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;:pllc;ta concettuale L8

quazlonl hamlltonlane 1ntegrab111 sono ottenute come dlfferen

zt1 rxdu21on1 d1 una Slngola struttura PN Su sottovar1e_a 1nd1

V;gu§t¢ d .lg;struttg a. PN stessa. _

Abstfact =. In this paper we introduce the conceph.of Poissonw_
N1Jenhu15 manifold and we show. that the integrable Hamlltonlan

systems are the “fundamental flelds" of such manlfolds._ In

partlcular, we expllc1tly construct a 51mple;mode1 of lnfxnltem

dlmens;nnal PN manlfold _and we show that 1t glves rise to the
Gel'fand—D1k11 ‘equations, The many advantages of the present
approach seem to be 1ts conceptual sxmpllcxty and the property

: The dlfferent equatlons are obtalned as

) %pgyﬁystematlc.

ductlons of a slngle PN structure, Eorm d over

speczai submanzfolds plcked out by the geometry of the PN mani

fold 1tse1f.
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. Inteoduction

The pirpose ‘of -this :papéef is Lo :

called the phase. space, and a wect,or field ? on M. ’Phxs

f:.eld deflnes a system of:' equat:.ons

'GEI'5 ”“'mM ?ww)

wh:.ch are ca]led ‘the equat:.ons of mot:.cm of the dynamlcal

' 'system. Accordlng to the propert:l.es of M and :r, the abstract

Eq.{l 1) can g:n.ve r:.se to a great var:.ety of evoluhon equa—

s “hLCh may be' QU1te dlfferent from one another, “~For '™

"well—known form "

(1.2 st

Otherwise, if M is the Schwartz space (3 of rapidly de= '
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crea51ng C , functlons on R, and if the vector fleld

is deflned by a d1fferent1al operator on 3 (1 I) may take

the form

In prlnc1p1e, (1 1) may represent also a system of 1ntegro~

Edlfferentlal equatlons, such as the Bengamzn-Ono equat10n[3 4]

or equations in more than one space varlab?e (as the Kodomtsev-
Petviashwvili equatlon qu 7 ), in any case, these erggations
must be solved with respect to the time derivative and they

must be endowed with suitable boundary conditions to be en-

compassed 1nto the deflpltlon of: gM . _

W1th1n the prev1ous class of dynamlcal systems, the
Hamiltonian ones play a quite particular role, To define
them, it is necessary to endow M -with an additional struc;
ture, given by a second-order temsor P : X *M) — X (M) of
type (2,0), skew-symmetric and with a éanishiﬁg Schouten

bracket (to be defined below)

.5 . PsPr-0 [P P].

Sucha manifold-&s called a Poisson manifold. ‘The “Poisson
‘tensor P maps ‘thé one-forms o into the vector fiélds ¢ -
and, ‘in ‘particular, it maps the closeéd oné-=forms irto vec-

tor fields

{(1.6) [




whlch are Sald to be (local?y) Hamlltonlan w1th respect to P.

The property of belng Hamlltonlan is. thus re]atzve to the

'~ch01ce of P and therefore 1t may be that a vector fleld is

Hamiltbhién.With respeét to ‘a Poisson tensor but not ‘with res-

_pect: to another one, that it is not at -all Hamiltonian, or

that itfiSvHamiltbnian'siﬁﬁlﬁ&heéusiy with respect to several

Po’ on tensors {(the last property wlll turn out to ‘be dis-

_tlnctlve of the 1ntegrab1e Hamxltonlan systems;; 'Agaln, the

?ﬁ:abst act;form (l 6) glves rlse, in the appllcatnns, to a large

‘nuttber of -particular forms; such as, for f1p;te~d1mensiona1

o PGP0 PP P P P P
and

f'(1.9._1) ¥ (xj -, o

el

(1.9.2) ‘?(") = 0, ¥ +[2;5]
(1.9:3) §00 = Dpuu £ -2 {2 2),- {~,5;}+'[21ﬁ])‘+[2’S?}ﬂjgdx]

for. the manifold of .then x n. matrices u. -whose entries are
rapidly: decrea51ng C functions on R - More - and more .complex
examples can be easxly found in the llterature.; However, it

can be shown that the class of Poisson tensors and Hamiltonian




Edamental tensors (see Sec.s. 15-16),_

the lntegrable

tequatlons of_motlon (1. 2), for. flnlte-dlmensxonal systems,

structures appearing_in the literature is. not as large as it

might seem,-since'these structures are often strictly related.

One .of the advantages of the synthetic point of view we are

ﬂﬂdeve]oplng An thls paper is to show that the;whole class of

, such P01sson tensors may . be engendered by a. few simple fun-

Iet S -NOw, examlne the concept of 1ntegrab]e system,, .

.No general agreement exlsts on thls concept . The. . “1ntegrab111ty

theories" known in the llterature may be c]ass1f1ed According

to the technlque by which the 1ntegrab111ty is ascertalned or

lystem lS constructed After all however,

,deflned coord;nate system entalllng the spllttlng of the i

"h equatnns, each one contalnlng a 51ngle coordinate xJ.

Among these dlfferent technlques, that based on the study, of
the 1ntegrals of the motion seems to be the most popular (and
the origin of several variants der1v1ng from 1t} As i= kn0wn,

one must assume not only that the dynamlcal system is Hamllto—

_nlan, but also that as many 1ntegrals of the motlon are known,

: whlch are. 1ndependent and in 1nvolut10n, as the number of de-

grees of freedom. Under these assumptions, this technique
allows to obtain the system of coordinates and consequent]y
to solve the equations of mot1on only by quadratures.

In thls paper, we fol]ow a dlfferent approach to the

rablllty problem, whloh ls based dlrectly on the study

_of the coordlnate system wlthout requlrlng, 1n prlnclple,

that the dynamlcal system be Hamlltonlan.n The basic remark

&

due to the Dutch geometer A, ngenhulsﬁjls that a system of

coordinates can be characterized by a special class of tensors




of type (1, 1);-heréaftéf'défiﬁed as'uiieﬁﬁuis<ten96rs."This
is ea311y understood by observing" that the 'distribation-of
the natural ba51s 335001ated with any system of coordlnates
can be seen as ithe distribution of the~e1geqvectors ‘of a spe-
“¢ial tensor N of type (1;1), whose eigenvalies’are to be sui-
tably precised. As it was shown by Nijénhuis, in order “that
_-thé’ﬁiétriﬁﬁ%ibh of the éigéhVECtbbs‘bé“intééﬁhblé‘aﬁd cdnse_
quently define a systém of coordinates, it “is nedessary that

'“%ﬁé'%aiéiaﬁwdf’-ﬁﬂ3be'v5hi§5iﬁg':1

oy Tf“”‘*’f ) [“‘f "’1’] “[‘f ”ﬂ ”[NT,H*” [‘M’] 0.

For flnlte-dlmen51onal manlfolds,thxs means - that ‘the ‘compo-

néﬁté”ﬂ*if‘of N, in‘any local chart,’ fulf111 the relat1ons

(4) '-'3*' u* ’) N Ng N, H" A/ ’z) u*

"Onhe can remark, however, thaﬁ ‘although (1,{o)has‘béén deduced
From the Study of temsors on g'finité;dimensional manifold,
.iﬁzqkééﬁs“its”méaning also fér'infiﬁite_diméhsional:ﬁanifolds.
for example, the following tensors, defined on the space § of

the Schwartz functons, are Nijenhuis temsors

(i.12.1) g =

_—&uf—!uxScfdx‘

o= 28 7 #0)- 08 . :f*ﬂ [Eiﬁf«“f‘f“’] o

=

(1.12.2)

- s 1_
"

(12.3)
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More in general Eq {1 '10)"is fulfllled by all the "recur51on

ofgthe equatlons solvnble by the 1nverse scatterlng

operators'

‘method" known"in ‘the llterature, whlch turn’ out to be' Nijenhuis

"rder that the evolutlon equatlons related

between N and_
lecou _"d'when written in "the system of coordlnates

defined by N. It can be shown (Sec 5) that this condltlon is
51mp1y that N be 1nvar1ant uﬂer T" s in’ the eense that: the’ 1lie

Ol

derlvatlve*1 fN)ak5f N along ? Van1shes SR

am L (u)

Y.

- summarizing, if “p :f"‘lé'avés N invariant,” then N decouples:’ g

and makes the equat1ons of motion 1ntegrab1e.~ The”tbhditiOn

(1 13) qig clearly analogous to ‘the condition

which must be fulfilled by the n 1ntegrals of the motion I
Although the condition (1.13) may: séem more stringeént. than

(1. 14), one’ has to’ recall that (1.14) holds only- 1f the dy -

:namlcal system:s=Ham11ton1an and the’ 1ntegrals ‘of the motion

“are in 1nvolut10n' an this case, one can—show¥TSee}4} that

the two cond;tidns'(i}13) and (1.14) are équivalent; - More-:
over, (1.14 ) becomes meaningless for infinite-dimensional
systems, whereas: (l '13) keeps its meanirg: also in this cons
text, and it appears in this case to be the simplest 1ntegra~

bility cond1t10n et hand.




... At last, if the special case of Hamiltonian systems is

. considered, it jbecomes meaningful  to select a. particular.

u,class of,Nijenhuis-tenéons, by_requining,that‘thehsystcms of

coordlnates be canonlcal w1th respect to the Hamlltonlan struc-

 th1S end. 1t As necessary that N, qnd P, that is the

Itxqgﬂ@hgﬁrshown that two coupllng qondltlons are. requxred'

‘skew symmetr;c tensor

of type (2,0); the second one 1s expressed by the .yanishing

. of a third order tensor R(PJV) of type (2,1), quepg;qg on P,
N and ‘their Lie derivatives; » -

it e i

(which is deflned in Sec.z. Its vanishing en-

tails:that. the Schouten-bracket of P vanishes, §9 pha§_(1,15)

mean - that P is 1tself a. Poxsson tensor.--,

Thus we arrive at the maln geometrlc obgect which is .con-

sidered in this paper, the FN manifold or Poisson-Nijenhuis

,manlfold* it is.a &iffeféntiable'maﬁifold M endoﬁed-with a

amlltonlan structure and with an 1ntegrab111ty structure by
a Poisson tensor P and a Nijenhuis tensor N fulfilling (1. 15)
The maln th351s of thzs paper 1s that the :PN.. manlfolésare the

natural sett;ng for the theory of 1ntegrab1e Hamiltonian sys-

11: be: shown Ain; Sec.4.that any 1ntegrab1e

Hamxltonlan “system. can be seen as a.vector field of a PN mani-

fold: keeplng szmultaneously 1nvar1ant both P and . N

(1 -‘16);-“-: P Lef( P)=0 _ '-L'} (N) =0
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tegrable systems .can. be

catlon ofzsuc

. reductxons.f Moreover,nt eznaly51s of the

S b ey i -

PN structure.:QIn thls paper, however, thls statement wxll_be

supported only for the class of Gel'fand—lell equatlons.'

_ Hav1ng sketched the maln 1deas 1nsp1r1ng thls research

'f_ldetall the contents and results of thls paper.

c It ean, be d1v1ded _lnto four parts.

{i) PN manifolds and integrable systems (Secs.2-5)
{(ii) The reduction theory. {Secs.6-11) ;

{iii) = The: constructlon of a.- group—theoretlcal ‘PN, manifold

'(Secs 12 14) o

CAdv)e N stricture Felated with. the equations solwble by
-theglnverserscatterxng.methodﬁ(secs,is,lé). _

: A'remaiﬁingépértideaiing witﬂ the PN stnuctursgofmth¢-§90r:
abelianinfinite Toda lattice will be considered in a forth-

coming paperi.
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'inrfﬁé ‘first part the definitions ae éiﬁéﬁ aﬁaﬁéxﬁiéined

of the main structurcs_enterlng the paper (PSl and PN mani-

folds,- damental v' tor flelds and on“mforms} and the rela-

tlon between PN manlfolds and xntegrabie systems is "established.

f The mbthod is sllghbwy “axlomatlc“"the ooncept of “PN-manifold

fng deduced from 1t. For that,.lnLSecA‘T

‘ﬂare noteworthy. In Sec..

1de w1th'the 1ntegrab1e Hamiltonian fields.rxiti§ESE“

Sec 5 15 devoted to a hrlef outline of ‘the 1ntegratlon ‘of the
' equatlons of motlon by means of the nganhuls ﬁensor, mainly

:ﬁto remark a strlklng analogy of this. method w1th the "inverse

scattering method": the dlscuSSLOn of thxs problem is clearly
inoomplete,but.to make it-complete%would:havé-taken us too
far a field from the main subject of the paper.

The reductlon theory dlscussed 1n the second :part gives

the ‘main technlcal dev1ce to deal W1th PN man:folds in the

"appllcatlons.f As AstRiiown; ‘the egquations-solvible: by the in=

verse scatterlng method arlse from (often not clearly justified)

"reductlon processes“. consisting in ‘the ch01ce<f partlcular

'forms of matrices and so on. The reduction theory of PN mani-

folds aims to give a theoretioal explanation of these: techniques,




&
&

o

by showing that the arbitrariness in the reduction process
canrbé éliminated by édopting the point of view of the re-
duction of PN manifolds, and by prov1ng that the reduced struc-
“tures mazntaln the propertles of the glven ones (tensor 901nt
of view); Slmple as ‘this remark may be from a conceptual p01nt

great practlcal 1mportance, 51nce 1t a]]ows

of v1ew,'1t has

‘to avoid “a posterlorl proofs which tirn out to be ry cumber-

some ln mostmc ses (to this" regard =t would sufflce to look

rt%con51ts of six sectlons. In Secs 6mand 7 two

prelxmlnary reductlon Lemmas are proved Secs 8 and’ 9 contaln

””1n results of this part deflnlng the systematlc reduc-

ftechnlque. Thls technlque, flnally, is exempl;fled 1n Sec 11

in a 51mp1e but .r1V1a1 case°ﬁ though tﬁe{result is the:
"well-known 1ntegrab111ty structure of non-abellan KdV equatlon,
the reductlon technlque which is% used has the advantage of not
requlrlng any lnltlal guess, being a systematlc applnztlon of
general methods, '

The third part (Secs 12-14) concerns the constructlve

ghase of the theory, that-is the settlng of practlcal rules
for constructing a PN manlfold To this" end we choose as a

base manifold M a L1e group H, which ig a partlcularly struc-=

tured manlfold The main: result (Prop.12 1) ‘is to show that

the problem of the constructnn of a PN structure on thls group

is- reduc”d;to the B_pely ‘algebraic problem of constructlng
skew—symmetr;c_tensors E, : H< X, on the algebra){ﬁhlflllxng

the "roycie condition"




\immm’N

momentum mapplng J H-—»’ HY g:tvz.ng ag '

12

Gan) <X (R Bv]se s

e .

fpreaqy,}.fvy q;}(fﬁqﬁ,All-the fol]owing applications are-ﬁased
on th1s 51mple result A detalled study .of the group~theore-
t10a1 PN manlfolds 1s glven 1n Sec 13._ Although the analysis

Vls_an appllcat1on of the general scheme of Secs.8,9; dn this

case one can use the partlcular structure of the :base manl-

fold to obtaln a more detalled and precise descrlptlon -of the

.,-‘ w

-Hreduced manlfolds. In partlcular it results an dinteresting

_11nk between the reductlon of group—theoretlcal PN manlfolds

and the theory of the momentum. ‘mapping (PrOp.13 A1) .2 1.ndee.'d

{wlth any P01sson cocycle ffér one. can canonlcally relate A

al diffeomorphism

Yo} d subgroup H' ! . £
By means of the momentum mapping,

‘h PN structure of H" can be transferred to

){’, endowlng }C‘ with-a PN structure :(Sec.14). One ob-

-tains in th;s_way a,s;mple group-theoretical interpretation

of the so- called spectra] problem of the inverse scattering -
theory. )

~ The genera] methods are straightforwardly applied in-the
last Part (Secs.15-16) to obtain the Gel'fand-Dikii €quations.
Here-we limit to observe that the whole.construction of these

-eqqeﬁieﬁg isﬂeefrieﬂﬁpu;,in'aedeductiveawaygfrom_the.only~ne—

-mark that if the lie group: H . is the. group of the non-singular

matrices u .whose entries . “1(33)—-3?€;fQ99§10ﬁ5 rapidly: de- -
creasing to 5; for [x|4 e , then the cocycle .condition (147)

has the simple solution
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(1.18) Py =n, § S

By stafting from this preliminary remark, one need not

- introduce further assumptions;:but has oaly to.apply the ge-

‘PN' “theory.. - Theaalysis of “the :Toda

it actuéfiyarggﬁires;aﬁSiight-but'rathébfsﬁbtléﬂexténsipnﬁqf

thg_pheqry Qfﬁthé.?o%qspn coqycleg(as-a,matter;of.fact; this
éﬁﬁénsion has givéh-ﬁdf:littié trouble to thé authors).

' At the end of the paper we have collected #ua' ippéﬁdices:
the flrstlﬁwecontalnnéome remarks ‘and - proofs whlch are’ essen—

tial for the completeness of the theory . but whlch would have
] “ejtexﬁ.ﬂ Inetead;

1nterrupte; ‘";development if given:i

few technlcal femarks concernlng ‘the -ap-

Appendix Dicenta:
plicatidﬂé. In partlcular, App. ‘A ‘contains all the: notatlons
used‘in the ;aper and a few practical rules (sulted for the
applicaﬁons)'allowihg ﬁ&iséﬁ into explicit form the abstract
coﬁdiﬁiqns given in the text. To simplify the citations, ‘the-
Appendices. are divided in short sections whi¢h are referred
to ih the_téxt.#s bibliog?aphica] citations, éuch.as ZK;2_7

to mean the second section of the Appendix A.




2. Four remarkable manifolds’

« On any d:.fferent:l.able man;.fold M. (modelled .on a‘Banach

-space) three classes of second-—order tensors are noteworthy

- the ipresymplectic tensors,: -;t_;he_;_ﬁg:.sgpn___t_e_nsors -and :the Nijenhuis

- .tensors. We. recall that a -prgﬁsyrhplei:tic- tensor is a skew-

- . 'symmetric tensor: Q X (M). ey X ¥{M),of ‘bype (0 2) with

z:constant rank : and with vam.sh:.ng exter:.or der:.vatlve

21 Q % .0 40 -0
a2y -::LQ-—(«;»,» ) L(Q)?_L (oh,» Q[w ¥+ .am;fm

and-that.-a Poisson tensor 'is a skewsymmetric tensor. - -

Py M) —— X (M); of type (2,0); with . constant rank -and

. with vanishing Schouten bracket [8.1}:
(2:3) - P:‘\,; P*= 0 [pPl=0
(2.4) [P P](ce P(L (F)+d<u Pp;) r(?)«

Likewise, a Nijenhuis tensor is a tensor N : ¥ (M) — ¥ (M),

of type (1,1), with constant rank and with vanishing torsion

tensor [B.7] :
(2.5) T(N)=

(2.6) TN (gy) =[Ve, Ny]-N[Ng, ¢)-Ne by )N ]

They separately give M the structure of presymplectic mani-

folds, of Poisson manifold and of Nijenhuis manifold.




. tensors

lhand a presymplectlc tensor respectlvely.

@ smem)eo

i SOl
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;The geometrlcal structures we, are look1ng for on the

manifold M arlse from a, sultable coupllng ofrsuch tensors.

hIt 1s suggested by the remark that there ex1sts a unlque way

of comp051ng f)

']flct us demand the new tensors to be a NlJenhuls,_a P01sson

4 Then, the readlly

dildentltles of Appendlx ]

t the pair (P,Q)

must obey the condltlon

- while the palrs (P,N) and Gl,N)aTus;;obey the condltlons

(2.9) NP PN L0 R(PN)=O "“"éf""?‘évfww/'-éw?
SY . NPEN'iO _mi_w,),___,_ ffig

(2.10) QN N*n o S(Q N):.:_

[
Sy pare

respectlvely, where the tensors R(P,N) and S(Q,N) are defined

: H.::-i;ﬂ \Wﬂ‘ :

L (NW P |_

"

C'L;w(ﬂ)?i'- (Q-)\r-\—DN i?]_*.;f:{ZQY;"QL?>

- 0 .

This leads to set thé'foliéﬁiﬁégdefinifions'4
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Deflnltlon 2 1 (Pfl manlfold).. A Pl manifold is a differen-

tlable”manlfold M endowed w1th a P01sson tensor P and with a

"presymplectlc tensor f) fulfllllng the coupllng ‘éondition

.:d(ﬂ.Pﬂ) =0,

Deflnltlon 2 2 (PN manlfold) A PN manifold is a diffe-

'rentlable manlfold M endowed ‘with a Poxsson ‘tensor P ‘and with

a Nijenhuis tensor N fulfilling the coupling conditions

tlable manlfold M endowed with a presymplectlc tenisor {2 and
with a Nijenhuis tensor N fulﬁ1111ng the coupllng condltlons
QN-N*¥Q} =0 and S(QQ,N) =0,

The reason for deal:ng w;th these manlfolds simuzltaneous-
ly is that they are 1nt1mate1y related Indeed 1et M be any
PQ) manifold, and let us form the new palrs (P,N) and (fl N)
Then b can be readlly proved (see Appendlx B3) that these
pairs endow M with the structure of both PN and O N manlfold

without any further condltlon on P andfl. Thus

-

Proposition 2.1 (relation. among Pﬂ, PN and £1N ‘manifolds)

Any P()} manifold is canonlcally endowed both with a R and

;w1th a fIN. structure, -defined by the pairs, (P, N' = Pfl) and

" g

(Q, N- = P0) respectively, Conversely, any PN PN or I)N mani-

e

fold is canonzcally endowed with a PI) structure, def',ed

by the pairs (P, s =P~ N) and (02, P: NG ) respectlvely,

provided | Eﬂwggmgl,are kernel-free.

A A T g
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Such manlfolds are. the maln ObJECt of lnterest of the
present paper, where many of thelr propertles are studled
The follow1ng one glves-an 1dea“of the“ypaltﬁ_pf_etrgctures-

whlch are 1mp11c1tly deflned ‘on them. .

Let“M'be a PN or'a

le manlfold and let us - form the new pairs, (P N) and ﬁ?,N)

In Appendlx B3 1t ‘is shown that these palrs deflne a, second

.VPN or f}N structure on M, w1th0ut any further condltlon on

'.gthe orlglnal palrs (P,N) ‘or (51 N) By 1terat10n,we have .

Prop051t10n 2. 2 (hlerarchy of- PN and ()N structures)

-Any PN manlfold is canonlcally equlpped w1th a h1erarchy of

'.g?diSSOn structures defined by. the recursion relation

Cean PoLnp o RLb

Tieg Tt . L

Moreover, these structures obey the "involution relations"

{2.14) : 1=
2e14) - [R,P1=0

that is the Schoﬁten bracket of any pair of Poisson tensors

of the hierarchy vanishes. Likewise, any PQ manifold is

canonically equipped:with a hierarchy ofﬁpresyﬁpiectic'strucm

tures defined by the recursion relation

(2.15) Q. := QN Q-0

S +

Finally, both manifolds are endowed with a hierarchy of

Nijenhuis tensors defined by

(2.16) Nt N.ONY Nio N




_are~g1ven 1n Appendlx" BB . The prOpertles (2 14}, in par-
'utltular, Horarves” sohis’ BirbREE artenti ince :

?éﬁﬁditioﬁ“Z§;;f”- 0 is quadratxc

48

hh&'ﬁhiﬁj{ﬁ Nk} or Gj Nk) deflnes a dlfferent PN or le
structure on ML ; : et R

“The mlsSLng detsils in the proof of thlS prop051t1on

canidt "add, in general, POlSSOﬂ tensors to obtain new Poisson
P e d o Lmfimo

L

teakbray o Indeed ‘we flnd

@' [P Pq) < [RF + 90 IR LT

and so’ Gily i€ (2.14) is fulflled weabtn R

More in general, by the homogenelty of the Pozsson condltlon,

we. conclude that if (2 14) is fulleled we have a whoie

family
(2.12) P =P+ AQ . dewr

of Poisson structures defined on M. This remarkable fact

suggests to set the following (final) definitiong

Deflnltlon 2 4 (PQ or “twofold Hamlltonlan" manlfolds - ‘0)

A PQ manifold is a dlfferentlable manlfold M endowed w1th a

pair of Poisson tensars P and 0 fulfllllng the coupllng con-

dition Z},Q] = O,
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3. A nétéworthy.ciasé of vector fields on PN'hahifolds

As is known, on a_Pdisédn manifold - ‘the (1ocally)
Hamlltonian vector fields are defined as the flelds asso-

ciated w1th the closed one- forms :

(:'3‘.""1”)‘ : Ce Pt = P oo R =0

Such fields make a Lie algebra (with respect to the commu-

 taﬁdr%df?fie1ds) and leave bhe Poisson tensor P in-

variant

3?5‘)1

The closed one= forms in turn, make a £1e algebra w1th res—

pect to the P01sson brackets deflned by P

| _— o . A
(3.3) e,y ¢ Lpg (x) = Lp, (p) +dcp, Pus
and the two algebras are homomérphic on account of the ideh—

tity [ B.4]

(3.4) Loogy T =P '{""P}P

On a PN manlfold a narrower cIass of, vector fields. and
one‘forms can be deflnéd playlng a centr;] role in the
theory of the 1ntegrab1e systems. It en301es all the _pro-
pert1es of the Hamlltonlan vector flelds, be51des that of h
being invariant with respect to N. Its study makes the obgecﬁ

of the present section,




¢

let M be a PN manifold, N the dual tensor of N, and

®« a closed one-form . By using the identity (8.1.1%)

(3:5) d{'e). ¢

L-T{N'ﬂ,) ~d (N, 0%

il

(L, (= ~d <, Ngy) F (Lg(N%) - .ﬁ'?(a)')

i

do ., N?-f 1 (N«) - LN?(N’)

one readily verifies that Nﬁx is no longer c]déed, unless the

further condition
{3.6) ?( -N?( )

is fulfilled by « . This leads to consider the subspace }f%(M)

of the closed one-forms obeying (3.6). It can be shown that

'%“N is a Lie algebra with respect to the Poisson bracketsf}&)

(3.7) {"__‘.'w vl €%

that it is 1nvar1ant with respect to N

. # *u #
(3.8) N (xN) Cxy

and that the "exchange rules"

G N faop)y = (Rl = e w7

hold - 1n X 'Indéed, if q,e‘XﬁN » the coupling condition

R(P N):O entalls .




showing tha':t: j‘[‘?‘-i P}Pe x* .

2

(3.10) L_ {N)

P

whence

(3- 11) i.:nt-(N ) e 0

Qo) W] - Hg) - W,

(3 6}

and

(3.133 {Nc{ H {d NH

Consequently,fqgé@fiﬁaé,ﬁﬁ;

(3.14)  aN'{«,p]

'.
N
follows from

(x)-ae. ) - (Lg, (N0 -ank. pp)

(o() - 1 C(NTw )

= dNey, PPy =d <, PNpy -

M

:dfzw,(NP --fo) .P >

-ij'=-d{N‘95 ,P}P= d(deNe Pp>) =0

Finally, the ihya;ia_nce _property




o
¥

|

i

|

j

| (3.2_9) N(xPNJ_-=._'N?(_-¥’--‘ﬁ) = Pﬁf(.g“ﬁ)gy_(x*ﬁ_)' =

99

(3.15) _,L,P'(N"- N) - L“?(N%)':

‘N"‘

. (L_,f;t»i*g)' - I.N'?'(g)) £ (L 43“)(&".’?@@“;)).’o<-

N*. (L?(N’u) - LIW(u..-} )

on account of the identity

C At . P ¥ My

{

ﬁiléiil’édﬂ by | N* 5’2—7

fhé'sbecial élgss of‘Hamiitbnian vector fields,

previously referred to, is: then given by

. = . % 4o N =. )
(317) ?(PN(M) = P (M)
*
N,
seen that ¥* is a subalgebra of (M), that it is inva-
PN —— ) . , —
riant ‘with respect to'N, and that the exchange riles

As a consequence of the properﬁies.of"f it is readily

N .

(3.18} N _.. l_‘ﬁt’lfp—7 = lﬁ‘f.”‘ﬁ;_7 = L-:F" N'ﬂg_.?

hold in XPN' Indeed :

o _ o % K ':[Bl] : R
(3.19) / ;f_{,%_?. =ﬁu¢’ Pﬁ? = P{a,?}p’E)Ci,‘N

PN

.(3_.{21 ). ﬁ.(&_, qu _7 = .LEP&, Pﬁ?’—‘é.?Na&,r‘E?FP{.N*ug ’F} =: Np{u’f} = _Nﬂ“ s 'f’ﬁ] |

- the identities

Moreover, .




(3.22)

(3.23)

i3

(_R(HN)‘O) TR } (3.5)
Lo (N)eg =P (LT(ch) - LN?(d) ) = o
R

show that x. g may be 1dent1f1ed with, the algebra of the

_vector fleldS 1eav1ng both N and P 1nvar1ant

(3:24)

) =0 x_%(r)

(at least,kln the partlcular case of P belng kernel free)

'-—._..,_....—

Due to the 1mportance of x¥ X and of 3( . let us

summarize their propertles into the followlng.

By

Propositidﬁ;ﬁjiﬁ(algebra of_fundaﬁerta1{fi;1ds_and_forﬁe):

'On;§ PH manifold M, the one-forms obeying the cbnditions

dol = 0 dN"< = 0 .

(3.25) 0
make a lie algebra x* (M} (with respect tO'the PdiSSOn bracket
__-.d—!—l-—m -~

defined by P), called the algebra of the fundamenta] forms,

AT e MR T Yok i Syrrn T £

The corresponding vector fields

(3.26)

dN% =0

R

¢t = Pox -

aré the fundamental fields of the manifold. They leave both

P and N invariant

(3.27)

L?“(P) =0 L?“(N) =

and they make a Lie algebra 3( (M) homomorphlc to )E :
PES B A R

it e R i Q-.-...‘.-.a
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(3.28) [f_crds_%_j_: Pla,flp

Furthermore, both a]gebras are invariant w1th respect

to N, whlch .commutes Wlth the Lie algebra structure

————}

o0 W gy - Y pL (e P, opedd

(3.30) N . [qop/ 2':@%’\% 7= [‘-f&{,ﬁ?pj fefp €% py

‘ Three propertles of the fundamental flelds and one~= forms,
readlly deduced from the prev1ous ones, are worth recordlng.

They .concetn the chalns-'

'(_3;'32) “ o ‘f_-_|+1 =N ‘fj o - 'ﬁ= :sz e}i PN
and they state that :
L I K - _ . o 1 'ZU.
(3:33) 457 Py | (1exgy)
(3.31)  {wua, =0 L5397 =0
(3.35) REML ¥ y=20
'fhe first one, proved by
R 155 U P BT | PR
(3.36) ¢, =N Pu= N P.. N o= Py ap % (12 Kep)

means that the fields ?j'are“Hamiltonian with respect to all

—Kk+1

the Poisson teénsors Fj (of'dégfeetnot}greaﬁéfﬁthﬁﬁ?j)ﬁéf

the hierarchy
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(3.;7) ?j+1 =N. P P =P

canonically associated with the PN manifold. Thus fhe_fun-

damentalnfiéldsfadmit SeyeralfHamiltohian;fbrmuiéﬁiqﬁs.: The

second and the third ones, which readily follow from the

.exchange rules (3.29) and (3.30), and from

' (3:33) - -
(3.38) <% §5 7 = S B %7 =0

mean that the chain (3.31) and {3.32) are involutive.

In particular, if the one-forms o, are exact

339w =dr

the "orthogonality conditions" (3.35) eatail that the func-

tions I, are kept invarisnt by the flelds. ¢

(3.40) Lys (T ) 2 = <%y ¢ 7 =

and that -they are in involution with respect to the Poisson
. o e TR A LA A 0 L R . ey

brackets
(3.41) {Ik , Ij}: = (X, Po y = 0 -

This simple result gives the reﬁson for the present intefest
in PN manifeolds. It suggests_thut, under sultab]e “comple—
teness conditions" {(to be.pfééised below) every chain {3.32)
may define an integrable Hamiltonian system, in the sense of
Arnold_Llouv111e. The missing condltlons will be supplled

in the next isection, where the converse statement will ‘also

‘_—‘ﬁ% e




N “ﬁ -:f-

proved to be correct : namely, any integrable Hamiltonian 5ySs-~
tem can be considered as a fundamental fleld of a sultable
PN manlfold, and encompassed into a cha1n of the klnd (3 32).

Thus, we can state the following proposition:

Propositionhshz.("Lgnggdﬁrecursion relationsﬂaﬂ

Let M'be a PN manlfold & any fundamental form, and f
and o the vector flelds and the one—forms engendered byu

according to the 1terat1ve scheme

(3-42) P = NG TP |

Then, the fields ¢, are Hamiltonian with respect to all the

Poisson tensors of the hierarchy canonically associated with

M,  of degree not grester than j. The associabed one-forms

«, belong to the chain (3.43) engendered by x. Moreover,
both the chains (3.42) and (3.43) obey the commutation rela -

tions

(3.44) Lgq7 =0 {aj,lq‘}!ﬁo
and the "orthogonality conditions"

{3.45) (K5 95> =0

If the one-forms '“éz‘ are exact

T (3.48) «,t =d1,

these conditions mean that the functions I, make.a system

of involutiye integrals for all the fields of the chain {3.42):

{3.47) L%.(I,) = 0 {Ij, 1,}P = 0




" is even,
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Thtegrable Hamiltonian systems ééhfdnaéﬁénﬁéi'fields of

PN manifelds

In this section, M is takén.tofﬁg'of'ginige-dimeggidn“

and P to ﬁé:kéﬁhelrffee."ih particular, the dimension of M

d1m M= Z«L 3 and the manlfold 1s symplectlc._Under

these assumptlons (not really restrlctlve, in view of Prop. 91

of Sec. 9

) we Study the . elgenvalue problem for N, and we

show that :
N has at most n

(1) Saldiiad o

(ii) these elgenvalues are in 1gyolu_wgn with respect to

dlstlnct engenvalueiﬂ

the Poxsson brackets deflned by P
Hence, we’ 1ntroduce the concept of PN manlfolds of maxlmal-

of'whlch N has: exact]y h distinct elgenvalues)

rank (as.thosei

t'e study of the 1ntegrab]e Hamlltonlan fields

'001n01desw1thfthe study of the . fundamental fields of such mani-

'folds.

In our opinion, thls result gives the main support for

the study of PN manifolds. _

f'/

e -

o

Let M be a PN manifold fulfllllng the stated conditions.

Since P is regular, N can be writtgn as the product N =PO

of P with a presymplectic tensor [1 {Prop. 2.1 of Sec. 2).

Therefore, the eigenvalue problem for N takes the form

1

e =0

(4.1) (O )P

'showlng that the elgenspaces of N are the kernels of theh

skewsymmetrlc tensors (f1 A P! ) assoc1ated w1th the dlfferent

elgenvalues l The dimension of these kernels is always even,

SR PRI

and the number of dlstlnct elgenvaTues cannot exceed

value A




'“ébnnéctiﬁé the gradientsréf'ﬁﬁe_tEaéesi"

w1

2%

n . To. show that these elgenvalues are in 1nvolut10n, we use

the follew1ng noteworthy relatlon'

(4.2) r.x.-‘_\N" . dr =dr.

(4.3 I (m) 2 =L Tr(N )

1t follows ffqm_é“

i
4
r—"\
A

<G£IK; N«F}

<l

N d,IK, ¢

Consequently, the one-~ forms ) q;:VﬁF{I;iﬁélghgrto th¢eCha;n

engendered by q =<iIi, and 50,.

by Prop.{(3.2) (observe that «, is fundamental, since

— x -
d &, = d N« 1 c ).
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In view of the previous result, the case of N having
exactly _ﬁ—-distinct éigéhﬁéjueé*is:ihféomé sense exceptional,
1Th1$ JuStlfleS to deal with-it apart.':fiiétly, let .us set the

_followlngrdef;nltxon :

kernel free Pblsson ‘tensor P

and with a ngenhuls tensor N hav1ng onlx double elgenvalues

The map J : M —> R™ a55001at1ng the elgenvalues

¢ l(m),..., }(m) ) with any p01nt m, ;s the momentum mappnoo1

the ménlfo;g: The_open subset M' where: J has 1ts maxlmal

rank -

(.476'). M' ={“‘€M rx (dJ (m ))= n- } |

4s.the set of the regular: poirts of M. .-
' Letgfhén tf‘be,anyﬁfgndamental field of:-M. Observe that

¢ leaving N invariant {Prop. 3.1 of Sec. 3), leaves

invariant also the traces I, and the open subset M!', since

I

T

(4.7) L (1,)

X : “—1
¢ I_?(Tr N = Tt‘(N ’ L?(N))= 0

so that the rank of J is éonstaht along the orbits of ¢ .

Assume M' # ¢, and take the: restrlctlnn of ¢ to:M'L::Such

field is Hamiltonian and it admlts the n 1ndependent involu-__ .
T Tk o ARl s S

Ltive integrgls=(11,..;, Iﬁ) M - Consequently, it is-inte-

grable in the sense .of Arnold-liouwville []. Conversely, let

such_a~sy5tem;b¢,giygn;on a-symplectic manifold {M,.Fﬂ),;and

‘let {Ii; .,.,,Iﬂ) be its n.independent integrals-in invelution.
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1- 15 the Hamlltonlan"of the :

1ntegrals, say 1 _ e
Moreover, 1et’s 5—~{meM : I, ='€“'} Lbc;thewcompéticbnhected

submanlfold correspondlng to the regular va]ue 'E—(c“ -Jtﬂ)

of the 1ntegrals.~

By the Arnoldgthe'

I- [11] Set

dlnates are the 1ntegralsi

(4.8) 2y

and consider thé presymplectic tensor {1 défined by

4.9 Q=da,

Then, it is straightforward: to. show. that f1 and P (the “inverse -

of the symplectlc tensor.of M) glve M' the striicture of a

PLL manlfold 51nce
1iois

N i v ot R T

(4.10) arq ='d@)3
where
n '

. e i ; __\_,1_‘. b S -3, : TP

(Hence, .£1P§1:- is -closed as . 1s requlred by Def 2 -1 of Sec 2}

Moreover,=ﬁhe Nijenhuis tensorfN'= PO s canonlcally asso-
~reiated w1th the P(} structure admlts the 1ntegrals I é

1ts elgenvalues and 1t is 1nvar1ant W1th respeg&,tb (?', -since .

S L_#————*"_*—"*—"W

(4.12) L (N)=1L(P) . QO+ PL(Q) =0
e ? ¢ o=
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being separately L (P) =0 (since ¢ is Hamiltonian) and

L ((1) 0 (since fl has been constructed by means of the
1ntegrals I and of thelr congugate varlables 6 }.

.Hence, ¢ is a fundamentai fleld of the PN structure deflned
by P and N, on account of Prop. 3 1 and oﬁ the lack of kernel

of P. Given -any 1ntegrab1e Hamlltonlan vector f1e1d (1n the

sense of Arnold;LlouV111e), we have thus succeededrln cons-

S

tructlng a PN structure of max 1ma1 rank,of wh ch the glven.

'Afleld turns out to be a fu damental fleld Therefore, we can

“state :

\

Prop051t10n 4. 1_(Integ ble Hamlltonlan systems g_pmetrlcally

characterlzed)

Any fundame“tal fleld of a PN . manlfold of-maximal rank

_zs an lntegrable Hamlltonlan field. in. the open subset M! .of

“the regular‘pOLnts.i_I§§J%np§gra%s.1p involution are the .

traces -

413 1wy =L (N )"

of“thg powers of the Nijenhuis tensor.-_@onvepsely,_giVen:qui;
integrable Hamiltonian vector field (in the sense of Arnold-
Liouville), it is possible to find, in the opén tubular neigh-
bourhood M' of the regular level surface-S {xnebif IK = c“}
whose. exmstence s assured by the Arnold's theorem, a ‘PN
structure of maximiy rank of which the given field turns out

to be a fundamental field, This structure ‘is defined by the
Poisson tensor P (inverse of the sympiectic tensor of the

manifold) and by the presymplectic tensor {) given by




i

In (4. 15))the 8 are the functz.ons canonz,c

of PN manlfolds of maxlmal rank

39

(4.14) NQ=-dow
where
- (4.15) = E EE:I dB

ly congugate&to

the lntegrals I 1n M‘ﬁu On the fraces of the.

Nljenhuls tensor and of 1ts powers turn out to be lntegrals

in 1nv01utmons of the glven system. In short the lntegrab}e

Hamlltonlan vector f1e1ds 001n01de Wlth the fundamental fields

Although thlS result may berof not great ev nce from

-a practlcal p01nt of view, since the constructlon of the PN

‘gtructire 1s a problem of the same d1ff1culty a8 the exp11c1t

1ntegrat10n of-the ngen fleld what seéms promlslng is that

the 1ntegrab111ty condltlon has been reduced to a condltlon

on the degeneracy of the spectrum of the ngenhuls ténsor.

In this form, it keeps }ts meaning also for infinite-dimensional
manifolds. Indeed, Spqéificiéxamﬁles'séem to support the
validity of this criterion also in the context of infinite
dimensionalomanifolds /R57. If this conjecturé could be
prozed to be correct, there would be a workable criterion

replacirng the classical liouville condition.
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5. The"épebtral'probleh

By pushing the analysis of {the spectral problem for N
a little more forward, it .is possible to point. out an inte-

gration method of the-nonlinear equations

associated with:the fundamental fields,. bearing strong:ana-:

logles w1ththe well-known inverse: scatterlng theory, : Indeed
one can. Show that the solution of:. (5:1):can be: reduced to the

solutlon of the 'linear eiganvalue probleém

(5.2) N® =Ae . L

for the:dual:Nijenhuis.tensor N *.

. ‘Assume.that N has everywhere n distinct eigenvalues, and .

set,cfdr‘simp ;éity;‘Mlﬁ= M, - The etgenspaces of N:at diffe+

rent p01nts of M define n dlstlnct two—d1men51onal distribu=

tions, Let Q and«y be two vector fields spanning.the eigen—

space 355001qt§d with the same, eigenvalue A . Then from the

i

) identity.. .

(5.3) TM.(¢,¥)i= _ﬁ2[$,31_7--r?[ﬁ~?,:t7—14£¥ ; -N£?+[§*P, %

| - N [np,y] N[?uf,\_ﬁ-N[‘?,?‘:f? *‘ZR‘P RS %

N '.f..: "". PR

(. A1) N ,\17

and from the Nijenhuis condition,fhe get .
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2
(5.4) (N-AT) . foy/ =0

or

oE L

(5:5) C(N-AT)ILP, w7 =

since N is a semiSimple téhsob:(on accOunt-of-the maximali_y

assumpt:on, N has two dlstlnct elgenvectors fon: any elgen-

e e s

value?.} Eq {5 5) shows that ‘the commutator Zfﬂgz_pglgpgs

1tse1f to the: dlstrlbutlon spanned B g and ¢ IEgandy

- Belong pOthouelggnspaces-corrggpondlngm§0;@;Ef&néht eigep+

.

andip; £rom the :ij,j.e;ihixi-s. «condition we obtain

valués X ant

(5.6) (ADPM-pD? L g7 =0

showing that Aﬁ, / belongs to the four-dimensional distribu-

tion spanned by the eigenvectors associatéd:either withA or

“fi . B0y by ithe ‘Frobénius theopém; arcund’any’ point m€M there

T et e ea ‘ ys e 22
exists a-local chart OEACOordlnates‘(x‘y?;ﬁx%ya;i}G,X”Yn)

such that the vector fields _;l ‘axk “and- 7 a g spén
theé elgenSpace assoc1ated with the eéigenvalue A ; “for any
i =1,2,...;n, In this system" of"coordlnates, the-ﬁigenvalues
A i depend only on the coordinates spanning the corresponding

eigenspace

{5.7) o 7-‘,1-’;"'-')\_,;(.’-‘-1’"{)-:

and the components (X )’S of any fundamental field fulfil

the constralnts s [

: ¢ t
axt _ax' 2yt oyt el
¥ dyY Vs 3y3

(5.8)
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Eq. (5.7) can be ﬁrqﬁgd by uﬁing théfidéntitfnﬁ

=:“::'.uSJ_ng.i:,l*ne 1ntegrals (5 7)¥$} a8

'“‘thus to flnd the coordlnates (x ,Y )

A caféfﬁi‘dnai§5is shows that :

(1) the gradlents of the elgenvalues lgé-afe eigenvectors

of N
(5.12) N 'cl?\_\(:"?\d./\g
(this:ﬁ métgljra dif%éfg@t %b?ﬁ qfﬂéhé.fé#ﬁ;éibh.;eiation

(42))

(11)1n the nelghbourhood of any p01nt nleih there exist ~other

B 1] functlons (;&1,...74 ) whose gradzents glve the remain-

1ng e1genvectors-




(5,;5)
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(iii) the functions ""(1-,.7()- obey““the ‘canonidal ‘commitation re-

lations

(5.14) | ‘{;Q"j,ie} 0

So, we ! percelve the f0110w1ng 1ntegrat10n method Supppse

that the 11“ear problem (5 11) has been ¢ pletely solved

: 2.
'so that the spectral functlons 12 and}* are known as func—

: tlons of any local set of coordlnates ’3 on M :

5 o g o
(5.16) o Ke-=le(3“) [*P#f‘:(S_)_o

+*

Once the spectral functlons have been eva]uated at the ‘initial

tlme

“(s.17) Ao =ME () }4 ft(E(t n

we let then1evolve accord;ng to (5 15), up to the tlme t.

Then the "1nverse spectral transform"

';ts.ié)'*i_fj_ 2§ ) -—I(Mt)/{m )
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ﬁéeébﬁd ﬁuestiﬁﬁ*dﬁﬁléhst so

. the immersed submanifolds 'S inhéfiﬁiﬂg-a*ffl'

6. Rcdugtionﬁtheory:.the”reétfiction ph6b1§ﬁ=ﬁ

1ned the reasons compelllng us to studv PN

_manxfolds; we turn toward the constructlve aspects of the

i) ..oto construct exp11c1t1y PN manifolds

ii}: to. select PN manifolds .of maximal rank:

@ii};hppgeggqmpass known examples into the theory.

~ofn’ thig second ‘part of the paper, we ‘shall try to answef the

‘td?ae?élﬁﬁ”tﬁefﬁééiéqiééhnique,

the reductlon technlq , which seems essential to deal with

thls problem. The study of the local structure ‘6f the' PN mani-

folds leads to identify a certain pumber of integrable distri-

.butions,'défined directly in terms of thé‘tenébfé P and N.

Among the submanlfolds defined by these distributions (either

*iﬁhe”SEd'S“bmanlf°1dS or quotient submanifolds);" ‘someones are
'”recogn1zgd as 1neduc1b1e, in the sense that no further in-

'ﬁtegrable dlstrlbut1on spllts them in lower dimensional “gom-

ponents. On ‘the ‘ground of the experiénce, it seéms that the

PN manlfold of maximal rank, leading to 1ntegrable Hamiltonian

fsystems, are to be looked for among theése irreducible submani-

folds. However, we do not know any“SOﬁhd-ﬁhéoréﬁiéalréxpla—
nation of this fact. We only point’ out the,existencgebfféhese

submanifolds, by giving a systematic procedure  for finding

--ﬁheﬁfand'for~récOvéring their PN structure. -

Let M be a P{) or a PN fanifold. ‘The first problem

of the~reductibh_theory (the restri@ﬁiod ﬁ%oﬁleﬁ) ijs to find

“of a PN structure

[




, BE(S)

from M, as well as any submanifold of a Euclidean space in-

herits a Rlemannlan structure from the amblent space. Its
_complete solutlon w111 be glven 1n Secsi}and 9, for PI) and

' PN manlfolds respectlvely.m In thls sectlon we deal w1th the

.prellmlnary problem of deflnlng the restrlctlon process and

.of fxndxng the condltlons under whlch 1t takes place.- To thls

end we 1ntroduce a parametrlzatlon of the submanlfold S. It

con51sts in a palr (M' f 3 M' — M) formed by & seCOnd
manlfold M {the grameter space) and by in injective inmer-

sion f : M! =—> M such that f(M')‘ﬁ_S;f'This map connects

. the vector fields and the one-forms defined on M' with those

. defined on S, according to the well-known relations

(6'1) tP(f(m‘) ) = df{m. ) °kp(m')

(6.2) o'(m') =B £@') « X(E(m'))

_Thgs.it @efings.twpﬂnéﬁs, hereafter denoted by df:¥(M! )= (S,M)
and by Sf ':'x*(S,M'}—'}_BE#(M')_ , between X (M') and %*(M'_) .and
the lipeaPHSPAQés_'BE(S,M) and .3§*(S,M) of the restrictions
to S of’the'fécpdr fields and one-forms défiﬁéﬁ on M. Ve
remark that df ig?iﬁjectivé map, whose image is the algebra
%(S). of the vector fields tangent to S, and that 4& £ s

.a sur;ectlve map, whose kernel is. the ann1h11ator 36(5)0

”;ﬁA?process of restrlctlon “to S maf\ﬁhen"bé‘dﬁfingq_qs

any prescrlptlon.gllqwxng to associate, by means of df . and
8¢, _.t;énsq'r:s wdefined on 3 (M!) or %*(M') with tensors defined
on 3 (S,M) or "3,5*(5,?'1)__,. in such a way to -maintain their pro-

perties. Different prescriptions, defining. different processes

of reduction, are possible (see Sec.10). According to the simplest

one, considered in this section, we associate the tensor

(63) .Q' HE S'F on o d{'




o))

with ahy tensor £} of tygé.(0,2),“énd'£he'te536r;

(6.4) N' ;o= T ST

with any tenkor Noftype (1,1) fulfllllng “the conditions
(6-5) N(BE(S)) C BE(S)

(see Flg s laz lb) -As'for~the reduction  of the ténsor P of "

‘type (2 O), one ; has £o consider the Jinear: subspace it
(66)"36(5) {ocea»a(su):pae;e(s)}

of the one- forms defined on S .and mapped by P into vector flelds
tangent to S. If it fu1f1ls the conditions

6.7) P(s) +3% (5)° =X (s,m)

(6.8) (s) N¥(S) & Ker P -

the' restrlctlon of Bf’to 3{ (S) 1s 2 sur;ectlve map onto 36 (M),

and 1ts kernel 1s contalned 1nto the kernel of P as 1s proved by

(6 9) af(ae (S) )-—Sf(se 5(S) +3€(s) J

-(67)- '
E)f(ae (SM))

X(5.M X5 M)

U XM Xy XN

13 4 1h B S

Fig.t The  restriction of Q,p,N
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; (6 . 11 ) . Pl f.:- 1:'# df-n P X Sf
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and by

- | (6 8)
(610) L Ker B£ N 35 (s) -?é'(s) n';e (s) . Ker P . .

Therefore, all the png-fqnmsxxgraﬁgfé),égéréépq ding to the
same-one=forma’'e K (M!): ; ot! =5F wiX jlare' mepped by P into

the same’ vector field tangent to S'(ses Figilé)l :Consequent-

ly, the tensor

e

it

3( (s)

§ B

]

is wellwdefined, whatever r.ight;g.-n_\{_g;f_se k 5 f \ of-

36 (s)

Sf\i*(sj may be uséd.. CEgE v i
N Eq 57(6'3), (6 4) and (6:11) deflne the process of res-

- trlctlon usedaln this paper; andi(6 S), (6 7) and’ (6 8) glve '

the cond1t1ons under whlch 1t'fan take place. Furthermore,'é

the readily proved 1dent1t1es [C 2]
{6.12) d.(‘}_'.‘(tg',\y') =Bf ¢ df).“f‘(df-- «p's df .y')
(6.13)  TE( ') = df " . T(N) (df .9', df ')

- ar! 1?3_137 («;s ) etpe s )'

show" t:at the propert1es of belng a: presymplectlc, a’ N:Jenhuls

and a sson tensor are malntalned under ‘the restriction to 5.

For that 'Il'; N': P"w111 be referred to as_t 'reduced tensors

on M‘ of the correspondlng tensbrs'deflned on M As.for the
problem of ascertaining whether they define a PS) or a PN

structure on M', we observe that it is [C.2]
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(6.15) .. {(N'PI=PIK! ¥) . &f..x= ;ci_f"1 . (NP - PN") .ot .0

(6:16)  R(P,N')(SFar; ) = df . OR(PN) (@ df q') °‘ 531%*( §)

and that

(6.17) d(RIPDN)(g,y') =BF . A@PR) (4F .o 'y dAE ')
if the further coﬁdition

(6.18) QL (e(s)) © %5(8)

is assumed. Thus we ‘can ¢onclude that also the property of
being a PN or a PX) ﬁ&nifold-ﬁs maintained under restriction.
So, we have the fOIIOW1ng Lemmas- (the Pl case: belng kept dis~

tinct from the PN ¢ase for further reference)

Lemma 6.1 (Restrmctlon 1emma Ffor PN manlfolds) Let S be any

immersed submanlfold of a PN manlfold M. Assume that
(R1) N(3(s)) c *%(s)

¥ ¥
(R2) OE(S) + H(S)T =X(s,M)

(R3) - O x;(s)nx(s)" C Ker P

¥ Then S inherits from M a PN structire defined by'thé=tenso§é

(R4) N' : = df . N df

=1 4 =1 .
df -, P ,S&F|*

; (R5) : P! o
*.(8)



a2

where (Mi; £t M' —> M) ‘is any parametrization of S,

:E“Lemma 6 2 {Restrlctlonolemma for Pfl manlfolds) Léiis: be

any 1mmersed submanifold of a P£1 manifold M, Assume that
w6 R (%)) < ae"f,(s}

(Q;: %.m)£x¢)f;(s;)

(R8) %’:,(s)ﬁéﬁ(s}° c Ker P

Then, S inherits from M a PflL structire défined by the

kensors ¢ o

(R10) Pl s =df ' . P.§E L
S X5(s)
Remark. The conditions of the lemma (6.1) may be SEigthS

narrowed, if one observes that it. is really unnecessary to
consider thg_gﬁg}g subspace 3(“(5) of the one-forms mapped
.by P into X (S). It would suffice: to. conslder a subspace ;
VCij(S) fﬁlfilllng-—nn———mm the same condltlons (R2)(R,3)
of ¥ (S) So, tﬁe lemma could be stated as follows

let S be a submanifold of a Poisson manifold M and let V
be a subspace of B{P(S) such that :

(6.19) Ve X(5)° = X*(S,M)

(6.20) Vax(s)® ¢ Ke P
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Then S inherits a Poigsbn'étfﬁcﬁﬁré”fﬁdﬁ”ﬂ‘défiﬂéd-by the

tensor

. : T Ta , LA -‘ ':-= R
(6.21)  Pl.- df - Poos T
o
The same remark holds for lemma 6.2. However, although .
these generalizations are 6f interest in some cases, we:. -

. have not to use them in this paper and so we skip over .




1(7;i> .d?§4i3'fff{ﬁ1’ =dg @,) . (n,)
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7. Reduction theory : the projection problem

The second problem of the reduction theory (the projection

problem) is to find the 1ntegrable dlstrlbutlons D of M ad-
mlttlng a quotlent manlfold M/D which 1nher1ts ‘a Pil or a PN
structure from M, To spe01fy this problem, we need the con-

cepts ‘of progectable vector flelds and of pr jectable one—forms.

o1 f M/D s formed by

Let*iuf, "
a second manifold ‘M' and by a surgectlve sybmer51on g TM = M

such that the leaves of the dlstrlbutlon are the flbers of the

submersion, Mgrecall that a vector field P eX (M) is said to

be projectable if

for any pair of points m, and m2 belonging to the same leave

Zﬁﬁ_?. If such leaves are connected, this condltlon may be

replaced by /.1

{(7.2) - [.37 =%

where 3 and 3’ ' are vector fields spanning D. Thus, a
vector field <P is projectable if its Lie derivative along
any vector field._} tangent to the leaves is itself a vector

tangent to the leavés. Such a field defines a unique vector

field ‘P'.EBE(M’.}, given by

(7.3) @ (gm) ;= dg(m) .9 (m)

which is called the projection of t?' on M', ILikewise, a

one-form &e{&f@ﬂ may be said to be projectable if there exists




a pne-;f'orm Miex*‘(]\{!)such thaﬁ:'ajﬁ 'é'.iny':p_oint m.€M
(7.4) o (m) =8g(m) ot (g(d))

If the 1eaves of the dz_strlbutlon are connected t.lu.s happens

‘ 'only 1f [C 1]

('2':'7'.5) " <'&') *j}.—.- 0

(7.6) f | -? | i (d)= 0

FI R AR

Thus ot is- projectable:if it is constant along the’leaves fnd
if it annihilates their tangeint spaces.

Let 3€ (ﬁ') and x*(M) be the’ li:i;iéar‘:-'*'.‘subSpacé"é';‘of-‘ the
projectable vector f:.elds and one- forms, deflned by (7. 2) and
(7.5)-(7.6) respectlvely, and ‘let dg VX (M) —> X (M1 éind
8g %(M') —*3€ (M) -be the linear mappz_ngs defined by (7. 3) and
(7.4). We remark that dg is a surjective map Whose Kérnel is the-
subalgebra Z. of the vector fields spannlng D, and that 6g is an

1n3ect1ve map w
(250) and(f"

e image is 3‘:‘*(M} Then,_the tensors P and N, of type

-1) respectlvely,'are said to be progectable on

M' if P maps progectable one-forms into progectable vector :

f:_.eld‘si :

_ Sl o o
.7y RGN ¢ %00
and if N* naps the'_. pxjo;jq_gtgble_pne;-_,fo_rms into themselves .

In this case, we say that the tensors
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(7.9} o . Pli=dg . P.5g

(7.10) . N ?*_; =Sg~l. N +&

Are the reduced tensor of - P .and. N on M' (see F’J.g 5 .2a-2b),

As for a. tensorﬂ of . type (0 2), one readzly proves . (exactly

as in Sec. 6) that if the 11near subspace

——

(7.11) --xécm {cpeée 00+ n cpeae (M)}

of ‘the pro;;ectable vedtor fields mapped by .Q. 1nto pro,]ectable

: ,one—form' _\»}fulf:.ls the\condx.t:.ons_. g _; f

a1 2, c Ker

| then the teisor (see Fig.2c)

iy 40

P2 D et o RND

(7.14) B n' :7=l .Q dg\
n(M)
is well-defined, whatever rlght‘-lnver‘se ‘dg l x (M) ‘of dg] (M}

may be used, It w111 be referred to- as. the‘_rrz_'feQuq_ed tensor of
L on M!,
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.éqtﬁ (Zpb), (7. 10) and (7 14) deflne the process of
”‘n thls paper, ‘and (7: 7), (7 8), 7. 12) and

(7.13)"give the’ condltlons ‘ander which it can’take’ place.
-Furthermore, the- readl;y __irgd Tfeéletleé .[.c -;?]

(7.15) -z. Q?(w S = dg LR, (B x5 B g
(7.16) T(N') (48 ¢, dg Y) = dg CTWE@) e,
(7.17) dQL' (dg ., dg*) =8g7" .7'.""1"‘dh.('10,({’) _q‘,ye‘ag(m

" show that the propertles of ‘being” a POLSSOD, a-Nijenhuis ‘and

a preSymplectlc tensor are malntalned under projection. As

for the couplzng conditions™ between the’ reduced tensors, the

‘identities [C 2]

(7.18) .'(N..' P! - PIN'*)ere! = dg . (Np..pﬁ")(ag ot
(7.19)  R(P, W) @', dg.p) = dg . R(P,N) (B ;) €36, ()

and

%(7,20) d(Q'PQt)(de W, dg .«'|z) =.5g"1.d(oPh)(~g,~y) «f,tyeaen(m)

holding under the further assumptipn-
X _
(7.21) PO (M) € %, ™)

show that also the property of belng a PN or a P} manlfold

is m81nt11ned under progectlon. So, we have the f0110w1ng

lemmas
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Lemma 7.1 (Projection lemma:fbr PN manifolds).._Let D be any

integrable distribution of a PN man:_fold M. Assume 1ts
leaves to be connected, ‘t;he quotient. Space. M/D to be a. quo—
tient manlfold M!', and the canonical progectlon g : M—>M

to be a surJectlve Submersion, Then,: 1f
 piac*
(P1) P, (M) < x,(M)
. . ’ _
cAp2) NS 0) o

o M!.dinherits from M a PN structure defined by.the tensors

'tP3_) - Pt.i=dg . P.5g
(pg) . N'_* =8_g-1- . N¥ &g

-Lemma 7. 2 (Progectlon lemma for Py nmnlfolds) Let D be

;;any 1ntegrable dlstrlbutlon of a PQL manlfold obeying the

same standard conditions as in the previous lemma. Then, if

(P5) p(x* p (M) € (M)
(P6) - XM Fz =3¢ (M)
.:'-(-P7-) L xn(M) a) ZDC Kepn

M! inherits from M a P structure defined by the tensors
(P8) = - Pt : =dg . P ,S¢g

(P9) Q=8¢ .Q. de




for the sequence of. the kerfél

8. The.reduction bf Pfllﬁéﬁ{faias‘i R

The technlque for reduc1ng the PIJ and. the tPN.manifolds
EconSLSts in a sultable .Sequence: of restr;ctlons and pr03ect10ns
;almlng to eliminate the kernels of P Il and N For the success
of the tEChn1Que, it is essential that. the. images and:the

kernels of P and £l fulfil the conditions

(8.1) Ker P (im P)d.

(8.2) Im S = (KerQ)®

~and that there exists a minimal' finite integer r; called the

.Riesz index of the tensor N, such that simultaneously: -

(8.3)  Inm Nr+1_=_ImL'Nr . Ker-N?f?-a Ker N

As is known, (8. 1) follows from the. skewsymmetry of. Py Whlle

Eq.s (8.2) and (8 3) may fall for 1nf1n1te—d1men51ona1 mani-

_folds, where, a prlor},_pne.slmply.has_;_

(8.4)  Im Q¢ (Kerf)°

-and where the index r ‘may becomé infinite or to be aifferent

ﬁlth respect,to the sequence

Lof the lmages 145 7 W1thout further problng these questlons,

tensors ﬁl and: N- to be cons1dered below. ;il

So, let us consider flrstly a P.fL man1f01d4 -and let S

be any characteristic leaf.of P, .that is anygconnegted maximal
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integral subman1f01d of the dlS: 'but;.on spamied, by the vector

(8.6)

: ¥ i
(8.7) % ,(8) = X (S,M)

Consequent'f i S

,,m-.- \

MY B ANy

a P! stmcture from M ’If (IVI' e -
met.r-:.zat:l.on of S, the reduced stmctur-e 15 def:med by the
tensors ,Q_'-- and Pt g-:_we_n by (R 9) “and (R 10) In partlcular‘,

Pt is kernel-free, since Ker P = KerSf so that by the res-

tm.ct:l.on on the" charncterlstlc leaf we have ge‘t r1d of the

i ket‘nel Qf P kA i_‘ e

To further reduce the PS’L structure defxned on M' iet

us consider the: characterlstlc d1str1but1on of .Q' panned

by the vector fields 3 € Ker.ﬂ_' (:t.ts 1n1: 'Egrablllty 15 a well—

known consequence .of the condition, dSl'

and of the cons--

CfETd Mg ahd EHe ‘¢an

sur-]ecﬁive submer&:.on, accord:.ng ito £

of the ‘Projection Lémma 7i2. To ver‘lfy that the condrblons

(Pi§)) (P:6Y; T (PUT), allcwlng ‘theé redudtion’ process “on .the

- quotient ‘manifold M" to take place,,uwe ‘rémarK “Ehat *
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.(8.11) . -<d_',§‘t?--=<ﬂ_',-,?_',§‘)=--f<g_".§:'., ?t>

~ the: co

Si

(8.8) : _,-_ZD =.Ker Lt

and that thg prgjeqtab1e~vecpor fields :are .characterized :

by the condition

(8.9) Qg ] =0

Hence, wé deduée.;hgﬁ_ -

a0 areyen exten

by setting o'-Q'y' and by using the identities
Ly >1ing th

(8%8).0ﬂ

.s . A

Yoty -
P2 g _":._‘ + [ 7 ||) = 'ﬁ'.L s '._.+.d ‘gl o
)+ ?,(ﬂ.g 'L (g A

B @ g7

(8.9)

This' proves that: X .(M!) =X (M'); ‘so that QL' Verifies. .

ditions (P6) and (P7) of the Lemma 7,2, /To:fufther:
prove thit P obeys the dondition (P5), remark that the as-
sumption (8.2) allows to replacée (8.10) ‘by thé stronger

relation

¥
(8.13) Qe 01 ) =X (M)
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(indeed, (8.2) allows to represent’any form o ' such that
<o1‘-,§‘>=0 as of! =$1'LP', for some QP?;E.X(M"); (8.13)
follows then ‘from+(8.12)). Hence, we ‘deduce s

B.14) Q' .1, (Plat) =Q' (anue )

Ly 3’
= L | (Q‘-P';Iv ') - L (Q.') . PO
5 ? ¥ f

Pl A PN ) (@', 5 )=-Q Pt L, (@' )HdQ (Pia. )
A A 5 s

O d@ra) ey

- o

showing that Pl' is. é projectable vector fleld whenever !

‘is.a.projectable one-form, as 1t was requlred, Therefore, we
- conclude that M" inherits a P} structure from Mf, deflned

- by tensors £ " and P" given by (F.8) aﬁds(P.9), and that ) *

is kefhel-free,_since Ker dg = Ker{l'. This does not imply,
however, that P' be kernel-free. In"fact; P" might have
acquired a kernel in the ﬁaﬁsagc from M‘Vto M, tIf this

is the case, we iterate the process: first, we pérform a res-
triction on a characteristic leaf of P", and then we project
thg,chgrqgterisric_di§tribgtiqngof-{}ﬂ‘; and.s80 on,.up to
arrive:to;a kernel-free Pf.structure, : In; the .next.section,
it.ﬁill be..shown that this itﬁ#ativé,pr09¢s§_actuqlly stops
after.r steps, on account of condition (8.3). Summarizing,

we can state the following Proposition :
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Proposition 8.1 (Reductlon of—P.fl manifolds). Let M be a POL

manlfold and assume P to have a Lernel Then any characte—

.rlstlc le f of P parametrlzed by (M' f } M‘—-* M) inherits

a reduced PSI structure from M def1ned by tensors P' and o

kernel free.

, glven by (R 9) and (R 10) In partlcular, ?’ i:

Furthermore,‘suppose Il' to have a kernel and assume thd
fulfils the condition (8.2). Assume the leaves of the charac—
teristic dlstrlbutlon of Il‘ to be connected the quotlent
space.M'/KerJI': to be-a quotlent manlfold M" and the cano-

M'»——> Mt to be a surJectxve submersion.

s a P&l structure from M' defzned by tensors

In partlcular, fl“-»is

it e B

stops.

H

(st
AR D e

to-a kevnel—rree PI?. structure.

s

LR e

SRRt

-/
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9. Thednedpctioniof;Pmegniﬁolﬁs_L:V”_.

t 1ct M be a PN manlfold (not necessarlly a PIl manlfold)

theiirst reduct1on is over

As well as for the I’SL manlfolks;

the characterlstlc 1eaves of P.: Indeed by the coupllng con-

lcharacterlst1c dlstr1bution of P is in-

varlant w1th respect to N

| So Hth can be reduced accordlng to the prescrlptlons of

' cterlstlc 1eaf of P 1s thus a regular

PN manlfold whose structure is deflnad by tensors P‘ and N

:'(w1th P' kernel free), glven by Eq.s(R.4) ‘and’ (R S)UL Fﬁrther

: on, we-sﬁall get r1d of thevaplces to 51mp11fy the notatlon,

TRErS

and we shall denote the reduced tensors 51mp1y by P and N.
Accordlngly, the reduced manifold will be once more denoted
by M, as though the flrst reduction had mever been performed
(neverbhelggs, one has to recall that P is now kernel-free).
To pursue tﬁe ;edubtion, assume N to obey the condition
(8.3), and consider the distributions spanned by the vector

fields belonging to Im N* and to Ker N' . They will be re-

ferred to as the characteristic distributions of N (the active
and the null distributions respect;vely,'if it is required to

distingUiSh'thém).. In view of_the:reguiarity of P, these dis-

_tributiqns_cqincide with the characteristic distributions of

the tensors

b of
(9.2) Pt = N . P
(9.3) g :=p1 N

r
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that is

(9.4) Im N = Im P Ker N' = KerQ

So, they are integrable, since Pr is a Poisson t-ensor_andﬂ_r
is a presymplectic tensor, by Prop.2.2 of Sec.2. Moréo&ér,

they are also transversal, on account of the following

Lemma 9.1 (Splitting lemma [ 45 1), Let N be any tensor of
tyﬁéT(L;1]7ﬁﬁ'M;“hdﬁitﬁibg;é-fﬁgité_ﬁieéz indéi r, in éhé;

sen;e'of_coﬂdit}ona(S.B). “Thgh, the subspace -Im-Nr.én§_K9; N

¥ .

split the algebra "¥(M) into the direct sum

(9.5) XN E Tw Wl Ker ¥

'30wiﬁé.£6ﬂthisTFéﬁiﬂkgﬁie propébty, it ié'doéiéé§§'£6'5hdw that

¥

the“'regular PN stricture of M may be reduced either by res-
triction on the leaves of the distribution Im NT; 6r‘b§ bro-
jection on the quotient manifold of the distribution Ker N°.
In both.cases, moreofeg, the reduced'£2350ré £urn du% to be .

kernel-~free. .Indeed, in the case of #he fgstricﬁi?ni onenhas
(9.6)  %(S) = Im N"  3%(5)%= Ker N'" X[(S) = Im N7
since the coupling condition

r »r

(9.7) N.P=P.N

and the regularity of P“entail

(9.8) P(Ker N*¥) = Ker N* P(Im ") = Im N
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Consequently, conditions (R1), (R2) and (R3) are readily

verified on account of the splitting lemma. ~Moreover, since

(9.9) . Ker N (Ré‘H df_:l(' I;f‘ df N Ker N)

and

(9.10) ker Pt R8) Se(kerse nae‘;(s) )

T
§

one Aam "féadily check that N‘ : and ‘:P:_f' are. kernel-free; being

(9.11) Im dfnker ¥ = Im NPKerk c Im Nhker N7 (25 4

(9.12) Kersfnﬁ'};(é) Ker N*rn %4;(5)=KerN*?\ImN“ (__9&_5) g

N

In the case of the pro:jectlon, on the contrary, one has first

to remark that any progectable one-form 0( s .fqlfill_ing the

condltlons'

(0.13)  <x,E=0 1) =0

Sio e .:&.‘_}. Ll lna . : . - * r
for ge Ker Nr, belongs necessarily to Im N* s SO that

(9.14) - X=NTo.p

for some (:;696%1’4). Thus one readily dlt.vt.'_:\_ins
. o ' : 3

(9.15) LN, 535 =0

and




(9.16) L (N%d=N*.L(u)-+Lj(N*). N R

3 3
2y Luhg ™" .p
=0
showing that
(9-17) N0 ) € % 0M)

Likewise, one has

(9.18 N . L (Py) =~ L r Y.
) (P o (NX)+ qu(N )%

R(FN}=0
(RN} P . LE(N*%<) - P.L, ()

N'g

Il

P. L (N«)
ki

x
since, by {(9.17), N ﬁx is still a projectable one-form: lthus,

one proves that
W .
{9.19) P(X, (M) ¢ X, (M)

since the conditions (P.1) and (P.2) of the Projection lLemma

{(7.1) are fulfilled, the PN structure can be projected. More-

over, the reduced tensors P' and N' are both kernel-free,

Indeed
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{9.20) Ker prfpé)(sg"l(P'l(Ker N)n m N7 )

(95825g_1 (Ker % Im H‘b)
{9.5)
= 4
and
(9.21) Ker N'*(——E"')S g-I (Ker §°N Im N
cse”! (Ker ¥'Fa Im N°T)

Summarizing, we can state the following

Proposition 9,1 (Reduction of PN manifolds). ILet M be a PN

manifold and assume P to have a Kernel. Then any characte-
ristic leaf of P, parametrized by (M', £ : M' —3% M), inherits
a reduced PN structure from M, defined by tensors N' and P!
given by (R4) and {R5). In particular P' is kernel-free.
Suppose N' to have a finite Riesz index r', and let S' be

any integral leaf of the active characteristicdistribution

Im N'rzg, - parametrized by (M", ft: M" —> M1),
Then M* is an irreducible PN manifold, whose structure is de-
fined by kernel-free tensors N" and P", given once more by (R4)
and (R5). Furthermore, assume the leaves of the null charac-
teristic distribution Ker N'T' to be connected, the gquotient
space M'/Ker N'T' +to be a quotient manifold M"', and the
canonical projection g' : M! —3> MI'' to be a surjective sub~

mersion , Then, M"' inherits an irreducible PN structure from



M', defined by kernel-free tenscrs N"  and P"' given by (P3)
and (P4). In both cases, after two steps, the PN -structure
is completely reduced,

Usually, the last projection can be performed when the

? ¥

. . . . r
leaves of the characteristic distributions Im N and Ker N'r

Locally
are not onl;ﬁrﬁﬁ% also globally transversal, so that M" and
M'? are diffeomorphic manifolds. Consequently, also their
PN structures are diffeomorphic. Nevertheless, this does not
entail the equivalence of the two methods from a computational
point of view, Usually, the projection turns out to be more
profitable, for reasons which will become clear during the
study of the applications. This was the motivation for deve-

loping side by side the restriction technique and the projection

technique.
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10, A digression

In this section, we discuss a different method of reduc-
tion for Nijenhuis tensors, whose knowledge is not required
for the further developments of the theory, but which reveal
itself profitable for the applications. It is included here
in order to show a variant of the previous reduction techni-
ques.,

To enhance the algebraic essence of the method, it is
snitable to regard the Nijenhuis tensor as a linear map
N : Y - ¢ defined over an unspecified lie algebra t and

obeying the condition

(10.1)  T(N){g,¢)=[Ng,Ny]-NlgN¢]-N[Ng,y]J+ N [g9]-0

with respect to the commutator of the algebra. As usual,

—_

the index of N will be assumed to be finite, ind N =17,

£

s0 that the algebra ﬁ splits into the direct sum

{10.2) ‘9 = Im N'@ Kea N”

where both Im N' and Ker N’ are lie subalgebras on account
of the Kijenhuis condition T(NF} = 0, Qur aim is to show

that any subalpebra Y of g which is transversal to Ker N°

in the sense that
(10.3) ﬁﬁ_—_ H @ Koy N D, ] X

ihherits a reduced Nijenhuis structure from g, even if it
is not invariant with respect te N (remark that the reduc-

tion lemma of Sec.6 fails in this case).



To specify the statement, let us call P1 and Px the

components of any element ¢ of ﬁ relative tc the splitting
(10,2)
(10.4) - v, . 2

P59t 9y (¢:€ Im N%; ¢ e Ka N* )

and let us denote by §r the canonical projection on Im Nl,by

, .. -1 .
“H its restriction to M and by T, the inverse of T _,

which exists by (10.3) :

{10.5) 1T . S A
trHlfI 'RH... TIIK 'RH"'R’P =ui1‘«mh"‘

The idea of the method is to modify the Nijenhuis tensor N
so —- to construct a new tensor ¥ : 4 — % which is stiil
& Nijenhuis tensor and which keeps M invariant. Such a

tensor is

(10.6) N:z 2 N. @

The proof runs as follows. From the Nijeﬁﬁﬁiéiﬁ g&ifion
(10.7) PO (0,9 ) =N (N Ty ], - [ N7, )0
and from the splitting lemma, one first proves that

(10.8) NML [% ‘Yx]x" [‘{’r- JN“i ‘i":r] 1 0

for any i >0. Then, from



2

one obtains the stronger relation

(10.10) N[?K,q’!]j-[(?KJNYT]::O

Together with the obvious relation
Swean  w N oiNw
it allows to construct the following chain of identities:

T(R) (v =

CO W), Fyn - [Ge, @, ), +[Ngiy, (y), 1,
- N'{(g'?)zf‘l’:]' N [(ﬁ?)x ; 'f:.]:r _N[(ﬁt{:ﬂ}:!‘fuj“
- N ["PT I(i‘f):} - N [(PIJ(E*’)KJI - N [‘{J\( }(EY)I]T

+ \a [‘{’j;%] + N [‘f’r "{"t]I +N2‘[TW%]I




O N, Ny e (ig), Ve Le Dy, (), 1,
N [Nes, 92 ) -NTNe) ] =N INgr 0],
N T N )N Do, () T, - N D N D
MR P T A P S A
TN v ) < N Ny LN v ] Wi 0] 0

v [H0te
- N?[‘f\ukfij? = ! '-P(N)(“FI»‘VI) =0

showing that 7. T(ﬁ)(q,Y) mist vanish., Since T(ﬁ)(?,y) be-
iongs to M (X being a subalgebra) and since 7 is kernel-free

when restricted to M ,this is possible only if

(10.13} ‘T‘(ﬂ)(%”___o

showing that N is a new Nijenhuis tensor on g , leaving M in-

variant. Its restriction to H

(10.14) Ny:= 2, N =,

defines (by lemma 6.1) the reduced structure we were looking
for. The new technique is thus a composite technique, where
two processes, a projection and a restriction, are performed

simultaneously. Let us summarize it into the following pro-

position :




Proposition 10,1 (algebraic technique for reducing Nijenhuis

_‘_."EIISOI‘S ) .

Let N be a Nijenhuis tensor, with a finite index n, defined

on a lLie algebra g , and let X C g be a subalgebra trans-—

versal to Ker Nq

. r
{(10.15) (g: H e Kl [}(}H} < ¥
-1 . . . .
Let 7, T,, 7y be respectively the canonical projection
on ImNr, its restriction to H and the inverse of Ty s relative

to the splitting

(10..16) g = Imr Ni @ Km ]‘“
Then, the {kernel-free) tensor

(10.17) N,-= 7" N =,

endows H with a Nijenhuis structure.
To show how this result fits the theory of the Nijenhuis

manifolds, let S be any submanifold of a Nijenhuis manifold

M and assume that :
i} N has a finite constant index r on S

*ii)at each point m e S, the tangent space T,S and the subspace

z{er(an split T M :

(10.18) T.M=T 6 e K“(Nmf

In this case, take ¥ and X to bhe ¥ (S,M) and ¥(S) respecti-

vely, and let 7T: X (S,M)-— Im NrL be the projection over Im N’




.“...

associated with the splitting

: 2 ]
(10.19} ¥ (s,M)= Im N* ® Ka N
Then, construct the tensor

(10.20) N .= TIS'{” N T,

where ‘KS is the restriction to ¥ (8) of . It is a2 new
Nijenhuis tensor endowing S with a Nijenhuis structure (even
if $§ ¢ not invariant with respect to the older tensor N).
An explicit example of this procedure will be worked out in

the next section.
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11. A first example of reduction of a PN manifold

Before considering in a general context the construction
of PQ) and PN manifolds and their reduction, it may be suit-~
able to discuss a simple case, It is intended both as a first
study of the distributions and of the submanifolds entering inic
the reduction process and as a guide to the more general exam-
ple of Sec.l6.

iet V be any finite-dimensional vector space over R
{(or C), and M the affine manifold of 2x2 matrices whose
entries are C° functions uﬁ :+ R-—+ EndV obeying given
asymptotic conditions for iilnaaoo . The "points" of the

manifold M are thus the matrices

Uy {*) U, (x}
(11.1) w: =
u, (%) Yy ()

whose entries {henceforth denoted by a single index to sim-
plify the notations) are matrix-valued functions. Constant

vector fields and one-forms on H are then given by matrices

(11.2)

-5
!

whose entries are rapidly decreasing matrix-valued functions
for |x! -5 o . The natural pairing ¢, between vector

fields and one-~-forms is given by

(11.3) <o, @y = T S(d;ﬂ*%%‘f‘“;‘?:*%‘f’&)dx



the symbol Tx meaning the trace of the products Gy
As it will be shown from a general point of view in
Sec.s 14 and 15, the manifold M is naturally endowed with a

twofold Hamiltonian structure defined by the Poisson tensors
(11.4) Po:z « +[u,«]

(11-5) QMD(::[O.,UJ

where a is any fixed matrix with constant entries, and the
symbol Z-,_J denotes the commutator of matrices. In par-

ticular, we choose

(11.6) q:{o 1]
o 0

and we aim to show that a straightforward application of the
reduction techniques allows to recover the integrability

structure of the (non_abelian) ‘Kdv equation.

I

i1t.1 Since the tensor P is kernel-free {on account of the

asymptotic condition for «), the manifold M can be dealt
with either as a PN or as a F(] manifold, by introducing

the presymplectic tensor ()} and the Nijenhuis tensor N given

by
(11.7) .= P N.2=Q P*'-Q.Q

In both cases, however, the first step is the restriction
to a characteristic leaf of the Poisson tensor 0. Since by

{(11.5), (11.6) Q has the explicit form



£8

(11-8) {.f:QOL i Lﬁ‘_‘d‘; E.{;i: 0(5-0!'1 ¢-5=O Lﬁ.z-c(-;

the distribution Im §is defined by

(11.9) L Q :{L?; fo 90, 4 0]

its integral leaves are the affine hyperplanes

(11.10) U, + 4, = ¢ Wy = €,

<, and c2 being arbitrary matrices. For further develop-

ments, the choice of cy and <, is largely immaterial, at

2
the index of ¥ being greater on it): thus we choose

least if °, #£ 0 {the leaf ¢, = 0 is in some sense singular,

{(11.11) S-:{ueM‘uMu,‘=0,u3=ﬂ3

Clearly, S is a "two-dimensional" affine hyperplane (over
the ring of the functions £ : R—» End V) admitting the para~
metric repregentation

. ) i
(1.1a.12) u £ 5 u = ’.&i C!"3 -+ U-2 (T+-% o

. + - .
where the matrices 0;5 o and ¢ are given by :

~

(11.12) e 2 0] v’fz[lo {] "’7={0 o]
i

o1 -

The pair of functions (uij ué) may thus be called the
tcoordinates” of the point u¢S, with respect to the affine

frame (11.13). Accordingly, 2 tangent vector pto S at the



point u may be written in the form

(11.14) SR AT

where { ?i, $;) are the components of ¢ in the frame (11,13),

so that for the one-forms we get

4 pe

(11.15)} <o, k.g y = S(“Ff fnl (c,ccr5 )+ (P; Tf.. (oi0'+)) ci'x

Thus, the components of the one-form o in this coordinate Sys=

tem are
i ! ' m o +
{(11,16) « = u(o!crz) = - oy = . (aur ):—,__o(,
Let us now restrict to S the PN structure of M, de-

fined by the tensors Q and N = Pnl. As for the Poisson tensor

Q; we have to use the formula

} -1 of - . o
{11.17) ¢ =df" Q. of et
(where £ : (u{, ué)»-a u symbolically denotes the ﬁarametri-
zation (11.12)}, namely we have to express the components

{ q;, T;) of the taﬁgent vector as functions of the components

{q{, &é} of g « Explicitly, we get

Pt (1 g) {1t1g)
g = ) == ®y = oy

(11,18)

!
kit = 0 = -0 = .- &
¥ 1 % %

showing that the restricted tensor Q' has, in the affine



Jo

coordinates (ui, ué), the canonical form

(11.19) T

mila :
i
{11.20) ' = 80 00 df ¢ :
| s
|

namely we have to express .- the components (o N;)

) . c ; by .
of & as functions of the components (?1, Py of ¢ . This
can be done by using the following three sets of equations :

first, the eguations

(11.21) «'s 8f. « ol 5wy o = o«

giving the components (e;, q;) in terms of the entries of

the matrix ¢ ; next, the equations

. . - |
(11;—2) L?:Qdf ?1=‘g“+u y._daoi_u1!n'§] !

(13
2
-
*
4
—
c

¥

[ 4 x

Y = o -tu’z_.edsu,:._.{u.‘_l,ﬁhj

(where the bracket { , } denotes the anticommutator of {
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matrices) giving the entries of « 'in terms of the entries of
the tangent vector ¢; and, finally, the equations

| | |
(11.23) = df ¢ 20y trw 470 4= -g

giving the entries of the tangent vectors as functions of its
! .
"affine components! (?&, {;). Simple computations allow to

split the previous system as follows

(11.24) o, & o

and

where the linear integro-differential operator 4 is given by

(11.26) S 28 () = oy, 20 ) {0 +[°f,',U"_];[a",jfoz;,u"] ﬁ]

xrxx

L [

{ i P
N W t4y + U

The system (1i.%24) allows to express (Ml, %, d3’ q4) as func-

tions of [« <., ¢ )} and its solution does not enter the process
iiqu_




of reduction; the second system (11.25), on the confrary,

. . . ! Iy i i
gives directly the link between ( d1, dz} and ( $ys ?2) we
were looking for and, consequently, it defines the reduced

presymplectic tensor QY ;

(11.27) cz; = ﬁd(‘?:x + ‘i’.; +t {ui: “F;H

In particular, we see that the kernel of {1 is given by

o

oy

(11.28) Ko Q= f(qhigr): oy [uihj= O

Remark. The existence of Ker () could have been determined
without comnstructing {) and without an explicit introduction

of the parametrization of S; indeed, eq.{(ll.29)}entails that
(11.29) &l (Ka Q') = (27 (Ker §1) n Im Q

- 07" (Im di)’n i @
S0 (1 Q) A TnQ

- .. -1
Then, on account of (11.9) and of the explicit form of [ @

jt follows that

(11.30) Q"'(Iﬁ;Q]"nTmQ = {(‘F @+ 9 -0, 4, Oigf;1y+t;;}+{u”<fd:0}

(K]

giving directly {(11.28)}.
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11.2 One of the main outcomes of the previous computation is

to show that the leaves of the characteristic distribution

Xer('of () are defined by the equation

(11-31) u +U.1+ u =

where u" is any given matrix-valued function u' : R Eni V.
Different leaves of Ker £)' correspond to different choices of
u", Consequently, we can consider the Eq.(11.31) as defining
the surjective submersion g : M!—»M'/ker()' required by the
second step of the reduction process, and u" as the coordinate
on the quotient manifold (the topology of this manifold will
be more carefully investigated in Sec.16). If we call ¢"

the component of a tangent vector to M" = M'/ker{l’ at the

point u", from (11.31) we get

(11.32)  @"= g v gy + {0 7]

and consequently

400 12
a1 B[ T"J“”f‘f’:zﬂi’i*‘{“:ﬂf«'})d"
= T‘j ‘F: (—o{: +{o¢'} u.;})cix +r|1aj tp; o dx
so that ' -~
(11.34) uﬂi= _ug ,,.{.,("} uﬂ} cczl -

t

. . i
Eq.s {11.32) and (11.34) define the mappings dg: (Qi, ?z)kwﬁTl
and Sg : u"r——e(wi, dé) associated with the projection

g (ui, ué)rm,u“. Then, by using the equation



(11.35) QY. = df]' Q. 83

we readily obtain

ko ({1 32)

(11.36) P = tFix*P‘-Flg‘r{“I{r‘f’i}

(1043} )
! i i
= O{Jx_di""{u'f'dli

(stc) °("x +°Lr; _ {o{',u.'i} 4_{ o 0(_:,3

¥
2 ot

giving the final form of the reduced Poisson tensor Q" over
the quotient manifold M'" = M!'/ker{)) . 1Indeed, on account of
the boundary conditions, this tensor is clearly kernel-free,
so that the. process of reduction ends at this stage, accord-
ing to the remark of Sec. §.

As for (i, we have to use the formulo

{11.37) u - -1 i -4 N

namely we mast eliminate ‘f' and ! from the equations
" { f I i I

(11.38) o = &j‘d” o =Q P ¢ = dﬂ £

Explicitly, this means that we must solve the following sys-

tem of three sets of equations

i

‘ i " M : ]
(11.39) °<4:—°(,+{°(zu1} 0(1-.—.06
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(11.40) o =(5£_1(“le gy s If“:;‘f:})
d:: - d:x* {“::“;}
(11.41) (19” = “i‘):x + "P; +{u:'(&l}

either with respect e «" &t with respect bo g". In this way
we obtain either the reduced symplectic tensor or its inverse,

So, for example, the equation

(11.42)  ¢"= 9l v« (w9l
£ (1)

-8 ()

(ﬂg) O’:U . (u «) 2 {o( ulr}+i[°¢ L,,_L_i[ J‘T:u'”r M]dx]

2

3
SR

-2

gives the second Hamiltonian structure on M". M!'/ker (),

The tensors (" and fTFI define the integrability structure
of the hierarchy of evolution equations whose first member
is the well-known non-ahelian KdV equation; this hierarchy
is characterized by the Nijenhuis tensor N¥: =.(N"1 . Q"ml

given by

(11.43) N"?" +Q( j "d) f‘fdx u] [ [[j“f’&x,u]de

-

and the non-abelian KdV equation

(11.44) Gy o= —uy,, + 3 (el ]

t ¥y

is obtained by choosing *" =u'



¢

11.3 Now, we discuss the reduction of the manifold M from

the point of view of the PN theory. let (Qt, N1: =0'.Q")
be the Poisson and Nijenhuis tensors restricted to the sub-
manifold S (444{). The first step is to compute the index

of N' af the points of S; since Q' is kernel-free, it is

(11.45) K% N;= Kea QJ ({:Q) {(‘F:».'F;) 1‘{’:,* ‘f;’ "{"“!u‘f;} - O}

and, by (11.8) and (11.27)

t

(11.46) Lo N' = Qom €17 = {( ) s Pun- i b 91120

Clearly these two distributions are transversal on account
of the homogeneous boundary conditions on ( T;’ ?;); there-
fore, the index of N! is r = 1 at any point ueS, and the

characteristic leaves of N! are given by

f 12 I
1l+u2‘fu"‘ = W }

(11.47) S = {(uf,uy):
(11.48) 6’ t = {(u'“u.;) . Usi‘x - u',_ - M_’ = lf”]

on account of (11.45) and (11.46)., In the last equations u"
and v" are arbitrary matrix-valued functions, playing the

role of the parameters specifying the leaves. Taken together,
Eq.{11.47) and (11.48) can be loocked at as the formulas which
define a change of coordinates: from the old "affine coor-
dinates? (ui, ué) to the new " fibered coordinates" {(u',v")

(the reason for this terminology will be made clear in Sec.16),
By caliing (y",y") and ( m",?“) the components of tangent and

—
-

cotangent vectors in the new system of coordinates, from ﬁ 3

{(11.47-48) we get



f ' . -
(11.49) ¢ = gy ‘fz*{”‘il‘ﬁj
- © ! I
¥ = fix ¥ "'{“:r‘h}
and hence, by duality,
| ) 'K i 3 [T 1 i !
(11.50) o, = _~(dF4FI)14,{u4 vy oy = g..F'

The V"components!" of the reduced tensdr‘ Q' in Ehis Dew

coordinate system are thus given by

(11.51} T I , o
Po= ot {4
1z | , L
= O(.f! --»0(i+{u;,°('?}
{4s0] . &
= Lot
and by
(11.52) y , . o
Y = ?11"?5—{@’,?1}

‘ [, o
(11.53) Q=2 :
. i 9 -7,

To compute the components of ) (and hence of N') it is
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suitable to use the inverse transformation :

x
' X
(11.54) Ll.:zi_g(u".fuu)dz U.;;J_(u".-u")_ﬁ__(g(ull‘u'ﬂ)da‘)z
2 2 4
-o0 )
entailing
dif 1 o{l i E{I m’lz dr)d!
= 52 ""2_ Yer®a b= %y
(11.55) -

Therefore we obtain

i.55 x
(11.56) o(“ ('= }i_ u;-a-.z_.g ({u‘”d_;}_.di)dx
EAVS

DL (g 114 43)
-2 (¢")

and

i (4.55) ! * I j (11.2%)
(11.57) ]5 ' _%“1_,,;;__5({&’”41}_@4,)&7: 2" o

=
showing that (1! takes the explicit form

(@R
(11.58) > o

where 2-4 does not depend on the second fibered coordinate
v® (by (11.26)). The study of the further restriction on the
leaves of Im N or projection on S/Ker N' becomes now trivial,

the reduced tensorsbeing simply given by the first diagonal




block in (11.53) and (11,.58) respectively. The interesting
feature of this example is that it is completely general :
in Sec.16 we shall show that the general case for nxn matrices
can be dealt with exactly in the same way, leading to the

so-called general Gel!fand-Dikii equations.

11.4. To end this section, we aim to give an example also

of the reduction technique of Sec.10, For this reason, we

consider the submanifold FeM of 2x2 traceless Frobenius matrices

defined by

(11.59) F:_—_{ugM: “4:“4=D;“3=jj @.Qeruzlz;]

The deep reason to do that will be made clear in Sec.l16; here,
we limit ourselves o show that F obeys the conditions stated
in Sec.10, allowing to perform the reduction, To this end,
we first remark that, at the points of F, the tensors Q and

P take the simplified form (see_ E1 (1112))

(11.60) l{: Q ol . ¢, = o, 6, = o, -, g =0 - -'g’s
(11.61) ¢-= Pa G = ol s U, -

§ = e - S e

By = oy oy - o,

¢ = ooy - ol, U

Simple computations show that




g0

D

(11.62) LnN:ILmQ.: {LP:LF"-r-f'L-‘:O,Lh:Oj

(11.63) Tn N = Q P *(Im N - 19: 4020 ¢=0, Fe -‘PﬁO}
(11.64) HZ-T.N = P(KmQJ: {cr (.[)1: 0,2%4"ﬂ,‘"‘ﬁ!‘x"[U,J‘x(‘ﬂ*‘?a)dx]20}

(11.65) KMNQ:PQg(KuN):g‘f’ ‘f’z=¢(‘f’u%/?t)}

where the last constraint is given by :

(11.66) 4 @('ﬂ, G )= ~2(g-9,), O '+{U’r% dx} +

-

i
x b4 ® .
I
thgvl-[o ] [nfpaeyage[o g q)e]
— % - ! 4 e
Thus one verifies that Ker Ni is transv¥ersal at any point
ueF both to Im N and T F. |
Having verified that the reduction method of Sec.10 can
be applied to the submanifold F, we proceed by constructing
the projectionw. To this end, let us remark that the ma-
. . 2 2
trices zipI, P QFF belonging to ImNu, KerNu and TuF can

be given the parametric form :

(11.67) nfTeLw'N: ' L{’T:[E_L__}"i
- o -2
(11.68) ¢ ¢ Ker N ¢, {/“ ‘ﬁ(f’_v’“}
v e
. o i v |
(11.69) YFG'TLF ; (FF:[O _C-)-

so that the equation Lf?= ﬁOI + (FK means
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(11-70) ‘ﬂ:’l"/‘ y {ﬁ:)t‘ré(}'”’/f’} Py= ¥ k.Pr:t,A_

Its solution is

(11.71) '?}‘:Sl(%" @(‘f’”t{’”t&))du } /"':L?{'—A} ¥ = ‘f'3 ) f’=‘{’b+l

The projection m is then given by

F(%’wf’,ﬁi’u‘&) | Ao (g, % %, 4u)
¥, =

(11.72) T-
o ‘“k(?uﬁyﬁr%)

-6

P

T

L

and its restriction ‘WF to S by

- [lpde oy
{11.73) T, 9. = ;_ £ l s
- dx
. 0 J,Y
so that
(11.74) ﬂ;’ R g, - ,o |22,
- r o o

The reduction of N is now straightforward, the reduced tensor

NF being given by

(11.75) N :=n QQ =

F

Since the equations o= Q’ITF ?F and “f’p h—th;l Qe entail

g
-
x
CATBICE:

-

A
of

4 - x
o 2 o R EA S B LAV Ly

and




{(11.77) Xy -y o=y

respectively, one directly obtains :

k3

x x’
(11.78) . N;(Y)=__%L&t+§_{J;yd:,u};+§{u3g}+%[gj££ydxiujdx]

It is now possible to compare advantages and drawbacks
of the two methods of reduction, the geometric one of Sec.8-9

and the algebraic one of Sec,10. The first one has the advan-
tage of giving a clear picture of the reduction process al any

stage, and of suggesting Systematically what are the submani.-

folds carrying a reduction; but it forces us to make repeated
changes of coordinates which become more and, more cumbersome
when the dimension of the manifold increases. The second one,
on the contrary, does not require any change of coordinates
and so it is more direct, but it does not provide any specific
indications on how to find the submanifolds carrying the re-
duction. Roughly speaking, we can say that the geometric me-

thod is more systematic, while the algebraic one is more ef-

ficient,
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12, Lie groups as P} manifolds

In this section we consider the particular preblem of

the construction of jnvariant Poisson tensors on a Lie group,

and we show that any Lie group admitting an invariant FPoisson
Eggﬁgﬁ}is a PCL NTEEEfOld‘ From this result we shall derive
a simple aigebraic methéa to construct Pl structureson a
fie group : it will be used in Sec.l5 to obtain the PG
structure associated with the equations solvable by the in-
verse scattering technique,

For further convenience, the main notations and some
noteworthy identities to be used in this section and in the
following ones are now summarized, If H is a (Banach-)Lie
group, X its lie algebra and H¥ the dual of H, we shall use
the symbols (h, k,...), (‘f,:,B,...) and (Aﬂ#’v"") to de-
note elements of H, H and w* respectively; e stands for the
identity of the group and Lh’ R ~stand for the left and right-
translations, as usual. The adjoint and the coadjoint repre-
sentations are denoted by Adh ;o= dRh(efd.dLh{e) and
Ad: 1 o= SRh(eyd. SLh(e), and their generatorsby

(12.1) ml!‘z a[?;ﬂ‘%g Hdé*f“fq t:0 !

Finally, f& and %} are the left-invariant and right-invariant

vector fields, defined by

quredl@] feedR@]

A — - .
and of , & are the corresponding invariant cne~forms

T

(12-3) Nﬁ(k)i: SLL(C)-“/L &ﬁ(k)=SRL(.)-1} g ’




|
i
|
i
i
i

H

r

N
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They are related by the well-known relations
A Fal
(12.4) <°‘/4-J“F~‘,>=</’~;‘f>:(°<ﬁf‘fc§>

gt

K(\/v;_[%?\'zf (1z.5) [%‘f':{;'l]: %niﬂ ; L*D?' %1}2 ° [LF?’L?J: O

12.6) L («)= - Lo(ay=0, L. (&)= = .
( ) % o daa:;lp’ ‘?y(’) i Ty d ady

o) . A
(12.7) dc( ‘.r 2 .o d&/"‘ (f'f = O(ML*

Al ¢ % $
of common use henceforth,

Now, let P :»%*{H)— ¥ (H) be a right-invariant second-

order tensor of type (2,0) on H, mapping right-invariant one-

A e P

forms into right-invariant vector fields according to

Ag 59;@5) [(12.8) Pa - ¢
e I s A
K : oy, B - ' ‘ '
3 where [P 3 . —> )—({ is the evaluation of P at the identity

o s I 5L o T e b P ST

of the group. By using the identities

~ A 2L
(12.9) <«,, FPa > (-_~)</4,PU/>
. . (2 6) - (1 &)
Gzo10) <L (&,),P8, s —<a o Py =GR R
- l.}e X Pgl
I M N - T ox - "
K, B> e E g, B>

T
one easily shows that P is a Poisson tensor if Pe fulfils

the foll_qwingr two _cpnditi.qns
(za1t) ¢, Pvy = —cy, B py

(12.12) < ‘)‘/[Pj‘xﬁ v] v o+ cycLic Fe'r.rmu.tat;m = O

e

VM\? 7 ”“Fi'é; -@? itk
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The tensors Pe : L H fulfilling them are said Poisson

cocycles (or P~cocycles for short). )ﬁglmllarly, one can show

,;-, e £ 0 sy 4 e 2 e 2

|
that any M ¥-cocycle of H Z}s] i.e. any tensor:f) }(—+}{*g

]

i _m,_.ﬁ,l NA LA Y Y N
H

ef—type—(0;2), such that

PR ———

(12.13) <QE§.'[>=—<QC'IJ?>

“Zlfw@owcgwée (12.14) < Q,[$,7], 07 + eyelic  permubabion = D

L b f S ' -\
o (F e i [:i‘dsv<cf =/

for any f/1:9£}{’ defines on the group H a tensor-$§f¥§ﬁ)“4k*(H}

(12.15 o 1= «
) s Q.9

which is 1eft 1nvar1ant and presymplectlc. For further re-

ference, we note that conditions (12.12) and (12.14) can be

given the form

@18 [RpRv)= R (o), p ok v ) [BEARTS B

i
T =

|

3]

o Sevvay T 1z.17) Q. %, 1] =_<ul; O+ a»i; %

showing, in particular, that the subspaces

(12.18) ) P (}{*‘ H o =Xa O
Y . ®
are lie subalgebra;qf){.
-faé-;ain ;esult we want to point out in this section
is that _any pair (P,(}) formed by a right-invariant Poisson
tensor P and by a left-invariant presymplectic tensor(}(or

viceversa by a left-imvariant Poisson tensor P and by a

e
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right-invariant presymplectic tensor () ) defines a Pl  strucs

ture on H, without any further condition QE_Pe and:gle .

Since any lie group has an infinite set of XH#*-cocycles,

e.g. those defined by

(r) ¥

(12.19) Qe’“ § .= od.?};
for any given element  u ¢ HF , this result reduces
the problem of the construction of a P{. structure on H to
the solution of the cocycle conditions (12.11) (12.12), that
is to a purely algebraié problem,

To prove this statement we have to make two remarks,
concerning respectively the left-invariant one-forms ™,
and the vector fields

(12-20) Y}: = P % :t‘g';.{f m A

g b
i

p
which turn out to be associated with them. According to the
first remark, the forms gﬂ are in involution with respect

to the Poisson tensor P, since

(12.21) <{g,,,uy}P, IADRE <ds, P, - da Pu, +

¢

ke

c{<n(ﬁ‘PaLy> ’Lf'f Y
= "'<"3‘°‘,n T?IPDIV )+<doiy Lf,ﬂpofﬁ v Llp;<°(ff P"!y >
- < L\ﬂf,(“,u)‘d“f ¢, JPoa, v+ <da, 9y —-L‘ﬁf(o(y.)', Po(ﬁ>

having used the obvious identity

;o n ) . A A )

h # b el D
p fa ok cj] C__ 7

< ; p

C



g7

(12.22) L (PY=o0
y

which expresss the right-invariance of P, According to the

second remark, the vector fields y, are in involution and

USRS S R T o TR T Tt

Ad¥—equivariant with respect to right-translations, i.e,

MR R o

they fulfil the conditions

(12.23) [ 4 ¢,] =0

(12.24) C{RK(L). R (W)

LFM.:: ’

for any ke H. This is proved by using the identity

!

(12.25) [er,%] - P {«, dV}P

characteristic of Poisson tensors ( [8.1] ), the invariance
of P and the Ad¥-equivariance of o(/u with respect to right-

translations :

(12.26) Pﬂm = 4R () B SR(W)
(12.27) o, (h)= dR, (W) “ﬂd.:,»( R (v)

In particular, the equivadance property (12.24) entdls the

following commutation relation between the vector fields
g_fz and \1)}'-
(12.28) ] -

[ Pg 0 Yp Lﬁwt; P

so that from (12.5-3) and (12.23) we have
e
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G229 [y, 1= - )= Y, 7 [0 ]2

They are the basic relations on which rests the proof of our
statemert; they show that the fields q& and Y make a Lie

algebra lsomorphlc to the _algebra of the semi-direct._ product,

I
f H ?AdéH* of the group H by the dual X* of its lie algebra.

e S

To prove the statement 1et us’ "introduce the tensor

N : = P{; and let us observe that

(12.30) ch? - PO Py = P oy = ‘fn.‘;

We have to compute its torsion and to see when it vanishes.

We obtain :
(12.31) 'P(N)(‘h ‘ﬁ)‘:

=[N‘ff;fN‘fq]' N['f‘ng‘fz]‘ N[N"f‘z’“h]"Nz[‘f?"ﬁ]
(o o)~ N (D0t g 00N G )

011?)

H

LIJ(M‘»” fen - od¥ QT+ A, ($0])
without any further condition on the cocycles D% and Pe .
Thus we have proved that H is endowed with a P} structure

by any pair of cocycles (Ie and Pe' Summarizing we have the

following

—-3» Proposition 12.1 (Group-theoretical P{) manifolds). ILet H

be a (finite or infinite-dimensional) lie group admitting a

Poisson cocycle Pe, i.e. a tensor Pe s M, X fulfilling

the conditions
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(12.32) </J,P‘V>=-—< v,E/")

(12.33) < AJ[PG)"J PtV] > 4 cch{,c I:ck.muta.tl-'om = O

Then the tensors P and (1 defined by

(12.34) P Xyt ‘FE)*

(12.35) Q) ?z = dn}

for any ) *-cocycle ()e endow H with the structure of P{.
manifold. Therefore any Lie group admitting one P~.cocycle

has as many P{i: structures as HH*~cocycles.

Remark. Due to the right-invariance, the characteristic

et £

leaves of P are the right-cosets of the connected subgroup

H'eH whose §}g§R£q is

(12.36) = P ()
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13, The reduction of group-theoretical P{1 manifolds

let us now perform the reduction of the group-theoretical
PN structure previously defined, according to the general
scheme outlined in Sec.8 for arbitrary PQ manifolds. A
clear understanding of this process will be essential to deal
correctly with the applications in Sec.16.

We recall that the first step is the reduction over the
characteristic leaves of P, which are, in the present case,
the right-cosets of the connected subgroup H' whose algebra
is I = I}(H*). Since these leaves are all diffeomorphic to
H' , we can limit ourselves to study the reduced structure on
this subgroup. Let £ : H' —> H be the canonical immersion
of H' into H. The reduced tensors P' and £)' ecan be computed
either by using the general formulas (6 ,R9) and (6.R10) or,

more easily in the present context, by first reducing the co-

cyclesPe and 118 to the subalgebra ){', according to

(13.1) Q)= §f()-Q, df (e P < d.}(c)-‘.‘ P S}(c)"

{where Sf(e)"l is any right-inverse of §f(e) s H*— N,
and then by using the group-theoretical structure of H' to
recover the whole P{: structure, Thus, the first reduction
simply amounts to rgpléce the group H by the subgroup H', and
the cocycles (le and Pe by the cocycles Og and Pé. Further
on, in order to take the notation as simple as possible, we
shall continue to use }Q‘f%} Pe without apices, to denote
H‘,(]é, Pé , recalling that Pe is now a kernmel-free Poisson
cocycle,

To continue the reduction process, two different ways

can be followed, according to H is regarded as a PO or a




PN manifold, They both provide valuable insights into the
reduction process., According to the first point of view,
we have to determine the characteristic distribution of (1
and to pass to the quotient manifold H/Ker{l. This problem
is simply solved by considering the left-cosets of the con-

nected subgroup Hﬂ_ whose algebra is

(13.2) -
H = Ka Q

-
Due to the left-invariance of {1, they coincide with the
leaves we are looking for and, accordingly, the reduced mani-
fold is the homogeneous space H/Hn . According to the second
point of view, we have to determine the characteristic leaves
of N: = P{1. The first step is to characterize the leaves of
the distributions Kefﬁ and Iqﬁ and their intersections. This
can be done as follows.

As for the leaves of the distribution Kegﬁ, it suffices
to remark that KerN = Ker§l , since P is kernel-free. So,
such leaves are the left-cosets of the connected subgroup H..
As for the leaves of the distribution ITﬁ, we need a deeper
analysis of the properties of the groups admitting kernel-free
Poisson cocycles. In particular, we have to introduce two new
geometrical objects strictly related with Pe s, that is a map
J : Ho H* and an action (};: H¥ x H—s ¥ of H on H*, which

are called respectively the momentum mapping and the canonjical

action associated with the kernel-free Poisson cocycle. To
introduce J, let us consider the vector-valued one-form

O: ¥ (H)— }'Cﬁ with values in %, uniquely defined by

(13.3) COCR), y, (N> = po
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(recall that now the vector fields y, span the whole tangent
spaces ﬂyH since Pe is kernel-~free), This form is closed
and Adfmequivariant (with respect to right_translations on
the group), owing to the commutativity of the fields Y, and
of their Ad¥-equivariance. This means that & obeys the

conditions

(13.4) d0- 0

(13:9 <BR() B (RUAM), ¢, () 5 = Adl ¢ B(N, . (W) y

as is proved by :

036 cdo g5l By <Byrec8 Ty =0

(13.7) <SRK(L)IG(RK(I‘))) Y, (Rb(if__’ﬂ(, O(R, (W), lf/w (R N) >= Hd:/u
s

Hence, there exists a local map J : U-a}{t defined on a

neighbourhood U of the identity €, such that

(13.8)  di(N-¢(h) = < B(+), (n)y

for any vector field y € X (H}). ® will be referred to as

~the (local) momentum mapping canonically associated with

the Poisson cocycle Pe. By using Eq.s (13.8), (13.4) and
the explicit form (12.20) of the fields ¢, » one readily ob-

tains the equation

(13.9)  dJ(n) %(L} = MY P g

allowing to locally compute the momentum mapping, for any



)
ue

given cocycle Pe .

On account of Eq.(13.5), the mapping J obeys the condi-

tion
(13.10) 4] (R (W) dR (b) = Ad¥ d} (h)

entailing

1

(13.11) 3( Rkn;}} - Hd: g(;}‘+g (e

((13.11) is obtained by integrating (13.10) with the condition
J(e} = 0). Consequently, the momentum mapping verifies the

coadjoint cocycle identity 17?w7 and, therefore, the equation

(13.12) q)(}u)KJ-z—i(/u):dT(K) - de/u

¥ *
defines a (local} right-action é:}(xU-—}}{ making J equivariant:

(13.13) qS (J(w) =J(R:(k).)

for any h,keU such that Rk(h)eU. It will be referred to

as the {local) right-action of H on }{*canonically associated

with the Poisson cocycle,

Although J and (@ have been so far introduced locally on
U, they can be glebally extended on the whole group H. Indeed,
let k be any fixed element of U and U'! : = Rk(U)' We define

a function J' t U' — }('by

(13.14) J'(R (%))« = AdL J () + ] (x)
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Clearly, J and J! coincide on the intersection UnU!

(13.15} J

!
iuau’ ) J IUnU’
so that J!' defines a continuation of J from U to U o '
{relative to the choice of k). To claim that, by iteration,
J can be extended on the whole group H, we have to show that
the result of the continuation does not depend on the way the
continuation is performed., To this end, let kl and k_ be two

. . -1 -
elements of U so near to the  identity that kl and kl . k2

also belong to U, Hence, for any heU we find :

(1‘3_16) 3”{ ﬁx‘l-fg. (: Ru‘(k))) = HCL :1 X, JJ( Rk‘(l\)) + a,( k;i KI )

SRy B (A JOD < J0a)) < ALY L) R T (k)

() 300 =30k ) - Ady (ALZ J0a) +] ()

-
Z

il

(Bl 3 +]0g)) B Jee

H

Qd.: J(h) - 3("1)

showing that the continuation of J from U to U, =RE(U)=RG,‘&(U,)
obtained either by passing through U1 = Rk {U) or directly
coincide, Hence the function J is globally defined on the
whole group H, where it globally verifies the conditions (13.8)
and (13.11).

To point out how Eﬁ and J allowto identify the characte-

ristic leaves of N, and to perform the reduction of the PN

structure, let us considerthe connected subgroup Hfl asso-
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¥ <
clated with the ¥ ~cocycle f%, and let us take the restrictions

A -~
J and 4) of J and & to }{*. They are defined by
* Fes
A -
13.1 Pors '
(13.17) (o= (o) A

(13.18) Zf)(Si(e)/u ;K):: di(e) @(/J;l(K))

where i : H -— H is the canonical immersion of H,y into
“

H, From (13.13), it follows that

~ L)

{13.19) <p (j(k)) = J (R, (W)

”~
showing that 3 is equivariant with respect tO(%, as well as
J is equivariant with respect‘tx)¢. By differentiating (13,17}

and (13.19) one obtains

(13.20) dj(kH}(k) :Sﬁ(ej.dg(q%m B2t F

FaN

(13.21) c{g(k) LF?(H = o{a\}j{;‘(‘?)"g

and, therefore, one proves that

3. LT o =
(13.22) dé ¥, =0

if‘/Je(}gjz and that

(13.23) d

Mkl 2

(+) gy (b =0

i fbelongs to the algebra X of the isotropy group of pu= J{h},
/&
defined by

o

/

(13-24) H/u = {kéHn’ q)(f;a(}:
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Indeed, the annihilator (E{Df’of }(ﬂ is the kernel of 5 (. )
and }g is the kernel of d#}(e).

To interpret the basic Eq.s (13.22) and (13.23) from the
point of view of the reduction theory, let us observe that
the vector fields y, with - ( }{n)°, and Lﬁf s with fe .,
span respectively the distributionSImN and Ker N, since
Nt& = y¢$ and Ker N = Ker() (recal£ that ImCL= (Kerf{)o = )ﬁ:
that P is kernel-free, and that () is left-invariant). Conse-
quently, Eq.{13.22) means that the map‘g: H%ﬂa}{;-is constant
along the leaves of the distribution Im N (assumed to be con-
nectéd}, and Eq.{13.23) means that the subspace ImN n KerN
at the point h , is spanned by the left-invariant vector fields

$f associated with tfe elements ¥ of the algebra }S‘OE the
isotropy group of f~=J(h).

These twe results allow to simply describe the reduction
of the PN structure of H as follows, 1let us consider any in-
tegral leaf of the distribution Im N. By the first result,
this leaf coincides with a level surface, say 3_{rj, of
the momentum mapping 3 : H-—o){;. This Eaf inherits a PN
structure from H, according to the reduction theorem of Sec.9.
The reduced tensors N' and P!, however,may have a kernel,
since we have performed the reduction over Im N instead than
over Im N'(r being the Riezs index of the Nijenhuis tensor),
The kernel of N', in particular, is spanned by the vector
fields belonging to Im NnKer N, evaluated at the points of
Sul(f). By the second result, this kernel is spanned by the
vector fields B associated with the algebra of the isotropy
group of‘ﬂ . Consequently, their integral leaves are the
orbits of the pointé of 3_I(ﬂ.) under the right-action of

~~1
the isotropy group H, on H. The guotient space J (#)/KerN',

/.l.
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entering into the reduction process, coincides then with the
quotient space 3_1(r)/ﬁr. Assume this space to fulfil the
standard assumptions of the projection lemma. Then it inherits
a PN structure from H, according to the corollary of Prop, (0.1).
If the Riezs index of N is r = 2, this structure cannot be
further reduced, Otherwise, we have to iterate the process
according to the genéral scheme of Sec.9. In this case, how-
ever, it is no longer possible to give a group theoretical
interpretation of the reduction process, the reduced manifold
being no longer a group,

For further reference, we collect the main results of the

previous discussion into the following :

Proposition 13.1 (Reduction of group-theoretical PG manifolds)

Let H be a Lie group admitting a Poisson cocycle P :)(ﬁa){,
e
and let I)e be any }(:cocycle of H, To reduce the correspond-
ing PN structure of H, let us first consider the connected

subgroup H! whose algebra is
(13.25) }‘C):: P (Hy)

and let us reduce the cocycles Pe and f% to H', by means of

the formulas

- /

N . f o P, ~1
(13.26) Q' .= 81(e; Q, dfcel P'. = di'(e) [ 8fte)
¢ ; g
where £ : H' —» H is the canonical immersion of H' into H.
They endow H' with a reduced F{1 structure defined by tensors
P! and () (with P' kernel-free) obtained by the general pres-
cription of Prop.l12.1. To further reduce the Pl structure
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of H', in the case of ()’ having a kernel, let us consider

the new connected subgroup H', of H!' whose algebra is
(13.27) X o= Ka QF

and let us construct the local momentum mapping associated
with the Poisson cocycle Pé by integrating the equation

} ; x i -1 -1
(13.28) d]'(v) = ﬂ&k, S PT dR ()

with the conditions J'(e) = 0. J! is globally defined.
Associate with it the action cﬁj: H' x H'#_H'* defined by

>

(13.29) F(pW) = PNy« Ad, B

and reduce J!' and 4)' on }(‘:by means of the formulas
(13.30) j’(k') s = i (e) 3’(&4)

(13.31) &' (8u(e) pj ¥ )= Sile) P'(pi(w)

where i : Hs'l--» H' is the canonical immersion of H!, into
H!, Then the level surfaces of RL (assumed to be connected)
are the integral leaves of the charactéristic distribution
Imji‘, which are consequently parametrized by the covectors

/J.’E ){i:. To perform the reduction, let us fix any covector

PE ){:‘,A and let I-l/"L ?e its isotropy group with respectﬁto the
action cpiof H.'n on }{.;1*' Assume the orbits of H}L on J'-I(fu)
to be connected, the quotient space 3'-1 (/A)/H/L to be & quotient

B Ayl
manifold and the canonical projection g : AJ' 1(/;).-—; 3’ (}J)/H,L
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to be a surjective sibmersion according to the standard as-
sumptions of the projection lemma., Then 3"1(f3/%; inherits
a reduced PN structure from H', It can be computed by first
restricting the PN structure of H!' to 3rl(fJ, according to
the restriction lemma, and then by projecting the restricted
structure along the orbits of H!', according to the projection
lemma. If the reduced structure turns out to be kernel-free
the process ends; otherwise it must be iterated up to arrive

to a kernel-free PN structure,

. . wooAd e
Remark. Since )(;:){J/( }{;)O,Uto find the level surface
A
3PI(F) and the isotropy group of/; with respect tc:@ﬂ once
Jl,g,’ and }—{;1 are given, we can avoid Eq.s (13.30), (13.31),

replacing them by the equations

n
o

(13.32) <JWN)-p, O

]
O

(13.33) < § (p)-p, Hp >
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14. PN structures on the dual of the Lie algebra

In this section we aim to study the Poisson cocycles
from the point of view of the dual space »(; rather than
from the point of view of the group H. The first noteworthy

result is that P 'allows to deflne a P() structure on }{ as

well as on H. To explaln thls result let us recall that ){

carries a universal Poisson structure (not of constant rank),

>

s S AT

called the Lie-Kirillov Poisson structure of){§§i@] and

defined by

(14.1) K,. ‘? . = :/u

Furthermore, let us remark that, by means of the natural iden-
tifications }( = yf}(* and K= @_}{*, the cocycle P, can now
be considered as defining a (gqﬂ§§§§§)MB§Q§XER}EQEQQWFQE§QRH‘

field Qf on H* according to

(14;2) Q/ ¥ =

o O
<

Let us.form the product

(14.3) AV
N v s

*
oldov = edp
Then, it is a simple matter to see that the cocycle condi-
tion (12.12) implies that the torsion of N vanishes so
that the pair (P () 3 end0ws H w1th a Pfl structure,
Indeed, by uSLng the 1ocal form (A 1 ?) of the ngenhuls COn-—

dition we find




{01

’ f /‘v
* x* * * *
= O.A.Pv ODLP /4, _.(LCLP Q,(i }.. - OA' . >
i J¢ O K Fe(dPyvl “‘L:VW)
t%
1
11.46 *
(46 4" ed” - od” ad” 44 ad” r
fevs Vs Al 14 o &ﬁ
[AL]

where the Jacobi's identity has been taken into account.

To look for Poisson cocycles is then equivalent to look for

Lie ~Kirillov

presymplectic tensors on }{*gonverting the

[ERIURPRSERC SRR WY

*
SPEHG?HRQJQfQ{:iEtQ.awPflﬁﬁtrqqtqrg,
0f course, there exists a close connection between the

Py structure on the group H and that just defined on ¥

It may be outlined as follows. Let us fix any point f%s}{t

and let us consider the orbit @H(;%) of the coadjoint re-

presentation passing through it, This orbit is a characte-

ristic leaf of the Poisson-Kirillov tensor (14.1) and, con-

reduced P{) structure, according

sequently, it carries a

to the reduction lemma (8.1). Furthermore, let us consider

"
and by the X -cocycle

the P structure defined on H by P
e B

Q) defined by

(r
(14.5) Q" ¢ = a»i:/La

e

Then, the reduced PQY structure on the orbit of p, is the

projec

submersion

T R

tion of the last PN structure on H, through the natural




-

—

409

—— Let us now consider the connected subgroup H! defining

/

the characteristic leaves of the Poisson tensorP on H, and
the dual of its algebra X'= P (x*), As previously explained,

H! carries a P{l structure deflned by the cocycles P' and

T e A e b it

€
1y, the dual ){W::}Cykche of its algebra carries a first

Pl structure (hereafter, tc be referred to as the Kirillov
P{} structure of X’*), constructed according to the previous

remarks.
It is now important to observe that }{/*carries a second

distinguished structure, namely a PQ or “twofold Hamlltonlan

structure”, defined by the tensors

i s i

H

| ) -1 .*
(14.7) bt ¢ cml..{ o

i

Q. %

t

(14.8) Q)f :

Indeed, the cocycle conditions (12.11) and (12.12) entail

that EL is a Poisson tensor and that its Schouten bracket

with Q!M vanishes., This can be proved by computing the

Fréchet derivative of P

(14.9) P/ﬂ(“{;v):w{;‘v

and by using the local forms (A.2 §) and (A.210) of the Schouten
brackets /P, P 7/ and /P, 0/. One finds

! . I
(14 IO) <?JP/"(1}§‘9}>+C3C{“: Pf'\‘mutaf'om:

-4

¥ olet g ¥ Dyt
=<‘?)G\AT Pe S“Pe a:LGrL-—cL{{QP T>

X . ¥ » | ¥ *
+ < f! od? ude Po- aiqd po- od 041 » S

{17 4) % ¥ * # «
= <L§}c‘\_¢L‘? m..isp_cu:l. H -O.ABOA-T

Q! (with Pé kernel-free) given by Fq. (13.26). Conscquentm
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so that the condition is verified on account of Jacobi's

identity, and

(14.11) < Lg P (11Q 9) > + C.Jr.tl.c P;muutatuou =

# f I LAY
<"%J°'d'_1 Oee_ﬂe Ml"awi *'O'A"eﬂe'l 7

()

as it was required.
Of course, also this second siructure is deeply related
with the geometry of the Poisson cocycles, as is shown by

the remark that the tensor (14 ) is simply the 1nf1n1te51mal

generator of the (rlght )actlon

o err—

(14,12) @‘(ﬂ;l‘) D= J'(L) + QC{.:}L

making the momentum mapplng J equlvarlant. This is proved

(14.13) d @I(g)f = dJ’(e) " wL;/l - l;ff

on account of the relation

Gos)  dJ(e) = P

connecting the momentum mapping and the Poisson cocycle
according to the definition (13.28). So we must expect to
be able to derive this second structure directly from the

group-theoretical Pl structure. This can be done as follows.

#




1C4

let P and ()  be the group-theoretical Pil tensors,

evaluated at any point heH', and let

(14.15) Q := F O F
be the evaluation at the same point of the second Poisson
tensor Q of the hierarchy canonically associated with P and

{1 (see Prop.%.2 of Sec,2). Then we state that it {5 :
! /
(14.16) F; = - dJ(+) P 3] ()
. ! ]
G Q= - dJ(). 0, SJTH)

where u = Jth) This means that the twofold Hamjltonian

Remiigin 2 .__.4_&..... St

structures prev1ously p01nted out on }{ and H' are J-related.
T

To prove (14. 16} and (14 17) it sufflces to observe that,
according to the definition (13.28) of J’,

(14.18) Posjt) ¢ = —¢ (4

and that from the relation (13.14) ona gets

~

(as19)  dJh) g ()= de) e ad] JON)

!
Then at any point /L=J(h) it is

Ui3

J(H cp(H
RTE ok T4

{14.20) _ J“‘ ). P BJ(h

(uiﬁ



(14.21) aé’m 0, SJ'(L)?; dc]fé\) EQ P Sj?k)“é
—-dJ) RO, ¢ (1)

(1730)&](\\) \f’ (n)

AN

(3.9} w
=-Le§

_Q/Jn?

Summarizing the previous results we get the following

Proposition 14.1 (Hamiltonian structures on the dual of a

Lie algebra)

Let )-(“ be the dual of the algebra of a Lie group H ad-

mitting a Po:.sson cocycle P . Then W carries a natural Pl

structure (t.he "Klrlllov PO st.r‘uct-ure”} defined by the

i e e 2

tensors

¥
(14.22) Kﬁ .= o%g..ﬁ
(14.23) Qﬁ Vo= E y

Moreover, the dual K }{/Kex Fe of the connected subgroup

H' whose algebra( is .
N g
(14.24) Hi o PO

carries also a PO or twofo]d Hamiltonian stru\,ture, defined

N gt

by the tensors



406

i

(;4,25),33 P 4 od ‘”L

Q) g

]

(14.26y Q. %

AT

where Pé and f}' are the cocycles reduced over H'. This

structure is J-related with the twofold Hamlltonlan struc-

o T Y e 2t A 5 M T T e 0 it it m, < Ay g ek T e e Pl i =

ture banonlcally assocnated w1th H'
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15. The PN structure of the eguations solvable by the inverse

scattering method {in one space-dimension)

In this section we show the éxplicit construction of a
family of P{1 structures generalizing that of Sec,i1, on =&
particular ILie group H. Its reduction will be discussed in
Sec.16,

let V be a finite-dimensional vector space over R {or C},
W: = VIHF'1 the Cartesian product of {(n+l)} replicas of V,

G, = Aut “[the group of the automorphisms of W and H the
space of C¥ functions h : R-— Autw fulfilling the asym~

ptotic conditions h -—» idw for lxl——s¢=. Any such a func~

tion will be written in the matrix form

I, ] i
(15-1) !‘Ln 2) !\K(z}E!z: }\xgk-eéh) ("\k[I)&MV’)
T K
where e, = (0300201;04,0) and € = (0,.4.154.,0) are the
elements of the standard basis for column and row vectors

respectlvely, 1: = 1d is the identity function on V, and
hk: = ejhk and h:j = hke denote the k-th column agdfthe
j=th row" pf ‘the matrix h, The space H can be considered
as ‘a manifold modelled on the Fréchet space E of the €

functions ?:'Rﬂ*Ehd\ﬁ rapidly decreasing for |[x]— o, en-
dowed with the Schwartz topology /207, It becomes a lLie

group by defining the product h.k pointwise by

(15.2) (hok) O ) o= h(x) Kix)

that is by considering H as the direct product of an infinite

number of replicas of G = Aut W ,any replica Hx = G being

labelled by & point x g¢R, The identity of H is the mapping
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€ ! R— Aut ¥ which associates the didentity matrix at any
point x. The algebra H= Te H of H is identified with the
space E of the rapidly decreasing functions 'f: R-—End W
and the structure of Lie algebra is defined by the usual com-

mitator of matrices

(15.3) mi%q%[‘f, 1= §y-qt

* . 2
As a dual space of H, = ’l‘: H, we consider the space E

of the matrix-valued functions M R — End W fulfilling the

condition
4 e

(15.4) S pixyde = 0
. -

A

The two spaces E and E are put in duality by the pairing

-

<, ExE-~sR

(15.53) (/.t, ’f = rr)z S/L(x) T(z] dx

where Tr ﬂ.f: = Tp, (}t; ?J ). This pairing is separating in
bd‘bh arguments /31 /. Finally, the right-invariant fields
Lp and the 1eft-1nvar:|.ant f:.elds 'f? are simply defined by

¢ e

(15.63 ‘f (h):= §h G (h):= ho @

Having defined the ambient space where to set up the
construction of the P structure; the first step is the
def:.n.ttlon of the Poisson _cocycle P : WA, Let D )Xo ¥

[T S

be the 13.near and continuous operator (in the topology we

have considered) defined by
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(15.7) Df:= %

Clearly, D is kernel-free {on account of the asymptotic con-
¥
ditions for ?) and its range is the whole dual space X (by (15.4))

. #* .
moreover, D is an W -cocycle on the group H since

T S??az ‘fz ¥ ?ﬂx i)dx = 0

-y

(15.8) <D?1J?1 >+< D?:!i ?d 7

and

I (10,4 -19,%)de =0

e

(15.9) <f1 ) D[?u‘g;] PR

Thus P : =D s X", X is a (kernel-free) Poisson cocycle

X

(15.10) E/-L t oz S-/u(x) d x

On account of the form (15.6) of the right-invariant fields

and of the corresponding right-invariant one-forms

A

(15.11) o, (h }i= Ly

it follows that the kernel-free Poisson tensor P: I"(H)-—-a ¥ (H)
defined by (12,8) takes the explicit form

(15.12) P o = (Jg.dag)h «e X¥(H)

Toc complete the P{) structure,we choose the following

3
H ~cocycle :
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where a is any arbitrary matrix with constant entries, Thus

the left-imariant presymplectic tensor Q: X¥(H) — ':‘E*(H),
defined by (12.15), takes the explicit form

(15.14) Q, ¢:= [a, W]k ¢ e X (H)

Since {} is left-invariant and p right-invariant, the tensor

N:=P . Q:XH)oX(H) is a Nijenhuis tensor for any choice

of the matrix =z

(15.15) N, ¢:=P QO ¢ = (rh [a Vo Tk dx ) b

Thus t.he.grog.p H is endowed with a whole family of P} and
PN stmctﬁres (defined by (15, 13), (15.14), (1 5.15)) each ele-
ment of this family being parametrized by a matrix a.

Since P is kernel-free, the subgroup H' defining its
qh_aracteristi.c leaves coincide with H. Hence, we are not

required to _perform the first reduction over H', and the mo-

mentum mapp:.ng . J.and the:act:.on cp are defmed on

By :mtegratxng the quat:.on (13.9) wl’bh AS ;'-=
I '3 » that is the equation

(15.16) dj(h) ¢ = k! 2, (¢ k') h

and by requiring the condition J(e} = 0 we get

(15.17) T4 = W,

The actlon makln J e u:.var':s,ant is then glven on account
g q s

I

of (13.12) by




)
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(15.18) G (p) = Wh Wk

Finally, let us compute the P{} and the PQ structure

S s i

of X+ According to the discussion of the previous section

Wirap i i et it

they are given by

il

C(1s5.19) K f o= adg p [ %]

n
(15.20) Qﬁ Vo= PCy = [V(x}clx

and by

(520 B¢ 2 Bl vodd = §alpme]

[, 9]

il

(15.22) Q¢ | (¢ - od.;c'.

respectively. Clearly, (15.21) and (15.22) reduce themselves
to the structure discussed in Sec.1! for the particular case
of (2x2) matrices, One can recognize in (15.19), {15.20) the
integrability structure of the so-called "chiral field equa-
tions", and in (15.21),(15.22) that of the so-called #Zacharov-
Shabat matrix spectral problem#;%ﬂfgdeed, from the study of
these tensors, pursued along the lines pointed out in Sec.s

13 and 14, one can recover the main classes of the equations
solvable by means of the inverse spectrél transform technique,
An explicit example will be worked out, in detail, in the next

section,



16. The PN structure of the Gel'fand-Dikii equations

In this section, the PN structure previously cons-

tructed is reduced in correspondence with the particular

choice
0.-..: 04
(16.1) > Ve eoe"'= : O
0 0

of the arbitrary matrix a, According to the general scheme

of Sec.13, we have to perform the following steps :

i) to specify the algebra ){n of the isotropy subgroup of a

by solving the equation

(16.2) [ o, ] =0

ii) to fix arbitrarily an element b e:H;: (i.e. a matrix
b which is not orthogonal to >§1) and to construct the
~ L .
ievel surface-S;ﬂ 1(b} of the momentum mapping restrict-

ed to the subgroup H, , by solving the equatinn (13.32}:
{16.3) CJ-b,my =0 Ve X,

iii) to find the isotropy subgroup of b in H, , with res-
the 2 *
pect toVYreduced equivarimnt action <§: H, x }{P-——a}{:

introduced in Sec,13, by solving the equatiocns

HCL:O.::Q_ . kﬂ‘ah:o,

< q:k(b)_h,,”:o : [TA(L-W:L +i!ndl\,_l:)¥l= 0

(16.4) .



The former means the keﬂn 5 the latler defines the isotropy
subgroup of b in Hn + As shown in Sec.13, this subgroup

keeps the level surface Sb invariant

(16.5) R (S,) ¢ S of kel

and allows tc define the reduced phase space as the quo-~
tient .
ient space Sb/Hb

iv) Once this space has been identified,one has finally to re-
duce the P} structure on Sb/Hb, first by performing the
restriction te S and then by passing to the quotient

b
on Sb/Hb. The details of this procedure will be specified

below,

16,1, The first part of this program is readily performed
if we remark that the algebra }(ﬂ of the isotropy group of
ais spanned by the matrices .{I, eaeb+1 {(a,b = 0,1,..¢n~1j}.
The abstract Eq.(16.3), which must be solved in order to

determine the level surfaces S of the momentum mapping ,

b
then reads
(16.6) gfﬂl (K'h,=b) dx =0 g‘il (b -b)e e 0

Let us choose, at this point, the arbitrary matrix b , As

already remarked; this choice is in principle a matter of
taste (a reduction being associated with any choice of b};
however, it largely influences the possibility of carrying
out in practice the reduction process, A particularly con-.

venient choice is the following one
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It leads to the integrability structure of the equations as-
sociated with the matrix Gel!fand-Dikii-type spectraBproblem.
The reason for the choice (16,7) is that it leads to a simple

characterization of the level surface S Indeed, (16, 6)

o
becomes
(16.8) T KL, -0
(16.9) T W (b, -hau )= O (o,b=04 ,n-1)
where

{16,10) h .= he

is the a«~th column of the matrix h,
By the first condition, the matrix h is a uwnimodular
matrix {up to a scale factor). By the second condition,

the vectors h-;(h =h_ ) are orthogonal to the base vec—

b ax a+l
tors e for b = 0,1,...yn=1, Consequently, they are all

proportional to €.’ and we can write

{16.11) k'*(k“ - hw ) = €,V

where the functions v, are arbitrary Lagrangean multi-
pliers. By (16.11), the columms of the matrix h obey the

iterative condition

(16.12) I'lu+‘ - ho.x — |'L0 UCL
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showing that the matrix h can be recursively obtained from
the first column and from the lagrangean multipliers Vo oo

The general solution is
(16.13) h=w.t

=1
where W is the unimodutan (i.e., such that Tr w W, =0}

Wronskian matrix associfted with the first column ho of h

(16.14) W::WIL(I'\Q]z(Bi ha) e’:

and U is the upper triangular matrix {with unit diagonal
entries) defined by (j» k)

o K

.. (16.15) | t = _-2“ t; ea t;:= B it (E) "at'..'u %‘.‘M _("{45 -1)

‘This can be proved as follows. From (16.12) we get

i
- Z! 9 (k, Lrj.e‘.j)

o

(16.16)  h

W
It

Ff

80 that the matrix h is given by
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As it will be shown in the following, the matrices t appear-.

ing in (16.13) make a Lie group T. We can then summarize the

pPrevious result by saying that :

Proposition 16.1. The level surface Sb of the momentum
mapping corresponding to the choice (16.7) is diffeomorphic
to the product of the manifold W of the unimodular Wronskian

matrzces and of the subgroup T of the group of upper trian-
gular matrices speclfied by (16.15), The dlfféomorphlsm is

glven by

(16.18) h = w.t

16,2 - Having characterized in this way the surface Sb ’
let us proceed in our program by finding the isotropy

subgroup of b, To this end, we must solve Eq.s (16.4), or

explicitly (a,b = 0,1, -, m-1) .
(16.19) h'a b - o
(16.20) Te (b h 4 b 'h, —b) 2 o

(16.21) T (Fhh oK', ob) o2 0
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This'system is discussed in Appendix D.1, where it is shown
that the matrices h are upper triangular matrices {with

unit diagonal entries) given by

(16.22) | ¥ : 3 R
° J.—.O (K(J)} }’\J;‘i/ h;:_zt(k)(ae_k J‘}-»E-i} (J‘)k)

where U are arbitrary Lagrangean multipliers. One verifies
in this way that the isotropy subgroup of b is exactly the
group T previously determined. This important result allows
to immediately solve the problem of finding the quotient space
Sb/Hb. Indeed, Eq. (16.18) says that s, is obtained by
letting the group H =T act (by right-translation) on the
manifold W of the Wronskian unimodular matrices, Moreover,

Eq.(16.14) says that just a unique Wronskian matrix corres-

ponds to any point heSb. The action being free, we have

Proposition 16.2. The gquotient space Sb/Hb ; associated with

the choice (16.7) of the matrix b,is diffeomorphic to the
manifold of the unimodular Wronskian matrices, The cano-

ical . . . Y .
nical projection g : S — Sb/Hb is given by

(16.23) fj:"l;—-—;\b:%(ha}:(—ajho)ej

16.3. At this point, we have at our disposal all the ele-

ments which are needed to perform the reduction, namely :

Wx?T —» S

i} the manifold Sb and its parametrization f : b

given by h = wt ,

ii)the quotient manifold Sb/Hb:!W and the canonical projec-

tion g : WxT —* W simply given by g 1 {(w,t) > w,
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So, for example, it is now quite simple to obtain the
Nijenhuis tensor (or "recursion operator®) assocciated with
the Gel'!'fand-Dikii equations 1557. As previously explained,
we proceed in two steps: first, we restrict the Nijenhuis

tensor

(1545} x

(16.24) 7. - 0Q ¢ = ({ 'k[q,ﬁ'gnﬂl\ddxj

to the leaf S, s then we pass to the quotient over Sb/Hb .

The first step is accomplished by

(16.25) 9, E+wl =
w 4

®

’ = gw{tat.'1/ w/-1 +nﬂt Jw dx wt

~~

Since

try
L
@
—
s
o
L3
N
(Vg
S
W
o)
b
"
3
n
}.J
ju)
ot
o]

I L TS RYN

and
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(16.28) -z]Et = uf‘.‘( wa[a/ w"uf?w]w"dx)wt-:—

-

v W ( (fo[a,w"l-{/ijddx)weu)

-

These equations define the reduced Nijenhuis tensor on the
leaf Sb in a component-wise form adapted to the splitting
of the leaf into Wronskian and triangular matrices, The last
step, namely the projection over the space of the unimodular

Wronskian matrices, is now trivial;, the reduced tensor

Nw A Qﬁ being simply given by
(16.29) ?w - \M ( (gxw[a} W"%]W-'c{x)we,)
=" o>

Since it can be shown Yl s Pe619-621 7 that N# is kernel-

free, the reduction process ends, no further reduction being

possible.

16.4. Let us now analyze the problem of the reduction of

the Poisson structure, In order to avoid cumbersome calcu-
lations in dealing with this problem, it is useful to make

the following remarks.

Let us use the momentum mapping J : H—--o-}(*given by

(16.30) w= Wk,

*
to set our study in the framework of the dual Y{ ¢f the
algebra of H (remark : we have slightly changed the nota-
tions, by using u in place of'fk, in order to emphasize

¥
that from now on X will be regarded as & manifold rather
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than as the dual of a Lie algebra), As it has been explained
in Sec.14, the diffeomorphism (16.30) maps SbcH into the cha-

*
racteristic leaf Sb (passing at b e)f“) of the Poisson tensor

on X¥ defined by :

(16.31) ¢= Qu : o= [a,«]

A straightforward computation shows that this leaf is the

affine hyperplane defined by

ruo U.1 '...l.'"’I “0

(16.32) we S w=]1 , v
” . uh-1
- =

where the 2n fuanctions (uh,u¢) s Appearing in the first
row and in the last column of u will be referred to as the

affine coordinates of the point u € Sg +« Hence, we see that

the manifold Sb is diffeomorphic not only to the fartesian
product WxT but also to the affine hyperplane Sb° Conver-
sely, bz using the properties of Sb’ we can easily conclude
that Sb is diffeomorphic to the Cartesian product of the

group T by the vector space F of the traceless Frobenius

matrices [26)

|—O u®
4 i
(16.33) v = 4
e Gn—f
4 0
L ]
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defining a t&(){)_ nodule of dlmen51on n, naturally parame -
trized by the" functlons v, Indeed by u51ng the dlffeo—
‘morsphim” (16. 18) wt, from (16 30)we readlly obtaln

(16-34) w = l'l‘-' Lx = Ei w‘i (Wx t b t* ) E

b e

=

L b .:"7 : _ * _E-i.z__t-x

fﬁwhere we have taken 1nto account that the momentummmapplng

g H-—a-}{ maps the manifold W of the unlmodular- Wronskzan

Jugmatrlces ‘onto the: 11near spac¢é F ‘of the traceless Frobenzus

#
.Amatr1ces. Eq.-(16 34) ‘says ‘that the characterlstlc leaf Sb
'¥1n bYe igsimply the ‘disjoint union of‘the orblts of the
points.of F imder the action (15,48 ) of the group T. Sym—

'bollcally, ‘we ‘can write -
6.3 . oG @ (F)

N

The reductlon of the Pozsson structure can then be performed

as fOllOWS : starting from the Pj}_ structure .on }{5 defxned

-

by (see Sec. 45 )
O g Qe s paled]
(6.37). ¢ =0%"a :  ¢g=w 4[4, «]

* -
we first restrict to Sb and then pass- to the quotlent on

*
'.SB/Tc:F, The advantage of passxng on the' dual }{ is now
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clear. by s0 d01ng, in fact, we have “11near1zed" the quotient

'manlfbld replac1ng the un1modu1ar wronsklan? @agy;eeshyy the

traceless Frobenlus matrlees.

16.5.

To perform the reductlon, it may be suztable, from a

purely techn:cal p01nt of v1ew, to replace the matrix forma-

lism which has been used 56 far by a coordlnate approach.

Let us remark that all “the manlfblds we shall deal with, that

is

the characteristic léaf’ Sb 3 the 1sotropy subgroup T

and‘th' reduced spaceF are naturally endowed w1th .a global -

‘coordlnate system. Indeed' _

;_enamely by the.entrles of the first row and of the 1ast

Mo
e
L

column of ‘the matrix u. Further on,:such coordlnates _

w111 be referred to as the “affxne coordlnates" on Sb

the group T is naturally parametrlzed by the n COOPdl—

nates (the " Lagrangean multlpllers“) by means of
thcﬁ the entrles t3 are g:ven by (16.15). Further
on the'cébrdiﬁntés -v;' ‘will- be ‘réferred to as the -

“group"theorethal.wrameters"

the quotient space F, finally, is naturally perametriZed
by the n coordinates v = v ), that is by the entrzes

of the laSt column of the Frobenlus matrix v.

Taicen t"ge"he": the 2n COOI‘dmates v, v') define a’

second system of coordlnates on S which can be referred

b

to as the coordlnates adapted to the fibration of Sb . By
u31ng the relatlon (16 34), it is not. dlffttuzt to show that

the fxbered coordlnates (v s V ) are linked to the affine

coordinates (ua, u ) through the relations
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(16.39) Va Wy

a8 the f el ed _oordlnates are more'useful for the progectlon

process -'ccordlngly, the reduct:on process WIll be dl"lded

'“1nto three'phases
i) first, we shall perform the restriction by using the
affine coord@nates :
ii) next, we shall perform a change of coordinates, passing

- to the fibéred coordinates by méans of (16 39)

111)f1na11y, we shall perform the progectJOn process, which
will turn out to be particularly simple in the flbered
coordinates. . ) ' .

16.6, We begln by restrzcting ﬁﬁé“Pfl."istrﬁéture-of }(*to

the affzne hyperplaneASb, by us1ng the afflne coordlnates

.(u > u ) ' Slnce the parametrlc equatlon of Sb ;s

-1

(16.41) W = Za (u.‘;L c* +u’ O;) + b
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where the matrices

define the natural bas:.s assoc:.at;ed with the- affz_ne coordi-—.

nates, any tangent vector : xp “atu cdn’ be wr:.tten as’

mEC

(.16.4_.3) ‘ Z (%OT s9e )

‘;'

where the arb:.trary functlons (tf (f ) play the role of “aff:n.ne

the form

16, ° o m a e A a n " art
(16.47) P = o, ¢ _Soa-u :
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So, ‘the usual transformation scheme for Poisson tensor en-
tails that

{ﬂ:&b) e (H43) o™ (15-45)

1a o= Pa = Sa

(16.4,3)_ -

a . a

(16.49) ¢ = ¢ = S ap-af = -

Eq.5(16.48) and {16.40) define the Poisson tensor restricted
'+ they clearly show that the restriction of ¢= /%, e

to §

to S is simply given by the canonical Poisson.tenso?:

. out 1n~the .same way. queveg, one -has to recall-that the-

exp11C1t form of fl is known
6s51) - = et v [u, o]
so that, in practice, for any given pair uq.?,given by (16.41)

and (16, 43), one has to compute the corresponding one-form o

by solvlng Eq.(16. 51), and then to: determlne its. afflne com-

”ponents.by'means=of'(16 4E) Expllcltly, thls would amount

A

' to solve (at least in principle) the following set of equa-

tions
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o L o P 0

"
o + U, % gu oA _ &, uﬂ-_'— “Q-'f[ =

fa

a a1 5 b ) a b a i,
O(“-:-OLM—;— u.etm+uo< -, U, =
(16.52) _ N
7 ast Y _ l--.'l " o ' o B a..,1 ) al I !
Lt Ty by — 55-1 Uy = %y - %, 0y =0

L S P R .
Mox*“nx*""u‘*o FUE e - o, w ¢ R “uu' + o, uo-_-o

wh1ch are equivalent to (16 51), and then to put 1ts solutlons

m HAnto.

(16.53)  w, = «f %L at G M8t

Since the explicit sol&tion of this éyséem}is not required to
~pursue the: reductlon process, we ‘shall” sk:p over 1ts dlscus51on,

and we are content with regarding Eq.s (16 52)(16 53) as the

-"parametr;c_4¢f}n1p;on“ of the reduced: presymplectic tensor

Q. (compare Sees11 ; where ‘this-

16.7.

To write the components

system is discassed for n = 1),

of the reduced structures in

the flbered coord1nates is now

straightforward.

In fact, if

(y..y

) and (ﬁq,P ) are the components of f and « in this

system of coordinates, from

it

;ze

it foilows'(Appeﬁdix-D;Z) that

(16.55)

=9

ayd n

- Zf ;K (E) ((?m fei-e ) w'y (’bl»a

Comed

()0

=

b“,)?x) o
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and

-]

‘_ R ig Z J(J? ) ’bt-(uruf‘] )* PQ - (P,nz o

Then the Poxsson tensor 0, reduced to S* takes the form

(i6.56j.-

it oéa( ) F’; g--' Uopg

(16.57) _?;_%'*; éjﬁé.%_ gi}'z—!(;).g o ufi%‘.)

i ned

YQ‘ Zs Z (E‘)((B“ ficce- e)“ +(3 . 1.4..e)_‘{’x)
) (O ) )

a
N L B
K

SRS 3 R
_ il 'z'_k i??z" *] ()( )('c) :LL“,”)?M(P"P‘PJ-*

where ‘thé" afflne coordlnates (u ,'u ) are to be replaced by

the fibered coordinates (v » Y, ) by means of the 1nverse

transformatlon of (16. 54), by s0 doxng, we would obtaln the
T !w,'

expli

it expre551on, wrltten in flbered coordlnates,“of the
._50 .“.. h EELE L L

As for ‘the- presymplectlc tensor, 1t c

canonlcath01ssoni£ensor (14 L -
' ] be obtalned

r(at 1east in pr1nc1p1e) by solvlng the systemﬁ




".!16 8 % last step is the pro;jectlon“-onto the quotlent_

428
[ L n R o
ng_x +u.B cin. + u_o D‘a - Nn*.‘ _ do U—Q-
(16.58) -
. mil  mad ) .
) t) R, o« U
. \Y - ' _qz‘! PZK (a ) )g‘ ( .h((g.;!‘_”*‘. "l’;:u - ” ' q o+ L ab!“‘ 3
@ > b a1 M-i - R
o e by . x = | )

e (""-@-2 “+ 0(% 4 8 u, d +u.'0(M -—-dh %o o uo)

with respect to the’ OCK which, moreover, are related by the

constrainte _'.(46_? '5’.’2;)._ 3 -.-,lu_ )

" aed 6 ta-t m Sq_ T a a+t

(16.59) Qf,,*“b"’“ Q{b.-— b‘uh:"“o ub.=0

e ":«\= L @ o.M b ! wt M on g "
(“f:o{'dh) U X +.u."a’ ‘.'.ol.a-.*,’c{,:?q’-.{,d -u, o( - U e U =0

. and then by solv:mg, w:.th respect to ( P“’P ), the system

( ! : Z pat( ).,_ T’B

%“’f‘g»;“ 7 f_;E* ”( )( R )

Y

(16.66)

3.

- In this way, we would obtam (J% j& ) in’ terms of (%,t{' ).

However, it is 1mportant to remark that the solution of
(16..58-)_(16.59) and (16.60) is not required to obtain the
projeeted.s-tmctux‘e on-S*/-H.b » since; as it ha's been previous-
ly remarked the exp11c1t form of the presymplectlc tensor

¥
on Sb 1s not needed to carry Out bhe pro;;ect:.on process._

manifold - S /Hb~F For the sake of clar:l.ty, we d::.st:.ngu:l.sh_

between the coord:.nates of a po:.nt of F wh‘n F 15 tho

as a manlfold and the coord:.nates of the same po:.nt when F

i3
E

i .
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is thought of as a submanlfold of FxT Sb.r'in the'firSt case,
we use (z 3 v 2 Y5 ) to denote the coordlnates of the point and

) the components of tangent vectors and onemforms respectlvely,

'___:.n the second case, we cont:nue to use. (v ’ tf 2. P ) . By this

conventlon, the canonxcal progectlon g 3 Sb ——+ S /H
Sg take the

and the tangent and cotangent mapplngs dg anr

r“form :
(6.61) g (v%v,) H %= “d,:
(6.62)  dg: (S %) —

(1§f63) _Ss ; a.*‘* (fh = FG ’ P ¥ O)

The proaectlon of the P01sson tensor Q is thus obtaxned from
: 46.69) :
(16.64) ){“ (16.cay ¢

(e 2y - ;e TZﬂ (c% )(;)De«(F (N “_;;:-c-r-i ) -

el mit om : .
ST T T (1] Coten) 2R

Yoo

where the afflne coordlnates (u y ) det be replaced by

z by means of
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L34 K
(16.65) 2%= v %= - ‘;x ;: (i)( Oy i ux--_e:a‘)*u"::‘

¢ J:.:OIIS of the
type (16 65), 86 that only the'c a".are contaln-
ed in the final form of Q.

In other words th;s means that we can put in Eq.s
(16.64) a any solution of Eq.(16 65) W1thout affectlng the final
form of tke reduced tenqor. For this reagon, it is obvious
to look for the simplest solution bf;(IG;GS)'Eﬁrrespbnding

to & given'z" 1 'in our case, it is clearly given by

i 0 Lo

(16.66) W= 2® Ug =0  (u,:=-1)

By such a choice, (16.64) becomes (2" = o, 2™, =1 )

RN ; ; (4) (. m SN
y OZe FCZL (:,J(_”L RN .Le.(.mkna’c)

This is the final.form of the reduced Poisson tensor on the
S :

 quotient space S /h’.b F, and it corresponds to the first

'*Hamlltonlan structure of the non abelzan Gel!fand-Dikii |

equatlons [3?_7

;Remark-—~ From a geometr;cal p01nt of v1ew, the meanzng of

the ‘choice (16.66) is clear, Indeed the leaf S isatrivial
prlncipal fiber bundle,hav1ng the base F and the structural

hgroup T then, for any Fiked p01nt on the base F with ‘coor-
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d:.nates z » to take the solution (16 66) means to choose the
point of the fiber over ( z%) belongmg to ‘the null sect:.un
.Fx{ } ot the: fib""r bundle. EAE N

The parta.cular choz.ce of the point on the null sect:.on

turns out to be part:.cularly useful also for the pro;ject:l.on

_of the presymplect:.c tensor. By putt:.ng u i 0, ﬁa =2°

:Ln (‘-6 58) (16 59) (16 60), “‘the pI‘OJect:Lon process amounts
o solve the system
i a.:. Ta T et a R S
(16.68) X' dmer e e 2t aloal 2t
s SR - D n . °
i : _\yq___z‘.; 9‘%"* 2 “__‘a el
where the “&! “are related by the constraints (16:52)¢

or® e
Vg F oy 42 Ky =y =0 o

(6.69) )

1y

(d"‘t dm )x +2 %o -dq * Qm "“a. # 0

nd o put its eolubion into the equations
B e o -3 . -l - lo..;'.}i
— Sq ' h = e Z Z ( 1)3 ( ) t(z J :)’k)

whlch are obtained from (16 60) (16 63) (16 66). I-‘u.rthermore,

:Lt may be smtable to recall that %_ ‘can be arb:.trar:.ly chosen,

(16:70)

:.nce any cho:ce of l}'q' porresponds to take a d:.fferent r1ght~

' dg- 1n the .prb;jecta.'on process deflned by (46 6{) (16 (3.

7C1ear1y, the s:tmplest cho:.ce J.S qfa = O. By such a cho:.ce,
the second equation (16. 68) and the first equat:.on of the
system (16.69) can be written as a un:l.que matrix equat:.on

for the column ve,ctors 0( of the matr:.x ot
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(16.71)  (d +u ), = o

Thus one must solve the fbllow%ggggeﬁ;qfieqqgﬁiogs_;”‘;;;

{(16,71.3)

(16‘71f41 }}4(2¢iﬁir)

To thls end, two different methods of ‘solution can be used,

vOne can think of g1v1ng )' and then cf solv1ng the equatlons

-tartzng from (16 71 1) up to (16 71 4}, so to obta;n y
0therw1se, one can proceed in “€he’ opposxte dlrectlon, obtain-
ing 1’ in terms of P AN In ‘the first .case, one obtains:the
reduced symplectlc tensor on S /HbﬁwF in the second case

1ts 1nverse. we will dlscuss in deta:l the second method .

of rednctlon. To thls end we .observe that (16 71 4) allows

to express theéf_rst column o, of o by means of X and o]

(16.72) 2y, «-ZZ,Z () 2 )f

Then the whole;matrlx « can be given in terms £ xland d

by"me ns o the terative relatlon (16 71 2), whose solut1on

is (Appendlx D.B)

(16-73) ' o{= Z‘ ZJ ( ‘) Uy (fb;]d" )et

where the matrices u{s) are récdféivciy obtained from
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(16.74)

To obta:.n el. s We make use. of the last constraint (16.71.3),

whose solut:.on 1s (Appendlx b. L)

"'0{°=._,d_. [ ( E+(ﬂ J l\' k&_x.q-
.(.16575) ° .7 "1 (nv m—] o }) 3 () "‘; °

where the 0(, ‘are giv.e:'i by '(16-‘?;)

(16.76) o=y, 5y - ;a Z Z ¢1y" ( ) U (2*"" Yo ) & (o)

' Atth:.s po:nt,s:.nce :éhéw:ntrlatrix o is completely expressed .in
terms of the components Ya s Eq. (16, 71 1) gives X in terms of

Yﬂ;":'-thus, we _ have expllc;tly obta:med the second Po:.sson

tens r _Q_ on & /H‘b 3 Actually, it is the second Hamilto-
nJ.an. stmcture of the non—abehan Gel!'fand-Dikii equations [8,28 29]
Slnce the final form of .Q is clearly very complicated, we
do not wr:.te 1.t. expl:.c:.tly in a comp act form, but we give an

exp11c1t examp.'le of constmct:l.on of this tensor for the simple

case n = 2, i 2

. . .
Example. For n = 2, the quotient space Sﬁ/Hb -i’s ‘the ‘spaceé
of traceless Frobenius matrices

’ J

00 2
(16.77) U= {4 o 2°
: o 4 0"

One account of (16.71.4), the first column « of« is given by

]

(16.78) o, %«
Y ")’f:s.
Yo
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I . e T TR VU

So that o is obtained by “iteration

(16-79) Oyt = oty +uo, :==-

_ (Eq @.6 71, 3)) thatr the ‘matrz.x lf—- 0(+ [u a_£_7 be

one’ obba.l ns -

"o that *

(6:82) Bz 2y, 3y -2 g(tro, 2]l 1,27] ) d
The matrlx o is thus completely expressed in t.erms of r and
Yy -Finally, s;mce it is (€q:(f6:3at)) Rk

: e e -;l--o 1 .‘- o ;7‘6,.':7.:‘
L (16.83) X = °‘-¢1>5 2y mN 2
4

0 4,0 { 5

')("‘

the reduced Poisson tensor .Q._I tq.kes},.‘t_:-he form
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where the eperators A,B,C are given by

684

(16.85) A: = 23 -—2("?3 (2% +3 . z‘) 3 j e 379, (2%
:+2 3 (Z )* 3(2 2 2 2 ).-;.'3 [ 2 ] lz‘;;ﬂj
['ﬁ-fz_][.z 5[2_]&,:] ,.]2

-3@- +3’b.21+6’a 2°4+372, {2%) +

+'b[,:z]+3[.z D, ] [2 S[ Z]c\:] [Z ]

--6'0 43{2 }13 2*3[2 }1»
+[2‘S[ 21]0{1]1-,".

:g_As for the first Poisson tensor, At is cas:Lly obta:.ned

-f_';»p'-m- (16.67 )

(16.88) | XD [Zj} ) ] : l 3 b" . | B’o .

so thatits inverse is

(S I
oo %

v
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Remark 16.1 ~ A brief :t.nspectlon of the form (16 67) of the

reduced tensor 0 allows to conclude that Q is kernel- free.
Since we are guaz'anteed a priori that the reduced tensor (vl

is kemel—free, we can. conclude that Q and Q def:me an irre-

'duc:l.ble stmcture._ To exp1101t1y show that Q 1s kernel free,

let us. wr:.te (16 67} in the form

(16 91\) /_( Qaea";-p'—' 'tq‘ g‘( ) h i {e) L¢c+1+

m.q o oM-a

5, i (1) 2L 6y

e

Since c¢¢ n-a, the operator Q .'LS of tr:l.angular type, moreover,'

by (16. 67) ‘one eas:ly ver:.f1es that

(16.92) Q" = 2™, 2. 0

and that )
: P - ntl o :
LTI ~all £ o~ mibai
R S N (IICWE

Artmd m-o-1

* Z ¢ )hw{-“( : ) fal-qu-;.q (z“'h‘*. )= ("‘*1)}::

so that O -'ta_l‘\:e.s the _f;:'oirm

(16.94) Q=1 B VKN
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Remark: 16 2 (The connectlon WLth the Gel'fand~91k11 spectral

Eroblem!

As it has been PPGVlOuSIY remarked the mpmentuﬂ'ﬁaﬁﬁing

J s —4.}( is deflned by TR

Gsios) :;1 skt
When restricted to the: quotlent manlfold of;,he‘unxmodular

Wronsklan matrlces, ‘this map assoclates o tr: celess Frobenlus

matrlx v with' any Wronsklan matrlx w‘accordl'g to

(16 96)

the'firét‘"' umn'as coordlnates for w.\lThen by wrztlng the

ix equatlon (16,96) by columns, on;'easaly proves that
the parameters wa of the Wronsklan matrices and v? of the
Frobenius matrlces are’ related_by the equation’

n-1

(16.97) ° "c)m';'u;“" =2 () ot

correspondlng to the well- known (matrlx) Gel‘fand—lell

spectral problem. Thus, from the present geomet ic po:r_nt

‘of v1ew, ‘the spectral problem 15 31mply the para etr1c form

of the momentum mappxng restrlcted to the quotlent space.'
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17, Conclusive remarks, ;

In this final sec;ion_ we make a fey comments on _8Some aspects of thePN
‘manifold thebfy'whichasééﬁlfS'ﬁé:ﬁéfEicﬁlaflf'{ﬁiétéééing“;h&'oﬁiﬁamé'“
queétions which have not been considered in thig Paper for the éﬁkéﬁbf
(1) The reduction method is a "tensor prq@eééﬁ,iinwéﬁgg-séqgeﬁgha; the

properties of the Mor PN structures are ﬁaintained uhder fedﬁction, ei-
ther by restriction or by projection.From é.ﬁihctiééilbéiﬁf”6fi§§§ﬁ,_

this means that one has“not to Veriff’séﬁg'ﬁrdﬁéffieéébf the'"fiﬁﬁi"fféé
duced structures, whosefphqugpg_would be very cumbersome in most cases. i

(ii)-Théﬂﬁquétigqmgphéﬁégll§géutqEgcquqlgdgq*tha:'difﬁrentrintegraBiL

lity structures corresponding to quite differen non linear.evolution e-

'ﬁdafibhélafe ééiﬁaii& 6Btaiﬁéd by redgcﬂng‘gvg; diffg;gng sg@m§n1f914§

2 few structures, which are moreover in héﬁéfgl quite simple[3§]-

(iii) Once the Mor PN structure has been éhbéen, the reduction process

does not require further ad hoc assumptions,since.  the structure itself
yelds the characteristic distributions where. to perform the reduction

(thelgartigular‘choicg qf:tpgiykintggrgl_qubmagifplds heingtin-general
"e

imuaterial). Moreover, one can remark that the PN structure is "irredu-

'cible“‘ﬁhéﬁ {E'Es'defiqégsovér the ;hargcferisgip"gpbggpifqéd pf_qﬁ _
{undér thELéSEHﬁﬁtidﬁhfﬁat'E?Eaigéant'#ﬁ& fiﬁiké Rgegi;inég#hrﬁ;ki;;s),
sincé the ih&égrai'ménifblagbf‘fﬂé'aiséfiBﬁf§63}fﬁgﬁ? are not foliated
by invariant submanifolds of N.However, ‘it may happen that ‘thete ‘are
submanifolds which are invariant for gbower Ni~(i> 1) of N (e.g., see
{311 for the case of the KdV equation ): in this case, it isg possible to
obtain further intégrability‘ﬁtrugtures'by reducing N; instead of N,

(iv) By considering in particular the family of P} structures defined p

in Sec. 15, parametrized by the arbitrary matrix a, différenévintegra—
bility structutes’ are obtéinédjiﬁ'cofréépaﬁdén¢é with &fffé%éﬂgyéﬁéites

of a., In particular, one can.shqw-thatlbyfsuiﬁablé chﬁiégg?ofia,ﬁﬁygihréz.-
chigg gf;integ;ab;g;Hamiltonigp;gquatianSQre obtained which are. for-
mally different but in some sense equivalent, sincefiliey are related by
"genergiized Miﬁfé'tféhsfofﬁa;ioﬁé“ exac%iy asmthe KdV and the modified

KdV equation are related by the weil_known'ﬂiura transfdrga;iqn¢ This

problem, and the explicit construction of the generalized Miura tran~
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sformations, will be considered in a forthcoming paper.

*
(v) At last, we remark that the P01sson cocycle and the)(-cocycle con-.

ditions on which rests the purely algebrale ‘construction of a gtoup—theo—
retical P} mmnlfold are only suf£1c1ent condltlons, so that they can be

“generalxzed ‘As a matter of fact, it will be shown in detail in a forthco—
ming - paper that a-non-trivial general1zat1on of the construction g1ven 1n El £ awf7a€a

Secs {143 “is actdally possible. It ‘allows to obgaln the group-theoret1cal = v v adin el

“a@mm'
structure giving rise, by réduction, to the 1ntegrab111ty structure of ‘the

equations for the ‘non-abelian Toda lattice.

N
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Appendix A : Conventions and:Notations

A 1 From a theoret:.cal po:n.nt of v::.ew, tensor fJ.elds on a mam_—

_fold M are. usually regarded as. real—valued umltlllnear funct:.ons

(H)"xx(M) => R, This point of v:.ew, however, . is nap-

_propmate for the k:.nd of appl:.cat:.ons we are cons:.derlng 1n

this paper. For. example, we are -often requ.a,red to cons:Lder
as tensor objects on suxtable J.nfzn::.te_dzmensz.onal mann.folds

some -integro-differential operators such as

(A.1.1) NusP = 9 +2u_&f.+u,-r8xsp dx

Clearly, it would be quite artful to replace this operator by
an object such as

49 I'

(A.1.2) <N“(P,o(>:: ol,(_t?“-t-.?urf +-ux5sf dr')dx

s -
with the only aim to regard it as a real-valued multilinear
function. Consequently, in this paper we prefer to regard

tensor Fields as '¥ —multilinear maps defined on ¥ (M) x ¥ (M)°

and taking their values either in ¥(M) or in X (M)BO]-Thié

Chanéé of point of view only requires some minor changes of
the usual édnventiohs”;,as explained below.

Lt M.be a differentiable manifold, and X (M) and x(M)
be the spaces of the vector fields y: M —F TM and of the
one-forms ®: M — T¥M, In the whole paper, the symbols

Q ('forf pre.sympiectic)' . x (M) — BE*(M)'
P (for Poisson Yy o xXM(M) —> X (M)
X (M) — X (M)

N (for Nijenhuis )




it

stand systematz_cally for tensor . flelds of type (0,2), (2, 0)
and (1 1) on M (sometlmes, when we have to consider simulta-
neously a palr- of tensor :E:Lelds of type (2,0), we_ use the
symbols P and Q for them) The product of tensors :.-.s def:.ned
as the product of llnear maps and denoted for examplé, by
P2 or ‘&imply P.Q . The :utverse P -t of the tensor sP, Aif. it

ed in the usual way. The dual of the tensor

exists, is defi

N is the tensor N K'(M}——>3€_(M) def:.ned
{ A 1- 3} s <’N*o£, -.f) =<, NPy
for an o apnd @ In {the same . way the duals BE (M)"""*’% (M)

% (M) of the tensor P and Q are deflned by
(A1.4) (ot,PF;_.;f» P =!> o <Q=p '{>= <Q- ‘{/;f)

The tensox‘sP and {) are sa:r.d skewsyzmnetr:l.c 1f P = -P and

hvaluat::on a_t the po:mt meM of" .Q P N is

denoted -k rJ.pt, so that we . wr:te

(hi5) «(m) =00, (p(m) Y(m) = x. 'f(m) Cglm) = Poatm)
to dénoteé ‘the’ 11near maps induced by the tensor fields {,N,P

at theé p01nt m.

The - Lie derivative and the exterior derivative of (},N,P

.are . t‘hen 1ntroduced by a qu:l.te natural use ‘of the correspon&-

- donce arnong maps and mltx.l:.near forms, So, for example, *

cif w X (M)x X (M)=—> R.is the twoxform agsociated with '

the tensor {) by

(a1 86) w(?,ff)% *i-fﬂfnf:»

we reguire that

#47) L) (1) = =< L () oy, X
(e (D) = <y )X >




1]

Of 'course. the Lie derlvatlve deflned by (A 4'?) verlfles the

Lelbnltz rule

F ._'ly, if f Ucu'______ > Ule
we denote.by df(m), T M'-—* Tf( )ﬂ'

H

and by df x(U,M)—> x (U, n') and 5f-_

__ pomt meU by Sf(m) Tf( )H — .M the du.al map

(newy <5f(m) Blfio), s[’(-m)) - <p({u.;),a{r.ﬁ) 200>,
% (U M)—>3* (U M)

. the maps it induces between vector f:elds and one-forms de-

‘<f1ned :On M and. MY (or, -more, exactly; -between: thelr Testric-~

txons to U and U‘). uConsequently, if £

: UeM—> UreM?

local. diffeomorphism,: the: transformation ‘formilas for 0, P,N

take the form

(R-444) L qtee sg 1 n 4;
RCENT R _1&% ® df , N . ar?
h446) o _.,_,Né*f;s_é £t L se
(-n_,.i...m I P'- = df « PiuSE

with the obv;ous meanlng of the symbols."
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‘A2 tIn‘many?applicatiOnthhe manifold M is simply “a-‘Banach

spacgjqr*an-affige-pyperplane'bf a Banich;sﬁacé?{tybically)

‘in problem where the boundary conditions -are non<homogereous).

_Forthis: réason, ‘it is useful to have a férmulation of ‘the

theor‘& of thé PN manifolds also in the ' language:of the ‘dif-
fenlal ealculus ~ ‘on Banach spaces. Therefore, we shall now

give-the-local version bffthe'abétréctTdefiﬁiﬁibhs introduced

in Sec 2 ) ST y T
us id ntlfy M w1th an pen set U of a Banach epace E

(the “1oca1 chart“), ‘the’ tensor f:elds fl N and P are then

‘bdym@mqsﬂ ME%E,N.WEﬁE d?

whlch are llnear 1n the second argument. If ¢

d: for generlc elements or E and.E(zdentlfled with

constant vector fields and one-forms onl}) and 1f u is any
3 we can ‘denote - the prev:ous mapplngs as’ fbl]ows

asOcp  yeNoy ¢= R«

& ‘ifito evidence the linear dependenée on-the veétbdr

: n*%hé?éb%ectbr1x;"-K&bordinéli;ﬁe”déﬁaﬁefbiﬁq?hf¢§Qﬂ),

N'(' y) ‘and PY (d,?) the (partial) Fréchet depivative with:

respeét to U of the mappings {1 o Moo B evaluated at the

poznt ‘u  and in the direction y(keeplng ? and o constant)

Soy; for example, by assumi g the cont:nulty ‘with respect to
y 5 the derlvatlve (7 can beCﬂmputed accordlng to

(9.2..‘.1_) Q (‘f; ‘I’ ) ‘-:ll_'g:lmcf "F

For. flxed u,f] ‘is a bilinear Operator 1n tf and ‘f In,

partlcular, we can take the ad301nt w1th respect to Y whlch

we shall denote by K}i:ExE-—.E +» So, by definition, it is

(R.2.3) <O Ceiw) x> = '<ﬂ':(.~f'i)(b‘i’>
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By -using such notations 'ég,(ghd the corresponding -;Qnes_,;fbr‘___ P,.’ and
N) and by:letting § : U+ E. and A:U-»E%: to.denote the
~docal .representatives of :arbitrary wvector fields.and one-forms
on;:M; .the Lie and the extenioni;d@ixrati\rés previously dntroduced

.can -be given the %ﬁéllowihg- local forms .3.: w: - 3

,'?-ll

(dﬂ) (q, ) qr (m)' Q (*hw);Q._. (L,, ?)

‘They allow. .».t_o..\..x-'.eset' »;.t‘;he- .".closure -'cond:i-tions“r-f:-'Or' .Q sPand N
_‘ respect:tvely Anamely: df1=0,. [P,J = .0 :and T(N) :=.0) into
the local form. [31)..-

ASL=0 (HS) <D(‘f T)'X"*.“"*"" =g
37’ Pl 0 (Q 2 6) < 0(' P; (F’P H) + el +‘~...,;,:_; =0

(where the dots mean cych.c permutat.ton over’ t.he arguments)

while ‘the “coupl:l.ng cond:ltzl.ons“ def:.nlng Pﬂ > PN and PQ mani-
folds :become respectlve]:y :?"' s ’

75 (ﬂ 23] <P (Q 'f .r) Q )( >4 <Q! (ch > _q,),x>++= 0




1t5

*
. P = -
u u u u

<_“N'(PP1’) N (g8 P)
IR T R e X (F’ N l.F,P o) N P (u,.f) P e N "f)} =0
Cand . . oK ,%, R(V_z?;\z)(&,?» 0

(ﬂ!ﬁ} - 3

/D(:Z (ﬂ ﬁo{O) | <O{ Q (F’ u ) P (PJQ"X )> LR ”... =0

Le now. f U-+ U be the local representatlve of‘a

”Jdlffeomorphzsm on M . Then, the bransformat1on formulas (Ad141?)

:.take the local form

£

.

I
2
F %

. A
£
)
| 4

=Z|
£
li
—t—
£ -
=
b=
b,
£ -
L

9|
£l
[
sy
£ -
s O
vy
£ om—
o

fined by

(A1, 1) ot flog > = <M, 9>

‘Accordingly, we are led to define a, local PN manifold as

an open set U of a Banach space E endowad with two mapplngs

* .
i E and P :'E'“+ E ; fulfllllng the “clnsure conu

“dltlons“‘mi?) and (Rﬂs) and the’“coupllng cond:tlons" (ﬂl?)
o and transformnng themselves w1th respect to local

'dszeomorphlsm'accordlng to (ﬁ?ﬁ) and (ﬁ115) : Local PJ] ‘Hgnd

PQ manlfolds '_e def1ned in the samc way.
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Appendix B: P() and PN manifolds.

B.1 Poisson tensors

The Schouten bracket is a comp051t10n law deflned over
“the graded algebra of the skewsymmetrlc controvariant tensors
of any order [31,337. For sgcond-order tensors P and @, it re-

duces to :

s HPRMEH:= L@ L+ Q-L D+ @dey ppy
et Lt Lag(Plews Pl )+ P d<.a;'q“?§.~
Comrs e T e L (QVe D A e P R T R L P bt & B

Wkencg, {.m__ Q-’-‘P, i ) + . Q‘ 5( QF)JC , L}
(B.1.2) cpm( gs)... LPP(P) « 4 P L (9. +Pd<«,P(s> v
Equivalenf'f;rms ébe

019 < BT = ), B v
(:04) ) = e ap. e )

B.1.5)  [Beop) =L 1 - 5 furgly al

where

(B.1 6){“!(5} P:._=--.-IPF’ (“)'LP.,((@’)“{Q‘:P"):@(P‘s"dpp‘“ d<°‘_’P§> .

1f ZP P7 = 0 ‘the tensor P is sald to be a Pblsson tensor,

the bracket (B.1.6) is called the P01sson bracket of the
one-forms o¢ and g (w1th respect to P) and the vector flelds
$L= Po {associated with closed one-forms_«) are said to be

(locally) Hamiltonian (with respect to P). By (B.1.5), the

@(@}e? = LPOJCQ)§ + Po dd,@ ? '4'@ "C?:O{ .?‘g .
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lLie' algebra of the vector fields!f#ﬁ?bi(ﬁithféééﬁecﬁ-tc*the
comutatorof flelds) is homomorphlc to the Lie algebra of the

one—forgs; o (thh respect to tlﬁ P01sson bvacket (B 1.6.)):

(3.1.7“)' LP«, PF> / =-P. {“ ’@}P

The closed one~- forms make a Spe01a1 subalgebra, s1nce the

P01sson bracket of two closed one-forms 1s an exact onenform'
-(3..,1..3):5__5&52 = :;ap:._- 0 ;—}- {« ’P}P =d<uc,p¢,>

The correspondlng algebra of.vector flelds 1s the Lle algebra

of the Haml
coxncldes w1th the algebra of the vector flelés keeplng
P 1nvar1ant (- [f,_? 0 and d% 0 entail L (P) 0).

As for ‘the' proofs of (B 1 3) (B 1.4) and (B.1.5), we li-

‘mit ourselves to show the equlvalence of (B.1.3) with (B.1.2)

 h1an vector fields. By (B 1, 4), 1t-_~_—______

(the other proofs belng stralghtforward} It follows from :

(B.1.9) <L (gs}, P3>+ <L ‘s(g),' Po{>+<L (ot), PF.)_

~dg, Pelp (B* L P{Qg, Po>) -<g, (Pot)>
b,(<t=<, P(b)) -_<_§, E(P@s)>

il

“(fy PoLy (@)-- PeL P(“) + L p(Pd) + Pd<°‘ P&>>

_f<_z;,'_ ﬁ;_.??(oc ,@)>_

Thls equlvalence clearly shows that the Schouten bracket

ZP P7 is a skewsymmetrlc thlrd-order tensor of type (3 0)

"'QS’ P.Lp (g,))* '.'(L (tx) » Pyo=<¥sLp _% : (P))# A<, P@},PIQ

v’




B :.r'ff—'—‘--u:«».. R Y

A..___u*44__—k.ﬁﬁ_.____u_ﬁmw_‘ﬁ...‘—",j.;;;_‘._,,__,_;uﬁ;._:__..._.4

B.2 Nijenhuis‘tensors”} -

14 €

‘Let N x(M)-»x(M) be a. te;sor fz.eld of type (1;1).
Its torsxon tensor T(N) is defﬁned by [3&]

(B.2;1) T(N)(? y).—[N?,N‘r] N[‘f‘:”'i’] N[N‘P:H’J*N [‘ff‘!’]

It is.a. thlrd-order tensor, of. type (1 2), sometlmes called the

ngenhu1s tensor of N, " Fop the sake of brev1ty,'1n thls paper
we call- N13enhuls stensor a aecond—order tensor ‘N of type (1 1)

whose torsion vnnlshes, and we call Nijenhuis condition the

“?condltlon T(N) ;g ,1e.; ?§ $5¢&341 mirdisn s s

By u51ng Lle der;vat:va 1nstead of commutators, ‘we get

(B 2 2) 'P(N}(‘f; '-P) L __(_N._;P)..ﬂ,..N...L
v N’L (?)

o N
yl?) NL,( ?)

so that the Nijenhuis condltlon can be wrltten as

(B.2.3) e l_ (.N -~ N L? N} =

LA L

By introducing the duéinﬁeﬁébr N#* of ﬂ,the Nﬁﬁenhﬁis condi-

. .tiom. ‘can be wrltten also in the form {__,

(Bi2.4) L (N’J il {N J N*

as iS'pr0ved by

(st) <x; f(”“‘f;?”)*" &7 L (VN (Nl~f> -
- <L, (NJa,uf>~<NocL(~)?>

- <(L”(N“J-LY(W}--N*)°‘:‘1"?

-
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,B.3.qéome-note+wopthy7identifiesf“““
'Léﬁ'N, F;Il be §hyeg_§qggpd3qrqgn,bensorfields “6HR :a

manifold M, respectively of type (1,1), (2, 0} {0;2), P.and O
bELng asaumed to be skew- symmetrlc - We recall that to Ny P, 02

three remarkable thlrd order tensors can be separately associated

(B.3.1)  T(N) (mm(m—-w L (”)) ?
(8.3.2)  [7P)(a,p)« = P‘ .(.L.“ RIS d< Pf” ) ¥ L C7)
(8.3.3)  dR(q4) : = (ﬂl vt f“)‘f’ * ‘*‘“W 7

whoéé'?énlshlng defines pespectively the Nijenhuis tensors, the
P01550n tensors and the presymplectlc tensors. Moreovery: by

taklng the tensors N, P,Il_ in pa;rs,_three_other third-order

tensors _--qsm.-:;;l?.ef defined, whose vanishing entail .that .. .- =

Pia NP D= QN

are respectlvely a ngenhuls tensor, a Poésson tensor and a

presymplectlc tensor (if the skew-symmetry of NP and - of‘ o

Js,gndcnstopdji ~These:noteworthy tensors are:!: "’

.R(Pu)(a,?) l_ (u),f PL(N,(“H <)

)(wl dﬂ(NY. ) dﬂ(w 2k -‘a'(ﬂ.mm)

(337) a(Qm)(? ¢) L (gm * 1,(31?31 ¢ ,retmpsnm)

As it_has been discussed in Sec.2, the mutual relations among

the three P{L , PN, L N structures which are defined on M
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and the existence of hierarchies of PN-and QN structures are

due to five remarkable identities among the previous six third-

-order ténsors; - -These ‘identities are 3

(e T(PQ) w, )-[PP](QT,QT) P S(0,PQ)(y,y)

(B.39) R(PPQ (”) (%7 (ot,,,o{)w 10 (P, ¢)

concerning the pair (f) P) 3

| (5.310) [NP NP] (djﬁ‘) = N( P;P] (Nd,f) R(PN)("’ Pﬁ))‘*’l(” (8( PF

(B.3.4) R(NP N)(« LP) N RGP N)(«,w + T (N) (4, P<)

-poncefning’the-pair1(P;N) and

(B.3.42) S('-QN;N)-’(@,i?)e'-"'dQ (Ny,N¢g) « Q. T(N) (¢,9)

on the pair {fl;N); Before proving them, it is suitable
to show how they work. Let us distinguish three cases :

i) PO hmanifo;ds,_
given P and Q) fulfilling the conditions /F,B/ = 0, d0= 0
and dQP)= 0, by (B.3.6)(B.3.8)(B.3.9) we get 5(Q,PQ) =
1(Pﬂ ) 0 and R(P P(I) —-0 show1ng that N: = PO is a

"NlJenhuls tensor, wellmcoupled both wlth,n and P, There~
_}fore, Bﬂ Strucbures are the ba51c ones,_znduczng the &

'exzstence of PN and anN structures as well,
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ii) " QN iua-}iifoids‘ |
given {] and N fulflll:.ng the conditions d1= 0, T(N) =
" ana’ S{O;N) = 0; by (B:i3.€)(B5.3.12) we get dlON)= 0 and
" 8(QN;N) = 0 showing that EI?;aFIJN*jls*a hew presymplec-

“20 tic tensor well-caupled with N. By iteration, we realigze
: T;the existence of a hlerarchy ‘of DN structures defined
~%wn- =ax, -
111) PN féﬁzéﬁifdids .
o sglven P and N fu1f1111ng the conditions ZP,P =0, T(N) =
N?:PW R(P,N) = 0 by  (B.3. 10)(3 3. 11) we get [NP NP/ = 0 and
R(NP) N) = 0, showlng that P : = NP is a new Poisson

tensor well-cOupled w:.t-h N . By iteration, we realize

the ex:l.stence of‘ a hlerarchy of PN. structurzes, defined

N‘J P To' prove ‘the further property of thls
hnerarchy of-béing in J.nvclutrlon, ﬁ P 7 it

.suffzces to use the follow:mg generallzed form of: (B33.,10)

NQﬁ{fN

5 (M)xx*(m) S X)) is defined by

__R}f(P N)

B RN (B gy = < B, RO N (g

.—Wlthout mak:a.ng any further comments for the sake of

bre _y, We llnut ourselves to sketch the proof of the prev1ms

-_1dent1t' 5




{B 3.45) ‘T‘(PQ) (¢, \y)'z LFR?(PQ)U(’ - PS].L?(P-Q)‘]’ :

L Lm?(m?)*m‘-me "(".). -8 Lo(F)y
R R)(Qy, ) '?..'_(.'Lm',{,(w '
+d<Qy, psuf;_ L ?W(_Q) g ‘oL ‘f(m);,,)
G277, p] (y, Q¢) - P (dQ(PRy, ¢ ) +
4 (P ¢)) P L?_(.QPSLF) .
| “-- L, L2FR *P.') —QPS\ o ly) - 44PNy, ¢ )

.“’” 2] FPJ (sw,w) P-_ .i’s'(rz_,!wm,w

; (_.B‘,,;%) R(P P_Q_"(d ;{,)._]_ (PS’L)cf PL (DPu) | _4}—,9?('#)'

- - L, (199) - (QL (¢) +Ly(RPu) - L m(o{j)

@R} (g, ) + P be (Rg) - d< QP
- L (9)- R Ly (R) -1 () (7))

32 [ 0P (g, ) 4 P 40 ( Pt )

(8.3 13) ['NP’NP) (a, ‘5 : NP (LNPJ L'NP{:(‘)* d<°(/ NPP>) '

Ly (WPx)

N?P
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= NP d <N, PR> +NP (L, (p)-L (<)) =

| (Nh) -

R [PP](”* 5)’;)_”-? ,}_.."?F_(f)% yep (N_?di)”

- +NPL () =N L (PN*)

" [P PY (N 5;) l:NPP(N_).. Pu 4 |
ot N ( - P Lui’fl (et) +.P. LPP(N",,() *IL”?F (Pd)_LP(%gPN;))

\ 1 N (L c*-—L (P) N« L, (N]?d)

e L mw* sm () (Pa PP) - N ROEM) G )

(23 6) RONN) Gor) s = Ly, (K) g = NP Lo (98] 2 NP Ly ()
L W) g x N (RN (s )L, () g
AL gﬂyﬁ"&m oK

CB3 N RPN ()« T(M) (g, Px)

(5318) S (2N, N) (Lf ¢)s = d(QN) (Ny, ) C o (M) (Mg p) 4 (V) (g, )

(“”L Q) gLy (ON) Ny <Oy >
_L (W)\“L (D). Ne _d < QNTe, ¢y
L L (SlNH L, (QNJ g+ 4<AN, ¢
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2 40 (Mg, M) ..S)(N..L (y) + L )¢+ N Ly (e) )
(““etsz(Ne,Me) (N)ph )
At 1aet, ‘we pe-eve the generalized form (B 3. 13).of ehe identity
(B.3.10):
(8.3.90) ._.Q[NP,Q.]-(e,[g)..gz L'QP. (“P)}?’*_”P- LQ., (p)-NP.d<B,Qes
we fradae(B32) + Lo (@)« + Q Ly (P) =0 d<d HPes
| - N.'(LGF('P]:: P -LQ? () P d<ﬁ,d.«>
sl (Q)a'e Q..LPJ (_p_)_-Q.d<p,Po<>) 3
+L (u) Peur MPP(Q)e_M..LPP"(uJe
+ Q Lm(fs) -QNEL, (B)
+ Q w*eu.fs,m -Q. d(’f’),”?u)
¢ [23%}(«,{%) :
¢ Lo (M) Pesby (@e -V Ly (@)«
QL (W) Qb (W) e QL (P)
+ Q- Lpg(ﬁ_')f»—LPP (N*)d s d <ot NPBD> +

_Nfd 4 d, P[3> )



(53
'y N[J P () » @ R* (B (x,p)

¥ (LGP (N) P"‘ -Q. L.Pd (N* r,) . Q _‘L”;.,d- (P)) S

e e A AL S e s

(. LNPP(OM N Ly (@) < -@ B <) M e

| 2N[0P](dp)+OR (PM)(«f,)

« R(aM (,Pe) - R (W) (+,7p) . | "

where we have taken into account the explicit form of R (PN} |
following from: IR : - ‘ S

+ <P, PLW(M N
=<L, (N")fb..{)) +L < N Pﬁ) <Nu( ‘?(Pf')?

- L, <o( PPy v < L”?(fﬁ
(N*Jp ¢ d<a, NPp _N*a{m P>, >
¢ < N, Lo (aoJ > -<°"LP:P'(N“7
= < Ly, (N* )’]3 ~'L?P-"(N'*-)e< wd<a PP S

WA<a,PES, 9> = <TREDE P e

&, Ly = Line,y>
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Appendix C

c.4 .Projectablé fields and Brojectable oneé-forms .

Let D ‘be an 1ntegrab1e dlstrlbutlon ‘of M admitting a
quotient manlfold M/D. Let (M', € : M - M') be a parametri-
zation of M/D., We recall that a field g e X (M) ,_.;i:s___“('p;'bjec't-able

(c.4.1) dg (my) g (m,) = dg(‘h‘»:) ‘P("“

for any pair {m > m, } of the same 1ea§ [M]
A one- form n(_e'.!(M) is said to be pro;;ectable 1fi there :

.-

exlsts a oné- form' «.GXZ(M') such that

(e.1.2) . o2 safu'*

We denote by . X (M) and x* (M) the subspaces of the projectable

vector flelds and progectable one- forms, and by Z,cx, (M) the

algebra of vector fields tangent to the fiber
(t‘.’-‘i..{}) ZD:={ fe%(”) o‘j.?:@}

Then one can show that a projectable vector field is completely

characterlzed by the condltlon

(o 4 [n81-0 g Z,

and that BGD(M) is a subalgebra of ¥ (M), whereas projectakle

one-£orms are completely characterized by'ﬁhé conditions

(€.1.5) . («;‘gy.{.—. o "g‘e '2,

T N A i ki e 1 s a1 i




157

ea.0) oo hple) =0 e ReE,
- Indeed; "if’-"'f?e'}ég(u) “and ‘;‘ €z, ,3 “it is

' On -the other hand, if ¢ Fulfils the condition tc. i 4), the
C}% ;11-‘-* T, M (F Bring the fibee over wem) defined by

(€.4.8) q‘) (« o= dg(m) glm)

has a vanishing differential ‘at any ‘péint m E?;a’ " thus .d)'f is
cbhstant along the Fiber (which is a connected submanifold) and
-f is a projectable field. At last, projectable fields make

“ﬁa lle ‘algebra, since if ?,1'6?6 (M), then
eto) dg-[ [e], €]= -4y L (Ly(0)+ 4 Ly(Lyto))
L, (4 Letn) s L4 L)

(c1.4)
= 0

If « is a projectable one-form, the first condition (c.4.5)
clearly follows from (C.4.3), the second condition (£.4.6)
follows from the fact that projectable fields form a basis of

TmH 4t any point me M and that

(c.1:10) * < -L?.(d), ¢y = L?<«,go-> s L?(‘f) >
“é“l_?w'nb ~ <ot dg Lele)y

(c1.4




ﬁSS

Conversely, the condition (C.4.5)° and the 1nJect1v1ty-"of‘ the
mapping Sg(m) : T;' Ml_._, (TmFm'? C 'l‘; M imply the existence
of a unique ngpn;ﬂf{“Fmé;q Qﬁ;iﬁ?-f§“¢hqthat R

(eaat) e (my = % (m) ‘i"'ﬂ)

Slnce thls map 15 constant along the flber F - “on account of

the Condltloﬂ (e 1 S) TP' factorxzes as f0110w5'

showing that o is a projectable one-form.;

-
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C.2 The PN and PR :s'f,rQC'ti:}"és on the reduced manifolds

As it has been showed iﬁ%SéEué;fiF S €M is an immersed
submanifold of M parametrized by (M', f : M'—%-M) and if N,P, O

‘are tensor fields on'M,: respectlvely of type (I i) (2 0) (0 2),

'thevﬁééuced tensors N', P ;II'_ on Mtare given by
L 21) N e gt N .

(e.2.1) N s dft N A g

(e:1.2) Plu’ s f P. 3!
S T R S . . x7 (9)

{es2.3) - 0 ?'; = SF {1 .df . 'f

_for- any cf’e,‘}ﬁ (M'} and al € (M) ), 'b-f xt(5) be:.ng any rlght—
.1nverse of - S{l () By {6 8},1t follows that for any one- form

x

o€ 36'9-(,5) it is

(¢.2.4) « = P

x%(S) Ik", (s)

so that (£.2.2) can be gi\;éh the fof'm

4
(c.2.27) dp P 8o - Pa e XF(s)]
(i) The property of being a ngenhu1s tensor, a P01s<son tensor

and a presymplectlc tensor are malntalned under restrlctlon,

on account of the following 1dent}t1es
(x50 T(N) (') = 4 T (¢, )

(¢.2.6) [PI,P’](Spr ; B]P P) = c{? [P, P} (n(, ]3) ' QIPE‘XP“(S}
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The identitj'(c.z §) follows from_

€20 () (dh Ao)isL (wm Lty

(c2 AP o
"Ldfﬂ'f'(P ) N L"'P vy F'f)*
N Lﬂf ‘(df.Nl?r) + N2 L af '(AP ?{)
:o\f.(l_ (NJ¢_N’L (NJ ")
aP W(um,w |

where the well known property of the L1e derlvaplée

(e.2.9) oL () - TR

has been uséd.
On account of the identity (B.1.3), to prdye (c.2.6), is

equivalent to prove that
(€.2.10) ¢ Lo (L Py s e v 20
I.ndeec:l, for _.-.an-yzw_;t;xf.i{éiég _u,f,_a- g.:_ja_g:.(s,)_,_,_ it is,
(c.2.10) < L, (p), [JX;’ e

€z 3? Lo mep (B, Y v >

=L (P e

)
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where u.,%f ol and so on, and the well known property of the

L1e derlvatlve ;

(c.2.12) 3? 'L.‘-f"f"- (“)= L?,(Sf"‘ ) |

has been used. At last, (¢.2.7) follows from

(c.2.13) 4Q'(¢\¢'): = L;r,(n".,,')-n'. L.*,'(;:‘);'Lv,(d’f’); dei'y) ¢'s
LI (of Be)-5 A4 L)
-t sf Qa{’ i) despaly v’
(f!‘!“}af (L (SL()_Q L (\r)-l... (Sl?]¢c{(£l?'*>)

= _%{;--dﬁ'(-‘f,y)

(ii)'ff.ﬁ and N define a PN.structure on M, this structure is

maintained under restriction, since for any xpe x(S)
(e 2.14) .(HP'—?N“).o( = df (NP PN (3F )
tngeed, 1t 12,

(c.2.16) (NP-?N*‘_)g _ N dfP’ 3o - af PP N

1

af WP 8P e df PNERf
af (KPP N %) (3P)

I\
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where we have taken 1nto account t.hat N*, (3{ (5))5_35 (5)
and that N'*' ls deflned by

To prove the second 1dent1ty, let us observe that for any
{

nt RO )« L V-1 Lt11 -y
M Lo - ped 1)

(Sf P) +

(Sf o ) L

dfth(wl‘;r P) N” df'?

) l" ¥
S S P

23 dca, ap. w'e Sf'p‘_}-. N*3) d<o, Py

Liop

= L‘ (N:«P) Mr* L

P! .

(F)-Lop (H"s)
L G e, fwff;a'; Wi P
RE (e uf ( o )
where " fu, 55 Sf 5 Cand’ wé have’ tal;en inge ;:::ount th;t -
(c.2.19) WP P'wr)(o\f' j A gne) e we¥E(s)
and #h_a't'

(c.2.20) ) dcag > = o <ol gly




(iv)
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(1ii) If P and. D2 define a PSL structure on M, and if

(c.‘g_?ZIII) Q(%(S))C %r(s)

then the RQ structure is malntalned under .restrlctlon, Sane

the followlng 1dent1£§ holds.”

(c:, al(n' o )(~r ¥') = Sf °‘(Q'§ '_;,'ﬂ)(a “?:_‘"P )
(c.2.23) QLptar (52 af) (4P Sfl_ i ) (512 4)
S5t (f Sfr SHP..=.-=

r(‘)
(c 2.1,)((.‘.9.!1) '
5p.(78)

In a qulte SLmllar way as for the restrlctlon, we Uould prove
that the propertles of belng a N1Jenhuls, a P01sson or a

presymplectxc tensor are maintained under projection, as well

"as the PN or Rn. structure.' One has to proceed exactly as

in the case of the restricted structures, taking into account
tfﬁf the bfoperﬁies (c.2.9) (¢.2.12) of the Lie defivatives
must be replaced by the property tht the Lie derivative of a
projectable one-form along a projectable field is itself a pro-

jectable one form:

(c.2 24) L?(Sj'“') = Ba LJj ¢ (“’) TGXD(M)
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that projectable fields fulfil the well-known condition

o ‘fwa n el

! . B
and - that for any pro;ectable fleld ? 1t 15'  "'

(e. 9 _25) o d‘,] :_L‘f (?]z

For that, the detalls of the proof are omltted for the sake

H

of brevity,
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AEEgndix B

D.1 The 1sotropy group of b is 2 Subgroup of the group of

upper trlangular matrlces

' a . .
e e is given

The 1sotropy group of the matrlx b. €. 41

by the matrices h such that
(D._i._i?_'_ |\"a hsa 7 a e

@12) (k)0

(b.1.3) rﬁ o 2t (h"l:k l-." -b) € = (mb =_o,{',.’...;',"'f.{'."f)_
Eq; (D 14 3) cane given : 7' f.he form

i s i

entailing that

®.1.5) k(b ha 4 hay - hoit) = eouy

where u&(a = 0ys4ayn=1) are atbitrary Lagrangean multipliers.

Thus we can write

On the other hand (D 1, 1) entalls that h 7 h e,» SO that
we can conclude_that h is an upper trlangﬁlar matr1x whose
diégonal éntflés are hi = h .

Indeed, the first property is readlly seen by recur51on,
since from (D.1.6) it follows that if h: =0 (c:ra) then
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(D.1.7) l’l ! = h e + ,1 N =0 LR

lasd ax

N

att & h“’.‘ +lln."ho

e

A T T e

"

At Iast,.it follows ftom.(Dslaz) th&t_'

(> B, (m fuxio

(

so that -We. .can choose h l'ﬁ “the matrl es

given by upper. trlangular ‘matrices with tfiés

diagonal, The 1terated solutlon of (D._,'

a

(p.1.10) 5 Z ( ) ‘éér_."rﬁif".i

L+ ]

as it can be ve?ifigd;straightfbrwghdly.xﬁ'CI‘

D.2 The relation between the afflne coord;nates (u ,ua)fri

the . fibered coordlnates (v ,'v )

A

Let. us recall that uesb, v e F and t: E'I' L are. g:r.ven

respectlvely by

S e WA T N broia v gt n a
(D_,Z.I-) U= e._b,_x e U e e -+ U_lq ed__:e

©2) e - E (O s,,)  (rhid; )
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Then from

Cmazi) o uw=Who howlt L wle =
it follows that

®.2.5) bu=vuba.t,

{D'i’6} e" t u. €. = to W e-_q.

(oiaq)

o ‘*:4,_* Eaut

(0.2.7) . . . (ut &, )( 4 Unt:-i-t:x

= tax : ' v

the{affiﬁgﬂédOr&iﬂégéz.qh_-aﬁ#*ﬁhg_fibe#ed coordinate #é can

be identified, as follows from

a Qa +4

(D.2.8) u, = bo, -E7
C(v1y
= a
On the other hand, Since
3 Q .
(.2.9) e (tu) e, = Etu

(0.2.10)  * (utet,)e, B L L2 4o

it follows that




16§

a e b a-1 a
v :tbu. - % ._tM‘

(p.2.11) = - “Zli (i)(;m “s-e..,)“b .
a a
; aﬂz{t'(:") | Leadd “_!‘) * Z ( )(‘ben ntf) |
mel Mt

:L—' zZ‘ ( ) (Vea “«rf )u." -

In concluslon, the relat:.on betwnen aff1ne and fa_bered

i

coord:mates is given by

m-d uf _ L ' «
U-A = - gﬂ :Zx :(E_)(az-a-g’k.qd ) u

The d’iffgregtial of this map is ;.'obv_i_._pqsly_ h

®.2.13) (g = ¢

med 1\

=2 S () (O ‘f’”,)“ »«(D Cere))

Then by substituting (D.2,.13) into

it 1 e

(D.2.14) T. ;a S (%T) +y P )dx =T E S("fa“'*f“ Y dx

by :mtegratlng by parts and taking into éccounﬁ_.algebra_ic

1dent1t:|.es suéh as

. p ‘-.!. ‘
(D.2.15) | it 2.

]

-\ n-K

K;t

1

o
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one obtains the explicit form: ' . °:

of the “dual map (the details are omitted For brevity, since

‘they are

- straightforward but lengthy), =~ i
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D.3 ———=~ . The solution.of:the equatdon : i T, e
(®.3.1) o= (D)

is glven, for~ any apbltrary- matr:.x u., by the matrlx

(p.3. ) ERES
‘D 3 2 g uo Jgo ( )

whei:'e ol :|.s the fu'st column of ot and the matrlces u,(J) éir"é

recurs:l.vely deteruu.ned by (3 = 0,1, 3o ,n-l)

(.3.3) - -uq';;'] ACRME TS wy=1

Proof, Slnce (p.3. 2) implies that the a~ierme column of &

is glven by -

(2.3.4) o, = 2, m gy Doy
i éco

the property holds for a = 0. For a 5 0, we obtain

. . .
{b:3.4) 2 a Z a o
=z U D ot 4 () of-rZ()uqu
n- q-.
= () Gt ) g e+ Z(5) s ey e
(ba3) a . ' e
33 ay i ' - a
=--J§ (‘) M oeg +.:§ (l) W Casiy %o
ast :
= (aH) Uee) A ,
¥zD ¥
#34)
= o
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where the @dentity

(5.3.6) (:1) ,,(:) ] (aki) |

has been used. Therefore the property (D.3.2) holds for any
adn, _Tbg,yuv;‘ws nesull holds for any matrix 4. As a parti-

cular case, if w is a traceless Frobenius matrix", i.e. if

(D'3'7) R i R A € + U e,

. thenthematrlces u(J} .Aare.such that. (j =.0, lysva,n-1 ) :

. K>} phad

k=1

y (D .3 8) holds tr1v1a11y for j = 0. If it holds

4 v UK L
oW, o
* (40

.k_ (n'-i . - {ba ;)‘3 . .
{}ono Y u(“o +V u(.ﬂ'é T e Ype t tyle

(939)

S0 that if «y 34

¥ (D-_B 8}
{jtt)o =

(D_.3.'IQ).

and

B (L Y 1 ﬁf - (933)

D.3.11). = b Sl
®.3 -11-)' j:u:'(;{fjo" = ’Dﬁc “a10 *. umc ¥ U: (:H)o . A

_Then the property (D 3 8) holds for ‘any J.nteger Jén -1,
In particular, from {D 3. 8) it follows that
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Lo ne¥
(D.3.1z“,). Lo 5‘

D.4 The ‘equdtion *
. L wf, ., m a . .
ey Ua L0

(D‘l'i) . my *¥a

where U :Ls a traceless Frobenlus matr'lx and °~’— As solutlon

of the euqatlon (D 3.1) has t.he follow:l.ng solutlon

- o . n-l G .
D.4.2 ol o - ( x ™ j’ m-t ? d
( A ) . o‘ “ hf! K:‘ ( ( ("H _. m a oof(;) ] (”' b 3 0{ X +

S fallum o kg Y o m g o a e
-'Z ( ) S ul}iu’ an-l dO'dx) = u(n,x “l? - S U-“”k do’ d’)
s

Proof: On account of -E‘T' (p.3.2) , Eq.(D-4. 4 9 tékeﬁ'ﬁhe form

w-{ o

(043 Z() (‘6’ ) Zu“ Pury @ .,Z“Za()m °J°)UA=O'

IBO
r

By writing on the left-hand side only the terms with

we obtain

D) 2 (7] (P (w52 )+ i gl ) o

)eO

-1 a
-22 (;) Yoo (’ba'a %o ) U.Q = .

a£0 goo Ve TS0 Lo
B3 A XCREANSE

-1

Z_ Z Z ( ) Ghe (,30‘_3 o(:) e

aco Yo wed
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on account of (D.3.12) and (D.3.13), the left-hand side of
(D. 4. 4) becomes - PP

I A R GO

m-1

so thatone easily obtéins Eq.(D. 4 _'Jf)_, by using the ddentity

a6y “Z’ i i: . Z - -Z_

EER ST v e T A S L L
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