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Università degli Studi di Milano-Bicocca, via R. Cozzi 53, 20125 Milano, ITALIA.

Disponibile in formato elettronico sul sito www.matapp.unimib.it.
Segreteria di redazione: Ada Osmetti - Giuseppina Cogliandro
tel.: +39 02 6448 5755-5758 fax: +39 02 6448 5705

Esemplare fuori commercio per il deposito legale agli effetti della Legge 15 aprile 2004
n.106.



Smooth and Discontinuous Junctions

in the p-System

Rinaldo M. Colombo

Dipartimento di Matematica
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Abstract

Consider the p–system describing the subsonic flow of a fluid in a pipe
with section a = a(x). We prove that the resulting Cauchy problem
generates a Lipschitz semigroup, provided the total variation of the
initial datum and the oscillation of a are small. An explicit estimate
on the bound of the total variation of a is provided, showing that
at lower fluid speeds, higher total variations of a are acceptable. An
example shows that the bound on TV(a) is mandatory, for otherwise
the total variation of the solution may grow arbitrarily.

2000 Mathematics Subject Classification: 35L65, 76N10.
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1 Introduction

Consider a gas pipe with smoothly varying section. In the isentropic or
isothermal approximation, the dynamics of the fluid in the pipe is described
by the following system of Euler equations:





∂t(aρ) + ∂x(aq) = 0

∂t(aq) + ∂x


a
(
q2

ρ
+ p(ρ)

)
 = p (ρ) ∂xa,

(1.1)

where, as usual, ρ is the fluid density, q is the linear momentum density,
p = p(ρ) is the pressure and a = a(x) is cross-sectional area of the tube.
We provide a basic well posedness result for (1.1), under the assumptions
that the initial data is subsonic, has sufficiently small total variation and
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the oscillation in the pipe section a = a(x) is also small. We provide an
explicit bound on the total variation of a. As it is physically reasonable, as
the fluid speed increases this bound decreases and vanishes at sonic speed,
see (2.14).

As a tool in the study of (1.1) we use the system recently proposed for
the case of a sharp discontinuous change in the pipe’s section between the
values a− and a+, see [3, 7, 8]. This description is based on the p-system




∂tρ+ ∂xq = 0

∂tq + ∂x

(
q2

ρ + p(ρ)
)

= 0
(1.2)

equipped with a coupling condition at the junction of the form

Ψ
(
a−, (ρ, q)(t, 0−); a+, (ρ, q)(t, 0+)

)
= 0 (1.3)

whose role is essentially that of selecting stationary solutions.
Remark that the introduction of condition (1.3) is necessary as soon as

the section of the pipe is not smooth. The literature offers different choices
for this condition, see [3, 7, 8]. The construction below does not require any
specific choice of Ψ in (1.3), but applies to all conditions satisfying minimal
physically reasonable requirements, see (Σ0)–(Σ2)

On the contrary, if a ∈ W1,1 the product in the right hand side of the
second equation in (1.1) is well defined and system (1.1) is equivalent to the
2 × 2 system of conservation laws





∂tρ+ ∂xq = − q
a ∂xa

∂tq + ∂x

(
q2

ρ + p(ρ)
)

= − q2

aρ ∂xa .
(1.4)

Systems of this type were considered, for instance, in [5, 11, 13, 15, 16,
18, 21]. In this case the stationary solutions to (1.1) are characterized as
solutions to




∂x(a(x) q̂) = 0

∂x

(
a(x)

(
q2

ρ + p(ρ)
))

= p(ρ̂) ∂xa
or




∂xq = − q

a ∂xa

∂x

(
q2

ρ + p(ρ)
)

= − q2

aρ ∂xa ,
(1.5)

see Lemma 2.6 for a proof of the equivalence between (1.4) and (1.1).
Thus, the case of a smooth a induces a unique choice for condition (1.3),

see (2.3) and (2.19). Even with this choice, in the case of the isothermal
pressure law p(ρ) = c2ρ, we show below that a shock entering a pipe can
have its strength arbitrarily magnified, provided the total variation of the
pipe’s section is sufficiently high and the fluid speed is sufficiently near to
the sound speed, see Section 2.2. Recall, from the physical point of view,
that the present situation neglects friction, viscosity and the conservation of
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energy. Moreover, this example shows the necessity of a bound on the total
variation of the pipe section in any well posedness theorem for (1.1).

The next section is divided into three parts, the former one deals with a
pipe with a single junction, the second with a pipe with a piecewise constant
section and the latter with a pipe having a W1,1 section. All proofs are
gathered in Section 3.

2 Notation and Main Results

Throughout this paper, u denotes the pair (ρ, q) so that, for instance, u± =
(ρ±, q±), ū = (ρ̄, q̄), . . .. Correspondingly, we denote by f(u) =

(
q, P (ρ, q)

)

the flow in (1.2). Introduce also the notation R
+ = [0,+∞[, whereas R̊

+ =
]0,+∞[. Besides, we let a(x±) = limξ→x± a(ξ). Below, B(u; δ) denotes the
open ball centered in u with radius δ.

The pressure law p is assumed to satisfy the following requirement:

(P) p ∈ C2(R+; R+) is such that for all ρ > 0, p′(ρ) > 0 and p′′(ρ) ≥ 0.

The classical example is the γ-law, where p(ρ) = k ργ , for a suitable γ ≥ 1.
Recall the expressions of the eigenvalues λ1,2 and eigenvectors r1,2 of the

p-system, with c denoting the sound speed,

λ1(u) = q
ρ − c (ρ) , c (ρ) =

√
p′(ρ) , λ2(u) = q

ρ + c (ρ) ,

r1(u) =

[
−1

−λ1(u)

]
, r2(u) =

[
1

λ2(u)

]
.

(2.1)

The subsonic region is given by

A0 =
{
u ∈ R̊

+ × R:λ1(u) < 0 < λ2(u)
}
. (2.2)

For later use, we recall the quantities

flow of the linear momentum: P (u) =
q2

ρ
+ p(ρ)

total energy density: E(u) =
q2

2ρ
+ ρ

∫ ρ

ρ∗

p(r)

r2
dr

flow of the total energy density: F (u) =
q

ρ
·
(
E(u) + p(ρ)

)

where ρ∗ > 0 is a suitable fixed constant. As it is well known, see [10, for-
mula (3.3.21)], the pair (E,F ) plays the role of the (mathematical) entropy
- entropy flux pair.
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2.1 A Pipe with a Single Junction

This paragraph is devoted to (1.2)–(1.3). Fix the section ā > ∆, with ∆ > 0
and the state ū ∈ A0.

First, introduce a function Σ = Σ(a−, a+;u−) that describes the effects
of the junction when the section changes from a− to a+ and the state to the
left of the junction is u−. We specify the choice of (1.3) writing

Ψ(a−, u−; a+, u+) =

[
a+q+ − a−q−

a+P (u+) − a−P (u−)

]
− Σ(a−, a+;u−) . (2.3)

We pose the following assumptions on Σ:

(Σ0) Σ ∈ C1
(
[ā− ∆, ā+ ∆] ×B (ū; δ) ; R2

)
.

(Σ1) Σ(a, a;u−) = 0 for all a ∈ [ā− ∆, ā+ ∆] and all u− ∈ B(ū; δ).

Condition (Σ0) is a natural regularity condition. Condition (Σ1) is aimed
to comprehend the standard “no junction” situation: if a− = a+, then the
junction has no effects and Σ vanishes.

Conditions (Σ0)–(Σ1) ensure the existence of stationary solutions to
problem (1.2)–(1.3).

Lemma 2.1 Let (Σ0)–(Σ1) hold. Then, for any ā ∈ R̊
+, ū ∈ A0, there

exists a positive δ̄ and a Lipschitz map

T :
]
ā− δ̄, ā+ δ̄

[
×
]
ā− δ̄, ā+ δ̄

[
×B

(
ū; δ̄
)
→ A0 (2.4)

such that

Ψ(a−, u−; a+, u+) = 0
a− ∈

]
ā− δ̄, ā+ δ̄

[

a+ ∈
]
ā− δ̄, ā+ δ̄

[

u−, u+ ∈ B
(
ū; δ̄
)





⇐⇒ u+ = T (a−, a+;u−) .

In particular, T (ā, ā, ū) = ū. We may now state a final requirement on Σ:

(Σ2) Σ(a−, a0;u−) + Σ
(
a0, a+;T (a−, a0;u−)

)
= Σ(a−, a+;u−) .

With T as in Lemma 2.1. Alternatively, by (2.3), the above condition (Σ2)
can be restated as

Ψ(a−, u−; a0, u0) = 0
Ψ(a0, u0; a+, u+) = 0

}
⇒ Ψ(a−, u−; a+, u+) = 0 .

Condition (Σ2) says that if the two Riemann problems with initial states
(a−, u−), (a0, u0) and (a0, u0), (a+, u+) both yield the stationary solution,
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then also the Riemann problem with initial state (a−, u−) and (a+, u+) is
solved by the stationary solution.

Remark that the “natural” choice (2.19) implied by a smooth section
satisfies (Σ0), (Σ1) and (Σ2).

Denote now by û a map satisfying

û(x) =

{
û− if x < 0
û+ if x > 0

with
Ψ
(
a−, û−; a+, û+

)
= 0,

û−, û+ ∈ A0.
(2.5)

The existence of such a map follows from Lemma 2.1. Recall first the defi-
nition of weak Ψ-solution, see [7, Definition 2.1] and [8, Definition 2.1].

Definition 2.2 Let Σ satisfy (Σ0)–(Σ2). A weak Ψ-solution to (1.2)–
(1.3) is a map

u ∈ C0

(
R

+; û+ L1(R+; R̊+ × R)
)

u(t) ∈ BV(R; R̊+ × R) for a.e. t ∈ R
+

(2.6)

such that

(W) for all ϕ ∈ C1
c(R̊+ × R; R) whose support does not intersect x = 0

∫

R+

∫

R

(
u ∂tϕ+ f(u) ∂xϕ

)
dx dt = 0 ;

(Ψ) for a.e. t ∈ R
+ and with Ψ as in (2.3), the junction condition is met:

Ψ
(
a−, u(t, 0−); a+, u(t, 0+)

)
= 0 .

It is also an entropy solution if

(E) for all ϕ ∈ C1
c(R̊+ × R; R+) whose support does not intersect x = 0

∫

R+

∫

R

(
E(u) ∂tϕ+ F (u) ∂xϕ

)
dx dt ≥ 0 .

In the particular case of a Riemann Problem, i.e. of (1.1) with initial datum

u(0, x) =

{
u− if x > 0
u+ if x < 0 ,

Definition 2.2 reduces to [8, Definition 2.1].
To state the uniqueness property in the theorems below, we need to

introduce the following integral conditions, following [4, Theorem 9.2], see
also [14, Theorem 8] and [1]. Given a function u = u(t, x) and a point (τ, ξ),
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we denote by U ♯
(u;τ,ξ) the solution of the homogeneous Riemann Problem

consisting of (1.2)–(1.3)–(2.3) with initial datum at time τ

w(τ, x) =

{
limx→ξ− u(τ, x) if x < ξ
limx→ξ+ u(τ, x) if x > ξ .

(2.7)

and with Σ satisfying (Σ0), (Σ1) and (Σ2). Moreover, define U ♭
(u;τ,ξ) as the

solution of the linear hyperbolic Cauchy problem with constant coefficients

{
∂tω + ∂xÃω = 0 t ≥ τ
w(τ, x) = u(τ, x) ,

(2.8)

with Ã = Df
(
u(τ, ξ)

)
.

The next theorem applies [8, Theorem 3.2] to (1.2) with the choice (2.3)
to construct the semigroup generated by (1.2)–(1.3)–(2.3). The uniqueness
part follows from [14, Theorem 2].

Theorem 2.3 Let p satisfy (P) and Σ satisfy (Σ0)–(Σ2). Choose any
ā > 0, ū ∈ A0. Then, there exist a positive ∆ such that for all a−, a+ with∣∣a− − ā

∣∣ < ∆ and
∣∣a+ − ā

∣∣ < ∆, there exist a map û as in (2.5), positive
δ, L and a semigroup S: R+ ×D → D such that

1. D ⊇
{
u ∈ û+ L1(R;A0): TV(u− û) < δ

}
.

2. For all u ∈ D, S0u = u and for all t, s ≥ 0, StSsu = Ss+tu.

3. For all u, u′ ∈ D and for all t, t′ ≥ 0,

∥∥Stu− St′u
′
∥∥
L1

≤ L ·
(∥∥u− u′

∥∥
L1

+
∣∣t− t′

∣∣
)
.

4. If u ∈ D is piecewise constant, then for t small, Stu is the gluing of
solutions to Riemann problems at the points of jump in u and at the
junction at x = 0.

5. For all u ∈ D, the orbit t→ Stu is a weak Ψ-solution to (1.2).

6. Let λ̂ be an upper bound for the moduli of the characteristic speeds in
B̄
(
û(R), δ

)
. For all u ∈ D, the orbit u(t) = Stu satisfies the integral

conditions

(i) For all τ > 0 and ξ ∈ R,

lim
h→0

1

h

∫ ξ+hλ̂

ξ−hλ̂

∥∥∥u(τ + h, x) − U ♯
(u;τ,ξ)(τ + h, x)

∥∥∥ dx = 0 . (2.9)
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(ii) There exists a C > 0 such that for all τ > 0, a, b ∈ R and
ξ ∈ ]a, b[,

1

h

∫ b−hλ̂

a+hλ̂

∥∥∥u(τ + h, x) − U ♭
(u;τ,ξ) (τ + h, x)

∥∥∥dx

≤ C
[
TV

{
u(τ); ]a, b[

}]2
.

(2.10)

7. If a Lipschitz map w: R → D satisfies (2.9)–(2.10), then it coincides
with the semigroup orbit: w(t) = St

(
w(0)

)
.

The proof is deferred to Paragraph 3.1. Note that, similarly to what happens
in the standard case of [4, Theorem 9.2], condition (2.10) is always satisfied
at a junction.

2.2 A Pipe with Piecewise Constant Section

We consider now a tube with piecewise constant section

a = a0 χ]−∞,x1] +
n−1∑

j=1

aj χ[xj ,xj+1[ + an χ[xn,+∞[

for a suitable n ∈ N. The fluid in each pipe is modeled by (1.2). At each
junction xj , we require condition (1.3), namely

Ψ(aj−1, u
−
j ; aj , u

+
j ) = 0

for all j = 1, . . . , n, where
u±j = lim

x→xj±
uj(x) . (2.11)

We omit the formal definition of Ψ-solution to (1.2)–(1.3) in the present
case, since it is an obvious iteration of Definition 2.2.

Theorem 2.4 Let p satisfy (P) and Σ satisfy (Σ0)–(Σ2). For any ā > 0
and any ū ∈ A0 there exist positive M,∆, δ, L,M such that for any profile
satisfying

(A0) a ∈ PC
(
R; ]ā− ∆, ā+ ∆[

)
with TV(a) < M ,

there exists a piecewise constant stationary solution

û = û0χ]−∞,x1[ +
n−1∑

j=1

ûjχ]xj ,xj+1[ + ûnχ]xn,+∞[

to (1.2)–(2.11) satisfying

ûj ∈ A0 with
∣∣ûj − ū

∣∣ < δ for j = 0, . . . n

Ψ
(
aj−1, ûj−1; aj , ûj

)
= 0 for j = 1, . . . , n

TV(û) ≤ MTV(a) (2.12)

and a semigroup Sa: R+ ×Da → Da such that
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1. Da ⊇
{
u ∈ û+ L1(R;A0): TV(u− û) < δ

}
.

2. Sa
0 is the identity and for all t, s ≥ 0, Sa

t S
a
s = Sa

s+t.

3. For all u, u′ ∈ Da and for all t, t′ ≥ 0,
∥∥Sa

t u− Sa
t′u

′
∥∥
L1

≤ L ·
(∥∥(u) − u′

∥∥
L1

+
∣∣t− t′

∣∣
)
.

4. If u ∈ Da is piecewise constant, then for t small, Stu is the gluing of
solutions to Riemann problems at the points of jump in u and at each
junction xj.

5. For all u ∈ Da, the orbit t→ Sa
t u is a weak Ψ-solution to (1.2)–(2.11).

6. The semigroup satisfies the integral conditions (2.9)–(2.10) in 6. of
Theorem 2.3.

7. If a Lipschitz map w: R → D satisfies (2.9)–(2.10), then it coincides
with the semigroup orbit: w(t) = St

(
w(0)

)
.

Remark that δ and L depend on a only through ā and TV(a). In particular,
all the construction above is independent from the number of points of jump
in a. For every ū, we provide below an estimate of M at the leading order
in δ and ∆, see (3.11) and (3.8). In the case of Σ as in (2.19) and with the
isothermal pressure law, which obviously satisfies (P),

p(ρ) = c2ρ , (2.13)

the bounds (3.11) and (3.8) reduce to the simpler estimate

M =





ā

4e
if v̄/c ∈

]
0, 1/

√
2
]
,

ā

4e

1 − (v̄/c)2

(v̄/c)2
if v̄/c ∈

]
1/
√

2, 1
[
,

(2.14)

where v̄ = q̄/ρ̄. Note that, as it is physically reasonable, M is a weakly
decreasing function of v̄, so that at lower fluid speeds, higher values for the
total variation of the pipe’s section can be accepted.

Furthermore, the estimates proved in Section 3.2 show that the total
variation of the solution to (1.2)–(2.11) may grow unboundedly if TV(a) is
large. Consider the case in Figure 1. A wave σ−2 hits a junction where the
pipe’s section increases by ∆a > 0. From this interaction, the wave σ+

2 of
the second family arises, which hits the second junction where the section
diminishes by ∆a. At the leading term in ∆a, we have the estimate

∣∣∣σ++
2

∣∣∣ ≤
(

1 + K(v̄/c)

(
∆a

a

)2
)∣∣∣σ−2

∣∣∣ , where (2.15)

K(ξ) =
−1 + 8 ξ2 − 7 ξ4 + 2 ξ6

2(1 − ξ)3 (1 + ξ)3
, (2.16)
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x

x

∆a

a

σ−2

σ+
2

σ++
2

t
u+

(u)

2ll

Figure 1: A wave σ−2 hits a junction, giving rise to σ+
2 which hits a second

junction.

see Section 3.2 for the proof. Note that K(0) = −1 whereas limξ→1−K(ξ) =
+∞. Therefore, for any fixed ∆a, if v̄ is sufficiently near to c, repeating
the interactions in Figure 1 a sufficient number of times makes the 2 shock
waves arbitrarily large.

2.3 A Pipe with a W1,1 Section

In this paragraph, the pipe’s section a is assumed to satisfy

(A1)





a ∈ W1,1
(
R; ]ā− ∆, ā+ ∆[

)
for suitable ∆ > 0, ā > ∆

TV(a) < M for a suitable M > 0
a′(x) = 0 for a.e. x ∈ R \ [−X,X] for a suitable X > 0 .

For smooth solutions, the equivalence of (1.1) and (1.4) is immediate. Note
that the latter is in the standard form of a 1D conservation law and the
usual definition of weak entropy solution applies, see for instance [19, Defi-
nition 3.5.1] or [9, Section 6]. The definition below of weak entropy solution
to (1.1) makes the two systems fully equivalent also for non smooth solutions.

Definition 2.5 A weak solution to (1.1) is a map

u ∈ C0

(
R

+; û+ L1(R; R̊+ × R)
)

such that for all ϕ ∈ C1
c(R̊+ × R; R)

∫

R+

∫

R



[
aρ
aq

]
∂tϕ+

[
aq

aP (u)

]
∂xϕ+

[
0

p(ρ)∂xa

]
ϕ


dx dt = 0 . (2.17)

9



u is an entropy weak solution if, for any ϕ ∈ C1
c(R̊+ × R; R), ϕ ≥ 0,

∫

R+

∫

R

(
aE(u) ∂tϕ+ aF (u) ∂xϕ

)
dx dt ≥ 0 . (2.18)

Lemma 2.6 Let a satisfy (A1). Then, u is a weak entropy solution to (1.1)
in the sense of Definition 2.5, if and only if it is a weak entropy solution
of (1.4).

The proof is deferred to Section 3.3.
Now, the section a of the pipe is sufficiently regular to select stationary

solutions as solutions to either of the systems (1.5), which are equivalent by
Lemma 2.6. Hence, the smoothness of a also singles out a specific choice of
Σ, see [14, formula (14)].

Proposition 2.7 Fix a−, a+ ∈ ]ā− ∆, ā+ ∆[ and u− ∈ A0. Choose a
function a strictly monotone, in C1, that satisfies (A1) with a(−X−) = a−

and a(X+) = a+. Call ρ = Ra(x;u−) the ρ-component of the correspond-
ing solution to either of the Cauchy problems (1.5) with initial condition
u(−X) = u−. Then,

1. the function

Σ(a−, a+, u−) =




0∫ X

−X

p
(
Ra(x;u−)

)
a′(x) dx


 (2.19)

satisfies (Σ0)–(Σ2);

2. if ã is a strictly monotone function satisfying the same requirements
above for a, the corresponding map Σ̃ coincides with Σ.

The basic well posedness theorem in the present W1,1 case is stated similarly
to Theorem 2.4.

Theorem 2.8 Let p satisfy (P). For any ā > 0 and any ū ∈ A0 there exist
positive M,∆, δ, L such that for any profile a satisfying (A1) there exists a
stationary solution û to (1.1) satisfying

û ∈ A0 with
∥∥û(x) − ū

∥∥ < δ for all x ∈ R

and a semigroup Sa: R+ ×Da → Da such that

1. Da ⊇
{
u ∈ û+ L1(R;A0): TV(u− û) < δ

}
.

2. Sa
0 is the identity and for all t, s ≥ 0, Sa

t S
a
s = Sa

s+t.
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3. for all u, u′ ∈ Da and for all t, t′ ≥ 0,

∥∥Sa
t u− Sa

t′u
′
∥∥
L1

≤ L ·
(∥∥u− u′

∥∥
L1

+
∣∣t− t′

∣∣
)
.

4. for all u ∈ Da, the orbit t → Sa
t u is solution to (1.2) in the sense of

Definition 2.5.

5. Let λ̂ be an upper bound for the moduli of the characteristic speeds in
B̄
(
û(R), δ

)
. For all u ∈ D, the orbit u(t) = Stu satisfies the integral

conditions

(i) For all τ < 0 and ξ ∈ R,

lim
h→0

1

h

∫ ξ+hλ̂

ξ−hλ̂

∥∥∥u(τ + h, x) − U ♯
(u;τ,ξ)(τ + h, x)

∥∥∥ dx = 0 . (2.20)

(ii) There exists a C > 0 such that, for all τ > 0, a, b ∈ R and
ξ ∈ ]a, b[,

1

h

∫ b−hλ̂

a+hλ̂

∥∥∥u(τ + h, x) − U ♭
(u;τ,ξ) (τ + h, x)

∥∥∥dx

≤ C
[
TV

{
u(τ); ]a, b[

}
+ TV

{
a; ]a, b[

}]2
.

(2.21)

6. If a Lipschitz map w: R → D solves (1.1), then it coincides with the
semigroup orbit: w(t) = St

(
w(0)

)
.

Thanks to Theorem 2.4, the proof is obtained approximating a with a piece-
wise constant function an. The corresponding problems (1.2)–(2.11) gener-
ate semigroups defined on domains characterized by uniform bounds on the
total variation and with a uniformly bounded Lipschitz constants for their
time dependence. Then, we pass to the limit (see Section 4 for the proof)
and we follow the same procedure as in [4, Theorem 9.2] and [14, theorems 2
and 8] to characterize the solution.

As a byproduct of the proof of Theorem 2.8, we also obtain the follow-
ing convergence result, relating the construction in Theorem 2.4 to that of
Theorem 2.8.

Proposition 2.9 Under the same assumptions of Theorem 2.8, for every
n ∈ N, choose a function βn such that:

(i) βn is piecewise constant with points of jump y1
n, . . . , y

mn
n , with y1

n =
−X, ymn

n = X, and maxj(y
j+1
n − yj

n) ≤ 1/n.

(ii) βn(x) = 0 for all x ∈ R \ [−X,X].

(iii) βn → a′ in L1(R; R) with ‖βn‖L1 ≤M , with M as in Theorem 2.8.

11



Define αn(x) = a(−X−) +
∫ x
−X βn(ξ) dξ and points xj

n ∈
]
yj

n, y
j+1
n

[
for

j = 1, . . . ,mn − 1 and let

an = a(−X−)χ
]−∞,x1

j [
+

mn−1∑

j=1

αn(yj+1
n )χ

[xj
n,x

j+1
n [

+ a(X+)χ
[xmn

n ,+∞[

(see Figure 2) . Then, an satisfies (A0) and the corresponding semigroup
Sn constructed in Theorem 2.4 converges pointwise to the semigroup S con-
structed in Theorem 2.8.

3 Technical Proofs

3.1 Proofs Related to Section 2.1

The following equalities will be of use below:

∂ρP = −λ1 λ2 and ∂qP = λ1 + λ2 . (3.1)

Proof of Lemma 2.1. Apply the Implicit Function Theorem to the equal-
ity Ψ = 0 in a neighborhood of (ā, ū, ā, ū), which satisfies Ψ = 0 by (Σ1).
Observe that ∂uΣ(a, a;u−) = 0 by (Σ1). Using (3.1), compute

det ∂u+Ψ(ā, ū, ā, ū) = det

[
−∂ρ+Σ1 ā
ā ∂ρ+P ā ∂q+P

]

= det

[
0 ā

ā ∂ρ+P ā ∂q+P

]

= ā2 λ1(ū)λ2(ū)

6= 0 ,

completing the proof. �

Proof of Theorem 2.3. Let ∆ be defined as in Lemma 2.1. Assump-
tion (F) in [8, Theorem 3.2] follows from (P), thanks to (2.1) and to the
choices (2.2)–(2.5). We now verify condition [8, formula (2.2)]. Recall that
Du−Σ(ā, ā; ū) = 0 by (Σ1). Hence, using (3.1),

det
[
Du−Ψ(ā, ū; ā, ū) · r1(ū) Du+Ψ(ā, ū; ā, ū) · r2(ū)

]

= det

[
āλ1(ū) + ∂ρ−Σ1(ā, ā; ū) + λ1∂q−Σ1(ā, ā; ū) āλ2(ū)

ā
(
λ1(ū)

)2
+ ∂ρ−Σ2(ā, ā; ū) + λ−1 ∂q−Σ2(ā, ā; ū) ā

(
λ2(ū)

)2

]

= det

[
ā λ1(ū) ā λ2(ū)

ā
(
λ1(ū)

)2
ā
(
λ2(ū)

)2

]

= ā2 λ1(ū)λ2(ū)
(
λ2(ū) − λ1(ū)

)

6= 0 .
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The proof of 1.–5. is completed applying [8, Theorem 3.2]. The obtained
semigroup coincides with that constructed in [14, Theorem 2], where the
uniqueness conditions 6. and 7. are proved. �

3.2 Proofs Related to Section 2.2

We now work towards the proof of Theorem 2.4. We first use the wave
front tracking technique to construct approximate solutions to the Cauchy
problem (1.2)–(2.11) adapting the wave front tracking technique introduced
in [4, Chapter 7].

Fix an initial datum uo ∈ û + L1(R;A0) and an ε > 0. Approximate
uo with a piecewise constant initial datum uε

o having a finite number of
discontinuities and so that limε→0

∥∥uε
o − uo

∥∥
L1

= 0. Then, at each junction
and at each point of jump in uε

o along the pipe, we solve the corresponding
Riemann Problem according to Definition 2.2. If the total variation of the
initial datum is sufficiently small, then Theorem 2.3 ensures the existence
and uniqueness of solutions to each Riemann Problem. We approximate
each rarefaction wave with a rarefaction fan, i.e. by means of (non entropic)
shock waves traveling at the characteristic speed of the state to the right of
the shock and with size at most ε.

This construction can be extended up to the first time t̄1 at which two
waves interact in a pipe or a wave hits the junction. At time t̄1 the functions
so constructed are piecewise constant with a finite number of discontinuities.
At any subsequent interaction or collision with the junction, we repeat the
previous construction with the following provisions:

1. no more than 2 waves interact at the same point or at the junction;

2. a rarefaction fan of the i-th family produced by the interaction between
an i-th rarefaction and any other wave, is not split any further;

3. when the product of the strengths of two interacting waves falls below
a threshold ε̌, then we let the waves cross each other, their size being
unaltered, and introduce a non physical wave with speed λ̂, with λ̂ >
sup(u) λ2(u); see [4, Chapter 7] and the refinement [2].

We complete the above algorithm stating how Riemann Problems at the
junctions are solved. We use the same rules as in [7, § 4.2] and [8, § 5]. In
particular, at time t = 0 and whenever a physical wave with size greater
than ε̌ hits the junction, the accurate solver is used, i.e. the exact solution
is approximated replacing rarefaction waves with rarefaction fans. When a
non physical wave hits the junction, then we let it be refracted into a non
physical wave with the same speed λ̂ and no other wave is produced.

Repeating recursively this procedure, we construct a wave front tracking
sequence of approximate solutions uε in the sense of [4, Definition 7.1].

13



At interactions of waves in a pipe, we have the following classical result.

Lemma 3.1 Consider interactions in a pipe. Then, there exists a positive
K with the properties:

1. An interaction between the wave σ−1 of the first family and σ−2 of the
second family produces the waves σ+

1 and σ+
2 with

∣∣∣σ+
1 − σ−1

∣∣∣+
∣∣∣σ+

2 − σ−2

∣∣∣ ≤ K ·
∣∣∣σ−1 σ−2

∣∣∣ . (3.2)

2. An interaction between σ′i and σ′′i both of the same i-th family produces
waves of total size σ+

1 and σ+
2 with

∣∣∣σ+
1 − (σ′′1 + σ′1)

∣∣∣+
∣∣∣σ+

2

∣∣∣ ≤ K ·
∣∣σ′1σ′′1

∣∣ if i = 1 ,
∣∣∣σ+

1

∣∣∣+
∣∣∣σ+

2 − (σ′′2 + σ′2)
∣∣∣ ≤ K ·

∣∣σ′2σ′′2
∣∣ if i = 2 .

3. An interaction between the physical waves σ−1 and σ−2 produces a non
physical wave σ+

3 , then

∣∣∣σ+
3

∣∣∣ ≤ K ·
∣∣∣σ−1 σ−2

∣∣∣.

4. An interaction between a physical wave σ and a non physical wave σ−3
produces a physical wave σ and a non physical wave σ+

3 , then

∣∣∣σ+
3

∣∣∣−
∣∣∣σ−3

∣∣∣ ≤ K ·
∣∣∣σσ−3

∣∣∣.

For a proof of this result see [4, Chapter 7]. Differently from the construc-
tions in [7, 8], we now can not avoid the interaction of non physical waves
with junctions. Moreover, the estimates found therein do not allow to pass
to the limit n→ +∞, n being the number of junctions.

Lemma 3.2 Consider interactions at the junction sited at xj. There exist
positive K1,K2,K3 with the following properties.

1. The wave σ−2 hits the junction. The resulting waves σ+
1 , σ

+
2 satisfy

∣∣∣σ+
1

∣∣∣ ≤ K1

∣∣aj − aj−1

∣∣
∣∣∣σ−2

∣∣∣ ,
∣∣∣σ+

2

∣∣∣ ≤
(
1 +K2

∣∣aj − aj−1

∣∣
) ∣∣∣σ−2

∣∣∣

≤ eK2|aj−aj−1|
∣∣∣σ−2

∣∣∣ .
σ−2

σ+
1

xj

σ+
2

ū
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2. The non-physical wave σ− hits the junction. The resulting wave σ+

satisfies

∣∣∣σ+
∣∣∣ ≤

(
1 +K3

∣∣aj − aj−1

∣∣
) ∣∣∣σ−

∣∣∣

≤ eK3|aj−aj−1|
∣∣∣σ−

∣∣∣ .
σ−

xj

σ+
ū

Proof. Use the notation in the figure above. Recall that σ+
1 and σ+

2

are computed through the Implicit Function Theorem applied to a suit-
able combination of the Lax curves of (1.2), see [7, Proposition 2.4] and [8,
Proposition 2.2]. Repeating the proof of Theorem 2.3 one shows that the
Implicit Function Theorem can be applied. Therefore, the regularity of the

Lax curves and (P) ensure that σ+
1 = σ+

1

(
σ−2 , aj − aj−1; ū

)
and σ+

2 =

σ+
2

(
σ−2 , aj − aj−1; ū

)
. An application of [4, Lemma 2.5], yields

σ+
1

(
0, aj − aj−1; ū

)
= 0

σ+
1

(
σ−2 , 0; ū

)
= 0



 ⇒

∣∣∣σ+
1

∣∣∣ ≤ K1

∣∣aj − aj−1

∣∣
∣∣∣σ−2

∣∣∣ ,

σ+
2

(
0, aj − aj−1; ū

)
= 0

σ+
2

(
σ−2 , 0; ū

)
= σ−2



 ⇒

∣∣∣σ+
2 − σ−2

∣∣∣ ≤ K2

∣∣aj − aj−1

∣∣
∣∣∣σ−2

∣∣∣ (3.3)

⇒
∣∣∣σ+

2

∣∣∣ ≤
[
1 +K2

∣∣aj − aj−1

∣∣
]∣∣∣σ−2

∣∣∣ ,

completing the proof of 1. The estimate at 2. is proved similarly. �

We now aim at an improvement of (3.3). Solving the Riemann problem
at the interaction in case 1. amounts to solve the system

L2

(
T
(
L1(ū;σ

+
1 )
)

;σ+
2

)
= T

(
L2(ū;σ

−
2 )
)
. (3.4)

By (2.1), the first order expansions in the wave’s sizes of the Lax curves
exiting u are

L1(u;σ) =

[
ρ− σ + o(σ)

q − λ1(u)σ + o(σ)

]
and L2(u;σ) =

[
ρ+ σ + o(σ)

q + λ2(u)σ + o(σ)

]
,

while the first order expansion in the size’s difference ∆a = a+ − a− of the
map T defined at (2.4), with v = q/ρ, is

T (a, a+ ∆a;u) =




(
1 +H ∆a

a

)
ρ+ o(∆a)(

1 − ∆a
a

)
q + o(∆a)


 , where (3.5)

H =
v2 +

∂
a+Σ−p(ρ)

ρ

c2 − v2
.
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Inserting these expansions in (3.4), we get the following linear system for
σ+

1 , σ
+
2 :




−
(

1 + H̄
∆a

ā

)
σ+

1 + σ+
2 =

(
1 + H̄∆a

ā

)
σ−2

−
(

1 − ∆a

ā

)
λ̄1 σ

+
1 +

(
1 + Ḡ∆a

ā

)
λ̄2 σ

+
2 =

(
1 − ∆a

ā

)
λ̄2σ

−
2

where

H̄ =
v̄2 +

(
∂a+Σ(ā, ā, ū) − p(ρ̄)

)
/ρ̄

c2 − v̄2
and Ḡ =

(c′(ρ̄)ρ̄− v̄)H̄ − v̄

v̄ + c

and all functions are computed in ū. The solution is

σ+
1 = − λ̄2

2c
(1 + Ḡ+ H̄)

∆a

a
σ−2 (3.6)

σ+
2 =

(
1 − λ̄1H̄ + λ̄2(1 + Ḡ)

2c

∆a

a

)
σ−2 (3.7)

which implies the following first order estimate for the coefficients in the
interaction estimates of Lemma 3.2:

K1 =
1

2a

∣∣∣∣∣∣∣

1 + c′ρ
c

(
v
c

)2
+ 1

c2

(
c′ρ
c + 1

)
∂

a+Σ−p(ρ)
ρ

1 −
(

v
c

)2

∣∣∣∣∣∣∣
,

K2 =
1

2a

∣∣∣∣∣∣∣

1 − 2
(

v
c

)2
+ c′ρ

c

(
v
c

)2
+ 1

c2

(
c′ρ
c − 1

)
∂

a+Σ−p(ρ)
ρ

1 −
(

v
c

)2

∣∣∣∣∣∣∣
.

(3.8)

The estimate (3.7) directly implies the following corollary.

Corollary 3.3 If
∣∣aj − aj−1

∣∣ is sufficiently small, then σ+
2 and σ−2 are ei-

ther both rarefactions or both shocks.

Denote by σj
i,α the wave belonging to the i-th family and sited at the

point of jump xα, with xα in the j-th pipe Ij , where we set I0 = ]−∞, x1[,
Ij =

]
xj , xj+1

[
for j = 1, . . . , n− 1 and In = ]xn,+∞[. Aiming at a bound

on the Total Variation of the approximate solution, we define the Glimm-like
functionals, see [4, formulæ (7.53) and (7.54)] or also [10, 12, 17, 20],

V =
n∑

j=0

∑

xα∈Ij

(∣∣∣σj
1,α

∣∣∣eC
Pj

h=1 |ah−ah−1| +
∣∣∣σj

2,α

∣∣∣eC
Pn−1

h=j |ah+1−ah|
)

+
n∑

j=0

eC
Pn−1

h=j |ah+1−ah| ∑

σ non physical in Ij

|σ| ,
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Q =
∑

(σj
i,α,σ

j′

i′,α′
)∈A

∣∣∣σj
i,ασ

j′

i′,α′

∣∣∣ ,

Υ = V +Q , (3.9)

where C is a positive constant to be specified below. A is the set of pairs

(σj
i,α, σ

j′

i′,α′) of approaching waves, see [4, Paragraph 3, Section 7.3]. The

i-wave σj
i,α sited at xα and the i′-wave σj′

i′,α′ sited at xα′ are approaching

if either i < i′ and xα > xα′ , or if i = i′ < 3 and min{σj
i,α, σ

j′

i′,α′} < 0,
independently from j and j′. As usual, non physical waves are considered
as belonging to a fictitious linearly degenerate 3rd family, hence they are
approaching to all physical waves to their right.

It is immediate to note that the weights exp
(
C
∑j

h=1 |ah − ah−1|
)

and

exp
(
C
∑n−1

h=j |ah+1 − ah|
)

in the definition of V are uniformly bounded:

∀ j





1 ≤ exp
(
C
∑j

h=1 |ah − ah−1|
)

≤ exp
(
C TV(a)

)
,

1 ≤ exp
(
C
∑n−1

h=j |ah+1 − ah|
)

≤ exp
(
C TV(a)

)
.

(3.10)

Below, the following elementary inequality is of use: if a < b, then
ea − eb < −(b− a)ea.

Lemma 3.4 There exists a positive δ such that if an ε-approximate wave
front tracking solution u = u(t, x) has been defined up to time t̄, Υ

(
u(t̄−)

)
<

δ and an interaction takes place at time t̄, then the ε-solution can be extended
beyond time t̄ and Υ

(
u(t̄+)

)
< Υ

(
u(t̄−)

)
.

Proof. Thanks to (3.10) and Lemma 3.1, the standard interaction esti-
mates, see [4, Lemma 7.2], ensure that Υ decreases at any interaction taking
place in the interior of Ij , for any j = 0, . . . , n.

Consider now an interaction at xj . In the case of 1 in Lemma 3.2,

∆Q

≤
∑

(σ+

1
,σi,α)∈A

∣∣∣σ+
1 σi,α

∣∣∣+
∑

(σ+

2
,σi,α)∈A

∣∣σi,α

∣∣
(∣∣∣σ+

2

∣∣∣−
∣∣∣σ−2

∣∣∣
)

≤


K1

∣∣aj − aj−1

∣∣∑

i,α

∣∣σi,α

∣∣+
(
eK2|aj−aj−1| − 1

)∑

i,α

∣∣σi,α

∣∣


∣∣∣σ−2

∣∣∣

≤ (K1 +K2)Υ(t̄−)
∣∣aj − aj−1

∣∣
∣∣∣σ−2

∣∣∣

≤ (K1 +K2) δ
∣∣aj − aj−1

∣∣
∣∣∣σ−2

∣∣∣ .
∆V

17



≤ eC
Pj−1

h=1 |ah−ah−1|
∣∣∣σ+

1

∣∣∣+ eC
Pn−1

h=j |ah+1−ah|
∣∣∣σ+

2

∣∣∣− eC
Pn−1

h=j−1 |ah+1−ah|
∣∣∣σ−2

∣∣∣

≤ eC
Pj−1

h=1 |ah−ah−1|
(
K1

∣∣aj − aj−1

∣∣
∣∣∣σ−2

∣∣∣
)

+

(
eC

Pn−1

h=j |ah+1−ah|eK2|aj−aj−1| − eC
Pn−1

h=j−1 |ah+1−ah|
) ∣∣∣σ−2

∣∣∣

≤
(
K1|aj − aj−1|eC

Pj−1

h=1 |ah−ah−1|
) ∣∣∣σ−2

∣∣∣

+ eC
Pn−1

h=j |ah+1−ah|
(
eK2|aj−aj−1| − eC|aj−aj−1|

) ∣∣∣σ−2
∣∣∣

≤
(
K1

∣∣aj − aj−1

∣∣eC
Pj−1

h=1 |ah−ah−1|
) ∣∣∣σ−2

∣∣∣

−(C −K2)
∣∣aj − aj−1

∣∣ eK2|aj−aj−1| eC
Pn−1

h=j |ah+1−ah|
∣∣∣σ−2

∣∣∣

≤
(

(K1 +K2)
(
1 + eK2|a+−a−|

)
eCTV(a) − C

) ∣∣aj − aj−1

∣∣
∣∣∣σ−2

∣∣∣.

∆Υ

≤
(

(K1 +K2)
(
1 + eK2|a+−a−|

)
eCTV(a) + (K1 +K2)δ − C

) ∣∣aj − aj−1

∣∣
∣∣∣σ−2

∣∣∣.

Choosing now, for instance,

δ < 1 , C =
1

TV(a)
,
∣∣∣a+ − a−

∣∣∣ ≤ ln 2

K2
and TV(a) <

1

4(K1 +K2)e
(3.11)

the monotonicity of Υ in this first case is proved.
Consider an interaction as in 2. of Lemma 3.2. Then, similarly,

∆Q ≤
∑

(σ+,σi,α)∈A

∣∣σi,α

∣∣
(∣∣∣σ+

∣∣∣−
∣∣∣σ−

∣∣∣
)

≤
(
eK3|aj−aj−1| − 1

)∑

i,α

∣∣σi,α

∣∣
∣∣∣σ−

∣∣∣

≤ K3 Υ(t̄−)
∣∣aj − aj−1

∣∣
∣∣∣σ−

∣∣∣

≤ K3 δ
∣∣aj − aj−1

∣∣
∣∣∣σ−

∣∣∣ .

∆V ≤ eC
Pn−1

h=j |ah+1−ah|
∣∣∣σ+

∣∣∣− eC
Pn−1

h=j−1 |ah+1−ah|
∣∣∣σ−

∣∣∣

≤
(
eC

Pn−1

h=j |ah+1−ah|eK3|aj−aj−1| − eC
Pn−1

h=j−1 |ah+1−ah|
) ∣∣∣σ−

∣∣∣

≤ eC
Pn−1

h=j |ah+1−ah|
(
eK3|aj−aj−1| − eC|aj−aj−1|

) ∣∣∣σ−
∣∣∣

≤ (K3 − C)
∣∣aj − aj−1

∣∣ eK3|aj−aj−1| eC
Pn−1

h=j |ah+1−ah|
∣∣∣σ−

∣∣∣ .

∆Υ ≤
(
K3e

K3|a+−a−|eCTV(a) +K3δ − C
) ∣∣aj − aj−1

∣∣
∣∣∣σ−

∣∣∣
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and the choice δ < 1 and C > 2K3 ensures that ∆Υ < 0. �

Proof of Theorem 2.4. First, observe that the construction of the station-
ary solution û directly follows from an iterated application of Lemma 2.1.
The bound (2.12) follows from the Lipschitz continuity of the map T defined
in Lemma 2.1. Define

D̃ =
{
u ∈ û+ L1(R;A0):u ∈ PC and Υ(u) ≤ δ

}
,

where PC denotes the set of piecewise constant functions with finitely many
jumps. It is immediate to prove that there exists a suitable C1 > 0 such that
1

C1
TV(u)(t) ≤ V (t) ≤ C1TV(u)(t, ·) for all (u) ∈ D̃. Any initial data in D̃

yields an approximate solution to (1.2) attaining values in D̃ by Lemma 3.4.
We pass now to the L1-Lipschitz continuous dependence of the approx-

imate solutions from the initial datum. Consider two wave front tracking
approximate solutions u1 and u2 and define the functional

Φ (u1, u2) =
n∑

j=1

2∑

i=1

∫ +∞

0

∣∣∣sj
i (x)

∣∣∣W j
i (x) dx , (3.12)

where sj
i (x) measures the strengths of the i-th shock wave in the j-th pipe

at point x (see [4, Chapter 8]) and the weights W j
i are defined by

W j
i (x) = 1 + κ1A

j
i (x) + κ1 κ2

(
Υ(u1) + Υ(u2)

)

for suitable positive constants κ1, κ2 chosen as in [4, formula (8.7)]. Here Υ
is the functional defined in (3.9), while the Aj

i are defined by

Aj
i (x) =

∑
{∣∣∣σj

kα,α

∣∣∣: xα < x, i < kα ≤ 2
xα > x, 1 ≤ kα < i

}

+





∑
{∣∣∣σj

i,α

∣∣∣: xα < x, α ∈ Jj(u1)
xα > x, α ∈ Jj(u2)

}
if sj

i (x) < 0,

∑
{∣∣∣σj

i,α

∣∣∣: xα < x, α ∈ Jj(u2)
xα > x, α ∈ Jj(u1)

}
if sj

i (x) ≥ 0;

see [4, Chapter 8]. Here, as above, σj
i,α is the wave belonging to the i-th

family, sited at xα, with xα ∈ Ij . For fixed κ1, κ2 the weights W j
i (x) are

uniformly bounded. Hence the functional Φ is equivalent to L1 distance:

1

C2
· ‖u1 − u2‖L1 ≤ Φ(u1, u2) ≤ C2 · ‖u1 − u2‖L1
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for a positive constant C2. The same calculations as in [4, Chapter 8] show
that, at any time t > 0 when an interaction happens neither in u1 or in u2,

d

dt
Φ
(
u1(t), u2(t)

)
≤ C3 ε

where C3 is a suitable positive constant depending only on a bound on the
total variation of the initial data.

If t > 0 is an interaction time for u1 or u2, then, by Lemma 3.4,

∆
[
Υ
(
u1(t)

)
+ Υ

(
u2(t)

)]
< 0 and, choosing κ2 large enough, we obtain

∆Φ
(
u1(t), u2(t)

)
< 0 .

Thus, Φ
(
u1(t), u2(t)

)
− Φ

(
u1(s), u2(s)

)
≤ C2 ε (t − s) for every 0 ≤ s ≤ t.

The proof is now completed using the standard arguments in [4, Chapter 8].
The proof that in the limit ε → 0 the semigroup trajectory does indeed

yield a Ψ-solution to (1.2) and, in particular, that (2.11) is satisfied on the
traces, is exactly as that of [6, Proposition 5.3], completing the proof of 1.–5.

Due to the local nature of the conditions (2.9)–(2.10) and to the finite
speed of propagation of (1.2), the uniqueness conditions 6. and 7. are proved
exactly as in Theorem 2.3. �

Proof of estimate (2.14). We first compute ∂a+Σ, with Σ defined
in (2.19). To this aim, by 2. in Proposition 2.7 (in Paragraph 2.3), we
may choose

a(x) =





a− if x ∈ ]−∞,−X[ ,
a+ − a−

2X
(x+X) + a− if x ∈ [−X,X] ,

a+ if x ∈ ]X,+∞[ ,

so that we may change variable in the integral in (2.19) to obtain

∂a+Σ = ∂a+

(∫ a+

a−

p
(
Ra(α, u)

)
dα

)
= p(ρ) +O(∆a) . (3.13)

Now, estimate (2.14) directly follows inserting (2.13) and (3.13) in (3.11)
and (3.8). �

Proof of estimates (2.15)–(2.16). Refer to the notation in Figure 1,
where the pipe’s section is given by

a(x) =





a if x ∈ ]−∞, l[ ,
a+ ∆a if x ∈ [l, 2l] ,
a if x ∈ ]2l,+∞[ ,
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where ∆a > 0. The wave σ+
2 arises from the interaction with the first

junction and hence satisfies (3.7). Using the pressure law (2.13) and (3.13),
we obtain

σ+
2 =

(
1 + ψ (u, a)∆a

)
σ−2 , where

ψ(a, u) = −1

a

(
1 − 1/2

1 − (v/c)2

)
.

Now we iterate the previous bound to estimate the wave σ++
2 which arises

from the interaction with the second junction, i.e.

σ++
2 =

(
1 − ψ(a+ ∆a, u+)∆a

)
σ+

2 ,

where, by (3.5),

ψ(a+ ∆a, u+) = ψ


a+ ∆a,


1 +

1

1 −
(

v
c

)2
∆a

a


 ρ,

(
1 − ∆a

a

)
q


 .

Introduce η = 1/
(
1 − (v/c)2

)
and ϑ = ∆a/a to get the estimate

σ++
2 =

(
1 +

(
ψ(a, u, ) − ψ(a+ ∆a, u+)

)
∆a

)
σ−2

=


1 +

∆a

a

(
−1 +

η

2

)
+

∆a

a+ ∆a


1 − 1/2

1 −
(

1−ϑ
1+ηϑ

v
c

)2





σ−2

=




1 +
∆a

a


−1 +

η

2
+

1

1 + ϑ


1 − 1/2

1 −
(

1−ϑ
1+ϑη

v
c

)2









σ−2

and a further expansion to the leading term in ∆a gives (2.15)–(2.16). �

3.3 Proofs Related to Section 2.3

Proof of Lemma 2.6. If a ∈ C1
(
R; [a−, a+]

)
and u is a weak entropy

solution of (1.4). Then,

0 =

∫

R+

∫

R



[
ρ
q

]
∂tϕ+

[
q

P (u)

]
∂xϕ−

[
q
a∂xa
q2

aρ∂xa

]
ϕ


 dx dt
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=

∫

R+

∫

R



[
aρ
aq

]
∂t
ϕ

a
+

[
aq

aP (u)

]
1

a
∂xϕ−

[
aq

a q2

ρ

]
ϕ

a2
∂xa


 dx dt

=

∫

R+

∫

R



[
aρ
aq

]
∂t
ϕ

a
+

[
aq

aP (u)

]
∂x
ϕ

a
+

[
0

p(ρ)∂xa

]
ϕ

a


 dx dt

showing that (2.17) holds. Concerning the entropy inequality, compute pre-
liminarily

∇(aE(u))

[
q
a∂xa
q2

aρ∂xa

]
= a

[
− q2

2ρ2
+

∫ ρ∗

ρ

p(r)

r2
dr +

p(ρ)

ρ
,

q

ρ

][
q
a∂xa
q2

aρ∂xa

]

=

(
− q3

2ρ2
+ q

∫ ρ∗

ρ

p(r)

r2
dr +

q

ρ
p(ρ) +

q3

ρ2

)
∂xa

=
q

ρ

(
E(u) + p(ρ)

)
∂xa

= F (u) ∂xa .

Consider now the entropy condition for (1.4) and, by the above equality,

0 ≤
∫

R+

∫

R


E(u) ∂tϕ+ F (u) ∂xϕ−∇E(u)

[
q
a∂xa
q2

aρ∂xa

]
ϕ


 dx dt

=

∫

R+

∫

R

(
aE(u) ∂t

ϕ

a
+ aF (u) ∂x

ϕ

a

+


F (u)∂xa−∇(aE(u))

[
q
a∂xa
q2

aρ∂xa

]
 ϕ

a

)
dx dt

=

∫

R+

∫

R

(
aE(u) ∂t

ϕ

a
+ aF (u) ∂x

ϕ

a

+
(
F (u)∂xa− F (u)∂xa

) ϕ
a

)
dx dt

=

∫

R+

∫

R

(
aE(u) ∂t

ϕ

a
+ aF (u) ∂x

ϕ

a

)
dx dt,

showing that (2.18) holds. The extension to a ∈ W1,1 is immediate. �

Proof of Proposition 2.7. The regularity condition (Σ0) follows from
the theory of ordinary differential equations. Condition (Σ1) is immediate.

Consider now the item 2. If a1 and a2 both satisfy (A1), are strictly
monotone, smooth and have the same range, then a1 = a2 ◦ϕ for a suitable
strictly monotone ϕ with, say ϕ′ ≥ 0, the case ϕ′ ≤ 0 is entirely similar.
Note that if u =

(
Ri(x;u

−), Qi(x;u
−)
)

solves (1.5) with a = ai, then di-
rect computations show that R1(x, u

−) = R2

(
ϕ(x), u−

)
and Q1(x, u

−) =
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Q2

(
ϕ(x), u−

)
. Hence

Σ1(a
−, a+;u−) =

∫ X

−X

p
(
R1(x;u

−)
)
a′1(x) dx

=

∫ X

−X

p

(
R2

(
ϕ(x);u−

))
a′2
(
ϕ(x)

)
ϕ′(x) dx

=

∫ X

−X

p
(
R2(ξ;u

−)
)
a′2(ξ) dξ

= Σ2(a
−, a+;u−) .

Having proved (Σ0) and (Σ1), we use the map T defined in Lemma 2.1.
We first prove that Σ satisfies Σ(a−, a+;u−)+Σ

(
a+, a−;T (a+, a−;u−)

)
= 0,

given a satisfying (A1), strictly monotone and with a(−X) = a−, a(X) =
a+, let ã(x) = a− + a+ − a(x). Then, using 2. proved above, and integrat-
ing (1.5) backwards, we have

Σ
(
a+, a−;T (a−, a+;u−)

)
=

∫ X

−X

p
(
R̃(x;T (a−, a+;u−)

)
ã′(x) dx

= −
∫ X

−X

p
(
R(x; a−, a+;u−

)
a′(x) dx

= −Σ(a−, a+;u−) .

Finally, condition (Σ2) follows from the the flow property of R and the
additivity of the integral. Indeed, by 2. and 3. we may assume without loss
of generality that a− < a0 < a+. Then, let q = Q(x;u−) be the q component
in the solution to (1.5) with initial condition u(0) = u−. Then, if T is the
map defined in Lemma 2.1, we have

T (a−, a+;u−) =
(
R(a−1(a+);u−), Q(a−1(a+);u−)

)

so that

Σ(a−, a+;u−)

=

∫ X

−X

p
(
R(x, u−)

)
a′(x) dx

=

∫ a−1(a0)

−X

p
(
R(x, u−)

)
a′(x) dx+

∫ X

a−1(a0)
p
(
R(x, u−)

)
a′(x) dx

=

∫ a−1(a0)

−X

p
(
R(x, u−)

)
a′(x) dx

+

∫ X

a−1(a0)
p

(
R
(
x,R(a−1(a0), u−), Q(a−1(a0), u−)

))
a′(x) dx

= Σ(a−, a0;u−) + Σ
(
a0, a+;T (a−, a+;u−)

)

23



proving 1. �

Proof of Theorem 2.8. Fix ā > 0, and ū ∈ A0. Choose M,∆, L, δ as
in Theorem 2.4. With reference to these quantities, let a satisfy (A1). For
n ∈ N, let an, αn, βn be as in Proposition 2.9. Note that αn is piecewise

−X Xxj
nyj

n yj+1
n

x

Figure 2: The thick line is the graph of a = a(x), the dotted line represents
an while the polygonal line is αn

linear and continuous. By (iii), we have that αn → a and an → a in L1.
Moreover, TV(αn) ≤ M and TV(an) ≤ M and, for n sufficiently large,
an(R) ⊆ ]ā− ∆, ā+ ∆[. Hence, for n large, an satisfies (A0). Call Sn the
semigroup constructed in Theorem 2.4 and denote by Dn its domain.

Let u0
n be a sequence of initial data in Dn. The Sn are uniformly Lipschitz

in time and Sn
t u

0
n have total variation in x uniformly bounded in t. Hence,

by [4, Theorem 2.4], a subsequence of un(t) = Sn
t u

0
n converges pointwise

a.e. to a limit, say, u. For any ϕ ∈ C1
c(R̊+ × R; R) and for any fixed n, let

ε > 0 be sufficiently small and introduce a C∞
c (R; R) function ηε such that

ηε(x) = 0 for all x ∈ ⋃mn−1
j=1 [xj

n − ε, xj
n + ε] ,

ηε(x) = 1 for all x ∈ ⋃mn−2
j=1 [xj

n + 2ε, xj+1
n − 2ε] .

Thus, we have

∫

R+

∫

R



[
anρn

anqn

]
∂tϕ+

[
anqn

anP (un)

]
∂xϕ


dx dt

= lim
ε→0

∫

R+

∫

R



[
anρn

anqn

]
ηε ∂tϕ+

[
anqn

anP (un)

]
ηε ∂xϕ


dx dt

= lim
ε→0

∫

R+

∫

R



[
anρn

anqn

]
∂t(ηε ϕ) +

[
anqn

anP (un)

]
∂x(ηε ϕ)


dx dt
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− lim
ε→0

∫

R+

∫

R

[
anqn

anP (un)

]
ϕ∂xηε dx dt .

The first summand in the latter term above vanishes by Definition 2.2 ap-
plied in a neighborhood of each xj

n. The second summand, by the BV
regularity of un, converges as follows:

−
∫

R+

∫

R



[
anρn

anqn

]
∂tϕ+

[
anqn

anP (un)

]
∂xϕ


dx dt

= lim
ε→0

∫

R+

∫

R

[
anqn

anP (un)

]
ϕ∂xηε dx dt

=

mn−1∑

j=1

∫

R+

[
an(xj

n+)qn(xj
n+) − an(xj

n−)qn(xj
n−)

an(xj
n+)Pn(xj

n+) − an(xj
n−)Pn(xj

n−)

]
ϕ(t, xj

n) dt

=

mn−1∑

j=1

∫

R+


 0

Σ
(
an(xj

n−), an(xj
n+), u(t, xj

n−)
)

ϕ(t, xj

n) dt .

We proceed now considering only the second component. Using the map

ϕn(t, x) = ϕ(t, x)χ
]−∞,y1

n[
(x) +

mn−1∑

j=1

ϕ(t, xj
n)χ

[yj
n,y

j+1
n [

(x)

+ϕ(t, x)χ
]ymn

n ,+∞[
(x) ,

we obtain

mn−1∑

j=1

∫

R+

Σ
(
an(xj

n−), an(xj
n+), u(t, xj

n−)
)
ϕ(t, xj

n) dt

=

mn−1∑

j=1

∫

R+

Σ
(
an(yj

n), an(yj+1
n ), u(t, xj

n−)
)
ϕ(t, xj

n) dt

=

mn−1∑

j=1

∫

R+

Σ
(
αn(yj

n), αn(yj+1
n ), u(t, xj

n−)
)
ϕ(t, xj

n) dt

=

mn−1∑

j=1

∫

R+

∫ y
j+1
n

y
j
n

p

(
Rαn

(
x;un(t, xj

n−)
))

α′
n(x) dx ϕ(t, xj

n) dt

=

∫

R+

mn−1∑

j=1

∫ y
j+1
n

y
j
n

p

(
Rαn

(
x;un(t, xj

n−)
))

α′
n(x) dx ϕ(t, xj

n) dt

=

∫

R+

∫

R

mn−1∑

j=1

p

(
Rαn

(
x;un(t, xj

n−)
))
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×α′
n(x)ϕ(t, xj

n)χ
[yj

n,y
j+1
n [

(x) dx dt

→
∫

R+

∫

R

p
(
ρ(x)

)
∂xa(x)ϕ(t, xj

n) dx dt as n→ +∞ ,

where we used (i) in the choice of the approximation αn.
We thus constructed a solution to (1.1), for any initial datum in D. Note

that this solution satisfies (2.20)–(2.21), as can be proved using exactly the
techniques in [14, Theorem 8]. Therefore, the whole sequence un converges
to a unique limit u, which is Lipschitz with respect to time. This uniqueness
implies the semigroup property 2. in Theorem 2.8. The Lipschitz continuity
with respect to the initial datum follows from the uniform Lipschitz regu-
larity of the approximate solutions un, completing the proof of 3. Finally,
6. is proved exactly as in [14, Theorem 8]. �
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