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A NOTE ON THE COMPLETE ROTATIONAL INVARIANCE OF
BIRADIAL SOLUTIONS TO SEMILINEAR ELLIPTIC EQUATIONS

L. ABATANGELO AND S. TERRACINI

Abstract. We investigate symmetry properties of solutions to equations of the form

−∆u =
a

|x|2
u + f(|x| , u)

in RN for N ≥ 4, with at most critical nonlinearities. By using geometric arguments, we prove
that solutions with low Morse index (namely 0 or 1) and which are biradial (i.e. are invariant
under the action of a toric group of rotations), are in fact completely radial. A similar result
holds for the semilinear Laplace-Beltrami equations on the sphere. Furthermore, we show
that the condition on the Morse index is sharp. Finally we apply the result in order to
estimate best constants of Sobolev type inequalities with different symmetry constraints.

1. Introduction and statement of the result

Let x = (ξ, ζ) ∈ Rk×RN−k, with k,N−k ≥ 2. A function u : RN → R is termed biradial if
it is invariant under the action of the subgroup SO(k)×SO(N −k) of the group of rotations,
namely, if there exists ϕ : R+ ×R+ → R such that u(ξ, ζ) = ϕ(|ξ|, |ζ|). Consider the equation

(1) −∆u =
a

|x|2
u+ f(|x| , u) in RN \ {0},

in this paper, we wonder under what circumstances it is possible to assert that a biradial
solution to (1) is actually radially symmetric.

This problem arises from [12], where the following symmetry breaking result is given for
the critical nonlinearity f(|x| , u) = u(N+2)/(N−2): if a < 0 and |a| is sufficiently large, there
are at least two distinct positive solutions, one being radially symmetric and the second
not. These solution are obtained by minimization of the associated Rayleigh quotient over
functions possessing either the full radial symmetry or a discrete group of symmetries, namely,
for given k ∈ Z, functions which are invariant under the Zk × SO(N − 2)-action on D1,2(RN )
given by

u(ξ, ζ) 7→ v(ξ, ζ) = u
(
Rξ, Tζ

)
,

T being any rotation of RN−2 and R a fixed rotation of order k. Once proved that the infimum
taken over the Zk×SO(N−2)-invariant functions is achieved, by comparing its value with the
infimum taken over the radial functions, one deduces the occurrence of symmetry breaking
(see also [1]).

In order to obtain multiplicity of solutions, the first attempt is to increase the order k
of the symmetry group and, eventually, to let it diverge to infinity, finding in the limit a
minimizer of the Rayleigh quotient over the biradial functions. Now, will all these solutions
be distinct and different from the radial one? When examining this question, we need to take
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2 L. ABATANGELO AND S. TERRACINI

into account the construction due to Ding of an infinity of nontrivial biradial solutions to the
Lane–Emden equation with critical nonlinearity (cfr [4]). In that case it is well known that
there is a unique family of radially symmetric solutions, which are the global minimizers of
the Rayleigh quotients, while in Ding’s construction the nontrivial biradial solutions have a
Morse index larger than 2.

We recall the following definition:

Definition 1.1. The (plain, radial, biradial) Morse index of a solution u is the dimension
of the maximal subspace of the space of (all, radial, biradial) functions of C∞

0 (RN \ {0}) on
which the quadratic form associated to the linearized equation at u is negative definite.

We stress it is rather a geometric definition, so it is independent from any spectral theory
about the differential operator we are dealing with.

The recent literature indicates that, for general semilinear equations, solutions having low
Morse index do likely possess extra symmetries. Following these ideas and questions, we
investigated in particular the biradial solutions with a low Morse index, and we are able to
prove the following

Theorem 1.2. Let u ∈ D1,2(RN ) be a biradial solution to

(2) −∆u =
a

|x|2
u+ f(|x| , u)

with a > −
(
N−2

2

)2 and f : RN ×R → R being a Carathéodory function, C1 with respect to z,
such that it satisfies the growth restriction∣∣f ′y(|x| , y)∣∣ ≤ C(1 + |y|2

∗−2)

for a.e. x ∈ RN and for all y ∈ C.
If the solution u has biradial Morse index m(u) ≤ 1, then u is radially symmetric.

An analogous result also holds for bounded domains having rotational symmetry, and for
elliptic equations on the sphere. The following result holds in any dimension N ≥ 3:

Theorem 1.3. Let f ∈ C1(R; R): if u ∈ C2(SN ) is a biradial solution to

−∆SNu = f(u)

with N ≥ 3, and it has biradial Morse index m(v) ≤ 1, then u is constant on the sphere SN .

The paper is organized as follows: the next section is devoted to introduce the main tools
and facts which will play a key role within the proof; in section 3 we present the proofs of
Theorems 1.2 and 1.3 splitting it according to solutions’ Morse index. In section 4 we give
applications to the estimate of the best constants in some Sobolev type embeddings with
symmetries. Finally section 5 is devoted to the discussion of the sharpness of the Theorems
with respect to the Morse index.

2. Preliminaries

Here we start the proof of Theorem 1.2. For the sake of simplicity, we will work in dimension
N = 4. We devote the last part of the proof to discuss the validity of the result in higher
dimensions.
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Let us consider the following three orthogonal vector fields in R4:

X1 =


x2

−x1

x4

−x3

 , X2 =


x4

x3

−x2

−x1

 , X3 =


−x3

x4

x1

−x2


The related derivatives

wi = ∇u ·Xi , i = 1, 2, 3

represent the infinitesimal variations of the function u along the flows of the vector fields Xi

respectively. As the equation is invariant under the action of such flows, these directional
derivatives are solutions to the linearized equation

(3) −∆w − a

|x|2
w = f ′y(|x| , u)w .

We can associate the singular differential operator

(4) Luw = −∆w − a

|x|2
w − f ′y(|x| , u)w .

Remark 2.1. The vector space of {X1, X2, X3} generates the whole group of infinitesimal
rotations on the sphere of R4, which can be structured as a 3-dimensional manifold. In order
to prove Theorem 1.2 it will be sufficient to show that every wi ≡ 0.

Obviously, we have w1 ≡ 0 because the vector field X1 generates the rotations under which
the function u is invariant for. Let us fix polar coordinates

(5)

{
x1 = r1 cos θ1
x2 = r1 sin θ1

{
x3 = r2 cos θ2
x4 = r2 sin θ2 ;

we have r1 =
√
x1

2 + x2
2, r2 =

√
x3

2 + x4
2 and θ1 = arctan x2

x1
, θ2 = arctan x4

x3
.

Therefore, since u is biradial, we have

wi = ∇u ·Xi = w(r1, r2)zi(θ1, θ2) , i = 2, 3 ,

where

w(r1, r2) =
∂u

∂r1
r2 −

∂u

∂r2
r1, z2 = sin(θ1 + θ2), z3 = − cos(θ1 + θ2).

Remark 2.2. According to Remark 2.1, to our aim it will be sufficient to prove that w ≡ 0.

We now focus our attention on a few fundamental properties of the functions wi. At first,
as the zi’s are spherical harmonics and depend on the angles θ1 and θ2 only, we have

(6) −∆zi =
(

1
r21

+
1
r22

)
zi for i = 2, 3.

Joining this with the linearized equation (3) solved by the wi’s, we obtain the equation for w.

Proposition 2.3. The function w is a solution to the following equation

(7) −∆w − a

|x|2
w − f ′y(|x| , u)w +

(
1
r21

+
1
r22

)
w = 0.
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Proof. It holds that

f ′y(|x| , u)wi = −∆(wzi) −
a

|x|2
wzi = −∆w zi −∇w · ∇zi − w∆zi −

a

|x|2
wzi.

Since ∇w · ∇zi = 0, thanks to (6), this becomes

−∆w zi −
a

|x|2
wzi = f ′y(|x| , u)w zi + w∆zi = f ′y(|x| , u)w zi −

(
1
r21

+
1
r22

)
wzi

that is

zi

{
− ∆w − a

|x|2
w − f ′y(|x| , u)w +

( 1
r21

+
1
r22

)}
= 0.

Last, multiplying by zi and summing for i = 1, 2 we obtain the desired equation. �

3. Proofs

We will split the argument according to the Morse index of solution u: we denote it by
m(u).

In order to complete our proof, we need a couple of preliminary results: the first one is
about the asymptotics of the solution and is contained in [7].

Lemma 3.1. ([7]) Under the assumptions of Theorem 1.2, let u be any solution to (1). Then
the following asymptotics hold

u(x) ∼ |x|γ ψ(
x

|x|
) for |x| � 1(8)

u(x) ∼ |x|δ ψ(
x

|x|
) for |x| � 1(9)

where γ = γ(a,N) = −N−2
2 +

√(
N−2

2

)2 + µ, δ = δ(a,N) = −N−2
2 −

√(
N−2

2

)2 + µ and
µ = µ(a,N) is one of the eigenvalues of −∆SN−1 − a on SN−1, and ψ one of its related
eigenfunctions.

This turns out to be the key for proving the following result.

Lemma 3.2. The function
(

1
r21

+ 1
r22

)
w2 is L1-integrable on RN .

Proof. Since w(r1, r2) = ∂u
∂r1
r2 − ∂u

∂r2
r1, we first observe that by regularity of u outside the

origin and its radial symmetry, the functions

1
ri

∂u

∂ri

i = 1, 2, are continuous outside the origin. Next we remark that

1
4

(
1
r21

+
1
r22

)
w2 ≤

(
1
r21

+
1
r22

){(
∂u

∂r1

)2

r22 +
(
∂u

∂r2

)2

r21

}

=
(
r2
r1

)2( ∂u
∂r1

)2

+
(
r1
r2

)2( ∂u
∂r2

)2

+
(
∂u

∂r1

)2

+
(
∂u

∂r2

)2

.
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The integrability of the last two terms is a straightforward consequence of u ∈ D1,2(RN ). In
order to study the other two terms, let us focus our attention in a ball around the origin,
namely B1(0), so that r21 + r22 ≤ 1. Then(

∂u

∂r1

)2(r2
r1

)2

≤ 1
r21

(
∂u

∂r1

)2

−
(
∂u

∂r1

)2

,

so that the question of integrability is restricted to the first term. From Lemma 3.1, Equation
(8) we know u ∼ rγψ(r1, r2) = (r21 + r22)

γ/2ψ(r1, r2), from which

∂u

∂r1
∼ ψ(r1, r2)γ(r21 + r22)

γ/2−1r1 + (r21 + r22)
γ/2 ∂ψ

∂r1
.

So we are lead to consider the integrability of
∫
B1(0)

1
r21

(
∂ψ
∂r1

)2
. Additionally we know that ψ

is the restriction on the sphere of a harmonic polynomial, then it is analytic and its Taylor’s
expansion is a polynomial whose degree 1 terms vanish, since it is a function of the only

variables r1 and r2. Then
(
∂ψ
∂r1

)2
∼ r21, which provides the sought integrability.

For what concerns the integrability at infinity, it is sufficient to show that the terms of type
r22
r21

(
∂u
∂r1

)2
are in L1(RN ). We have

r22
r21

(
∂u

∂r1

)2

≤ 2

{
(r21 + r22)

δ−2r22ψ
2 +

r22
r21

(r21 + r22)
δ

(
∂ψ

∂r1

)2
}

and exploiting equation (9), the expression of the exponent δ provides the sought integrability.
�

In the following we consider the cut-off function defined as η(r1, r2) = η1(r1)η2(r2) where

η1(r1) =



1
log (R2/R1)

log r1/R1 for R1 ≤ r1 ≤ R2

1 for R2 ≤ r1 ≤ R3

1 − 1
log (R4/R3)

log r1/R3 for R3 ≤ r1 ≤ R4

0 elsewhere,

η2 being defined similarly. Given the special form of η, we note |∇η|2 ≤ |∇η1|2 + |∇η2|2, that
is

|∇η|2 ≤ 1
log2R2/R1

(
1
r21

+
1
r22

)
for R1 ≤ r1 , r2 ≤ R2

and analogously for R3 ≤ r1 , r2 ≤ R4. Thus, we have

(10) |∇η|2 ≤ 3
(

1
log2R4/R3

+
1

log2R2/R1

)(
1
r21

+
1
r22

)
.

Lemma 3.3. There is a suitable choice of the parameters R1, R2, R3 and R4 such that the
quadratic form associated to the operator (4) is negative definite both on η w+ and η w−.
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Proof. Let us fix ε > 0 small and choose R1 = ε2, R2 = ε and R3 = ε−1, R4 = ε−2. We
multiply equation (7) by η2w+ and integrate by parts. We obtain∫

RN

∣∣∇(η2w+)
∣∣2 − a

|x|2
(η2w+)2 − f ′y(|x| , u)η2(w+)2

=
∫

RN

|∇η|2 (w+)2 −
∫

RN

(
1
r21

+
1
r22

)
η2(w+)2 .(11)

If ε is small enough, the second term in (11) is far away from zero, or rather, it is quite close
to
∫

RN

(
1
r21

+ 1
r22

)
(w+)2, say for instance∫

RN

(
1
r21

+
1
r22

)
η2(w+)2 >

1
2

∫
RN

(
1
r21

+
1
r22

)
(w+)2.

On the other hand, the first term in (11) can be made very small with respect to∫
RN

(
1
r21

+ 1
r22

)
(w+)2, since from (10)∫

RN

|∇η|2 (w+)2 ≤ 6
log2 ε

∫
RN

(
1
r21

+
1
r22

)
(w+)2,

so that (11) is seen to be negative.
Repeating the same argument multiplying by η2w− we reach the same conclusion. �

First case: Morse index m(u) = 0. In this case Lemma 3.3 clearly contradicts the
hypothesis m(u) = 0, unless w+ = w− ≡ 0, that is the only stable solution to (7) is the trivial
one.
Second case: Morse index m(u) = 1. In this case we infer that w has constant sign, say
positive, and therefore w > 0 for r1 > 0 and r2 > 0 by the Strong Maximum Principle. Now
we show a contradiction. Consider a vector field of the form αX2 + βX3. Along this vector
field, choosing α = cos γ and β = sin γ, the derivative of u is

∇u · (αX2 + βX3) = αw2 + βw3 = w
(
α sin(θ1 + θ2) − β cos(θ1 + θ2)

)
= −w sin(θ1 + θ2 − γ).

Now we turn to the directional derivative of θ1 + θ2 along the vector field αX2 + βX3. Using
the polar coordinates (5), it results

θ1 = arctan
x2

x1
, θ2 = arctan

x4

x3
;

so that checking the motion along X2 we have

∇θ1 ·X2 =
x3x1 − x2x4

x2
1 + x2

2

=
r2
r1

(cos θ1 cos θ2 − sin θ1 sin θ2) =
r2
r1

cos(θ1 + θ2)

∇θ2 ·X2 =
−x3x1 + x2x4

x2
3 + x2

4

=
r1
r2

(− cos θ1 cos θ2 + sin θ1 sin θ2) = −r1
r2

cos(θ1 + θ2),

whereas along X3

∇θ1 ·X3 =
x4x1 + x2x3

x2
1 + x2

2

=
r2
r1

(cos θ1 sin θ2 + sin θ1 cos θ2) =
r2
r1

sin(θ1 + θ2)

∇θ2 ·X3 =
−x2x3 − x1x4

x2
3 + x2

4

=
r1
r2

(− sin θ1 cos θ2 − cos θ1 sin θ2) = −r1
r2

sin(θ1 + θ2);
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and finally we obtain

∇(θ1 + θ2) · (αX2 + βX3) =
(
r2
r1

− r1
r2

)(
α cos(θ1 + θ2) + β sin(θ1 + θ2)

)
=
(
r2
r1

− r1
r2

)
cos(θ1 + θ2 − γ).

Now we are in good position to conclude. For a given point x of the sphere - located by angles
θ1 and θ2, we choose γ = γ(x) = θ1 + θ2 − π/2, so that the quantity θ1 + θ2 is at rest for
the associated vector field cos γX2 + sin γX3. With this choice the function u is monotone
along the flow αX2 + βX3 since u̇ = −w sin(θ1 + θ2 − γ) = −w and the sign of w is constant
by the previous discussion. Since the trajectory of the flow is a circle, we will reach again
the initial point in finite time, but with a strictly smaller value of u (if we consider the first
eigenfunction w positive). This is clearly a contradiction.
Generalization to higher dimensions. In dimension N ≥ 5 the argument is very similar.
Relabeling we may always assume u = u(ρ1, ρ2), where we have fixed the notation ρ1 = |ξ|
and ρ2 = |ζ|, while |x| =

√
|ξ|2 + |ζ|2, being x = (ξ, ζ) ∈ Rk × RN−k. Now we repeat the

argument performed in the 4-dimensional space with respect to the variables xk−1, xk, xk+1,
xk+2, considering the vector fields with those same four components as above and the other
ones being zero. Hence we define r1 =

√
x2
k−1 + x2

k and r2 =
√
x2
k+1 + x2

k+2. When discussing
the integrability properties, it can be worthwhile noticing that

1
ri

∂u

∂ri
=

1
ρi

∂u

∂ρi
.

Arguing as above, we can prove that the solution u is actually radial with respect to those four
variables. We can imagine to iterate this proceeding for every hyperplane whose rotations the
function u is supposed not to be invariant for. Finally, it follows that u is radial in RN .

Proof of Theorem 1.3. Since now v is a function defined over SN , recalling the Laplace
operator in polar coordinates

∆RN+1 = ∂2
r +

N

r
∂r +

1
r2

∆SN ,

we define ṽ(x) = v(y) for x ∈ (−ε, ε) × SN , so that ∆SN v = ∆RN+1 ṽ. At first, let us suppose
N = 3. Obviously, since v is invariant with respect to the group O(2) ×O(2), so is ṽ.

Following the same argument in the proof of Theorem 1.2, we wish to prove the vanishing
of w̃ = ∂ev

∂r1
r2− ∂ev

∂r2
r1. On the other hand, being ṽ homogenous of degree 0, w̃ is homogenuos of

degree 0 too (it can be proved by differentiating identity ṽ(x) = ṽ(λx)), then the w associated
with v is nothing else that w̃ restricted on the sphere SN . Therefore ∆RN+1w̃ = ∆SNw, and
following the proof of Proposition 2.3 we see w is a solution to

−∆SNw − f ′(v)w +
(

1
r21

+
1
r22

)
w = 0,

analogous to equation (7). The rest of the proof fits also in this case. �
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4. An application to best Sobolev constants with symmetries

Solutions to the critical exponent equation

(12) −∆u =
a

|x|2
u+ |u|2

∗−2 u

are related to extremals of Sobolev inequalities (cfr [12]). To our purposes, the functions u
will be complex-valued and a ∈ (−∞, (N − 2)2/4). Then, thanks to Hardy inequality, an
equivalent norm on D1,2(RN ) is (∫

RN

|∇u|2 − a
|u|2

|x|2

)1/2

,

hence we can seek solutions to (12) as extremals of the Sobolev quotient associated with this
norm on different symmetric spaces .

The whole group of rotations SO(2)×SO(N−2) induces the following action onD1,2(RN ; C):

u(ξ, ζ) 7→ R−mu(Rξ, Tζ)

for m ∈ Z fixed. We denote, as usual, D1,2
rad(R

N ) and D1,2
birad(R

N ) the subspaces of real or
complex radial and biradial functions. Moreover, let k and m be fixed integers; for a given
rotation R ∈ SO(2) of order k, we consider the space of symmetric functions

D1,2
R,k,m(RN ; C) := {u ∈ D1,2(RN ; C) : u(Rξ, Tζ) = Rmu(ξ, ζ),∀ T ∈ SO(N − 2)}.

This is of course a proper subspace of

D1,2
birad,m(RN ; C) := {u ∈ D1,2(RN ; C) : u(Sξ, Tζ) = Smu(ξ, ζ),∀ (S, T ) ∈ SO(2)×SO(N−2)}.

Note this last space coincides with the usual space of biradial solution once m = 0.
Thanks to its rotational invariance, for any choice of the above spaces D1,2

∗ (RN ; C), solu-
tions to the minimization problem

(13) inf
u∈D

1,2
∗ (RN ;C)
u 6=0

∫
RN

|∇u|2 − a
|u|2

|x|2(∫
RN

|u|2
∗
)2/2∗

are in fact solutions to equation (12).
The minimization of the Sobolev quotient over the space of radial functions follows from a

nowadays standard compactness argument; in addition, see for instance [12], we have:

inf
u∈D

1,2
rad

(RN ;C)

u 6=0

∫
RN

|∇u|2 − a
|u|2

|x|2(∫
RN

|u|2
∗
)2/2∗

= S
(
1 − a

4
(N − 2)2

)

where S denote the best constant for the standard Sobolev embedding. Moreover, generalizing
the results in [3] in higher dimensions (see also [1]), one can easily prove existence of minimizers
of the Sobolev quotient (13) in the spaces D1,2

birad,m(RN ; C), for any choice of the integer m.
At first, let us consider the case m = 0. Then it is easily checked that the minimizers can

be chosen to be real valued and that the corresponding solution to (12) have biradial Morse
index exactly one. Hence our Theorem 1.2 applies and such biradial solutions are in fact fully
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radially symmetric, and therefore the infimum on the biradial space equals that on the radial.
Now, let us turn to the case m 6= 0. We remark that elements of the space D1,2

birad,m(RN ; C)
have the form u((ξ, ζ) = ρ(|ξ| , |ζ|)eimθ(ξ), where θ(ξ) = arg(ξ), so that

|∇u|2 = |∇ρ|2 + ρ2 |m∇θ|2 = |∇ρ|2 +m2 ρ
2

|ξ|2
.

Then the following chain of inequalities holds:

min
u∈D

1,2
birad,m

(RN ;C)

u6=0

∫
RN

|∇u|2 − a
|u|2

|x|2(∫
RN

|u|2
∗
)2/2∗

= min
ρ∈D

1,2
birad

(RN ,R)

ρ 6=0

∫
RN

|∇ρ|2 +m2 ρ
2

|ξ|2
− a

ρ2

|x|2(∫
RN

ρ2∗
)2/2∗

> min
ρ∈D

1,2
birad

(RN ;R)

ρ 6=0

∫
RN

|∇ρ|2 + (m2 − a)
ρ2

|x|2(∫
RN

ρ2∗
)2/2∗

= min
ρ∈D

1,2
rad

(RN ;R)

ρ 6=0

∫
RN

|∇ρ|2 + (m2 − a)
ρ2

|x|2(∫
RN

ρ2∗
)2/2∗

= S
(
1 +

4(m2 − a)
(N − 2)2

)
where we have used |ξ| ≤ |x|; the intermediate line follows again from Theorem 1.2, and the
last from [12]. Then, this argument states a very useful lower bound (see [1]) to the minima
problems (13). Indeed, it allows us to compare the infimum over the space of D1,2

R,k,m(RN ; C)
with that on D1,2

birad,m(RN ; C), and to prove the occurrence of symmetry breaking in some
circumstances. In fact it has been proven (see [1]) that, for large enough k, the first mini-
mum is achieved and less that k2/NS, while the latter increases with |a| and m. Symmetry
breaking holds whenever it can be shown that 1 + 4(m2−a)

(N−2)2
> k2/N for appopriate choices of

the parameters.

5. Optimality with respect to the Morse index

We want to stress our results Theorem 1.2 and 1.3 are sharp with respect to the Morse
index. By that, we mean that doubly radial solutions with Morse index greater or equal to
2, need not to be completely radial.

To prove this, we will take advantage from a result proved by Ding in [4] in such a way which
will be clear later. The quoted paper by Ding has to do with solutions to a related equation
on SN , for this reason we state first some connections between these two environments.

5.1. Conformally equivariant equations. We recall a general fact cited in [4] about elliptic
equations on Riemannian manifolds.

Lemma 5.1. Let (M, g) and (N,h) two Riemannian manifolds of dimensions N ≥ 3. Suppose
there is a conformal diffeomorphism f : M → N , that is f∗h = ϕ2∗−2g for some positive
ϕ ∈ C∞(M). The scalar curvatures of (M, g) and (N,h) are Rg and Rh respectively. Set the
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following corresponding equations:

−∆gu+
1
4
N − 2
N − 1

Rg(x)u = F (x, u)(14)

−∆hv +
1
4
N − 2
N − 1

Rh(y)v = [(ϕ ◦ f−1)(y)]−
N+2
N−2F (f−1(y), (ϕ ◦ f−1)(y)v)(15)

where F : M × R → R is smooth. Suppose v is a solution of (15). Then u = (v ◦ f)ϕ is a
solution of (14) such that

∫
M |u|2

∗
dVg =

∫
N |v|2

∗
dVh.

We consider the inverse of the stereographic projection π : SN \ {p} → RN . We denote it
by Φ = π−1 : RN → SN \ {p}, moreover g0 will denote the standard metric on SN and δ the
standard one on RN .

The diffeomorphism Φ is conformal between the two manifolds, since it results

g
.= Φ∗g0 = µ(x)

4
N−2 δ ,

where

µ(x) =
(

2
1 + |x|2

)N−2
2

.

In addition, we point out the manifold (RN , g) is the same as (SN , g0), in terms of diffeo-
morphic manifolds.

We recall the following

Definition 5.2. We define the conformal Laplacian on a differentiable closed manifold (M, g)
of dimension N the operator

Lg = −∆g +
N − 2

4(N − 1)
Rg

where ∆g denotes the standard Laplace-Beltrami operator on M and Rg the scalar curvature
of the manifold.

Moreover, this operator has a simple transformation law under a conformal change of
metric, that is

if g̃ = µ(x)
4

N−2 g then L
eg · = µ(x)−

N+2
N−2Lg

(
µ(x) ·

)
.

In our case we are dealing with the same manifold RN endowed with the two metrics δ, the
standard one, and g = Φ∗g0. Thus in our case we have

Lδ = −∆ Lg = −∆g +
1
4
N(N − 2)

so it is quite easy to check directly the correspondence between the equations stated in Lemma
5.1 by calculations.

5.2. Proof of the optimality of Theorem 1.2 with respect to the Morse index. In
this section we discuss the optimality of Theorems 1.3 with respect to the solutions’ Morse
index. First of all, we consider the the equation on the sphere SN related to (2) through the
weighted composition with the stereographic projection π as conformal diffeomorphism from
SN \ {p} onto RN : it is immediate to check that it is

−∆SN v(y) +
1
4
N(N − 2)v(y) = f(v(y)) y ∈ SN .
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In his paper [4], Ding states the following result:

Lemma 5.3. There exists a sequence {vk} of biradial solutions to the equation

(16) −∆SN v +
1
4
N(N − 2)v = |v|

4
N−2 v v ∈ C2(SN )

such that
∫

SN |vk|
2N

N−2 dV → ∞ as k → ∞.

The choice of working in a space of biradial is motivated by the compact embedding of the
space of H1–biradial functions on the sphere into L2N/(N−2). In this way one can overcome
the lack of compactness due to the presence of the critical exponent and prove the result
as an application of the Ambrosetti-Rabinowitz symmetric Mountain Pass Theorem. We
are interested in classifying the solutions according to their Morse index. We can state the
following

Lemma 5.4. Among the solutions {vk} in Lemma 5.3 there is also a constant one, which is
unique and corresponds to the minimum of Sobolev quotient. All the other biradial solutions
have biradial Morse index at least 2, and there is at least one non constant biradial solution
having Morse index exactly 2.

Proof. We can check directly there exists a unique constant solution:

1
4
N(N − 2)c = c

N+2
N−2 =⇒ c =

(
1
4
N(N − 2)

)N−2
4

.

which corresponds to the Talenti functions on the sphere ([11]). We mean it is the image of

the function w(x) =
(
N(N−2)

)N−2
4(

1+|x|2
)N−2

2

= µ(x)c through the diffeomorphism π−1 and

Lgc = µ(x)−
N+2
N−2 ∆

(
µ(x)c

)
.

Then it reaches the minimum of Sobolev quotient infv 6=0

R

SN |∇v|2
„

R

SN |v|
2N

N−2

«2/2∗ , and therefore it is

quite simple to prove it is the mountain pass solution, i.e. its (plain, radial, biradial) Morse
index is m(c) = 1. Now, thanks to Theorem 1.3, every other biradial solution having biradial
Morse index at most 1 is constant, hence all the other solutions have biradial Morse index at
least 2. Now, it is well known that Talenti’s solutions are unique among positive solutions
of equation (2) on RN , so we can assert that the only biradial positive solutions of (16) are
constant. On the other hand, it can be proven for example using Morse Theory in ordered
Banach spaces (see [2]), that the equation admits a biradial sign-changing solution having
biradial Morse index at most 2. Hence there is a biradial solution of (16) with Morse index
exactly 2 which is not constant. �
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