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Abstract

This paper is devoted to general balance laws (with a possibly non local
source term) with a non-characteristic boundary. Basic well posedness
results are obtained, trying to provide sharp estimates. In particular,
bounds tend to blow up as the boundary tends to be characteristic.
New uniqueness results for the solutions to conservation and/or balance
laws with boundary are also provided.
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1 Introduction

This paper is concerned with initial boundary value problems (IBVP) for
systems of balance laws of the form





∂tu+ ∂xf(u) = G(u) x > γ(t)

b
(
u
(
t, γ(t)

))
= g(t) t ≥ 0

u(0, x) = uo(x) x ≥ γ(0)

(1.1)

where f is smooth, Df is strictly hyperbolic, uo is the initial datum and
G is a possibly non-local source term. The boundary γ is assumed non
characteristic, i.e. ℓ characteristics point outwards and n − ℓ inwards. The
role of b is that of letting n− ℓ component of u be assigned by the boundary
data g. Above and in what follows, we assume that all BV functions are
right continuous.

Systems belonging to this class were already considered in the literature.
See, for instance, [7, 8] for the case with a non local source but no boundary
and [12] for the case of a Temple type f .
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Examples of physical models that fit into this class are found, besides
in the cited references, also in [11]. There, a model describing the flow of a
fluid in a simple pipeline is based on a system essentially of the form (1.1).

As is well known, preliminary to the study of (1.1), is that of the purely
convective system





∂tu+ ∂xf(u) = 0 x > γ(t)

b
(
u
(
t, γ(t)

))
= g(t) t ≥ 0

u(0, x) = uo(x) x ≥ γ(0)

(1.2)

considered, for instance, in [1, 2, 12, 15, 16]. Below, we provide results
on (1.2) that are not contained in these papers. In particular, the present
estimates explicitly blow up as the boundary tends to be characteristic. The
choice of the Glimm type functionals on which most of the proof relies is
here simplified, compare for instance (4.11) below with [15, (2.10)-(2.13)]
and (4.14)–(4.15) with [15, (3.5)-(3.10)].

In the homogeneous case (1.2), we also provide a uniqueness result that
has no analogue in the case of Cauchy problems with no boundary. Indeed,
let u solve (1.2) and assume a second boundary γ̄ is given, such that γ̄ ≥ γ.

Along γ̄ assign the trace of u as boundary data, i.e. let g̃(t) = b
(
u
(
t, γ(t)

))
.

Then, the solution to





∂tũ+ ∂xf(ũ) = 0 x > γ̃(t)

b
(
ũ
(
t, γ̃(t)

))
= g̃(t) t ≥ 0

ũ(0, x) = uo(x) x ≥ γ̃(0)

(1.3)

coincides with the restriction of u to x ≥ γ̄(t), see Proposition 2.4. We show
that an analogous result may not hold in the case of (1.1), see (3.1).

Besides, we also provide a Lipschitz estimate on the process generated
by (1.2) that contains also a second order part on a generic perturbation,
see 2) in Theorem 2.2. This technical estimate, already known in less general
situations, played a key role in several other results, see for instance [7,
Proposition 3.10] and [3, Remark 4.1].

All what we obtain in the case of (1.2) is used in the proof of the results
on (1.1). In particular, for both systems, we provide bounds on the total
variation of time like curves. These estimates are optimal in the sense that
they blow up as the boundary tends to be characteristic, see propositions 2.3
and 3.3.

The next section is devoted to the homogeneous problem (1.2), while
Section 3 presents the results related to (1.1). The proofs are deferred to
the last two sections.
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2 The Purely Convective IBVP

On system (1.2) we require the following conditions:

(f) f : Ω → R
n is smooth, with Ω ⊆ R

n being open, such that Df(u)
is strictly hyperbolic for all u ∈ Ω, each characteristic field is either
genuinely nonlinear or linearly degenerate.

Without loss of generality, we may assume that 0 ∈ Ω and for all u in Ω,
Df(u) admits n real distinct eigenvalues λ1(u), . . . , λn(u), ordered so that
λi−1(u) < λi(u) for all u, with right eigenvectors r1(u), . . . , rn(u).

(γ) γ ∈ C0,1(R+; R) and, for a fixed positive c, λℓ(u)+c ≤ γ̇(t) ≤ λℓ+1(u)−
c for a fixed ℓ ∈ {1, . . . , n− 1} and for all u ∈ Ω.

(b) b ∈ C1(Ω; Rn−ℓ) is such that b(0) = 0 and

det
[
Db(0) rℓ+1(0) Db(0) rℓ+2(0) · · · Db(0) rn(0)

]
6= 0 .

For notational simplicity, we say below that a curve γ is ℓ–non-characteristic
if γ ∈ C0,1(R+; R), and for a fixed positive c, for all u ∈ Ω, λℓ(u) + c ≤
γ̇(t) ≤ λℓ+1(u) − c. This notion is more restrictive than that of a non-
resonant curve, see [13, Chapter 14].

We define below the domain

Dγ =
{
(t, x) ∈ R

+ × R : x ≥ γ(t)
}

and extend to [0,+∞[×R any function defined on Dγ to vanish outside Dγ .
We slightly modify the definition given in [17] of solution to (1.2) in the

non characteristic case, see also [1, 2, 15] and [12, Definition 2.1]. Indeed,
here we require the boundary condition to be satisfied by the solution only
almost everywhere. This softening allows for a simpler proof without any
substantial change, since we provide below a full characterization of this
solution, see 1), 2) with ω = 0 and 3) in Theorem 2.2.

Definition 2.1 Let T > 0. A map u = u(t, x) is a solution to (1.2) if

1. u ∈ C0
(
[0, T ];L1(R; Rn)

)
with u(t, x) ∈ Ω for a.e. (t, x) ∈ Dγ and

u(t, x) = 0 otherwise;

2. u(0, x) = uo(x) for a.e. x ≥ γ(0) and lim
x→0+

b
(
u(t, x)

)
= g(t) for

a.e. t ≥ 0;

3. for x > γ(t), u is a weak entropy solution to ∂tu+ ∂xf(u) = 0.
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Theorem 2.2 Let the system (1.2) satisfy (f), (b), (γ). Assume also that
g ∈ BV(R+; Rn−ℓ) has sufficiently small total variation. Then, there exists
a family of closed domains

Dt ⊆
{
u ∈ (L1 ∩ BV) (R; Ω) : u(x) = 0 for all x ≤ γ(t)

}

defined for all t ≥ 0 and containing all L1 functions with sufficiently small
total variation that vanish to the left of γ(t), a constant L > 0 and a process

P (t, to) : Dto → Dto+t , for all to, t ≥ 0,

such that

1) for all to ≥ 0 and u ∈ Dto , P (0, to) u = u while for all t, s, to ≥ 0 and
u ∈ Dto , P (t+ s, to)u = P (t, to + s) ◦ P (s, to)u;

2) let ω be an L1 function with small total variation, if (P̄ , D̄t) are the
process and the domain corresponding to the boundary γ̄(t) and boundary
data ḡ(t), then, for any u ∈ Dto , v ∈ D̄t′o , we have the following Lipschitz
estimate with a second order error term accounting for ω:

∥∥P (t, to)u− P̄ (t′, t′o)v − ω
∥∥
L1

≤ L ·

{
‖u− v − ω‖

L1 +
∣∣t− t′

∣∣+
∣∣to − t′o

∣∣

+

∫ to+t

to

∥∥g(τ) − ḡ(τ)
∥∥dτ + sup

τ∈[to,t]

∣∣γ(τ) − γ̄(τ)
∣∣

+t · TV (ω)

}
;

3) the tangent vector to P in the sense of [5, Section 5] is the map F defined
at (4.6), i.e. for all to ≥ 0 and u ∈ Dto

lim
t→0+

1

t

∥∥F (t, to)u− P (t, to)u
∥∥
L1

= 0 ;

4) for all uo ∈ D0, the map u(t, x) =
(
P (t, 0)uo

)
(x) defined for t ∈ [0, T ]

and (t, x) ∈ Dγ, solves (1.2) in the sense of Definition 2.1.

P is uniquely characterized by 1), 2) with ω = 0 and 3).

The conditions 1)–3) constitute what is the natural generalization to the
present case of the definition of Standard Riemann Semigroup, see [6, Defi-
nition 9.1].

Remark that, in general, the Lipschitz constant L blows up as the the
boundary tends to become characteristic, i.e. as c → 0, see (4.18) and the
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next proposition. Indeed, in the proof of Theorem 2.2, we prove also the
following result on the regularity of the solutions to (1.2) along non charac-
teristic curves.

Proposition 2.3 Fix a positive T . Let the system (1.2) satisfy the assump-
tions of Theorem 2.2 and call u the solution to (1.2) constructed therein. Let
Γ0,Γ1 be ℓ̃–non-characteristic curves, for ℓ̃ ∈ {1, . . . , n − 1}. Then, there
exists a constant K > 0 independent from T, uo, g such that

∫ T

0

∥∥∥u
(
t,Γ0(t)

)
− u

(
t,Γ1(t)

)∥∥∥dt ≤
K

c

(
TV(uo) + TV(g)

)
‖Γ1 − Γ0‖C0([0,T ]).

A uniqueness property proved in Section 4 is the following.

Proposition 2.4 Let the system (1.2)
satisfy the same assumptions of Theo-
rem 2.2 and call u the solution to (1.2)
constructed therein. Let γ̃ ∈ C0,1(R+; R)
be any ℓ–non-characteristic curve satis-
fying γ̃(t) ≥ γ(t) for all t ≥ 0. De-
fine g̃(t) = b

(
u(t, γ̃(t)+

)
. Then, (1.3)

also satisfies the assumptions on Theo-
rem 2.2 and the solution ũ constructed by
this Theorem satisfies

ũ(t, x) = u(t, x)

for all x ≥ γ̃(t) and t ≥ 0.

t

x

γ̃(t)γ(t)

u(t, x)
=

ũ(t, x)
u(t, x)

3 The IBVP with General Source Term

To deal with the source term, for all positive δ, define

Uδ =
{
u ∈ L1(R; Ω): TV(u) ≤ δ

}
.

We add the following assumption on the source term of system (1.1):

(G) For a positive δo, G : Uδo → L1(R,Rn) is such that for suitable positive
L1, L2

∀u,w ∈ Uδo
∥∥G(u) −G(w)

∥∥
L1

≤ L1 · ‖u− w‖
L1

∀u ∈ Uδo TV
(
G(u)

)
≤ L2 .

The natural extension of Definition 2.1 to the present case is the following.

Definition 3.1 Let T > 0. A map u = u(t, x) is a solution to (1.1) if

5



1. u ∈ C0
(
[0, T ];L1(R; Rn)

)
with u(t, x) ∈ Ω for a.e. (t, x) ∈ Dγ and

u(t, x) = 0 otherwise;

2. u(0, x) = uo(x) for a.e. x ≥ γ(0) and lim
x→0+

b
(
u(t, x)

)
= g(t) for

a.e. t ≥ 0;

3. for x > γ(t), u is a weak entropy solution to ∂tu+ ∂xf(u) = G(u).

With this notation, we may now state the extension of Theorem 2.2 to the
present non homogeneous case.

Theorem 3.2 Let system (1.1) satisfy (f), (G), (b), (γ). Assume also
that g ∈ BV(R+; Rn−ℓ) has sufficiently small total variation. Then, there
exist positive δ, L, T , domains D̂t, for t ∈ [0, T ] and maps

P̂ (t, to) : D̂to → D̂to+t

for to, to + t ∈ [0, T ], such that

i) D̂t ⊇
{
u ∈ Uδ : u(x) = 0 for x < γ(t)

}
;

ii) for all to, t1, t2 with to ∈ [0, T [, t1 ∈ [0, T − to[ and t2 ∈ [0, T − to − t1],
P̂ (t2, to + t1) ◦ P̂ (t1, to) = P̂ (t1 + t2, to) and P̂ (0, to) = Id;

iii) if (P̄ , D̄t) are the process and the domains corresponding to the boundary
γ̄(t) and boundary data ḡ(t), satisfying the same assumptions above,
then, for to, t

′
o ∈ [0, T [, t ∈ [0, T − to] and t′ ∈ [0, T − t′o], for all u ∈ D̂to ,

ū ∈ D̂t′o

∥∥∥P̂ (t, to)u− P̄ (t′, t′o)ū
∥∥∥
L1

≤ L ·

{
‖u− ū‖

L1 +
(
1 + ‖u‖

L1

)(∣∣t− t′
∣∣+
∣∣to − t′o

∣∣
)

+

∫ to+t

to

∥∥g(τ) − ḡ(τ)
∥∥dτ + sup

τ∈[to,t]

∣∣γ(τ) − γ̄(τ)
∣∣
}

;

iv) for all to ∈ [0, T [, t ∈ [0, T − to], u ∈ D̂to define

F̂ (t, to)u = P (t, to)u+ tG(u)χ
[γ(to+t),+∞[

then

lim
t→0+

1

t

∥∥∥P̂ (t, to)u− F̂ (t, to)u
∥∥∥
L1

= 0 ;

v) for all uo ∈ D̂0, the map u(t, x) =
(
P̂ (t, 0)uo

)
(x) defined for t ∈ [0, T ]

and (t, x) ∈ Dt, solves (1.1) in the sense of Definition 3.1.

6



The process P̂ is uniquely characterized by ii), iii) and iv).

Again, as remarked after Theorem 2.2, the Lipschitz constant in general
blows up as c → 0. The proof of this result is deferred to Section 5, it
heavily relies on Theorem 2.2. Remark that it is possible to extend to the
non homogeneous case also Proposition 2.3.

Proposition 3.3 Let system (1.1) satisfy the same assumptions of Theo-
rem 3.2 and call u the solution to (1.1) constructed therein. Let Γ0,Γ1 be
ℓ̃–non-characteristic curves, for ℓ̃ ∈ {1, . . . , n − 1}. Then, for all uo and g,
there exists a constant K > 0 such that

∫ T

0

∥∥∥u
(
t,Γ0(t)

)
− u

(
t,Γ1(t)

)∥∥∥dt ≤
K

c
‖Γ1 − Γ0‖C0([0,T ]).

Remark 3.4 Proposition 3.3 implies also that, if Γ is any ℓ–non-characteristic

curve, then the map x→
(
P̂ (t, 0)u

)
(x) is continuous in x = Γ(t) for almost

all t ∈ [0, T ]. Indeed, denote u(t, x) =
(
P̂ (t, 0)u

)
(x) and compute

∫ T

0

∣∣∣u
(
t,Γ(t)−

)
− u

(
t,Γ(t)

)∣∣∣ dt

= lim
ε→0

1

ε

∫ ε

0

∫ T

0

∣∣∣u
(
t,Γ(t) − x

)
− u

(
t,Γ(t)

)∣∣∣ dt dx

≤
K

c
lim
ε→0

1

ε

∫ ε

0
x dx = 0

Contrary to Proposition 2.3, the uniqueness result of Proposition 2.4
may not be extended to the present non homogeneous case, due to the non
local nature of the source term here considered. Indeed, let

u = 1

u = 0

0

1

1

2

2 3 4

γ̃(t)γ(t)t

x

u(t, x) 



∂tu+ ∂xu =
(∫ 1

0 u(t, ξ) dξ
)
χ

[3,4]
(x)

u(t, 0) = 0
u(0, x) = χ

[0,1]
(x) .

(3.1)

It is immediate to verify that the assumptions of Theorem 3.2 hold. The
solution u, shown above, is non zero in the delimited area above and, in
particular, for t ∈ [0, 1] and x ∈ [3, 4] but it vanishes for t ∈ [0, 1] and x = 1.
Therefore, with the same notation of Proposition 2.3, letting γ(t) = 0 and
γ̃(t) = 2 we have g̃(t) = 0 for t ∈ [0, 1]. Problem (1.3) thus admits, in the
present case, only the trivial solution u ≡ 0, contradicting what would be
the analog of Proposition 2.3 in the non homogeneous case.
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4 Proofs Related to Section 2

Below, C denotes a positive constant dependent only on f , G and b whose
precise value is not relevant.

This section is devoted to the homogeneous initial boundary value prob-
lem (1.2) and proves Theorem 2.2. Our general reference on the theory of
conservation laws is [6].

Let σ → Rj(σ)(u), respectively σ → Sj(σ)(u), be the j-rarefaction curve,
respectively the j-shock curve, exiting u. If the j-th field is linearly degen-
erate, then the parameter σ above is the arc-length. In the genuinely non-
linear case, see [6, Definition 5.2], we choose σ so that (see [6, formula (5,37)
and Remark 5.4])

∂λj
∂σ

(
Rj(σ)(u)

)
= 1 and

∂λj
∂σ

(
Sj(σ)(u)

)
= 1 . (4.1)

Introduce the j-Lax curve

σ → ψj(σ)(u) =

{
Rj(σ)(u) if σ ≥ 0
Sj(σ)(u) if σ < 0

and for σ ≡ (σ1, . . . , σn), define the map

Ψ(σ) = ψn(σn) ◦ . . . ◦ ψ1(σ1) .

By (f), see [6, Paragraph 5.3], given any two states u−, u+ ∈ Ω sufficiently
close to 0, there exists a C2 map E such that

σ = E(u−, u+) if and only if u+ = Ψ(σ)(u−) . (4.2)

Similarly, let the map S and the vector q = (q1, . . . , qn) be defined by

u+ = S(q)(u−) and S(q) = Sn(qn) ◦ . . . ◦ S1(q1) , (4.3)

i.e. S is the gluing of the Rankine - Hugoniot curves.
We first consider the non characteristic Riemann problem at the bound-

ary 



∂tu+ ∂xf(u) = 0 x > γ(t)

b
(
u
(
t, γ(t)

))
= go t ≥ 0

u(0, x) = uo x ≥ 0

(4.4)

where go ∈ R
n−ℓ and uo ∈ Ω are constants and γ satisfies (γ). Then, a

solution to (4.4) is constructed as in [17], see also [1, 2, 12].
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Lemma 4.1 Let (f), (γ) and (b) hold. If uo, go are sufficiently small, then
there exists unique Eσb , E

q
b of class C2 and states uσ, uq such that

(σℓ+1, . . . , σn) = Eσb (uo, go) ⇐⇒

{
b(uσ) = go and
ψn(σn) ◦ . . . ◦ ψℓ+1(σℓ+1)(u

σ) = uo ,

(qℓ+1, . . . , qn) = Eqb (uo, go) ⇐⇒

{
b(uq) = go and
Sn(qn) ◦ . . . ◦ Sℓ+1(qℓ+1)(u

q) = uo .

Proof. We prove this statement only for the Lax curves, the results for
the shock curves is proved similarly. Let σi → ψ̄i(σi)(u) be the inverse Lax
curve, i.e.

σ → ψ̄j(σ)(u) =

{
Sj(σ)(u) if σ ≥ 0
Rj(σ)(u) if σ < 0.

The choice (4.1) of the parameters implies that ψ̄i(−σi) ◦ ψi(σi)(u) = u for
all small u and σi. Define the C2 function

G (σℓ+1, . . . , σn, go, uo) = b
(
ψ̄ℓ+1(−σℓ+1) ◦ . . . ◦ ψ̄n(−σn)(uo)

)
− go .

By (b), G satisfies G(0, 0, 0) = 0 and

detD(σℓ+1,...,σn)G(0, 0, 0) = (−1)n−ℓ det
[
Db(0) rℓ+1(0) · · ·Db(0) rn(0)

]
6= 0 .

The Implicit Function Theorem guarantees the existence of a map Eσb =
Eσb (uo, go) with the required properties, if (σℓ+1, . . . , σn) = Eσb (uo, go) and
uσ = ψ̄ℓ+1(−σℓ+1) ◦ . . . ◦ ψ̄n(−σn)(uo). �

The notation introduced above allows the definition of a local flow tan-
gent to the process generated by (1.2). Fix to ≥ 0 and u ∈ Dto , define
go = g(to+), uo = u

(
γ(to)+

)
and uσ as in Lemma 4.1. Let

ũ(x) =

{
uσ if x < γ(to)
u(x) if x ≥ γ(to)

(4.5)

Call S the Standard Riemann Semigroup generated by f , see [6, Defini-
tion 9.1]. Finally, for t ≥ 0, define the tangent vector, see [5, Section 5],

(
F (t, to)u

)
(x) =

{
0 if x < γ(to + t)
(Stũ)(x) if x ≥ γ(to + t)

(4.6)

We record here the following interaction estimates, see Figure 1.

9



Lemma 4.2 Let (f), (γ) and (b) hold. If the following relations hold

g− = b(u−) , ur = ψn(σn) ◦ . . . ◦ ψ1(σ1)(u
−)

g+ = b(u+) , ur = ψn(σ̃n) ◦ . . . ◦ ψℓ+1(σ̃ℓ+1)(u
+)

then, we have the estimate

n∑

i=ℓ+1

|σ̃i − σi| ≤ C




ℓ∑

i=1

|σi| +
∥∥∥g+ − g−

∥∥∥


 .

Analogously, for the shock curves, if ω is a small vector satisfying

g = b(u),
ḡ = b(v),

and v + ω = Sn(qn) ◦ . . . ◦ S1(q1)(u)

then, we have the estimate

n∑

i=ℓ+1

|qi| ≤ C




ℓ∑

i=1

|qi| + ‖ḡ − g‖ + ‖ω‖


 .

u−

ur

u+

g−

g+

uo

uσ

go

(u, v)
(g, ḡ)

Figure 1: Interactions at the boundary

Proof. By Lemma 4.1, (σ̃ℓ+1, . . . , σ̃n) = Eσb (ur, g
+) and (σℓ+1, . . . , σn) =

Eσb

(
ur, b

(
ψℓ(σℓ) ◦ · · · ◦ ψ1(σ1)(u

−)
))

. Therefore, the Lipschitz continuity

of Eσb implies:

n∑

i=ℓ+1

|σ̃i − σi| ≤ C

(∥∥∥∥b(u
−) − b

(
ψℓ(σℓ) ◦ · · · ◦ ψ1(σ1)(u

−)
)∥∥∥∥+

∥∥∥g+ − g−
∥∥∥
)

≤ C




ℓ∑

i=1

|σi| +
∥∥∥g+ − g−

∥∥∥




Concerning the shock curves, by Lemma 4.1 we can write

(qℓ+1, . . . , qn) = Eqb

(
v + ω, b

(
Sℓ(qℓ) ◦ · · · ◦ S1(q1)(u)

))
.
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Since Eqb (v, ḡ) = 0 and b(u) = g, the Lipschitz continuity of Eqb and b implies

n∑

ℓ+1

|qi| ≤ C

∥∥∥∥E
q
b

(
v + ω, b

(
Sℓ(qℓ) ◦ · · · ◦ S1(q1)(u)

))
− Eqb (v, ḡ)

∥∥∥∥

≤ C

(
‖ω‖ +

∥∥∥b
(
Sℓ(qℓ) ◦ · · · ◦ S1(q1)(u)

)
− b(u)

∥∥∥ + ‖g − ḡ‖

)

≤ C




ℓ∑

i=1

|qi| + ‖ω‖ + ‖ḡ − g‖


 ,

completing the proof. �

Remark 4.3 We need below the first statement of Lemma 4.2 in the partic-
ular case of only one incident wave, i.e. ur = ψi(σi)(u

−) for some 1 ≤ i ≤ ℓ.

We follow the nowadays classical wave front tracking algorithm, see [1,
2, 6, 12], to construct solutions to the homogeneous boundary value prob-
lem (1.2). Let u ∈ L1

(
]γ(t),+∞[,Rn

)
be piecewise constant with finitely

many jumps and assume that TV(u) is sufficiently small. Call J(u) the
finite set of points where u has a jump. Let σx,i be the strength of the i-th
wave in the solution of the Riemann problem for

∂tu+ ∂xf(u) = 0 (4.7)

with data u(x−) and u(x+), i.e. (σx,1, . . . , σx,n) = E
(
u(x−), u(x+)

)
. Obvi-

ously, if x 6∈ J(u) then σx,i = 0, for all i = 1, . . . , n. In x = γ(t) define

(
σγ(t),1, . . . , σγ(t),n

)
=
(
0, . . . , 0, Eσb

(
u(γ(t)+), g(t)

))
. (4.8)

Then, consider the Glimm functionals and potentials

V t(u) = K
∑

x≥γ(t)

ℓ∑

i=1

∣∣σx,i
∣∣+

∑

x≥γ(t)

n∑

i=ℓ+1

∣∣σx,i
∣∣

Qt(u) =
∑

(σx,i,σy,j)∈A

∣∣σx,iσy,j
∣∣

Υt(u) = V t(u) +H2 Qt(u) +H1 TV
{
g, [t,+∞[

}

(4.9)

the set A of approaching waves being defined as usual, see [6] and the con-
stant K,H1,H2 to be defined later. As in [9], using Lemma 4.2, the Glimm
functional Υ can be extended in a lower semicontinuous way to all functions
with small total variation in L1(R; Rn) that vanish for x ≤ γ(t). On the
contrary, the interaction potential Q alone does not admit a lower semicon-
tinuous extension, due to the presence of the boundary.

11



We now construct ε-approximate solutions to (1.2) by means of the classi-
cal wave front tracking technique, see [6] or [1, 2] for the case with boundary.

Let ε > 0 be fixed and approximate the initial and boundary data in (1.2)
by means of piecewise constant functions uεo and gε such that (see [9, for-
mula (3.1)])

∥∥uεo − uo
∥∥
L1

“

[γ(0),+∞[;Ω
” < ε , ‖gε − g‖

L∞(R+,R) < ε

∣∣Υ0(u
ε
o) − Υ0(uo)

∣∣ < ε , TV
(
gε, ]t,+∞[

)
≤ TV

(
g, ]t,+∞[

)
for t ≥ 0 .

(4.10)

To proceed beyond time t = 0, we construct an approximate solution to (1.2)
by means of the Accurate and Simplified Riemann solvers, see [6, Para-
graph 7.2]. Introduce the threshold parameter ρ > 0 to distinguish which
Riemann solver is used at any interaction in x > γ(t). Whenever an interac-
tion occurs at (t, x) with x > γ(t), proceed exactly as in [6, Paragraph 7.2].
Recall that the former solver splits new rarefaction waves in fans of wavelets
having size at most ε, while the latter yields nonphysical waves. These waves
are assigned to a fictitious n+1-th family and their strength is the Euclidean
distance between the states on their sides.

At any interaction involving the boundary, i.e. when a wave hits the
boundary as well as when the approximated boundary data changes (see Fig-
ure 1, left and center), we use the Accurate solver, independently from the
size of the interaction. As usual, rarefaction waves are not further split at
interactions.

Along an ε-approximate solution, for suitable constants K,H1,H2 all
greater than 1, introduce the linear and quadratic potentials and the Glimm
functional:

V ε(t) = K
∑

x≥γ(t)

ℓ∑

i=1

∣∣σx,i
∣∣+

∑

x≥γ(t)

n+1∑

i=ℓ+1

∣∣σx,i
∣∣

V ε
g (t) = TV

(
gε; [t,+∞[

)

Qε(t) =
∑

(σx,i,σy,j)∈A

∣∣σx,iσy,j
∣∣

Υε(t) = V ε(t) +H1 V
ε
g (t) +H2Q

ε(t) .

(4.11)

The potentials just defined differ from the ones defined in (4.9) because the
non–physical waves are accounted for in a different way. They coincide at
t = 0 because of the absence, at that time, of non-physical waves. They
differ of a quantity proportional to the total size of non physical waves for
t > 0.

As usual, changing a little the velocities of the waves, we may assume
that no more than two waves σ′, σ′′ collide at any interaction point (t̄, x̄).
When x̄ > γ(t̄), the usual interaction estimates yield, for a constant C > 0

12



dependent only on f and Ω,

∆V ε(t̄) ≤ C K
∣∣σ′σ′′

∣∣ ∆V ε
g (t̄) = 0

∆Qε(t̄) ≤ −1
2

∣∣σ′σ′′
∣∣ ∆Υε(t̄) ≤ −H2

4

∣∣σ′σ′′
∣∣ ,

as soon as CK < H2/4 and δo is sufficiently small.
When a wave σ hits the boundary, Lemma 4.2 implies that

∆V ε(t̄) ≤ (C −K) |σ| ∆V ε
g (t̄) = 0

∆Qε(t̄) ≤ C |σ|V ε(t̄−) ∆Υε(t̄) ≤ −K
2 |σ|

as soon as K > 4C and δo <
1

2H2
.

When the boundary data changes, then

∆V ε(t̄) ≤ C
∣∣∆gε(t̄)

∣∣ ∆V ε
g (t̄) = −

∣∣∆gε(t̄)
∣∣

∆Qε(t̄) ≤ C
∣∣∆gε(t̄)

∣∣V ε(t̄−) ∆Υε(t̄) ≤ −H1

3

∣∣∆gε(t̄)
∣∣

as soon as H1 > 3C and δo < 1/H2.
The above choices are consistent. Indeed, choose first H1 and K, then

H2 and finally δo.
The wave front tracking approximation can be constructed for all times,

indeed we show that the total number of interaction points is finite: waves
of families 1, . . . , ℓ are created only through the Accurate solver and the
use of the Accurate solver in

{
(t, x) : t > 0, x > γ(t)

}
leads to a uniform

decrease in Υε. Therefore only a finite number of waves, which can hit
the boundary, is present. Since also the jumps in the boundary are finite,
there are at most a finite number of points in the boundary with outgoing
waves. This observation, together the argument used in the standard case,
see [6], shows that the total number of interactions is finite on all the domain{
(t, x) : t ≥ 0, x ≥ γ(t)

}
.

As in [6, Paragraph 7.3], the strength of any rarefaction, respectively
nonphysical, wave is smaller than Cε, respectively Cρ. This estimate is
proved simply substituting Q(t) in [6, formula (7.65)] with the strictly de-
creasing functional Υε(t) defined at (4.11).

As in the standard case, choosing ρ sufficiently small we prove that the
total size of nonphysical waves is bounded by ε. To this aim, recall the
generation order of a wave. Waves created at time t = 0, as well as waves
originating from jumps in the boundary data, are assigned order 1. When
two waves interact in the interior

{
(t, x) : t > 0, x > γ(t)

}
of the domain,

the usual procedure [6, Paragraph 7.3] is followed. When a wave of order k
hits the boundary, all the reflected wave are assigned the same order k.

For k ≥ 1, define

V ε
k (t) = K

∑
{
|σ| : σ

has order ≥ k
is of family ≤ ℓ

}
+
∑

{
|σ| : σ

has order ≥ k
is of family > ℓ

}
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Qεk(t) =
∑

{
∣∣σσ′

∣∣ : σ, σ′ are approaching
one of them has order ≥ k

}
.

As in [6, Paragraph 7.3], for k ≥ 1, let Ik denote the set of those interaction
times at which the maximal order of the interacting waves is k. I0 denotes
the set containing t = 0 and all times at which there is a jump in the
boundary data. On the other hand, Jk is the set of those interaction times
at which a wave of order k hits the boundary. A careful examinations of the
possible interaction yields the following table for k ≥ 3:

∆V ε
k (t) = 0 t ∈ I0 ∪ I1 ∪ . . . ∪ Ik−2,

∆V ε
k (t) +H2 ∆Qεk−1(t) ≤ 0 t ∈ Ik−1 ∪ Ik ∪ . . . ,

∆V ε
k (t) = 0 t ∈ J1 ∪ J2 ∪ . . . ∪ Jk−1,

∆V ε
k (t) ≤ 0 t ∈ Jk ∪ Jk+1 ∪ . . . .

Denote the positive, respectively negative, part of a real number by: [[x ]]
+

=

max{0, x}, respectively [[x ]]
−

= [[−x ]]
+
. Therefore, similarly to [6, for-

mula (7.69)], we get for k ≥ 3:

V ε
k (t) ≤

∑

0<s≤t

[[∆V ε
k (s) ]]

+

≤ H2

∑

0<s≤t

[[∆Qεk−1(s) ]]
−
≤ H2

∑

0<s≤t

[[∆Qεk−1(s) ]]
+
.

Now we need to estimate the last sum: Q̃εk(t) =
∑

0<s≤t [[∆Q
ε
k(s) ]]

+
. Ob-

serve that for k ≥ 3:

∆Qεk(t) + ∆Υε(t) · V ε
k (t−) ≤ 0 t ∈ I0 ∪ I1 ∪ . . . ∪ Ik−2,

∆Qεk(t) +H2 ∆Qεk−1(t) · V
ε(t−) ≤ 0 t ∈ Ik−1,

∆Qεk(t) ≤ 0 t ∈ Ik ∪ Ik+1 ∪ . . . ,
∆Qεk(t) + ∆Υε(t) · V ε

k (t−) ≤ 0 t ∈ J1 ∪ J2 ∪ . . . ∪ Jk−1,
∆Qεk(t) + ∆V ε

k (t) · V ε(t−) ≤ 0 t ∈ Jk ∪ Jk+1 ∪ . . . .

Hence we can write

Q̃εk(t) ≤
∑

0<s≤t

[
[[∆V ε

k (s) ]]
−

+H2 [[∆Qεk−1(s) ]]
−

]
sup

0≤τ≤t
V ε(τ)

+
∑

0<s≤t

[[∆Υε(s) ]]
−
· sup
0≤τ≤t

V ε
k (τ)
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≤ δ
∑

0<s≤t

[
[[∆V ε

k (s) ]]
+

+H2 [[∆Qεk−1(s) ]]
+

]
+ Υε(0) sup

0≤τ≤t
V ε
k (τ)

≤ 3δH2 · Q̃
ε
k−1(t) .

By induction we obtain

Q̃εk(t) ≤ (3δH2)
k−2 Q̃ε2(t) ≤ (3δH2)

k−2 δ .

Therefore, if δ is sufficiently small (so that 3δH2 < 1), there exists Nε > 0
such that the total size of the waves of order greater or equal to Nε is smaller
than ε:

V ε
k (t) ≤ H2 Q̃

ε
k(t) ≤ H2 (3δH2)

k−2 δ ≤ ε , for k ≥ Nε .

Now we observe that the numbers of wave of a given order, is bounded by
a number that depends on ε but not on the threshold ρ: indeed let Mε the
maximum total number of waves that can be generated in a solution of a
Riemann problem inside the domain or at the boundary. Let M be the sum
of the total number of jumps in the initial data and in the boundary data.
The wave of first generation are born at t = 0, at the jumps in the boundary
or when a wave of first generation hit the boundary. Since the waves of first
generation which can hit the boundary (the ones which belong to the families
i = 1, . . . , ℓ) are born only at t = 0, the total number of first generation waves
is bounded by a constant C1

ε = M ·Mε +M ·Mε ·Mε not depending on the
threshold. Suppose now that the number of waves of generation lower or
equal to k is bounded by a constant Ckε not depending on ρ. The waves of
order k+1 can be generated only when two waves of lower order interact, or
when a wave of order k+ 1 hit the boundary. Since the waves of order k+ 1
which can hit the boundary can only be generated by interaction of waves
of lower order, the total number of generation k + 1 waves is bounded by
Ck+1
ε = Ckε ·C

k
ε ·Mε+C

k
ε ·C

k
ε ·Mε ·Mε which do not depends on ρ. Fix now k

such that V ε
k ≤ ε. Hence also the total strength of non physical waves with

order greater or equal then k is lower than ε. Then observe that the total
number of non physical waves with order less than k is obviously bounded
by Ckε . Since the strength of any single non physical wave is bounded by
Cρ, if we choose the threshold ρ such that Cρ · Ckε ≤ ε, we have that the
total strength of non physical waves is bounded by 2ε. Finally we observe

that if γ is any ℓ–non-characteristic curve, then TV
(
u
(
·, γ̄(·)

))
is uniformly

bounded by a constant time TV(uo)+TV(g). Indeed, this property is proved
following the techniques in [13, Theorem 14.4.2 and formula (14.5.19)] with
our strictly decreasing functional Υε.

The following lemma on the regularity of u along non-characteristic
curves is of use in the sequel.
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Lemma 4.4 Fix a positive T . Let u be an ε-approximate wave front track-
ing solution to (1.2). Let Γ0,Γ1 be ℓ–non-characteristic curves. Then, there
exists a constant K > 0 independent from T such that

∫ T

0

∥∥∥u
(
t,Γ0(t)

)
− u

(
t,Γ1(t)

)∥∥∥dt ≤
K

c

(
TV(uo) + TV(g)

)
‖Γ1 − Γ0‖C0([0,T ])

Proof. Let Γ be an ℓ–non-characteristic curve. Consider a perturbation
η ∈ C0,1(R+; R) with ‖η‖

C0 + ‖η̇‖
L∞ sufficiently small. By the above con-

struction of ε-solutions, there exist times tα and states uα such that

u
(
t,Γ(t)

)
=
∑

α

uα χ[tα,tα+1[(t) and Γ(tα) = λαtα + xα (4.12)

Indeed, here x = λαt+xα is the equation of a discontinuity line in u crossed
by Γ. If (tα, xα) is a point of interaction in u, then we convene that all states
attained by u in a neighborhood of (tα, xα) appear in the sum in (4.12),
possibly multiplied by the characteristic function of the empty interval.

If ‖η‖
C1 is sufficiently small, then there exists times t′α such that

u
(
t,Γ(t) + η(t)

)
=
∑

α

uαχ[t′α,t′α+1[
(t) and Γ(t′α) + η(t′α) = λαt

′
α + xα .

Subtracting term by term, we obtain

λα (t′α − tα) =
(
Γ(t′α) − Γ(tα)

)
+ η(t′α)

=

∫ 1

0
Γ̇
(
ϑt′α + (1 − ϑ)tα

)
dϑ (t′α − tα) + η(t′α) .

∣∣t′α − tα
∣∣ =

∣∣∣∣∣
η(t′α)

λα −
∫ 1
0 Γ̇

(
ϑt′α + (1 − ϑ)tα

)
dϑ

∣∣∣∣∣

≤
‖η‖

C0

c
.

Therefore,

∫ T

0

∥∥∥u
(
t,Γ(t)

)
− u

(
t,Γ(t) + η(t)

)∥∥∥ dt

=
∑

α

‖uα − uα−1‖
∣∣t′α − tα

∣∣ ≤
‖η‖

C0

c

∑

α

‖uα − uα−1‖

≤
‖η‖

C0

c
TV

(
u(·,Γ(·)

)
≤ K

‖η‖
C0

c

(
TV(uo) + TV(g)

)
(4.13)

proving Lipschitz continuity for η small. We pass to the general case through
an interpolation argument. Introduce the map

ψ(ϑ) =

∫ T

0

∥∥∥u
(
t, (1 − ϑ)Γ0(t) + ϑΓ1(t)

)
− u

(
t,Γ0(t)

)∥∥∥ dt .
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The estimates above prove that the map ϑ → u
(
·, (1 − ϑ)Γ0(·) + ϑΓ1(·)

)
is

continuous in L1, hence also ψ is continuous and by (4.13) its upper right
Dini derivative satisfies

D+ψ(ϑ) ≤ K
TV(uo) + TV(g)

c
‖Γ1 − Γo‖C0

for all ϑ ∈ [0.1]. Hence, by the theory of differential inequalities,

∫ T

0

∥∥∥u
(
t,Γ1(t)

)
− u

(
t,Γ0(t)

)∥∥∥dt = ψ(1) − ψ(0)

≤ K
TV(uo) + TV(g)

c
‖Γ1 − Γo‖C0([0,T ])

completing the proof. �

We want now to compare different solutions. Take two ε–approximate
solutions u, v corresponding to the two initial data uo, vo and the two
boundary data g and ḡ. Let ω be a piecewise constant function with the
following properties: ω(t, ·) is an L1–function with small total variation,
ω(t, x) has finitely many polygonal lines of discontinuity and the slope of
any discontinuity line is bounded in absolute value by λ̂. The function ω
does not need to have any relation with the conservation law.

Define the functions w = v + ω and q ≡ (q1, . . . , qn) implicitly by

w(t, x) = S
(
q(t, x)

) (
u(t, x)

)

with S as in (4.3). We now consider the functional

Φ(u,w)(t) = K̄

ℓ∑

i=1

∫ +∞

γ(t)

∣∣qi(t, x)
∣∣Wi(t, x) dx

+
n∑

i=ℓ+1

∫ +∞

γ(t)

∣∣qi(t, x)
∣∣Wi(t, x) dx

(4.14)

where K̄ is a constant to be defined later and the weights Wi are defined
setting:

Wi(t, x) = 1 + κ1Ai(t, x) + κ2

(
Υε
(
u(t)

)
+ Υε

(
v(t)

))
.

The functions Ai are defined as follows. Denote by σx,κ the size of a jump (in
u or v) located at x of the family κ (κ = n+1 for non physical waves). Recall
that J(u), respectively J(v) denote the sets of all jumps in u, respectively
in v, for x > γ(t), while J̄(u), J̄(v) are the sets of the physical jumps only.

If the i-th characteristic field is linearly degenerate, we simply define

Ai(x)
.
=
∑

{
∣∣σy,κ

∣∣ : y ∈ J̄(u) ∪ J̄(v) and
y < x, i < κ ≤ n, or
y > x, 1 ≤ κ < i

}
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On the other hand, if the i-th field is genuinely nonlinear, the definition of
Ai will contain an additional term, accounting for waves in u and in v of the
same i-th family:

Ai(x)
.
=

∑
{
∣∣σy,κ

∣∣ : y ∈ J̄(u) ∪ J̄(v) and
y < x, i < κ ≤ n, or
y > x, 1 ≤ κ < i

}

+





∑
{
∣∣σy,i

∣∣ : y ∈ J̄(u), y < x or
y ∈ J̄(v), y > x

}
if qi(x) < 0,

∑
{
∣∣σy,i

∣∣ : y ∈ J̄(v), y < x or
y ∈ J̄(u), y > x

}
if qi(x) ≥ 0.

(4.15)

Recall that non-physical fronts play no role in the definition of Ai. We
remark that the function ω enters the definition of Ai only indirectly by
influencing the sign of the scalar functions qi. The constants κ1, κ2 are the
same defined in [6]. We also recall that, since δo is chosen small enough, the
weights satisfy 1 ≤Wi(t, x) ≤ 2, hence for a suitable constant C3 > 1,

1

C3

∥∥w(t) − u(t)
∥∥
L1

≤ Φ(u,w)(t) ≤ C3

∥∥w(t) − u(t)
∥∥
L1
, (4.16)

where the L1 norm is taken in the interval
]
γ(t),+∞

[
.

We state now the following theorem.

Proposition 4.5 Let the system (1.2) satisfy the assumptions of Theo-
rem 2.2. Then, there exists a constant δ ∈ ]0, δo[ such that, let u, v, ω, w be
the functions previously defined, satisfying Υε

(
u(t)

)
, Υε

(
v(t)

)
, Υε

(
ω(t)

)
,

Υε
(
w(t)

)
≤ δ, for any t ≥ 0, then one has

Φ(u,w)(t2) ≤ Φ(u,w)(t1) + Cε(t2 − t1)

+C

∫ t2

t1

(∥∥∥∥b
(
u
(
s, γ(s)

))
− b

(
v
(
s, γ(s)

))∥∥∥∥+ TV
(
ω(s, ·)

)
)
ds.

An immediate consequence of the above result that is useful below is

Φ(u,w)(t2) ≤ Φ(u,w)(t1) + Cε(t2 − t1)

+C

∫ t2

t1

(∥∥g(s) − ḡ(s)
∥∥+ TV

(
ω(s, ·)

))
ds.

(4.17)

Proof of Proposition 4.5. In this proof we use the main results obtained
in [3, 6]. At each x define the intermediate states U0(x) = u(x), U1(x), . . .,
Un(x) = w(x) by setting

Ui(x)
.
= Si

(
qi(x)

)
◦ Si−1

(
qi−1(x)

)
◦ · · · ◦ S1

(
q1(x)

) (
u(x)

)
.
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Moreover, call
λi(x)

.
= λi

(
Ui−1(x), Ui(x)

)

the speed of the i-shock connecting Ui−1(x) with Ui(x). For notational
convenience, we write qy+i

.
= qi(y+), qy−i

.
= qi(y−) and similarly for W y±

i ,
λy±i . If y, ỹ are two consecutive points in J = J(u) ∪ J(v) ∪ J(ω), then

qy+i = qỹ−i , W y+
i = W ỹ−

i , λy+i = λỹ−i . Therefore, similarly to [6, 15], outside
the interaction times we can compute:

d

dt
Φ(u,w)(t) = K̄

∑

y∈J

ℓ∑

i=1

(
W y+
i

∣∣∣qy+i
∣∣∣(λy+i − ẋy) −W y−

i

∣∣∣qy−i
∣∣∣(λy−i − ẋy)

)

+
∑

y∈J

n∑

i=ℓ+1

(
W y+
i

∣∣∣qy+i
∣∣∣(λy+i − ẋy) −W y−

i

∣∣∣qy−i
∣∣∣(λy−i − ẋy)

)

+K̄

ℓ∑

i=1

W γ+
i

∣∣∣qγ+i
∣∣∣(λγ+i − γ̇) +

n∑

i=ℓ+1

W γ+
i

∣∣∣qγ+i
∣∣∣(λγ+i − γ̇)

where ẋy is the velocity of the discontinuity at the point y. This is because
the quantities qi vanish outside a compact set. For each jump point y ∈ J
and every i = 1, . . . , n, define

q̄y±i =

{
K̄qy±i if i ≤ ℓ

qy±i if i ≥ ℓ+ 1

Ey,i = W y+
i

∣∣∣q̄y+i
∣∣∣(λy+i − ẋy) −W y−

i

∣∣∣q̄y−i
∣∣∣(yy−i − ẋy) .

so that

d

dt
Φ(u,w)(t) =

∑

y∈J

n∑

i=1

Ey,i

+K̄

ℓ∑

i=1

W γ+
i

∣∣∣qγ+i
∣∣∣(λγ+i − γ̇) +

n∑

i=ℓ+1

W γ+
i

∣∣∣qγ+i
∣∣∣(λγ+i − γ̇) .

Note that q̄y±i is a reparametrization of the shock curve equivalent to that
provided by qy±i and that satisfies the key property, see [6, Remark 5.4],

(
Si(q̄i) ◦ Si(−q̄i)

)
(u) = u .

Therefore, the computations in [3, Section 4] and [6, Chapter 8] apply. As
in [3, formula (4.13)] we thus obtain

∑

y∈J

n∑

i=1

Ey,i ≤ C ·
(
ε+ TV(ω)

)
.
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Concerning the term on the boundary, (γ) implies that if i ≤ ℓ, then
λγ+i − γ̇ ≤ −c. Moreover, W γ+

i ≥ 1. Hence, if gε = b
(
u(t, γ(t)+

)
,

ḡε = b
(
v(t, γ(t)+

)
, Lemma 4.2 implies

K̄

ℓ∑

i=1

W γ+
i

∣∣∣qγ+i
∣∣∣(λγ+i − γ̇) +

n∑

i=ℓ+1

W γ+
i

∣∣∣qγ+i
∣∣∣(λγ+i − γ̇)

≤ −cK̄
ℓ∑

i=1

∣∣∣qγ+i
∣∣∣+ C

n∑

i=ℓ+1

∣∣∣qγ+i
∣∣∣

≤ −cK̄

ℓ∑

i=1

∣∣∣qγ+i
∣∣∣+ C

ℓ∑

i=1

∣∣∣qγ+i
∣∣∣+ C

(
‖gε − ḡε‖ +

∥∥∥ωγ+
∥∥∥
)

≤ C

(
‖gε − ḡε‖ +

∥∥∥ωγ+
∥∥∥
)

provided
K̄ > C/c (4.18)

is sufficiently large. Therefore, reinserting the t variable, we obtain

d

dt
Φ(u,w)(t) ≤ C

(
ε+ TV

(
ω(t, ·)

)
+
∥∥ω(t, γ(t)+)

∥∥ +
∥∥gε(t) − ḡε(t)

∥∥
)

≤ C

(
ε+ TV

(
ω(t, ·)

)
+

∥∥∥∥b
(
u
(
s, γ(s)

))
− b

(
v
(
s, γ(s)

))∥∥∥∥

)
.

Then, standard computations (see [6, Theorem 8.2]) show that when an
interaction occurs, the possible increase in Ai(x) is compensated by a de-
crease in Υε. Therefore, the functional Φ is not increasing at interaction
times. Hence, integrating the previous inequality, we obtain (4.17). �

Proposition 4.6 Let system (1.2) satisfy the assumptions of Theorem 2.2.
Then, there exists a process P satisfying 1) in Theorem 2.2, 3. in Defini-
tion 2.1 and moreover, there exists a positive L such that for all u, v, ω,

∥∥P (t, to)u− P̄ (t′, t′o)v − ω
∥∥
L1

≤ L ·

{
‖u− v − ω‖

L1 +
∣∣t− t′

∣∣+
∣∣to − t′o

∣∣

+

∫ to+t

to

∥∥g(τ) − ḡ(τ)
∥∥dτ + t · TV (ω)

}
.

(4.19)

Proof. Let δ > 0 be the constant of Proposition 4.5. Define

Dt =
{
u ∈ L1(R; Ω): u(x) = 0 for all x ≤ γ(t) and Υt(u) ≤ δ/2

}
.
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Fix uo ∈ Do. Approximate the initial and boundary data (uo, go) as in (4.10).
Since Υε(0) ≤ Υ0

(
uε(0, ·)

)
≤ Υ0(uo) + ε < δ/2 + ε < δ, we can construct

the ε-approximate solutions uε(t, x). As in [6, Section 8.3] we observe that
for 0 < ε′ ≤ ε, the ε′-approximate solution is also an ε-approximate solution.
Therefore, we can apply (4.17) with uε

′

in place of v with ω = 0 and g = ḡ.
Hence, because of (4.16), we obtain

∥∥∥uε(t) − uε
′

(t)
∥∥∥
L1

≤ L ·
∥∥∥uεo − uε

′

o

∥∥∥
L1

+ ε · t .

For any t ≥ 0, uε(t) is a Cauchy sequence which converges to a function
u(t) ∈ L1(R; Rn) that vanishes for x ≤ γ(t). The potential Υε(t) defined
on ε-approximate solutions is non increasing and differs from Υt

(
uε(t)

)
due

to nonphysical waves and to the different boundary conditions gε and g.
Therefore, (4.10) and the lower semicontinuity of the total variation and of
Υt implies that u(t) ∈ Dt for any t ≥ 0. We set P (t, 0)uo = u(t). It is
obvious that our procedure can start at any time to ≥ 0, so we can define
P (t, to)u ∈ Dt+to for any u ∈ Dto .

We want to show now that the map just defined satisfies all the prop-
erties of Theorem 2.2. The Lipschitz continuity t → P (t, to)u is satisfied
by construction. If we now consider a different initial and boundary data,
say (v, g̃) and the same boundary curve γ, in general we have a different
map P̃ . Taking the limit in (4.17) and using (4.16) for the corresponding
ε-approximations, we get that for any L1 function ω dependent only on x
and with small total variation

∥∥∥P (t, to)u− P̃ (t, to)v − ω
∥∥∥
L1

≤ L ·

{
‖u− v − ω‖

L1 +

∫ to+t

to

∥∥g(τ) − g̃(τ)
∥∥ dτ + t · TV(ω)

}
.

(4.20)

bounding the dependence from the error term ω and proving the Lipschitz
continuity in g and u.

Point 3. in Definition 2.1 is obtained by standard methods, see [6, Sec-
tion 7.4].

Concerning the process property, take u ∈ D0 and consider its ε–approx-
imation uε. Let ε̃ ∈ ]0, ε[ and call ũε̃ be the ε̃-approximate solution with
initial datum uε(t) at time t. Then, if s ≥ 0, ũε̃ is also an ε-approximate
solution in [t, t + s]. Therefore, applying (4.16) and (4.17) in the interval
[t, t+ s], we obtain

∥∥P (t+ s, 0)u − P (s, t) ◦ P (t, 0)u
∥∥
L1

= lim
ε→0

∥∥uε(t+ s) − P (s, t)uε(t)
∥∥
L1

= lim
ε→0

lim
ε̃→0

∥∥∥uε(t+ s) − ũε̃(t+ s)
∥∥∥
L1
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≤ lim
ε→0

lim
ε̃→0

C

(∫ t+s

t

∥∥∥gε(ξ) − gε̃(ξ)
∥∥∥ dξ + ε s

)

= 0 .

We can repeat the same argument for any initial data to ≥ 0.
Concerning the dependence on the initial time to, take 0 ≤ to ≤ t′o and

u ∈ Dto , u
′ ∈ Dt′o . If 0 ≤ t ≤ t′o − to, then obviously

∥∥P (t, to)u− P (t, t′o)u
′
∥∥
L1

≤ C
(∣∣to − t′o

∣∣+
∥∥u− u′

∥∥
L1

)
.

If t > t′o − to, the process property implies

∥∥P (t, to)u− P (t, t′o)u
′
∥∥
L1

=
∥∥P (t+ to − t′o, t

′
o) ◦ P (t′o − to, to)u− P (t, t′o)u

′
∥∥
L1

≤ C
∥∥P (t′o − to, to)u− u′

∥∥
L1

+ C
∣∣to − t′o

∣∣

≤ C
∥∥u− u′

∥∥
L1

+ C
∣∣to − t′o

∣∣ ,

completing the proof of (4.19). �

The following proposition extends to the present case the key properties
of the Glimm functionals (4.9).

Proposition 4.7 Let system (1.2) satisfy the assumptions of Theorem 2.2.
Then, for any u ∈ D0, the map t → Υt

(
P (t, 0)u

)
is non increasing for

t ≥ 0.

Proof. Above, we showed that the map t → Υε(t) decreases along ε-
approximate solutions. The monotonicity of t → Υt

(
P (t, 0)u

)
follow pass-

ing to the limit ε → 0, thanks to the lower semicontinuity proved in [4, 9],
to (4.10) and to the lower semicontinuity of the total variation. �

In order to complete the proof of Theorem 2.2, we prove propositions 2.3
and 2.4 together with an auxiliary lemma.

Proof of Proposition 2.3. Let uε be an ε-approximate wave front tracking
solution converging to u. Since the convergence is also in L1

loc
(Dγ ; R

n), apply
Lemma 4.4 and Lebesgue Dominated convergence Theorem to obtain:

∫ T

0

∥∥∥u
(
t,Γ0(t)

)
− u

(
t,Γ1(t)

)∥∥∥ dt

= lim
δ→0

1

δ

∫ δ

0

∫ T

0

∥∥∥u
(
t,Γ0(t) + x

)
− u

(
t,Γ1(t) + x

)∥∥∥ dt dx

= lim
δ→0

lim
ε→0

1

δ

∫ δ

0

∫ T

0

∥∥∥uε
(
t,Γ0(t) + x

)
− uε

(
t,Γ1(t) + x

)∥∥∥ dt dx
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≤ K ·
TV(uo) + TV(g)

c
· ‖Γ1 − Γ0‖C0([0,T ])

completing the proof. �

Lemma 4.8 Let uε be an ε-approximate wave front tracking solution to (1.2)
converging to u. Let Γ be an ℓ–non-characteristic curve. Then,

uε
(
·,Γ(·)

)
→ u

(
·,Γ(·)

)
in L1

loc(R
+; Ω) .

Proof. By the convergence of uε to u in L1

loc
(Dγ ; Ω), there exists a sequence

εν converging to 0 such that for a.e. x

uεν
(
·,Γ(·) + x

)
→ u

(
·, ,Γ(·) + x

)
in L1

loc(R
+,Ω) .

Then, for any T > 0 and for any x for which the convergence above holds,
∫ T

0

∥∥∥uεν
(
t,Γ(t)

)
− u

(
t,Γ(t)

)∥∥∥ dt

≤

∫ T

0

∥∥∥uεν
(
t,Γ(t)

)
− uεν

(
t,Γ(t) + x

)∥∥∥ dt

+

∫ T

0

∥∥∥uεν
(
t,Γ(t) + x

)
− u

(
t,Γ(t) + x

)∥∥∥ dt

+

∫ T

0

∥∥∥u
(
t,Γ(t) + x

)
− u

(
t,Γ(t)

)∥∥∥ dt

≤ 2K
TV(uo) + TV(g)

c
|x| +

∫ T

0

∥∥∥uεn
(
t,Γ(t) + x

)
− u

(
t,Γ(t) + x

)∥∥∥ dt

where we used Lemma 4.4 and Proposition 2.3. Hence

lim sup
ν→+∞

∫ T

0

∥∥∥uεν
(
t,Γ(t)

)
− u

(
t,Γ(t)

)∥∥∥ dt ≤ C |x|

and the final estimate follows by the arbitrariness of x, independently from
the sequence εν , thanks to the uniqueness of the limit u. �

Proof of Proposition 2.4. Let uε, respectively ũε, be an ε-approximate
wave front tracking solutions of (1.2), respectively (1.3). Apply Proposi-
tion 4.5 and use the equivalence (4.16) to obtain

∫ +∞

γ̃(t)

∥∥uε(t, x) − ũε(t, x)
∥∥ dx

≤ L ·

(∫ +∞

γ̃(0)

∥∥uε(0, x) − ũε(0, x)
∥∥ dx

+

∫ t

0

∥∥∥∥b
(
uε
(
s, γ̃(s)

))
− b

(
ũε
(
s, γ̃(s)

))∥∥∥∥ ds
)

+ Cεt

and the limit ε→ 0 completes the proof. �
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Proof of Theorem 2.2. To conclude the proof of Theorem 2.2, observe
first that for the ε–approximate solutions, we have

∥∥∥b
(
uε(t, γ(t)+)

)
− g(t)

∥∥∥ ≤ ε

therefore as ε→ 0 Lemma 4.8 implies 4).

Finally denote by let P (γ,g) and D
(γ,g)
t the process and the domains

corresponding to the boundary curve and data (γ, g). Fix two boundary

curve and data (γ, g), (γ̄, ḡ), two initial data uo ∈ D
(γ,g)
0 , ūo ∈ D

(γ̄,ḡ)
0 and

define

Γ0(t) = min
{
γ(t), γ̄(t)

}
, Γ1(t) = max

{
γ(t), γ̄(t)

}

ũo(x) =

{
0 for x ≤ Γ1(0)
uo(x) for x > Γ1(0)

˜̄uo(x) =

{
0 for x ≤ Γ1(0)
ūo(x) for x > Γ1(0)

g̃(t) = b

([
P (γ,g)(t, 0)uo

] (
Γ1(t)

))
˜̄g(t) = b

([
P (γ̄,ḡ)(t, 0)ūo

] (
Γ1(t)

))
.

By Proposition 2.4 we have for x > Γ1(t):
[
P (γ,g)(t, 0)uo

]
(x) =

[
P (Γ1,g̃)(t, 0)ũo

]
(x),

[
P (γ̄,ḡ)(t, 0)ūo

]
(x) =

[
P (Γ1,˜̄g)(t, 0)˜̄uo

]
(x).

Applying the result for the unchanged boundary curve, we get:
∥∥∥P (γ,g)(t, 0)uo − P (γ̄,ḡ)(t, 0)ūo

∥∥∥
L1

=

∫ Γ1(t)

Γ0(t)

∥∥∥P (γ,g)(t, 0)uo − P (γ̄,ḡ)(t, 0)ūo

∥∥∥ dx

+

∫ +∞

Γ1(t)

∥∥∥P (Γ1,g̃)(t, 0)ũo − P (Γ1,˜̄g)(t, 0)˜̄uo

∥∥∥ dx

≤ C
∣∣Γ1(t) − Γ0(t)

∣∣+ C

∫ t

0

∥∥g̃(t) − ˜̄g(t)
∥∥ dt+ C

∥∥ũo − ˜̄uo
∥∥
L1

≤ C‖Γ1 − Γ0‖C0 + C‖uo − ūo‖L1

+C

∫ t

0

∥∥g̃(t) − g(t) + g(t) − ḡ(t) + ḡ(t) − ˜̄g(t)
∥∥ dt

≤ C‖γ − γ̄‖
C0 + C‖uo − ūo‖L1 + C

∫ t

0

∥∥g(t) − ḡ(t)
∥∥ dt

+C

∫ t

0

∥∥g̃(t) − g(t)
∥∥ dt+ C

∫ t

0

∥∥ḡ(t) − ˜̄g(t)
∥∥ dt.

Finally Proposition 2.3 and the Lipschitz continuity of b imply

∫ t

0

∥∥g̃(t) − g(t)
∥∥ dt
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=

∫ t

0

∥∥∥∥∥b
([
P (γ,g)(t, 0)uo

] (
Γ1(t)

))
− b

([
P (γ,g)(t, 0)uo

]
(γ(t))

)∥∥∥∥∥ dt

≤ C‖Γ1 − γ‖
C0 ≤ ‖γ̄ − γ‖

C0

completing the proof of 2), since the computations for ḡ and ˜̄g are identical.
We prove now the tangency condition 3). Fix to ≥ 0, u ∈ Dto and let F be

defined by (4.6) and denote by P̃ the process defined above with g replaced

by g̃(to + t) = b
(
(Stũ)

(
γ(to + t)

))
with ũ as in (4.5). By Proposition 2.4,

F (t, to)u = P̃ (t, to)u. Using 2), we have

1

t

∥∥P (t, to)u− F (t, to)u
∥∥
L1

≤
L

t

∫ to+t

to

∥∥g̃(s) − g(s)
∥∥ ds

≤
L

t

∫ to+t

to

∥∥g̃(s) − g(to+)
∥∥ ds+

L

t

∫ to+t

to

∥∥g(to+) − g(s)
∥∥ ds .

The latter term vanishes as t→ 0 by the definition of g(to+). Consider now
the former term. Fix a positive and sufficiently small δ so that the curve
ψ(s) = γ(s) + δ(s − to) is ℓ–non-characteristic. Let ξ ∈ [0, 1].

1

t

∫ to+t

to

∥∥g̃(s) − g(to+)
∥∥ ds

=
1

t

∫ to+t

to

∥∥∥∥b
(
(Ss−to ũ)

(
γ(s)

))
− g(to+)

∥∥∥∥ ds

≤
1

t

∫ to+t

to

∥∥∥∥b
(
(Ss−to ũ)

(
γ(s)

))
− b

(
(Ss−to ũ)

(
(1 − ξ)γ(s) + ξψ(s)

))∥∥∥∥ ds

+
1

t

∫ to+t

to

∥∥∥∥b
(
(Ss−toũ)

(
(1 − ξ)γ(s) + ξψ(s)

))
− g(to+)

∥∥∥∥ ds .

By Proposition 2.3, the first term is bounded by

C

t

∥∥∥γ −
(
(1 − ξ)γ + ξψ

)∥∥∥
C0([to,to+t])

≤
C

t
‖γ − ψ‖

C0([to,to+t]) ≤ Cδ .

Concerning the latter term, integrate on ξ over [0, 1] and obtain, with the
change of variable x = (1 − ξ)γ(s) + ξψ(s) and with uσ as in Lemma 4.1,

1

t

∫ to+t

to

∥∥∥∥b
(
(Ss−to ũ)

(
(1 − ξ)γ(s) + ξψ(s)

))
− g(to+)

∥∥∥∥ ds

=
1

t

∫ to+t

to

1

ψ(s) − γ(s)

∫ ψ(s)

γ(s)

∥∥∥b
(
(Ss−to ũ)(x)

)
− b(uσ)

∥∥∥ dx ds

≤
C

tδ

∫ to+t

to

1

s− to

∫ ψ(s)

γ(s)

∥∥(Ss−to ũ)(x) − uσ
∥∥ dx ds (4.21)
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Following [6, Section 9.3], let U ♯ be the Lax solution to the Riemann problem





∂tu+ ∂xf(u) = 0

u(0, x) =

{
uσ if x < 0
u
(
γ(to)+

)
if x ≥ 0 .

By the basic properties of the solutions to Riemann problem and the defi-
nition of ψ, for all s ∈ [to, t] and x ∈ [γ(s), ψ(s)], U ♯(s, x) = uσ. Then,

(4.21) =
C

tδ

∫ to+t

to

1

s− to

∫ ψ(s)

γ(s)

∥∥∥(Ss−to ũ)(x) − U ♯(s, x)
∥∥∥ dx ds

≤
C

tδ

∫ to+t

to

1

s− to

∫ γ(to)+(s−to)λ̂

γ(to)−(s−to)λ̂

∥∥∥(Ss−to ũ)(x) − U ♯(s, x)
∥∥∥ dx ds

By [6, formula (9.16)],

lim
s→to

1

s− to

∫ γ(to)+(s−to)λ̂

γ(to)−(s−to)λ̂

∥∥∥(Ss−to ũ)(x) − U ♯(s, x)
∥∥∥ dx = 0

so that limt→0(4.21) = 0. Collecting the various terms,

lim sup
t→0

1

t

∫ to+t

to

∥∥g̃(s) − g(to+)
∥∥ ds ≤ Cδ

and by the arbitrariness of δ, the tangency condition 3) follows.
The characterization of P through 1), 2) with ω = 0 and 3) implies its

uniqueness through standard computations, see for instance [5, Section 6,
Corollary 1]. �

5 The Source Term

This section is devoted to the source term, similarly to [3, 7, 8, 14, 18] but
following the general metric space technique in [10], applied to L1 equipped
with the L1-distance d. The key point is to show that the map

F̌ (t, to)u = P (t, to)u+ tG
(
P (t, to)u

)
χ
[γ(to+t),+∞[

(5.1)

is a local flow in the sense of [10, Definition 2.1] on suitable domains and
satisfies the assumptions of [10, Theorem 2.6].

Following [9, Section 3], we modify the functional Φ in (4.14) and define
Φt on all piecewise constant functions, not necessarily ε–approximate solu-
tions. Therefore, the definition of Φt does not consider nonphysical waves
and Φ0 = Φ at time t = 0. Consider two piecewise constant functions
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u, v ∈ L1
(
]γ(t),+∞[,Rn

)
with finitely many jumps and assume that TV(u)

is sufficiently small.
Define q ≡ (q1, . . . , qn) implicitly by

v(x) = S
(
q(x)

) (
u(x)

)

with S as in (4.3). We now consider the functional

Φt(u, v) = K̄

ℓ∑

i=1

∫ +∞

γ(t)

∣∣qi(x)
∣∣W i(x) dx+

n∑

i=ℓ+1

∫ +∞

γ(t)

∣∣qi(x)
∣∣W i(x) dx

where K̄ is defined in the proof of Proposition 4.5 and the weights W i are
defined setting:

W i(x) = 1 + κ1Ai(x) + κ2

(
Υt(u) + Υt(v)

)
.

The functions Ai are defined as follows. Let σx,κ be the strength of the κ-th
wave in the solution of the Riemann problem for (4.7) in u or v located at x
of the family κ. Differently from the notation in Section 4, J(u), respectively
J(v) denote the sets of all jumps in u, respectively in v, for x ≥ γ(t). Indeed,

we let x = γ(t) in J as soon as b
(
u
(
γ(t)+

))
6= g(t) and the waves σγ(t),k

are defined as in (4.8).
If the i-th characteristic field is linearly degenerate, we simply define

Ai(x)
.
=
∑

{
∣∣σy,κ

∣∣ : y ∈ J(u) ∪ J(v) and
y < x, i < κ ≤ n, or
y > x, 1 ≤ κ < i

}

On the other hand, if the i-th field is genuinely nonlinear, the definition of
Ai will contain an additional term, accounting for waves in u and in v of
the same i-th family:

Ai(x)
.
=

∑
{
∣∣σy,κ

∣∣ : y ∈ J(u) ∪ J(v) and
y < x, i < κ ≤ n, or
y > x, 1 ≤ κ < i

}

+





∑
{
∣∣σy,i

∣∣ : y ∈ J(u), y < x or
y ∈ J(v), y > x

}
if qi(x) < 0,

∑
{
∣∣σy,i

∣∣ : y ∈ J(v), y < x or
y ∈ J(u), y > x

}
if qi(x) ≥ 0.

The constants κ1, κ2 are the same defined in [6, Chapter 8]. We also recall
that, since δo is chosen small enough, the weights satisfy 1 ≤ W i(x) ≤ 2,
hence for a suitable constant C3 > 1 we have

1

C3
‖v − u‖

L1 ≤ Φt(u, v) ≤ C3 ‖v − u‖
L1,
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where the L1 norm is taken in the interval
]
γ(t),+∞

[
.

For a fixed positive M , define

D̂M
t =




u ∈ L1(R; Ω):

u(x) = 0 for all x < γ(t)
Υt(u) ≤ δ − C(T − t)
‖u‖

L1 ≤MeCt + Ct





with Υt defined in (4.9), C, δ and T to be specified below.

Lemma 5.1 For all to ∈ [0, T ], t > 0 sufficiently small and u, ũ ∈ Dto ,

Υto+t

(
F̌ (t, to)u

)
≤ Υto(u) + C t

Φto+t

(
F̌ (t, to)u, F̌ (t, to)ũ

)
≤ (1 + Ct)Φto(u, ũ) . (5.2)

The proof is as that of [7, Lemma 3.6 and Corollary 3.7], see also [8,
Lemma 2.3].

Corollary 5.2 For t small, F̌ in (5.1) satisfies F̌ (t, to)D̂
M
to ⊆ D̂M

to+t.

Proof. The bound on Υt is a direct consequence of Lemma 5.1. Concerning
the estimate on the L1 norm, for u ∈ D̂M

to , compute:
∥∥∥F̌ (t, to)u

∥∥∥
L1

=

∥∥∥∥P (t, to)u+ tG
(
P (t, to)u

)
χ

[γ(to+t),+∞[

∥∥∥∥
L1

≤
∥∥P (t, to)u− u

∥∥
L1

+ ‖u‖
L1 + t

∥∥∥G
(
P (t, to)u

)
−G(0)

∥∥∥
L1

+ t
∥∥G(0)

∥∥
L1

≤ Ct+ ‖u‖
L1 + Ct

(
‖u‖

L1 + Ct
)

+ Ct

≤ (1 + Ct) ‖u‖L1 + Ct

≤ (1 + Ct)
(
MeCto + Cto

)
+ Ct

≤ MeC(to+t) + C(to + t)

hence F̌ (t, to)u is in D̂M
to+t. �

In what follows, relying on [10, Condition (D)], we consider F̌ as defined
on the domains D̂M

to and not on a single domain, as in [10, Definition 2.1].

Proposition 5.3 The map F̌ defined in (5.1) is L1 Lipschitz continuous,

satisfies F̌ (0, to) u = u for any (to, u) ∈
{
(τ, w) : τ ∈ [0, T ], w ∈ D̂M

τ

}
and

there exist positive L, independent from M , such that for to, t
′
o ∈ [0, T ],

t ∈ [0, T − to], t
′ ∈ [0, T − t′o], u ∈ D̂M

to , u′ ∈ D̂M
t′o

∥∥∥F̌ (t′, t′o)u
′ − F̌ (t, to)u

∥∥∥
L1

≤ L
(∥∥u′ − u

∥∥
L1

+
(
1 + ‖u‖

L1

) ∣∣t′ − t
∣∣+
∣∣t′o − to

∣∣
)
.
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Proof. Compute:
∥∥∥F̌ (t′, t′o)u

′ − F̌ (t, to)u
∥∥∥
L1

≤
∥∥P (t′, t′o)u

′ − P (t, to)u
∥∥
L1

+
∣∣t′ − t

∣∣
∥∥∥∥G
(
P (t′, t′o)u

′
)
χ

[γ(t′o+t′),+∞[

∥∥∥∥
L1

+t

∥∥∥∥G
(
P (t′, t′o)u

′
)
χ

[γ(t′o+t′),+∞[
−G

(
P (t, to)u

)
χ

[γ(to+t),+∞[

∥∥∥∥
L1

≤
∥∥P (t′, t′o)u

′ − P (t, to)u
∥∥
L1

+
∣∣t′ − t

∣∣
(∥∥∥G

(
P (t′, t′o)u

′ −G(0)
)∥∥∥

L1

+
∥∥G(0)

∥∥
L1

)

+t
∥∥∥G
(
P (t′, t′o)u

′
)
−G

(
P (t, to)u

)∥∥∥
L1

+t

∥∥∥∥∥G
(
P (t, to)u

)(
χ

[γ(t′o+t′),+∞[
− χ

[γ(to+t),+∞[

)∥∥∥∥∥
L1

≤ (1 + Ct)
∥∥P (t′, t′o)u

′ − P (t, to)u
∥∥
L1

+
∣∣t′ − t

∣∣ ∥∥G(0)
∥∥
L1

+C
∣∣t′ − t

∣∣ ∥∥P (t′, t′o)u
′
∥∥
L1

+ C t
∣∣γ(t′o + t′) − γ(to + t)

∣∣

≤ C
(∣∣t′ − t

∣∣+
∣∣t′o − to

∣∣+
∥∥u′ − u

∥∥
L1

)

+C
∣∣t′ − t

∣∣
(∥∥P (t′, t′o)u

′ − u′
∥∥
L1

+
∥∥u′
∥∥
L1

)

≤ C

((
1 +

∥∥u′
∥∥
L1

) ∣∣t′ − t
∣∣+
∣∣t′o − to

∣∣+
∥∥u′ − u

∥∥
L1

)

completing the proof. �

Recall [10, Definition 2.3]: an Euler ε-polygonal is

F̌ ε(t, to)u = F̌ (t− kε, to + kε) ◦
k−1
©
h=0

F̌ (ε, to + hε)u (5.3)

for k = [t/ε]. Above and in what follows, we denote the recursive composi-
tion ©n

i=1 fi = f1 ◦ f2 ◦ . . . ◦ fn. Here, [ · ] stands for the integer part, i.e. for
s ∈ R, [s] = max{k ∈ Z : k ≤ s}.

The hypotheses to apply [10, Theorem 2.6] are satisfied.

Proposition 5.4 The local flow F̌ in (5.1) is such that there exist

1. a positive constant C such that for all to ∈ [0, T ] and all u ∈ D̂M
to

d
(
F̌ (kτ, to + τ) ◦ F̌ (τ, to)u, F̌

(
(k + 1)τ, to

)
u
)
≤ C k τ2

whenever k ∈ N, (k + 1)τ, τ ∈ [0, T − to];
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2. a positive constant L such that

d
(
F̌ ε(t, to)u, F̌

ε(t, to)w
)
≤ L · d(u,w)

whenever ε ∈ ]0, δ], u,w ∈ D̂M
to , t ≥ 0 and to, to + t ∈ [0, T ].

Note that 1. states that [10, 1. in Theorem 2.6] is satisfied with ω(t) = Ct.

Proof. To prove 1., the key property is 2) in Theorem 2.2, see also [11,
Proposition 4.9].

F̌ (kτ, to + τ) ◦ F̌ (τ, to)u− F̌
(
(k + 1)τ, to

)
u

= P (kτ, to + τ)

(
P (τ, to)u+ τG

(
P (τ, to)u

)
χ[γ(to+τ),+∞[

)

+kτ G

(
P (kτ, to + τ)

(
P (τ, to)u+ τG

(
P (τ, to)u

)
χ[γ(to+τ),+∞[

))
·

·χ[γ(to+(k+1)τ),+∞[

−P
(
(k + 1)τ, to

)
u

−(k + 1)τ G
(
P
(
(k + 1)τ, to

)
u
)
χ[γ(to+(k+1)τ),+∞[

= P (kτ, to + τ)

(
P (τ, to)u+ τG

(
P (τ, to)u

)
χ[γ(to+τ),+∞[

)

−P (kτ, to + τ) ◦ P (τ, to)u− τ G
(
P
(
(k + 1)τ, to

)
u
)
χ[γ(to+(k+1)τ),+∞[

+kτ
[
G

(
P (kτ, to + τ)

(
P (τ, to)u+ τG

(
P (τ, to)u

)
χ[γ(to+τ),+∞[

))

−G
(
P (kτ, to + τ) ◦ P (τ, to)u

)]
χ[γ(to+(k+1)τ),+∞[ .

Using 2) in Theorem 2.2 in the first two lines with t = t′ = kτ , to = t′o
for to + τ , v = P (τ, to)u, ω = τGχ and in the latter two lines (G), 2) in
Theorem 2.2 with ω = 0. We thus get

d
(
F̌ (kτ, to + τ) ◦ F̌ (τ, to)u, F̌

(
(k + 1)τ, to

)
u
)

=
∥∥∥F̌ (kτ, to + τ) ◦ F̌ (τ, to)u− F̌

(
(k + 1)τ, to

)
u
∥∥∥
L1

≤ Cτ

∥∥∥∥∥∥
G
(
P (τ, to)u

)
χ[γ(to+τ),+∞[

−G
(
P
(
(k + 1)τ, to

)
u
)
χ[γ(to+(k+1)τ),+∞[

∥∥∥∥∥∥
L1

+C kτ2
∥∥∥G
(
P (τ, to)u

)∥∥∥
L1
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≤ Cτ
(
kτ ‖G‖

L∞ ‖γ̇‖
L∞ +C kτ

)
+ C

(∥∥G(0)
∥∥
L1

+ 1 +M
)
kτ2

≤ C (1 +M) kτ2 .

The bound 2. is a direct consequence of the equivalence (4.16) and (5.2) in
Lemma 5.1, see also [11, Proposition 4.9] and [7, formula (3.1)]. �

Proof of i), ii) and iv) in Theorem 3.2. By [10, Theorem 2.5], for any
M , the local flow F̌ generates a Lipschitz process P̂ on DM

t . By the char-
acterization of P̂ as limit of Euler polygonals, it follows that P̂ is uniquely
defined on all

D̂t =
⋃

M>0

D̂M
t =

{
u ∈ L1(R; Ω):

u(x) = 0 for all x < γ(t)
Υt(u) ≤ δ − C(T − t)

}
.

Hence, P̂ satisfies ii) in Theorem 3.2 and i) holds.

To prove iv), note that 1
t

∥∥∥F̂ (t.to)u− F̌ (t, to)u
∥∥∥
L1

→ 0 as t → 0, for all

u ∈ D̂to and apply [10, c) in Theorem 2.5]. �

For any N ∈ N, define the operator ΠN : L1(R; Rn) → PC(R; Rn) by

ΠN (u) = N
−1+N2∑

k=−1−N2

∫ (k+1)/N

k/N
u(ξ) dξ χ

]k/N,(k+1)/N]
.

Lemma 5.5 ΠN is a linear operator with norm 1. Moreover, TV (ΠNu) ≤
2TV(u) and for all u ∈ L1(R; Rn) ∩ BV(R; Rn), ΠNu→ u in L1(R; Rn).

For the proof, see [7, Lemma 3.4].

Proof of Proposition 3.3. Set for simplicity to = 0. Let ε, ε̃ > 0 and
N ∈ N be fixed. Consider an ε̃-approximate wave front tracking solution
uε,ε̃,N = uε,ε̃,N (t, x) to (1.2) on the time interval [0, ε[. Define it at time
t = ε setting

uε,ε̃,N (ε, x) = uε,ε̃,N (ε−, x) + εχ
[γ(ε),+∞[

(x)

(
ΠNG

(
uε,ε̃,N (ε−)

))
(x) .

Extend uε,ε̃,N recursively on [0, T ]. Note that

lim
ε̃→0

lim
N→+∞

uε,ε̃,N (t) = F̌ ε(t, 0)uo

where F̌ ε is defined in (5.3) and uo is the initial datum in (1.1). Note that
this is the usual operator splitting algorithm.
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Given any curve ℓ̃–non–characteristic curve Γ with support in Dγ , define

Ξε(t) = Ǩ



∑

x≥Γ(t)

ℓ̃∑

i=1

∣∣σx,i
∣∣+

∑

γ(t)≤x≤Γ(t)

n+1∑

i=ℓ̃+1

∣∣σx,i
∣∣+ K̂ Υε(t)




+TV
(
uε,ε̃,N

(
·,Γ(·)

)
; [0, t]

)
(5.4)

for suitable positive K̂, Ǩ.
Computations similar to those above allow to prove that Ξε(t+) ≤

Ξε(t−) for all t 6∈ εN. Indeed, when a wave crosses Γ, the increase in
TV(uε,ε̄,n) is compensated by the decrease in the first term on the right
hand side of (5.4).

At times t ∈ εN, Ξε(t)+ ≤ Ξε(t−) + Cε. Therefore, for all t ∈ [0, T ],
Ξε(t) ≤ Ξε(0) + Ct. By (5.4), we get that there exists a C dependent only
on uo and ℓ̃ such that

TV
(
uε,ε̃,N

(
·,Γ(·)

)
; [0, t]

)
≤ C .

Consider now two ℓ̃−non-characteristic curves Γ1,Γ2 with support in Dγ .
The same steps in the proof of Lemma 4.4 lead to

∫ T

0

∥∥∥uε,ε̃,N
(
t,Γ1(t)+

)
− uε,ε̃,N

(
t,Γ2(t)+

)∥∥∥ dt ≤
C

c
· ‖Γ2 − Γ1‖C0 .

Let now ε̃ → 0 and N → +∞, with the same technique of Proposition 2.3
we obtain
∫ T

0

∥∥∥∥
[
F̌ ε(t, 0)u

](
Γ1(t)+

)
−
[
F̌ ε(t, 0)u

](
Γ2(t)+

)∥∥∥∥dt ≤
C

c
‖Γ2 − Γ1‖C0 (5.5)

with a constant C that now depends also on T and on L2 in (G). Let now
also ε → 0 and, by the L1

loc
(R2; Ω) convergence of the Euler polygonals,

obtain as in Proposition 2.3 that

∫ T

0

∥∥∥∥
(
P̂ (t, 0)u

) (
Γ1(t)+

)
−
(
P̂ (t, 0)u

) (
Γ2(t)+

)∥∥∥∥dt ≤
C

c
‖Γ2 − Γ1‖C0 (5.6)

completing the proof. �

Proof of iii) and v) in Theorem 3.2. The Lipschitz continuity upon the
initial data is a consequence of [10, b) in Theorem 2.5], thanks to Proposi-
tion 5.4. The dependence of the Lipschitz constant for the variable t on the
L1 norm of the initial data is shown in Proposition 5.3.

The Lipschitz conditions (5.5) and (5.6) allow to prove the L1
(
[0, T ]; Ω

)

convergence of the traces as in Lemma 4.8:
(
F̌ ε(·, 0)u

) (
Γ(·)+

)
→
(
P (·, 0)u

) (
Γ(·)+

)
in L1([0, T ]; Ω) .
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The map t→ F̌ ε(t, 0)u satisfies for a.e. t the boundary condition, hence the
same does the solution t → P (t, 0)u, proving 2. in Definition 3.1. Condi-
tion 3. in the same definition is proved using the tangency condition 3), as
in [7, Corollary 3.14].

We are left to prove the Lipschitz dependence from the boundary and
the boundary data. To this aim, introduce two boundaries γ and γ̄, with

γ ≤ γ̄ and boundary data g, ḡ. Let D̂t,
¯̂
Dt, P̂

g,γ(t, to) and P̂ ḡ,γ̄(t, to) the
corresponding domains and processes. We need to prove that for any u ∈

D̂0 ∩
¯̂
D0 (and therefore u(x) = 0 for x ≤ γ̄(0)):

∥∥∥P̂ g,γ(t, 0)u − P̂ ḡ,γ̄(t, 0)u
∥∥∥
L1(R)

≤ C

[
‖γ − γ̄‖

C0([0,t])+

∫ t

0

∥∥g(τ) − ḡ(τ)
∥∥ dτ

]
.

Note first that
∥∥∥P̂ g,γ(t, 0)u − P̂ ḡ,γ̄(t, 0)u

∥∥∥
L1(R)

≤ C ‖γ − γ̄‖
C0([0,t]) +

∥∥∥P̂ g,γ(t, 0)u − P̂ ḡ,γ̄(t, 0)u
∥∥∥
L1(It)

where It =
[
γ̄(t),+∞

[
. Hence, we consider below only the latter term in

the right hand side above. Introduce the linear projector πtv = v χ
It

and

denote w(τ) = P̂ g,γ(τ, 0)u. Then, applying [6, Theorem 2.9] to the process
P̂ ḡ,γ̄ and to the Lipschitz curve τ → πτw(τ), using the tangency condition,
we compute

∥∥∥P̂ g,γ(t, 0)u− P̂ ḡ,γ̄(t, 0)u
∥∥∥
L1(It)

≤ L

∫ t

0
lim inf
ε→0

∥∥∥πτ+εw(τ + ε) − P̂ ḡ,γ̄(ε, τ)
(
πτw(τ)

)∥∥∥
L1(Iτ+ε)

ε
dτ

≤ L

∫ t

0
lim inf
ε→0

∥∥∥P̂ g,γ(ε, τ)w(τ) − P̂ ḡ,γ̄(ε, τ)
(
πτw(τ)

)∥∥∥
L1(Iτ+ε)

ε
dτ

≤ L

∫ t

0
lim inf
ε→0

∥∥∥P g,γ(ε, τ)
(
w(τ)

)
− P ḡ,γ̄(ε, τ)

(
πτw(τ)

)∥∥∥
L1(Iτ+ε)

ε
dτ

+ L

∫ t

0

∥∥∥G
(
w(τ)

)
−G

(
πτw(τ)

)∥∥∥
L1(R)

dτ .

For the term deriving from the source, we use the L1 Lipschitz continuity
of G to estimate:
∫ t

0

∥∥∥G
(
w(τ)

)
−G

(
πτw(τ)

)∥∥∥
L1(R)

dτ ≤ C

∫ t

0

∥∥∥w(τ) −
(
πτw(τ)

)∥∥∥
L1(R)

dτ

≤ C T ‖γ − γ̄‖
C0([0,t]).
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Concerning the other term, denote by F go,γ(t, to)u the tangent vector defined
in (4.6). Here, we explicitly denote the dependence of the tangent vector
on the curve γ and on the pointwise boundary data go = g(to). By 3) in
Theorem 2.2, the curve η → P ḡ,γ̄(η, τ)

(
πτw(τ)

)
is first order tangent to

η → F ḡ(τ),γ̄(η, τ)
(
πτw(τ)

)
, while η → P g,γ(η, τ)w(τ) is first order tangent

to η → F g(τ),γ(η, τ)
(
w(τ)

)
. Because of the finite propagation speed, the

two tangent vectors coincide in the interval [γ̄(τ) + ηλ̂,+∞[. Therefore,

∫ t

0
lim inf
ε→0

∥∥∥P g,γ(ε, τ)w(τ) − P ḡ,γ̄(ε, τ)
(
πτw(τ)

)∥∥∥
L1(Iτ+ε)

ε
dτ

=

∫ t

0
lim inf
ε→0

∥∥∥F g(τ),γ(ε, τ)w(τ) − F ḡ(τ),γ̄(ε, τ)
(
πτw(τ)

)∥∥∥
L1(Iτ+ε)

ε
dτ

=

∫ t

0
lim inf
ε→0

1

ε

∫ γ̄(τ)+ελ̂

γ̄(τ+ε)

∥∥∥∥∥
(
F g(τ),γ(ε, τ)w(τ)

)
(x)

−
(
F ḡ(τ),γ̄(ε, τ)

(
πτw(τ)

))
(x)

∥∥∥∥∥ dxdτ .

Referring to Lemma 4.1, introduce the quantities

wτr = w
(
τ, γ̄(τ)

)
,

b(wσ̄,τ ) = ḡ(τ),

wτr = ψn(σ̄n) ◦ . . . ◦ ψℓ+1(σℓ+1)(w
σ̄,τ ).

w̃τ (x) =

{
w(τ, x) for x ≥ γ(τ),

w
(
τ, γ(τ)

)
for x < γ(τ),

˜̄wτ (x) =

{
w(τ, x) for x ≥ γ̄(τ),

wσ̄,τ for x < γ̄(τ)

By formulæ (4.5)–(4.6) and since the boundary condition is satisfied for

almost all τ , that is b
(
w
(
τ, γ(τ)

))
= g(τ), one has for x ≥ γ̄(τ + ε)

(
F g(τ),γ(ε, τ)w(τ)

)
(x) = (Sεw̃

τ ) (x)
(
F ḡ(τ),γ̄(ε, τ)

(
πτw(τ)

))
(x) =

(
Sε ˜̄w

τ)
(x)

where S is the purely convective Standard Riemann Semigroup without
boundary generated by f [6, Definition 9.1].

Denote by U ♯τ and Ū ♯τ the solutions to the two Riemann problems:




ut + f(u)x = 0

u(0, x) =

{
w̃τ (γ̄(τ)−) for x < 0

w̃τ
(
γ̄(τ)

)
for x > 0





ut + f(u)x = 0

u(0, x) =

{
˜̄wτ (γ̄(τ)−) for x < 0

˜̄wτ
(
γ̄(τ)

)
for x > 0
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Formula [6, (9.16)] implies that

∫ t

0
lim inf
ε→0

1

ε

∫ γ̄(τ)+ελ̂

γ̄(τ+ε)

∥∥∥∥∥ (Sεw̃
τ ) (x) − (Sεw̃

τ ) (x)

∥∥∥∥∥ dxdτ

≤

∫ t

0
lim inf
ε→0

1

ε

∫ ελ̂

γ̄(τ+ε)−γ̄(τ)

∥∥∥U ♯τ (ε, x) − Ū ♯τ (ε, x)
∥∥∥ dxdτ

By Remark 3.4, for almost all τ such that γ(τ) < γ̄(τ) one has w̃τ (γ̄(τ)−) =

w̃τ (γ̄(τ)−) = wτr , therefore U ♯τ (ε, x) ≡ wr. While for almost all τ such that
γ(τ) = γ̄(τ), the boundary condition implies w̃τ (γ̄(τ)−) = w̃τ

(
γ(τ)

)
= wτr

therefore we have again U ♯τ (ε, x) ≡ wτr . We compute, for almost all τ

∥∥∥U ♯τ (ε, x) − Ū ♯τ (ε, x)
∥∥∥ ≤ C

∥∥∥Eσb
(
wτr , ḡ(τ)

)∥∥∥

= C
∥∥∥Eσb

(
wτr , ḡ(τ)

)
− Eσb

(
wτr , b(w

τ
r )
)∥∥∥ ≤ C

∥∥∥ḡ(τ) − b
(
wτr
)∥∥∥ .

Finally we compute, using Proposition 3.3,

∫ t

0
lim inf
ε→0

1

ε

∫ ελ̂

γ̄(τ+ε)−γ̄(τ)

∥∥∥U ♯τ (ε, x) − Ū ♯τ (ε, x)
∥∥∥ dxdτ

≤ C

∫ t

0

∥∥∥ḡ(τ) − b
(
wτr
)∥∥∥ dτ

≤ C

∫ t

0

∥∥ḡ(τ) − g(τ)
∥∥ dτ + C

∫ t

0

∥∥∥∥b
(
w
(
τ, γ(τ)

))
− b

(
w
(
τ, γ̄(τ)

))∥∥∥∥ dτ

≤ C

∫ t

0

∥∥ḡ(τ) − g(τ)
∥∥ dτ + ‖γ − γ̄‖

C0 .

The general case of two non ordered curves follows immediately by the tri-
angle inequality. �
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