Rapporto n. 194

An algorithm for maximum likelihood
estimation of Zipf’s Law

Daniele Felletti

Ottobre 2010

Dipartimento di Metodi Quantitativi per le Scienze Economiche ed Aziendali
Universita degli Studi di Milano Bicocca

Via Bicocca degli Arcimboldi 8 - 20126 Milano - Italia

Tel +39/02/64483103 - Fax +39/2/64483105

Segreteria di redazione: Andrea Bertolini

An algorithm for maximum likelihood estimation of
Zipf’s law

Daniele Felletti

Keywords: Zipf law, power law, mazimum likelihood, Riemann zeta function

Abstract

Zipt’s law, the discrete version of the Power law, emerges in se-
veral areas of research, because it is the distribution that reflects the
principle of scale invariance. Thus it is typically related to complex
systems.

Here an algorithm is proposed to evaluate the parameter estimation
of the Zipf’s law that best fits a set of data according to the maximum
likelihood principle.

1 Introduction

Zipf’s law is the discrete counterpart of the power law (Prob(x > p) = %)
It appears a wide range of applications since it characterizes the scale in-
variance. Another case is when the percentage variation of the probability
is linearly related to the percentage variation of the quantity: % = —adf.
Fields in physics, biology and computer science, but, in particular, in eco-
nomics and social science show this behavior since complex networks and
structured systems are characterized by power law distributions when they
have grown up following some preferential attachment dynamics ([1],[2]).
See ([6]) for a review on the subject.

From a statistical point of view it is characterized by a "fat tail”’: no
matter «, it tends to 0 more slowly than an exponential, so rare events are
more frequent than a Poisson distribution and much more frequent than a
Gaussian distribution. When o < 3 it has an infinite variance, when o < 2
it neither has a mean value.

A log-log plot shows quite clearly when a power law is present, so, some-
times, a simple least-square estimation is performed to evaluate the model
that best fits the data ([7]). Nevertheless this method may lead to inaccu-
rate estimates ([3], [4], [5]). No further statistical considerations in support
to one method against the other are reported. Neither the statistical signi-
ficance (usually x2 test or Kolmogorov-Smirnov test) is considered.

To estimate the parameter of the Zipf’s law maximizing the likelihood
of a given set of data requires the solution of an equation involving the

Riemann’s zeta function and its derivative. In this report an algorithm is
proposed to numerically solve the equation: the function is bounded by
two contiguous classes of functions and the zero is found with the desired
approximation.

In the Appendix a C code for the algorithm is reported.

2 Zipf’s law

Zipf’s law is a one-parameter set of discrete probability distributions defined
only on positive, integer numbers. Given the real parameter o > 1, the
probability of the event z = n is

Prob(z =n)=Con™® , neZt

where Cy, the constant of normalization, is the reciprocal of the Riemann
zeta function:

1 1
Ca = == —
© ()
> 5
Jj=1
For future purposes, let
3 log ()
g log(j
dCy j=1)

©=d +o0 2 o)
(£)
j=1

3 Maximum likelihood estimation

Consider a set of K values independently drawn according to a Zipf’s law.
N

Let fi, fa, ..., fn the frequencies of 1, 2, ..., N. So K =) f;. The

7=1
probability of the set is

N N
P=T] (Cas)" =CX I]i %
j=1 j=1

The value of o that maximizes P maximizes log(P) too.

N
L=1log(P) =K log(Ca) —a Y _ f; log (j)
j=1

Equating the derivative to zero, the following equation must be solved

L

Ch N . :
@—0 = Kc—a—jz:;fjlog(j)—o — C,—AC,=0

2

Figure 1: g;(a) for several values of j (with e4 = 2.5).

where
1
=2 > filog(i)
j=1

Note that

The optimal o must solve

g " log (j AZ] —0<:>Z] (log (j) — A) = 0 =
_aAz<) log<)—0<:>Z< > 1og<iA>
Let

e For every j: g;(a) is a decreasing function with respect to .

e For j < e4: gj(«) is negative for every a; g;(1) = (%) log (e%,) < 0;
Jm gj(a) = —co.

e For j > e/ gj(a) is positive for every a; g;(1) = (%) log (LA) > 0;
Jm g;(a) = 0.
Consequently:
e G(a) exists for a > 1.

e (G(a) is a decreasing function with respect to a.

e lim G(a) = +oc.

a—1+

e lim G(a)=—occ.

a——+0o0

So there is just one value for « such that G(a) = 0 and, observing the
relation between G(a) and P(«), it maximizes the likelihood function.

4 Approximation of G(«a)

Let

M
Gu(a) = Z gj(a)

G () is decreasing with respect to « (being the sum of decreasing func-
tions) while it is decreasing with respect to M for M < e” and increasing
for M > e”: consider this last case.

M-1 +o0 400
Gla) = gila)+) gj(@) = Gula) +) _ gj(a)
=1 j=M i=M

The following approximation (Figure 2) is useful

“+o00 “+o0 —+00

/ (6%)_& log (eiA) dr < Z gj(a) < / (eiA>_a log (eiA) dr <~
M =M M—1
< h(M,a) < +ZOO gj(a) <h(M -1,)
=M
where

A eA—l—l/a M

Figure 2: Approximation of G(«).

Since M > e?, h(M, a) is positive and decreasing with respect to both
M and «. Then

Hl(]\/[, Oé) = G]\/[(Oz) + h(M, a) , HQ(M, a) = G]\/[(Oé) +]L(]W — 1,a)

are decreasing functio?s with respect to a. Looking at Figure 2, it gets clear
that, when M > eta, H 1(M, @) is an increasing function with respect to
M, while Ho(M,) is decreasing. In particular, this is true for any o when
M > et

The following identities are useful to speed up the algorithm:

Hoy(M,z) = Hi(M,z) + h(M — 1,z) — h(M, x)
Hi(M+1,2) = Hi(M,x) + grp(z) + h(M + 1,2) — h(M, x)
Hy(M +1,2) = Ho(M,) + gy (x) + h(M,xz) — h(M — 1,x)

5 The algorithm

Chosen the numerical precision €, the goal is to find two values a and b and
a not too large integer value M such that

o Hi(M,a) >0 and Hs(M,b) <0,
eb—a<e or Hi{(M,a)— Hy(M,b)<e.
Here follows the algorithm:

1. Set M = Int(e*!) + 1 (note that M < Ne+1).

2. Choose an arbitrary starting value for ¢ and repeat a = 1%“ until

the condition Y = Hy(M,a) > 0 is reached (i.e., keep on halving the
interval [1,a] until H1(M, a) gets positive).

3. Choose an arbitrary starting value for b and repeat b = 2b until the
condition y = Ho(M,b) < 0 is reached (i.e., keep on doubling b until
Hy(M,b) gets negative).

4. fb—a<eorY —y<e

e then stop and take o = 22,

2
e clse take z = “T‘H’.

5. Increase M until one of the following conditions is reached:

(a) Hy(M,z) > 0.
(b) Ho(M,z) <0.
(¢) Hy(M,x) — Hi(M,z) < e.

6. According to the previous condition do:

(a) a=x,Y = Hi(M,z), y = Hao(M,b). Go to step 4.

(b) b=z, y=Ho(M,z), Y = Hi(M,a). Go to step 4.

(c) e Set z; = z. Iterate either a = ¢E2L (if Hy (M, %52) > 0) or
xy = SEEL (if Hy (M, *52) < 0) until Hy(M,a) < Hi(M,x)
is got.

o Set x9 = z. Iterate either x9 = ‘”ZTH’ (if Ho (]W, “TH’) > 0) or

b =z (if I, (M, W”) < 0) until Ho(M,b) > Ho(M, x)

2
is got.
e Stop and take o = %b.

The solution « has an accuracy b_T“.

6 Some tests

The following results have been computed on a PC Pentium IIT 500MHz,
ram 256MB, with OS Linux Ubuntu 2.6.17.

An accuracy of 107° has been chosen. Computational times are of order
of tenths of seconds (neglecting the time spent for the data input and the
computation of the parameter A).

First of all, the optimal value a* versus the parameter e? € [0, N] has
been plot (Figure 3). It proves the quality of the algorithm.

A more interesting point is the stopping value of M. This value is related
to the computational time, but it is not directly proportional since only the

T 1 T I)
1 2 3 4 5 6 7 8 9 10 eA

Figure 3: Optimal value o* vs the parameter e?.

-100004
-1000+

-100 ~

-10- -,

Figure 4: Stopping value of M vs a.

evaluation of the functions when the point « is changed (and M is large)
is time expensive. The evaluation of the functions in the same point for
increasing values of M is quite fast thanks to the recurrence formulas. This
is the reason why the computational time remained acceptable.

Looking at Figure 4, the fast divergence of M as « tends to 1 is evident.
What is interesting and deserve further investigations is the irregularity:
consider the following ”piece” of the plot

M eA o
6839 | 9.67 | 1.35907
8395 | 9.68 | 1.35894
2827 | 9.69 | 1.3588
3779 | 9.70 | 1.35866
9395 | 9.71 | 1.35853
2331 | 9.72 | 1.3584
20029 | 9.73 | 1.35826
2465 | 9.74 | 1.35813

233536 | 9.75 | 1.358
2691 | 9.76 | 1.35786
4817 | 9.77 | 1.35773

When « is in this range, M ~ 5000 is usually required for a precision
10~°, but the stopping value may be M ~ 10000, M ~ 20000 or even 200000!
The irregularity remains for smaller values of the precision.

7 Conclusions

In this report a direct algorithm has been illustrated to evaluate the pa-
rameter in the Zipf’s law that maximizes the likelihood of a given set of
data. The evaluation of this parameter requires the solution of an equation
involving the Riemann’s zeta function and its derivative so that a numerical
solution is required anyway.

The algorithm comes directly from the definition and makes use of simple
upper and lower approximations of the goal function. The resulting, still
rough, code is satisfactorily fast even on old computers even though it can
surely be optimized after a deeper investigation of the reasons causing the
strong irregularity in the parameter characterizing the approximation of the
goal function.

Appendix

C code for the algorithm

The C code for the algorithm is reported here. It tests neither the parameters
(the approximation and the starting guess) nor the number of input data.
The functions do not check their input variables either, so, any error might
lead to unpredictable results.

The main function is clearly ”StimaML”, which make use of the pre-
viously declared functions.

The main program, ”as is”, gets the data from the standard input by the
function ”LeggiDati” (which makes no check and stops as just as it receives
a value smaller than one), calculates e and passes it to ”StimaML”.

It finally prints to the standard output the parameter maximizing the
likelihood, with the interval related to the numerical approximation chosen
a (da): ax € [a— da, a + dal.

#include <stdio.h>
#include <math.h>

double g(int m, double x, double c){
/* The function G_M(x) */
int j;
double y,z;
y=0.0;
j=1;
while(j<m){
z=(double)j/c;
y=y+log(z)/pow(z,x);
j++;

};

return y;

double gj(int m, double x, double c){
/* The function g _M(x) */
double y,z;
z=(double)m/c;
y=log(z)/pow(z,x);
return y;

double h(int m, double x, double c){
/* The function h(M,x) */
double y,z,k;
z=(double)m/c;
k=x-1.0;
y=(((Log(z)+1/k) /pow(z,k))*c) /k;
return y;

double dh(int m, double x, double c){
/* H_1(M,x) - H_.2(M,x) */
double y;
y=h(m,x,c)-h(m-1,x%,c);
return y;

double hi(int m, double x, double c){
/* H_1(M,x) = Lower approximation for G(x) */
double y;
y=g(m,x,c)+h(m,x,c);
return y;

double h2(int m, double x, double c){
/* H_2(M,x) = Upper approximation for G(x) */
double y;
y=g(m,x,c)+h(m-1,x%,c);
return y;

double StimaML(double c, double a0, double b0, double eps, double *dx){
/* Given the parameter c=exp(A), the starting guess for a and b,
the precision eps; it returns the optimal solution (the precision
is in the variable *dx) */
int m;
double a,b,y,ya,yb,x,x1,x2,y1,y2;
m=1+(int) (c*2.8);
a=al;
ya=hl(m,a,c);
while(ya<0.0){
a=(1.0+a)*0.5;
ya=hl(m,a,c);

10

yb=h2(m,b,c);

while(yb>0.0){
b=2.0%Db;
yb=h2(m,b,c);

+;

while(((b-a)>eps) && ((ya-yb)>eps)){
x=(a+b)*0.5;
y1=hi(m,x,c);
y2=y1-dh(m,x,c);
if (y1>0.0){

a=x;
ya=yl;
Yelse if(y2<0.0){
b=x;
yb=y2;
Yelsed{
while (((y2-y1)>eps) && (y1<0.0) && (y2>0.0)){
yl=yl+gj(m,x,c)+dh(m+l,x,c);
y2=y2+gj (m,x,c)+dh(m,x,c);
ya=ya+gj(m,a,c)+dh(m+l,a,c);
yb=yb+gj (m,b,c)+dh(m,b,c);
m++;
};
if (y1>=0.0){
a=x;
ya=yl;
Yelse if(y2<=0.0){
b=x;
yb=y2;
}Yelsed{
x1=x;
x=(a+x1)*0.5;
y=h1(m,x,c);
while(ya>y2){
if (y<0.0){
x1=x;
Yelseq
a=x;
ya=y;

};
x=(a+x1)*0.5;
y=h1(m,x,c);

};

x2=x;

11

x=(x2+b)*0.5;
y=h2(m,x,c);
while (yb<y1){
if (y>0.001{
X2=X;
Yelsed{
b=x;
yb=y;
};
x=(x2+b)*0.5;
y=h2(m,x,c);
};
};
};
};
x=(a+b)*0.5;
*dx=(b-a)*0.5;
return x;

double LeggiDati(){
/* Reads data (until a value less than 1 is read)
and returns the parameter c=exp(A) */
int i,k;
double a,c;
k=0;
a=0.0;
scanf ("%d",&1i);
while(i>0){
k++;
a=a+log((double)i);
scanf ("%d",&1i);
};
a=a/(double)k;
c=exp(a);
return c;

main(){
double c,x,dx;
/* Arbitrary parameters */
double a0=2,b0=2,eps=0.0001;
c=LeggiDati();
x=StimaML(c,a0,b0,eps,&dx) ;

12

}

printf("x = %lg (%lg)\n",x,dx);
return -1;

References

1]

2]

[6]

[7]

A.L. Barabasi, R. Albert (1999) Emergence of Scaling in Random Net-
works. Science. 286:509-512.

A.L. Barabasi (2005) The origin of bursts and heavy tails in human
dynamics. Nature. 435:207-211.

H. Bauke (2007) Parameter estimation for power-law distributions
by mazimum likelthood methods. The Kuropean Physical Journal B.
58(2):167-173.

A. Clauset, C.R. Shalizi, M.E.J. Newman (2009) Power-law distributions
in empirical data. SIAM Review. 51:661-703.

M.L. Goldstein, S.A. Morris, G.G. Yen (2004) Problems with fitting to
the power-law distribution. The European Physical Journal B. 41(2):255-
258.

M.E.J. Newman (2005) Power laws, Pareto distributions and Zipf’s law.
Contemporary Physics. 46(5):323-351.

W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P.Flannery (1992) Nu-
merical recipes in C. The art of scientific computing. Cambridge Univer-
sity Press, 2nd ed.

13

