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SOLUTIONS TO NONLINEAR SCHRÖDINGER EQUATIONS WITH
SINGULAR ELECTROMAGNETIC POTENTIAL AND CRITICAL

EXPONENT

LAURA ABATANGELO, SUSANNA TERRACINI

Abstract. We investigate existence and qualitative behaviour of solutions to nonlinear
Schrödinger equations with critical exponent and singular electromagnetic potentials. We
are concerned with with magnetic vector potentials which are homogeneous of degree −1,
including the Aharonov-Bohm class. In particular, by variational arguments we prove a
result of multiplicity of solutions distinguished by symmetry properties.

1. Introduction

In norelativistic quantum mechanics, the Hamiltonian associated with a charged particle
in an electromagnetic field is given by (i∇− A)2 + V where A : RN → RN is the magnetic
potential and V : RN → R is the electric one. The vector field B = curlA has to be intended
as the differential 2–form B = da, a being the 1–form canonically associated with the vector
field A. Only in three dimensions, by duality, B is represented by another vector field.

In this paper we are concerned with differential operators of the form(
i∇− A(θ)

|x|

)2

− a(θ)
|x|2

where A(θ) ∈ L∞(SN−1,RN ) and a(θ) ∈ L∞(SN−1,R). Notice the presence of homogeneous
(fuchsian) singularities at the origin. In some situations the potentials may also have singu-
larities on the sphere.

This kind of magnetic potentials appear as limits of thin solenoids, when the circulation
remains constant as the sequence of solenoids’ radii tends to zero, The limiting vector field is
then a singular measure supported in a lower dimensional set. Though the resulting magnetic
field vanishes almost everywhere, its presence still affects the spectrum of the operator, giving
rise to the so-called “Aharonov-Bohm effect”.

Also from the mathematical point of view this class of operators is worty being investigated,
mainly because of their critical behaviour. Indeed, they share with the Laplacian the same
degree of homogeneity and invariance under the Kelvin transform. Therefore they cannot
be regarded as lower order perturbations of the Laplace operator (they do not belong to the
Kato’s class: see fo instance [16], [17] and references therein).

Here we shall always assume N ≥ 3, otherwise specified. A quadratic form is associated
with the differential operator, that is

(1)
∫

RN

∣∣∣∣(i∇− A(θ)
|x|

)
u

∣∣∣∣2 − ∫
RN

a(θ)
|x|2

u2.
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As its natural domain we shall take the closure of compactly supported functions C∞
C (RN \

{0}) with respect to the quadratic form itself. Thanks to Hardy type inequalities, when
N ≥ 3, this space turns out to be the same D1,2(RN ), provided a is suitably bounded ([16]),
while, when N = 2, this is a smaller space of functions vanishing at the pole of the magnetic
potential. Throughout the paper we shall always assume positivity of (1).

We are interested in solutions to the critial semilinear differential equations

(2)
(
i∇− A(θ)

|x|

)2

u− a(θ)
|x|2

u = |u|2
∗−2 u in RN \ {0}

and in particular in their symmetry properties. The critical exponent appears as the natural
one whenever seeking finite energy solutions: indeed, Pohozaev type identitities prevent the
existence of entire solutions for power nonlinearities of different degrees.

The first existence results for equations of type (2) are given in [15] for subcritical non-
linearities. In addition, existence and multiplicity of solutions are investigated for instance
in [8, 12, 19, 25] mainly via variational methods and concentration-compactness arguments.
Some results involving critical nonlinearities are present in [2, 7]. Concerning results on semi-
classical solutions we quote [10, 11]. As far as we know, not many papers are concerned when
electromagnetic potentials which are singular, except those in [18], where anyway several in-
tegrability hypotheses are assumed on them, and, much more related with ours, the paper
[13] that we discuss later on.

We are interested in the existence of solutions to Equation (2) distinct by symmetry prop-
erties, as it happens in [27] for Schrödinger operators when magnetic vector potential is not
present. To investigate these questions, we aim to extend some of the results contained in
[27] when a singular electromagnetic potential is present.

To do this, we refer to solutions which minimize the Rayleigh quotient∫
RN

∣∣∣∣(i∇− A(θ)
|x|

)
u

∣∣∣∣2 − ∫
RN

a(θ)
|x|2

u2

(∫
RN

|u|2
∗
)2/2∗

.

We find useful to stress that, although, in general, ground states in D1,2(RN ) to equation (2)
do not exist (see Section 3), the existence of minimizers con be granted in suitable subspaces
of symmetric functions.

We are concerned with Aharonov-Bohm type potentials too. In R2 a vector potential
associated to the Aharonov-Bohm magnetic field has the form

A(x1, x2) = α

(
− x2

|x|2
,
x1

|x|2

)
where α ∈ R stands for the circulation of A around the thin solenoid. Here we consider the
analogous of these potentials in RN for N ≥ 4, that is

A(x1, x2, x3) =
(
−αx2

x2
1 + x2

2

,
αx1

x2
1 + x2

2

, 0
)

(x1, x2) ∈ R2 , x3 ∈ RN−2 .

Our main result can be stated as follows:

Theorem 1.1. Assume N ≥ 4 and a(θ) ≡ a ∈ R−. There exist a∗ < 0 such that, when
a < a∗, the equation (2) admits at least two distinct solutions in D1,2(RN ): one is radially
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symmetric while the second one is only invariant under a discrete group of rotations on the
first two variables.

A similar result holds for Aharonov-Bohm type potentials.

We point out hypothesis on the dimension is purely technical here. By the way, in dimension
N = 3 and in case of Aharonov-Bohm potentials, Clapp and Szulkin proved in [13] the
existence of at least a solution which enjoys the so-called biradial symmetry. However, their
argument may be adapted even in further dimensions, provided a cylindrical symmetry is
asked to functions with respect to the second set of variables in RN−2.

The proof of our main result is based on a comparison between the different levels of
the Rayleigh quotient’s infima taken over different spaces of functions which enjoy certain
symmetry properties. In particular, we will focus our attention on three different kinds of
symmetries:

(1) functions which are invariant under the Zk × SO(N − 2) action for k ∈ N, m ∈ Z
defined as

u(z, y) 7→ ei 2π
k

mu(ei 2π
k z,Ry) for z ∈ R2 and y ∈ RN−2, R ∈ SO(N − 2),

D1,2
k (RN ) will denote their vector space;

(2) functions which we will call ”biradial”, i.e.

u(z, y) = u(r1, r2) where r1 =
√
x2

1 + x2
2 and r2 =

√
x2

3 + · · ·+ x2
N ,

D1,2
r1,r2 will denote their vector space; sometimes we shall consider the symmetric func-

tions u(z, y) = eim arg zu(r1, r2).
(3) functions which are radial, D1,2

rad will be their vector space.

We fix the notation we will use throughout the paper:

Definition 1.2. Sr1,r2

A,a is the minimum of the Rayleigh quotient related to the magnetic Lapla-
cian over all the biradial functions in D1,2(RN );
Sr1,r2

0,a is the minimum of the Rayleigh quotient related to the usual Laplacian over all the
biradial functions in D1,2(RN );
Srad

0,a is the minimum of the Rayleigh quotient related to the usual Laplacian over all the
radial functions in D1,2(RN );
Sk

0,a is the minimum of the Rayleigh quotient related to the usual Laplacian over all the
functions in D1,2

k (RN );
Sk

A,a is the minimum of the Rayleigh quotient related to the magnetic Laplacian over all
the functions in D1,2

k (RN );
S is the usual Sobolev constant for the immersion D1,2(RN ) ↪→ L2∗(RN ).

In order to prove these quantities are achieved, we use concentration-compactness argu-
ments, in a special form due to Solimini in [26]. Unfortunately, we are not able to compute
the precise values of the abovementioned infima, but only to provide estimates in terms of
the Sobolev constant S; nevertheless this is enough to our aims. By the way, it is worth being
noticed in [27] a characterization is given for the radial case Srad

0,a : it is proved Srad
0,a is achieved

and the author is able to compute its precise value. This will turn out basic when we compare
it with the other infimum values in order to deduce some results about symmetry properties.



4 LAURA ABATANGELO, SUSANNA TERRACINI

Both in case of A(θ)
|x| type potentials and Aharonov-Bohm type potentials, we follow the

same outline. We organize the paper as follows: first of all in Section 2 we state the variational
framework for our problem; secondly in Section 3 we provide some sufficient conditions to have
the infimum of the Rayleigh quotients achieved, beginning from some simple particular cases;
in Section 4 we investigate the potential symmetry of solutions; finally in Section 6 we deduce
our main result. On the other hand, Section 5 is devoted to the study of Aharonov-Bohm
type potentials.

2. Variational setting

As initial domain for the quadratic form (1) we take the space of compactly supported
functions in RN \{0} : we denote it C∞

C (RN \{0}). Actually, as a consequence of the following
lemmas, one can consider the space D1,2(RN ) as the maximal domain for the quadratic form.

We recall that by definition D1,2(RN ) = C∞
C (RN )

(
R

RN |∇u|2)1/2

, i.e. the completion of the
compact supported functions on RN under the so-called Dirichlet norm.

The main tools for this are the following basic inequalities:∫
RN

u2

|x|2
dx ≤ 4

(N − 2)2

∫
RN

|∇u|2 dx (Hardy inequality)∫
RN

|∇ |u||2 dx ≤
∫

RN

∣∣∣∣(i∇− A

|x|

)
u

∣∣∣∣2 dx (diamagnetic inequality)

both with the following lemmas

Lemma 2.1. The completion of C∞
C (RN \ {0}) under the Dirichlet norm coincide with the

space D1,2(RN ).

Lemma 2.2. If A ∈ L∞(SN−1) then the norm
(∫

RN

∣∣∣∣(i∇− A(θ)
|x|

)
u

∣∣∣∣2)1/2

is equivalent to

the Dirichlet norm on C∞
C (RN \ {0}).

Lemma 2.3. The quadratic form (1) is equivalent to QA(u) =
∫

RN

∣∣∣∣(i∇− A(θ)
|x|

)
u

∣∣∣∣2 on its

maximal domain D1,2(RN ) provided ‖a‖∞ < (N − 2)2/4. Moreover, it is positive definite.

We refer to [16] for a deeper analysis of these questions.

We set the following variational problem

(3) SA,a := inf
u∈D1,2(RN )\{0}

∫
RN

∣∣∣∣(i∇− A(θ)
|x|

)
u

∣∣∣∣2 − ∫
RN

a(θ)
|x|2

u2

(∫
RN

|u|2
∗
)2/2∗

.

Of course, SA,a is strictly positive since the quadratic form (1) is positive definite.
We are now proposing a lemma which will be useful later.
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Lemma 2.4. Let {xn} be a sequence of points such that |xn| → ∞ as n→∞. Then for any
u ∈ D1,2(RN ) as n→∞ we have∫

RN

∣∣∣∣(i∇− A(θ)
|x|

)
u(·+ xn)

∣∣∣∣2 − ∫
RN

a(θ)
|x|2

|u(·+ xn)|2(∫
RN

|u|2
∗
)2/2∗

→

∫
RN

|∇u|2(∫
RN

|u|2
∗
)2/2∗

.

Proof. It is sufficient to prove for all ε > 0 there exists a n such that
∫

RN
|u(x+xn)|2

|x|2 dx < 2ε
for n ≥ n. Let us consider R > 0 big enough to have∫

RN\BR(xn)

|u(x+ xn)|2

|x|2
dx < ε

for every n ∈ N. On the other hand, when x ∈ BR(xn) we have |x| ≥ |xn|−|x− xn| ≥ |xn|−R
which is a positive quantity for n big enough. In this way∫

BR(xn)

|u(x+ xn)|2

|x|2
dx ≤ 1

(|xn| −R)2

∫
BR(xn)

|u(x+ xn)|2 dx < ε

for n big enough. � �

Exploiting this lemma, we can state the following property holding for SA,a:

Proposition 2.5. If S denotes the best Sobolev constant for the embedding of D1,2(RN ) in
L2∗(RN ), i.e.

(4) S := inf
u∈D1,2(RN )\{0}

∫
RN

|∇u|2(∫
RN

|u|2
∗
)2/2∗

,

it holds SA,a ≤ S.

Proof. Lemma (2.4) shows immediately for all u ∈ D1,2(RN )

SA,a ≤

∫
RN

|∇u|2(∫
RN

|u|2
∗
)2/2∗

+ o(1) .

If we choose a minimizing sequence for (4) in the line above, we see immediately SA,a ≤
S. � �

3. Attaining the infimum

Given the results in [6] due to Brezis and Nirenberg, one could expect that ,if SA,a is strictly
less than S, then it is attained. Here we pursue this idea with concentration-compactness
arguments, in the special version due to Solimini in [26]. Before proceeding, we find useful to
recall some definitions about the so-called Lorentz spaces.
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Definition 3.1. [26] A Lorentz space Lp,q(RN ) is a space of measurable functions affected
by two indexes p and q which are two positive real numbers, 1 ≤ p , q ≤ +∞, like the indexes
which determine the usual Lp spaces. The index p is called principal index and the index q is
called secundary index. A monotonicity property holds with respect to the secundary index:
if q1 < q2 then Lp,q1 ⊂ Lp,q2. So the strongest case of a Lorentz space with principal index
p is Lp,1; while the weakest case is Lp,∞, which is equivalent to the so-called weak Lp space,
or Marcinkiewicz space. Anyway, the most familiar case of Lorentz space is the intermediate
case given by q = p, since the space Lp,p is equivalent to the classical Lp space.

Properties 3.2. [26] A basic property about the Lorentz spaces is an appropriate case of
the Hölder inequality, which states that the duality product of two functions is bounded by
a constant times the product of the norms of the two functions in two respective conjugate
Lorentz spaces Lp1,q1 and Lp2,q2 where the two pairs of indexes satisfy the relations 1

p1
+ 1

p2
=

1
q1

+ 1
q2

= 1.
Moreover, if we consider the Sobolev space H1,p(RN ), it is wellknown it is embedded in the

Lebesgue space Lp∗(RN ). But this embedding is not optimal: it holds that the space H1,p(RN )
is embedded in the Lorentz space Lp∗,p, which is strictly stronger than Lp∗ = Lp∗,p∗.

Theorem 3.3. (Solimini)([26]) Let (un)n∈N be a given bounded sequence of functions in
H1,p(RN ), with the index p satisfing 1 < p < N . Then, replacing (un)n∈N with a suitable
subsequence, we can find a sequence of functions (φi)i∈N belonging to H1,p(RN ) and, in cor-
respondence of any index n, we can find a sequence of rescalings (ρi

n)i∈N in such a way that
the sequence (ρi

n(φi))i∈N is summable in H1,p(RN ), uniformly with respect to n, and that the
sequence (un −

∑
i∈N ρ

i
n(φi))n∈N converges to zero in L(p∗, q) for every index q > p.

Moreover we have that, for any pair of indexes i and j, the two corresponding sequences of
rescalings (ρi

n)n∈N and (ρj
n)n∈N are mutually diverging, that

(5)
+∞∑
i=1

‖φi‖p1,p ≤M ,

where M is the limit of (‖un‖p1,p)n∈N, and that the sequence
(un −

∑
i∈N ρ

i
n(φi))n∈N converges to zero in H1,p(RN ) if and only if (5) is an equality.

Now we can state the result

Theorem 3.4. If SA,a < S then SA,a is attained.

Proof. Let us consider a minimizing sequence un ∈ D1,2(RN ) to SA,a. In particular, it is
bounded in D1,2(RN ). By Solimini’s theorem (3.3), up to subsequences, there will exist
a sequence φi ∈ D1,2(RN ) and a sequence of mutually divergent rescalings ρi

n defined as
ρi

n(u) = (λi
n)

N−2
2 u(xn + λi

n(x − xn)), such that
∑

i ρ
i
nφi ∈ D1,2(RN ) and un −

∑
i ρ

i
nφi → 0

in L2∗ . In general the rescalings may be mutually divergent by dilation (concentration or
vanishing) or by translation. In our case the Rayleigh quotient is invariant under dilations,
so the rescalings’ divergence by dilation cannot occur. By that, we mean the possibility to
normalize the modula λ1

n = 1 for each n.
Moreover, there exists at least a nontrivial function φi, namely φ1, which we choose to

denote just φ, in such a way that we can write un(·)−φ(·+ xn)−
∑

i≥2 ρ
i
nφi → 0 in L2∗ with

a little abuse of notation, meaning that (ρ1
n)−1un − φ(·+ xn)−

∑
i≥2(ρ

1
n)−1ρi

nφi → 0 in L2∗ ,
where (ρ1

n)−1un is again a minimizing sequence and
∑

i≥2(ρ
1
n)−1ρi

nφi → 0 a.e. in RN , because
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of the rescalings’ mutual divergence. We can think the sequence un is normalized in L2∗-norm.
In this way the sequence

∑
i≥2 ρ

i
nφi is also equibounded in L2∗ ; so that

∑
i≥2 ρ

i
nφi ⇀ 0 in

L2∗ . At the same time even
∑

i≥2 ρ
i
nφi ⇀ 0 in D1,2(RN ).

If we call for a moment vn =
∑

i≥2 ρ
i
nφi, we have∣∣∣|vn + φ|2

∗
− |φ|2

∗
− |vn|2

∗
∣∣∣ ≤ C (|vn|2

∗−1 |φ|+ |vn| |φ|2
∗−1
)

from which ∫
RN

|un|2
∗

=
∫

RN

|φ|2
∗
+
∫

RN

|vn|2
∗
+ o(1)

thanks to the weak convergence vn ⇀ 0 in L2∗ . At the same time∫
RN

|∇A (φ(·+ xn) + vn)|2 =
∫

RN

|∇Aφ(·+ xn)|2 +
∫

RN

|∇Avn|2

+2
∫

RN

∇Aφ(·+ xn) · ∇Avn

=
∫

RN

|∇Aφ(·+ xn)|2 +
∫

RN

|∇Avn|2 + o(1)

thanks to the weak convergence vn ⇀ 0 in D1,2(RN ). So that

SA,a ←

∫
RN

|∇Aφ(·+ xn)|2 +
∫

RN

|∇Avn|2 + o(1)(∫
RN

|φ|2
∗
+
∫

RN

|vn|2
∗
+ o(1)

)2/2∗

≥ SA,a

(∫
RN

|φ|2
∗
)2/2∗

+
(∫

RN

|vn|2
∗
)2/2∗

+ o(1)(∫
RN

|φ|2
∗
+
∫

RN

|vn|2
∗
+ o(1)

)2/2∗
,

and in order not to fall in contradiction the previous coefficient must tend to zero, and then∫
RN |vn|2

∗
→ 0.

In conclusion, we have
∥∥∥∑i≥2 ρ

i
nφi

∥∥∥
2∗
→ 0 and therefore the strong D1,2(RN ) convergence

un(·)− φ(·+ xn)→ 0, since we have an equality in (5) in Theorem (3.3).
At this point we aim to exclude the rescalings’ translation divergence. Let us suppose by

contradiction this occurs: Lemma (2.4) proves that if |xn| → +∞, then the quotient evalueted

on the minimizing sequence Φ(·+xn) tends to

∫
RN |∇φ|2

(
∫

RN |φ|2
∗
)2/2∗

which is greater equivalent than

S, so we have a contradiction. � �

3.1. The case a ≤ 0. In order to investigate when the infimum is attained depending on the
magnetic vector potential A and the electric potential a, we start from the simplest cases.
The first of them is the case a ≤ 0.

Proposition 3.5. If a ≤ 0, SA,a is not achieved.
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Proof. First of all, in this case we have SA,a = S. Indeed, by diamagnetic inequality, we have∫
RN

∣∣∣∣(i∇− A(θ)
|x|

)
u

∣∣∣∣2 − ∫
RN

a(θ)
|x|2

u2 ≥
∫

RN

|∇ |u||2 −
∫

RN

a(θ)
|x|2

u2

from which we have SA,a ≥ S.
Suppose by contradiction SA is achieved on a function φ. Following the previous argument

by Solimini’s theorem, according to the negativity of the electric potential, we get SA,a ≥ S+c,

where c is a positive constant due to the convergence of the term

∫
RN

a(θ)

|x|2 φ(·+ xn)2

(
∫

RN |φ(·+ xn)|2∗)2/2∗
. So

we get SA,a > S, a contradiction.
Note here we used the considerable fact that

inf
u∈D1,2(RN )\{0}

∫
RN

|∇ |u||2(∫
RN

|u|2
∗
)2/2∗

= S .

Its proof is based on the idea that S is achieved over a radial function. � �

3.2. The case a = 0 and A 6= 0. In this case we expect in general the infimum is not
achieved. Indeed, first of all we have SA,a = S, because we have already seen in general
SA,a ≤ S, and in this case the diamagnetic inequality gives the reverse inequality. There is a
simple case in which we can immediately deduce a result.

Remark 3.6. If the vector potential
A

|x|
is a gradient of a function Θ ∈ L1

loc(RN ) such that

∇Θ ∈ LN,∞(RN ), then SA,a is achieved.

Indeed, suppose
A

|x|
= ∇Θ for a function Θ ∈ L1

loc(RN ) such that its gradient has the regularity

mentioned above. The change of gauge u 7→ e+iΘu makes the problem (3) equivalent to (4),
so that the infimum is necessarly achieved.
Just a few words about the regularity asked to ∇Θ. In order to have the minimum problem
wellposed, it would be sufficient ∇Θ ∈ L2. But if we require the function e−iΘu ∈ D1,2(RN )
for any u ∈ D1,2(RN ), this regularity is not sufficient any more. Rather, everything works if
∇Θ ∈ LN,∞(RN ).

Now, suppose the infimum SA,a = S is achieved on a function u ∈ D1,2(RN ). Then we have

S =

∫
RN

∣∣∣∣(i∇− A(θ)
|x|

)
u

∣∣∣∣2(∫
RN

|u|2
∗
)2/2∗

≥

∫
RN

|∇ |u||2(∫
RN

|u|2
∗
)2/2∗

≥ S .

So it is clear the equality must hold in the diamagnetic inequality in order not to fall into a
contradiction. We have the following chain of relations:

|∇ |u|| =
∣∣∣∣Re( u|u|∇u)

∣∣∣∣ = ∣∣∣∣Im(i u|u|∇u)
∣∣∣∣ = ∣∣∣∣Im(i∇u− A

|x|
u
) u
|u|

∣∣∣∣ ≤ ∣∣∣∣(i∇u− A

|x|
u
) u
|u|

∣∣∣∣ .
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In order that the equality holds in the last line Re
{(
i∇u− A

|x|u
)
u
}

must vanish. Expanding

the expression one finds the equivalent condition is A
|x| = Re

(
i∇u

u

)
. We can rewrite i∇u

u =

i∇u
|u|2u and see

Re
(
i
∇u
u

)
=
−Re(u)∇ (Im(u)) + Im(u)∇ (Re(u))

|u|2
= −∇

(
arctan

Im(u)
Re(u)

)
which is equivalent to − A

|x| = ∇Θ where Θ is the phase of u.
In conclusion, we can resume our first remark both with this argument to state the following

Proposition 3.7. If the electric potential a = 0, the infimum SA,a is

achieved if and only if
A

|x|
= ∇Θ. In this case Θ is the phase of the minimizing function.

3.3. The general case: sufficient conditions. In Theorem (3.4) we proved that a sufficient
condition for the infimum achieved is SA,a < S. In this section we look for the hypotheses on
A or a which guarantee this condition.

Proposition 3.8. Suppose there exist a small ball Bδ(x0) centered in x0 ∈ SN−1 in which

a(x)− |A(x)|2 ≥ λ > 0 a.e. x ∈ Bδ(x0).

Then SA,a < S and so SA,a is achieved.

Proof. We define

HA(Ω) = C∞
C (Ω)

(
R

Ω|∇Au|2)1/2

the closure of compact supported functions with respect to the norm associated to the qua-
dratic form. We have the following chain of relations:

SA,a ≤ inf
u∈HA(Bδ(x0))\{0}

∫
RN

|∇Au|2 −
∫

RN

a

|x|2
|u|2(∫

RN

|u|2
∗
)2/2∗

≤ inf
u∈HA(Bδ(x0),R)\{0}

∫
Bδ(x0)

|∇Au|2 −
∫

Bδ(x0)

a

|x|2
u2

(∫
Bδ(x0)

|u|2
∗

)2/2∗

since the quotient is invariant under Solimini’s rescalings and we restrict to a proper subset
of functions. When we check the quotient over a real function, it reduces to∫

Bδ(x0)
|∇u|2 −

∫
Bδ(x0)

|A|2 − a
|x|2

u2

(∫
Bδ(x0)

|u|2
∗

)2/2∗
,

so the thesis follows from [6], Lemma (1.1). � �
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Remark 3.9. We can resume the results reached until now: in case the magnetic vector
potential A

|x| is a gradient, the infimum SA,a is achieved if a ≡ 0 or if its essential infimum
is positive and sufficiently small in a neighborhood far from the origin (we mean ‖a‖∞ ≤
(N − 2)2/4 in order to keep the quadratic form positive definite); while it is never achieved
provided a ≤ 0, neither in case the magnetic potential is a gradient, nor in case it is not.
On the other hand, in order to have SA,a achieved, if the magnetic vector potential is not a
gradient we need to assume it has a suitably low essential supremum somewhere in a ball far
from the origin in relation to the electric potential a (see Proposition (3.8)).

Anyway, it seems reasonable what is important here is not the essential supremum of A
|x|

(or A, since we play far from the origin), but ”the distance” between the magnetic vector
potential and the set of gradients. Pursuing this idea, it seems possible to interpretate a
suitable (to be specified) norm of curl A

|x| as a measure of this distance. In order to specify
these ideas we refer to [21] and [5]. We recall the following

Definition 3.10. [21] Let Ω be a open set of RN and −→a ,
−→
b ∈ L1

loc(Ω). We say that −→a
and
−→
b are related by a gauge transformation, −→a ∼Ω

−→
b , if there is a distribution λ ∈ D′(Ω)

satisfying
−→
b = −→a +∇λ.

By curl−→a we denote the skew-symmetric, matrix-valued distribution having ∂i
−→a j−∂j

−→a i ∈
D′(Ω) as matrix elements.

Lemma 3.11. [21] Let Ω be any open subset of RN , 1 ≤ p < +∞ and −→a ,
−→
b ∈ Lp

loc(Ω). Then
every λ satisfying

−→
b = −→a +∇λ belongs to W 1 ,p(Ω). If Ω is simply-connected then

−→a ∼Ω
−→
b ⇐⇒ curl−→a = curl

−→
b .

Theorem 3.12. [5] Let M = (0, 1)N be the N-dimensional cube of RN with N ≥ 2 and
1 ≤ l ≤ N − 1. Given any X a l-form with coefficients in W 1,N (M) there exists some Y a
l-form with coefficients in W 1,N ∩ L∞(M) such that

dY = dX

and
‖∇Y ‖N + ‖Y ‖∞ ≤ C ‖dX‖N .

The Theorem (3.12) will be very useful in our case choosing l = 1, so that the external
derivative is the curl of the vector field which represents the given 1-form.

Suppose A
|x| ∈ W 1,N (Bδ(x0)) in a ball far from the origin. Then for Theorem (3.12)

there exists a vector field Y ∈ L∞ ∩W 1,N (Bδ(x0)) such that curl A
|x| = curlY and ‖Y ‖∞ ≤

C
∥∥∥curl A

|x|

∥∥∥
N

. By Lemma (3.11), Y is related to A
|x| by a gauge transformation, so, in the

spirit of Theorem (3.8), it is sufficient
∥∥∥curl A

|x|

∥∥∥
N

is not too large in order to have SA,a < S

and hence SA,a achieved.

4. Symmetry of solutions

We recall once again in general SA,a ≤ S. When SA,a = S and QA,a(u) > Q(u) for any
u ∈ D1,2(RN ), e.g. when a ≤ 0 but not identically 0, we lose compactness since clearly SA,a

cannot be attained. In this section we follow the idea that introducing symmetry properties
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to the quadratic form can help in growing the upper bound for SA,a, in order to increase the
probability for it to be achieved.

We basically follow the ideas in [27], assuming the dimension N ≥ 4.
Let us write RN = R2 × RN−2 and denote x = (z, y). Let us fix k ∈ N, and suppose there

is a Zk × SO(N − 2) group-action on D1,2(RN ), denoting

D1,2
k (RN ) = {u(z, y) ∈ D1,2(RN ) s.t. u(ei 2π

k z,Ry) = u(z, y) for any R ∈ SO(N − 2)}

the fixed point space. In order to have the quadratic form invariant under this action, let us
suppose that a(θ) ≡ a ∈ R− and

(6) A

(
ei 2π

k z, y

|(z, y)|

)
=
(
ei 2π

k (A1, A2), A3

)( z, |y|
|(z, y)|

)
.

We set the problem

(7) Sk
A,a := inf

u∈D1,2
k (RN )

QA,a(u)
‖u‖22∗

.

Theorem 4.1. If Sk
A,a < k2/NS then it is achieved.

Proof. Let us consider a minimizing sequence {un}. The space D1,2
k (RN ) is a close subspace

in D1,2(RN ), so Solimini’s Theorem (3.3) holds in D1,2
k (RN ). Up to subsequences we can

find a sequence Φi ∈ D1,2
k (RN ) and a sequence of mutually diverging rescalings ρi

n such that
un−

∑
i ρ

i
n(Φi)→ 0 in L2∗ . Thanks to the quotient’s invariance under dilations, the rescalings

should be mutually diverging only by translations, as already pointed out.
We basically follow the proof of Theorem (3.4). Since {un} is a minimizing sequence for

the Sobolev quotient, we can claim there exists at least a function of the form

(8)
k∑

j=1

Φ(·+ xj
n)

which is not zero, and we can assume its relative rescaling, namely ρ1
n, is the identity. Of course

there could exist more than k points xj
n in the form (8), but certainly they are in number

at least k, and the abovementioned form remains correct. The remaining part
∑

i≥2 ρ
i
n(Φi)

weakly converges to zero in L2∗ , and also their L2∗-norms converge to zero. Thus un −∑k
j=1 Φ(· + xj

n) → 0 in L2∗ , and for the last assertion of Solimini’s theorem, we gain the
strong convergence un −

∑k
j=1 Φ(·+ xj

n)→ 0 in D1,2
k (RN ).

Arguing by contradiction, let us suppose Sk
A,a is not achieved. This means

∣∣∣xj
n

∣∣∣→ +∞ as
n→∞ for all j = 1, . . . , k (the symmetry must be preserved). Evaluating the quotient over
un is the same as evaluating it over

∑k
j=1 Φ(·+ xj

n) up to o(1). According to the assumption∣∣∣xj
n

∣∣∣→ +∞ we compute

(9)
∫

RN

∣∣∣∇A

( k∑
j=1

Φ(·+ xj
n)
)∣∣∣2 − ∫

RN

a

|x|2
∣∣∣ k∑

j=1

Φ(·+ xj
n)
∣∣∣2 = k

∫
RN

|∇Φ|2 + o(1).
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We claim that

(10)
∫

RN

∣∣∣ k∑
j=1

Φ(·+ xj
n)
∣∣∣2∗ = k

∫
RN

|Φ|2
∗

+ o(1) .

A proof of this fact is based on the inequality
∣∣∣|a+ b|2

∗
− |a|2

∗
− |b|2

∗
∣∣∣ ≤ C

(
|a|2

∗−1 |b| +

|a| |b|2
∗−1 ) applied (k−1) times. As in the previous equivalence (9) the mixed terms are o(1)

because of the divergence
∣∣∣xj

n

∣∣∣→ +∞.
Using (9) and (10) we can write

Sk
A,a = lim

n→+∞

QA,a

(∑k
j=1 Φ(·+ xj

n)
)

(∫
RN

∣∣∣ k∑
j=1

Φ(·+ xj
n)
∣∣∣2∗)2/2∗

=
k

∫
RN

|∇Φ|2(
k

∫
RN

|Φ|2
∗
)2/2∗

≥ k2/N S,

a contradiction. � �

We emphasize under these assumptions the minimum has the form u =
∑k

j=1 Φ(·+ xj).

Remark 4.2. The above result is actually a symmetry breaking result for the equation asso-
ciated to these minimum problems. Indeed, let us consider the equation

(11) −∆Au =
a

|x|2
+ |u|2

∗−2 u in RN ,

where −∆A denotes the differential operator we have called magnetic Laplacian. Then the
minima of (3) are solutions to (11) and so are those of (7), thanks to the Symmetric Criticality
Principle (the quotient is invariant under the Zk×SO(N − 2) group-action). Thus, when the
electric potential is constant and negative, we find a multiplicity of solutions to (11) depending
on k (we would say an infinite number, at least for k not multiples to each other), and each
of them is invariant under rotations of angle 2π/k, respectively.

Now we want to check whenever the condition Sk
A,a < k2/NS is fulfilled. Let us pick k

points in RN \ {0} of the form xj = (Re
2πi
k

jξ0, 0) where |ξ0| = 1, and denote

(12) wj = e
2πi
k

jm

(
N(N − 2)

)N−2
4(

1 + |x− xj |2
)N−2

2

.

In this way the sum
∑k

j=1wj is an element of D1,2
k (RN ). Additionally we notice wj are

minimizers of the usual Sobolev quotient, and they satisfy

(13) −∆wj = |wj |2
∗−2wj in RN .

It is worth to notice that both ∫
RN

|∇wj |2(∫
RN

|wj |2
∗
)2/2∗

= S
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and (13) imply

(14)
∫

RN

|∇wj |2 =
∫

RN

|wj |2
∗

= SN/2 .

We state the following

Proposition 4.3. Choosing R big enough, the quotient evaluated over∑k
j=1wj is strictly less than k2/NS, and so the infimum Sk

A,a.

In order to prove it, we need some technical results, whose proofs are postponed to the
next subsection. We basically follow the ideas in [27].

For seek of semplicity, we introduce the following notation:

α =
∫

RN

Re
{∑

i6=j

|wi|2
∗−2wiwj

}

β =
∫

RN

|A|2 − a
|x|2

∣∣∣ k∑
j=1

wj

∣∣∣2
γ = Re

{
i

∫
RN

A

|x|
·
∑
i,j

∇wiwj

}
.

Lemma 4.4. It holds α ≥ 0.

Lemma 4.5. For every positive δ there exists a positive constant Kδ (independent of k) such
that if

|xi − xj |2

log |xi − xj |
≥ Kδ (k − 1)2/(N−2) ∀i 6= j

then

(15)
∫

RN

∣∣∣∣ k∑
j=1

wj

∣∣∣∣2∗ ≥ k SN/2 + 2∗(1− δ)
∫

RN

Re
{∑

i6=j

|wi|2
∗−2wiwj

}
.

Lemma 4.6. Given Lemma (4.5), it is possible to choose R and k in such a way that the
quantity

1 +
1

kSN/2

{
β − 2γ + α

(
− 1 + δ +

2− δ
kSN/2

(2γ − β)
)}

is positive and strictly less than 1.
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Proof of Proposition (4.3). Let us evaluate the quotient over∑k
j=1wj : ∫

RN

∣∣∣∇A

( k∑
j=1

wj

)∣∣∣2 − ∫
RN

a

|x|2
∣∣∣ k∑

j=1

wj

∣∣∣2
=
∫

RN

{ k∑
j=1

|∇wj |2 +Re
{∑

i6=j

∇wi · ∇wj

}
+
|A|2 − a
|x|2

∣∣∣ k∑
j=1

wj

∣∣∣2
− 2Re

{
i
A

|x|
·
∑
i,j

∇wiwj

}}

= kSN/2 +
∫

RN

{
Re
{∑

i 6=j

|wi|2
∗−2wiwj

}
+
|A|2 − a
|x|2

∣∣∣ k∑
j=1

wj

∣∣∣2
− 2Re

{
i
A

|x|
·
∑
i,j

∇wiwj

}}
(16)

where in the last equality we have used (14) and the equation (13). Now we use Lemma (4.5)
which states the lower bound (15) for the denominator of our quotient. Thus using (16) and
(15) the quotient is

QA,a

(∑k
j=1wj

)∥∥∥(∑k
j=1wj

)∥∥∥2

2∗

≤

kSN/2 +
∫

RN

{
Re
{∑

i6=j

|wi|2
∗−2wiwj

}
+
|A|2 − a
|x|2

∣∣∣ k∑
j=1

wj

∣∣∣2

−2Re
{
i
A

|x|
·
∑
i,j

∇wiwj

}}
·

kSN/2 + 2∗(1− δ/2)
∫

RN

Re
{∑

i 6=j

|wi|2
∗−2wiwj

}−2/2∗

= k2/NS

(
1 +

1
kSN/2

(α+ β − 2γ)
)(

1− 2(1− δ/2)
kSN/2

α

)
+ o(1)

where in the last line we have expanded the denominator in Taylor’s serie since the argument
is very close to zero if R is large. Up to infinitesimal terms of higher order, the coefficient of
k2/NS is

1 +
1

kSN/2
β − 2

kSN/2
γ +

1
kSN/2

α
(
− 1 + δ +

2− δ
kSN/2

(2γ − β)
)
.

Now we invoke Lemma (4.6) to conclude the proof. �

4.1. Proofs of technical lemmas. In order to prove Lemmas (4.4), (4.5) and (4.6) we need
supplementary results mainly about asymptotics of the quantities involved.
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Lemma 4.7. We have, as |xi − xj | → +∞ and |xi| → +∞∫
RN

|wi|2
∗−2wiwj = O

( 1

|xi − xj |N−2

)
(17) ∫

RN

|wiwj |2
∗/2 = O

( log |xi − xj |
|xi − xj |N

)
(18)

∫
RN

|wj |2

|x|2
=

 O
( logR
R2

)
if N = 4

O
( 1
R2

)
for N ≥ 5

(19)

∫
RN

1
|x|
· |∇wj | |wi| = O

( 1

R |xi − xj |N−3

)
.(20)

Proof. For what concerns (17), (18) and (19) we refer to [27].
About (20) we have∫

BR/2(0)

1
|x|
|∇wj | |wi| = O(

1
RN−1

)O(
1

RN−2
)O(RN−1) = O(

1
RN−2

)

since in BR/2(0) |x− xi| ≥ R− |x| ≥ R/2 and the same holds for |x− xj |;∫
B|xi−xj |/4(xi)

1
|x|
|∇wj | |wi| = O(

1
R

)O(
1

|xi − xj |N−1
)
∫

B|xi−xj |/4(xi)
|wi|

= O(
1

R |xi − xj |N−3
)

since in B|xi−xj |/4(xi) |x| ≥ |xi| − |x− xi| ≥ R/2 and |x− xj | ≥ |xi − xj | − |x− xi| ≥
3
4 |xi − xj |;∫

B|xi−xj |/4(xj)

1
|x|
|∇wj | |wi| = O(

1
R

)O(
1

|xi − xj |N−2
)
∫

B|xi−xj |/4(xj)
|∇wj |

= O(
1

R |xi − xj |N−3
)

since in B|xi−xj |/4(xj) |x| ≥ |xj | − |x− xj | ≥ R/2 and |x− xi| ≥ |xi − xj | − |x− xj | ≥
3
4 |xi − xj |; while in RN \ (BR/2(0) ∪ B|xi−xj |/4(xi) ∪ B|xi−xj |/4(xj)) we have |x| ≥ R/2, and
via Hölder inequality∫

RN\(BR/2(0)∪B|xi−xj |/4(xi)∪B|xi−xj |/4(xj))

1
|x|
|∇wj | |wi|

=


O
( 1
R |xi − xj |2

log |xi − xj |
)

if N = 4

O
( 1

R |xi − xj |2N−6

)
if N ≥ 5.

� �
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Remark 4.8. The above asymptotics in Lemma (4.7) come in terms of k and R as we note

|xi − xj |2 = R2 sin2 2π
k

(i− j) +R2
(
1− cos

2π
k

(i− j)
)2

∼

 R2

k2
+
R2

k4
= O(

R2

k2
) if |i− j| � k

R2 otherwise
.

According to the previous asymptotic, we note we have the worst estimates in Lemma (4.7)
for |i− j| � k, that is for the centers xi, xj quite near to each other.

Lemma 4.9. The following asymptotic behavior holds for k → +∞ and R→ +∞

∣∣∣∣∣∣
∫

RN

Re
{
i
A

|x|
·
∑
l,j

∇wl wj

}∣∣∣∣∣∣ ≤


O
( k2

R2

)
if N = 4

O
(k2 log k

R3

)
if N = 5

O
( kN−3

RN−2

)
for N ≥ 6.

Proof. First of all we note if l = j the quantity in the statement is zero. Next,∣∣∣∣∣∣
∫

RN

Re
{
i
A

|x|
·
∑
l,j

∇wl wj

}∣∣∣∣∣∣ =
∣∣∣∣∣∣
∑
l 6=j

sin
2π
k
m(l − j)

∫
RN

A

|x|
· ∇ |wl| |wj |

∣∣∣∣∣∣
≤ C

RN−2

∑
l 6=j

∣∣sin 2π
k m(l − j)

∣∣(
1− cos 2π

k (l − j)
)N−3

2

=
C k

RN−2

k−1∑
l=1

∣∣sin 2π
k ml

∣∣(
1− cos 2π

k l
)N−3

2

≤ Cmk

RN−2

k−1∑
l=1

l/k

(l/k)N−3
=
CmkN−3

RN−2

 k if N = 4
log k if N = 5
O(1) for N ≥ 6.

� �

We recall the following result proved in [27]:

Lemma 4.10. Let s1, . . . , sk ≥ 0. For every positive δ there exists a positive constant Kδ

(independent of k) such that if

|xi − xj |2

log |xi − xj |
≥ Kδ (k − 1)2/(N−2) ∀i 6= j

then

(21)
∫

RN

( k∑
i=1

si

)2∗

≥ k SN/2 + 2∗(1− δ/2)
∫

RN

∑
i 6=j

s2
∗−1

i sj

Proof of Lemma (4.4). We split the sum in two contributions: indexes for which
cos 2π

k (j − l) ≥ 0 (we will call them j,l pos), and indexes for which cos 2π
k (j − l) ≤ 0 (we will

call them j,l neg). We note in the first case, we have |xj − xl| ∼ R
k , whereas in the second
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case |xj − xl| ∼ R. Then∫
RN

Re

{ ∑
l,j pos

|wj |2
∗−2wj wl

}
≥

∫
RN

Re

{∑
j

|wj |2
∗−2wj wj+1

}

= k

∫
RN

Re

{
|w2|2

∗−2w2w1

}
= O(

kN−1

RN−2
) .(22)

On the other hand,∫
RN

Re

{ ∑
l,j neg

|wj |2
∗−2wjwl

}
≤ k2

∫
RN

Re

{
|wl|2

∗−2wl w1

}
= O(

k2

RN−2
);

so that for k large enough we have the thesis. �
Proof of Lemma (4.5). By convexity of the function (·)2∗/2 we have

∣∣∣∣∣∣
k∑

j=1

wj

∣∣∣∣∣∣
2∗

=

∣∣∣∣∣∣
k∑

j=1

wj

∣∣∣∣∣∣
22∗/2

=

 k∑
i,j=1

Re{wiwj}

2∗/2

=

∑
i,j

|wi| |wj | −
∑
i,j

|wi| |wj |
(
1− cos

(2π
k
m(i− j)

))2∗/2

≥

∑
i,j

|wi| |wj |

2∗/2

− 2∗

2

∑
i,j

|wi| |wj |

2∗/2−1∑
i,j

|wi| |wj |
(
1− cos

(2π
k
m(i− j)

))
.(23)

For what concerns the first term
(∑

i,j |wi| |wj |
)2∗/2

=
(∑k

j |wj |
)2∗

, we can apply directly
inequality (21) in order to have

(24)
∫

RN

 k∑
j=1

|wj |

2∗

≥ k SN/2 + 2∗(1− δ/2)
∫

RN

∑
i6=j

|wi|2
∗−1 |wj | .

We want to stress that

∫
RN

∑
i6=j

|wi|2
∗−1 |wj | ≥

∫
RN

k∑
j=1

|wj |2
∗−1 |wj+1| = k

∫
RN

|w1|2
∗−1 |w2|

(see also [27], equation (6.22)), so that

(25)
∫

RN

∑
i6=j

|wi|2
∗−1 |wj | ≥ O

( kN−1

RN−2

)
.
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Now we focus our attention on the integral of the second term in (23): via Hölder inequality
we have∫

RN

∑
i,j

|wi| |wj |

2∗/2−1∑
i,j

|wi| |wj |
(
1− cos

(2π
k
m(i− j)

))

≤

∫
RN

(∑
i,j

|wi| |wj |
)2∗/2

 2∗−2
2∗

·

∫
RN

(∑
i,j

|wi| |wj |
(
1− cos

(2π
k
m(i− j)

)))2∗/2
2/2∗

and ∫
RN

(∑
i,j

|wi| |wj |
)2∗/2

 2∗−2
2∗

=

∫
RN

(∑
j

|wj |
)2∗
 2∗−2

2∗

∼ (k SN/2)
2∗−2
2∗

thanks to inequality (21) and Lemma (4.7). On the other hand∫
RN

(∑
i,j

|wi| |wj |
(
1− cos

(2π
k
m(i− j)

)))2∗/2
2/2∗

≤
∑
i,j

(∫
RN

(
|wi| |wj |

(
1− cos

(2π
k
m(i− j)

)))2∗/2
)2/2∗

=
∑
i,j

(
1− cos

(2π
k
m(i− j)

))(log |xi − xj |)
N−2

N

|xi − xj |N−2

according to (18). Now, since |xi − xj | ∼ R
(
1− cos

(
2π
k (i− j)

))1/2, the sum

∑
i,j

(
1− cos

(2π
k
m(i− j)

))
(

log
(
R
(
1− cos

(
2π
k (i− j)

))1/2
))N−2

N

RN−2
(
1− cos

(
2π
k (i− j)

))N−2
2

≤ C(m) k
∑

j

(
log
(
R
(
1− cos

(
2π
k j
))1/2

))N−2
N

RN−2
(
1− cos

(
2π
k j
))N/2−2

∼ 2C(m) k2

∫ 1/2

0

(
log
(
R
(
1− cos

(
2πx

))1/2
))N−2

N

RN−2
(
1− cos(2πx)

)N/2−2
dx

≤ C(m) k2

RN−2


O(logR) if N = 4
O(logR log k) if N = 5
O
(
(logR log k)

N−2
N kN−5

)
if N ≥ 6
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so that the second term (23) is

(23) ≤ C(m) k2/N k2

RN−2


O(logR) if N = 4
O(logR log k) if N = 5
O
(
(logR log k)

N−2
N kN−5

)
if N ≥ 6

=


O
(k5/2 logR

R2

)
if N = 4

O
(k12/5 logR log k

R3

)
if N = 5

O
(kN−3+2/N (logR log k)

N−2
N

RN−2

)
if N ≥ 6

(26)

which can be made o
( kN−1

RN−2

)
in every dimension for a suitable choice of the parameters R

and k (e.g. k ∼ Rα with 0 < α < 1 since according to the hypothesis of lemma itself we need
k = o(R)).

Provided the ratio R/k is big enough, from equations (24), (25) and (26) we get

∫
RN

∣∣∣∣∣∣
k∑

j=1

wj

∣∣∣∣∣∣
2∗

≥ k SN/2 + 2∗(1− δ)
∫

RN

∑
i6=j

|wi|2
∗−1 |wj | ,

which in particular implies the thesis. �
Proof of Lemma (4.6) In order to have this quantity (positive) and less than 1, it is

sufficient to have
(1) α/k, γ/k and β/k small,
(2) α arbitrarly greater than β,
(3) α arbitrarly greater than γ.

According to Lemma (4.7), Lemma (4.9) and Remark (4.8) we know

β =


O
(
k2 logR

R2

)
if N = 4

O
( k2

R2

)
for N ≥ 5;

γ =


O
( k2

R2

)
if N = 4

O
( k2

R3
log k

)
for N = 5

O
( kN−3

RN−2

)
for N ≥ 6

α = O
(
k2 k

N−2

RN−2

)
.

Let us fix the condition

(27) k(N−1)/(N−2) = o(R)

in order to have α/k small. Consequently we immediately find the request 1 fulfilled. More-
over, we note this does not contradict either the hypothesis of Lemma (4.5) (rather, that is a
consequence), or the conditions on equation (26).
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For what concerns request 2 and 3, we recall equation (22) states the lower bound α �
kN−1/RN−2.

Thus, we find request 3 satisfied as soon as k →∞.
About request 2, everything works without any additional hypothesis in dimension 4. In

dimension N ≥ 5, we need R = o(k(N−3)/(N−4)): we emphasize this does not contradict
condition (27) thanks to the order N−1

N−2 <
N−3
N−4 . �

As a natural question, letting k → ∞, we wonder if there exists any biradial solution: we
mean a function belonging to the space

D1,2
r1,r2

(RN ) = {u ∈ D1,2(RN ) s.t. u(R(x1, x2), Sx3) = u((x1, x2), x3)

∀R ∈ SO(2) ,∀S ∈ SO(N − 2)} .

In order to investigate this question, we set the problem

Sr1,r2

A,a = inf
u∈D1,2

r1,r2
(RN )

∫
RN

∣∣∣∣(i∇− A

|x|2
)u
∣∣∣∣2 − ∫

RN

a

|x|2
|u|2(∫

RN

|u|2
∗
)2/2∗

,

and we are able to prove

Proposition 4.11. There exists a biradial solution.

Proof. As we usually do, we consider a minimizing sequence un to Sr1,r2

A,a and Solimini’s lemma
in D1,2

r1,r2
(RN ), since this is a closed subspace of

D1,2(RN ). As usual, we reconduce ourselves to un −Φ(·+ xn)→ 0 in D1,2
r1,r2

(RN ) with Φ 6= 0
and suppose by contradiction |xn| → +∞.

To preserve the symmetry, in Solimini’s decomposition we will find all the functions ob-
tained by Φ with a rotation of a 2π/k angle, for k ∈ Z fixed. Thus, we can write un −∑k

i=1 Φ(· + xi
n) → 0 in D1,2

r1,r2
(RN ). Now, following the same calculations in Theorem (4.1),

we obtain Sr1,r2

A,a ≥ Sk
A,a ≥ k2/NS that leads to Sr1,r2

A,a = +∞ choosing k arbitrary large: a
contradiction. � �

5. Aharonov-Bohm type potentials

In dimension 2, an Aharonov-Bohm magnetic field is a δ-type magnetic field. A vector
potential associated to the Aharonov-Bohm magnetic field in R2 has the form

A(x1, x2) =
(
−αx2

|x|2
,
αx1

|x|2

)
(x1, x2) ∈ R2

where α is the field flux through the origin. In this contest we want to take account of
Aharonov-Bohm type potentials in RN , for N ≥ 4:

A(x1, x2, x3) =
(
−αx2

x2
1 + x2

2

,
αx1

x2
1 + x2

2

, 0
)

(x1, x2) ∈ R2 , x3 ∈ RN−2 ,

paying special attention now the singular set is a whole subspace of RN with codimension 2.
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5.1. Hardy-type inequality. In order to study minimum problems and therefore the qua-
dratic form associated to this kind of potentials, we need a Hardy-type inequality. We know
by [20] that a certain Hardy-type inequality holds for Aharonov-Bohm vector potentials in
R2, that is ∫

R2

|ϕ|2

|x|2
≤ C

∫
R2

|(i∇−A)ϕ|2 ∀ϕ ∈ C∞
C (R2 \ {0}) ,

where the best constant C is

(28) H =
(

min
k∈Z
|k − ΦA|

)2

.

Here ΦA denotes the field flux around the origin

ΦA =
1
2π

∫ 2π

0
A(cos t, sin t) · (− sin t, cos t) dt .

One can generalize this result and gain a similar inequality to the Aharonov-Bohm potentials
in RN , simply separating the integrals: for all ϕ ∈ C∞

C (RN \ {x1 = x2 = 0}) one has∫
RN

|ϕ|2

x2
1 + x2

2

=
∫

RN−2

∫
R2

|ϕ|2

x2
1 + x2

2

dx1 dx2 dx3 ≤ H
∫

RN

|(i∇−A)ϕ|2 ,(29)

whereH is defined in (28). Now a natural question arises: isH the best constant for inequality
(29)? In other words, is H the infimum of the Rayleigh quotient?

Proposition 5.1. The best constant for the inequality (29) is exactly (28).

Proof. To prove this, we consider the approximating sequence un to (28) in R2. We can
choose this sequence bounded in L2(R2) norm, thanks to the homogeneity of the quotient
under dilation.

We claim there exists a sequence of real-valued functions (ηn)n ⊂
C∞

C (RN−2) such that
∫

RN−2 |∇ηn|2 −→ 0 and
∫

RN−2 η
2
n −→ +∞ as n→ +∞. We can namely

consider a real radial function such that ηn ≡ 1 in BR(0) and ηn ≡ 0 in RN−2 \ BR+nα(0),
with |∇ηn| ∼ 1

nα , for a suitable α > 0 (e.g. α > N−2
2 ).

Now we consider the sequence vn(x1, x2, x3) = un(x1, x2)ηn(x3) where x3 as usual denotes
the whole set of variables in RN−2, and test the quotient over this sequence:∫

RN

|(i∇−A)vn|∫
RN

|vn|2

x2
1 + x2

2

=

∫
RN

|∇vn|2 − 2Re
∫

RN

Avn · ∇vn +
∫

RN

|A|2 |vn|2∫
RN−2

|ηn|2
∫

R2

|un|2

x2
1 + x2

2

,

where the numerator is∫
RN

η2
n |∇un|2 +

∫
RN

|A|2 |ηn|2 |un|2 − 2Re
∫

RN

η2
nunA · ∇un

+2Re
∫

RN

unηn∇ηn · ∇un +
∫

RN

u2
n |∇ηn|2 − 2Re

∫
RN

|un|2 ηnA · ∇ηn .(30)
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About the second line (30) in the numerator, via Hölder inequality we have∣∣∣∣∫
RN

unηn∇ηn · ∇un

∣∣∣∣ ≤ (∫
RN

|un|2 |∇ηn|2
)1/2(∫

RN

η2
n |∇un|2

)1/2

=
(∫

RN−2

|∇ηn|2
)1/2(∫

R2

|un|2
)1/2(∫

RN−2

η2
n

)1/2(∫
R2

|∇un|2
)1/2

and ∣∣∣∣∫
RN

Aunηn · un∇ηn

∣∣∣∣ ≤ (∫
RN

|∇ηn|2 |un|2
)1/2(∫

RN

|A|2 |ηn|2 |un|2
)1/2

=
(∫

RN−2

|∇ηn|2
∫

R2

|un|2
)1/2(∫

RN−2

|ηn|2
∫

R2

|A|2 |un|2
)1/2

Therefore the Rayleigh quotient is reduced to∫
R2

|∇un|2 +
∫

R2

|A|2 |un|2 − 2Re
∫

R2

Aun · ∇un∫
R2

|un|2

x2
1 + x2

2

+

+
2Re

∫
RN

unηn∇ηn · ∇un∫
RN−2

|ηn|2
∫

R2

|un|2

x2
1 + x2

2

+

∫
R2

|un|2
∫

RN−2

|∇ηn|2∫
RN−2

|ηn|2
∫

R2

|un|2

x2
1 + x2

2

−
2Re

∫
RN

|un|2 ηnA · ∇ηn∫
RN−2

|ηn|2
∫

R2

|un|2

x2
1 + x2

2

= H + o(1)

thanks to the properties of the sequence ηn. � �

5.2. Variational setting. We have seen before the quadratic form associated to A
|x| -type

potentials is equivalent to the Dirichlet form. On the contrary, we will see in case of Aharonov-
Bohm potentials it is stronger than the Dirichlet form, and consequently the function space
is a proper subset of D1,2(RN ).

Indeed, for any ϕ ∈ C∞
C (RN \ {x1 = x2 = 0}) we have the simple inequivalence∫

RN

|∇ϕ|2 =
∫

RN

|(i∇−A+A)ϕ|2 ≤ C
(∫

RN

|(i∇−A)ϕ|2 +
∫

RN

|A|2 |ϕ|2
)

≤ C

∫
RN

|(i∇−A)ϕ|2

thanks to Hardy-type inequality proved above.
It is immediate to see by this remark

HA $ C∞
C (RN \ {x1 = x2 = 0})

R

RN |(i∇−A)ϕ|2
⊆ D1,2(RN ) .

To prove the strict inclusion it is sufficient to show a function lying in D1,2(RN ) but not
in HA. One can choose for example ϕ(x1, x2, x3) = p(x1, x2, x3) |x|(−N+1)/2, where p is a
cut-off function which is identically 0 in Bε(0) and identically 1 in RN \ B2ε(0): we have
|∇ϕ|2 ∼ |x|−N−1 which is integrable in RN \Bε(0), whereas ϕ

x2
1+x2

2
is not, since ϕ is far from

0 near the singular set.
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Remark 5.2. Of course HA is a closed subspace of D1,2(RN ). This is a straightforward
consequence of the density of C∞

C (RN \ {x1 = x2 = 0}) in HA and the relation between the
two quadratic forms. Then Solimini’s Theorem (3.3) holds also in this space.

Following what we did in the previous case, we state the following

Lemma 5.3. Let xn a sequence of points such that
∣∣(xn

1, xn
2)
∣∣ → ∞ as n → ∞. Then for

any u ∈ HA as n→∞ we have

∫
RN

∣∣∣∣ (i∇−A)u(·+ xn)
∣∣∣∣2 − ∫

RN

a(θ)
x2

1 + x2
2

|u(·+ xn)|2(∫
RN

|u|2
∗
)2/2∗

→

∫
RN

|∇u|2(∫
RN

|u|2
∗
)2/2∗

.

Proof. We can follow the proof of Lemma (2.4) noting here the singularity involves only the
first two variables. � �

So that we immediately have the following property for SA,a:

Proposition 5.4. If the electric potential a is invariant under translations in RN−2 (as the
magnetic vector potential actually is), the related minimum problem leads to

SA,a = inf
u∈HA\{0}

∫
RN

|(i∇−A)u|2 −
∫

RN

a

x2
1 + x2

2

|u|2(∫
RN

|u|2
∗
)2/2∗

≤ S .

Proof. We follow the proof of Proposition (2.5) taking into account Lemma (5.3). � �

5.3. Achieving the Sobolev constant. As in the previous case, we state the following

Proposition 5.5. If SA,a < S then SA,a is achieved.

Proof. Let us consider a minimizing sequence un. As we have already noticed, we can apply
Solimini’s Theorem (3.3) in order to get un−Φ(·+xn) −→ 0 in HA as n→ +∞ following the
same argument as above. Once again, we argue by contradiction. Supposing the sequence xn

diverges means it is divergent with respect to the two first variables (x1
n, x

2
n), since both the

electric and magnetic potential are invariant under translations in RN−2. This means that if
xn diverges to infinity with respect to x3

n, this is a convergence case.
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So, by contradiction let us analyze only the case
∣∣(x1

n, x
2
n)
∣∣ → +∞. According to Lemma

(5.3) we have∫
RN

|(i∇−A)un|2 −
∫

RN

a

x2
1 + x2

2

|un|2(∫
RN

|un|2
∗
)2/2∗

=

∫
RN

|(i∇−A)Φ(·+ xn)|2 −
∫

RN

a

x2
1 + x2

2

|Φ(·+ xn)|2(∫
RN

|Φ(·+ xn)|2
∗
)2/2∗

+ o(1)

≥

∫
RN

|∇ |Φ(·+ xn)||2 −
∫

RN

a

x2
1 + x2

2

|Φ(·+ xn)|2(∫
RN

|Φ(·+ xn)|2
∗
)2/2∗

+ o(1) ≥ S + o(1) .

Thus we obtain SA,a ≥ S, a contradiction. � �
5.4. Symmetry of solutions. We introduce the space

Hk
A = {u(z, y) ∈ HA s.t. u(ei 2π

k z, y) = u(z, |y|)} ,
which is a closed subspace of HA, so Solimini’s Theorem (3.3) holds in it.

We should suppose that the magnetic potential A is invariant under the Zk × SO(N − 2)-
group action on HA, as in (6). But in this case, the magnetic vector potential enjoys this
symmetry thanks to its special form. On the other hand, we choose the electric potential a
as a negative constant.

Following the same proof as in the previous case, we can state the following

Proposition 5.6. If Sk
A,a < k2/NS then Sk

A,a is achieved.

Now we look for sufficient conditions to have Sk
A,a < k2/NS.

The idea is again to check the quotient over a suitable sequence of test functions. We
choose as well

∑k
i=1wj , where wj are defined in (12) and the lines above it. Of course, we

need to multiply them by a cut-off function ϕ(x1, x2, x3) = ϕ(x1, x2) = ϕ(
√
x2

1 + x2
2) = ϕ(ρ),

in order to obtain the necessary integrability near the singular set.

Lemma 5.7. Choosing R big enough in (12), the quotient evalueted over ϕ
∑k

i=1wj is strictly
less than k2/NS, and so the infimum Sk

A,a.

Proof. Let us check the quotient over ϕ
∑k

j=1wj . In∫
RN

∣∣∣∇(ϕ
k∑

j=1

wj)
∣∣∣2 +

α2 − a
x2

1 + x2
2

ϕ2
∣∣∣ k∑

j=1

wj

∣∣∣2 − 2Re

{
i∇(ϕ

k∑
j=1

wj) · Aϕ
k∑

j=1

wj

}
we study term by term. First of all∣∣∣∇(ϕ

k∑
j=1

wj)
∣∣∣2 = |∇ϕ|2

∣∣∣ k∑
j=1

wj

∣∣∣2 + ϕ2
∣∣∣∇(

k∑
j=1

wj)
∣∣∣2 + 2Re

ϕ∇ϕ ·∑
j,l

∇wjwl


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and

∫
RN

ϕ2
∣∣∣∇(

k∑
j=1

wj)
∣∣∣2 =

∫
RN

∣∣∣∇(
k∑

j=1

wj)
∣∣∣2 − ∫

RN

(1− ϕ2)
∣∣∣∇(

k∑
j=1

wj)
∣∣∣2

= kSN/2 +
∫

RN

Re
{∑

j 6=l

|wj |2
∗−2wjwl

}
−
∫

RN

(1− ϕ2)
∣∣∣∇(

k∑
j=1

wj)
∣∣∣2 .

Secondly

∇(ϕ
k∑

j=1

wj) · Aϕ
k∑

j=1

wj = ϕ∇ϕ · A
∣∣∣ k∑

j=1

wj

∣∣∣2 + ϕ2
∑
j,l

∇wj · Awl .

So, the quadratic form is the following

kSN/2 +
∫

RN

Re
{∑

j 6=l

|wj |2
∗−2wjwl} −

∫
RN

(1− ϕ2)
∣∣∣∇(

k∑
j=1

wj)
∣∣∣2 +

∫
RN

|∇ϕ|2
∣∣∣ k∑

j=1

wj

∣∣∣2
+2
∫

RN

Re
{
ϕ∇ϕ ·

∑
j,l

∇wj wl

}
+
∫

RN

α2 − a
x2

1 + x2
2

ϕ2
∣∣∣ k∑

i=1

wj

∣∣∣2
−2
∫

RN

Re
{
i ϕ∇ϕ · A

∣∣∣ k∑
j=1

wj

∣∣∣2}− 2
∫

RN

Re
{
i ϕ2

∑
j,l

∇wj · Awl

}

≤ kSN/2 +
∫

RN

Re
{∑

j 6=l

|wj |2
∗−2wjwl}+

∫
RN

|∇ϕ|2
∣∣∣ k∑

j=1

wj

∣∣∣2

+2

∫
RN

ϕ2
∣∣∣ k∑

j=1

∇wj

∣∣∣2
1/2∫

RN

|∇ϕ|2
∣∣∣ k∑

j=1

wj

∣∣∣2
1/2

+
∫

RN

α2 − a
x2

1 + x2
2

ϕ2
∣∣∣ k∑

j=1

wj

∣∣∣2

+2

∫
RN

|∇ϕ|2
∣∣∣ k∑

j=1

wj

∣∣∣2
1/2∫

RN

ϕ2 |A|2
∣∣∣ k∑

j=1

wj

∣∣∣2
1/2

−2
∫

RN

Re
{
i ϕ2

∑
j,l

∇wj · Awl

}
,
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whereas the denominator∫
RN

ϕ2∗
∣∣∣ k∑

j=1

wj

∣∣∣2∗ =
∫

RN

∣∣∣ k∑
j=1

wj

∣∣∣2∗ − ∫
RN

(1− ϕ2∗)
∣∣∣ k∑

j=1

wj

∣∣∣2∗
≥ kSN/2 + 2∗(1− δ/2)

∫
RN

Re
∑
j 6=l

|wj |2
∗−2wj wl

−
∫

RN

(1− ϕ2∗)
∣∣∣ k∑

j=1

wj

∣∣∣2∗ .(31)

To simplify the notation, we set R =
√

(xj
1)2 + (xj

2)2 and we have

α =
∫

RN

Re
{∑

j 6=l

|wj |2
∗−2wj wl

}
≤ O

( kN

RN−2

)
� kN−1

RN−2

(32)

β =
∫

RN

|∇ϕ|2
∣∣∣ k∑

j=1

wj

∣∣∣2 ≤ O
( k2

R2N−4

)

γ = 2

∫
RN

ϕ2
∣∣∣∇(

k∑
j=1

wj)
∣∣∣2 ∫

RN

|∇ϕ|2
∣∣∣ k∑

j=1

wj

∣∣∣2
1/2

≤ O
( k3/2

RN−2

)

η =
∫

RN

α2 − a
x2

1 + x2
2

ϕ2
∣∣∣ k∑

j=1

wj

∣∣∣2 ≤


O
( k2

R2
logR

)
if N = 4

O
( k2

R2

)
if N ≥ 5

ξ = 2

∫
RN

|∇ϕ|2
∣∣∣ k∑

j=1

wj

∣∣∣2
1/2∫

RN

ϕ2 |A|2
∣∣∣ k∑

j=1

wj

∣∣∣2
1/2

≤


O
( k2

R3
log1/2R

)
if N = 4

O
( k2

RN−1

)
if N ≥ 5

(33)

ψ =
∫

RN

(1− ϕ2∗)
∣∣∣ k∑

j=1

wj

∣∣∣2∗ ≤ O
( k2

R2N

)
while for the last term we have

(34)

∣∣∣∣∣∣
∫

RN

Re
{
i ϕ2

∑
j,l

∇wj · Awl

}∣∣∣∣∣∣ ≤ O( k
N−3

RN−2

)
since Lemma (4.9) fits also in this case with the suitable modifications. In (32) the symbol
� stands for α has order strictly greater than kN−1/RN−2.

We note all these quantities α, β, γ, η, ξ, ζ can be chosen small simply taking the quotient
kN−1/RN−2 small (namely kN−1/RN−2 = ε), as we can deduce from (32), . . . , (34).
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Moreover, we see ψ = o(α), so that we can improve estimate (31) and state∫
RN

ϕ2∗
∣∣∣ k∑

j=1

wj

∣∣∣2∗ ≥ kSN/2 + 2∗(1− δ/2)
∫

RN

Re
∑
j 6=l

|wj |2
∗−2wj wl

for a different δ from above.
With the simplified notation, the quotient takes the form

kSN/2 + α+ β + γ + η + ξ + ζ(
kSN/2 + 2∗(1− δ/2)α

)2/2∗
= k2/NS

1 +
1

kSN/2
(α+ β + γ + η + ξ + ζ)(

1 +
2∗(1− δ/2)
kSN/2

α
)2/2∗

.

Expanding the quotient in first order power series, it is asymptotic to

k2/NS
(
1 +

1
kSN/2

(α+ β + γ + η + ξ + ζ)
)(

(1− 2(1− δ/2)
kSN/2

α
)

∼ k2/NS
{

1 +
1

kSN/2

(
β + γ + η + ξ + ζ

)
+

1
kSN/2

α
(
− 1 + δ +

1
kSN/2

(
β + γ + η + ξ + ζ

))}
Now, in order to have the coefficient of k2/NS strictly less than 1, it is sufficient that β, γ,
η, ξ, ζ are o(kN−1/RN−2). Taking into account (32), . . . , (33) and (34) we see it is sufficient

choosing k as in the previous case of
A

|x|
-type potentials. � �

As we made in the previous section, we wonder if there exists any biradial solution, meaning
a function belonging to the space

Hr1,r2

A = {u ∈ HA s.t. u(R(x1, x2), Sx3) = u((x1, x2), x3)
∀R ∈ SO(2) ,∀S ∈ SO(N − 2)} .

In order to investigate this question, we set the problem

Sr1,r2

A,a = inf
u∈Hr1,r2

A

∫
RN

|(i∇−A)u|2 −
∫

RN

a

x2
1 + x2

2

|u|2(∫
RN

|u|2
∗
)2/2∗

,

and we state

Proposition 5.8. There exists a biradial solution.

Proof. We follow the proof of Proposition (4.11) that fits also in this case with the suitable
modifications. �

�
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6. Symmetry breaking

In order to proceed in our analysis, we need to recall a result proved in [1]:

Theorem 6.1. ([1]) Suppose u = u(r1, r2) (where r1 =
√
x2

1 + x2
2 and r2 =

√
x2

3 + · · ·+ x2
N )

is a solution to
−∆u− a

|x|2
u = f(x, u)

with a ∈ R− and f : RN × C→ C being a Carathéodory function, C1 with respect to z, such
that it satisfies the growth restriction∣∣f ′z(x, z)∣∣ ≤ C(1 + |z|2

∗−2)

for a.e. x ∈ RN and for all z ∈ C.
If the solution u has Morse index m(u) ≤ 1, then u is a radial solution, that is u = u(r)

where r =
√
x2

1 + · · ·+ x2
N .

Roughly speaking, in particular this theorem states any biradial solution to (2) found as
minimizer of the Sobolev quotient is in fact completely radial, since such a solution and
equation (2) satisfies the hypothesis of Theorem (6.1). This leads to a so-called solutions’
symmetry breaking. We point out the notation we used up to now:

Definition 6.2. Sr1,r2

A,a is the minimum of the Rayleigh quotient related to the magnetic Lapla-
cian over all the biradial functions in D1,2(RN );
Sr1,r2

0,a is the minimum of the Rayleigh quotient related to the usual Laplacian over all the
biradial functions in D1,2(RN );
Srad

0,a is the minimum of the Rayleigh quotient related to the usual Laplacian over all the
radial functions in D1,2(RN );
Sk

0,a is the minimum of the Rayleigh quotient related to the usual Laplacian over all the
functions in D1,2

k (RN );
Sk

A,a is the minimum of the Rayleigh quotient related to the magnetic Laplacian over all
the functions in D1,2

k (RN );
S is the usual Sobolev constant for the embedding D1,2(RN ) ↪→ L2∗(RN ).

So we can collect our information on these quantities and write the following chain of
relations:

Sr1,r2

A,a ≥ S
r1,r2
0,a = Srad

0,a ≥ k2/NS > Sk
A,a

where the first inequality holds thanks to diamagnetic inequality; the fact Sr1,r2
0,a = Srad

0,a is a
straightforward consequence of Theorem (6.1); the second inequality is proved in [27], Section
6 for sufficiently large values of |a|; and the last one is proved in Lemma (4.3).

Remark 6.3. Symmetry breaking for Aharonov-Bohm electromagnetic potentials. We note
the same facts hold also for Aharonov-Bohm electromagnetic fields. Indeed, the diamagnetic
inequivalence holds also for them with the same best constant, because the Hardy constant is
the same (see Section 4.1); moreover, a

x2
1+x2

2
≥ a

|x|2 for a > 0. So we can rewrite

Sr1,r2

A,a ≥ S
r1,r2
0,a = Srad

0,a ≥ k2/NS > Sk
A,a

where the last inequivalence has been proved in Lemma (5.7).
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