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Abstract

We consider an Ito stochastic differential equation with delay, driven by brownian mo-
tion, whose solution, by an appropriate reformulation, defines a Markov process X with
values in a space of continuous functions C, with generator L. We then consider a back-
ward stochastic differential equation depending on X, with unknown processes (Y, Z), and
we study properties of the resulting system, in particular we identify the process Z as a
deterministic functional of X. We next prove that the forward-backward system provides a
suitable solution to a class of parabolic partial differential equations on the space C driven
by L, and we apply this result to prove a characterization of the fair price and the hedging
strategy for a financial market with memory effects. We also include applications to optimal
stochastic control of differential equation with delay: in particular we characterize optimal
controls as feedback laws in terms of the process X.

1 Introduction

We will consider stochastic differential equations with delay (SDDEs for short) on a finite interval
of the form {

dyt = b(t, yt+·) dt+ σ(t, yt+·) dWt, t ∈ [0, T ],
yθ = x(θ), θ ∈ [−r, 0],

(1.1)

for an unknown process (yt)t∈[−r,T ] in Rn. Here r > 0 is the maximum delay taken into ac-
count, and we use the notation yt+· = (yt+θ)θ∈[−r,0]. It is customary (see for instance [14]) and
convenient to introduce the space C = C([−r, 0];Rn) and the C-valued process X = (Xt)t∈[0,T ]

defined by
Xt(θ) = yt+θ, θ ∈ [−r, 0].

With this notation, b(t, ·) and σ(t, ·) are functions defined on C and the equation can be written
{
dyt = b(t,Xt) dt+ σ(t,Xt) dWt, t ∈ [0, T ],
Xt = x ∈ C.

SDDEs are a classical subject: in the standard reference book [18] (see also [19]) basic re-
sults are established: existence and uniqueness of solutions, regular dependence on parameters,
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Markov property of X as a C-valued process, characterization of its generator. In [7] long time
asymptotics is studied in detail.

In this paper we will present new results on optimal control problems for SDDEs. More-
over, since the Markov character of solutions allows for application of dynamic programming
arguments, we will also prove new results on the corresponding Hamilton-Jacobi-Bellman equa-
tion. More generally, we will consider a class of semilinear versions of the parabolic Kolmogorov
equation associated to the process X. This class includes as a very special case some infinite-
dimensional variants of the Black-Scholes equation for the fair price of an option, of great interest
in mathematical finance and already considered in [5].

The main tool will be the use of techniques from the theory of backward stochastic differential
equations (BSDEs) in the sense of Pardoux-Peng, first considered in the nonlinear case in the
paper [24]. We refer to the monographs [8], [23] for an exposition of the basic theory. The BSDE
approach that we follow consists in addressing equation (1.1), but with generic initial values
t ∈ [0, T ] and x ∈ C = C([−r, 0];Rn), and then coupling with another equation of backward
type, with unknown processes (Y, Z). More precisely one considers the forward-backward system





dyt,x
τ = b(τ,Xt,x

τ ) dτ + σ(τ,Xt,x
τ ) dWτ , τ ∈ [t, T ] ⊂ [0, T ],

Xt,x
t = x,

dY t,x
τ = ψ(τ,Xt,x

τ , Y t,x
τ , Zt,x

τ ) dτ + Zt,x
τ dWτ ,

Y t,x
T = φ(Xt,x

T ),

(1.2)

where ψ : [0, T ] ×C × R × Rd → R and φ : C → R are given functions. One can then define a
(deterministic) function v : [0, T ]×C → R setting v(t, x) = Y t,x

t . Markovianity of system (1.2)
immediately yields that Y t,x

τ = v(τ,Xt,x
τ ). In addition we prove that

Zt,x
τ = ∇0v

(
τ,Xt,x

τ

)
σ(τ,Xt,x

τ ), (1.3)

where ∇0 is a differential operator defined by

∇0v(t, x) = ∇xv(t, x)({0}). (1.4)

To explain the above expression we recall that the gradient ∇xv(t, x) at point (t, x) ∈ [0, T ]×C
is an element of the dual space C∗, hence an n-tuple of finite Borel measures on [−r, 0]. Thus,
∇0v(t, x) is a vector in Rn whose components are the masses at point 0 of the components of
∇xv(t, x). We stress the fact that, as it is customary when relating BSDEs and PDEs (see for
instance [25]), the above ‘identification of Z’ is one of the main technical points of this paper.
The proof presented in section 3 is performed by computing the joint quadratic variation of
(v(τ,Xt,x

τ ))τ∈[t,T ] and (Wτ )τ∈[t,T ], using Malliavin calculus techniques.
We are then able to prove that v is the unique solution (in a suitable mild sense) of a

semilinear parabolic equation of the form:




∂v(t, x)
∂t

+ Ltv(t, x) = ψ(t, x, v(t, x),∇0v(t, x)σ(t, x)),

v(T, x) = φ(x), t ∈ [0, T ], x ∈ C,

(1.5)

where Lt is the generator of the Markov process (Xt,x
τ ) (see [18], [19] or Remark 2.4 below).

If one considers the controlled SDDE
{
dyu

s = b(s,Xu
s ) ds+ σ(s,Xu

s ) [h(s,Xu
s , us)) ds+ dWs], s ∈ [t, T ],

Xt = x,
(1.6)
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where the solution depends on a control process u(·) taking values in a space U , and h : [0, T ]×
C× U → Rd is given, and one tries to minimize a cost functional

J(t, x, u(·)) = E
∫ T

t
g(us) ds+ Eφ(Xu

T ), (1.7)

where g : U → [0,∞), then equation (1.5) is the associated Hamilton-Jacobi-Bellman equation,
provided the hamiltonian function ψ : [0, T ]×C× Rd → R is defined by the formula

ψ (t, x, z) = inf {g(u) + zh (t, x, u) : u ∈ U} , t ∈ [0, T ], x ∈ C, z ∈ Rd.

This way we eventually prove that v coincides with the value function of the control problem
and that ∇0v occurs in the construction of the optimal feedback.

Although BSDEs were known to be useful tools in the study of control problems and nonlinear
partial differential equations, applications to infinite-dimensional state spaces are more recent
and difficult: see e.g. [11], [12] for the case of a Hilbert space, and [17] for some related results on
Banach spaces. In these papers, as well as in the present one, the solution of (1.5) is understood
in the so-called mild sense. Special difficulties arise if the space C is used as the state space of
the basic stochastic process X. In particular, even in the deterministic case, it is not clear how
to formulate the state equation as an evolution equation in C, see [14]. The reason for choosing
to work in C is to allow for great generality on the coefficients b, σ of the SDDEs as well as on
the cost functional of the control problem. For instance the functional φ occurring in (1.7) could
have the form

φ(z) =
∫

[−r,0]
g(z(θ))µ(dθ), z ∈ C, (1.8)

for some g ∈ C1(R) and some (finite signed) measure µ on [−r, 0]. The special case when µ is
supported on a finite number of points is of particular interest and could be studied by direct
methods, but it is included in our results. More generally, if φ1, . . . , φn are functionals with the
form (1.8) corresponding to functions g1, . . . , gn ∈ C1(R), and if h ∈ C1(Rn), then the functional
φ(z) = h(φ1(z), . . . , φn(z)), can also be treated by our methods. One could avoid the use of the
space C by looking at X as a process with values in the space L2([0, T ];Rn) instead. This
was the approach taken in [13]. However, this leads to restrictions on the applicability of the
corresponding results.

Optimal control problems for SDDEs have been thoroughly investigated in recent years. The
book [4] is a systematic exposition of the state of the existing theory in all aspects and contains
an extensive bibliography. Typically, one of the main achievements of optimal control theory is
the characterization of the value function as the unique viscosity solution of a Hamilton-Jacobi-
Bellman equation. Unfortunately, the proof of uniqueness reported in [4] seems to contain a gap
(see the inequality at the bottom of page 175 as well as the subsequent arguments) and therefore
we prefer not to rely on this result. In fact, we do not prove any result in the framework of
viscosity solutions. Indeed in our paper, see section 6, we assume stronger conditions, namely a
special form for the control system (1.6) and differentiability assumptions on the data b, σ, φ, ψ
with respect to the space variable x ∈ C. Under these assumptions we consider a different notion
of solution and we are able to prove that a unique solution exists and has further properties, in
particular differentiability. We note that the existence of the gradient of v is of special interest in
optimal control theory, since not only does it occur in the (mild) formulation of the corresponding
Hamilton-Jacobi-Bellman equation but it also allows to characterize the optimal controls via
feedback laws and to prove existence of optimal controls after appropriate formulation.

Parabolic equations on the space C of the form (1.5) have also been considered for other
purposes, in particular as an infinite dimensional generalization of the Black-Scholes equation

3



for the fair price of an option, in case the market models or the claim exhibit memory effects.
In [4] the existence and uniqueness result for a viscosity solution is stated but the proof has the
same problems as in the case of the Hamilton-Jacobi-Bellman equation. In [5], by a verification
theorem, it is shown that if the price of the claim is once differentiable in time and twice in
space and, in addition, for all times it belongs to the domain of the generator of the shift
operator S (see Remark 2.4 below) then it solves the generalized Black-Scholes equation in a
classical way. Here, see Section 7, we prove that, if the coefficients in the market and the claim
are differentiable, then the price is the unique mild solution of the generalized Black-Scholes
equation. Moreover, the special operator ∇0 defined in (1.4) occurs in the construction of the
hedging strategy. Although more natural than in [5], admittedly our assumptions (in particular
differentiability of the claim) are not totally satisfactory for applications. We finally mention
that in a similar spirit some formulae of Black-Scholes type are proved in [1] for markets with
delay effects.

The plan of the paper is as follows: in section 2 we introduce notation and review some
results on SDDEs, adding some precision on regularity properties of the solution, concerning in
particular their Malliavin derivative. Section 3 is devoted to proving Theorem 3.1, which is the
key of many subsequent results; here the operator ∇0 is introduced. In section 4 we present the
forward-backward system (1.2) and prove in particular formula (1.3). Section 5 is devoted to
the study of equation (1.5): it is proved that a unique mild solution exists and it is connected to
the solution of the forward-backward system (1.2) by formula (1.3). In section 6 we study the
optimal control problem; we prove in particular that the value function of the control problem is
a solution (in the mild sense) of the Hamilton Jacobi Bellman equation; moreover we show that
the so-called fundamental relation holds, we give criteria for optimality of feedback controls and
we prove existence of optimal controls in the weak sense. Finally in section 7 it is shown how
(1.5) may arise as the a Black-Scholes equation in a financial market with memory effects and
we give explicit conditions for its solvability.

2 Preliminary results on stochastic delay differential equations

2.1 Notations

In this paper we consider a complete probability space (Ω,F ,P) and a standard Wiener process
W = (Wt)t≥0 with values in Rd. We denote by (Ft)t≥0 the natural filtration of W augmented
in the usual way by the sets of P-measure 0.

For fixed r > 0, we introduce the space

C = C([−r, 0];Rn)

of continuous functions from [−r, 0] to Rn, endowed with the usual norm |f |C = supθ∈[−r,0] |f(θ)|.
We will consider C-valued stochastic processes: for T > 0 we say that a C-valued process
(Xt)t∈[0,T ] belongs to the space Sp([0, T ];C) (1 ≤ p < ∞) if its path are C-continuous P-a.s.
and the norm

‖X‖p
Sp([0,T ];C) = E sup

t∈[0,T ]
|Xt|pC = E sup

t∈[0,T ]
sup

θ∈[−r,0]
|Xt(θ)|p

is finite. Here and in the following, if no confusion is possible, we denote the norm of Rn, Rd

and Rnd by | · |.
We next define several classes of differentiable functions between Banach spaces, first intro-

duced in [11] in connection with stochastic processes, which allow to formulate several regularity
results in a compact way.
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In the following, if E and K are Banach spaces, we denote by G1(E,K) the space of continu-
ous functions u : E → K such that: 1) u is continuous; 2) u is Gâteaux differentiable on E, with
Gâteaux differential at point x ∈ E denoted by ∇u(x) ∈ L(E,K) (the latter being the space of
bounded linear operators from E to K, endowed with its usual norm); 3) for every h ∈ E, the
map x→ ∇u(x)h is continuous from E to K. We note that the map x→ ∇u(x) is not required
to be continuous from E to L(E,K): if this happens then u is also Fréchet differentiable.

We say that a function v : [0, T ]×E → K belongs to G0,1([0, T ]×E,K) if: 1) v is continuous;
2) for every t ∈ [0, T ], v(t, ·) is Gâteaux differentiable on E, with Gâteaux differential at point
x ∈ E denoted by ∇xv(t, x) ∈ L(E,K); 3) for every h ∈ E, the map (t, x) → ∇xv(t, x)h is
continuous from [0, T ]×E to K.

Now suppose E = C([a, b];Rn), where a, b ∈ R, a < b. We recall that the dual space
of C([a, b]) is the space of finite Borel measures on [a, b], endowed with the variation norm.
Identifying E with the product space C([a, b])n in the obvious way we conclude that the dual
space E∗ of E can be identified with the space of n-tuples µ = (µk)n

k=1, where each µk is a
finite Borel measure on [a, b], and the value of µ at an element g = (gk)n

k=1 ∈ C([a, b])n, where
gk ∈ C([a, b]), is denoted

∫

[a,b]
g(θ) · µ(dθ) =

n∑

k=1

∫

[a,b]
gk(θ)µk(dθ).

Let v : [0, T ]×C → R be a function such that v(t, ·) is Gâteaux differentiable on C for every
t ∈ [0, T ]. Then the gradient ∇xv(t, x) at point (t, x) ∈ [0, T ] ×C is an n-tuple of finite Borel
measures on [−r, 0]. We denote by |∇xv(t, x)| its total variation norm and we define

∇0v(t, x) = ∇xv(t, x)({0}) (2.1)

i.e., ∇0v(t, x) is a vector in Rn whose components ∇k
0v(t, x) (k = 1, . . . , n) are the masses at

point 0 of the components of ∇xv(t, x).

Remark 2.1 In the following, a basic role will be played by the space G0,1([0, T ] × C,R):
according to the previous definitions, it consists of real continuous functions v on [0, T ]×C such
that, for every t ∈ [0, T ], v(t, ·) is Gâteaux differentiable on C, with Gâteaux differential at point
x ∈ C denoted by ∇xv(t, x) (an n-tuple of finite Borel measures on [−r, 0]), such that the map

(t, x) → 〈∇xv(t, x), h〉C∗,C =
∫

[−r,0]
h(θ) · ∇xv(t, x)(dθ)

is continuous on [0, T ]×C, for every h ∈ C.

2.2 Stochastic delay differential equations

We fix T > 0 and we consider the following stochastic delay differential equation for an unknown
process (yt)t∈[0,T ] taking values in Rn:

{
dyt = b(t, yt+·) dt+ σ(t, yt+·) dWt, t ∈ [0, T ],
yθ = x(θ), θ ∈ [−r, 0],

(2.2)

where yt+· denotes the past trajectory from time t− r up to time t, namely yt+· = (yt+θ)θ∈[−r,0],
and r > 0 is the delay. b(t, ·) and σ(t, ·) are functions of the past trajectory of y and they are
defined on the space of continuous functions, namely b : [0, T ]×C → Rn and σ : [0, T ]×C → Rnd,
where Rnd is identified with L(Rd,Rn) the space of linear operators from Rd to Rn. The function
x ∈ C is the initial condition. We will refer to equation (2.2) as delay equation.

We make the following assumptions on the coefficients of (2.2).
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Hypothesis 2.2 1. The functions b : [0, T ]×C → Rn and σ : [0, T ]×C → Rnd are contin-
uous and there exists a constant K > 0 such that for all t ∈ [0, T ] and y(·) ∈ C

|b(t, y(·))|+ |σ(t, y(·))| ≤ K (1 + |y(·)|C);

2. there exists a constant L > 0 such that for all t ∈ [0, T ] and y(·), z(·) ∈ C

|b(t, y(·))− b(t, z(·))|+ |σ(t, y(·))− σ(t, z(·))| ≤ L |y(·)− z(·)|C;

3. for all t ∈ [0, T ], b(t, ·) ∈ G1(C,Rn), σ(t, ·) ∈ G1(C,Rnd).

In the following we collect some results on existence and uniqueness of a solution to equation
(2.2) and on its regular dependence on the initial condition. It turns out that there exists a
continuous solution, so we can define a C-valued process X = (Xt)t∈[0,T ] by

Xt(θ) = yt+θ, θ ∈ [−r, 0]. (2.3)

We notice that if t + θ < 0 then yt+θ = x(t + θ). We will use the notations yx , yx
t , Xx or Xx

t

to indicate dependence on the starting point x ∈ C.

Theorem 2.3 If Hypothesis 2.2, points 1 and 2, holds true then there exists a unique continuous
adapted solution of the delay equation (2.2), and moreover the process (Xt)t∈[0,T ] belongs to
Sp([0, T ];C) for every p ≥ 2 and

‖X‖p
Sp([0,T ];C) = E sup

t∈[−r,T ]
|yt|p ≤ C

for some constant C > 0 depending only on K,L, T, p.
In addition, the map x→ Xx is Lipschitz continuous from C to Sp([0, T ];C); more precisely,

‖Xx1 −Xx2‖Sp([0,T ];C) =

(
E sup

t∈[−r,T ]
|yx1

t − yx2
t |p

)1/p

≤ L sup
θ∈[−r,0]

|x1(θ)− x2(θ)|

for some constant L > 0 depending only on K,L, T, p.
If we further assume that Hypothesis 2.2, point 3, holds true then the map x→ Xx belongs

to the space G1(C,Sp([0, T ];C)).

Proof. For the proof (in the case of p = 2), we refer to [18], Chapter II: we refer to Theorem 2.1
for existence and uniqueness of the solution of equation (2.2), to Theorem 3.1 for the Lipschitz
dependence of this solution on the initial datum, and to Theorem 3.2 for the differentiability of
the solution with respect to the initial datum. See also [19], Theorems I.1 and I.2. The proof in
the case of p > 2 can be performed in a similar way.

Let us introduce a delay equation similar to (2.2) but with initial condition given at time
t ∈ [0, T ]:

{
dyt,x

τ = b(τ, yt,x
τ+·) dτ + σ(τ, yt,x

τ+·) dWτ , τ ∈ [t, T ],
yt,x

t+θ = x(θ), θ ∈ [−r, 0].
(2.4)

We introduce the C-valued process given by

Xt,x
τ (θ) = yt,x

τ+θ, θ ∈ [−r, 0]. (2.5)

By [18], Chapter III, Theorem 2.1, the C-valued process (Xt,x
τ )τ∈[t,T ] is a Markov process with

transition semigroup, acting on bounded and Borel measurable φ : C → R, given by

Pt,τ [φ](x) = Eφ(Xt,x
τ ), 0 ≤ t ≤ τ ≤ T, x ∈ C. (2.6)
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Remark 2.4 The transition semigroup (Pt,τ ) has been extensively studied in the literature,
see e.g. [18] and [19]. Although our techniques essentially bypass the difficulties related to the
characterization of the generator (Pt,τ ) and of its domain we briefly recall some result which
will appear in Section 5 in the formulation of the Kolmogorov equation. For simplicity, let us
consider the autonomous case in equation (2.4): b and σ do not depend on time and s = 0,
so we consider the one parameter semigroup (Pt)t∈[0,T ]. The transition semigroup (Pt) is never
strongly continuous on the space C, nevertheless it admits a weakly continuous generator L, see
[18], chapter IV and [19], chapter II. Let St : C → C denote the shift operator and let S denote
the weak generator of the corresponding semigroup. To derive a formula for the generator L
we need to augment C by adding an n-dimensional direction. L will be equal to the sum of
the generator of the shift semigroup S and a second order linear partial differential operator
along this new direction. Let Fn := {v10 : v ∈ Rn} and C ⊕ Fn := {f + v10 : f ∈ C, v ∈ Rn}
with the norm ‖f + v10‖C⊕Fn := |f |C + |v|. Suppose that φ : C → R is twice continuously
Fréchet differentiable and let f ∈ C. Then the Fréchet derivatives ∇φ(f) and ∇2φ(f) have
unique weakly continuous linear and bilinear extensions

∇φ(f) : C⊕ Fn → R, ∇2φ(f) : (C⊕ Fn)× (C⊕ Fn) → R.

Comparing with (1.4) we notice that ∇φ(f)(10) = ∇0φ(f). We are ready to introduce L.
Suppose that φ : C → R, φ ∈ D(S), and φ is sufficiently smooth (e.g. φ is twice continuously
differentiable and its derivatives are globally bounded and lipschitz continuous). Then φ ∈ D(L)
and ∀f ∈ C

L(φ)(f) = S(φ)(f) +∇φ(f)(b(f)10) +
1
2

n∑

i=1

∇2φ(f)(σ(f)(ei)10, σ(f)(ei)10), (2.7)

where {ei}n
i=1 is any basis of Rn.

We conclude this remark observing that, if C is replaced by L2([−r, 0];Rn), then L takes a
much simpler form, see for instance [13] page 314.

2.3 Differentiability in the Malliavin sense

Our aim is now to compute the Malliavin derivative of the solution of the delay equation. We
start by recalling some basic definitions from the Malliavin calculus. We refer the reader to the
book [20] for a detailed exposition.

We consider again a standard Wiener process W = (Wt)t≥0 in Rd and the Hilbert space
L2([0, T ];Rd) of Borel measurable, square summable functions on [0, T ] with values in Rd, with
its natural inner product. This can be identified with the product space (L2([0, T ]))d or with the
space L2(T ), where the measure space T := [0, T ]×{1, . . . , d} is endowed with the product of the
Lebesgue measure on [0, T ] and the counting measure on {1, . . . , d}. Elements h ∈ L2([0, T ];Rd)
may be denoted {hj(s), s ∈ [0, T ], j = 1, . . . , d} or {hj}, where hj ∈ L2([0, T ]).

For every h ∈ L2([0, T ];Rd) we denote

W (h) =
∫ T

0
h(s) · dWs =

d∑

j=1

hj(s) dW j
s .

W is an isometry of L2([0, T ];Rd) onto a gaussian subspace of L2(Ω), called the first Wiener
chaos. Given a Hilbert space K, let SK be the set of K-valued random variables F of the form

F =
m∑

r=1

fr(W (h1), . . . ,W (hn)) kr,
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where h1, . . . , hn ∈ L2([0, T ];Rd), {kr} is a basis of K and f1, . . . fm are infinitely differentiable
functions Rn → R bounded together with all their derivatives. The Malliavin derivative DF of
F ∈ SK is defined as the process {Dj

sF ; s ∈ [0, T ], j ∈ {1, . . . , d}} given by

Dj
sF =

m∑

r=1

n∑

k=1

∂kfr(W (h1), . . . ,W (hn))hj
k(s) kr,

with values in K; by ∂k we denote the partial derivatives with respect to the k-th variable. It is
known that the operator D : SK ⊂ L2(Ω;K) → L2(Ω× [0, T ]× {1, . . . , d};K) = L2(Ω× T ;K)
is closable. We denote by D1,2(K) the domain of its closure, endowed with the graph norm, and
we use the same letter to denote D and its closure:

D : D1,2(K) ⊂ L2(Ω;K) → L2(Ω× T ;K).

The adjoint operator of D,

δ : dom (δ) ⊂ L2(Ω× T ;K) → L2(Ω;K),

is called Skorohod integral. For a process u = {uj
s; s ∈ [0, T ], j ∈ {1, . . . , d}} ∈ dom(δ) we will

also use the notations

δ(u) =
∫ T

0
us d̂Ws =

d∑

j=1

∫ T

0
uj

s d̂W
j
s .

It is known that dom(δ) contains every (Ft)-predictable process in L2(Ω × T ;K) and for such
processes the Skorohod integral coincides with the Itô integral; dom(δ) also contains the class
L1,2(K), the latter being defined as the space of processes u ∈ L2(Ω × T ;K) such that uj

t ∈
D1,2(K) for a.e. t ∈ [0, T ] and every j, and there exists a measurable version of Di

su
j
t satisfying

‖u‖2
L1,2(K) = ‖u‖2

L2(Ω×T ;K) + E
d∑

i,j=1

∫ T

0

∫ T

0
‖Di

su
j
t‖2

K dt ds <∞.

Moreover, ‖δ(u)‖2
L2(Ω;K) ≤ ‖u‖2

L1,2(K). We note that the space L1,2(K) is isometrically isomor-
phic to L2(T ;D1,2(K)).

Finally we recall that if F ∈ D1,2(K) is measurable with respect to Ft then DjF = 0 a.s. on
Ω× (t, T ] for every j.

If K = R or K = Rn, we write D1,2 and L1,2 instead of D1,2(K) and L1,2(K) respectively.
We now introduce the Malliavin derivative for a functional of a stochastic process. In the

remainder of this section we set E = C([−r, T ];Rn). If f ∈ G1(E,Rn) then, according to the
notation introduced above,

〈∇f(x), g〉E∗,E =
∫

[−r,T ]
g(θ) · ∇f(x)(dθ), x, g ∈ E.

If y is a continuous stochastic process with time parameter [−r, T ] then f(y.) is a random
variable. We wish to state a chain rule for the Malliavin derivative of f(y.). We will restrict to
the case when y is adapted, more precisely its restriction to [0, T ] is adapted to (Ft)t∈[0,T ] and
its restriction to [−r, 0] is deterministic. Clearly, Dyt = 0 for t ∈ [−r, 0]. Following [15], lemma
2.6, we have the following basic result (we note that in [15] derivatives are understood in the
sense of Fréchet, but the same arguments apply to the present situation).
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Lemma 2.5 For E = C([−r, T ];Rn), let f ∈ G1(E,R) be a Lipschitz continuous function.
Assume that y = (yt)t∈[−r,T ] is a process in Rn satisfying the following conditions:

1. y is a continuous adapted process and E supt∈[−r,T ] |yt|2 <∞;

2. y ∈ L2([−r, T ],D1,2) and the process {Dsyt, 0 ≤ s ≤ t ≤ T} admits a version such that,
for every s ∈ [0, T ], {Dsyt, t ∈ [s, T ]} is a continuous process and

E
∫ T

0
sup

t∈[s,T ]
|Dsyt|2ds <∞.

Then f(y.) ∈ D1,2 and its Malliavin derivative is given by the formula: for j = 1, ..., d and a.e.
s ∈ [0, T ] we have, P-a.s.,

Dj
s(f(y·)) = 〈∇f(y.), Dj

sy·〉E∗,E =
∫

[−r,T ]
Dj

syθ · ∇f(y.)(dθ). (2.8)

Next we establish when the solution of the delay equation is Malliavin differentiable, and
moreover we write a stochastic (functional) differential equation satisfied by the Malliavin deriva-
tive. We substantially follow [15], Theorem 4.1.

Theorem 2.6 Let Hypothesis 2.2 be satisfied. Then the solution (yt)t∈[−r,T ] satisfies conditions
1. and 2. in Lemma 2.5. Moreover yt ∈ D1,2 for every t ∈ [0, T ] and the following equation
holds: for j = 1, ..., d and every s ∈ [0, T ] we have, P-a.s.,





Dj
syt = σ(s, ys+·) +

∫ t

s

∫

[−r,0]
Dj

syt+θ · ∇xb(t, yt+·)(dθ) dt

+
∫ t

s

∫

[−r,0]
Dj

syt+θ · ∇xσ(t, yt+·)(dθ) dWt, t ∈ [s, T ],

Dj
syt = 0, t ∈ [−r, s).

(2.9)

Finally, for every p ∈ [2,∞) and s ∈ [0, T ] we have

E
∫ T

0
sup

t∈[s,T ]
|Dsyt|pds <∞. (2.10)

Proof. Except for the final statement, the proof can be achieved with techniques similar to the
ones indicated in the proof of Theorem 4.1 in [15]. The only minor difference is that we consider
a general delay differential equation, while in [15] the coefficients depend on the past behavior
of the solution only after time 0: however, the same arguments apply.

The proof of the final statement follows by standard estimates on equation (2.10), taking
into account that ∇xb and ∇xσ are bounded in the total variation norm.

Corollary 2.7 Suppose that the assumptions of Theorem 2.6 hold true, let C = C([−r, 0];Rn)
and (Xt)t∈[0,T ] be the C-valued process defined by (2.3). Suppose that f ∈ G1(C;R) satisfies

|∇f(x)| ≤ C(1 + |x|C)m, x ∈ C,

for some C > 0 and m ≥ 0.
Then for every t ∈ [0, T ], f(Xt) = f(yt+·) belongs to D1,2 and for j = 1, ..., d we have, for

a.e. s ∈ [0, T ], P-a.s.,

Dj
s(f(Xt)) = 〈∇f(Xt), Dj

syt+·〉C∗,C =
∫

[−r,0]
Dj

syt+θ · ∇f(Xt)(dθ). (2.11)
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Proof. The conclusion follows immediately from Lemma 2.5 and Theorem 2.6 if f is a Lipschitz
function. The general case can be proved by approximating f by a sequence of Lipschitz functions
obtained by a standard truncation procedure.

Remark 2.8 The first result on Malliavin differentiability of the solution of a functional stochas-
tic differential equations was proved in [16]. In that paper the aim was to prove that yt belongs
to the domain of the generator of the Ornstein-Uhlenbeck semigroup of the Malliavin calculus,
therefore more restrictive assumptions were assumed on the coefficients of equation (2.2), in
particular they were required to be twice differentiable.

3 A result on joint quadratic variations

The aim of this section is to state and prove a technical result, Theorem 3.1, which will be used
in the rest of this paper. To state this theorem we need to recall some definitions concerning joint
quadratic variations of stochastic processes and to introduce a differential operator, denoted ∇0,
which will also play a basic role in the sequel.

We say that a pair of real stochastic processes (Xt, Yt), t ≥ 0, admits a joint quadratic
variation on the interval [0, T ] if setting

Cε
[0,T ](X,Y ) =

1
ε

∫ T

0
(Xt+ε −Xt)(Yt+ε − Yt) dt, ε > 0,

the limit limε→0C
ε
[0,T ](X,Y ) exists in probability. The limit will be denoted 〈X,Y 〉[0,T ].

This definition is taken from [27], except that we do not require that the convergence in
probability holds uniformly with respect to time. In [27] the process 〈X,Y 〉 is called generalized
covariation process; several properties are investigated in [28], [29], often in connection with the
stochastic calculus introduced in [26]. With respect to the classical definition, the present one
has some technical advantages that are useful when dealing with convergence issues (compare
for instance the proof of Theorem 3.1 below).

In the following we will consider joint quadratic variations over different intervals, which is
defined by obvious modifications.

It is easy to show that if X has paths with finite variation and Y has continuous paths then
〈X,Y 〉[0,T ] = 0.

IfX and Y are stochastic integrals with respect to the Wiener process then the joint quadratic
variation as defined above coincides with the classical one. A similar conclusion holds for general
semimartingales: see [27], Proposition 1.1.

We set C = C([−r, 0];Rn) and, for every t ∈ [0, T ] and x ∈ C, we let {Xt,x
s , s ∈ [t, T ]} denote

the process defined by the equality (2.5), obtained as a solution to equation (2.4). In particular
it is an C-valued process with continuous paths and adapted to the filtration {F[t,s], s ∈ [t, T ]}.
Xt,x

s (ω) is measurable in (ω, s, t, x).
Let u : [0, T ] × C → R be a function such that u(t, ·) is Gâteaux differentiable on C for

every t ∈ [0, T ]. Then the gradient ∇xu(t, x) at point (t, x) ∈ [0, T ] ×C is an n-tuple of finite
Borel measures on [−r, 0]; we denote by |∇xu(t, x)| its total variation norm and we denote
∇0u(t, x) = ∇xu(t, x)({0}), compare (2.1); thus, ∇0u(t, x) is a vector in Rn whose components
∇k

0u(t, x) (k = 1, . . . , n) are the masses at point 0 of the components of ∇xu(t, x).
We denote W i (i = 1, . . . , d) the i-th component of the Wiener process W , by σi the i-th

column of the n× d matrix σ, and by σi
k (k = 1, . . . , n) its components.
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Theorem 3.1 Assume that u : [0, T ]×C → R is a Borel measurable function such that u(t, ·) ∈
G1(C,R) for every t ∈ [0, T ] and

|u(t, x)|+ |∇xu(t, x)| ≤ C(1 + |x|)m, (3.1)

for some C > 0,m ≥ 0 and for every t ∈ [0, T ], x ∈ E.
Then for every x ∈ C, i = 1, . . . , d and 0 ≤ t ≤ T ′ < T the processes {u(s,Xt,x

s ), s ∈ [t, T ]}
and W i admit a joint quadratic variation on the interval [t, T ′], given by the formula:

〈u(·, Xt,x
· ),W i〉[t,T ′] =

∫ T ′

t
σi(s,Xt,x

s ) · ∇0u(s,Xt,x
s ) ds =

n∑

k=1

∫ T ′

t
σi

k(s,X
t,x
s ) · ∇k

0u(s,X
t,x
s ) ds.

Proof. For the sake of simplicity we write the proof in the case t = 0, the general case being
deduced by the same arguments.

We fix x ∈ C, T ′ ∈ (0, T ) and we denote X0,x by X for simplicity. Thus, Xt = y(t + ·),
t ∈ [0, T ], satisfies

dy(t) = b(t,Xt) dt+ σ(t,Xt) dWt, X0 = x.

We will use the results on the Malliavin derivatives stated in Theorem 2.6, and in particular
formula (2.9) that, in view of (2.11), can be written in the form:

Dsy(t) = σ(s,Xs) +
∫ t

s
Ds[b(r,Xr)] dr +

∫ t

s
Ds[σ(r,Xr)] dWr, (3.2)

for 0 ≤ t ≤ s ≤ T . Noting that ∇xb(t, x) and ∇xσ(t, x) are bounded by the Lipschitz constant
L of b(t, ·) and σ(t, ·), it follows from (2.11) that for every r ∈ [0, T ]

‖D·[b(r,Xr)]‖2 ≤ L2

∫ T

0
sup

t∈[s,T ]
|Dsy(t)|2 ds, ‖D·[σ(r,Xr)]‖2 ≤ L2

∫ T

0
sup

t∈[s,T ]
|Dsy(t)|2 ds,

(3.3)
where ‖ · ‖ denotes the norm in L2([0, T ];Rd).

We have to prove that

Cε := Cε
[0,T ′](u(·, X·),W i) =

1
ε

∫ T ′

0
(u(t+ ε,Xt+ε)− u(t,Xt))(W i

t+ε −W i
t ) dt

→
∫ T ′

0
σi(t,Xt) · ∇0u(t,Xt) dt

in probability, as ε→ 0.
We need to re-write Cε in an appropriate way, fixing ε > 0 so small that T ′ + ε ≤ T . We

first explain our argument by writing down some informal passages: by the rules of Malliavin
calculus we have, for a.a. t ∈ [0, T ′],

(u(t+ ε,Xt+ε)− u(t,Xt))(W i
t+ε −W i

t ) = (u(t+ ε,Xt+ε)− u(t,Xt))e∗i

∫ t+ε

t
dWs

=
∫ t+ε

t
Di

s(u(t+ ε,Xt+ε)− u(t,Xt)) ds+
∫ t+ε

t
(u(t+ ε,Xt+ε)− u(t,Xt))e∗i d̂Ws,

(3.4)

where the symbol d̂W denotes the Skorohod integral, and by ei we denote the i-th component
of the canonical basis of Rd and by e∗i its transpose (row) vector. Integrating over [0, T ′] with
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respect to t and interchanging integrals gives

ε Cε =
∫ T ′

0

∫ t+ε

t
Di

s(u(t+ ε,Xt+ε)− u(t,Xt)) ds dt

+
∫ T ′+ε

0

∫ s∧T ′

(s−ε)+
(u(t+ ε,Xt+ε)− u(t,Xt)) dt e∗i d̂Ws.

(3.5)

To justify (3.4) and (3.5) rigorously we proceed as follows. To shorten notation we define

vt = (u(t+ ε,Xt+ε)− u(t,Xt)) 1[0,T ′](t), t ∈ [0, T ],

Aε = {(t, s) ∈ [0, T ]× [0, T ] : 0 ≤ t ≤ T ′, t ≤ s ≤ t+ ε}.
Using Corollary 2.7 and formula (2.10), it is easy to show that, for all t, vt belongs to D1,2 and
the process vt 1Aε(t, ·) belongs to L2(Ω× [0, T ]). By [21] Theorem 3.2 (see also [20] Section 1.3.1
(4)) we conclude that vt 1Aε(t, ·) e∗i is Skorohod integrable and the formula

∫ T

0
vt 1Aε(t, s) e∗i d̂Ws = vt

∫ T

0
1Aε(t, s) e∗i d̂Ws −

∫ T

0
Di

svt 1Aε(t, s) ds =: zt, (3.6)

holds provided zt belongs to L2(Ω). Since
∫ T
0 1Aε(t, s) d̂Ws coincides with the Ito integral∫ T

0 1Aε(t, s) dWs = (Wt+ε − Wt)1[t,T ′](t), it is in fact easy to verify that we even have z ∈
L2(Ω× [0, T ]); thus (3.6) holds for a.a. t, and (3.6) yields (3.4) for a.a. t ∈ [0, T ′].

Next we wish to show that the process
∫ T
0 vt1Aε(t, ·) dt ei is Skorohod integrable and to

compute its integral, which occurs in the right-hand side of (3.5). For arbitrary G ∈ D1,2, by
the definition of the Skorohod integral and by (3.6),

E
∫ T

0

〈∫ T

0
vt1Aε(t, s) dt ei, DsG

〉

Rd

ds =
∫ T

0
E

∫ T

0
〈vt1Aε(t, s) ei, DsG〉Rd ds dt

=
∫ T

0
E

[
G

∫ T

0
vt1Aε(t, s) e∗i d̂Ws

]
dt

= E
[
G

∫ T

0
zt dt

]
.

This shows, by definition, that
∫ T
0 vt1Aε(t, ·) dt ei is Skorohod integrable and

∫ T

0

∫ T

0
vt1Aε(t, s) dt e∗i d̂Ws =

∫ T

0
zt dt =

∫ T

0

∫ T

0
vt1Aε(t, s) e∗i d̂Ws dt.

Recalling (3.6) we obtain

∫ T

0

∫ T

0
vt1Aε(t, s) dt e∗i d̂Ws =

∫ T

0
vt(W i

t+ε −W i
t ) 1[t,T ′](t) dt−

∫ T

0

∫ T

0
Di

svt ei 1Aε(t, s) ds dt,

and (3.5) is proved.
Recalling that Ds(u(t,Xt)) = 0 for s > t by adaptedness, and using the chain rule (2.11) for

the Malliavin derivative we have, for a.a. s, t with s ∈ [t, t+ ε],

Ds(u(t+ ε,Xt+ε)− u(t,Xt)) = Ds(u(t+ ε,Xt+ε)) =
∫

[−r,0]
Dsy(t+ ε+ θ) · ∇xu(t+ ε,Xt+ε)(dθ)
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and from (3.5) we deduce

Cε =
1
ε

∫ T ′

0

∫ t+ε

t

∫

[−r,0]
Di

sy(t+ ε+ θ) · ∇xu(t+ ε,Xt+ε)(dθ) ds dt

+
1
ε

∫ T ′+ε

0

∫ s∧T ′

(s−ε)+
(u(t+ ε,Xt+ε)− u(t,Xt)) dt e∗i d̂Ws

=: Iε
1 + Iε

2.

Now we let ε→ 0, and we first claim that Iε
2 → 0 in probability. To prove this, it is enough

to show that the process 1
ε

∫ T
0 (u(t+ε,Xt+ε)−u(t,Xt)) 1Aε(t, ·) dt converges to 0 in L1,2. Indeed,

since the Skorohod integral is a bounded linear operator from L1,2 to L2(Ω), this implies that

Iε
2 =

∫ T

0

1
ε

∫ T

0
(u(t+ ε,Xt+ε)− u(t,Xt))1Aε(t, s) dt e∗i d̂Ws → 0

in L2(Ω). We prove, more generally, that for an arbitrary element y ∈ L1,2(R), if we set

T ε(y)s =
1
ε

∫ T

0
(yt+ε − yt) 1Aε(t, s) dt =

1
ε

∫ s∧T ′

(s−ε)∨t
(yt+ε − yt) dt, s ∈ [0, T ],

then the process T ε(y) converges to 0 in L1,2(R). Let us recall that L1,2(R) is isomorphic to
L2([0, T ];D1,2(R)). It is clear that T ε(y) → 0 in L1,2(R) if y belongs to C([0, T ];D1,2(R)), a
dense subspace of L2([0, T ];D1,2(R)). So to prove the claim it is enough to show that the norm
of T ε, as an operator on L1,2(R), is bounded uniformly with respect to ε. We have

|T ε(y)s|2D1,2(R) ≤ 1
ε2

∫ T

0
1Aε(t, s) dt

∫ T

0
|yt+ε − yt|2D1,2(R) 1Aε(t, s) dt

≤ 1
ε

∫ T

0
|yt+ε − yt|2D1,2(R) 1Aε(t, s) dt,

|T ε(y)|2L1,2(R) =
∫ T

0
|T ε(y)s|2D1,2(R) ds

≤ 1
ε

∫ T

0
|yt+ε − yt|2D1,2(R)

∫ T

0
1Aε(t, s) ds dt

≤
∫ T ′

0
|yt+ε − yt|2D1,2(R) dt

≤ 2|y|2L1,2(R).

This shows the required bound, and completes the proof that Iε
2 → 0 as ε→ 0.

Now we proceed to compute the limit of Iε
1. We note that, by adaptedness, Dsy(t+ε+θ) = 0

for s > t+ ε+ θ, so that

Iε
1 =

1
ε

∫ T ′

0

∫ t+ε

t

∫

[s−t−ε,0]
Di

sy(t+ ε+ θ) · ∇xu(t+ ε,Xt+ε)(dθ) ds dt.

For fixed t, let us exchange integrals with respect to ds and ∇xu(t+ ε,Xt+ε)(dθ) obtaining

Iε
1 =

1
ε

∫ T ′

0

∫

[−ε,0]

∫ t+ε+θ

t
Di

sy(t+ ε+ θ) ds · ∇xu(t+ ε,Xt+ε)(dθ) dt.
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Next we replace Dsy(t+ ε+ θ) by the expression given by (3.2) and we obtain

Iε
1 =

1
ε

∫ T ′

0

∫

[−ε,0]

∫ t+ε+θ

t
σi(s,Xs) ds · ∇xu(t+ ε,Xt+ε)(dθ) dt

+
1
ε

∫ T ′

0

∫

[−ε,0]

∫ t+ε+θ

t

∫ t+ε+θ

s
Di

s[b(r,Xr)] dr ds · ∇xu(t+ ε,Xt+ε)(dθ) dt

+
1
ε

∫ T ′

0

∫

[−ε,0]

∫ t+ε+θ

t

∫ t+ε+θ

s
Di

s[σ(r,Xr)] dWr ds · ∇xu(t+ ε,Xt+ε)(dθ) dt

=: J ε
1 + J ε

2 + J ε
3.

We first show that J ε
3 → 0 in L1(Ω). Since, by (3.1),

|∇xu(t+ ε,Xt+ε)| ≤ C(1 + sup
t∈[0,T ]

|Xt|C)m,

then, using the notation |∇xu(t+ ε,Xt+ε)|(dθ) to indicate the total variation measure, we have

|J ε
3| ≤

1
ε

∫ T ′

0

∫

[−ε,0]

∫ t+ε+θ

t

∣∣∣∣
∫ t+ε+θ

s
Di

s[σ(r,Xr)] dWr

∣∣∣∣ ds |∇xu(t+ ε,Xt+ε)|(dθ) dt,

≤ C(1 + sup
t∈[0,T ]

|Xt|C)m 1
ε

∫ T ′

0
sup

θ∈[−ε,0]

∫ t+ε+θ

t

∣∣∣∣
∫ t+ε+θ

s
Di

s[σ(r,Xr)] dWr

∣∣∣∣ ds dt,

≤ C(1 + sup
t∈[0,T ]

|Xt|C)m 1
ε

∫ T ′

0

∫ t+ε

t
sup

θ∈[−ε,0]

∣∣∣∣
∫ t+ε+θ

s
Di

s[σ(r,Xr)] dWr

∣∣∣∣ ds dt.

Taking the L1(Ω) norm of both sides and using the Hölder and the Doob maximal inequality
we have

‖J ε
3‖L1(Ω)

≤ C‖(1 + sup
t∈[0,T ]

|Xt|C)m‖L2(Ω)
1
ε

∫ T ′

0

∫ t+ε

t

∥∥∥∥∥ sup
θ∈[−ε,0]

∣∣∣∣
∫ t+ε+θ

s
Di

s[σ(r,Xr)] dWr

∣∣∣∣
∥∥∥∥∥

L2(Ω)

ds dt

≤ C

ε

∫ T ′

0

∫ t+ε

t

∥∥∥∥
∫ t+ε

s
Di

s[σ(r,Xr)] dWr

∥∥∥∥
L2(Ω)

ds dt

=
C

ε

∫ T ′

0

∫ t+ε

t

(∫ t+ε

s
E

∣∣Di
s[σ(r,Xr)]

∣∣2 dr
)1/2

ds dt.

Denoting for simplicity h(s, r) = E
∣∣Di

s[σ(r,Xr)]
∣∣2 we obtain

‖J ε
3‖L1(Ω) ≤ C

ε

∫ T ′

0

∫ t+ε

t

(∫ t+ε

t
h(s, r) dr

)1/2

ds dt

=
C√
ε

∫ T ′

0

(∫ t+ε

t

∫ t+ε

t
h(s, r) dr ds

)1/2

dt

≤ C
√
T ′

(∫ T ′

0

[
1
ε

∫ t+ε

t

∫ t+ε

t
h(s, r) dr ds

]
dt

)1/2

.

Let us note that h ∈ L1([0, T ]2), since by (3.3) we have

∫ T

0

∫ T

0
h(s, r) dr ds ≤ E

∫ T

0
‖D·[σ(r,Xr)]‖2dr ≤ L2T

∫ T

0
E sup

t∈[s,T ]
|Dsy(t)|2ds <∞.
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Let us define the operator Aε : L1([0, T ]2) → L1([0, T ]) by

(Aεk)(t) =
1
ε

∫ (t+ε)∧T

t

∫ (t+ε)∧T

t
k(s, r) dr ds, k ∈ L1([0, T ]2).

Then we have ‖J ε
3‖L1(Ω) ≤ C

√
T ′‖Aεh‖1/2

L1([0,T ])
, so to prove that J ε

3 → 0 in L1(Ω) it is enough
to show that Aεk → 0 in L1([0, T ]) for every k ∈ L1([0, T ]2). This is obvious if k is in the space
of bounded functions on [0, T ]2, a dense subspace of L1([0, T ]2). So it is enough to show that
‖Aεk‖L1([0,T ]) ≤ C‖k‖L1([0,T ]2) for some constant C and for every k ∈ L1([0, T ]2). This follows
from the inequalities

∫ T

0
|Aεk(t)| dt ≤ 1

ε

∫ T

0

∫ T

0

∫ T

0
|k(s, r)|1t<s<(t+ε)∧T 1t<r<(t+ε)∧Tdr ds dt

=
1
ε

∫ T

0

∫ T

0
|k(s, r)|

[∫ T

0
1(s−ε)+<t<s1(r−ε)+<t<sdt

]
ds dr ≤

∫ T

0

∫ T

0
|k(s, r)| ds dr,

since the term in square brackets is less or equal to ε.
This finishes the proof that J ε

3 → 0 in L1(Ω), hence in probability. In a similar and simpler
way one proves that J ε

2 → 0 in probability.
To finish the proof of the proposition it remains to compute the limit of J ε

1. Exchanging
integrals with respect to ds and ∇xu(t+ ε,Xt+ε)(dθ), and then using another change of variable
we have

J ε
1 =

1
ε

∫ T ′

0

∫

[−ε,0]

∫ t+ε+θ

t
σi(s,Xs) ds · ∇xu(t+ ε,Xt+ε)(dθ) dt

=
1
ε

∫ T ′

0

∫ t+ε

t

∫

[s−t−ε,0]
σi(s,Xs) · ∇xu(t+ ε,Xt+ε)(dθ) ds dt

=
1
ε

∫ T ′

0

∫ t+ε

t
σi(s,Xs) · ∇xu(t+ ε,Xt+ε)([s− t− ε, 0]) ds dt

=
1
ε

∫ T ′+ε

ε

∫ t

t−ε
σi(s,Xs) · ∇xu(t,Xt)([s− t, 0]) ds dt

=
1
ε

∫ T ′+ε

ε

∫ t

t−ε
σi(t,Xt) · ∇xu(t,Xt)([s− t, 0]) ds dt

+
1
ε

∫ T ′+ε

ε

∫ t

t−ε
{σi(s,Xs)− σi(t,Xt)} · ∇xu(t,Xt)([s− t, 0]) ds dt

=: Hε
1 +Hε

2.

Next we show that Hε
2 → 0, P-a.s. Since

|∇xu(t+ ε,Xt+ε)| ≤ C(1 + sup
t∈[0,T ]

|Xt|C)m,

we have

|Hε
2| ≤ C(1 + sup

t∈[0,T ]
|Xt|C)m 1

ε

∫ T ′+ε

ε

∫ t

t−ε
|σi(s,Xs)− σi(t,Xt)| ds dt

≤ C(1 + sup
t∈[0,T ]

|Xt|C)m

∫ T

0

1
ε

∫ t

(t−ε)+
|σi(s,Xs)− σi(t,Xt)| ds dt.

Let us fix ω ∈ Ω and note that, P-a.s., σi(·, X·) ∈ L1([0, T ]). Let us define the operator
Bε : L1([0, T ]) → L1([0, T ]) as

(Bεk)(t) =
1
ε

∫ t

(t−ε)+
|k(s)− k(t)| ds, k ∈ L1([0, T ]).
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Then we have |Hε
2| ≤ C(1+supt∈[0,T ] |Xt|C)m‖Bεσ

i(·, X·)‖L1([0,T ]), P-a.s., so to prove that Hε
2 →

0 in probability it is enough to show that Bεk → 0 in L1([0, T ]) for every k ∈ L1([0, T ]). This
is obvious if k is in the space of continuous functions on [0, T ], a dense subspace of L1([0, T ]).
So it is enough to show that ‖Bεk‖L1([0,T ]) ≤ C‖k‖L1([0,T ]) for some constant C and for every
k ∈ L1([0, T ]). This follows from the inequality

|(Bεk)(t)| ≤ 1
ε

∫ t

(t−ε)+
|k(s)| ds+ |k(t)|,

which implies ∫ T

0
|(Bεk)(t)| dt ≤ ‖k‖L1([0,T ]) +

1
ε

∫ T

0

∫ t

(t−ε)+
|k(s)| ds dt

= ‖k‖L1([0,T ]) +
1
ε

∫ T

0

∫ (s+ε)∧T

s
|k(s)| dt ds

≤ ‖k‖L1([0,T ]) +
∫ T

0
|k(s)| ds = 2‖k‖L1([0,T ]).

This finishes the proof that Hε
2 → 0 P-a.s., hence in probability.

It remains to consider the term

Hε
1 =

1
ε

∫ T ′+ε

ε
σi(t,Xt) ·

∫ t

t−ε
∇xu(t,Xt)([s− t, 0]) ds dt

=
1
ε

∫ T ′+ε

ε
σi(t,Xt) ·

∫ t

t−ε

∫

[s−t,0]
∇xu(t,Xt)(dθ) ds dt

=
1
ε

∫ T ′+ε

ε
σi(t,Xt) ·

∫

[−ε,0]

∫ t+θ

t−ε
ds∇xu(t,Xt)(dθ) dt

=
1
ε

∫ T ′+ε

ε
σi(t,Xt) ·

∫

[−ε,0]
(θ + ε) ∇xu(t,Xt)(dθ) dt

=
∫ T ′+ε

ε
σi(t,Xt) ·

∫

[−r,0]

(
1 +

θ

ε

)+

∇xu(t,Xt)(dθ) dt.

We clearly have, P-a.s.,

∫

[−r,0]

(
1 +

θ

ε

)+

∇xu(t,Xt)(dθ) →
∫

[−r,0]
1{0}(θ) ∇xu(t,Xt)(dθ)

= ∇xu(t,Xt)({0}) = ∇0u(t,Xt),

and by dominated convergence, P-a.s.,

Hε
1 →

∫ T ′

0
σi(t,Xt) · ∇0u(t,Xt) dt.

This shows that Cε converges in probability and its limit is

〈u(·, X·),W i〉[0,T ′] =
∫ T ′

0
σi(t,Xt) · ∇0u(t,Xt) dt.
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4 The forward-backward system with delay

In this section we will discuss existence, uniqueness and regular dependence on the initial data
of the following forward-backward system: for given t ∈ [0, T ] and x ∈ C = C([−r, 0];Rn),





dyτ = b(τ,Xτ ) dτ + σ(τ,Xτ ) dWτ , τ ∈ [t, T ] ⊂ [0, T ],
Xt = x,
dYτ = ψ(τ,Xτ , Yτ , Zτ ) dτ + Zτ dWτ ,
YT = φ(XT ),

(4.1)

Here we use the notation Xτ (θ) = yτ+θ, θ ∈ [−r, 0], as before, so the first equation in (4.1) is
the same as (2.4). We extend the definition of X setting Xs = x for 0 ≤ s ≤ t. The second
equation in (4.1), namely

{
dYτ = ψ(τ,Xτ , Yτ , Zτ ) dτ + Zτ dWτ , τ ∈ [0, T ],
YT = φ(XT ),

(4.2)

is of backward type. Under suitable assumptions on the coefficients ψ : [0, T ]×C×R×Rd → R
and φ : C → R we will look for a solution consisting of a pair of predictable processes, taking
values in R× Rd, such that Y has continuous paths and

‖ (Y,Z) ‖2
Kcont

:= E sup
τ∈[0,T ]

|Yτ |2 + E
∫ T

0
|Zτ |2 dτ <∞,

see e.g. [24]. In the following we denote by Kcont ([0, T ]) the space of such processes.
The solution of (4.1) will be denoted by (Xτ , Yτ , Zτ )τ∈[0,T ], or, to stress the dependence on

the initial time t and on the initial datum x, by (Xt,x
τ , Y t,x

τ , Zt,x
τ )τ∈[0,T ].

Hypothesis 4.1 The maps ψ : [0, T ]×C× R× Rd → R and φ : C → R are Borel measurable
and satisfy the following assumptions:

1. there exists L > 0 such that

|ψ (t, x, y, z1)− ψ (t, x, y, z2)| ≤ L |z1 − z2| ,
|ψ (t, x, y1, z)− ψ (t, x, y2, z)| ≤ L |y1 − y2| ,

for every t ∈ [0, T ], x ∈ C, y, y1, y2 ∈ R and z, z1, z2 ∈ Rd;

2. ψ(t, ·, ·, ·) ∈ G1
(
C× R× Rd,R

)
for every t ∈ [0, T ];

3. there exist K > 0 and m ≥ 0 such that

|∇xψ (t, x, y, z)| ≤ K (1 + |x|C + |y|)m (1 + |z|)

for every t ∈ [0, T ], x ∈ C, y ∈ R and z ∈ Rd;

4. φ ∈ G1 (C,R) and there exist K > 0 and m ≥ 0 such that

|∇φ(x)| ≤ K (1 + |x|C)m , x ∈ C.

Under these assumptions we can state a result on existence and uniqueness of a solution of
the forward-backward system (4.1) and on its regular dependence on x.
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Proposition 4.2 Assume that Hypotheses 2.2 and 4.1 hold true. Then the forward-backward
system (4.1) admits a unique solution

(
Xt,x, Y t,x, Zt,x

) ∈ Sp([0, T ];C) × Kcont ([0, T ]) for ev-
ery (t, x) ∈ [0, T ] × C. Moreover, the map (t, x) 7→ (Xt,x, Y t,x, Zt,x) belongs to the space
G1 ([0, T ]×C,Sp([0, T ];C)×Kcont ([0, T ])). Finally, the following estimate holds true: for every
p ≥ 2 there exists C > 0 such that

[
E sup

τ∈[0,T ]

∣∣∇xY
t,x
τ

∣∣p
]1/p

≤ C
(
1 + |x|(m+1)2

C

)
, t ∈ [0, T ], x ∈ C.

Proof. We only give a sketch of the proof. The forward equation has a unique solution by
Theorem 2.3. Existence and uniqueness of the solution of the backward equation follows from
the classical result [24].

In Theorem 2.3 we have shown that the map x 7→ Xt,x belongs to C1 (C,Sp ([0, T ] ;C)) for
every 2 ≤ p <∞. Then the proof of continuity and differentiability of (t, x) 7→ (Xt,x, Y t,x, Zt,x)
in the appropriate norms, as well as the final estimate on ∇xY

t,x
τ , can be achieved as in Propo-

sition 5.2 in [11]. The only difference is that in [11] the process Xt,x takes values in a Hilbert
space, while in our context it takes values in the Banach space C; nevertheless the same argu-
ments apply (see also [17] for a similar result in Banach spaces).

Corollary 4.3 Assume that Hypotheses 2.2 and 4.1 hold true. Then the function v : [0, T ] ×
C → R defined by

v(t, x) = Y t,x
t , t ∈ [0, T ], x ∈ C, (4.3)

belongs to G0,1 ([0, T ]×C;R). Moreover there exists C > 0 such that

|∇xv (t, x)| ≤ C
(
1 + |x|(m+1)2

C

)
, t ∈ [0, T ] , x ∈ C.

Finally, for every t ∈ [0, T ] and x ∈ C, we have, P-a.s,

Y t,x
s = v

(
s,Xt,x

s

)
, for every s ∈ [t, T ], (4.4)

Zt,x
s = ∇0v

(
s,Xt,x

s

)
σ(s,Xt,x

s ), for a.e. s ∈ [t, T ]. (4.5)

Proof. It is well known that v(t, x) is deterministic, and its properties are therefore a direct
consequence of Proposition 4.2. Equality (4.4) is also a standard consequence of uniqueness of
the solution of the backward equation.

To prove (4.5) we consider the joint quadratic variation of Y t,x and the Wiener process W i

on an interval [t, T ′], with T ′ < T . Taking into account the backward equation we obtain

〈Y t,x,W i〉[t,T ′] =
∫ T ′

t
Zi

s ds.

By Theorem 3.1 we have

〈v (·, Xt,x
·

)
,W i〉[t,T ′] =

∫ T ′

t
σi(s,Xt,x

s ) · ∇0v(s,Xt,x
s ) ds,

so that (4.4) implies (4.5).
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Remark 4.4 If we strengthen slightly the regularity assumptions and we require that, for all
t ∈ [0, T ], the functions b(t, ·), σ(t, ·), φ are continuously Fréchet differentiable on C and ψ(t, ·, ·, ·)
is continuously Fréchet differentiable on C×R×Rd, then we can prove, with only minor changes
in the proofs, that the function v defined in (4.3) is Fréchet differentiable with respect to x and
the Fréchet derivative is a continuous function from [0, T ]×C to the dual space C∗ with respect
to the usual norm (i.e. the variation norm).

Remark 4.5 In the context of Proposition 4.2, the law of the solution (Xt,x, Y t,x, Zt,x) is
uniquely determined by , x and the coefficients b, σ, ψ, φ. Since v(t, x) is deterministic, hence
determined by its law, we conclude that the function v is a functional of the coefficients b, σ, ψ, φ
and does not depend on the particular choice of the probability space (Ω,F ,P) nor on the Wiener
process W .

5 Nonlinear Parabolic equations

Let us consider again the Markov process {Xt,x
τ , 0 ≤ t ≤ τ ≤ T, x ∈ C}, defined by the formula

(2.5), starting from the family of solutions to equation (2.4). Let us denote by (Lt)t∈[0,T ] the
corresponding generator. Thus, each Lt is a second order differential operator acting on a suitable
domain consisting of real functions defined on C. In the autonomous case, a description of the
generator, denoted by L, was given in Section 2, remark 2.4. In this section we treat semilinear
parabolic equations driven by (Lt), which are generalizations of the Kolmogorov equations. We
will introduce a concept of solution, called mild solution, that does not require a description of
the generators. In the sequel the notation Lt will be used only in a formal way.

The parabolic equations that we study have the following form:




∂v(t, x)
∂t

+ Ltv(t, x) = ψ(t, x, v(t, x),∇0v(t, x)σ(t, x)),

v(T, x) = φ(x), t ∈ [0, T ], x ∈ C,

(5.1)

with unknown function v : [0, T ] ×C → R and given coefficients ψ : [0, T ] ×C × R × Rd → R
and φ : C → R. We recall the notation ∇0v(t, x) introduced in (2.1). We note in particular that
∇0v(t, x) is a vector in Rn whose components are denoted ∇k

0v(t, x) (k = 1, . . . , n). If we denote
by σi

k(t, x) (k = 1, . . . , n, i = 1, . . . , d) the components of the matrix σ(t, x), then∇0v(t, x)σ(t, x)
denotes the vector in Rd whose components are

∑n
k=1∇k

0v(t, x)σ
i
k(t, x), (i = 1, . . . , d).

Recalling the definition of the transition semigroup Pt,τ given in (2.6), and writing the
variation of constants formula for a solution to (5.1), we formally obtain

v(t, x) = Pt,T [φ](x)−
∫ T

t
Pt,τ

[
ψ(·, v(τ, ·),∇0v(τ, ·)σ(τ, ·))

]
(x) dτ t ∈ [0, T ], x ∈ C. (5.2)

We notice that this formula is meaningful if ∇0v is well defined and provided φ and ψ satisfy
some growth and measurability conditions. This way we arrive at the following definition of
mild solution of the semilinear Kolmogorov equation (5.1).

Definition 5.1 A function v : [0, T ]×C → R is a mild solution of the semilinear Kolmogorov
equation (5.1) if v ∈ G1 ([0, T ]×C;R), there exist C > 0, q ≥ 0 such that

|v(t, x)|+ |∇xv(t, x)| ≤ C(1 + |x|)q, t ∈ [0, T ], x ∈ C, (5.3)

and the equality (5.2) holds.
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The space G1 ([0, T ]×C;R) was described in Remark (2.1). |∇xv(t, x)| denotes the total
variation norm of the Rn-valued finite Borel measure ∇xv(t, x) on [−r, 0].

Theorem 5.1 Assume that Hypotheses 2.2 and 4.1 hold true. Then there exists a unique mild
solution v of (5.1). The function v coincides with the one introduced in Corollary 4.3.

Proof. At first we prove existence. For fixed t ∈ [0, T ] and x ∈ C, let (Xt,x
τ , Y t,x

τ , Zt,x
τ )τ∈[0,T ]

denote the solution of the forward-backward system (4.1) and let v(t, x) be defined by equality
(4.3). The required regularity and growth conditions of the function v were proved in Corollary
4.3, so it remains to prove that v satisfies equality (5.2). To this aim we evaluate

Pt,τ [ψ(·, v (τ, ·) ,∇0v (τ, ·)σ (τ, ·))] (x) = E
[
ψ

(
τ,Xt,x

τ , v(τ,Xt,x
τ ),∇0v(τ, Y t,x

τ )σ(τ,Xt,x
τ )

)]

= E
[
ψ

(
Xt,x

τ , Y t,x
τ , Zt,x

τ

)]
,

where the last equality follows from (4.4) and (4.5). In particular we obtain
∫ T

t
Pt,τ [ψ(·, v (τ, ·) ,∇0v (τ, ·)σ(τ, ·)] (x) dτ = E

∫ T

t
ψ

(
τ,Xt,x

τ , Y t,x
τ , Zt,x

τ

)
dτ. (5.4)

Since the pair
(
Y t,x, Zt,x

)
is a solution to the backward equation (4.2) we have

Y t,x
t +

∫ T

t
Zt,x

τ dWτ = φ
(
Xt,x

T

)
+

∫ T

t
ψ

(
Xt,x

τ , Y t,x
τ , Zt,x

τ

)
dτ.

Taking expectation and applying formula (5.4) we get the equality (5.2).
It remains to prove uniqueness. Let v be a mild solution to (5.1), so that for every s ∈

[t, T ] ⊂ [0, T ],

v (s, x) = Eφ
(
Xs,x

T

)
+ E

∫ T

s
ψ (Xs,x

τ , v(τ,Xs,x
τ ),∇0v (τ,Xs,x

τ )σ(τ,Xs,x
τ )) dτ.

Since Xs,x
τ is independent on Fs, the expectations occurring in the last formula can be replaced

by conditional expectations given Fs. Next we note that x can be replaced by Xt,x
s , since Xt,x

s

is Fs-measurable. Using the identity Xs,Xt,x
s

τ = Xt,x
τ , which follows easily from uniqueness of the

forward equation, we finally obtain

v
(
s,Xt,x

s

)
= EFsφ

(
Xt,x

T

)
+ EFs

∫ T

s
ψ

(
Xt,x

τ , v(τ,Xt,x
τ ),∇0v

(
τ,Xt,x

τ

)
σ

(
τ,Xt,x

τ

))
dτ

= EFsη − EFs

∫ s

t
ψ

(
Xt,x

τ , v(τ,Xt,x
τ ),∇0v

(
τ,Xt,x

τ

)
σ

(
τ,Xt,x

τ

))
dτ,

where we have defined η = φ
(
Xt,x

T

)
+

∫ T

t
ψ

(
Xt,x

τ , v(τ,Xt,x
τ ),∇0v

(
τ,Xt,x

τ

)
σ(τ,Xt,x

τ )
)
dτ . By

the representation theorem of martingales, see e.g. [6], theorem 8.2, there exists a predictable

process Z̃ ∈ L2
(
Ω× [0, T ] ,Rd

)
, such that EFsη =

∫ s

t
Z̃τdWτ + v (t, x), s ∈ [t, T ]. So

v
(
s,Xt,x

s

)
= v (t, x) +

∫ s

t
Z̃τdWτ −

∫ s

t
ψ

(
Xt,x

τ , v(τ,Xt,x
τ ),∇0v

(
τ,Xt,x

τ

)
σ(τ,Xt,x

τ )
)
dτ. (5.5)

Now we compute the joint quadratic variation with W i of the processes occurring at both
sides of this equality, on an interval [t, T ′] ⊂ [t, T ). Considering the right-hand side we obtain
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∫ T ′
t Z̃i

τdτ by the rules of stochastic calculus. By Theorem 3.1 we have 〈v(·, Xt,x
· ),W i〉[t,T ′] =∫ T ′

t σi(τ,Xt,x
τ )∇0v(τ,X

t,x
τ ) dτ . Therefore we have Z̃τ = σ(τ,Xt,x

τ )∇0v(τ,X
t,x
τ ) and equality

(5.5) can be rewritten as

v(s,Xt,x
s ) = v (t, x) +

∫ s

t
∇0v

(
τ,Xt,x

τ

)
σ(τ,Xt,x

τ )dWτ

−
∫ s

t
ψ

(
Xt,x

τ , v(τ,Xt,x
τ ),∇0v

(
τ,Xt,x

τ

)
σ(τ,Xt,x

τ )
)
dτ

= φ
(
Xt,x

T

)
−

∫ T

s
∇0v

(
τ,Xt,x

τ

)
σ(τ,Xt,x

τ )dWτ

+
∫ T

s
ψ

(
Xt,x

τ , v(τ,Xt,x
τ ),∇0v

(
τ,Xt,x

τ

)
σ(τ,Xt,x

τ )
)
dτ.

By comparing with the backward equation in (4.1) we see that the pairs of processes (Y t,x
s , Zt,x

s )
and

(
v(s,Xt,x

s ),∇0v(s,X
t,x
s )σ(s,Xt,x

s )
)
, s ∈ [t, T ], solve the same equation. By uniqueness of

the solution we have Y t,x
s = v(s,Xt,x

s ), s ∈ [t, T ], and for s = t we get Y t,x
t = v (t, x).

Remark 5.2 The proof of uniqueness is based on an application of Theorem 3.1. Inspection
of the proof shows that uniqueness holds in a larger class of functions. Namely, if a Borel
measurable functions v : [0, T ]×C → R satisfies v(t, ·) ∈ G1(C,R) for every t ∈ [0, T ], and the
inequality

|v(t, x)|+ |∇xv(t, x)| ≤ C(1 + |x|)q, t ∈ [0, T ], x ∈ E,
holds for some C > 0, q ≥ 0, and the equation (5.2) holds, then v coincides with the solution
constructed in Theorem 3.1.

6 Application to stochastic optimal control

Let (Ω,F , (Ft)t≥0 ,P) be a filtered probability space, satisfying the usual conditions, and let W
be an Rd-valued standard Wiener process with respect to (Ft) and P. We consider the following
controlled functional stochastic equation on an interval [t, T ] ⊂ [0, T ]:

{
dyu

s = b(s, yu
s+·) ds+ σ(s, yu

s+·) [h(s, yu
s+·, us) ds+ dWs],

yu
t+θ = x(θ), θ ∈ [−r, 0],

(6.1)

The coefficients b and σ satisfy the previous assumptions. u(·) denotes the control and yu the
corresponding solution. We assume that controls are (Ft)-predictable process with values in a
given measurable space (U,U). The function h : [0, T ]×C×U → Rd is measurable and bounded.
We introduce again the process

Xu
s = yu

s+· = {yu
s+θ, θ ∈ [−r, 0]}, s ∈ [t, T ], (6.2)

which now depends on the control and takes values in C = C([−r, 0];Rn), so that equation (6.1)
can be rewritten as

{
dyu

s = b(s,Xu
s ) ds+ σ(s,Xu

s ) [h(s,Xu
s , us)) ds+ dWs], s ∈ [t, T ],

Xt = x.
(6.3)

We introduce the cost functional to minimize:

J(t, x, u(·)) = E
∫ T

t
g(us) ds+ Eφ(yu

T+·) = E
∫ T

t
g(us) ds+ Eφ(Xu

T ), (6.4)

where g : U → [0,∞) and φ : C → R are given functions.

21



Remark 6.1 Without any substantial change, we could consider more general cost functionals
of the form

J(t, x, u(·)) = E
∫ T

t
[`(yu

s ) + g(us)] ds+ Eφ(yu
T+·), (6.5)

where ` : Rn → R. In fact, this kind of cost can be put in the form (6.4) as follows: first note
that in equation (6.1) we can assume r ≥ T , possibly extending the functions b and σ in the
obvious way; next we define, for x ∈ C,

φ0(x) =
∫ 0

t−T
`(x(s)) ds.

so that φ0(Xu
T ) =

∫ T
t `0(yu

s ) ds and we conclude that

J(t, x, u(·)) = E
∫ T

t
g(us) ds+ E[(φ0 + φ)(Xu

T )],

which has the required form. In a similar way, under suitable assumptions, one could consider
even more general costs of the form

J(t, x, u(·)) = E
∫ T

t
`(s, yu

s , us) ds+ Eφ(yu
T+·).

However, we limit ourselves to cost functionals with the structure of (6.4).

To proceed further we need to introduce the hamiltonian function ψ : [0, T ] ×C × Rd → R
defined, for t ∈ [0, T ], x ∈ C, z ∈ Rd, by the formula

ψ (t, x, z) = inf {g(u) + zh (t, x, u) : u ∈ U} (6.6)

and the corresponding, possibly empty, set of minimizers

Γ (t, x, z) = {u ∈ U, g(u) + zh (t, x, u) = ψ (t, x, z)} . (6.7)

Remark 6.2 By the Filippov Theorem, see e.g. [2], Theorem 8.2.10, p. 316, if U is a complete
metric space equipped with its Borel σ-algebra, g is continuous, h is measurable bounded, with
u 7→ h(t, x, u) continuous on U , and if Γ takes non-empty values (as it is always the case if U
is compact), then Γ admits a measurable selection, i.e. there exists a Borel measurable map
Γ0 : [0, T ]×C× Rd → U such that Γ0 (t, x, z) ∈ Γ (t, x, z) for t ∈ [0, T ], x ∈ E, z ∈ Rd.

We are now ready to formulate the assumptions we need .

Hypothesis 6.3 1. (U,U) is a measurable space, g : U → [0,∞) is measurable, h : [0, T ] ×
C× U → Rd is measurable and bounded;

2. the hamiltonian ψ defined in (6.6) satisfies the requirements of points 2 and 3 of Hypothesis
4.1;

3. the function φ : C → R satisfies the requirements of point 4 in Hypothesis 4.1, namely it
belongs to G1 (C,R) and there exist K > 0 and m ≥ 0 such that

|∇φ(x)| ≤ K (1 + |x|C)m , x ∈ C.
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Remark 6.4 1. Hypothesis 6.3 is stronger than Hypothesis 4.1. Indeed, point 1 of Hypoth-
esis 4.1 is a straightforward consequence of the fact that h is assumed to be bounded.

2. In the case U ⊂ Rk, h(t, x, u) = u, the previous assumptions require in particular that the
set U where control processes take values should be bounded.

3. The assumptions on the hamiltonian function ψ can be easily verified in specific cases.
For instance if U is a closed ball of Rk centered at the origin, and g(u) = g0(|u|p) for
some p > 1 and some convex function g0 : [0,∞) → [0,∞) such that g ∈ C1([0,∞)) and
g′ (0) > 0, then the hamiltonian is differentiable with respect to z and ψ satisfies points 2
and 3 of Hypothesis 4.1.

Now let us consider a probability space (Ω̃, F̃ , P̃), a standard Wiener process W̃ in Rd, and
the following forward-backward system:





dyτ = b(τ,Xτ ) dτ + σ(τ,Xτ ) dW̃τ , τ ∈ [t, T ] ⊂ [0, T ],
Xt = x,

dYτ = ψ(Xτ , Zτ ) dτ + Zτ dW̃τ ,
YT = φ(XT ).

(6.8)

By Remark 4.5, the function v : [0, T ]×C → R defined by the equality

v (t, x) = Y t,x
t (6.9)

is a functional of the coefficients b, σ, ψ, φ and does not depend on the particular choice of
(Ω̃, F̃ , P̃) nor on the Wiener process W̃ .

In the following proposition we show that the function v, defined in this way by means of
an appropriate forward-backward stochastic differential system, plays a basic role in the control
problem.

To begin we notice that if ψ is the hamiltonian defined in (6.6) and φ is the final cost in
functional (6.4) then equation (5.1) is the Hamilton Jacobi Bellman equation related to the the
present stochastic optimal control problem. In particular Theorem (5.1) implies that v defined
in (6.9) is the unique mild solution of HJB equation equation (5.1).

Then we obtain, by a customary Girsanov transform argument, see [9], a version of the
so-called fundamental relation:

Proposition 6.5 Assume that Hypotheses 2.2 and 6.3 hold true, and that the cost functional
is given in (6.4). Let v be defined in (6.9). Then for every t ∈ [0, T ] and x ∈ C and for every
admissible control u(·) we have

v (t, x) = J (t, x, u(·)) + E
∫ T

t
[ψ (s,Xu

s , Z
u
s )− Zu

s h (s,Xu
s , us)− g(us)] ds. (6.10)

In particular v (t, x) ≤ J (t, x, u(·)).
Proof. We fix t, x and a control u(·). Let (Xu

τ )τ∈[t,T ] be the corresponding process defined by
(6.2). We define the process

W u
τ = Wτ +

∫ τ

t∧τ
h (s,Xu

s , us) ds, τ ∈ [0, T ] ,

and we note that Xu solves the equation
{
dyu

τ = b(τ,Xu
τ ) ds+ σ(τ,Xu

τ ) dW u
τ , τ ∈ [t, T ] ,

Xu
t (θ) = x(θ), θ ∈ [−r, 0].

(6.11)
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Since h is bounded, we can apply the Girsanov theorem and deduce that there exists a probability
measure Pu on (Ω,F) such that W u is a Wiener process with respect to Pu. We remark that,
by uniqueness, Xu is in fact a continuous process adapted to the natural filtration generated by
W u and augmented by the Pu-null sets. In (Ω,F ,Pu) let us consider the backward equation for
the unknown process (Y u

τ , Z
u
τ ), τ ∈ [t, T ]:

Y u
τ +

∫ T

τ
Zu

s dW
u
s = φ (Xu

T ) +
∫ T

τ
ψ (s,Xu

s , Z
u
s ) ds, τ ∈ [t, T ] . (6.12)

We notice that the forward-backward system (6.11)-(6.12) has the form (6.8) and we conclude
that Y u

t = v (t, x), where v is defined in (6.9); in particular, it does not depend on u(·).
Now we wish to prove that

∫ T
t Zu

s dWs has finite expectation, equal to zero. By the Burkhol-
der-Davis-Gundy inequalities, it is enough to prove that

E
(∫ T

t
|Zu

s |2 ds
)1/2

<∞. (6.13)

We remember that

dPu

dP
= exp

(
−

∫ T

t
h (s,Xu

s , us) dWs − 1
2

∫ T

t
|h (s,Xu

s , us)|2 ds
)
.

We denote
dPu

dP
by ρ, and by Eu the expectation with respect to Pu. We estimate

E
(∫ T

t
|Zu

s |2 ds
)1/2

= Eu

[(∫ T

t
|Zu

s |2 ds
)1/2

ρ−1

]

≤
(
Eu

∫ T

t
|Zu

s |2 ds
)1/2 (

Eu
[
ρ−2

])1/2
.

Since the process Zu, solution to (6.12), is square-summable withe respect to Pu, it remains to
prove that Eu

[
ρ−2

]
is finite. Noting that

ρ−1 = exp
(∫ T

t
h (s,Xu

s , us) dW u
s −

1
2

∫ T

t
|h (s,Xu

s , us)|2 ds
)
,

and recalling that h is bounded we get, for some constant C,

Eu
[
ρ−2

]
= Eu

[
exp 2

(∫ T

t
h (s,Xu

s , us) dW u
s −

1
2

∫ T

t
|h (s,Xu

s , us)|2 ds
)]

= Eu

[
exp

(∫ T

t
2h (s,Xu

s , us) dW u
s −

1
2

∫ T

t
4 |h (s,Xu

s , us)|2 ds
)

exp
(∫ T

t
2 |h (s,Xu

s , us)|2 ds
)]

≤ C Eu

[
exp

(∫ T

t
2h (s,Xu

s , us) dW u
s −

1
2

∫ T

t
4 |h (s,Xu

s , us)|2 ds
)

= C.

Now (6.13) is proved and therefore
∫ τ
t Z

u
s dWs has zero expectation with respect to the original

probability P. If we set τ = t in (6.12) and we take expectation with respect to P, we obtain

v (t, x) = Eφ (Xu
T ) + E

∫ T

t
[ψ (s,Xu

s , Z
u
s )− Zu

s h (s,Xu
s , us)] ds.
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Adding and subtracting E
∫ T
t g (us) ds we arrive at

v (t, x) = J (t, x, u(·)) + E
∫ T

t
[ψ (s,Xu

s , Z
u
s )− Zu

s h (s,Xu
s , us)− g(us)] ds.

By the definition of ψ the term in the square brackets is non positive and consequently v (t, x) ≤
J (t, x, u(·)).

The equality (6.10) immediately gives the following consequences:

Proposition 6.6 Let t ∈ [0, T ] and x ∈ C be fixed. Assume that the set-valued map Γ has non
empty values and assume that Γ0 : [0, T ] × C × Rd → U is a measurable selection. Moreover
suppose that a control u(·) satisfies

uτ = Γ0 (τ,Xu
τ , Z

u
τ ) , P-a.s. for almost every τ ∈ [t, T ] . (6.14)

Then J (t, x, u(·)) = v (t, x) (thus u(·) is optimal) , and the optimal pair (u(·), Xu) satisfies the
feedback law

uτ = Γ0 (τ,Xu
τ ,∇0v(τ,Xu

τ )σ(τ,Xu
τ )) , P-a.s. for almost every τ ∈ [t, T ] . (6.15)

We note that (6.15) follows from (6.14) and (4.5).
However, we can not prove the existence of an optimal control satisfying (6.14) (and hence

(6.15)). Such a control can be shown to exist if there exists a solution to the so-called closed-loop
equation
{
dyτ = b (τ,Xτ ) dτ + σ(τ,Xτ )[h(τ,Xτ ,Γ0 (τ,Xτ ,∇0v (τ,Xτ )σ (τ,Xτ )))dτ + dWτ ], τ ∈ [t, T ] ,
Xt(θ) = x(θ), θ ∈ [−r, 0],

(6.16)
since in this case one can define an optimal control setting

uτ = Γ0 (τ,Xτ ,∇0v(τ,Xτ )σ(τ,Xτ )) .

However, under the present assumptions, we can not guarantee that the closed-loop equation
has a solution in the usual strong sense. To circumvent this difficulty we will revert to a weak
formulation of the optimal control problem.

6.1 Weak formulation of the optimal control problem

We formulate the optimal control problem in the weak sense following the approach of [10], see
e.g. chapter III. The main advantage is that we will be able to solve the closed loop equation in
a weak sense, and hence to find an optimal control, even if the feedback law is non smooth.

Initially, we are given the set U and the functions b, σ, h, g, φ. By an admissible control
system we mean

(Ω,F , (Ft)t≥0 ,P,W, u(·), Xu),

where (Ω,F , (Ft)t≥0 ,P) is a filtered probability space satisfying the usual conditions, W is an
Rd-valued standard Wiener process with respect to (Ft) and P, u is an (Ft)-predictable process
with values in U , Xu satisfies (6.2)-(6.3). An admissible control system will be briefly denoted
by (W,u,Xu) in the following. Our aim is now to minimize the cost functional

J (t, x, (W,u,Xu)) = E
∫ T

t
g(us) ds+ Eφ(Xu

T ) (6.17)

over all the admissible control systems (W,u,Xu). We can prove the following results:
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Theorem 6.7 Assume that Hypotheses 2.2 and 6.3 hold true, and that the cost functional is
given in (6.17). Let v be defined in (6.9). Then for every t ∈ [0, T ] and x ∈ C and for all
admissible control system (W,u,Xu) we have

J (t, x, (W,u,Xu)) ≥ v (t, x)

and the equality holds if and only if

uτ ∈ Γ(τ,Xu
τ ,∇0v(τ,Xu

τ )σ(τ,Xu
τ )), P-a.s. for a.a. τ ∈ [t, T ] .

Moreover assume that the set-valued map Γ has non empty values and it admits a measurable
selection Γ0 : [0, T ]×C×Rd → U . Then an admissible control system (W,u,Xu) satisfying the
feedback law

uτ = Γ0(Xu
τ ,∇0v(τ,Xu

τ )σ(τ,Xu
τ )), P-a.s. for a.a. τ ∈ [t, T ]

is optimal.
Finally, the closed loop equation (6.16) admits a weak solution (Ω,F , (Ft)t≥0 ,P,W,X) which

is unique in law and setting

uτ = Γ0 (τ,Xτ ,∇0v(τ,Xτ )σ(τ,Xτ )) ,

we obtain an optimal admissible control system (W,u,X).

Proof. The proof follows from the fundamental relation (6.10) and the same arguments leading
to Proposition 6.6 and the remarks following it. The only difference here is the solvability of
the closed loop equation in a weak sense, which is however a standard application of a Girsanov
change of measure.

7 Application to pricing

We consider a financial market, of Black and Scholes type, with one risky asset, whose price at
time t is denoted by St, and one non risky asset, whose price is denoted by Bt. We assume the
following prices evolution:





dSt = µ(t, St+·) St dt + σ(t, St+·) St dWt, t ∈ [0, T ],
Sθ = sθ, θ ∈ [−r, 0],
dBt = ρBt dt, t ∈ [0, T ],
B0 = 1,

(7.1)

where ρ > 0, r > 0 and s ∈ C = C([−r, 0],R). We notice that the coefficients µ and σ depend
on the past trajectory: St+· stands for the past trajectory of length r, i.e. St+· = (St+θ)θ∈[−r,0].
Moreover we consider a contingent claim of the form

φ(ST+·),

where φ : C → R. If r > T then the claim depends on the whole evolution in time of the prices
of the shares: see [3], [22] or [30] and references within for a general discussion on such kind of
options, usually referred to as path-dependent.

We denote by πt the value of the investor’s portfolio invested in the risky asset at time t. π is
called a trading strategy; we will only consider predictable trading strategies which are square-
integrable, i.e. E

∫ T
0 |πt|2dt <∞. We notice that the value Vt of the corresponding self-financing

portfolio satisfies the equation

dVt = ρVt dt+ πt σ(t, St+·) θ(t, St+·) dt+ πt σ(t, St+·) dWt, (7.2)
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where
θ(t, St+·) =

µ(t, St+·)− ρ

σ(t, St+·)

is called the risk premium.
At time T the investor has to pay a contingent claim of the form φ(ST+·), where φ : C → R

is some given function. The pricing problem is to find and characterize pairs (π, V0) consisting
of a strategy π and an initial capital V0 ∈ R such that

VT = φ(S(T + ·)).

π is then called a hedging strategy and V0 is called the fair price of the claim at time t = 0.
Throughout this section we assume the following.

Hypothesis 7.1 1. (Wt)t≥0 is a real Wiener process defined in a complete probability space
(Ω,F ,P) and (Ft)t≥0 is the filtration generated by W augmented with null sets.

2. µ : [0, T ]×C → R is Borel measurable and bounded, and there exists L > 0 such that

|µ(t, f1)f1(0)− µ(t, f2)f2(0)| ≤ L|f1 − f2|C, (7.3)

for all t ∈ [0, T ], f1, f2 ∈ C; moreover, µ(t, ·) ∈ G1(C,R) for all t ∈ [0, T ].

3. σ : [0, T ]×C → R is Borel measurable and there exists c > 0 such that

|σ(t, f)| ≥ c, (7.4)

for every f ∈ C, so that the risk premium in (7) is well defined and bounded; moreover

|σ(t, f1)f1(0)− σ(t, f2)f2(0)| ≤ L|f1 − f2|C, (7.5)

for a suitable L > 0 and for all t ∈ [0, T ], f1, f2 ∈ C; finally, σ(t, ·) ∈ G1(C,R) for all
t ∈ [0, T ]

4. φ ∈ G1(C,R) satisfies |∇φ(x)| ≤ C(1 + |x|C)m for all x ∈ C and some C > 0 and m ≥ 0.

By the Girsanov theorem there exists a probability measure, called risk-neutral probability,
for which

W t =
∫ t

0
θ(τ, Sτ+·) dτ +Wt, t ∈ [0, T ],

is a Wiener process. Then

dSt = ρSt dt+ σ(t, St+·)St dW t, dVt = ρVt dt+ πtσ(t, St+·) dW t.

The existence of a hedging strategy can be established as follows: using the results of Section 4
we first find a solution to the following forward-backward stochastic differential system





dSt = ρ St dt+ σ (t, St+·) St dW t, t ∈ [0, T ],
S0+· = s,

dVt = ρVt dt+ Zt dW t,
VT = φ(ST+·).

(7.6)

Next, recalling (7.4), we note that the required hedging strategy can be recovered from the
process Z setting πt = Zt/σ(t, St+·).
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However, a better characterization of the hedging strategy and the fair price of the claim can
be obtained. We first consider, for arbitrary t ∈ [0, T ] and s ∈ C, the following forward-backward
system, which generalizes (7.6):





dSt,s
τ = ρSt,s

τ dt+ σ (τ, St,s
τ+·) S

t,s
τ dW τ , τ ∈ [t, T ],

St,s
t+· = x,

dV t,s
τ = ρV t,s

τ dτ + Zt,s
τ dW τ ,

V t,s
T = φ(St,s

T+·),

with unknown triple (St,s
τ , V t,s

τ , Zt,s
τ ). Setting Xt,s

τ = St,s
τ+·, then X is a Markov process in C

with generator L. We finally define

v(t, s) = V t,s
t , t ∈ [0, T ], s ∈ C.

It follows from Corollary 4.5 that Zt,s
τ = ∇0v(τ,X

t,x
τ ) σ(τ,Xt,x

τ ). We conclude that the fair price
and the hedging strategy are uniquely determined as

V0 = v(0, s), πt =
Z0,s

t

σ(t,X0,s
t )

= ∇0v(t,X
0,s
t ) = ∇0v(t, St+·).

Moreover, see Theorem 5.1, v(t, s) is characterized as the unique mild solution of the equation





∂v(t, x)
∂t

+ Lv(t, x) = r v(t, x),

u(T, x) = φ(x), t ∈ [0, T ], x ∈ C,

(7.7)

which can be considered as a generalization of the Black-Scholes equation to the present setting.
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[3] T. Björk, Arbitrage theory in continuous time. Oxford University Press, Oxford 1998.

[4] M.-H. Chang, Stochastic Control of Hereditary Systems and Applications. Stochastic Mod-
elling and Applied Probability , Vol. 59, Springer 2008.

[5] M.-H. Chang, R.K. Youree. Infinite-dimensional Black-Scholes equation with hereditary
structure. Appl. Math. Optim. 56 (2007), no. 3, 395–424.

[6] G. Da Prato and J. Zabczyk, Stochastic equations in infinite dimensions, Encyclopedia of
Mathematics and its Applications 44, Cambridge University Press, 1992.

[7] G. Da Prato, J. Zabczyk, Ergodicity for infinite-dimensional systems. London Mathematical
Society Lecture Note Series, 229. Cambridge University Press, Cambridge, 1996.

[8] N. El Karoui, L. Mazliak ed.: Backward Stochastic Differential Equations, Pitman Research
Notes in Mathematics Series 364, Longman, 1997.

28



[9] N. El Karoui, S. Peng, M. C. Quenez, Backward stochastic differential equations in finance.
Mathematical Finance 7 (1997), no. 1, 1-71.

[10] W. H. Fleming, H. M. Soner, Controlled Markov processes and viscosity solutions. Appli-
cations of Mathematics 25. Springer-Verlag, 1993.

[11] M. Fuhrman, G. Tessitore, Nonlinear Kolmogorov equations in infinite dimensional spaces:
the backward stochastic differential equations approach and applications to optimal control.
Ann. Probab. 30 (2002), no. 3, 1397–1465.

[12] M. Fuhrman, G. Tessitore, Infinite horizon backward stochastic differential equations and
elliptic equations in Hilbert spaces. Ann. Probab. 32 (2004), no. 1B, 607–660.

[13] M. Fuhrman, G. Tessitore. Generalized directional gradients, backward stochastic differen-
tial equations and mild solutions of semilinear parabolic equations. Appl. Math. Optim. 51
(2005), no. 3, 279–332.

[14] J. Hale, Theory of functional differential equations, Appl. Math. Sci., vol. 3, Springer Verlag,
1971.

[15] Y. Hu, A generalized Haussmann’s formula. Stochastic Anal. Appl. 11 (1993), no. 1, 49–60

[16] S. Kusuoka and D. Stroock, Applications of the Malliavin calculus. I. Stochastic analysis
(Katata/Kyoto, 1982), 271–306, North-Holland Math. Library, 32, North-Holland, Amster-
dam, 1984.

[17] F. Masiero, Stochastic optimal control problems and parabolic equations in Banach spaces.
SIAM J. Control Optim. 47 (2008), no. 1, 251–300.

[18] S.E.A. Mohammed, Stochastic functional differential equations. Research Notes in Mathe-
matics, 99. Pitman, Boston, MA, 1984.

[19] S.E.A. Mohammed, Stochastic differential systems with memory: theory, examples and
applications, in Stochastic analysis and related topics. VI. Proceedings of the 6th Oslo-Silivri
Workshop held in Geilo, July 29–August 6, 1996. Progress in Probability, 42. Birkhäuser
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