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Abstract. The standard approach to information entropy applied to
partitions of a universe is equivalently formulated as the entropy of
the corresponding crisp identity resolutions, interpreted as crisp gran-
ulations, by the corresponding characteristic functionals. Moreover, in
this crisp context the co–entropy notion is introduced.
The extension to the case of fuzzy identity resolutions, a particular case
of fuzzy granulation, is studied.

1 Entropy of Abstract Discrete Probability Distributions

In this section we briefly discuss the abstract approach to information theory,
involving suitable finite sequences of numbers from the real unit interval [0, 1],
each of which can be interpreted as a probability of occurrence of something,
without any reference to a concrete universe X. To be precise, a length N proba-
bility distribution is a vector p = (p1, p2, . . . , pN ) in which: (pd-1) every p1 ≥ 0
and (pd-2)

∑n
i=1 pi = 1. In this abstract context, a length N random variable

is a real vector a = (a1, a2, . . . , aN ) in which each component is a real number:
ai ∈ R for any i. For a fixed length N random variable a and a length N proba-
bility distribution p, the numbers ai are interpreted as possible values of a and
the quantities pi as the probability of occurrence of the event “a = ai” (thus, pi

can be considered as a simplified notation of p(ai)) (see [1, p.5]).
Hence, the average (or mean) value of the random variable a with respect to

a probability distribution p is given by Av(a,p) =
∑N

i=1 ai · pi.
In particular, to any probability distribution p = (p1, p2, . . . , pN ) it is possible

to associate the information random variable I[p] = (I(p1), I(p2), . . . , I(pN )),
where for every p ∈ (0, 1] it is I(p) := − log(p), whose mean value with respect to
the probability distribution p, called the entropy of the probability distribution
and denoted by H(p), is explicitly expressed by the formula (with the convention
0 log 0 = 0):

H(p) = −
N∑

i=1

pi log pi (1)

with 0 ≤ H(p) ≤ log N . Let us recall that the real number I(p) := − log(p) is a
measure (called the Hartley measure [2]) of the uncertainty due to the knowledge



of a probability since if the probability is 1, then there is no uncertainty and so
its corresponding measure is 0. Moreover, any probability different from 1 (and
0) is linked to some uncertainty whose measure is greater than 0 in such a way
that the lower is the probability, the greater is the corresponding uncertainty
measure. Hence, the entropy of a probability distribution p can be considered
as a quantity which in a reasonable way measures the average amount of un-
certainty associated with this distribution, expressed as the mean value of the
corresponding information random variable I[p].

2 Entropy and Co–Entropy of Partitions

Now we apply the just discussed notion of information entropy to the concrete
case of partitions of a finite nonempty universe X. A partition of X is a finite
collection π = {A1, A2, . . . , AN} of nonempty subsets Ai of X which are pairwise
disjoints and whose set theoretic union is X. Elements Ai forming the partition
π are considered as granules of some knowledge associated with the partition.
As it is well known, a partition π is equivalently described by an equivalence
(reflexive, symmetric and transitive) relation on X formally written as (x, y)R
iff ∃Aj ∈ π : x, y ∈ Aj , and this equivalence relation expresses the fact that
two objects x and y of the universe cannot be distinguished relatively to the
knowledge supported by the partition. The equivalence relation is in this way
interpreted as an indistinguishability relation (see [5], [6], [7]). In this sense a
partition furnishes a granulation of the universe X by “crisp” granules, also
if in the sequel we adopt a weaker notion of granulation linked to a measure
distribution assigned to every equivalence class Ai of the partition.

Given a partition π, the subsets Ai ∈ π are the elementary events of the
measure distribution m(π) = (|A1|, |A2|, . . . , |AN |), where the measure of the
event Ai is an application to it of the so–called counting measure mc(Y ) :=
|Y | (the cardinality measure) for any arbitrary subset Y of X. This measure
distribution satisfies the conditions: (md-1) every |Ai| > 0; (md-2) its total
measure is M(π) :=

∑N
i=1 |Ai| = |X|. The probability of occurrence of the event

Ai is then given by p(Ai) = |Ai|
|X| . In this way we have generated the probability

distribution p(π) := (p(A1), p(A2), . . . , p(AN )), depending from the partition
π. This probability distribution satisfies the conditions: (pd-1) every p(Ai) >

0; (pd-2) its total probability is P (π) :=
∑N

i=1 p(Ai) = 1. According to (1),
the entropy of this probability distribution, simply written as H(π) instead of
H(p(π)), is then

H(π) = −
∑

p(Ai) log p(Ai) = −
N∑

i=1

|Ai|
|X|

log
|Ai|
|X|

(2)

In particular, we can consider the trivial partition πt = {X} (consisting of the
unique set X) and the discrete partition πd = {{x1}, {x2}, . . . , {x|X|}} (the
collection of all singletons from the universe X = {x1, x2, . . . , x|X|} of cardinality
|X|). In these two particular partitions the associated entropies are H(πt) =



0 and H(πd) = log |X| and for any other partition π of the same universe X
one has the following inequalities: 0 = H(πt) ≤ H(π) ≤ H(πd) = log |X|, with
H(π) = 0 iff π = πt and H(π) = log |X| iff π = πd.

Note that the entropy (2) associated with a probability distribution π as-
sumes also the following form:

H(π) = log |X| − 1
|X|

N∑
i=1

|Ai| log |Ai| (3)

Hence, if one introduces the co–entropy of the partition π defined as

E(π) :=
1
|X|

N∑
i=1

|Ai| log |Ai| (4)

then the (3) leads to the identity:

∀π, H(π) + E(π) = log |X| (5)

i.e., the quantity E(π) is the “entropy” which complements H(π) with respect
to the constant value log |X|. Let us stress, with particular regard to the fuzzy
generalization discussed in the sequel, that since any |Ai| ≥ 1 also the co–entropy
is a non negative quantity whatever be the involved partition: formally, for every
partition π, E(π) ≥ 0. Moreover, also in this case we have the inequalities:
∀π, 0 = E(πd) ≤ E(π) ≤ E(πt) = log |X|, with E(π) = 0 iff π = πd and
E(π) = log |X| iff π = πt.

It is possible to consider two (non–negative) discrete random variables gen-
erated by a partition π:

(G-RV). The granularity random variable G(π) = (log |A1|, log |A2|, . . . ,
log |AN |), each component of which G(Ai) := log |Ai| expresses the measure
of the granularity supported by the granule Ai of the partition π.

(U-RV). The uncertainty random variable I(π) = (− log p(A1),− log p(A2),
. . . ,−p(AN )), each component of which I(Ai) := − log p(Ai) expresses (accord-
ing to the general discussion of section 1) the uncertainty measure related to the
probability of occurrence of the event Ai of the partition π.

The relationship between the uncertainty measure and the granularity mea-
sure of Ai is similar to the (5): ∀Ai, G(Ai) + I(Ai) = log |X|, with G(Ai) (resp.,
I(Ai)) increasing (resp., decreasing) mapping. With respect to the now intro-
duced random variables, we have that E(π) =

∑N
i=1 G(Ai) · p(Ai), i.e., the

co–entropy furnishes the average granularity measure, and H(π) =
∑N

i=1 I(Ai) ·
p(Ai), i.e., the entropy furnishes the average uncertainty measure related to π.

2.1 Partitions induced from information systems

Let us recall that in the context of partitions of a concrete universe, as the
support structure of the Pawlak approach to rough set theory, the above co–
entropy has been introduced in [4]. In particular, these considerations can be



applied to the case of a (complete) Information System (IS), formalized by a
triple IS := 〈X, Att, F 〉 consisting of a nonempty finite set X of objects, a
nonempty finite set of attribute Att, and a mapping F : X × Att → V which
assigns to any object x ∈ A the value F (x, a) assumed by the attribute a ∈ Att
[5], [7], [3]. Indeed, in the IS case the partition of the universe of objects X
generated by a set of attributesA, denoted by πA(IS), consists of the equivalence
classes of objects which are indistinguishable with respect to the information
furnished by the attributes in A, formalized by the equivalence relation: (x, y) ∈
RA iff ∀a ∈ A, F (x, a) = F (y, a).

Example 1. Consider the (complete) information system based on the finite uni-
verse X = {1, 2, 3, 4} and finite set of attributes Att = {a0, a1, a2}. The infor-
mation system is given by the following information table:

x ∈ X fa0(x) fa1(x) fa2(x)
1 A G S
2 A R S
3 T G M
4 T G L

The meaning of the attributes of this example could be the following: a0 is the
shape of the object (A as arched and T as thin), a1 is the color (G as green and
R as red), a2 is the dimension (S as small, M as medium and L as large). We
have the following partitions, one for each possible collection of attributes:

π(a0) = {{1, 2}, {3, 4}}, π(a1) = {{1, 3, 4}, {2}},
π(a2) = {{1, 2}, {3}, {4}} = π(a0, a2),

π(a0, a1) = {{1}, {2}, {3, 4}}, π(a1, a2) = {{1}, {2}, {3}, {4}} = π(a0, a1, a2)

2.2 Partition entropy on a finite measure space

Let us see now some generalizations of the partition entropy notion, making the
following
Notational Convention: From now on, if no confusion is likely, the counting
measure mc (resp., probability pc) will be simply denoted by m (resp., p).

This notational convention is very useful from the general point of view.
Indeed, the treatment of the entropy partition performed in the previous section
is formally based on the structure of the measure space 〈X, Eπ(X),mc〉 in which
the universe is constrained to the strong condition of being a finite set and the
involved measure is the very particular counting measure assigning to any (finite)
measurable subset E ∈ Eπ(X) the corresponding cardinality mc(E) = |E|.

This approach can be extended to the more general case of a measurable
space with finite measure 〈X, E(X),m〉 where X is a (non necessarily finite)
universe, E(X) a fixed σ–algebra of its measurable subsets, and m : E(X) 7→ R+

a finite measure on E(X), i.e., such that m(X) < ∞. Note that this condition
imply (for the standard monotonicity property of a generic measure) that for any



E ∈ E(X), m(E) ≤ m(X) < ∞. Indeed, all the results previously proved, and
all the results which we shall prove in the sequel, are formulated in such a way
that they hold in this general framework, instead of the very narrow situation
of a finite universe with the counting measure. It is only necessary to consider
the so–called measurable partitions of X, i.e., finite (or in general, with a slight
modification about convergence, countable) families π = {E1, E2, . . . , EN} of
measurable subsets of X (for any i, Ei ∈ E(X)) such that: (pp-1) m(Ei) > 0
(strictly positiveness); (pp-2) m(Ei ∩ Ej) = 0 (measurable disjointness); (pp-
3) m(∪iEi) =

∑N
i=1 m(Ei) = m(X) (normalization). Of course, any standard

partition π of X is also a measure partition, i.e., we have an enrichment of the
usual notion of partition.
Given a probability partition π, the corresponding vector p(π) =

(
m(E1)
m(X) , m(E2)

m(X) ,

. . . , m(EN )
m(X)

)
is a probability distribution. More generally, we have the probability

space 〈X, E(X), pm〉, where pm(E) = m(E)
m(X) is a probability measure on the σ–

algebra E(X) generated by the finite measure m.
As examples of this general situation, let us mention any Lebesgue measurable
subset X of Rn of finite Lebesgue measure µ(X) <∞. For instance, a bounded
interval of R, a bounded rectangle and a circle of R2, a bounded parallelepiped
or a sphere in R3, and so on.

Let us stress that also in the case of a finite universe the just defined notion
of probability partition leads to an enrichment of the usual family of partitions.

Example 2. Let us consider a biased die modelled by a probability space 〈X,A(X), p〉
with X = {1, 2, 3, 4, 5, 6}, A(X) = P(X), and the probability function gen-
erated on A(X) by the probabilities defined for any elementary event {i} of
the involved universe X by the probability distribution p =(p({1}) = 2/6,
p({2}) = 1/6, p({3}) = 1/6, p({4}) = 1/6, p({5}) = 1/6, p({6}) = 0).
The probability of the generic subset (event) A of X is given by the rule:
p(A) =

∑
i∈A p({i}). We have in particular that p(X) =

∑
i∈X p({i}) = 1.

Then the families of events π1 = {A1 = {1, 2, 6}, A2 = {4, 6}, A3 = {5, 6}}
and π2 = {B1 = {1, 2, 3}, B2 = {4, 5}} are probability partitions which are not
standard. The former π1 is a covering of X and the latter π2 is not a covering,
but its two subsets are disjoint.

2.3 Partitions as identity resolutions by crisp sets (sharp
granulations)

In this section we show that any partition can be identify with an “identity
resolution by crisp sets. To be precise, given a partition π = {A1, A2, . . . , AN}),
if one introduces the characteristic functional χAi : X 7→ {0, 1} of any set Ai

defined for any point x ∈ X as χAi(x) = 1 if x ∈ Ai and = 0 otherwise, then the
collection of characteristic functionals C(π) := {χA1 , χA2 , . . . , χAN

} associated
with the partition π is a crisp (sharp) identity resolution, i.e., a family of crisp sets
such that the following property holds: ∀x ∈ X,

∑N
i=1 χAi(x) = 1 . Denoting



by 1 the identity mapping assigning to any point x ∈ X the value 1(x) = 1,
we can also say that the family of crisp sets C(π) satisfies the functional crisp
identity resolution condition:

N∑
i=1

χAi
= 1 (6)

Of course, partitions and identity resolutions can be identified by the one-to-one
and onto correspondence

π = {A1, A2, . . . , AN} ←→ C(π) := {χA1 , χA2 , . . . , χAN
} (7)

The condition (6) defines the identity resolution by crisp sets C(π) = {χAi ∈
{0, 1}X : i = 1, 2, . . . , N} as a crisp granulation of the universe X, in which any
crisp set χAi

is a granule. Then, the counting measure of the elementary event
Ai by its crisp granule representation χAi is given by

m(Ai) =
∑
x∈X

χAi(x) = |Ai| (8)

The probabilities associated to any event Ai can also be expressed as a proba-
bility of the corresponding crisp granule χAi by the equation

p(Ai) =
1

m(X)
m(Ai) =

1
m(X)

∑
x∈X

χAi
(x) (9)

and the entropy (2) and co–entropy (4) generated by π are given now by

H(π) = log m(X)− 1
m(X)

N∑
i=1

m(Ai) log m(Ai) (10a)

E(π) =
1

m(X)

N∑
i=1

m(Ai) log m(Ai) (10b)

with the standard result ∀π, H(π) + E(π) = log m(X).

3 Fuzzy (Unsharp) Granulations

An immediate generalization of crisp identity resolution (as a finite collection of
crisp sets C := {χi ∈ {0, 1}X : i = 1, 2, . . . , N} whose sum is, according to (6),
the identity mapping

∑N
i=1 χi = 1) is the notion of fuzzy identity resolution as

a finite collection of fuzzy sets F := {ωi ∈ [0, 1]X : i = 1, 2, . . . , N} such that
the functional identity resolution condition

∑N
i=1 ωi = 1 holds. Generalizing the

(8), the measure of a generic fuzzy set ω ∈ [0, 1]X of a finite universe X can be
defined as follows

m(ω) :=
∑
x∈X

ω(x) (11)



Definition 1. A fuzzy (also unsharp) granulation of the universe X is defined
as a collection of fuzzy sets F = {ωi ∈ [0, 1]X : i = 1, 2, . . . , N}, whose elements
ωi are said to be fuzzy granules, under the condition of total measure M(F) :=∑N

i=1 m(ωi) = |X|.

Thus, the condition of fuzzy granulation is dependent from the measure m(ωi)
of each fuzzy granule ωi ∈ F given by (11), provided its total measure is the
cardinality of the universe. Let us stress that in practical applications some
further regularity conditions are usually (hiddenly, in the sense of non explicitly
formalized) involved. Let us quote two of them which in this paper are tacitly
assumed.

Non–redundancy of the granulation, formally expressed by the fact that if in
a fuzzy granulation F two fuzzy granules ωi, ωj ∈ F are such that ωi ≤ ωj

(in the pointwise ordering, i.e., for every x ∈ X one has ωi(x) ≤ ωj(x)), then
ωi = ωj .

Covering of the universe X, i.e., for any point x ∈ X there must exists at least
a fuzzy granule ωi ∈ F such that ωi(x) 6= 0.

Let us note that any fuzzy identity resolution, F = {ωi ∈ {0, 1}X : i =
1, 2, . . . , N} is necessarily a fuzzy granulation since

∑N
i=1 m(ωi) =

∑N
i=1

∑
x∈X

ωi(x) =
∑

x∈X

∑N
i=1 ωi(x) = |X|. The vice versa in general is not true as the

following example shows.

Example 3. In the finite universe X = {1, 2, 3, 4, 5}, let us consider the fuzzy
granulation consisting of the two fuzzy sets ωi, i = 1, 2, defined by the table

1 2 3 4 5 m(ωi)

ω1 1 1/2 1/2 1/2 0 5/2
ω2 1/2 0 1/2 1 1/2 5/2

Then m(ω1) = m(ω2) = 5/2, from which
∑

i=1,2 m(ωi) = 5 = |X|. But, for
instance, ω1(4) + ω2(4) = 3/2 6= 1.

Moreover, any fuzzy identity resolution is a covering fuzzy granulation, but
in general there is no certainty about the non–redundancy condition.

Example 4. In the case of the universe X = {1, 2, 3} the following fuzzy iden-
tity resolution of two fuzzy sets furnishes a fuzzy granulation of X which is
redundant.

1 2 3 m(ωi)

ω1 1/2 1 1/2 2
ω2 1/2 0 1/2 1

Indeed, m(ω1) + m(ω2) = 3, but ω2(x) ≤ ω1(x) whatever be x.



3.1 Entropy and (possible negative) co–entropy for fuzzy
granulation

In the case of a fuzzy granulation, for any of its fuzzy granule ωi it is possible
to assign the non–negative number (and compare with (9)):

p(ωi) =
1

M(F)
m(ωi) =

1
M(F)

∑
x∈X

ωi(x) (12)

whose collection p(F) = (p(ω1), p(ω2), . . . , p(ωN )) is a probability distribution
since trivially: (pd-1) for any i it is p(ωi) ≥ 0 and (pd-2)

∑N
i=1 p(ωi) = 1. The

entropy of the fuzzy granulation F is then the one generated by this probability
distribution, which as usual is given by the real non–negative quantity

0 ≤ H(F) = −
N∑

i=1

p(ωi) log p(ωi) ≤ log N (13)

Trivially, by (12) and recalling that the total measure of the fuzzy covering F is
M(F) = |X|, one gets that

H(F) = − 1
M(F)

N∑
i=1

m(ωi) log
m(ωi)
M(F)

(14)

and so also in this case we can introduce the co–entropy of the fuzzy granulation
F as the quantity

E(F) =
1

M(F)

N∑
i=1

m(ωi) log m(ωi) (15)

obtaining from (14) the following identity which is true whatever be the fuzzy
granulation F :

H(F) + E(F) = log M(F) = log |X| (16)

This identity is an extension to fuzzy granulations of the identity (5) previ-
ously seen in the case of partitions (crisp granulations). Also in this case the
“co–entropy” E(F) complements the original entropy H(F) with respect to the
constant quantity log |X|, invariant relatively to the choice of the granulation F .
This co–entropy refers to the measure distribution m(F) =

(
m(ω1),m(ω2), . . . ,

m(ωN )
)

for which the following hold: (md-f1) every m(ωi) ≥ 0; (md-f2) its
total measure is M(F) :=

∑N
i=1 m(ωi) = |X|. Of course, the entropy of a fuzzy

granulation, from (13), is always non–negative, but in the present fuzzy case
notwithstanding the expected link expressed by (16), the co–entropy could be
negative.

Example 5. In the universe X = {1, 2, 3} let is consider the fuzzy granulation
consisting of the fuzzy sets defined according to the following tabular represen-



tation:
1 2 3 m(ωi)

ω1 1/2 0 0 1/2
ω2 1/2 1/3 0 5/6
ω3 0 1/3 1 4/3
ω4 0 1/3 0 1/3

Of course, this is a fuzzy identity resolution (and so also a fuzzy granulation)
since trivially

∑4
i=1 ωi(x) = 1 for every point x = 1, 2, 3. But in this example the

entropy is H ∼= 1.8163, whereas the co–entropy is negative E ∼= −0.2314 with
H + E ∼= 1.5850 ∼= log 3.

As shown by this example, the possible negativity of co–entropy (15) rises
from the fact that some of the measures m(ωi) could be number in the real unit
interval [0, 1] producing in this way a log m(ωi) term which is negative. In the
case of a fuzzy granulation F it is possible to consider the two following discrete
random variables:

(FG-RV). The fuzzy granularity random variable G(F) = (log m(ω1),
log m(ω2), . . . , log m(ωN )), each component of which G(ωi) := log m(ωi) ex-
presses the granularity measure supported by the fuzzy granule ωi of the fuzzy
granulation F . Note that some of these fuzzy granules could have negative mea-
sure, precisely under the condition G(ωi) < 1.

(FU-RV). The non–negative fuzzy uncertainty random variable I(F) =
(− log p(ω1),− log p(ω2), . . . ,−p(ωN )), each component of which I(ωi) :=
− log p(ωi) = log M(F)−log m(ωi) expresses (according to the general discussion
of section 1) the uncertainty measure related to the probability of occurrence of
the fuzzy event ωi of the fuzzy granulation F .

The relationship between these uncertainty and granularity measures of ωi

is now (compare with the (16)): ∀ωi, G(ωi) + I(ωi) = log |X|. With respect to
the now introduced random variables, we have that E(F) =

∑N
i=1 G(ωi) · p(ωi),

i.e., it is the average fuzzy granularity measure, and H(F) = sumN
i=1I(ωi) ·p(ωi),

i.e., it is the average fuzzy uncertainty measure related to the fuzzy granulation.

3.2 A normalized non–negative co–entropy for fuzzy granulation

In order to avoid the previously stressed negativity of co–entropy of a fuzzy gran-
ulation F , due to the fact that the measure distribution m(F) =

(
m(ω1),m(ω2),

. . . , m(ωN )
)

some of its components could be less that 1, it is possible to intro-
duce the minimum measure ~(F) := min{m(ω1),m(ω2), . . . ,m(ωN )}, and then
to construct the new fuzzy granulation F~ = F/~ := (ω1/~(F),
ω2/~(F), . . . , ωN/~(F)), where the generic component is ωi/~(F) ≥ 1. The mea-
sure distribution corresponding to the new fuzzy granulation F~ is m~(F) =(
m(ω1)/~(F),m(ω2)/~(F), . . . ,m(ωN )/~(F)

)
, whose total measure is M~(F) =∑N

i=1 m(ωi)/~(F) = |X|/~(F), and with generic component denoted by m~(ωi)
:= m(ωi)/~(F). The probability distribution generated by the normalization
of the new measure distribution m~(F) by its total measure M~(F) is p~ :=



m~(F)/M~(F) = m(F)/|X| = p, i.e., the probability distribution does not
change as to this change of the measure distribution. As a consequence of this
result, also the entropy does not change: H(F~) = H(F). It is the co–entropy
which strongly changes (compare with (15)):

E(F~) =
1

M~(F)

N∑
i=1

m~(ωi) · log m~(ωi) (17)

In particular E(F~) = E(F)−log ~(F), and so with respect to the new quantities
we have that (and compare with (16)):

H~(F) + E~(F) = log
M(F)
~(F)

= log
|X|

~(F)
(18)

In particular, from [H~(F)+ log ~(F)]+E~(F) = log M(F), we can introduce a
new entropy for fuzzy granulation, H ′

~(F) = H~(F) + log ~(F), for which triv-
ially one has the expected “invariance” H ′

~(F) + E~(F) = log M(F) = log |X| .
Explicitly it turns out that this new entropy has the form (and compare with
(14)):

H ′
~(F) = − 1

M~(F)

N∑
i=1

m~(ωi) · log
m~(ωi)
M~(F)

1
~(F)

(19)

4 Conclusions and open problems

The extension of the crisp granulation notion to the fuzzy case is investigated.
In particular the two usual measures of average granulation (co–entropy) and
average uncertainty (entropy) is deeply treated, eliminating a first drawback of
possible negativity of the co–entropy.
As an open problem it remains to study the behavior of the fuzzy co–entropy
and entropy with respect to the monotonicity.
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