between two compartments).

Each step is executed independently and in parallel within each membrane

4This definition can be easily extended in order to assign a different target compartment
to each object appearing in the set of products.

5The condition that at most three objects appear as reagents is usually required also
for communication rules.
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or compartment i, (i = 0,...,n) of the system. In the following descrip-
tion, the algorithm execution naturally proceeds according to the order of
instructions, when not otherwise specified by means of goto commands.

1.

10.

load the description of the compartment ¢, which consists of the initial
amount of all object types and the set of rules and their respective
constants;

for each rule r; (k = 1,...,l): compute the propensity function
ag :=c- h;
evaluate the sum of all the propensity functions in the compartment

ap = 22:1 ak;

. If ag > 0: goto &;

set 7; := o0;

wait for the communication of the smallest time increment 7; :=
min{7;,...,7,} among those generated independently inside all com-
partments, during the current iteration;

goto 20;

generate the step size 7; according to the internal state, and select
the way to proceed in the current iteration (i.e. SSA-like evolution,
tau-leaping evolution with non-critical reactions only, or tau-leaping
evolution with non-critical reactions and one critical reaction), using
the selection procedure defined in [22];

wait for the communication of the smallest time increment 7; :=
min{7;,...,7,} among those generated independently inside all com-
partments, during the current iteration;

switch the evolution strategy type:

e case “SSA-like”:
— 1f (7, > 7;): goto 11;
— else: goto 106;

e case “tau-leaping with one critical reaction plus non-critical
reactions”:

— if (7, > 7;): goto 19;
— else: goto 18;
e case “tau-leaping with non-critical reactions only”:

— goto 19;
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11.

12.

13.
14.
15.

16.

17.
18.

19.

20.

21.
22.

23.

24.

25.

compute 7; := T; — Ty;

wait for possible communication of objects from other compartments,
by means of communication rules;

If some object is received: goto 2;
set 7; := 7; for the next iteration;
goto §;

use the SSA strategy [53] to extract the rule that will be applied in the
current iteration;

goto 20;
extract the critical rule that will be applied in the current iteration;

extract the set of non-critical rules that will be applied in the current
iteration;

if the execution of the selected rules (considering all the compartments)
leads to an unfeasible state, namely, there are negative amounts of
molecules:

e reduce T, by half;
e send the new value to the other membranes;
e goto 9;
wait for the possible communication of a 7,4, reduced by half;

if a new value of 7, reduced by half is received: goto 9;

update the internal state by applying the extracted rules (both internal
and communication) to modify the current number of objects;

if some objects is received from the other compartments: update the
internal state modifying the amount of objects;

if the termination criteria is satisfied: finish; else: goto 2.

The algorithm begins with the initialisation of membrane descriptions,
which consist in the initial amount of molecules, the rules and the constants.
Then, the propensity functions of the rules are calculated using the expression
introduced by D.T Gillespie in [53].

If the sum of the propensity functions of the processed compartment is
null, no rule can be executed inside this membrane and therefore 7; is set to
a very high value. In this case the compartment waits for the communication
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of the global time increment 7; sent by another membrane, where possibly
some rules is executed. If this is the case, the compartment also waits for
the possible communication of object from other compartments and then
proceed to the next iteration; otherwise, the computation is finished because
no rule can be applied in any compartment.

If the sum of the propensity functions of the processed compartment is
greater than zero, the local time increment, 7;, is computed and the evolution
strategy is selected using the procedure described in [22].

Once every compartment has computed its 7;, the smallest one is selected
and used to define the evolution of the whole system during the current
iteration. Hence, each membrane will not evolve according to its own
7;, but relying on a global time increment, 7;; this ensures the systems
synchronisation and its evolution along a common time line.

After that every compartment has received the 7;, the subsequent steps
are selected according to it and to the local evolution strategy generated
previously.

If the local strategy is SSA and the 7; is equal to the local 7;, the 7; was
generated by this membrane and the algorithm proceeds with the extraction
of the rule that will be applied. Conversely, if the 7; is greater than 7;, the
selected time step 7; is not “long enough” for the application of the rule
within this membrane, and hence the rule will not be applied. In this case,
if some objects is received from the other membranes the internal state is
changed and a new 7; will be computed during the next iteration. Otherwise,
the next time increment for the membrane is set as 7; := 7—7;, because in the
case this new value will be the smallest inside the system the compartment
will be enabled to apply one rule.

If the local strategy is executing a tau-leaping step with the application
of a set of non-critical reactions and one critical reaction, and the local
time step is equal to the smallest one, it is possible to execute the critical
reaction and the set of non critical reactions extracted from the poissonian
distributions (see [22] for details); conversely if the local time increment is
greater than the selected time increment, the compartment will execute only
non critical reactions.

If the local strategy is executing a tau-leaping step with the application
of a set of non-critical reactions the 7; value is used to sample the number of
rules that will be applied using the strategy described in [22].

Subsequently, the algorithm checks whether the execution of the selected
rules leads to a unfeasible state. If this is the case, the time step is reduced
by half and go back to selection of the new smallest ;. This operation can
lead to the selection of a different set of rules and is repeated until a valid
set of rules is selected.

As the rules selection according to the current 7; is worked out in each
compartment, the internal state is updated. During this step the amount of
objects are updated as specified by the selected rules.
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The computational cost of the 7-DPP algorithm is 2mn, where m is
the number of the rules and n the number of compartments. In fact, the
computational cost of the tau-leaping algorithm, 2m, must be multiplied
by the number of compartments defined in the simulated system. The
algorithm is implemented in a parallel (MPI) version in the C language. The
parametrisation schema establish a one-to-one relation between processes
and membranes.
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Grid computing for parameter sweep applications

Systems biology models are becoming more and more complex. For instance,
the first models describing the cell cycle dynamics (such as the one by
Goldbeter [56]) included only a few proteins and biochemical processes,
while more recent cell cycle models (e.g. the eukaryotic cell cycle model
presented in [32]) describe the dynamics of tens of proteins by means of tens of
biochemical processes (a web collection of cell cycle models is presented in [3]).
Due to their complexity, these models cannot be solved analytically, and
therefore numerical simulations are required to study the models’ properties.

In general, these simulations concern the evaluation of the model response
as a consequence of variations related to the system structure, the rates
associated with each molecular process or the parameters of the models. As
the number of these quantities gets higher and higher, and as the models
considered are more and more detailed and comprehensive, a large number
of simulations is required to explore the spaces formed by their values. This
scenario raises issues related to the required computational resources, since
in the case of stochastic modelling, the algorithms are more time-consuming
than in the deterministic case. Furthermore, due to stochasticity, more than
one stochastic simulation is required to characterise the systems dynamics,
resulting in a very expensive computation.

A possible solution to cope with a computationally intensive problem
is to exploit a distributed approach such as the grid computing, a kind of
high-throughput computing, where a combination of computer resources are
used to reach a common goal. The difference between the Grid computing
and the classic high performance computing, such as a cluster of processors, is
that the computational resources shared in a grid tend to be loosely coupled,
heterogeneous and geographically dispersed. The term was firstly introduced
in the mid ’90 to denote a distributed computing infrastructure for advanced
science and engineering [44]. Grid belongs to the high throughput computing
paradigm and it is characterised by independent and sequential jobs that can
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be individually scheduled on many different computing resources. Therefore,
grid computing is a useful solution to compute the large number of indepen-
dent simulations that are required, for instance, during the development and
analysis of biochemical models.

The repeated execution of an application using different parameter values
is referred to as parameter sweep application (PSA). As each run of a PSA
is independent, PSAs fit very well the grid computing approach. In this
chapter we illustrate the main European grid infrastructure and how to deal
with PSA exploiting this platform.

3.1 Grid computing and the EGEE project grid

An important grid is the one implemented in the context of the project
designated as Enabling Grid for E-sciEnce (EGEE). The EGEE project grid
is wide area grid platform for scientific applications composed of thousands of
CPUs, which implements the Virtual Organisation (VO) paradigm [45]. The
production framework is a large multi-science grid infrastructure, federating
250 resource centres worldwide, which provides comprehensively 20.000
CPUs and several Petabytes of storage. This infrastructure is used daily by
thousands of scientists federated in over 200 VOs.

The EGEE platform uses gLite middleware [68], which was developed
through the collaboration of a number of projects, like DataGrid, DataTag,
Globus, GriPhyN, and LCG. The gLite distribution is an integrated set of
components designed to allow resource sharing and must be installed on a
local server, the User Interface (UI) to allow users to manage computations
on the EGEE grid. In particular, employing glite, it is possible to submit
grid jobs, monitor their state of advancement, and retrieve the output when
the computations are successful or to resubmit them in case of failure. This
grid infrastructure is highly scalable and allows computationally intensive
challenges to be accomplished, but users must cope with the continuous
dynamic reshape of the available resources, which is typical of loosely coupled
distributed platforms.

To enable a secure connection to the remote resources, the grid middleware
offers a well-established security system. The system relies on the Grid
Security Infrastructure, which uses public key cryptography to recognise
users. The access to remote clusters is granted by a Personal Certificate
encoded in the X.509 format, which accompanies each job to authenticate
the user. Moreover, users must be authorised to job submission by a VO, a
grid community having similar tasks that vouches for them. For example,
in Chapter 6 we will discuss a work we did exploiting the Biomed VO, that
shares on average 2000 CPUs and welcomes applications in the bioinformatics
field, in medical image processing, and more generally in biomedical data
processing.
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The resources available on the EGEE project platform are composed of
a network of several Computing Elements (CEs), which are gateways for
computer clusters where jobs are actually performed and an equal number
of Storage Elements (SEs) that implement a distributed filesystem to store
temporary files. The computational resources are connected to a Resource
Broker (RB) that routes each job on a specific CE, taking into account the
directives of the submission script, called JDL (Job Description Language).
In detail, the Workload Management System (WMS) is the RB service
which schedules jobs by delivering them to the resource that best fits the
requirements, balancing the computational load, via a Condor G client [20].
Although this brokering policy is not configurable by the user, it provides
high performance: bulk submission enables to send of sets of independent
jobs up to a rate of 50Hz for job submission and 0.5Hz for job dispatching
to the CEs. Finally, each CE routes the incoming jobs to a batch queue
system (PBS or LFS), which hides the farm of Working Nodes (WNs) where
computations are effectively performed.

To handle files over the grid, the gLite middleware provides a set of
tools to manage data similarly to a distributed filesystem. These tools allow
the data to be replicated into different SEs, which can help to reduce the
database upload and download time during computations. The RB can
redirect the execution of an application to a CE located as near as possible
to files being used, hence minimising communication time. Moreover, each
CE knows which is the nearest SE to store output data generated during a
computation. Although large files should always be managed by using the
SEs, both in input and output it is possible to use the SandBox to load and
download small files directly to the CE. The main difference is that files
transferred using the InputSandBox and the OutputSandBox are temporary
stored on the RBs, therefore are managed directly by the middleware (but
their size should be less than a few MB, otherwise the RBs will be rapidly
stuck) and cannot be reused, while files on the SEs have no limitation in size
and availability, but must be handled directly by users.

3.2 Parameter sweep applications and grid
computing

A Parameter sweep application (PSA) consists in the repeated execution
of an application (usually performed a large number of times), where each
computation is run using a different parametrisation. Applications formulated
by means of PSA contain a large number of independent jobs operating
on different data sets in order to explore a wide range of scenarios and
parameters. This application is executed by processing N independent
instances (the same application, but different input data sets) on M parallel
or distributed computational resources (where N is, typically, much larger
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than M). Fortunately, this high-throughput parametric computing model is
simple, yet powerful enough to formulate distributed applications ranging in
many different areas.

Taking into consideration 7-DPPs, the application executed during the
PSA consists in the computation of system’s evolution, and the parametri-
sation can be obtained by varying the object types, the rules, the initial
distribution of objects inside the membranes, the constants associated with
the rules and, finally, it is also possible to vary the values of the parameters
of the simulator used to compute the system’s evolution.

The definition of the set of parametrisations of a PSA depends on the
specific applications and on the data type of the parameters involved. Usually,
the parametrisations are defined by considering the Cartesian product of the
parameters and by sampling values from the space defined by their ranges
of variation. When the number of parameters is high, their values can be
sampled by using quasi-random series [82] (or low discrepancy sequences):
thus, the values of the parameters are sampled by minimising their discrep-
ancy. The discrepancy of a sequence is a measure of its uniformity and
is computed by comparing the actual number of sample points in a given
multidimensional space with the number of sample points that “should be”
there, assuming a uniform distribution. Therefore, the aim of quasi-random
series is to “uniformly” cover the space with “few” samples (i.e., with a lower
number of points compared to classic uniform distributions).

The output of each PSA is composed of the set of results generated
by all executions of the considered application, each one with a different
parametrisation.

In principle, implementing a PSA is not difficult. For instance, the
Cartesian product of a range of parameters can be used to create a set
of different parametrisations. Then, a number of applications equal to the
number of parametrisations created can be distributed over the grid. However
in practice, running a high number of jobs on the grid poses some issues.
From the computational point of view, the biggest problem of the grid
is the dynamic behaviour of the available resources. Due to network and
system errors or to the global computational load, the resources available are
continuously reshaped, and the rate of failure in computations is quite high.
Some solutions, such as Nimrod [19] and APST [24], have been developed
to perform PSAs using grid technologies, but they rely on very specific
middleware implementations, which are not gLite compliant. Moreover,
a grid-inspired solution to distribute stochastic simulations is described
in [70], but the approach does not rely on an effective grid implementation.
Considering that the EGEE project infrastructure is a standard production
environment, it is not possible to customize the middleware implementation.
Therefore, a crucial point is the employment of a system that can interact
with the grid to manage the whole PSA computation, which should check
the consistency of each job in a fault tolerant environment. A system of this



3.3 Managing jobs on grid: the challenge control system 33

type is will be presented in the next Section.

3.3 Managing jobs on grid: the challenge control
system

In the context of the EGEE grid, the Challenge Control System (CCS) [79]
was developed to completely coordinate a grid computation from a single UI,
by submitting and managing the whole set of jobs in which the computation
is split dealing with CEs and SEs. In other words, this framework provides
automatic management of all the necessary operations to fulfil each single
task, since it wraps the grid middleware low level API for file handing (1cg-*)
and for job submission, status monitoring and output retrieving (glite-x*)
by providing a user-friendly and fault-tolerant environment.

The CCS is highly customisable, thanks to its double layered infras-
tructure: the first layer was developed to cope with the latest middleware
versions of the EGEE infrastructure for managing each single job, while the
second level deals with the different requirements of the application in hand
by splitting the computation and performing the defined tasks on the remote
resources. These layers are interconnected by a MySQL database, designed
to collect all the information needed to manage each grid job, which works
as the back-end of the system.

The first layer of the CCS works in close connection with the Ul and is
mainly devoted to the management of each single job, from the definition of
the JDL script and its submission, to the retrieval of the output results. This
layer employs the network time protocol, using the same servers of the EGEE
infrastructure in order to synchronise the time on all the grid components,
which is crucial for enabling a correct survey of the computation. The system
also makes use of the crond daemon for beating the interval between each
round of CCS execution in which, according to the information stored in the
MySQL database, tasks such as the submission of new jobs, polling the RB
about the status of scheduled jobs, the resubmission of failed jobs and the
retrieval of output results are accomplished.

The second layer is the most important one from the application point
of view, since it coordinates the job distribution over the grid using a set
of scripts. These scripts split the whole computation into specific tasks,
coordinate the jobs execution on the remote resources and collect the output
results. Moreover, this second layer checks the output consistence of each
simulation computed on the grid platform, in connection with the upper
layer which monitors each job as an independent unit. This framework has
been installed directly on a grid UI of ITB-CNR from where users who have a
valid Personal Certificate are authorised to submit jobs through the Biomed
VO.
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Spatially extended membrane systems

The current versions of membrane systems (including DPPs), consider objects
and membranes in an abstract environment where the space occupied by
membranes and objects is not defined. In this context, an infinite number
of objects can accumulate inside the regions of the systems. Similarly, the
volume occupied by reactants and compartments is not taken into account by
the current stochastic simulation algorithms (including tau leaping) inspired
to the SSA (see Section 2.2 and [98]). Therefore, 7-DPPs (the combination
of DPPs with a modified version of the tau leaping procedure) suffer this
limitation too.

The explicit consideration of object (reactants) and membrane (com-
partments) space occupation is a crucial feature in order to use membrane
systems for the modelling of real systems in which the crowding can have an
important impact over the system’s dynamics. For example, this is the case
of the intracellular environment of living cells [47, 80, 106].

In this chapter, we describe an extension of 7-DPPs, designated as St-
DPPs, in order to introduce the concept of space occupation due to objects
and membranes (also referred to as regions). Moreover, we defined S7-
DPPs in order to enable the communication of objects among non adjacent
membranes, as this feature leads to a more powerful modelling formalism.

First, we study the consequences of objects and membranes space occu-
pation at the theoretical level. Subsequently, we present the algorithm for
the description of the time evolution of ST-DPPs. Then, we describe a series
models in order to show that a ST-DPP permits the in silico investigation
of a more extended bunch of systems, respect to its “parent” 7-DPP. In
particular, we discuss the use of ST-DPPs to model the presence of molecular
crowding and structured compartments inside the intracellular environment.
Lastly, we conclude the chapter discussing the results.
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4.1 Space occupation in membrane systems

In this section we begin with the formal definition of a novel variant of
membrane systems where objects and membranes occupy a finite amount of
space. In these Spatially extended P systems, the application of the evolution
rules is restrained from the availability of free space inside the membranes,
and the evolution of these systems is thus influenced by membranes and
objects sizes, representing the volume these elements occupy in a space with
an arbitrary number of dimensions.

Definition 4.1.1. A spatially extended P system (shortly, SP system) of
degree n s a tuple:
= (ZuW,R,V,,Vs)

Y ={s1,...,8m} is the set composed by a number m of symbols, also
called objects;

o 1 is a membrane structure consisting of n membranes labelled with the
numbers 1,...,n;

o W =A{wy,...,w,}, where w; is the multiset of objects occurring inside
the it" membrane;

e R={Ry,...,R,}, where R; is the finite set rules occurring inside ith
membrane; a rule is of the form r : a — b, where a is a multiset over
Y and b is a string over ¥ x {in; : 1 <i <n}

V= {v1,...,0,}, where v; € RY is the volume of the i™ membrane;

Vs = {vsy, -+, Vs,, }, where vy, € R, is the volume of object Vs, -

The definition of the values V,, and Vs leads to the introduction of a
further attribute, named free space and represented as F; for the membrane
1, that influences the evolution of II. The quantity F; indicates the amount
of free space left within the membrane labelled ¢ and is defined as:

Fi=v; — (Z(wi(sj) “vs;) Zal . vl> (4.1)

j=1 =1

where o; € {0, 1} takes the value 1 if the membrane labelled [ is a son of
membrane 7 in the membrane hierarchy, otherwise is 0, and w;(s;) denotes
the number of occurrences of the symbol s; in the multiset w;. Hence, the
free space of membrane i is simply defined as the difference between its
volume and both (i) the sum of the volumes of the objects it contains and
(ii) the sum of the volumes of all the membranes that are both nested in and
connected to membrane ¢ as specified by the membrane structure p.
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Since membrane dissolution is not considered, the membrane structure is
kept fixed during the system’s evolution. Hence a configuration C of an SP
system II is described only by the multisets w, ..., w, of objects contained
in its membranes and a computation step changes the configuration according
to the following principles:

e the set of rules selected in order to be applied at each computation
step must fulfil F; > 0 for 1 < ¢ < n calculated in the configuration
potentially reached after their application;

e the rules are applied in a maximally parallel way: each object which
appears on the left-hand side of applicable rules must be subject to
exactly one of them; the only objects which remain unchanged are
those associated with no rule, or with inapplicable rules;

¢ when more than one rule can be applied to an object, the actual rule
to be applied is chosen nondeterministically; hence, a computation tree
can be obtained starting from the initial configuration.

A (halting) computation C of an SP system II is a sequence of config-
urations (Cp,C1,...,Ck), where Cj is the initial configuration of II, every
Ci4+1 can be reached from Cj according to the principles just described,
and no further configuration can be reached from Cj (i.e., no rule can be
applied). The output of II is constituted by the objects expelled from the
skin membrane.

4.2 SP systems and Turing machines

The evolution of SP systems is regulated by the availability of free space.
In this section, we investigate whether the introduction of objects and
membranes volumes affects the computational universality of P systems. In
particular, we answer to the questions: do SP systems simulate a Turing
Machine? If this is the case, how much amount of volume do SP systems
require in order to exploit such task?

To answer to the previous questions, we show that a single tape DTM M
having ¥ = {0, 1} as input alphabet and operating in time f(n) and space g(n)
can be efficiently simulated (with a polynomial slow down) by a semi-uniform
family of SP systems F(IIps, w) = {IIprq : w = $152... 5, € {0,1}*}. Thus,
Iz must use O(ps(f(n))) time and O(py(g(n)) space, where p; and p, are
two polynomial functions. Furthermore, we show that the volume occupied
by the members of F is a polynomial p, of the space required by the DTM
and thus, I, must use O(py(g(n))) volume.
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4.2.1 Simulation of a DTM with SP systems

To simulate a DTM with an SP system, the functioning of the DTM must be
captured by the SP system without loss of computational power; moreover,
for each possible input, the SP system must calculate the same output
computed by the DTM on the same input.

We represent the tape by means of the membrane structure, i.e. we
establish a one-to-one correspondence between the membranes and the cells
of the DTM. To reproduce the linear order of the cells over the DTM'’s tape,
the membranes can be organized in a nested way, where the leftmost cell
can be represented by the outer membrane (or equivalently by the inner
membrane). Each cell of the DTM contains a symbol belonging to the
tape alphabet I' = {0, 1,U}, where U is the blank symbol. Similarly, each
membrane will contain an object taken from the same alphabet plus two
special objects “yes” and “no” which constitute the two possible answers to
a decision problem. Hence, the membrane structure pys,, of an SP system
I is made of g(n) membranes, as this is the number of cells required by
the DTM M to solve a problem of input w with length |w| = n.

We represent the current state of the DTM with a single object. We use
the SP system rules to re-write this object in order to capture the variation
of the DTM’s state; the location of this “state” object inside the membrane
structure reflects the position of the DTM’s tape head.

The initial configuration of Iy, will be:

g9(n) 9(n)
—_—— —_—

where gp € @ is the initial state and ¢ = {1,...,¢(n)} labels the membranes.

Finally, we use the rules of IIjs,, to reproduce the DTM’s transition
function. We need to define a type of rule for each possible value {<, —, —}
of d, thus according to the tape head movement. For each transition of the
DTM, represented by the generic quintuple ¢ = (a, q1, b, g2, d) and denoted
by 0(a,q1) — (b, g2, d), we have:

1. if d = {<-} then the rule must be
[agi] — q2[0] (4.3)

the rule rewrites a in b and ¢; in ¢o; g2 is communicated in the membrane
surrounding the current one, thus capturing the left movement of the
tape head;

2. if d = {—} then the rule must be

lag1] — [bga] (4.4)
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the rule rewrites a in b and ¢ in ¢o; as the tape head does not move
the “state” object is maintained in the current membrane;

3. if d = {—} then the rule

aq[] — blge] (4.5)

rewrites a in b and ¢ in ¢o2; ¢ is communicated in the membrane
nested in the current one, in order to simulate the movement of the
tape head on the right of the current cell.

Lastly, the result of the computation is sent out from the membrane
structure. If M enters an accepting state g4, the head/state symbol is
replaced by yes and expelled:

[galn — [ ]n yes (4.6)
[yves]n — [ |n yes (4.7)
[yes]ng — [ Ino yes. (4.8)

Similarly, the following three rules occur when M enters a rejecting state
qr:

[qR]h — [ ]h no (49)
[nol, — [Jn no (4.10)
[n0]p, — [ | nO. (4.11)

4.2.2 Computational universality of SP systems

To enunciate the theorem concerning the computational universality of a
family of SP systems with efficient volume occupation, we firstly define the
DTM variant we consider.

Definition 4.2.1. A single tape DTM operating in time f(n) and space g(n)
is a tuple
M =(Q,%,I,6,q0,A, R) (4.12)

where:

e () is a finite set of states;

o > ={0,1} is the input alphabet;

e ' is the tape alphabet, a finite superset of %;

o 0:I'xQ—T xQ x{«,—,—} is the transition function; it assumed
that § is undefined on both accepting and rejecting states;
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o {yes} C Q is the accepting state;
e {no} C Q is the rejecting state;

To simulate a given DTM M with an SP system we consider the so called
semi-uniform setting, in which we assume the existence of a DTM M’ that,
for every pair (M, w) with w € {0,1}", simulates M acting over w. More
precisely:

Definition 4.2.2. A family of SP systems F(II,w) = {Il, : w € ¥*} is
semi-uniform when the mapping w — I, can be computed in polynomial
time by a DTM.

As according to Def. 4.2.2 the mapping has to be computed in polynomial
time by a DTM, we have to prove that this operation is possible, but before
we have to define formally an SP system that simulates a DTM on the
input w.

Definition 4.2.3. I, simulates M on the input w and is defined as:

HM,w = (Zv H, VVa Ra V,ua VZ)

Y= {07 17 L, yes, no,qi, . .. >Q|Q\—2};

® U= {:U’Uv s 7!“9(")}"

W= {wl = {QOsl},U& = {82}7 coeyWn = {Sn}vwn+1 = {w}v <oy Wy(n) =
{0}} where qo € Q represents the initial state of M ;

R={R1,..., Ry} where each R; contains

1. a copy of the rules defined in Equations 4.3-4.5 for each possible
transition t : T'x Q x I' x Q x {«—, —, —};

2. a copy of the rules defined in Equations 4.6-4.11 for each accept-
ing/rejecting state;

o V,={vi,...,0n};

Vs = {Uo,Ul,Uu,Uyes,Uno,UqU---7Uq‘Q|,2} where v; € RY, j € ¥ and
0 = maz{v;}.

Theorem 4.2.1. Let us consider a family of SP systems F(II,w) = {1z :
w € ¥*} composed by SP systems Iy, that simulate a given DTM M acting
over w. This family is semi-uniform.

Proof. The membrane structure of an SP systems I, € F consists of
g(n) membranes and can be constructed in O(g(n)) time steps, as g is
time-constructible by hypothesis. The initial configuration of ITys,, can be
constructed in linear time from w as exactly n symbols have to be placed



4.3 ST-DPPs: the integration of SP systems, tP systems and

7-DPPs 43
inside the outermost membranes uq, ..., t,. Lastly, the set of rules only
depends on M, and not on w. Since g(n) is bounded by a polynomial, the
construction of IIy,, is semi-uniform. O

While for the usual time and the space complexity definitions we remind
the reader to Appendix A, we introduce here the concept of volume complezity,
a specific feature of SP systems.

Definition 4.2.4. Let II be an SP system. The volume complexity of II is
the function p : N — RT where p(n) is the size (volume) of the outermost
membrane that Il requires on any input of length n.

We are ready to enunciate the theorem concerning the simulation of M
with the family of SP systems F.

Theorem 4.2.2. F = (II, M,w) decides the same language as M and its
members Il ., operate in O(f(n)) time, O(g(n)) space and occupy a volume

O(g(n)).

Proof. Each SP system IIy;,, consists of g(n) membranes and therefore will
contain at most g(n) + 1 objects; hence, IIys,, clearly uses O(g(n)) space.
Each transition of M on input w is simulated by 11y, in a single step; once
that the result object {yes,no} is produced, at most g(n) steps are required
to communicate {yes,no} to the outermost membrane, plus a further step to
exit the outermost membrane. Hence we obtain a total time of f(n) + g(n),
which is bounded by O(f(n)).

The volume of each membrane has to be sufficient to contain the object
representing the DTM cell symbol, the state object and the nested membranes.
Therefore, the volume of the membrane representing the rightmost cell,
labelled g(n), is equal to 20. Consequently, the size of the membrane with
label i = g(n) — 1 is vy, = Upy(ny + 20 = 40. Repeating the operation for
all the membranes we get the volume occupied by membrane 1, which is
by definition the volume complexity of IIj/,, and is equal to v,, = 20g(n).
Thus, the volume required by IIjs,, to decide the same languages as M is
Og(n)). =

4.3 S7-DPPs: the integration of SP systems, tP
systems and 7-DPPs

In the previous Section we proved that SP Systems, like many other classes
of membrane systems, are computationally universal and this result can be
achieved with an efficient volume occupation. In this Section, we present a
new variant of membrane systems, designated as St-DPP, that integrates
the volume occupation introduced in SP systems with other properties taken
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from tP systems [73], and 7-DPP [27]. These features have been considered
in order to define a flexible and powerful tool for the modelling of biological
systems, mainly, but not limited to, at the mesoscopic level, i.e. population
of molecules [26].

The membrane structure of ST-DPP shares with tP systems the membrane
structure, i.e. nodes are arranged in a tissue-like fashion. Moreover, we
enabled nodes with a complex internal hierarchy, organised in a tree—like
structure. Therefore, the topology of the membranes of an ST-DPP is a
mixed graph in which the nodes are the membranes, the undirected edges
indicate that the two membranes are placed on the same level (as in the first
definition of tP systems) and the directed edges denote that the membrane
represented by the tail node is nested in the membrane represented by the
head node. This strategy for the representation of membrane structure allows
to define complex structures in which nodes can be hierarchically organised
in a tree-like structure.

As in SP systems, objects and membranes are associated to real numbers
that define their volume. In the context of mesoscopic biological systems
modelling, these sizes represent the amount of volume occupied by the
molecules (objects) and compartments (membranes), respectively, in the
three-dimensional space. It follows that the evolution of the system is
influenced by the free space available within the compartments: as in SP
systems, also in S7-DPP rule application must fulfil the free space rule
(Equation 4.1).

The evolution of the ST-DPP is described by a modified version of the
simulation approach used in 7-DPP. Hence, the simulation of an ST-DPP
is based on a multi-compartmental tau-leaping algorithm which provides a
quantitative description of system’s dynamics. We updated this procedure in
order to avoid the unlimited accumulation of objects in a region of finite size
due to the mutual impenetrability of molecules.

The communication channels among membranes are represented by a
direct graph. The arrows of the edges indicate the direction of the (permitted)
flow of objects between different compartments. Note that, this communi-
cation graph can contain edges that are not indicated in the graph which
describes the topology of the membranes. The meaning of these particular
edges is to represent communication channels that connect non adjacent
membranes. The explicit representation of the communication channels and
the possibility to have communications between non-adjacent membranes
extend the modelling power of this membrane systems variant. For example,
using these arcs it is possible to create privileged pathways of communication
between membranes.

4.3.1 Definition
Formally, ST-DPPs are defined as follows.
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Definition 4.3.1. An ST-DPP of degree n is a construct:

II = (Ea G/M GC: Ca VVv Ra V/.La VE)

Y ={s1,...,8m} is a finite set of symbols, also called objects;

o G = (u, E,A,) is a mized graph representing the topological arrange-
ment of the membranes = {1,...,n}, (E,A,) are, respectively, the
set of edges and the set of arrows which describe the topology of mem-
branes;

o G.=(u,A.) is a directed graph representing the connections (channels
of communication) among the membranes u = {1,...,n} and A. is the
set of the arrows which describe the available connections;

o W ={ws,...,w,}, where w; is the multisets of objects occurring inside
the it" membrane;

o C={C1,...,Cn}, where C; is the set of stochastic constants ¢; j € RT
associated to the rules occurring inside the i membrane;

e V,={v1,...,v,}, where v; € RY is the volume of the i membrane;
o Vs = {vg,...,vs,}, where vs, € RT, is the volume of object vs, .
e R={Ry,...,R,}, where R; is the set rules occurring inside the i*"

membrane; an internal rule is of the form

Q181 + -+ WmSm — G151 + - .. + BmSm (4.13)
a communication rule is of the form

a181 + ...+ amsm 5 (ﬁ17181 +...+ 5m718m, z'm) + ...+

] (4.14)
(/Bl,nsl +...+ 6m,n3ma Znn)

where the quantities o; and [3; are natural numbers, c is the stochastic

constant and iny, ..., in, indicate the target membrane to which the

object is sent.

The evolution of ST-DPPs is computed by a stochastic algorithm (a mod-
ified version of the 7-DPP algorithm, see below) that describes the temporal
evolution of the system; therefore, we talk about system state at a particular
time point, rather than system configuration at a particular evolution step.
The state of an ST-DPP at a given time point ¢ is represented by the multisets
of objects contained in its membranes: W (t) = {wy(t), ..., wy(t)}.

Note that rules are inspired to the notation used to represent chemical
reactions: at the left side of the rule we have reactants, while at the right
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part of the rule we have products. Each object is preceded by a number
(called stoichiometric coefficient) indicating how many copies of that objects
are involved in the rule. Moreover, there are two types of rules: (i) internal
rules, in which both reactants and products belong to the same compartment;
(ii) communication rules, in which reactants are sent to other compartments
as the left side of the rule specifies.

The sets of stochastic constants C1, ..., C}, associated to the sets of rules
Ry,..., R,, are required to compute the probabilities of the rule applica-
tions (also called propensity functions), along with a combinatorial function
depending on the left-hand side of the rule [53].

Different instances of ST-DPPs can be grouped into families according to
the values assumed by their parameters.

Definition 4.3.2. Let II be an ST-DPP; its set of parameters, named P,
consists of:

1. the multiplicities of all objects appearing in the multisets w1, ..., wy
wnitially presents in the membranes 1,...,n;
2. the stochastic constants C, . .., C, associated to the rules in Ry, ..., Ry;

Now, we can extend Definition 4.3.1 in order to consider a family of
ST-DPPs where the members differ for the parameters.

Definition 4.3.3. Let II be a ST-DPP and P be a family of sets of pa-
rameters for II. The family of St-DPPs defined by IT and P is F(II,P)
and consists of all ST-DPPs with the main structure of II and the set of
parameters P € P; such a ST-DPP is denoted by (II, P).

A family F(II,P) constitutes a general model for the real system of
interest (e.g. chemical, biological and metapopulation systems) and, for any
choice of the parameters, we can investigate the evolution of the corresponding
S7-DPP. Understanding how the evolution of a model is affected by its
parameters is, in fact, of primary importance in many situations, like in
the context of parameter estimation and sensitivity analysis (this topic is
addressed in Chapter 6).

4.3.2 Time evolution of ST-DPPs

The temporal evolution of ST-DPPs is computed by a modified version of the
7-DPPs algorithm. We will not report here all the steps of the algorithm, but
only the four most important modifications that we have introduced in the
procedure described in Section 2.3. We remind the reader that each step is
executed independently and in parallel within each membrane or compartment
i, (i € {1,...,n}) of the system. In the following description, the order of
the instructions, is referred to the algorithm presented in Section 2.3:
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1b. calculate the free space at tg = 0;

m

Fi(to) =v; — (Z(wi(sj,to) . 'Usj) + ial . Ui) (4.15)

j=1 =1

where w;(sj,t0) is the number of occurrences of s; in the multiset w;
at time tg;

2 for each rule rg, (k € {1,...,1}): compute the propensity function

c-h; if ry, is a first order reaction;
ag == (4.16)

¢/F;-h else;

20. if the execution of the selected rules (considering all the volumes) leads
to an unfeasible state, namely (i) there is not enough space either inside
the compartment i (for internal rules) or inside the target volumes
J, j # 1 (for communication rules) or (ii) there are negative amounts
of molecules:

e reduce T, by half;
e send the new value to the other membranes;

e goto 8;
23b. update the value of the free space Fj;

25. If the termination criteria is satisfied, namely (i) the current time
exceeds the end time or (ii) there is not enough free space in any
membrane: finish; else: goto 2.

First of all, we added the calculation of the free space during the ini-
tialisation of the system, step 1b. The second modification concerns the
calculation of rule’s propensity functions (step 1b) and is a consequence of
the possible variability of the compartment volume. In fact to model the
increase of reaction probability due to molecular crowding, the propensity
functions of the internal reactions are computed by also considering the value
of the free space of the current compartment. So doing, we can correctly
simulate crowded systems: we suppose that while first order reactions (e.g.
a — b) are not affected by the value of the free space, in the case of reactions
of higher orders, the volume reduction enhances the probability of collisions.
Therefore, the propensity functions of second and third order reactions are
computed as:

o

a(x) = F

The third change regards the step 20 in which the algorithm checks whether
the application of the selected rules leads to an unfeasible state; we must

(4.17)
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ensure that F; > 0 for all the compartments ¢ € {1,...,n}. The fourth
modification occurs during the system update (step 23): we added the
calculation of the free space inside every compartment. Lastly (step 25), we
consider the case in which is not possible to apply any rule satisfying F; > 0
as a further termination criteria for the algorithm.

The computational cost of the ST-DPP algorithm is still 2mn, where m is
the number of the rules and n the number of compartments. The algorithm
is implemented in a parallel (MPI) version in C programming language. The
parametrisation schema establishes a one-to-one relation between processes
and membranes.

4.4 Modelling spatially heterogeneous systems
with ST-DPPs

Living cells are very far from the homogeneous compartment that is often
used for their modelling. In the case in which the studied biological process
involves a time scale that is greater than the molecules diffusion time scale,
the well-stirred approximation is justified [31]. If this is not the case, it is
important to keep track of the amount of substance in different locations
within the volume.

In this section we show how it is possible to exploit the ST-DPP! to sim-
ulate correctly and accurately the dynamics objects which undergo diffusion
within different regions of the system.

4.4.1 Handling diffusive events with ST-DPP

A natural approach to describe the space domain €2 in which diffusion occurs
with an ST-DPP II of degree n is to map each compartment (membrane) of
II to a subregion of {2. These subregions can be arranged according to all the
topologies captured by the mixed graph G, which defines the connections
among the compartments of IT; moreover, as each membrane can occupy an
arbitrary amount of volume, subregions can have different sizes.

We describe the movement of particles using mono-molecular reactions
and propensity functions in which the stochastic constant is proportional
to the diffusion coefficient and in inverse proportion to the square of the
compartment size (see Section 2.2). Therefore, to describe the movement of
a particle s from a region ¢ to a region j, we use a rule 7;;, (belonging to the
set of the rules R; of region i, where k runs from 1 to the cardinality of R;)
of the form

s — (s, iny) (4.18)

! As the volume occupied by the molecules and by the compartments is not required to
simulate diffusion, this study and its results are also valid for the 7-DPP algorithm.
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and to calculate the propensity a; ;. of this rule we use

Di;

—— - w(s, 4.19
wd- gy " (19

aif = Ci - wi(s,t) =

where we recall that D;_,; is the diffusion coefficient of s at the boundary
between the compartments 7 and j, d; is size of region 7, |JZ — J]| is the length
between the centers of the regions 7 and j, respectively, and w;(s,t) denotes
the copy number of s at time ¢ in region 3.

Boundary conditions specify the behaviour of the system for extreme
values of the independent variables. We focus on boundary conditions for
the space coordinate. To explain how it is possible to model these boundary
conditions, let us consider a mono-dimensional space domain in the interval
Q2 =[0,1], that we divide in a number n of regions 1,...,n, and let us focus
on its left boundary, where the spatial coordinate is x = 0; let the first region
of the domain have index 1 and let a fictitious region on its left have index 0.

Dirichlet boundary conditions (or first type) define the value the solution
(in our case the species number) has to take at the boundary. We model
these boundary conditions as shown in [11]. Let us consider the Dirichlet
condition

[s](z =0,t) =« (4.20)

that sets the value of [s] at the boundary = 0 to « . The flux of particles
between regions 0 and 1 will be simulated by the rules g of region 0 and
r1, of region 1 (where k, [ are labels for the rules inside the respective sets):

Tok: S SN (s, inp) (4.21)

rigc s SN (s, (ing). (4.22)

The two constants (cg x, ¢1,;) must be defined selecting a reasonable value for
dp, the length of the fictions compartment 0. For dy = d; we obtain [11]:

Dpnwo(s,t) Dy
= = 4.23
co,k dods 7 (4.23)

D0
c1y = (d;). (4.24)
1

where oo = wy(s,t)/dp is the desired boundary condition.
Neumann boundary conditions (or second type) define the value of the
flux across the boundary. Let us consider the Neumann condition
s
—(x=0,t) =« 4.25
Elw=0,1 (4:25)
that sets the variation of [s] respect to the spatial coordinate across the
boundary at a value a. In this case we define the constants cq or ¢  of,
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respectively, rules rq , and 7, as

«

>0: = =0 4.26

a Ok = oty M (4.26)
@

<0: cop=0, c1;= 4.27

0 <0 ar=0, au= (1.27)

a=0: cr=c;=0. (4.28)

4.4.2 Accuracy of the diffusion described with ST-DPPs

Berstein [11] showed that it is possible to simulate mesoscopic RD systems
using the Gillespie’s algorithm. We adopt the same strategy (essentially, a
comparison with a diffusion equation) in order to show that ST-DPP can be
used to reproduce diffusion introducing a reasonably small error.

4.4.2.1 A popular diffusion equation: the heat equation

The heat equation is a partial differential equation which describes the heat
distribution in a region during time, and it is a special case of diffusion
equation where the diffusion coefficient D is constant in time and space:

ou(x,t)
ot
where? u(x, t) is the density of the diffusive material in x at time ¢.

To test the accuracy of ST-DPP in reproducing diffusion, we studied the
uni-dimensional diffusion of the molecule s in the region 2 C R:

= DAu(x,t) (4.29)

Ow] 0?
where [w](z,t) indicates the concentration of molecule s in position z at
time ¢. In particular, we considered the region € = [0, 1] and the Neumann

boundary conditions:

Ow] _ Ow] _
S0, = 52 (1) =0, (4.31)

indicating that the flux from outside into €2 is null. Considering D =1, an
exact solution in the region (2 satisfying Equation 4.31 is:

[w](z,t) = w1 + %e*“%%cos('yﬂx)] (4.32)

where w* is the total number of s molecules inside the system and 7 is a
non negative integer. For all the simulations that we will discuss in the next
following we have considered v = 3 and w® = 500.

2

2 _ 82 82 9 . .
A=+ 552 T 5.z 1s the Laplacian operator.
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Figure 4.1: Representation of the unidimensional space domain Q = [0, 1]
and its subdivision in n compartments belonging to the membrane structure p.
We considered locations 1, ..., x, during the comparison with the solution of
Equation 4.32.

4.4.2.2 Comparison between ST-DPP and the Heat Equation

In order to compare the simulations performed by using ST-DPP with the
continuous exact solution of the heat equation (Equation 4.32) we used the
following ST-DPP:

II = (Ea G,u, Gca Ca VVa Ra Vua VE)

X={sh
Gu={1,....n}E,={(k,1): ke {l,...,n—1},l =k +1},{0});

Ge=({1,....n}H A ={(k,)U(Lk), ke{l,...,n—1},l=k+1});

o W =A{wq,...,w,};
C={C,...,Cp};

o V,={vi,...,vn};
Vs = {0}

e R={Ry,...,R,} where the rules in R; of each compartment ¢ define
the diffusion (Equation 4.18) of s from membrane i to the neighbours
of i as specified by A..

The model is composed by a set of compartments n that are the results
of the division of the space domain  into n adjacent regions 1,...,n (Fig-
ure 4.1). Regions i € 2,...,n — 1 contain two rules in order to specify the
diffusion of s into compartments i — 1 and ¢ + 1. Conversely, regions 1 and
n have only one rule describing the diffusion towards compartments 2 and
n — 1, respectively, and so doing we model the Neumann boundary conditions
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in Equation 4.31. The values of the constants were defined considering D = 1
and the distance 1/n between two adjacent compartments:

1
€ = 2 = n? (4.33)

where j runs over the number of rules of each region . The multisets were
initialised to obtain a total number of molecules equal to 500:

w; = 500/, (4.34)

A series of issues have to be handled to realize a meaningful comparison
between the dynamics of II and Equation 4.32. First, since ST-DPP algorithm
is stochastic, it is crucial to consider a high number of simulations in order
to obtain a significant comparison with the heat equation. We accomplished
this task averaging the results of a sufficiently high number of simulations.
Note that, in general, this average is not representative of the final state of
a system, like in the case of multistable systems, in which averaging may
lead to fictitious states. However, when the average solution converges to
the system state — as in the case we are considering here — the deviations
from the exact solution can be considered as a type of sampling error and
the average solution is a good representative of the system state.

Second, since ST-DPP simulator works with molecules, rather than mole-
cule concentration, we must calculate the initial distribution of s molecules
w1 (o), - - ., wn(to) (inside regions 1, ...,n) from the solution of Equation 4.32
at time ¢t = 0, in order to use this distribution as input for ST-DPP. Moreover,
we must calculate ST-DPP predicted concentrations, [wi](t), ..., [w}](t), from
the multisets wq (), ..., w,(t) at a particular time point ¢. In both cases we
have to consider that Equation 4.32 has been defined over a uni-dimensional
space domain. These conversions have been defined according to the following
relation between concentration [w;] and molecule number w;:

w0 =51

Note that the solution of Equation 4.32 must be calculated using the appro-
priate vector x = (z1,...,x,), whose members are located at the middle of
each compartment i:

 Vie{l,...,n} (4.35)

1
T = o +(i—1)
Third, since the time increments 7 are randomly generated, it is very
unlikely that the simulator will output a numerical solution exactly at a
specific time point t. Therefore, the molecule distribution computed by
S7-DPP simulator at a particular time point ¢ has been calculated as a linear
interpolation of the two numerical solutions at t; < ¢ and t9 > t, where t;

1
—, Va; €x (4.36)
n
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Figure 4.2: The heat equation exact solution (line) and S7-DPP average
results (dots) at t = 0.0078034, S = 500, N = 10000, v = 3, v; = 0.025.

and ty are, respectively, the points computed by the ST-DPP algorithm that
immediately precede and follow t. An example of comparison between the
heat equation and the ST-DPP simulations is shown in Figure 4.2, where it
is possible to observe the high degree of closeness between the simulations
and exact solution.

Quantitatively, the quality of the ST-DPP simulation e = 1,..., N has
been assessed considering, as in [11], the error due to the difference between
the exact solutions [w; ] and the concentrations computed using the numerical
results of ST-DPP [w} ]:

1N
6= Z (4.37)
in the compartment 4, considering a pool of N simulations ran with the same
settings. Note that ¢; — 0 as [w;ﬁe] — [wj¢] (obviously) and in the case in
which the distribution of [w} ] is symmetric with respect to the exact value

[w;]. The errors ¢; have been averaged considering all the elements of :

g:lzym (4.38)

We studied the relation of € with the number of simulations 10 < N <
10000 and the number of compartments 10 < n < 40 used to discretise the
spatial region €.
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Figure 4.3: Relation between the error ¢ and the number of simulations
(N). v; = 0.1 (*), v; = 0.05 (O), v; = 0.033 (A), v; = 0.025 (o), v = 3,
t = 0.0078034.

As the number of simulations increases the sampling error decreases (as
shown in Figure 4.3). In particular, we observed a decrease of one order of
magnitude passing from 10 to 10* simulations in all cases with exception of
n = 10, where the decrease has been lower. Note that as N — 0 the lowest
error is associated to settings with lower n (bigger compartments), while as
N — oo the lowest error is associated to higher n (smaller compartments).
This observation can be attributed to the noise: as n — oo, the compartments
will contain a lower number of molecules (high noise); hence, a higher number
of simulations is required to eliminate noise. This phenomenon has been
particularly evident in the study presented here due to the relatively low
quantity of molecules used, w® = 500, with respect to the number of
compartments for the discretisation of 2, 10 < n < 40: so doing, we passed
from a range of 10 — 100 molecules/compartment for n = 10 to a range of
1 — 10 molecules/compartment for n = 40.

Another source of error is associated with the spatial discretisation, i.e.
with the number of membranes in which 2 is divided into. In order to reduce
the contribution of the sampling error it is crucial to study the behaviour of
the spatial discretisation error with a high N. This error decreases as v; — 0
(Figure 4.4).
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Figure 4.4: Relation between the spatial discretisation error and the com-
partment size at time ¢ = 0.0078034.

4.5 Modelling molecular crowding effects with
ST-DPPs

The intracellular environment is characterised by the presence of high concen-
trations of soluble and insoluble macromolecules [47, 80, 106]. This medium
is termed “crowded”, “confined” or “volume-occupied”, rather than “concen-
trated”, because single molecular species may occur at low concentrations,
but all species taken together occupy a considerable fraction of the total
volume [81].

The term “macromolecular crowding” refers to the non-specific influence
of steric repulsions (i.e., a consequence of the mutual impenetrability of
molecules due to the Pauli exclusion principle) on molecular processes that
occur in highly volume-occupied media [91].

Due to macromolecular crowding, biochemical, biophysical, and phys-
iological processes in living cells may be quite different from those under
idealized conditions [105], and order-of-magnitude effects of crowding have
been demonstrated by both experimental and theoretical works on a broad
range of processes [91]. All these effects are related to variations occurring
in macromolecular thermodynamics activities [105] and diffusion [40].

(r) = 6Dt* (4.39)

where, if a < 1, the diffusion is called anomalous subdiffusion; on the
other hand, if a > 1 the diffusion is called anomalous superdiffusion; if
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« = 1 the diffusion is normal. Crowding can reduce the rate of diffusion
(according to the size of the diffusing molecule and to the degree of volume
occupancy) and can lead to anomalous diffusion [8]. Large reductions in
solute diffusion are probably indicators of interactions between the solute
and cellular components, such as membranes [37]. Therefore, the rates of
diffusion-controlled biochemical processes — mainly affected by the diffusion
of the reactants — will be reduced in crowded media. The decrease in the
diffusion rates due to crowding may also lead to complex phenomena like
fractal kinetics (anomalous reaction orders and time-dependent reaction rate
coefficients [65]) and spatial segregation of molecules [13].

In this Section, we describe two models as use cases to show how it is
possible to capture capture some effects of macromolecular crowding with
S7-DPPs. The first model concerns particle diffusion, while the second model
focuses on reaction rates.

4.5.1 Anomalous diffusion

To model the diffusion of a particle in a crowded environment we considered
the following ST-DPP of degree 441:

I = (27 Glm Ga Ca VV, R7 V/u VE)

¥ = {s1,82};

o G, =({1,...,441} E,, {0}) where the set of edges E,, defines a 21-by-
21 square lattice with the membranes {1,...,441} (Figure 4.5);

o G.=({1,...,441}, A.) where A, is defined in order to let each mem-
brane {1,...,441} communicate with all its neighbours (Figure 4.5);

o W =A{wq,...,w,};
e C={C1,...,Cu};
o V,={vi=...=wvu = 15625};
o Vs = {216, 15625);

e R={Ry,...,Ryq1} where the rules R; of each membrane i define the
diffusion (see Equation 4.18) of s; from membrane i to the neighbours
of i as specified by A..

The system is composed of 441 compartments organised as a 21-by-21
lattice. Each compartment is a cube with a volume equal to 15625nm?, which
reflects a side length of 25nm. We define two objects: s; represents a generic
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X

Figure 4.5: Subdivision of a bidimensional space domain in a set of com-
partments (membranes) according to the topology of an nz-by-n, lattice. The
arrows indicate the communications allowed between adjacent compartments.

protein of volume 216nm? while s, is an immobile obstacle of size equal to
the size of a single compartment. We set the stochastic constants values to
4.4pm?3s1

s =T040s7 = — - 2 4.4
cij = 7040s (35 10-5m)? (4.40)

where the diffusion coefficient of 4.4um?s™! is a reasonable value for a

protein of size 216nm? [42]. We modelled macromolecular crowding using a
population of so randomly placed within the compartments in order to obtain
a volume occupation due to sy of approximately % of the entire system volume,
as this is the typical proportion of volume occupied by macromolecules in a
living cell [40].

Before presenting the simulation results we have to introduce some useful
concepts. We define the trajectory 7" of s; as:

T = {r(to), .. ,r(tNt)} (4.41)

where r(t) = (x,y): is the position of the protein s; at time ¢ expressed
considering the coordinates (z,y) and N; is the number of time instants
of a simulation over the time interval {to,...,tn,}. The trajectory of s; is
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required to calculate its mean squared displacement, a measure of the average
distance a molecule travels. It is defined

msd(r) = (Ar *(7)) = { (x5t +7) ~55())) (4.42)

where rj(t + 7) — r;j(t) is the displacement, the (vector) distance between
the initial and final position of a molecule due to its motion during the
time interval (¢,¢ + 7] and (...) indicates a time-average over ¢ and/or an
ensemble-average over several trajectories. We calculate the displacement as
the Euclidean distance between the two positions

ri(t+7) = 15(t) =/ (@esr — 22+ (Yerr — 01)?)- (4.43)

We simulated the random walk of one molecule s; in the space domain
composed by the compartments {1,...,n}, initialising the simulations with
s1 located at the centre of the grid, i.e. wao(tg) = {si}. We carried out
100 simulations in the time interval [0,0.01] in diluted conditions and 100
simulations initialising the system with crowding agents so.

The simulations show a decrease of the particle travelled distance due
to the addiction of crowding objects. It is possible to observe this result
both considering a single trajectory (Figure 4.6) and the msd values (Fig-
ure 4.8). We calculated the msd values dividing each trajectory into a set
of displacements, obtained using the same time interval 7. Hence, for a
single trajectory, we calculated the msd performing a time-average over
the simulated time and considering a specific 7. Then, we calculated the
ensemble average considering several trajectories. The longer the trajectory
and the smaller the 7, the more displacements can be calculated and, hence,
the more accurate will be the estimation of the msd; conversely, as the value
of 7 increases, the msd values calculated from each single trajectory show a
significant statistical uncertainty, Figure 4.7.

4.5.2 Increased reaction probability

To model the increase of reaction probability due to molecular crowding we
considered the following ST-DPP:

II=(X,G,,Ge,C,W,R,V,, V)

* )= {81182783784};

e G, = ({1,...,81}, E,, {0}) where the set of edges defines a 9-by-9
square lattice (Figure 4.5);

e G.=({1,...,81}, A;) where A, is defined in order to let each element
communicate with each of its neighbours (Figure 4.5);
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Figure 4.6: Trajectory of one particle s; in the 21x21 lattice in (a) diluted
and (b) crowded conditions. In both cases, we placed s1 at the same initial
position (10,10,1). The colour of the trajectory represents the time coordinate
value.



60

Spatially extended membrane systems

-

msd [um=]

5

msd [um=]

0.011

0.01

0.009

0.008

0.007

0.006

0.005

0.004

0.003

0.002

0.001

0.009

0.008

0.007

0.006

0.005

0.004

0.003

0.002

0.001

5e-03

0.0001

0.00015 0.0002 0.00025 0.0003 0.00035 0.0004 0.00045 0.0005
[s]

5e-03

0.0001

0.00015 0.0002 0.00025 0.0003 0.00035 0.0004 0.00045 0.0005
[s]

(b)

Figure 4.7: Mean squared displacements of 100 trajectories in (a) diluted
and (b) crowded environment. Black curves are smooth fitting of the msd time
averages calculated for different 7 ; red points represent the msd ensemble
averages for each 7 value; the blue line is the fitting of the ensemble averages.
Vertical axis: msd values; horizontal axis: 7 values.
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Figure 4.8: Mean squared displacement (points) of the particle s1 calculated
as ensemble and time averages of 100 simulations considering different 7 values.
Vertical axis: msd values; horizontal axis: 7 values.

o W=A{w,...,w,};

e C={C1,...,Ca1};

Vi={vi=...=w1 =1}

V5 = {0.0001, 0.0001,0.0002,0.1};

R = {Ri,...,Ryn} where each set R;, i € 1,...,n contains the two
rules r;1 : 51 + S2 RN sz and ;2 : s3 &2, $1 + s and the diffusion
rules r; ;, (Equation 4.18) that specify the diffusion of {s1, s2,s3} from
membrane ¢ to the neighbours of ¢ as specified by Ag;

The system is composed of 81 compartments organised as a 9-by-9-by-1
grid. Each compartment is a cube with a volume equal to 1, which reflects a
side length of 0.001. The system contains four types of objects. The species
s1 and so represent two generic proteins of volume 0.0001 which interact by
means of a reversible process of association leading to the protein complex sg

rincs1 Sy — 83 (4.44)

Ti2 83 22 51+ 5 (4.45)
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where ¢; 1 = 0.0001 and ¢; o = 0.001 are the stochastic constants. The species
s1, s2 and s3 can diffuse within the system. We set the stochastic constant
associated to the diffusion rules c;, three orders of magnitude higher than
c¢j1 and cj2 in order to guarantee that diffusion processes are faster than
reactions (see Section 2.2). The species s4 represents a motionless crowding
macromolecule with a volume equal to 0.1, a value which is three orders of
magnitudes bigger than that of the other species.

We carried out simulations initialising the system with 100 molecules of
s1 and 100 molecules of s in each compartment. Conversely, we chose the
number of s4 in order to occupy 0 (diluted media) or approximately % of
the total volume (crowded media). In the latter case the molecules s4 have
been randomly distributed among the compartments. For each region, we
calculated the time average of the values assumed by the propensity function
concerning the process of association of s; and s9 to s3, Equation 4.44.

In the diluted condition the time average of the reaction propensity values
assumes approximately the same value within all the volumes: the mean
value of all the averages is equal to 0.9237 and standard deviation is 0.001842
(Figure 4.9(a)). In the crowded system we report an increase of the reaction
propensity time averages up to 6 folds compared with the diluted case. As
this increase is the consequence of the presence of one or more crowding
agents in a volume, we also obtained that the distribution of the mean value
of all the averages is heterogeneous, Figure 4.9(b). In this case the mean
and the standard deviation are 1.451 and 0.498 respectively. Therefore, the
crowded systems is characterized by highly reactive regions in which the
production of molecules s3 is faster, Figure 4.10.
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Figure 4.9: Average propensity function values of reaction ri within the
spatial domain in (a) diluted and (b) crowded conditions. The darker the
colour the higher the average propensity value.
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Figure 4.10: Number of s3 molecules in the volume 79 (row 7 and column 9
of Figure 4.9) in diluted (solid line) and crowded (dashed line) conditions.

4.6 Modelling structured spaces with ST-DPPs

In this section we present a model to illustrate the enhanced capabilities of
S7T-DPPs due to the presence of two independent graphs for the definition of
object communication and membrane structure. In particular, we show how
the communication between non-adjacent membranes enables the modelling
of preferential communication paths, a solution used by living cells for
the regulation of molecules and macromolecules inside the intracellular
environment.

In fact, living cells possess specific structures as microtubules and the
Golgi apparatus that play an essential role for the accurate regulation of the
movements of molecular species inside the crowded intracellular environment.
Microtubules are a component of the cytoscheleon and are involved in many
biological processes, including the vesicular and molecule transport, cytoki-
nesis and mitosis. The Golgi apparatus is a stack of flattened compartments
where molecules are packaged for delivery to other cell compartments or from
secretion from the cell. Despite these two structures accomplish different
tasks and have a different structure both of them ensure the correct delivery
of different types of entities (from molecules to entire vesicles) to their final
destination.

In the following, we will focus on an a qualitative model that capture the
role of a microtubule for the transport of cargos inside the intracellular envi-
ronment. However, with some minor changes concerning the communication
possibilities the model can also be used for the Golgi apparatus.
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4.6.1 A system with a preferential communication path

To model the movements of objects in a region characterised by the presence
of a preferential communication path, we consider the following ST-DPP

I = (21 G,Un G07 Ca VVv R7 V,Lm VE)

¥ = {s1,82};

o Gu=({1,...,8}, {(1,2),(2,4), (4,6),(6,8)}, {(2,3), (4,5), (6,7)});

e G.=({1,...,8}, A.) where A, is defined in order to let each element
communicate with its neighbours as illustrated in Figure 4.11;

o W ={w,...,ws};

e C={Cy,...,Cs)};

o V, ={10%10% 107 10% 10% 10%,10% 103};
o Vs ={1,1};

e R={Ry,...,Rg} where the rules R; of each membrane i define the
diffusion (see Equation 4.18) of s; and sy to from membrane ¢ to the
neighbours of i as specified by A..

The model describes the flow of species s; and s inside a set of compart-
ments {1,...,8} that contain a preferential communication path represented
by {3,5,7}, Figure 4.11(a). Regions 1 and 8 are separated by three inter-
mediate regions, 2, 4 and 6; each one of these compartments contains one
further region. Collectively, these nested compartments (3,5 and 7) represent
the region surrounding a microtubule, that it is assumed to be placed inside
regions {3,5,7}. Even if both species s; and s2 are allowed to enter these
regions, particle s; moves only towards the region 8, in consequence of the
interaction with the microtubule. Therefore, the flow of s; through the
system is encouraged by means of this added flux, that is due to the presence
of a microtubule localised in regions 3,5, 7.

We set the volume of the compartments {1,2,4,6,8} to 10*> while we
consider the regions surrounding the microtubule one order of magnitude
smaller (10%). Objects size and all the stochastic constants are set to 1.

We ran a set of simulations to study the dynamics of s; and so in relation
to their flow towards the region 8. We initialised the simulations considering
an equal number of molecules s; and s2 placed in region 1, while we left the
other regions empty. The (closed) system reaches a chemical equilibrium
characterised by a different spatial distribution of molecules s; and ss. More
precisely, the microtubule establishes an increasing gradient of s; molecule
number from region 1 to region 8; oppositely, the distribution of species
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Figure 4.11: A membrane systems of degree 8 with a preferential commu-
nication path. a) Graphical representation, in which the arrows indicate the
possible movements for all species (black arrows) and for species allowed to
use the preferential communication path (dashed arrows); b) Mixed graph that
defines the system’s structure. c¢) Directed graph that defines the system’s
communication possibilities.

so follows a descendant gradient from region 1 to region 8, Figure 4.13.
Moreover, species sy arrives quickly in region 8, Figure 4.12.
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Figure 4.12: Average number of molecules s1 (red) and sz (green) during the
time interval [0, 20]. (a) regions 1, (b) region 8 . We carried out 50 simulations
initialising the system with 500 molecules of s; and 500 molecules of sz all
placed in region 1. The values used to calculate averages (points) and standard
deviations (bars) were computed interpolating the original trajectory described
by the S7-DPP algorithm every 0.5 time units.
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Figure 4.13: Average number of molecules s; (red) and s (green) during the
time interval [0, 20]. Panels (a-f) represent in the lexicographic order results for
the regions 1,...,6. We carry out 50 simulations initialising the system with
500 molecules of s; and 500 molecules of s placed in region 1. The values used
to calculate averages (points) and standard deviations (bars) were computed
interpolating the original trajectory described by the ST-DPP algorithm every
0.5 time units.
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4.7 Discussion

In this chapter we introduced SP systems, a novel variant of membrane
systems, where objects and membranes occupy a finite amount of volume in
a space with an arbitrary number of dimensions. We showed that SP systems
are computationally universal (simulate a deterministic Turing machine) and
we proved that this task is achieved with a polynomial slowdown, requiring
the same space as the Turing machine and occupying an amount of volume
which is a linear function of the space required by the Turing machine. SP
systems are a computing device closer then classic membrane systems to a
living cell, as SP systems consider the mutual impenetrability of objects (as
molecules in the real world). The computational universality of SP systems
further supports the idea (expressed in [90]) that living cells are a “powerful
computer”.

Subsequently, we introduced the ST-DPP considering properties of SP
systems, tP systems and 7-DPP. The novel properties of ST-DPP consist
in the representation of the membranes structure and the communication
within the system with two distinct directed graphs, the possibility to define
tissue-like structure where nodes have a complex internal architecture, the
association of an amount of occupied volume to objects and membranes, and
the consequent handling of the free space during the system evolution with
a new version of the 7-DPP simulation technique.

The introduction of the new properties enables the formalism to be used
to model a larger number of real systems. We presented three test cases to
illustrate the capabilities of ST-DPPs.

The other class of applications enabled by the ST-DPP approach concerns
the modelling of systems where the free space within different regions of the
space domain is a critical resource for the system dynamics. We explored this
feature modelling the molecular crowding effects over cellular dynamics. As
the study of molecular crowding implies the modelling of particles diffusion
inside a space domain, we investigated the accuracy of ST-DPP in reproducing
particle diffusion. We showed that ST-DPP can reproduce the diffusion of
molecules within a space domain divided into a set of sub-compartments
(membranes) according to a defined topology. We tested diffusion using the
same strategy followed by Bernstein [11], i.e. we compared the ST-DPP
simulations with an analytical solution of a PDE for the heat equation (a
diffusion equation). Note that for most applications of real interest biological
processes analytical solutions are hardly available. The error that we reported
is slightly greater than the one found in [11]. This is due to the fact that the
T-leaping algorithm — which stands at the basis of ST-DPP — generates an
approximated dynamics with respect to the exact solution of the chemical
master equation, whereas the Gillespie’s algorithm used in [11] is exact. We
think that this loss of accuracy (that can be a priori controlled) is well
balanced by the increase in performance (tau leaping is faster than SSA)
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that enables simulations of more complex systems compared to the SSA. The
quantitative characterisation of this discrepancy will be further investigated
in future.

Molecular crowding can be explicitly modelled by the ST-DPP variant. We
studied two quantitative models, concerning particle diffusion and biochemical
reactions in a bi-dimensional space domain with a degree of crowding similar
to the one observed in real cells ( % of the total volume). In both case we
modelled the crowding using objects with a volume occupation much higher
than the one of the molecular species under investigation.

Considering the first model, we showed that ST-DPP simulations capture
the decrease of the diffusion rate due to the presence of immobile obstacles
inside a bidimensional space domain divided in a set of regions. The second
model concerns the study the variation of the reaction rate due to the
increased recollision probability determined by the presence of crowding
objects. The ST-DPP simulation technique captures this effect due to the
modification of the propensity function calculation of bi- and three-molecular
reactions. The simulations showed that the crowded medium is characterised
by an heterogeneous distribution of reaction probability within the space
domain.

The use of two distinct graphs for describing the membranes structure
and the communication within the system provides a formalism with a strong
expressive power: indeed, it is possible to have communication channels
between membranes that are not adjacent and, conversely, it is possible that
adjacent membranes do not communicate. The first possibility allows the
creation of preferential paths of communication and we presented a model
to demonstrate the use of this feature to reproduce the role of microtubules
in living cells.

Considering the results provided in this Chapter, ST-DPPs can be used
to model and simulate crowded reaction and diffusion (RD) systems. We
illustrated that, the current version of ST-DPPs capture some of the major
effects that a crowded medium determines over RD system dynamics; however,
we plan to do an extensive study of this topic in future. Moreover, an
interesting direction of investigation, enabled by the possibility of arbitrarily
defining the volume occupation of both objects and compartments, and the
topology of their communication, consists in the use of ST-DPPs to study
RD systems dynamics in structured spaces.
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In this chapter we describe a further extension of the ST-DPPs, (designated as
ES7-DPPs) in order to consider two electrical properties, namely the electric
charge (for objects) and the electric potential difference (for a pair of mem-
branes). This work is motivated by the crucial role played by the membrane
potential difference in regulating many biological processes. The membrane
potential, also referred to as transmembrane potential, is an electric potential
difference (or voltage difference) between the two compartments separated by
a membrane. This voltage difference arises from a different ion concentrations
between two compartments sustained by active transport (in this context the
word “active” indicates a process sustained by the consumption of energy) of
ions realised by specific membrane proteins. Cells use membrane potential
(i) as a battery that can be used to activate down stream processes and
(ii) to transmit signals. More precisely, we consider two main effects of the
membrane potential difference over the intracellular dynamics: (i) diffusion
of charged particles and (ii) protein conformational changes.

First, we describe the derivation of two novel classes of propensity func-
tions to model the two effects of the membrane potential delineated above.
Then, we define formally EST-DPPs and afterwards we describe the algorithm
for the temporal evolution of EST-DPPs. Subsequently, we study two test
cases to show the functioning of the novel types of propensity functions. We
conclude discussing the results we have achieved.

5.1 Modelling charged particle diffusion

In the context of living cells, particle diffusion is not only due to a concen-
tration gradient. In fact, the flux of a charged molecule s is driven by both
the concentration gradient V[s|, where [s] is the concentration of species s,



72 Electrostatic properties in membrane systems

and the electric field E = —V¢, where ¢ is the electric potential’. In this
Section we present a novel form of propensity function in order to describe
the diffusion of charged particles. We begin introducing the equations that
we will use as a starting point to derive the propensities.

5.1.1 Diffusion due to electrostatic forces

A concentration gradient determines diffusion, generating a flux Jp according
to the Fick’s law (see Section 2.2). The electric field establishes an electric
force which accelerates the charges species s; however, frictional forces in
aqueous solution counteract the electric force and therefore s reaches a drift
velocity where frictional and electric forces are equal and opposite. The flux
due to drift, also referred to as electrophoresis, is:

Je = —us[s]zs Vo (5.1)

where ug is the electrical mobility, [s] is the concentration, z is the valence
and ¢ is the electric potential. The electrical mobility is related to the
diffusion coeflicient by the Einstein-Stokes relation:

uskBT
q

Dy = (5.2)
where kp is Boltzmann’s constant, 71" is temperature and ¢ is the elementary
charge. Analogously to the Fick’s law, the minus indicates that positively
charged species have a positive flux if the potential gradient decreases and
vice versa negatively charged particles have a positive flux if the potential
gradient increases.

The fundamental insight provided by the Nernst-Plank equation, which
extends the Fick’s law of diffusion for the case where the diffusing particles
are also moved with respect to the fluid by electrostatic forces, is that the
two fluxes J = —D,V[s] and J, are additive, and therefore the total flux of
s is:

J=Jp +Je=—D;V[s] — us[s]zsV . (5.3)

At steady state condition, when the flux due to drift equals the flux due
to the concentration gradient, Jp = J we obtain:

D,V |[s| = us[s]zsVe (5.4)

Rearranging and integrating this equation it is possible to obtain the Nernst
potential, or reversal potential. To illustrate this result, let us assume that

The del operator represented with the nabla symbol V is used to denote (con-
sidering the three dimensional Cartesian coordinate system) the gradient Vf =
(0f /0x 1,8f /0y §,0f/0z k) of a scalar field f(z,y,z), and the divergence V -v =
(Ov, )z, By /By, B, /z) of a vector field v = v,1+ vy + v.k.
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[s]1 and [s]o are the concentration of ion s, respectively, on side 1 and 2 of a
permeable membrane. Then, the Nernst potential is the electric potential
value at which the concentration and voltage gradients have values such that
there is no net flow of ions s across the membrane and in this case will be:

Es=¢o— 1 = ]:glniﬁ (5.5)
where R = kpN, is the gas constant, F' = ¢N4 is the Faraday constant and
Ny is the Avogrado’s number.

The Nernst equation is widely used in physiology for finding the electric
potential of a cell membrane with respect to one type of ion. The Nernst-
Plank equation (combined with the Poisson equation in the Poisson-Nernst-
Plank theory) has a wide area of applications in physics, electrochemistry
and biophysics. For example, many biological applications are related to
the transport of ions through protein channels across membranes, such
as [29, 83, 33] and more recently [84].

5.1.2 Propensity functions for charged particle diffusion

Now we show that an appropriate set of uni-molecular rules can be used
to approximate the variation of the concentration of a particle s, as a
consequence of its diffusion due to a flux Je determined by the presence of
an electric potential gradient V¢. For the sake of simplicity, we consider the
mono-dimensional case V = 9/dz. The set of rules that we want to use are:

Tio1,1 (s, in;) (5.6)
ri1: S SN (s, in;_1) (5.7)
Tio: S G2, (s, inj41) (5.8)

Tig11: S S (s, ing) (5.9)

where ¢ — 1, i and i + 1 are three consecutive regions over x of size d;_1,d;
and d;1 respectively, c;; is the constant labelled k and belonging to a rule
of the region j to be used for the respective propensity function a;; (we
recall that the relation between the propensity function a and the stochastic
constant ¢ is a = ¢ - h, where h is the number of reactant molecules or the
number of possible combinations among reactants molecules, see Section 2.2).
Let [s](x,t) be the concentration of the molecule s in the space coordinate x
at time t. Considering only the flux due to electrostatic forces we have:

dls]

ot

Integrating Equation 5.10 over the element ¢, we obtain:

= V. Jo= -V (—uls]zVe) (5.10)
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c%ul_ /v Je—J< d')-%(&ﬁé") (5.11)

where w is the number of molecules s and d; denotes the centre of the region
1. We approximate the gradient of ¢ over the left side of the element ¢
according to the finite volume approximation approach as:

N¢ lel

\Y%
¢ d_dzl

(5.12)

Considering the same approximation for the right boundary and using Equa-
tions 5.10-5.11, we have:

8(;01 _ _¢i( )i[i—>(i~—1)} N ):[i—>(i+1 ) v ( (i—1)—d] ) i <)\ (i+1) i)
t |di —di—1|  |dit1 — d;i |d; — di—1| i1 — di

(5.13)
where \(j_ k) = U(j—k) 2W(j—k)/d(j—k) and u(;_y) should be evaluated at the
boundary between elements j and k, [s] = w(;_)/d(j) is the concentration

of molecules calculated considering the size d(;_,1) across compartments j
and k. This expression suggests the following form for the propensities:

aj—1,1 = (M)@l (5.14)
Ali—s(i—1)]

a1 = (M)@ (5.15)
)‘z—> i+1

aip = (W)@ (5.16)

iy11 = (%)@ . (5.17)

Hence, recalling the “classic” propensity function expression (a = ¢ - h),
we define a propensity function to model the diffusion (due to electrostatic
forces) of a charged species s from the compartment j to the compartment k
as: " ;

CLJ' = C;(gbj) . hj = % . (;5]' . w(j_m) (5.18)
dijsmyldj — di|

where
U(j—k)*

i(p5) = b; (5.19)

dgjmyld; — dy|

is an electric potential dependent parameter (correctly expressed in [1 / time])
and h = w(;_y) is the amount of molecules of type s evaluated considering a
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region defined across the boundary between the two compartments j and k.
With a slight abuse of notation, we identify the constant part c;-(qb]-) as ¢j:

U(j—k)#

() =c¢j-bj = b; (5.20)

djsr)ld; — dil

Moreover, it is possible to simplify Equation 5.18, considering a uniform grid,
where dj — dk = d(jak) =d:

]—>k

aj = C;(gzﬁ]) : hj =C5- ¢j ' hj = <Z>g (j—k)- (521)

As the propensity function must assume positive values, the product
between the two quantities z and ¢; must be positive. As a consequence, we
cannot currently take into account positive and negative charged particles in
the same system. Conversely, for a given type of charged particle (positive
or negative) we can both model negative and positive electric potential
differences between two regions, appropriately defining the electric potential
in each one of the two regions. If on the one hand, this issue can represent
a limit for the application of this propensity for the modelling of complex
systems, on the other hand many important biological processes are regulated
by a single type of ion (e.g. calcium ion as a second messenger in many
signalling cascades) or by combination of ions with the same type of charge
(e.g. the action potential in excitable cells is mainly due to sodium and
potassium ions).

To distinguish the propensity that we derived in this Section from the
“classic version”, we designate the propensity for the probability of charged
particle diffusion as propensities of class II, while we consider the classic
propensities as class I.

5.1.3 Relation with the Nernst equation

Now let us consider once again the condition depicted in Equation 5.4 which
leads to the Nernst equation, Equation 5.5. We show that the propensities we
use to model the flux of a charged species considering both a concentration
gradient and a electric potential gradient lead to the Nernst equation using
an appropriate value for the quantity w(; ), the number of molecules
defined considering a region across the boundary that separates the two
compartments. To do so, let us consider a closed system structured in
two compartments, 1 and 2 of the same size v; = vy = v, separated by a
membrane and an ion A whose amount in 1 and 2 is respectively A7 and As;
moreover, let ¢1 and ¢ be the electric potential of the two compartments.
To model both the fluxes Jp and Je between the two compartments we use
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four communication rules

T11:S SN (s, ing) (5.22)
rio s —2 (s, ing) (5.23)
To1: S 24 (s, ing) (5.24)
o1 : s —2 (s, ing) (5.25)
which are associated to the following propensities
ar1 =c14; (5.26)
a1z = cjo(¢1)A (5.27)
a1 = c2,1 42 (5.28)
a2 = 0,2,2(¢2)x‘I (5.29)

where r; ;. and a; are, respectively, a rule and a propensity labelled & and
belonging to region j, and A is the number of molecules of A calculated
considering a region across the boundary between 1 and 2 (the quantity
w(;j—k) of Equation 5.21). The flux Jp is represented by the rules (r1,1,72,1)
associated to the propensities (a1,1, a 1) while the flux Jp is modelled by
(r1,2,722) and (a1,2,a22). At steady state the two fluxes are equal Jp = Je,
and so we obtain

Cl,lAl - CQ’1A2 = 6/272(¢2)/~1 - 6,1’2(@1)14. (5.30)

Recalling that for diffusion due to a concentration gradient ¢ = D/d?, using
the expression for the voltage dependent parameters defined in Equation 5.19,
and the Einstein-Stokes relation Equation 5.2 we have:

D1 S D2 1A D, 2ZQ¢2A D1 22zqpo
v2zkgT v2kgT
As the diffusing ion is the same we get D11 = D12 and Dy 1 = Ds 9; assuming

that diffusion coefficient calculate at the boundary is the same in both ways,
i.e. D171 == DLQ == D271 = D272 = D we have:

A. (5.31)

D qufl
—(A; — Ag) = ——
v2( ! 2) v2kgT

Simplifying and rearranging the expression we have:
ksT (A] — Ag)
zq A

We observe that in order to obtain Equation 5.5 we have to define the amount
of molecules at the boundary as:

(P2 — 1) (5.32)

Ep=¢o—¢1 =

(5.33)

(5.34)



5.2 Modelling voltage gated channel state transitions 77

w1

Figure 5.1: Illustration of the @ values as calculated by the function expressed
in Equation 5.35, for wq = we = {1,2,...,100}; @ values are represented by
colours.

Note that this value is undefined whenever A; = As; we solve this issue using
in this case A = A1 = As. Generalising, we define the amount of molecules
around the boundary between two compartments 1 and 2 as

3 {wl if (w1 = wo)
w =

% if (w1 7& ’wg)

(5.35)

An example of the values calculated by Equation 5.35 is illustrated in
Figure 5.1. Note that the definition of w specified by Equation 5.35, further
than ensuring the equality with the Nernst equation, generates values of @
that are enclosed between the minimum and the maximum of the pair of
values (w1, ws):

min(wl, w2) < @ < max(wl, w2). (5.36)

A test case that makes use of the propensity function defined in this
Section will be discussed in Section 5.4.

5.2 Modelling voltage gated channel state
transitions

Living cells express a class of proteins, ion channels, which allow the flux of
ions through the cell membrane. There are several types of ion channels which
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are classified according to ion selectivity and gating type [94]. Considering
the gating, ion channels can be ligand-gated or voltage-gated. Ligand-gated
channels open and close due to conformational changes caused by the physical
interaction with a ligand, such as an ion or a neurotransmitter. Voltage-gated
channels (VGCs) open and close due to conformational changes caused by
membrane voltage variations.

The transitions between open and closed states of VGCs involve the
movements of charged components of the channel in response to the variation
of the membrane potential. Taking into account thermodynamics arguments,
it is likely that these movements are rate-limited by energy-barriers [35]. To
derive an expression for the probability that a transition takes place, let
us consider a membrane characterized by an electric potential difference
A¢. This requires an energy bA¢, where the constant b captures both the
amount of charged being moved and the distance covered. The probability
that thermal fluctuations provide energy enough to surmount the energy
barrier bA¢ is proportional to the Boltzmann factor exp(%Aqu) [35], where
T is the temperature and kp is the Boltzmann constant. According to this
argument, we describe the transition of a VGC between the two states s;
and sg with a uni-molecular rule r : s — s9 and the propensity function

a=c"(Ap)=c- exp<_bA¢> - w (5.37)
kgT

where the constant ¢ is multiplied by the dimensionless Boltzmann factor and

w is the number of VGCs. Note that a is correctly expressed in [1/time| and,

according to the sign of b, the propensity function can be an increasing or

decreasing function of the membrane potential difference A¢ (see Figure 5.4).

We designate this further type of propensities as propensities of class I11.

5.3 ES7-DPPs: integration of electrical
properties in ST-DPPs

In the previous Sections we introduced two novel propensity functions to
model (i) diffusion of charged objects and (ii) state transitions of VGCs. In
this Section we describe the EST-DPPs, a further extension of ST-DPP in
order to include processes (i) and (ii) in the formalism and to describe their
time evolution by means of a modified version of the ST-DPP algorithm.
Currently, EST-DPPs can model only systems with two compartments.

We added five components to the formal definition of ST-DPP (see Defini-
tion 4.3.1). Obviously, we added charges to objects and electric potentials to
membranes: thus, an electric potential difference can be calculated consider-
ing the pair of membranes. As EST-DPPs consider three types of propensity
functions, classes I (Equation 2.2), class II (Equation 5.18) and class III
(Equation 5.37), we added a label to each rule to map the rule to the correct
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propensity class. Moreover, we added a set for the values of the quantity
b, that is required by the propensities of class III. Finally, we consider a
value, the capacitance, associated to the pair of membranes: this further
ingredient is required for the correct calculation of the temporal evolution of
a EST-DPPs. In fact, we assume that the two modelled regions are separated
by a membrane that acts as a capacitor. This assumption is common in
computational neuroscience and is based on the evidence that living cells
membranes are constituted by a lipid bilayer which is essentially impermeable
to most charged molecules [35]. This property causes the membrane to act
as a capacitor which separates charges located in the two regions divided by
the membrane.

5.3.1 Definition
Formally, EST-DPPs are defined as follows.

Definition 5.3.1. An EST-DPP of degree 2 is a construct:

11 = (Zv G,ua GC,C,C;, W7 R7 V/u VEa (I)a Qa Bﬁ)

¥ ={s1,...,8m} s a finite of symbols, also called objects;

e G, = (u, E,A,) is a mized graph representing the topological arrange-
ment of the membranes p = {1,2}, (E,A,) are, respectively, the set of
edges and the set of arrows which describe the topology of membranes;

o G.=(u,A.) is a directed graph representing the connections (channels
of communication) among the membranes = {1,2} and A, is the set
of the arrows which describes the available connections;

o W = {wy,ws}, where w; is the multisets of objects occurring inside the
i membrane;

o C = {C1,Cy}, where C; is the set of stochastic constants ¢;j € RT
associated to the rules occurring inside the i membrane;

e C= {C’l,ég}, where C; is the set of rule classes Gigp€e{l, 11, 111};

o V,, = {v1,v2}, where v; € R is the volume of the it membrane;

o Vs = {vg,...,vs,}, where vs, € RT, is the volume of object vs, .

e R = {Ri1,R2}, where R; is the finite set of rules occurring inside

membrane i; an internal rule is of the form

Q181+ -+ mSm =5 B151+ .-+ BimsSm (5.38)
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a communication rule is of the form

,C

o181+ ...+ amsSm C—) (51,181 4+ ...+ Bm,lsmy z'nl) 4+ ...+ (5 39)
(ﬁl,nsl +...+ Bm,nsm; Znn)

where the quantities o;; and 3; are natural numbers, ¢ is the rule class, c
is the stochastic constant and iny,...,in, indicate the target membrane
to which the object have to be sent;

O = {¢1,¢92} are the membrane electric potentials, where ¢; € R,
i€ {l1,2};

Q = {q1,...,qn} is the set of object charges, where q; € Q, i €

{1,...,n};

B = {B1, B2}, where B; is the set of constants b; j € R which describe
the amount of charge that has to be moved and the distance these
charges have to cover during a voltage induced state transition;

v € RY is the capacitance for the pair of regions (1,2);

5.3.2 Time evolution of EST-DPPs

The temporal evolution of an EST-DPP is computed by a modified version
of the ST-DPP algorithm and describes the evolution of a system with two
compartments. In particular, we have introduced the following modifications
in the procedure described in Section 4.3.2:

lc. calculate initial total charge Q inside the membrane at ty = 0
B m
Qi(to) = _(wilsj, to) - ;) (5.40)

Jj=1

where we recall that w;(s;,tp) indicates the copy number of s; in the
multiset w; at time step tg.

2. for eachrule i (k € {1,...,l}: switch ¢:

c- h; if r; is a first order reaction;
c¢/F;-h else;
e case II: ap:=d(¢) M

e case III: ai:=C'(A¢)- b

e case I: ag ::{
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23c. calculate the current charge Q;(t + 7) inside the membrane

m
i(t+7) Z wi(sj, t+7) - q5) (5.41)
7=1

and update the electric potential

¢i(t +7) = ¢i(t) +

Qi(t+ Ti — Qi(t) (5.42)

During the initialisation we added the calculation of the total charge
inside the compartment Q. This operation is required for the subsequent
internal state update. The second modification concerns the application of
the correct propensity function definition according to the rule class. After
rule application, the electric potential of the compartment is updated using
an expression which assumes that the membrane that separates regions 1
and 2 acts as a capacitor. Therefore it is possible to apply the standard
equation for a capacitor Q = CA¢ to define the relation between the amount
of separated charge Q and the membrane potential difference A¢g, where C'
is the capacitance. We calculate the variation of the membrane potential
from the previous value and considering the total net charge that crosses the
membrane, namely, counting the number of charged particles moved in both
directions, at each step of length 7.

The computational cost of the EST-DPP algorithm is 2mn, where m is
the number of the rules and n the number of compartments. The algorithm
is implemented in a parallel (MPI) version in C programming language. The
parametrisation schema establishes a one-to-one relation between processes
and membranes.

5.4 Test cases for EST-DPPs

In this section we describe two use cases, the first devoted to show the
use of propensity of class I, while the second for propensity of class III.
More precisely, the first concerns a model to describe the movements of
charges due to the presence of both a concentration gradient and an electric
potential gradient between two regions. The second deals with the state
transitions of VGCs in response to variations in the electric potential across
two compartments.

5.4.1 Nernst potential

We consider a model that captures the essential dynamics of the events
behind the establishment of the Nernst potential for the sodium ion (Na).
Living cells evolved in order to maintain a stable concentration gradient
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of sodium and other ions (potassium, calcium and chloride) between the
extracellular and the intracellular regions. Although these ions can use
protein channels to flow between the two compartments, the concentration
gradients are sustained by passive redistribution due to impermeable ions
and active transport by means of specific membrane proteins. If on the one
hand, these concentration gradients establish a diffusion “force”, on the other
hand, the membrane potential counteracts it. Using the Nernst equation it
is possible to calculate the electric potential difference required to sustain
(separate) a given concentration gradient.

In this use case we show that EST-DPPs can be used to model these
dynamics. More precisely, we consider a fixed concentration gradient of
an ion between two compartments separated by a membrane (we assume
the existence of a number of other processes that maintain this gradient).
We show that, according to the initial membrane potential difference, the
propensity functions of class I and II are correctly activated and the system
reaches the condition specified by the Nernst potential.

To achieve this aim we use the following EST-DPP:

= (%G,G.,CCWRV,VsV,Q,B,T)

¥ = {Na"};

G = ({1,21{(1,2)},{a}});
Ge=({1,2},{(1,2),(2,1)});
C={{cr1, 12}, {21, canth

C = {LII,1,11};

o W = {wi,wa};

R={Ry ={ri1,m2} Re={r21,7m22}};

o V, = {vi,va};

o Vs ={ung+};

o & ={¢1,¢2};

e Q=1{1.6-10"1};

B={{a}}

* v = 1079
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Table 5.1: List of the rules and constants used to model the Na™ flow between
the two regions 1 and 2. We omitted classes and constants over the arrows as
we have reported their values in the respective columns.

rule class constant
r1,1: Nat — (Na™,ing) I 11.6
ri2: Nat — (Nat,inp) II  433.84
ro1: Nat — (Na™,in) I 11.6
ro : Nat — (Na',in;) 11 433.84

The system is composed by two membranes (regions), where the com-
munication is enabled in both ways, from 1 to 2 and vice versa. Only one
type of object is available inside the system and represents the sodium ion
(Na™): thus, it carries a positive charge of 1.6 - 10719C. Four rules define the
diffusion of Na*between 1 and 2 (Table 5.1); in particular, each compartment
has two rules, one belonging to class I and one belonging to class II. We set
the capacitance for the pair to 107F [35]. Compartment 1 can be thought
as (a portion of) the extracellular space around a cell, that is represented
by compartment 2. We consider Na™ concentration outside and inside this
“neuron” of respectively 150mM and 15mM [94], which leads to a ratio wq /we
equal to 10 (assuming that the volumes of the two compartments are equal).
The explicit consideration of the volume occupied by the two regions and
the volume occupied by Na™t are not relevant for this model, and thus we
omit these values. We considered the diffusion coefficient of the sodium
ion in rat brain (1.16 - 1073 mm?/s) described in [57], which is a satisfiable
approximation for our test case. Therefore we obtained the values for the
constants

D
C1,1 =C2,1 = dﬁ"“ =11.6s" (5.43)
— _ DNa q1 _ —1xr—1
Ca=ap =gt = 433805V (5.44)

where we used d = 10um.

Considering Equation 5.5 we calculate the expected equilibrium potential
for Na™ for the concentrations 150mM and 15mM: Ey,+ = 61.5mV. We ran
a series of simulations considering a series of different values for the initial
electric potential difference between the two regions. During the simulations
we kept the electric potential of the extracellular compartment fixed (this
assumption is common in computational neuroscience, as the extracellular
space is conventionally considered the reference for the calculation of the
membrane potential [94]) and thus only ¢2 was variable. The simulator
correctly updates the membrane electric potential ¢o as a consequence of
the net diffusion of Na™ ions Figure 5.2. More precisely, when A¢ < Ey,+,
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Figure 5.2: Reproduction of the Nernst equilibrium potential with an ES7-
DPP. Far from the Nernst equilibrium, if A¢ < Ey,+ (simulations with initial
A¢ = {-0.09,-0.05,0.03}) the electric potential difference ¢2 — ¢1 increases
as a consequence of the net flow of Na™ from region 1 to region 2 until the
Nernst equilibrium potential is reached; conversely, if A¢ > FEy,+ (simulations
with initial A¢ = {0.09,0.120,0.150}) the electric potential difference ¢2 — ¢1
decreases as a consequence of the net flow of Na™ from region 2 to region 1
until the Nernst equilibrium potential is reached.

¢9 increases due to the diffusion of the Na™t ions from region 1 to region 2.
Note that this situation reflects the flux of Na™ ions from the extracellular
compartment to the cell when the Na™ VGCs open during the depolarisation
phase of the action potential?>. Conversely, when A¢ > Ey,+, ¢2 decreases
due to the diffusion of the Na™ ions from region 2 to region 1. In both cases,
the system correctly settles in a state in which A¢p = Fy,+.

5.4.2 Voltage gated channels dynamics

In this test case we consider the gating of VGCs as a function of the membrane
potential. Actually, the gating mechanism involves complex changes in the
conformational structure of the channels, which are membrane proteins with
a quaternary structure resulting from the interactions among more than one
subunit (i.e. polypeptide chain). Models describing the transitions between
conformational states of the channels involve many states and transitions,
because these models describe complex molecules. Here we consider a simple

2The action potential is the variation of the membrane potential difference from the
resting value to a positive value (depolarisation) and then from this value to the resting
value (repolarisation). Nervous system cells use action potential to transmit information.
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version of a sodium VGC (described in [35]) which captures the essential
properties of the channel, in order to show the use of the rules associated to
the propensities of class III (Equation 5.37).

States and transitions of the sodium VGC model we consider are depicted
in Figure 5.3. The model includes 5 states and 10 transitions. The opening
of the channel is due to transitions that are increasing function of the
voltage and, conversely, the closing is determined by transitions that have
the opposite voltage dependence. In this situation we expect an increase of
the number of open channels as the voltage is increased. However, other than
closed and open states the sodium VGC model we consider has a state called
inactive. As the exit from this state is controlled by a decreasing function
of the voltage, the number of inactive channels will increase as the voltage
increases. Hence, the sodium VGC is characterised by a transient response
during membrane depolarisation (an increase of the membrane potential)
due to a transient increase of open channels determined by the smaller and
smaller probability of exiting the inactive state.

Closed 1 (P) Closed 2 (P) Closed 3 (P,) Open (P)

- - - - - -

/
AN

Inactive (P)

Figure 5.3: States and transitions of a Na®™VGC (adapted from [35]). Ar-
rows line style reflects the voltage dependence; continuous arrows: voltage
independent transitions; dashed arrows: voltage dependent transitions.

To model this system we use the following EST-DPP:
II = (%,Gy,Ge,C,C,W,R,V,,,V5,V,Q,B,T)

e ¥ ={P,Py,P3,Po,P1};

o Gu=({1,21{(1,2)},{2});

o Ge= ({2}, {2});
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Table 5.2: List of the rules and constants used to model the state transitions
of the Na™ VGC. Model and constants values are adapted from [35]. We
omitted classes and constants over the arrows as we have reported their values
in the respective columns.

Ry class (s B
ro1: P1 — Py IIT 3666 -1.068
22 : P2 — Pl III 56 0.3337
ro3:Py —Pg III 3666 -1.068
2.4 : Py — Py I 1 0
25 : P3 — P2 111 56 0.3337
roe: P3— Po III 3666 -1.068

ro7 - P3 — P[ I 1 0
rog: Po — Pg 1III 56  0.3337
72,9 : PO — P[ 1 1 0

ro.10: Pr — P3  III 2 0.748

C={{o},Co={c21,...,c210}};
C= {{@}, {5271, ... ,52710};

o W ={w,wa};

e R={{o},{ro1,..., 210} }

e V,={11}

e Va={v=v=...=v5=1-10"6} ;
o & ={¢1,¢2};

Q={{o}}
B={{2},By={ba1,...,b210}} ;

v =1.

The system is composed by two adjacent compartments. The first is
empty and is required only to obtain the electric potential difference ¢ — ¢1.
The second compartment contains five different object, namely Py, Ps, P3,
Po, P; that correspond to ”closed 17, ”closed 2”, "closed 3”, "open” and
"inactive” states, respectively. Region 2 includes 10 rules (Table 5.2) to model
the transitions between pairs of states as illustrated in Figure 5.3. Rules
that specify the transition from Ps, P3 and Pp to Py are not sensitive to
electric potential differences (class I), while all the other rules are associated
to voltage dependent propensities of class III.
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Figure 5.4: Values assumed by the voltage difference dependent parameter
c’(A@) of class III propensities (Equation 5.37). Opening (continuous line):
¢ = 1220, b = —1.0680; closing (dashed line): ¢ = 56, b = 0.337.

The value of the constants of By and in Cy (Table 5.2) were adapted
from [35], in order to let rule for opening {ryi,723,726} transitions be
increasing functions of the voltage difference and, conversely, rule for closing
{ra,2,725,m28} and de-inactivation ry 19 propensities be decreasing function
of the membrane potential difference, Figure 5.4; rules {ra 4,727,729} are
not sensitive to the electric potential differences.

Simulations of the model initialised with 10* channels in the state Py
show that the amount of channels in the others states increases transiently
and then reaches an equilibrium, Figure 5.5. As the value of A¢ = ¢1 — ¢
increases the equilibrium is characterised by a higher and higher fraction
of channels in the inactive state, from 0.61% at A¢ = —0.170 to 99.65% at
A¢ = —0.010, Figure 5.6. The variation of the fraction of inactive channels
in response to the value of the membrane potential difference is in close
agreement with the experimental measurements presented in [62], concerning
a cardiac sodium channel (Figure 5.7).
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Figure 5.5: Dynamics of the Na™ VGC states at A¢ = —0.010V.
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Figure 5.6: Dynamics of the inactive channels P; in response to different

values of Ag.
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Figure 5.7: Fraction of channels not inactivated under different electric
potential difference conditions. Points are adapted from data presented in [62]
and concerning a cardiac sodium channel.

5.5 Discussion

In this chapter we have introduced a further extension of ST-DPPs (desig-
nated as ES7-DPPs) in which we considered objects associated to a value
representing their electrical charge and membranes (compartments) asso-
ciated to a value representing the electric potential. To describe the time
evolution of EST-DPPs we have introduced two novel classes of propensity
functions derived from physical arguments. Therefore, the current version
of the EST-DPP simulation technique includes three classes of propensity
functions (Table 5.3): class I is based on the mass action law and is used to
model reactions and particle diffusion; class II is derived from the equation
for the drift velocity and is required to model particle diffusion due to an
electric potential gradient; lastly, class III is derived from Boltzmann-Maxwell
distribution and concerns VGCs state transitions due to an electric potential
difference.

The EST-DPP algorithm updates the membrane electric potential at each
step of the simulation assuming that the two modelled regions are separated
by a semipermeable membrane such that it is possible to use the standard
equation for the capacitor.

We discussed two test cases to show the correct functioning of the new
propensities and of the EST-DPP algorithm. The first test case (related
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Table 5.3: The three classes of propensity functions used by the EST-DPP
algorithm and type of processes which they model. See the text for details.

class definition processes modelled

I c-h

mass action process
particle diffusion (concentration)
11 d(@)-h=c-¢-h particle diffusion (electric potential)
I1I " (A@) -h =c-exp ( ;;%?) - h  state transitions (electric potential difference)

to propensities of class II) concerns the reproduction of the dynamics of
an ion between two regions in which both a molecule number gradient and
an electric potential gradient is present. The system correctly reaches the
electric potential difference required to sustain the molecule number gradient.
The second test case (related to propensities of class III) deals with state
transitions of a (generic) Nat VGC. The response of the VGC to different
value of the electric potential difference is in close agreement respect to the
experimental data that we collected from literature.

Powered by the new propensities, EST-DPPs enables the modelling of
biochemical processes taking into account the effects of electric potential
over molecule diffusion and VGC state transitions. As a consequence, the
modelling capabilities of EST-DPPs cover a wider ensemble of biological
situations compared to its precursor.

There are many examples of biological processes in which living cells take
advantage from the presence of a membrane potential. Considering nervous
systems, one only needs to think at the action potential and its relation to pre-
and post- synaptic signalling cascades: in response to membrane potential
variations, neurotransmitters or sensory stimuli (temperature, mechanical),
VGCs establish ion fluxes leading to action potentials or the activation
of signalling cascades, e.g. in case of the calcium ion (one of the most
important second messengers?) [12]. Another example is the mitochondrial
membrane potential, the alteration of which can be related to cell growth,
cell differentiation and cell motility [30], stress [103] and aging [97].

Currently, EST-DPPs consider only systems composed by two compart-
ments and manage the diffusion of only one type of charge (either positive
or negative). These two issues will be further investigated in future in order
to obtain a more comprehensive modelling approach.

3Second messengers are components of signal transduction cascades; in this context,
they greatly amplify the strength of the signal.



Grid computing for large scale simulations

Grid computing is a useful solution to compute a large number of independent
simulations that can be required during the development and analysis of a
kinetic model. The advantage of using a grid approach for large computational
challenges relies on the high-end scalability of this technology. In fact, if
grid jobs are completely independent, then the theoretical scalability of the
system is linear. This is not true for real computations, due to the time
needed for scheduling jobs, for transferring data and for resubmitting failed
jobs. As the communication among independent grid jobs is a factor that
decreases grid performance, data parallel applications are the best candidate
for grid computing. These applications split the computation of the input
data in a series of independent processes and collect the results at the end of
the computation.

In this chapter we study the use of grid for large scale simulations
computed with 7-DPP. In particular, we exploit the EGEE project grid
by means of the BioMed Virtual Organisation (see Chapter 3). As each
simulation is independent, grid represent a reliable solution to deal with
this computational load. We point out critical factors, bottlenecks and
scalability considering the results obtained from the simulations of a bacterial
chemotaxis model. The results obtained from this analysis represent a useful
benchmark for the future implementation of more sophisticated approaches
for the analysis of kinetic models (such as sensitivity analysis and parameter
estimation), that require several simulations of the system.

6.1 Distribution of PSAs on the EGEE project
grid

A crucial factor in performing a grid computation is the identification of a
suitable strategy for splitting it into a set of grid jobs, which means defining
the granularity of the computation. Jobs lasting more than 45 minutes are
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defined long jobs, compared to middle jobs (between 5 and 45 minutes) and
short jobs (less than 5 minutes).

However, the identification of the best granularity for a given application
is not a trivial task. The computation of long jobs on the grid may cause
significant data loss in the case of system failure or problems in the data
transfer. On the other hand, the execution of a large number of short
jobs raises the total latency time in the batch queues, affecting the global
performance of the system. Moreover, the size of the output results should be
considered, due to the impact of the transfer time on the total computation
efficiency. Middle and long jobs are generally considered the most suitable
to exploit grid computing because they represent a good trade-off between
grid latency and failure problems [50].

For this reason we performed different PSAs, by varying the number of
jobs and the number of simulations performed in each job, and by altering
the computation time using different strategies of parameter selection and
consequently the size of the output files. To enable the execution of a large
number of 7-DPP based simulations over the grid platform, the CCS [79]
has been adapted to satisfy the application requirements. While the lower
layer was updated to be compliant with the latest release of the EGEE grid
middleware, the upper layer was customised for these specific applications.
Two scripts have been modified to manage the input and output of the PSAs
computations: the first concerns the input management, while the second
coordinates the job execution on the remote resource.

The first script splits the computation into grid jobs according to the
desired granularity. This script populates a directory in which all the
required files for each single job are temporary collected for submission (the
7-DPP program and a folder tree containing the previously generated input
parameter files for the simulations) and creates the JDL (job description
language) script which describes the job. Then, it calls the lower layer for
the real submission to the grid, specifying some important parameters such
as the maximum number of resubmissions in case of failure (which overcomes
most of the problems due to the dynamic reshape of the grid facilities), the
maximum time for the job to be queued on a grid cluster before its deletion
and resubmission (to avoid over-crowded computational resources), and the
output directory on the local server where results will be collected.

The second script of the CCS which must be customised, is the one
actually executed on the remote clusters. This script manages the input files,
unpacking the input from the InputSandBox, defines the operation pipeline
to be carried out on the remote resources (in this case it performs many
7-DPP executions according to the specified input granularity), rebuilds the
output directory in a structure which allows easy evaluation of the results,
packs files to be retrieved and transfers the output results. Following the
definition of PSA given in Section 3, the output of a general purpose PSA
dealing with stochastic simulations is constituted by the set of calculated
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dynamics . In this case, storage elements (SEs) must be used to archive
the numerical results before downloading them to the user interface (UI).
This approach is essential when the complete numerical results need to
be retrieved for further investigations of the system’s dynamics. However,
preliminary analysis of grid performance suggested that the output data size
have a significant effect on both the computation overhead and the success
rate of the grid infrastructure.

Hence, in order to test the grid infrastructure in a wider range of condi-
tions, we developed another approach in which the analysis of the dynamics
is done just after the simulations. In this case the output is significantly
reduced: instead of the complete time series for each molecular species, a
scalar value that summarises the analysis is retrieved immediately through
the OutputSandBox, without using the SEs. Clearly, there is a loss of in-
formation in evaluating the system behaviour directly on the grid platform,
but an improvement of the performance is expected.

In other words, we developed two different implementations. The first one,
designated as implementation A, in which the whole dynamics is retrieved.
The second one, implementation B, in which the dynamics are analysed
within the relative remote resource and only the result of the analysis is
retrieved.

6.1.1 Analysis of the model dynamics

The results of the stochastic simulations performed during a PSA can be
analysed in order to obtain some information about the biochemical system
under investigation. Here, we consider a function f that measures the
“difference” between a given experimental outcome, which represents the
observed behaviour of the system, with the dynamics obtained by means
of a simulation with a particular set of parameters. In this case, the aim
of this analysis is to quantify the variation of the system’s behaviour as a
consequence of the variation of the stochastic constant values.

Working in the field of stochastic simulation, the definition of the function
f used during our analysis is based on the idea of comparing the target
dynamics (TD) with the estimated dynamics (ED), which are generated by
using the 7-DPP stochastic simulation algorithm. Therefore, we have to
manage some troublesome properties, hereby discussed, that are inherent to
stochastic simulations.

First of all, the time instants (except the initial one) of the ED series will
be distinct from those sampled in the TD series, since the two methods use
different time samplings and, above all, each simulation performed by using
a stochastic algorithm generates a different time series (hence, it does not
correspond to the constant-step temporal sampling of TD). In addition, the
time interval between any couple of consecutive time instants of the ED series
will generally be distinct from every other time interval in the same series.
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Therefore, the comparison between the two time series is achieved by first
computing a linear interpolation between points of the TD in correspondence
to the points of the ED, and then by summing up the areas of the trapezoids
defined by the points of the two time series. The function f is defined as
follows:

F=> %(|x;(7_z) — ()| + |2y (Tit1) — (1)) (i1 — 70) (6.1)
i

where z(7;) are points of one time series (Estimated Dynamics, ED) and
x'(7;) are the corresponding points obtained by a linear interpolation between
two consecutive points x(t;) and x(t;41) of the other time series (Target
Dynamics, TD); [ runs over the set of chemical species while 7 runs over the
set of points of the ED. An extensive description of the function used here
to evaluate the distance between two dynamics can be found in [15].

6.2 PSAs of a bacterial chemotaxis model

In this section we present a case study that can be considered a good test
to benchmark the grid infrastructure for future and more complex analysis
of biological and chemical systems. As a matter of fact, the relatively large
number of chemical reactions and molecular species, and the average time
required to perform a single stochastic simulation are all factors that makes
the bacterial chemotaxis model considered here a suitable test case to prove
the effectiveness of the grid infrastructure exploited to execute a PSA.

Chemotaxis allows bacterial cells to move in biased directions, in response
to concentration gradients of attractant or repellent ligands occurring in
their surrounding environment. This behaviour depends on the frequency
at which bacteria switch between clockwise and counter-clockwise rotation
of the flagella. If the ligand concentration remains constant over time, the
switching frequency is reset to the prestimulus level: this is an adaptation
to the ligand concentration change by returning to random walk motions.
The bacterial chemotaxis model we consider for this use case was presented
in [14] and is composed of 59 biochemical processes (see Appendix B).

6.2.1 PSAs settings and results

We have performed four PSAs (in the following called PSA1, PSA2, PSA3
and PSA4) that have been defined by creating a number of parameterisations
in which the stochastic constant values of the bacterial chemotaxis model
have been modified following different strategies. In particular, the results of
the PSAs have been analysed by using a distance function f which compares
the dynamics computed during the stochastic simulations with a reference
dynamics, namely a known behaviour of the bacterial chemotaxis model.
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More precisely, we considered the temporal evolution of CheY (precisely, of
its phosphorylated state CheYp). These analyses allowed us to test PSA
performance over grid in two general purpose scenarios: the first, in which
the whole set of dynamics is fully retrieved and is therefore available for
further analysis (implementation A); the second, in which the analysis of the
dynamics is performed remotely and only the results of the computation of
the function f on the obtained dynamics are retrieved (implementation B).

To keep the expected CPU time t&’" constant, in each PSA we assigned
the same number of simulations to each job. Conversely, with the aim
of experimenting the grid using different settings, the number of jobs and
simulations per job have been modified across the four PSAs. Therefore,
PSAs differ from each others both for the number of simulations per job and
for the number of grid jobs.

These settings have been selected such that 0.5h < t&"* < 3.5h, which
is the typical time of middle and long jobs, the most appropriate for a grid
computation. The t&'" was estimated computing a single job on an Intel
Xeon 2.5GHz, 10GB RAM.

In PSA1 and PSA2, only one element of the stochastic constants set C'
has been varied in every parameterisation p;. In PSA1, for each parameter c;,
10 simulations have been run using 10 values of ¢; linearly distributed within
the interval [0.5¢;, 1.5¢;]. A total of 590 simulations have been distributed
on grid, organised in 59 jobs, each one composed of 10 simulations. Every
simulation has been performed with a relatively long time length, 10 time
units, in order to check for potential late effects on the system’s dynamics.
The computation of a single job, relative to a ¢; , had ¢t ~ 45 and was
associated to a data volume of about 7T0MB (leading to a total data volume
of 4GB).

The results of PSA1 denoted that there were three most influential
parameters, cg, cg7 and c49, that affected the system’s dynamics. The
variation of the other stochastic constants had negligible effects on the
systems behaviour; therefore, for the subsequent PSA analysis we decided to
extend the range of variation to all the stochastic constants and to have a
finer grain sampling.

PSA2 has been composed of 5900 instances, organised in 59 jobs in which
each parameter ¢; has been varied 100 times (logarithmically distributed)
considering the interval [1071¢;,10'¢;]. Every job had t&" ~ 90’ and was
associated to a data volume of about 25MB. The lower data volume with
respect to PSA1, despite the higher number of instances, was obtained
by reducing the length of the single simulations down to 2 time units.
Understandably, this gave an output of about 1.5 GB.

The results of PSA2 confirmed those obtained from PSA1. As depicted
in Figure 6.1, parameters cg, c37, c49 highly influence the systems dynam-
ics, while the other stochastic constants have little effect on the system’s
behaviour. These results confirm that the crucial points of the model, consid-
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Figure 6.1: Values of function f obtained varying a single parameter for
each parametrisation in PSA2. The z-axis represents the indexes j of the
59 stochastic constants c; , while on the vertical axis there are the relative
intensities of the variation with respect to c;.

ering these ranges for the parameters, are represented by reactions involving
the methyl-accepting transmembrane protein in the highly methylated state.

PSA3 and PSA4 have been composed of 10000 simulations each: 100 jobs,
of 100 simulations each, have been distributed on the grid. The samples have
been obtained using a quasi-random number generator within the interval
[1071¢;,101¢;]. Each simulation was performed with a time length of 10 time
units.

In PSAS3, every job had of about 230 minutes and produced an output
of 188MB in size (for a total of 19 GB), while PSA4 was characterised by
jobs with of about 30 minutes and produced 12MB in size (for a total of
1.2 GB). The differences in space occupation and computation time are
related to the different number of free parameters: 59 in PSA3 and 3 in
PSA4. Moreover, these results show that when varying 59 parameters at
the same time, the chances of achieving values that lead to faster dynamics
are higher. Using a stochastic algorithm this results in a higher number of
steps, and hence in greater occupation of resources and a larger output size.
The results of PSA3 have shown that, even though the parameterisation is
obtained quasi-randomly sampling all the 59 parameters, the most influent
parameter is ¢8. This is clear when comparing Figure 6.2a and Figure 6.2b
where we show the landscape of the function computed on the obtained
system’s dynamics of the 10000 simulations with respect to parameters (cs,
c37) and (cs, cq9), respectively, with Figure 6.3, where the values of the
function are plotted versus parameters c¢37, c49. The effect of parameter ¢8
induces an ordering of the function values. In particular, as the parameter
value decreases, the values of the function increase.

In PSA4, we performed 10000 simulations where the parameterisations
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have been defined by varying only the three most influent parameters of
the system. The aim of PSA4 was to investigate the 3-dimensional space
delimited by parameters cg, c37 and cq9. The results obtained highlight the
influence of parameter cg. The plateau of the values of the function have a
complex and noisy shape where particular combinations of parameter values
lead to dynamics that are far from the reference one Figure 6.3.

6.2.2 Performances

In this subsection we present the results related to the performance obtained
by executing the PSAs with the two implementations A and B.

6.2.2.1 Implementation A

As already said, implementation A is characterised by the analysis of the
system’s dynamics on the Ul after the computation of all the simulations
on the grid platform. The four PSAs have comprehensively an estimated
computational time of 24 days employing a single CPU, while over the
grid the full computation lasted 2 days. A commonly used metric of the
parallelisation gain during the grid computation is the crunching factor,
which is defined as the ratio between the total expected CPU time over a
single CPU and the duration of the experiment, that is the time needed to
accomplish the longest job. Hence, by formalizing the crunching factor as

N n; cpu
Cy = — 6.2
1= 22 (i) 6.2)
=1 j=1 7

where t,; ; is the total grid time spent to accomplish the job j, N is the
number of PSAs and n; is the number of jobs per PSA; we achieved compre-
hensively a result of C'y = 12. Cy basically represents the average number of
CPUs used simultaneously along the whole computation, taking into account
the longest job. Investigating the issues that lowered C, we discovered
that the number of processors used concurrently was significantly higher,
with a peak parallelism of 76 CPUs one hour after PSA3 submissions, when
almost all the jobs were started on the computing elements (CEs), Figure 6.4.
However, due to unforeseen failure, the scalability was considerably reduced.

Considering the four PSAs, a total of 318 jobs have been submitted to
the EGEE grid infrastructure: there were about 67% of the jobs reported as
successfully finished according to the status logged in the resource broker
(RB), at the first submission. However, the ratio went down to 57% after
checking the existence of the output. Generally, among the most frequently
reported problems there are: faults in the RB scheduling because resources
with the required characteristics were not available; faults in the jobs man-
agement by the CEs queue, due to overload problems incorrectly reported
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Figure 6.4: Cumulative frequency of grid jobs latency.

to the grid; and problems with the SEs files holding. In our tests the main
cause of job failure seemed to be the data transfer between the CEs and the
SEs and in a few cases, the unexpected termination of the jobs due to errors
on the CEs.

6.2.2.2 Implementation B

In this implementation the function f for the analysis of the system’s dynam-
ics is computed directly on the grid infrastructure, avoiding the full download
of the output data describing the entire system’s dynamics. Computing this
function during the simulations, the output was reduced to less than 1 MB for
each job, which can be stored using the OutputSandBox. Implementation B
has a success rate of 78%, according to the RB, which leads to roughly 75% of
results correctly retrieved. Also in this case, the expected computational time
was about 24 days on a single CPU because the computation of the function
that analyses the system’s dynamics is very fast. However, using this second
implementation, the whole computational time took only 30 hours, which
corresponds to C'y = 20. Similarly to implementation A, Cf is lower than
the peak number of processors used concurrently, which reached 81 CPUs
when almost all the jobs started to be computed by the CEs (Figure 6.4).

6.2.2.3 Comparison

Comparing the two implementations, the EGEE grid infrastructure’s poten-
tial can be investigated with the aim of avoiding the bottleneck represented
by the fragility of the distributed filesystem, and at the same time exploiting
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Table 6.1: Percentage variation of the average grid job CPU time (t;7*)
respect to the expected CPU time (¢eP*): (EgP* — teP™) /teP™ - 100, and average
grid job CPU time, in minutes.

Percentage variation ;" [min].

PSA | A B | A B
1 48 02 67 68
2 32 35 118 122
3 16 16 266 268
4 36 38 41 41

the power of its computational resources as much as possible.
By analysing the components of the total grid job time, three contributes
4l cpu | 4t
can be found t, =t, +t5 + g
. té, the job latency time: after the jobs submission, RBs route them
to the best available CEs; here, jobs enter in a queue and wait to be
executed; this waiting time is té and includes the time required to
upload the input file, the time needed to route the job by the RB, and
the time spent in the grid clusters queue;

o t": the effective CPU time on grid facility
. t;: the time required to download the output from the CE to the SE.

The job latency time was almost similar for all the PSA in both im-
plementations, Figure 6.4: in particular, 80’ had to be passed in order to
observe the execution of almost all the jobs. The average CPU time of a grid
job £ was always worse than te’" (Table 6.1). This result was expected
considering both the computer used for the simulations done to calculate ,
which is equipped with one of the latest processors and the resource sharing
on the remote facilities (memory and disks). However, considering that the
EGEE grid offers a large number of working nodes (WNs), the fact that the
expected average performance is “only” from 16% to 52% slower than an
Intel Xeon 2.5GHz with 10GB RAM is not a bad scenario.

In detail, both ¢, and ¢’ show large deviations Figure 6.5 that are caused
by the heterogeneity of the computational resources. Moreover, Figure 6.5
shows that implementation A is characterised by a large number of jobs with
high that affected the performance of the PSAs. Since both and of the four
PSAs are similar in the two implementations (Supplementary material S3),
tg was the factor which had the largest impact on the performance of the
system.

This trend is confirmed by the overhead ratio, defined as

O, = w (6.3)

cpu
tg
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which is shown in Figure 6.6. The overhead is an indicator of how much time
is spent “on the grid” in relation to the actual tg"". The distribution of the
O, values underlines the performance enhancement achieved with implemen-
tation B, which shows a higher density of low values than implementation
A. Furthermore, the best overhead was obtained during PSA3, indicating
that the best granularity, according to our study, was associated with = 230’
and equal to 266’ and 281, respectively, in implementation A and B. In
other words, the use of the grid is justified when the computational time is
considerably long, since for short jobs the té can be very large with respect to
the actual ¢, Therefore, the empirical idea we exposed about the relevance
of the job granularity is confirmed by the achieved results: while there is a
considerable failure rate which suggests that short tasks are performed more
efficiently, the job duration should be carefully considered in the trade off
with the large overhead of short jobs which do not fully exploit the grid’s
potential.

When a job computation is completed, the output must be retrieved on
the Ul In implementation A, the time needed for this task, tgi, corresponds
to the file transfer time from the SEs to the UI, while in the implementation
B, t;i is the time required to get the OutputSandBox back from the RB.
Clearly, the latter is considerably shorter than that needed to transfer the full
system’s dynamics from the grid distributed filesystem: the download took
approximately 100 seconds with implementation A while only 30 seconds
with the implementation B (Figure 6.7).

The values assumed by t;‘i have not been included in the previous perfor-
mance analysis because there is a random noise caused by the time between
each polling of the RB by the CCS. In particular, this time interval has been
set to 10 minutes in order to avoid a request overload on the grid infras-
tructure. The reason is that the output is retrieved on the UI only when its
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status is reported as successfully completed, and a direct interrogation of the
RB is needed to be informed of this status. In other words, the time elapsed
for the effective presence of the output results on the Ul has an uncertain
component, due to the interval between two consecutive interrogations of
the RB. Hence, the time we can effectively measure is the time needed for
the mere transfer from the grid infrastructure to our Ul

Due to the authentication on the grid facilities and to the interrogation
of the distributed filesystem, t;i has a large overhead which is considerably
high for small files but decreases while dealing with large data. For example,
files of a few MB had a transfer rate of about 33KB/sec, files of tens of
MB had transfer rate of about 90KB/sec and files larger than 100MB had a
transfer rate of about 140 KB/sec.

In implementation B, the job success rate increased by about 18%, from
57% to 75%. Moreover, the resubmission ratio decreased from a peak of 5
times per job in implementation A to a maximum of 3 times in implementation
B. The remaining faults can hardly be eliminated, because they are due
to unrecoverable hardware problems (such as hard disk burns, RAM and
motherboard failures or power supply discontinuities) and network access
disruption or missconfiguration, which are factors that can lead to many job
failures.

6.3 Discussion

PSA allows to repeat a large number of simulations of a biochemical system,
each one with a different parametrisation, including variations - in the context
of stochastic modelling - of the molecular species, chemical reactions, initial
molecular quantities and stochastic constant values. Due to the independence
of each instance of this particular kind of PSA and the large number of
simulations to be run, grid computing offers a well-suited solution to this
problem.

In this study we reported our experience with the distribution of stochas-
tic simulations over the EGEE project grid. We focused on proving the
effectiveness of the PSA approach and we tested the EGEE grid infras-
tructure to show its performance and its bottlenecks for this application,
providing useful insights for future development. In particular, we adapted
a fault-tolerant framework to handle the complete distribution process of
running PSAs over the EGEE grid. We developed two implementations: one
in which the simulations dynamics are retrieved, and the other in which
the dynamics are analysed remotely. As a case study, we ran four PSAs for
both implementations in which we varied the stochastic constant values of
a bacterial chemotaxis model and analysed its behaviour with respect to
reference dynamics.

The EGEE grid proved to be a useful solution for the distribution of
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PSAs concerning the stochastic simulations of biochemical systems. This
platform demonstrated its efficiency in the context of our middle-size test,
and considering that the more intensive the computation is, the more scalable
is the infrastructure, grid computing can be a suitable technology for large
scale biological model analysis. However, due to the high failure rate, a
complete submission and monitoring environment, like the CCS (introduced
in [79] and customized for the management of the PSAs that we run), should
be set up in order to appropriately manage the volume of data.

Moreover, in our experience the granularity of the submitted jobs and
the use of SEs for managing files are elements to carefully consider when
using the grid infrastructure. We obtained the lowest overhead with jobs
of around 230mins and a 15% decrease of failed jobs avoiding the use of
SEs. As expected, the grid resources revealed their heterogeneity, which
suggests running preliminary tests to trace the behaviour of different grid
sites, preventing the use of computation resources that are particularly
inefficient and promoting those with suitable performances.

The results achieved in this study encourage the use of our framework
in the context of approaches such as sensitivity analysis and parameter
estimation, which require a large number of simulations in order to calculate
the model response. Moreover, our framework can be used to evaluate the
performances of the simulator according to its initial settings, in order to
find its optimal parametrisation according to the model under investigation.
With minor modifications the framework can be used also to handle parallel
implementation of the simulation engine. In this case, the single grid job
will be computed on more than one WN, but a test should be performed to
determine the impact of the eventual increase of the grid job latency time,
due to the need for more than one WN per grid job.
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Conclusion and Future Developments

The work presented in this thesis has been motivated by the need to extend
the current formalisms and computational methods for the modelling and
simulation of biological systems, in order to capture a more comprehensive
set of biological systems properties. Moreover we wanted to study a solution
to manage a large number of simulations.

We took into account membrane systems since they represent an expres-
sive formalism to model living systems [90] and stochastic methods (and more
precisely those inspired by the Gillespie’s stochastic simulation algorithm
(SSA) [53]) for the simulation of the time evolution of a given system of
biochemical processes, since noise plays an important role in many biological
processes [41, 76, 43]. As 7-DPPs [27] are an approach that associates a mem-
brane systems variant (Dynamical Probabilistic P systems) with a stochastic
simulation algorithm (a modified version of the tau leaping algorithm, a
computationally efficient approximation of the SSA), we took 7-DPPs into
consideration as a basis of this thesis work. Concerning the management of a
large number of (independent) simulations we exploited the grid computing
as this platform represent a good solution for data parallel applications, in
which the computation of input data is split in a number of independent
processes and then the results are collected. More precisely, we used the
EGEE (Enabling Grid for E-sciencE) project grid infrastructure as it is the
main European grid computing platform.

We noticed that both current membrane systems and the most important
stochastic simulation methods inspired by the SSA lack the explicit considera-
tion of both molecules’ and compartments’ volume occupancy. The modelling
of this feature enables the simulation of an important property of living cells,
molecular crowding and, more precisely, the effects that molecular crowding
has over the dynamics of processes that take place in the cytoplasm [98].

We studied from a theoretical point of view the consequences of objects’
and membranes’ volume occupation on the computational universality of
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membrane systems. To achieve this goal we introduced the Spatially extended
P systems (shortly, SP systems), where both the objects and regions occupy
a finite amount of volume (or, equally, the objects and regions have a given
size). As a consequence of the definitions of volumes, the dynamics of
the system are affected by the availability of free space inside the regions.
Therefore, unlike current membrane systems, only a finite number of objects
can occupy a given region. We found that SP systems simulate efficiently a
Turing Machine both considering the time and space required by the system.
Moreover, we demonstrated that to achieve this result SP systems show an
efficient volume occupation. More precisely, the volume required is a linear
function of the space required by the Turing Machine. This result supports
the idea that living cells can be powerful computing devices.

Then, we presented ST-DPPs, the integration of SP systems, tissue P
systems and 7-DPPs. ST-DPPs permit cell-like and tissue like (as tissue P
systems) membrane structures, extend the modelling capabilities of T-DPPs
by means of the introduction of both objects’ and compartments’ volume
occupation (as SP systems) and the possibility of communication between
non-adjacent regions. In order to describe the time evolution of ST-DPPs we
modified the 7-DPP algorithm. These additional features allow S7-DPPs to
be used for the modelling of crowded systems and structured geometries.

We showed that ST-DPPs can be used to model and simulate the diffusion
of molecules introducing a reasonably small error, calculated in comparison
with an analytic solution of the heat equation. The error was slightly higher
compared to the one made with SSA in the same context, but we think that
the lower computational cost of ST-DPPs (due to the use of the tau leaping)
compared to SSA justifies the slightly higher error. Moreover, we presented
two models as test cases to illustrate how S7-DPPs can be used to study
crowding effects on intracellular dynamics: the first model was devoted to
show that it is possible to reproduce a decrease of the diffusion rate of a
particle in a crowded environment; with the second model we captured the
heterogeneous probability of reaction in the different regions of a crowded
medium. A third test case concerned a structured geometry; more precisely,
we illustrated that ST-DPPs can be used to analyse the diffusion of two
molecular species through a series of regions characterised by the presence
of a preferential communication path representing a microtubule (a sort of
“railway” for intracellular trafficking of objects, such as macromolecules and
vesicles).

Subsequently, we proceeded considering electrical properties of living cells.
We took into consideration the membrane potential difference, a property
of living cells’ membranes exploited as a battery to activate downstream
processes and to transmit information. In particular, we extended ST-DPPs
to capture the effect of membrane potential difference on charged species
diffusion and voltage gated channels (VGCs) state transitions. We designated
EST-DPPs this novel version of membrane systems.
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To reproduce the two consequences of membrane potential difference that
we have just mentioned, we added a number of features (such as object charges,
membrane electric potentials and capacitances) to the previous formalism,
and we defined two novel propensity functions in addition to the one used by
the ST-DPP algorithm. We introduced a propensity function (designated as
propensity functions of class II) in order to obtain the probability of diffusion
of a charged species due to the presence of an electric potential gradient
and we derived its expression taking into account the equations defining the
conservation of mass and the flux due to an electric potential gradient. We
introduced the other propensity function (designated as propensity functions
of class III) to obtain the probability of state transition of a VGC, and we
derived its expression from the Boltzmann-Maxwell distribution.

In order to describe the time evolution of EST-DPPs,; we modified the St-
DPP algorithm. To update the membrane potential difference due to a flux
of ions between two regions we assumed that the membrane separating these
two regions behaves as a capacitor (a reasonable assumption for biological
membranes). Mainly for this assumption the current version of EST-DPPs can
model only systems composed by two compartments, such as the extracellular
space and the intracellular environment, or the matrix and the intermembrane
space of a mithocondrion. Powered by the new propensities, EST-DPPs
enables the modelling of biochemical processes taking into account the
effects of electric potential over molecule diffusion and VGC state transitions.
Coupling these two mechanism it is possible to model a number of biological
processes in which living cells take advantage from the presence of a membrane
potential. Considering nervous systems, one only needs to think at the action
potential and the complex pre- and post-synaptic signalling cascades; another
example is the mitochondrial membrane potential, the alteration of which
can be related to cell growth, cell differentiation and cell motility [30], stress
[103] and aging [97].

To demonstrate the effective functioning of the EST-DPP algorithm, we
considered two test cases. First, we showed that a model for ion diffusion
between two regions, in which the number of ions is maintained at two
different constant values and where an electric potential difference is available,
correctly reaches the expected state as predicted by the Nernst equation.
Second, we modelled the state transitions of a VGC and we obtained that the
fraction of not-inactivated channels was in close agreement with experimental
data collected from literature.

In parallel to the development of ST-DPPs and EST-DPPs, we studied
grid computing to manage a large number of independent simulations. In
fact, different approaches for the analysis of a model require the repeated
simulation of the model with a different set of parameters, such as parameter
estimation (e.g. in the case of genetic algorithms) and sensitivity analysis.
The execution of the same application with different parametrisations is
designated as parameter sweep application (PSA). As PSAs can be treated as
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data parallel applications, grid computing is a good solution. We performed
a set of PSAs of a bacterial chemotaxis model exploiting the EGEE project
grid infrastructure, one of the biggest of its kind. During the study we
compared two possible scenarios, an implementation associated to a heavier
output and an implementation characterised by a higher computational
cost. Despite the grid infrastructure has a series of critical factors (such
as resource heterogeneity, significant failure due to storage elements) our
study encourages the exploitation of this high-throughput solution for more
sophisticated applications, such as sensitivity analysis. In fact, there are a
series of expedients to deal with such issues (such as the use of a monitoring
and re-submission tool and pilot jobs to test the current state of the grid)
and the overall performance of grid during our middle-size test is appreciable.

In conclusion, the membrane systems variants ST-DPPs and EST-DPPs
(equipped with stochastic algorithms for the computation of the temporal
evolution) developed in this thesis work increase the set of biological systems
that can be investigated in silico. The additional features we have developed
did not affect the computational cost, since both ST-DPP and EST-DPP
algorithms have the same computational cost (2mn) of the 7-DPP algorithm
(where m is the number of compartments while n is the number of rules).

It is also important to recall that while ST-DPPs an EST-DPPs are a
powerful modelling framework, they imply a series of assumptions (such as
well-stirred compartments, division of the space domain in a set of homo-
geneous subregions in order to simulate diffusion, membranes considered as
capacitors) that have to be carefully considered for the correct interpretation
of the results. Whether the assumptions of a model are reasonable or not
depend on the real systems that we want to model and from the aims of
the study, and hence, the task of the proper creation of a model and of its
correct parametrisation is obviously left to the modeller.

In future, we plan to improve both the formalisations and the algorithms
that we presented in this thesis. For example, ST-DPPs can not model and
simulate objects bigger than a single compartment, which conversely can be
convenient for the analysis of big crowding agents in a tightly discretised
space domain; instead, EST-DPPs are currently limited to systems made by
two compartments and only one type of charge within the same system. If on
the one hand this issue can represent a limit for the application of EST-DPPs
for the modelling of biological systems, on the other hand, many important
biological processes are regulated by a single type of ion (e.g. calcium ion as
a second messenger in many signalling cascades) or by combination of ions
with the same type of charge (e.g. the action potential in excitable cells is
mainly due to sodium and potassium ions). Lastly, we plan to optimize the
parallel (MPI) implementation of both the ST-DPP and EST-DPP algorithms,
which are currently limited to a one-to-one relationship between processes
and compartments, a limiting factor for the simulation of discrete spaces
composed by a high number of compartments. Lastly, as grid computing
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demonstrated to be a useful approach to handle a large number of simulations,
we plan to develop a solution to manage the simulations required in the
context of sensitivity analysis.
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Theory of Computation: useful definitions

In this Appendix we report some definitions concerning the Turing Machine
and P systems in relation to the theoretical study presented in Chapter 4.

A.1 Turing Machine

Turing machines were proposed in 1936 By Alan Turing. A Turing machine
is an accurate model of general computer and can do everything that a real
computer can do. Nevertheless, even a Turing machine can not solve certain
problems, and these problems are currently considered beyond the theoretical
limits of computation.

The single tape DTM is the more simple model of TM. In fact, despite
there are several types of TMs, such as multi-tape TMs or nondeterminstic
TMs, they have the same power, i.e. they recognise the same class of
languages.

A TM operates on an infinite tape (unlimited memory). Initially the tape
contains only the input string and it is blank everywhere else. A TM has a
tape head which reads and writes symbol over the tape and moves around it.
Hence, the TM can store and read an unlimited amount of information. The
machine computes until it reaches an accepting or rejecting state. Otherwise,
it will never halt.

Definition A.1.1. A single tape DTM is a tuple
M = (Q525F757 q07A7R) (Al)
where:

e () is a finite set of states;

e X is finite input alphabet;
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I" is the tape alphabet, a finite superset of 3;

0:T'xQ—=T xQ x{«,—,—} is the transition function; it assumed
that 0 is undefined on both accepting and rejecting states;

e A C (Q is the set of accepting states;

R C Q is the set of rejecting states.

The machine is initialised with an input string w = s189...8, € %*
placed at the leftmost cell of the tape, while the rest of the tape contains
blank symbols. The computation starts as the tape head reads the leftmost
symbol over the tape. As ¥ does not contain the blank symbol, the first
blank symbol marks the end of the input. The computation proceeds with
the execution of the transition function. If M ever tries to move to the left
off the first cell (at the left-hand end of the tape), the tape head stays in the
same location. The computation ends only if the current state belongs to A
or R.

Definition A.1.2. Let M be a DTM. The time complexity (or running
time) of M s the function f : N — N where f(n) is the mazimum number
of steps that M wuses on any input of length n.

Definition A.1.3. Let M be a DTM. The space complexity of M is the
function g : N +— N where g(n) is the mazimum number of tape cells that M
scans on any input of length n.

A.2 P systems

Definition A.2.1. A recogniser P system Il has an alphabet composed by
the two objects yes and no, used to communicate acceptance and rejection
respectively; every computation of 11 is halting and one object between yes
and no is sent out from the skin membrane in each computation. If all
computations starting from the initial configuration agree on the result, then
IT is confluent; otherwise it is non-confluent; the global result is acceptance
if an accepting computation exists.

Definition A.2.2. Let IT be an P system and the size |C| of a configuration
C of II be the sum of the membranes and the total number of objects these
membranes contain. The space complexity of Il is the function g : N+— N
where g(n) is the size of the largest configuration that II requires on any
iput of length n.

Definition A.2.3. Let II be an P system. The time complexity of II is
the function f : N+ N where f(n) is the maximum number of steps that IT
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uses on any input of length n. Let the size |C| of a configuration C' of II be
the sum of the membranes and the total number of objects these membranes
contain. The space complexity of IT is the function g : N — N where g(n) is
the size of the largest configuration that II requires on any input of length n.

Definition A.2.4. A function f : N+ N is said to be time-constructable iff
the mapping 1" — 170 j.e. from the unary representation of n to the unary
representation of f(n), can be computed by a DTM in O(f(n)) time. The
function is space-constructable iff the mapping 1" — 17 can be computed
by a DTM in O(f(n)) space.
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Bacterial Chemotaxis Model

In this Appendix we describe the bacaterial chemotaxis model introduced
n [14], that we used for PSAs described in Chapter 6.

The chemotaxis signal transduction pathway is composed of two main
parts: (1) a signal sensor module, constituted by a receptor complex involving
a (methyl-accepting) transmembrane protein (MCP), an adaptor protein
(CheW) and a transmitter kinase protein (CheA); (2) a response regulator
module, constituted by a methylesterase (CheB), a methyltransferase (CheR),
the response regulator protein (CheY) and a CheY-regulator protein (CheZ).

The chemical reactions describing the Bacterial Chemotaxis system are
listed in Table B.1.The reactions describe the following molecular interactions:
(1) formation of the receptor complex 2MCP::2CheW::2CheA (reaction 1-4);
(2) binding and unbinding of ligand molecules to the receptor complex in
different methylation states (reactions 28-37); (3) methylation and demethy-
lation of the receptor in presence/absence of ligand molecules (reactions 5-12
and 38-45); (4) autophosphorylation of CheA in different methylation states
of MCP, in presence/absence of ligand molecules (reactions 13-17 and 46-49);
(5) phosphotransfer to CheY and CheB in different methylation states of
MCP, in presence/absence of ligand molecules (reactions 18-27 and 50-57);
(6) dephosphorylation of CheYp and CheBp (reactions 58-59).

Each reaction is characterised by a stochastic constant needed to recon-
struct the temporal evolution of the species that accounts for the following
biological features: the binding affinity of the ligand is directly propor-
tional to the methylation state of the receptor; the ligand-receptor binding
reactions occur at a faster rate compared to phosphorylation and methyla-
tion/demethylation reactions; the methylation and demethylation activities
of CheR and CheBp are, respectively, inversely and directly proportional to
the methylation state of the receptor.

The initial conditions we used to calculate the temporal evolution of the
protein CheYp (designated as reference condition, TD, see Chapter 6) are
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reported in Table B.2, while the stochastic constants set used for the 59
reactions is: C'= {¢; = 0.1,¢2 = 0.01,¢3 = 0.1,¢4 = 0.02,¢5 = 5.0-1077, ¢ =
5.0 - 1074,07 =20- 1074,08 = 0.0080,c9 = 1.0,c19 = 0.6,c11 = 15.0,c12 =
0.35,¢13="5.0-10"",¢c14 =5.0- 1074, ¢15 =2.0- 1074, ¢16 = 6.0 - 1074, ¢17 =
0.325, Cl18 — 7.0 - 1076, Cl9 — 0.0035,020 = 0.0014, Co1 = 0.0044, Coo =
0.8, ca3 = 15.0, coq = 0.325, co5 = 7.0 - 107, c96 = 0.0035, co7 = 0.0014, cog =
0.0044, Co9 = 0.29, C30 = 2.8'10_5, C31 = 0.014, C3g — 0.0056, C33 — 0.0175, C34 =
1.0,635 = 15.0,036 = 0.29, C37 = 2.8 - 10_57038 = 0.014, C39 — 0.0056,C4o =
0.0175, 41 = 0.165, cs42 = 5.0-107°, ¢43 = 0.025, c44 = 0.01, c45 = 0.0306, c46 =
1.2,047 = 15.0,048 = 0.165,649 =5.0- 1075,650 = 0.03,651 = 0.0112,052 =
0.0343, C53 = 0.05, C54 = 6.8'10_5, Cs5 — 0.0336, Cs56 — 0.0135, Cy7 — 0.035, C58 —
1.4, C59 = 150}

Table B.1: Bacterial Chemotaxis reactions.

Reagents Produtcs

1 2MCP™+42CheW 2MCP™::2CheW

2 2MCP™::2CheW 2MCP™+2CheW

3 2MCP™::2CheW+2CheA 2MCP™::2CheW::2CheA

4 2MCP™::2CheW::2CheA 2MCP"™::2CheW+2CheA

5-8 2MCP™::2CheW::2CheA+CheR 2MCP"™+1::2CheW::2CheA+CheR
9-12 2MCP™::2CheW::2CheA+CheBp 2MCP™1::2CheW::2CheA+CheBp
13-17  2MCP"::2CheW::2CheA+ATP 2MCP"™::2CheW::2CheAp
18-22  2MCP"::2CheW::2CheAp+CheY 2MCP™::2CheW::2CheA+CheYp
23-27  2MCP™::2CheW::2CheAp+CheB 2MCP™::2CheW::2CheA+CheBp
28-32  lig + 2MCP™::2CheW::2CheA lig::2MCP"::2CheW::2CheA
33-37  lig::2MCP™::2CheW::2CheA lig + 2MCP™::2CheW::2CheA
38-41 lig::2MCP™::2CheW::2CheA+CheR lig::2MCPm+l::2CheW::QCheA+CheR
42-45  lig::2MCP™::2CheW::2CheA+CheBp  lig::2MCP™!::2CheW::2CheA+CheBp
46-49  lig::2MCP"::2CheW::2CheA+ATP lig::2MCP"™::2CheW::2CheAp
50-53  lig::2MCP™::2CheW::2CheAp+CheY  lig::2MCP"™::2CheW::2CheA+CheYp
54-57  lig::2MCP™::2CheW::2CheAp+CheB  lig::2MCP"*::2CheW::2CheA+CheBp

58 CheYp+CheZ CheY+CheZ

59 CheBp CheB

Table B.2: Molecular species and initial copy number.

Species Initial copy number
2MCP 4000 dimers
2CheW 4000 dimers
2CheA 4000 dimers
CheY 17000 monomers
CheZ 12000 monomers
CheR 200 monomers
CheB 1700 monomers
ATP 1.2 -10% molecules
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