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APPROXIMATING CRITICAL PARAMETERS
OF BRANCHING RANDOM WALKS

DANIELA BERTACCHI AND FABIO ZUCCA

ABSTRACT. Given a branching random walk on a graph, we consider two kinds of truncations: by
inhibiting the reproduction outside a subset of vertices and by allowing at most m particles per
site. We investigate the convergence of weak and strong critical parameters of these truncated
branching random walks to the analogous parameters of the original branching random walk. As a
corollary, we apply our results to the study of the strong critical parameter of a branching random
walk restricted to the cluster of a Bernoulli bond percolation.

Keywords: branching random walks, phase transition, critical parameters, graphs.
AMS subject classification: 60K35.

1. INTRODUCTION

The BRW is a process which serves as a (rough) model for a population living in a spatially
structured environment (the vertices of a — possibly oriented — graph (X,&(X))), where each
individual lives in a vertex, breeds and dies at random times and each offspring is placed (randomly)
in one of the neighbouring vertices. There is no bound on the number of individuals allowed per site.
The vertices may be thought as small ecosystems or squares of soil (with their proximity connections
— the edges) and individuals as animals or plants. Depending on the parameters involved and on
the nature of (X, (X)), the population may face almost sure extinction, global survival (i.e. with
positive probability at any time there will be at least one individual alive) or local survival (i.e. with
positive probability at arbitrarily large times there will be at least one individual alive in a fixed
vertex). These matters have been investigated by several authors ([10], [11], [12], [15], [18], [22]
only to mention a few, see [14] for more references).

Let us be more precise as to the definition of the process and of the environment. The graph
(X, (X)) is endowed with a weight function p : X x X — [0, 400) such that u(z,y) > 0 if and only
if (z,y) € £(X) (in which case we write z — y). We call the couple (X, 1) a weighted graph. We
require that there exists & > 0 such that k(x) := . c x u(x,y) <k for all # € X (other conditions
will be stated in Section [2]).

Given A > 0, the branching random walk (BRW(X) or briefly BRW) is the continuous-time
Markov process {n:}+>0, with configuration space NX, where each existing particle at = has an
exponential lifespan of parameter 1 and, during its life, breeds at the arrival times of a Poisson
process of parameter Ak(z) and then chooses to send its offspring to y with probability u(z,y)/k(z)

(note that (u(z,y)/k(x))syex is the transition matrix of a random walk on X). In the literature
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one usually finds the particular case k(z) = 1 for all x € X (i.e. the breeding rate is constant among
locations — no place is more fertile than others).
Two critical parameters are associated to the BRW: the weak (or global) survival critical param-

eter A, and the strong (or local) survival one As. They are defined as
Ao :=inf{A > 0: PP (3t :n, = 0) < 1}

_ (1.1)
As = inf{A > 0: P%0 (3 : ny(20) = 0, ¥Vt > 1) < 1},

where zg is a fixed vertex, 0 is the configuration with no particles at all sites and P%o is the law of
the process which starts with one individual in xy. Note that these values do not depend on the
initial configuration, provided that this configuration is finite (that is, it has only a finite number
of individuals), nor on the choice of zy. See Section 2] for a discussion on the values of A\, and Aj.

When (X, p) is infinite (and connected), the BRW is, so to speak, unbounded in two respects: the
environment, since individuals may live at arbitrarily large distance from their ancestors (actually
n-th generation individuals may live at distance n from the ancestor), and the colonies’ size, since
an arbitrarily large number of individuals may pile up on any vertex. Hence it is natural to con-
sider “truncated” BRWs where either space or colonies are bounded, and investigate relationships
between these processes and the BRW. Indeed in the literature one often finds problems tackled
first in finite or compact spaces and then reached through a “thermodynamical limit” procedure.
One can see eagsily that it is possible to construct the BRW either from the process on finite sets
(spatial truncation) or from the process on infinite space and a bound on the number of particles
per site (particles truncation). In both cases the truncated process, for any fixed time ¢, converges
almost surely to the BRW.

First we consider “spatially truncated” BRWs. We choose a family of weighted subgraphs
{(Xn, ftn) nen, such that X,, T X, pn(z,y) < p(z,y), and p,(z,y) "= p(z,y) for all z,y. The
process BRW(X,,) can be seen as the BRW(X) with the constraint that reproductions outside X,
are deleted and the ones from z to y (x,y in X,,) are removed with probability 1 — u, (x,y)/u(z,y).
It is not difficult to see that for any fixed ¢, as n goes to infinity, the BRW(X,,) converges to the
BRW almost surely. Our first result is that A\;(X,) "—> As(X) (the latter being the strong survival
critical parameter of the BRW on (X, u)). Indeed we prove a slightly more general result (Theo-
rem [32) which allows us to prove that if X = Z? and X,, is the infinite cluster of the Bernoulli
bond-percolation of parameter p,,, where p, —> 1 sufficiently fast, then As(X7) sy As(X) al-
most surely with respect to the percolation probability space (Section [B). We note that results on
the spatial approximation, in the special case when X = Z¢ and p is the transition matrix of the
simple random walk, were obtained in [16] using a different approach.

Second, we consider BRWs where at most m individuals per site are allowed (thus taking values
in {0,1,...,m}X). We call this process BRW,, and denote it by {n/};>0. Note that if m = 1

we get the contact process (indeed the BRW,, is sometimes referred to as a “multitype contact
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process” — see for instance [I7]). It is easily seen that for all fixed ¢ we have 7 "—% n; almost
surely (see for instance [I8] where the authors suggest this limit as a way to contruct the BRW).
Clearly, for all m > 1, one may consider the critical parameters Al and A" defined as in (1) with
n{" in place of 1. One of the questions we investigate in this paper is whether A} "8 Ay and

PV

Here is a brief outline of the paper. In Section 2l we state the basic terminology and assumptions
needed in the sequel. Section B is devoted to the spatial approximation of the strong critical
parameter A by finite or infinite sets (see Theorems B.I] and respectively). In Section [ we
establish a series of steps which will be followed to prove the convergence of the sequence \7* to A,
under some assumptions of self-similarity of the graph (Theorem [4.5]). The same approach is used
in Section [ to prove the convergence of the sequence A™ to A\, when X = Z% (see Theorem [5.1]
and Corollary (5.2, and Remark 5.3 for a slightly more general class of graphs) or when X is a
homogeneous tree (Theorem [5.4]). The results of Section [ are applied in Section [l in order to
study the strong critical parameter of a BRW restricted to a random subgraph generated by a

Bernoulli edge percolation process. Section [ is devoted to final remarks and open questions.

2. TERMINOLOGY AND ASSUMPTIONS

In this section we state our assumptions on the graph (X, u); we also recall the description of
the BRW through its generator and the associated semigroup, and discuss the values of A, and As.

Given the (weighted) graph (X, i), the degree of a vertex x, deg(z) is the cardinality of the set
{y € X : x — y}; we require that (X, p) is with bounded geometry, that is sup,¢ y deg(z) < +o0.
Moreover we consider (X, u) connected, which by our definition of y (recall that u(x,y) > 0 if and
only if (z,y) € £(X)) is equivalent to u(™(z,y) > 0 for some n = n(z,y), where (™ is the n-th
power of the matrix p. When (u(z,y))s,y is a stochastic matrix (i.e. k(z) =1 for all z € X), in
order to stress this property we use the notation P, p(z,y) and p™ (z,y) instead of p, u(z,y) and
p (@, y).

We need to define the product of two graphs (in our paper these will be space/time products):
given two graphs (X,&(X)), (Y,E(Y)) we denote by (X,E(X)) x (Y,E(Y)) the weighted graph
with set of vertices X x Y and set of edges &€ = {((x,y),(x1,41)) : (z,x1) € E(X),(y,y1) €
E(Y)} (in Figure [l we draw the connected component of Z x Z containing (0,0)). Besides, by
(X,E(X))O(Y,E(Y)) we mean the graph with the same vertex set as before and vertices £ =
{((z,y), (x1,91)) : (x,21) € E(X),y =y1 or x =1, (y,y1) € E(Y)} (see Figure ).

Let {n:}+>0 be the branching random walk on X with parameter A, associated to the weight

function u: the configuration space is NX and its generator is

Lfn) =Y (@) (95 )+ A Y ulw.y) 05 ) (2:2)

zeX yeX
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Figure 1: X XY (X =Y =17Z). Figure 22 XOY (X =Y =17Z).

where 9% f(n) := f(n+6,) — f(n). Analogously the generator of the BRW,,, {n/"};>0 is

Lonf (1) =3 (@) (07 F) + A s, y) Vo (0()) O £ (1)) (2.3)

reX yeX

X

Note that the configuration space is still NX (though one may consider {0,1,...,m}¥ as well).

The semigroup S; is defined as
Sef(n) :=E"(f(ne)),

(where f is any function on N¥ such that the expected value is defined).

The weak and strong survival critical parameters of the BRW clearly depend on the weighted
graph (X, p); we denote them by (X, ) and A, (X, p) (or simply by A\s(X) and A\, (X)). Anal-
ogously we denote by A7*(X,p) and NJ(X,p) (or simply by A7'(X)) and A'(X))) the critical
parameters of the BRW,, on (X, u). It is known (see for instance [3]) that A\(X) = R, :=
1/limsup,, 4/u(™(x,y) (which is easily independent of z,y € X since the graph is connected). On
the other hand the explicit value of A, (X) is not known in general. Nevertheless in many cases it is
possible to prove that A\, (X) = 1/limsup,, ’\Z/ZyeX ™ (x,y) (see [3]). In particular if k(x) = K
for all x € X then A, (X) = 1/K; thus if (u(z,y))s,y is a stochastic matrix then A, (X) = 1.

The two critical parameters coincide (i.e. there is no pure weak phase) in many cases: if X is

finite, or, when p = P is stochastic, if R = 1. Here are two sufficient conditions for R = 1:

(1) (X, P) is the simple random walk on a non-oriented graph and the ball of radius n and
center x has subexponential growth ({/|By(z)] — 0 as n — 00).

Indeed for any reversible random walk the following universal lower bound holds

P (@, 2) = v(x)/v(Bn(2))

(see [4, Lemma 6.2]) where v is a reversibility measure. If P is the simple random walk
then v is the counting measure and the claim follows.

An explicit example is the simple random walk on Z? or on d-dimensional combs (see [23]
Section 2.21] for the definition of comb).

(2) (X, P) a symmetric, irreducible random walk on an amenable group (see [23]).
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3. SPATIAL APPROXIMATION

In this section {X,}nen Will be a sequence of finite subsets of X such that X,, C X, and
U2, X, = X; we denote by ,u the truncation matrix defined by ,u := W Xnx X, We define
nRy =1/ limsupy_ oo V/np®(z,y).

We say that (X, u) is quasi-transitive if there exists a finite partition of X such that for all
couples (z,y) in the same class there exists a bijection v on X satisfying v(z) = y and, for all
a,b e X, pu(y(a),y(b)) = p(a,b) (when the last condition holds we say that p is y-invariant). For
instance if u(x,y) = p(x,y) where P is the simple random walk on X then it is y-invariant for any

automorphism ~.

Lemma 3.1. Let {X, }nen be such that (X, nu) is connected for all n. Then nR, > nq1 R, for
all n and when X, € Xp41 we have ,R, > ni1R,. Moreover ,R, | R,,.

Proof. This is essentially Theorem 6.8 of [19]. O

The next result is a generalization of this lemma and it goes beyond the pure spatial approxi-

mation by finite subsets.

Theorem 3.2. Let {(Yy, tin) }nen be a sequence of connected weighted graphs and let { X, }nen be
such that Y, 2 X,,. Let us suppose that p,(z,y) < u(x,y) for alln € N, z,y € Y, and pu,(x,y) —
w(x,y) for all x,y € X. If (Xp, nit) is connected for every n € N then \g(Yn, pn) > As(X, 1) and
Xs(Yas pin) "= Xs(X, o).

Proof. We note that, for all finite A C X, eventually A C Y,,. Hence p,(x,y) is well-defined
for all sufficiently large n. By Lemma [B.I] for any € > 0 there exists ng such that, for all n >
no, As(Xn, npt) < As(X,p) +¢/2. Define p, = Hn] X g X Xng - Since X, is finite and p, — pop
then As(Xng, pn) — As(Yngs nott)- Indeed Ag(Xpg, pn) and As(Yang, nopt) are the Perron-Frobenius
eigenvalues of p, and ,,p respectively and, by construction, for any ¢ > 0, eventually (1 —6),,pn <
pn < nopt- If we define ny > ng such that A\s(Xng, pn) < As(Xngs not) + /2 for all n > ny then

As(Yos tin) < As(Xngs Pn) < As(Xngsmo 1) +6/2 < As(X, ) + &,
holds for all n > n;. O
A simple situation where the previous theorem applies, is the non-oriented case (u(x,y) > 0 if

and only if u(y,z) > 0) where X,, =Y, is the ball of radius n with center at a fixed vertex xo of
X.

Remark 3.3. IfY,, is finite for all n, then Ay, (Yy) = As(Ya), hence Ay (Ys) — Ay(X) if and only
Z.f)‘w(X) = )\S(X)



Figure 3: 7Z X N. Figure 4: N x N.

4. APPROXIMATION OF A; BY m-PARTICLE BRWSs

From now on, we suppose that X is countable (otherwise A’ (X) = A(X) = 400). Our proof of

the convergence of \I* and A is essentially divided in four steps.

Fact 1: We find a graph (I,£(I)) such that the Bernoulli percolation on (I,€(I)) x N has
two phases (where we denote by N the oriented graph on N, that is, (4,7) is an edge if and
only if j =i+ 1). Note that since the (oriented) Bernoulli bond-percolation on Z x N and
N x N has two phases, it is enough to find a copy of the graph Z or N as a subgraph of I.
This is true for instance for any infinite non-oriented graph (in this paper, we choose either
I=7,0or I =N, or I =X). Figures [3] and [ respectively show the connected components
of the products Z x N and N x N containing (0, 0).

Fact 2: If )\ is sufficiently large (A > A or A > ) ), then for every € > 0 there exists a
collection of disjoint sets {A;}icr (A; C X foralli € I), ¢ > 0, and k € N, such that, Vi € T,

P Vji:Gg) €Ed), > mla) =kl > mlx)=k|>1-c (4.4)

xEAj TEA;

Fact 3: If Fact 2 holds, then there exists m € N, m > k, such that

P Vj:(ig) € &), > nf() =k > ngtx) =k | >1-2e. (4.5)

TEA; TEA;

Indeed let V; be the total number of particles ever born in the BRW before time t; it is clear
that IV; is a process bounded above by a branching process with birth rate A and death rate
0. If Ny < +oo almost surely then for all ¢t > 0 we have N; < 400 almost surely; hence for
all £ > 0 and € > 0 there exists n(t,¢) such that P(N; < n(t,e)) > 1 —e. Define n = n(t,¢).
We note that if A is such that P(A) > 1 — ¢ then P(A|N; <n) >P(A,N; <n)>1—2. If
we choose m > max(7, k), given that (£4]) holds we get (45]).

Fact 4: Consider an edge ((i,n), (j,n 4+ 1)) in (I,E(I)) x N: let it be open if starting at
time nt with k& individuals in A;, the process {n"};>0 has at least k individuals in A;

at time (n + 1)t. Thus (given Fact 2) the probability of weak survival is bounded from
6



below by the probability that there exists an infinite cluster containing (ig,0) in a Bernoulli
one-dependent and oriented bond—percolation in I x N , with parameter 1 — e (this kind of
comparison has been widely used in the literature, see for instance [5], [1], [21], [20] and [6]).
Thus if Fact 2 is proven for A > \,, then we deduce that A} "22° \y. On the other hand,
if Fact 2 is proven for A > A, to prove A7 "2° \s we need to pick A; finite for all ¢ and
I containing a copy of N as a subgraph. Indeed the infinite open cluster in a supercritical
Bernoulli bond percolation in Z x N or N x N with probability 1 has an infinite intersection
with the set {(0,n) : n € N}. As a consequence, in the supercritical case we have, with
positive probability, an infinite open cluster in Z x N (risp. N x N) which contains the origin

(0,0) and infinite vertices of the set {(0,n) : n > 0}.

Remark 4.1. The previous set of steps represents the skeleton of every proof in this paper but one:
in Theorem [5.1] we need a generalization of this approach. We sketch here the main differences.
We choose an oriented graph (W,E(W)) and a family of subsets of X, {A¢n)}(in)ew such that
o W is a subset of the set Z x N (note that this is an inclusion between sets not between
graphs);
e for all n € N we have that {A(; n)}i is a collection of disjoint subsets of X (where the index
i is running in the set {j : (j,n) € W});
e (i,n) — (4,m) impliesm =n+ 1.
The analog of Fact 2 is the following: if X is sufficiently large (X > As or A > A\, ), then for every
e > 0 there existst > 0 and k € N, such that, for alln € N, i € Z,

P{Vy: (Z,’I’L) - (],’I’L + 1) € 8(1)7 Z 77(n+1)f($) >k Z nnf($) =k]>1-¢

"EEA(jyn) ZBEA(L,.L)
Fact 3 is the same as before and the percolation described in Fact 4 now concerns the graph
(W,E(W)) (instead of (I,E(I)) x N as it was before).

What we need is to find suitable A;s and to prove Fact 2. We choose the initial configuration as
0o (0 € X) and we first study the expected value of the number of individuals in one site at some
time, that is E%(n;(x)). This is done using the semigroup S;, indeed if we define the evaluation

maps e;(n) := n(x) for any n € NX and x € X, then
E"(n:(x)) = Seex(n)-

By standard theorems ([7], or, since N¥ is noncompact, [13] and [2]),

d
aStex s = St()ﬁe:ca
=tlo
from which we deduce
d
aE”(m(w)) = —E"(me(x)) + A > p(z, 2)E"(1(2))) (4.6)
zeX
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It is not difficult to verify that
ZO T’t ZM ‘T07 t' (47)

The first result is that the expected number of descendants at a fixed site either tends to 0 or to
infinity, depending on the value of A.

Lemma 4.2. Let us fix x € X. If A\ < R, then limy_ oo E%0(ne(x)) = 0; if X > R, then
limsup,_, , o E%0 (n;(2)) = +o0.

Proof. Let A\ < R,. For all ¢ > 0 there exists ng such that u(™(zg,2) < 1/(R, — )" for all
n > ng. If e = (R, — \)/2 then \"u(™ (zq,z) < ( 2 > for all n > ng, hence E%o(n,(z)) <

R, A
Q(t)e™t + e HE=N/(Butd) 0 as t — 0o (Q is a polynomial of degree at most ng — 1).
Let A > R,. Let {n;}ien be a sequence of natural numbers such that lim; ., ¥ pi)(zg, ) =
1/R. From this it follows
Atip !t AT
E&EO s > (ny) 2 i (n:) R
(77 z(x)) = W (33‘0,33) nz' e 1% (:EOv )\/m)

which goes to infinity as i — oo since A > R, and eventually u(™)(zg,z) > (2/(R + \))™. O

In the following lemma we prove that if at time 0 we have one individual at each of [ sites
x1,...,2], given any choice of [ sites y1, ... ,y;, after some time the expected number of descendants

in y; of the individual in x; exceeds 1 for all : = 1,...,1.

Lemma 4.3. Let us consider a finite set of couples {(:Ei,yi)}ézo; if A > R, then there exists
t =t(\) > 0 such that E%:i(n,(y;)) > 1, Vi=0,1,...,L.

Proof. Since (X, p1) is connected there exist {k;, ¢;};=1,.; such that, for all j =1,...,land n € N,

(n+kj+aq;) ( (n) ( (a5) (

H 2j,y;) = %) (25, 20) 1™ (20, y0) 1 (3o, 5)

and pk9) (25, o) @ ’)(yo,yj) > 0.

If o := minj—y {u®) (), 20)u'%) (yo,y;)} and {n;}ien is such that n; > 1 for all ¢ and
lim; 4o "%/ (0, y0) = 1/R,, then for all j = 1,...,0 and for all i (consider ¢ = n; and
the term with n = n; + k; + ¢; in the sum (@.7))

(/\nl)"l —n; /J( )(xjazn(])“(q])(y())yj) 1 Nkj+a;
(n; + k; Y nil(Ani)
nz + ] + qj)'

B (1 (1)) 2 1 (w0, 90)>=
(An ') “ (Ang)Fitas

(ns)
> 1% ($07y0) e (nz + k] + qj)kj""‘ﬁ
2 M(nl)(wo?yo)( ') i )\kj—‘rqj.

(1 + kj + g;)hstas
Note that the latter term goes to infinity exponentially as ¢ — 4o00. Since we have a finite number
of sequences, there exists 49 > 1 such that E% (Mn,; (y5)) > 1¥j =0,1,...,1. Choose t(\) = n;, to

conclude. O



So far we got results on the expected number of individuals, now we show that, given k particles

in a site z at time 0, “typically” (i.e. with arbitrarily large probability) after some time we will

have at least k individuals in each site of a fixed finite set Y. Analogously, starting with [ colonies

of size k (in sites x1, ..., x; respectively), each of them will, after a sufficiently long time, spread at

least k descendants in every site of a corresponding (finite) set of sites Y;.

Lemma 4.4.

(1)

(2)

Proof.

Suppose that A > R,,. Let us fivrx € X, Y a finite subset of X and € > 0. Then there exists
t =t(\,x) >0 (independent of ), k(e,x,\) such that, for all k > k(e,z,Y,\),

Pl ) = B)|m(@) =k | >1-e,
yey

Let us consider a finite set of vertices {x;}i—1,...m and a collection of finite sets {Y;}i=1,
of vertices of X. Suppose that X > R, and let us fix ¢ > 0. Then there exists t =
t(\{z:},{Yi}) (independent of €), k(e,{z:i},{Yi}, ) such that, for all i = 1,...,1 and
k> k(e {xi}, {Yi}, A),

P ﬂ (ne(y) > k‘)‘ﬁo(iﬂi) =k|>1—c¢.
yeyY;

If we denote by {&}+ the branching process starting from £y = ¢, then, by Lemma [4.3] we
can choose t such that E%(&(y)) > 1 for all y € Y. We can write n(y) = Z§=1 &i(y)
where & ;(y) denotes the number of descendants in y of the j-th initial particle; note that
{€.(y)}jen is an iid family with E(&;(y)) = E% (&(y)) and Var(&;(y)) = o7, Since &
is stochastically dominated by a continuous time branching process with birth rate A, it is

clear that 0t27y < +o00. Thus by the CLT, given any ¢ > 0, if k is sufficiently large,

d z — kE% <st<y>>)
5> |P &i(y) > 2 —1+<1><
]z::l N \/Eo't,y

uniformly with respect to z € R. Whence there exists k(z,y,d) such that, for all k& >
k(z,y,9),

P(m(y)zk)zl—@(\/EM>—521—25,
9 Y



since Vk(1 —E% (n,(y)) /o1, — —00 as k — +o0. Take k; = max,ey kyy < +00, and let D
be the cardinality of Y. Hence, for all k > k.,

PR () (me(y) = k) | > 1—2Ds.
yey

(2) By LemmaE3 we can choose ¢ such that E%: (& (y)) > 1 for ally € Y; and for alli = 1,...1.
According to (1) above we fix k; such that, for all & > k;,

P ﬂ (ne(y) > k)‘n0($i) =k >1-c=
yeyY;

Take k > max;—1 . ; k; to conclude.

Theorem 4.5.
If at least one of the following conditions holds
(1) (X, p) is quasi-transitive;
(2) (X, p) is connected and there exists 7y bijection on X such that
(a) w is vy-invariant
(b) for some xy € X we have xog = ~"xq if and only if n = 0;
then
lim A=)\, > lim A" > A,

m—-+0o0 m——+00
Moreover if Ag = Ay then N} |im— oo Aw-

Proof. Remember that A\, = R,.

(1) Let us collect one vertex from each orbit into the (finite) set {x;};=1 . ; and let Y; :=
{y € X : 2; —» y}. Fix any A > R,; Lemma [£4] implies Fact 2. In this case I = X,
EI) = {(z,y) : (x,y) € E(X) or (y,x) € E(X)} and Ay = {z}. Note that (I,E([))
coincides with (X,£(X)) if the latter is nonoriented. To prove Fact 4 we note that the
existence of the supercritical phase for the Bernoulli percolation on X x N follows from the
fact that the graph N is a subgraph of X and in the supercritical Bernoulli percolation on
N x N with positive probability the infinite open cluster contains (0,0) and intersects the
y-axis infinitely often. Henche we have that AI* < A and this yields the result.

(2) Lemma allows us to fix ¢ such that E% (n(yx)) > 1 and E%=(n(2)) > 1 whence, by
Lemma [4.4]

P (nt(’yx) > k‘no(a:) = k;) >1—¢ and P (nt(a:) > k‘no(’yx) = k> >1—e.
This implies

P (m(v"m) > k:‘no(vn_lx) = k:) >1—¢ and P (nt(vn_lx) > k:‘no(vnx) = k:) >1—¢
10



for all n € Z since p is 7y-invariant; one more time, Facts 3 and 4 yield A7* < X and the
claim (here I = Z and A; = {y'xo}).

O

5. APPROXIMATION OF A, BY m-PARTICLE BRWSs

From now on we set u(z,y) = p(z,y) where P is a stochastic matrix. We stress that in this case
Aw = 1. We are concerned with the question whether A} | A\,, = 1 or not. Under the hypotheses of
Theorem (5] this is the case when the BRW has no pure weak phase (i.e. R = 1). The interesting
case is R > 1. Most natural examples are drifting random walks on Z? and the simple random

walk on homogeneous trees. In both cases we show that A" i o

Theorem 5.1. Let P be a random walk on Z such that p(i,i + 1) = p, p(i,i — 1) = q and
p(i,i) =1 —p—q for alli € Z. Then limj_ o0 AE =1 =),

Proof. We consider «, 5 € (0,1), a < 3 < (1+ «)/2 and write

(14a)n/2 "
(n) _ i i—an(q _ . \n—2itan
p (0, an) Zg.;n (i, t—an, n—2+ Om>p 1 (1=p—q)
n

> pn (B-cn(1 _ p _ 5)(1=26+a)n
_<ﬁn, (B—a)n, (1-28+a)n )p e

noo 1 ( P’ (1 —p— gt )"

21ny/B(6 — a)(1 — 26 + o) \BP(B —a)=*(1 - 26 + a)!=20Fe

Thus if A > 1, E% (7, (an)) is bounded below by a quantity which is asymptotic to

! n
271'71 3/2\/ﬂ —Oé 1_26+ ) (g;(a,ﬁ))

where
MPgP (1 —p— g %te
gx(a, B) = 3 3= 1—23+a"
BB —a)=(1-208+a) «
Note that g\(p — ¢,p) = A, thus we may find a1 < ag < 51 < o (with 6; < (1 + «;)/2, 1 = 1,2)
such that g)(z,y) > 1, for all (x,y) € [a1,as] X [B1, F2]. By taking n = 7 sufficiently large one can
find three distinct integers di, do and dz such that ain < di < do < agn, fin < ds < [yn and
g)\(dl/n7d3/n) >1,1=12.
By reasoning as in Lemma[L.4] we have that, for all i € Z and £ > 0, there exists t = 7, k = k(g, A)
such that

P(na(i+3) > k,j = di,da|mo(i) = k) > 1—e.
Since k and t := n are independent of 7 we have proven the slightly more general version of Fact 2 as
stated in Remark L] (where W = {a(d1,1) +b(d2, 1) : a,b € N}, A(; ) = A; and (i,n) — (j,n +1)

if and only if j —i =d; or j —i = dy). O
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In view of Corollary 5.2land Theorem[5.4lit is useful to introduce the concept of local isomorphism
which allows to extend some results from Z? to more general graphs. Given two weighted graphs
(X, ) and (I,v), we say that a map f: X — I is a local isomorphism if for any x € X and i € I
we have > c o1y u(z, 2) = v(f(2),1).

In this case it is clear that, if we consider the partition of X given by {A;};c; where A; := f~1(i),
we can easily compute the expected number of particles alive at time ¢ in A; starting from a single

particle alive in z at time 0

> B (m(2) = BV (6(0) (5.8)

z€EA;
(where {&¢}+>0 is a branching random walk on (I, v)) since }_ ¢ ;-1 pw™ (z, z) = v (f(x),q), for
all n € N. We note that the latter depends only on f(z) and i. As a consequence R, > R,.

Corollary 5.2. If P is an adapted and translation invariant random walk on Z% then limy_, ;oo \¥ =
1=y

Proof. Let {Z,}nen be a realization of the random walk and A; = {x € Z¢: x(1) = i}. Note that
P(Zn-i-l € AJ|Zn = ’lU) = ﬁ(%])) Vw € Aiv

where P is a random walk on Z with p=p(0,e1), ¢ = p(0,—eq1). Using equation [5.8 and reasoning

as in the proof of the previous theorem, we conclude. O

Remark 5.3. The argument of the previous corollary may be applied to a more general case: let
(Y, Q) be a random walk and (Z, P) as in Theorem [51] and consider Y x Z with transition matriz
oY x P+ (1—a)Q xI%, where o € (0,1) and by I we denote the identity matriz (on the superscripted

space). Using the projection on the second coordinate one proves that limg_, /\5 =1=Ay.

Theorem 5.4. If (X, P) is the simple random walk on the homogeneous tree of degree r then

limg oo A =1 =\,

Proof. Fix an end 7 in X and a root o € X and define the map h : X — Z as the usual height
(see [23] page 129). Define A, = h='(k), k € Z (these sets are usually referred to as horocycles).
The projection of the simple random walk on X onto Z is a random walk with transition matrix
Q where ¢(a,a+1) =1—1/r and q(a,a — 1) = 1/r. Note that for all z € X

> P, y) = ¢ (h(x), k).

yEA)

By using equation [5.8] and reasoning as in Lemma [£4] and Theorem [E.1] we have that, for all

1 e N,

P > male)>kj=did| Y mo(z)=k|>1-c.

ZBEA»L'+]‘ ZEEAZ'

The claim follows as in Theorem [5.11 O
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6. BRANCHING RANDOM WALKS IN RANDOM ENVIRONMENT

We use the results of Section [ to prove some properties of the BRW in random environment.

Let (X, 1) be a non-oriented weighted graph. We consider any subgraph (Y, £(Y)) of (X, (X))
as a weighted subgraph with weight function gy )u.

Given any p € [0,1] we consider the Bernoulli bond percolation on (X,£(X)) and we define
the random weighted subgraphs (Y*,£(Y?)) where Y% = X and £(Y?) is the random set of edges
resulting from the percolation process. We define A\s(Y*) := infgc 4 As(A) where A is the random
collection of all the connected components of Y'*. This corresponds to the critical (strong) parameter
of a BRW where the initial state is one particle alive at time 0 in every connected component of
Ye.

On the other hand, if there exists a nontrivial critical parameter p. for the Bernoulli percolation
on X then, for all p > p. we denote by (Y, E(Y°)) the infinite cluster and we consider the critical
(strong) parameter Ag(Y©).

If we have a sequence {p;, }nen such that p, € [0, 1] for all n € N, then we consider the sequences
{Y}hen and {Y,S}nen as the results of independent Bernoulli percolation processes on X with
parameters {pp, }nen.

Here is the main result; we note that, even when X = Z%, we do not require x to be the simple

random walk.

Theorem 6.1.

(1) If >, (1 — pp) < +00 then Ag(Y2) — Ae(X) a.s.

(2) If (X, u) is quasi-transitive then As(Y%) = As(X) a.s.

(3) If X =7% and Y, (1 — p,) < +oo, then A\s(Y,¥) — As(Z) a.s.

(4) If X = Z%, u is translation invariant and p > p. then A\s(Y¢) = X\s(Z%) a.s.

Proof.

(1) By using the Borel-Cantelli Lemma, we have that any finite connected subgraph of X is
eventually contained in a (random) connected component of Y,* almost surely. Theorem
yields the conclusion.

(2) In this case if we take an infinite orbit X then, by Borel-Cantelli Lemma, for any m € N,
with probability 1, Y% contains a ball B,,, centered on a vertex z € Xy and of radius m,
with all open edges. Since the critical parameter of a ball A\s;(B,,) does not depends on
how we choose its center in Xy, then using Theorem [B.2] we have that As(X) < Ag(Y?) <

As(Bm) — As(X) as m — +o0.
13



(3) Note that p, > p. eventually, hence A\;(Y,%) is well-defined for all sufficiently large n. We
already know that p,(x,y) — p(x,y) almost surely, hence what we need to prove is that,
almost surely, any edge is eventually connected to the infinite cluster. To this aim we apply
the FKG inequality obtaining that the probability of the event “the edge (x,y) is open and
connected to the infinite cluster Y,¢” is bigger than p,0(p,). According to Theorem 8.92
of [8], 0 is a differentiable function on [0,1] hence 1 — pA(p) ~ (1 — p)(1 + &'(1)) and this
implies ), (1 — pn8(pn)) < +00. The Borel-Cantelli Lemma yields the conclusion.

(4) Tt is tedious but essentially straightforward to prove that, for any m € N, with probability 1,
Y€ contains an hypercube @, of side-length m with all open edges; as before, Theorem
yields the result.

O

7. FINAL REMARKS

At this point the theory of spatial approximation (see Section[J) is quite complete as far as we are
concerned with the basic questions on the convergence of the critical parameters. Indeed we proved
results in this direction (see Theorem [B.2]) for the strong parameter under reasonable assumptions,
while the question on the weak critical parameter, in the pure spatial approximation by finite
subsets, is uninteresting (see Remark B.3]). It is possible to further investigate the convergence

of the sequence of weak critical parameters under the hypotheses of Theorem by using the

characterization A, (X) = 1/limsup,, 7\L/ dyex p(™(x,y) which holds in many cases (see [3] for
details).

As for the approximation of the BRW by BRW,,s, we proved that, on quasi-transitive or “self-
similar” graphs (in the sense of Theorem (2)), A" | A\s as m — oo and, if there is no weak
phase, on Z¢ or on regular trees, Al Aw as m — oo. Here are some natural questions which, as

far as we know, are still open:

e can we get rid of the hypothesis of quasi-transitivity or self-similarity in the case concerning
the strong critical parameter?
e when A\; > )y, is it still true that A} |,,—oc Aw, at least for Cayley graphs or on quasi

transitive graphs?
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