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Università degli Studi di Milano-Bicocca, via R. Cozzi 53, 20125 Milano, ITALIA.

Disponibile in formato elettronico sul sito www.matapp.unimib.it.

Segreteria di redazione: Ada Osmetti - Giuseppina Cogliandro

tel.: +39 02 6448 5755-5758 fax: +39 02 6448 5705

Esemplare fuori commercio per il deposito legale agli effetti della Legge 15 aprile 2004

n.106.



CONVEXITY PRESERVING INTERPOLATORY SUBDIVISION
WITH CONIC PRECISION

Gudrun Albrecht
Univ. Lille Nord de France, UVHC, LAMAV-CGAO

FR no. 2956, F-59313 Valenciennes, France
gudrun.albrecht@univ-valenciennes.fr

Lucia Romani
Univ. of Milano-Bicocca, Dept. of Mathematics and Applications

Via R. Cozzi 53, 20125 Milano, Italy
lucia.romani@unimib.it

Abstract

The paper is concerned with the problem of shape preserving interpolatory
subdivision. For arbitrarily spaced, planar input data an efficient non-linear
subdivision algorithm is presented that results in G1 limit curves, reproduces
conic sections and respects the convexity properties of the initial data. Signif-
icant numerical examples illustrate the effectiveness of the proposed method.

Keywords: Subdivision, interpolation, convexity preservation, conics reproduction

2010 Mathematics Subject Classification: 41A05, 65D05, 65D17, 51N15

1 Introduction and state of the art

Subdivision schemes constitute a powerful alternative for the design of curves and
surfaces over the widely studied parametric and implicit forms. In fact, they offer
a really versatile tool that is, at the same time, very intuitive and easy to use and
implement. This is due to the fact that subdivision schemes are defined via itera-
tive algorithms which exploit simple refinement rules to generate denser and denser
point sequences that, under appropriate hypotheses, converge to a continuous, and
potentially smooth, function.

In the univariate case, the iteration starts with a sequence of points denoted
by p0 = (p0

i : i ∈ Z), attached to the integer grid, and then for any k ≥ 0 one
subsequently computes a sequence pk+1 = Spk, where S : ℓ(Z) → ℓ(Z) identifies
the so-called subdivision operator.

Subdivision operators can be broadly classified into two main categories: inter-

polating and approximating [12, 26]. Interpolating schemes are required to generate
limit curves passing through all the vertices of the given polyline p0. Thus they
are featured by refinement rules maintaining the points generated at each step of
the recursion in all the successive iterations. Approximating schemes, instead, are
not required to match the original position of vertices on the assigned polyline and
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thus they adjust their positions aiming at very smooth and visually pleasing limit
shapes. As a consequence, while in the case of approximating subdivision the refine-
ment rules rely on a recursive corner cutting process applied to the starting polygon
p0, in the case of interpolatory subdivision, in every iteration a finer data set pk+1

is obtained by taking the old data values pk and inserting new points in between
them. Every such new point is calculated using a finite number of existing, usually
neighboring points. In particular, if the computation of the new points is carried
out through a linear combination of the existing points, the scheme is said to be
linear, otherwise non-linear.

Then, inside the above identified categories, the schemes can also be further
classified. More specifically, they can be distinguished between stationary (when the
refinement rules do not depend on the recursion level) and non-stationary; between
uniform (when the refinement rules do not vary from point to point) and non-

uniform; between binary (when the number of points is doubled at each iteration)
and N -ary, namely of arity N > 2.

Most of the univariate subdivision schemes studied in the literature are binary,
uniform, stationary and linear. These characteristics, in fact, ease to study the
mathematical properties of the limit curve, but seriously limit the applications of
the scheme. Exceptions from a binary, or a uniform, or a stationary, or a linear
approach, have recently appeared (see for example [24] and references therein), but
none of the proposed methods provides an interpolatory algorithm that can fulfill the
list of all fundamental features considered essential in applications. These features
can briefly be summarized as:

(i) generating a visually-pleasing limit curve which faithfully mimics the be-
haviour of the underlying polyline without creating unwanted oscillations;

(ii) preserving the shape, i.e., the convexity properties of the given data;

(iii) identifying geometric primitives like circles and more generally conic sections,
the starting polyline had been sampled from, and reproducing them.

Requirement (i) derives from the fact that, despite interpolating schemes are consid-
ered very well-suited for handling practical models to meet industrial needs (due to
their evident link with the initial configuration of points representing the object to
be designed), compared to their approximating counterparts, they are more difficult
to control and tend to produce bulges and unwanted folds when the initial data
are not uniformly spaced. Recently this problem has been addressed by using non-
uniform refinement rules [6] opportunely designed to take into account the irregular
distribution of the data. But, although their established merit of providing visually
pleasing results, there is no guarantee that such methods are convexity-preserving,
i.e., that if a convex data set is given, a convex interpolating curve can be obtained.
This is due to the fact that, such non-uniform schemes are linear and, as it is well-
known [17], linear refinement operators that are C1 cannot preserve convexity in
general.

The property (ii) of convexity preservation is of great practical importance in
modelling curves and surfaces tailored to industrial design (e.g. related to car,
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aeroplane or ship modelling where convexity is imposed by technical and physical
conditions as well as by aesthetic requirements). In fact, if shape information as
convexity is not enforced, interpolatory curves, though smooth, may not be satisfac-
tory as they may contain redundant wiggles and bumps rather than those suggested
by the data points, i.e., they feature unacceptable visual artifacts. Preserving con-
vexity, while a curve is interpolated to a given data set, is far from trivial. But
much progress has been made in this field, evidence of which is given by the recent
burgeoning literature. In most publications, the introduction of subdivision schemes
fulfilling requirement (ii) has been achieved through the definition of non-linear re-
finement rules. In fact, despite linear subdivision schemes turn out to be simple
to implement, easy to analyze and affine invariant, they have many difficulties to
control the shape of the limit curve and avoid artifacts and undesired inflexions that
usually occur when the starting polygon p0 is made of highly non-uniform edges.
Non-linear schemes, instead, offer effective algorithms to be used in shape-preserving
data interpolation [9, 11, 13, 17, 18, 19].

On the basis of the well–known, linear Dubuc-Deslauriers interpolatory 4-point
scheme [10] for example, several non-linear analogues have been presented in order
to solve at least one of the three above listed properties. On the one hand, non-
linear modifications of the classical 4-point scheme have been introduced to reduce
the oscillations that usually occur in the limit curve when applying the refinement
algorithm to polylines with short and long adjacent edges. These have been pre-
sented in [8] and [14], and as concerns the case of convexity-preserving strategies
(which are the ones capable of completely eliminating the artifacts arising during
the subdivision process), we find the papers [15] and [19]. On the other hand, for the
purpose of enriching the Dubuc-Deslauriers 4-point scheme with the property (iii) of
geometric primitives preservation, a non-linear 4-point scheme reproducing circles
and reducing curvature variation for data off the circle, has been defined [25]. With
the same intent, another modification of the classical 4-point scheme in a non-linear
fashion, had been given in [3].

With these papers, the theoretical investigation of non-linear interpolatory sub-
division has only begun. A lot is still to be done, in particular as concerns the
use of non-linear rules for reproducing salient curves other than circles, considered
of fundamental importance in several applications. So far, it has been shown that
non-linear updating formulas can be used in the definition of non-stationary subdi-
vision schemes aimed at reproducing polynomials and some common transcendental
functions. In particular, [23] respectively [4, 5, 22] present subdivision algorithms
that turn out to be circle-preserving respectively able to exactly represent any conic
section. While the first is able to guarantee reproduction starting from given sam-
ples with any arbitrary spacing, for the latter ones the property of conics precision
is confined to the case of equally-spaced samples. Most recently a shape and circle
preserving scheme has been presented in [9].

Therefore, an outstanding issue that should be considered is the possibility
of defining an interpolatory subdivision scheme that is at the same time shape-
preserving and artifact free, as well as capable of generating conic sections starting
from any arbitrarily-spaced samples coming from a conic. This is exactly the pur-
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pose of this paper. Based on an approximation order four strategy presented in [1]
for estimating tangents to planar convex data sequences, we propose a convexity-
preserving interpolatory subdivision scheme with conic precision. This turns out to
be a new kind of non-linear and geometry-driven subdivision method for curve in-
terpolation. In Section 2 we start by describing the refinement strategy which relies
on a classical cross-ratio property for conic sections and uses the tangent estimator
from [1], for the case of globally convex data. In Section 3 we adapt the scheme to
general, not necessarily convex data by segmenting the given polygon into convex
segments and by presenting new refinement rules next to the junction points. In
Section 4 we summarize the whole subdivision algorithm in all its steps. Then, in
Section 5 we present an adaptive variant of the scheme which is aimed at producing
regularly spaced points in every round of subdivision. Section 6 contains proofs for
the scheme’s shape preservation and conic reproducing properties, as well as for the
G1 continuity of its limit curve. Section 7 is devoted to illustrating the scheme by
several significant application examples, and we conclude in Section 8.

2 Definition of the scheme for globally convex

data

In this section we define a convexity preserving subdivision scheme for globally
convex data which will then be the basis for the final shape preserving subdivision
algorithm for general data.

Curve subdivision schemes iteratively apply a subdivision operator S to a start-
ing point sequence p0 = (p0

i : i ∈ Z) yielding a new sequence pk+1 = Spk for any
level k ≥ 0. Our scheme being interpolatory, has refinement rules of the following
form:

pk+1

2i = pk
i ,

pk+1

2i+1
= ϕ(pk

i−ν , ...,p
k
i ,p

k
i+1, ...,p

k
i+ν ,p

k
i+ν+1; p)

(1)

where ν = 2 is the number of points taken into account in the left and right hand
neighborhoods of the segment pk

i p
k
i+1 in order to define the newly inserted vertex

pk+1

2i+1, and p is a parameter point specified later. ϕ is a non linear function, which
we will define in form of an algorithm.

In order to detail the idea of this convexity–preserving scheme, we thus consider
the following problem where, for simplicity, we omit the upper indices k.

Problem 1. Given n points pi((pi)x, (pi)y), i = 1, . . . , n (n ≥ 5), in convex position
in the affine plane, we wish to obtain one new point ui related to the i-th edge pi pi+1.

We will carry out the construction of the new points in the projectively extended
affine plane. To this end we denote the projective counterparts of the affine points
pi((pi)x, (pi)y), i = 1, . . . , n by Pi(pi,0, pi,1, pi,2) where pi,0 = 1, pi,1 = (pi)x, pi,2 =
(pi)y.
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By projective geometry’s principle of duality, a line L may be represented either
by a linear equation

l0x0 + l1x1 + l2x2 = 0

in variable point coordinates (x0, x1, x2) or by a triple (l0, l1, l2) of constant line coor-
dinates. The line coordinates of the line L(l0, l1, l2) joining two points X1(x1,0, x1,1,
x1,2) and X2(x2,0, x2,1, x2,2) may simply be calculated by the vector product X1 ∧
X2 = L. In the same way, the point coordinates of the intersection point P (p0, p1, p2)
of two lines L1(l1,0, l1,1, l1,2) and L2(l2,0, l2,1, l2,2) is obtained as L1∧L2 = P . Without
loss of generality we apply a normalization to the homogeneous point coordinates
such that x0 ∈ {0, 1} for all calculated points.

In order to preserve global convexity of the points we apply the following pre-
processing procedure to the point set. In every given point Pi we estimate a tangent
from a subset of five points (including the point Pi) by the conic tangent estimator
presented in [1]. If the given points represent a closed polygon, then the five-point
subset is composed of the point Pi, its preceding two points Pi−1, Pi−2 as well as its
successive two points Pi+1, Pi+2 (by considering P0 = Pn, P−1 = Pn−1, Pn+1 = P1,
Pn+2 = P2). If the given points represent an open polygon, then for i = 3, . . . , n− 2
we proceed as above and for i ∈ {1, 2} (respectively i ∈ {n − 1, n}) the points
{P1, P2, P3, P4, P5} (respectively {Pn−4, Pn−3, Pn−2, Pn−1, Pn}) are taken.

Q 
 1

Q
 2 

Q
 3

Q
 4

Q
 5 

B

A

Figure 1: Illustration of the tangent construction.

In order to apply the conic tangent estimator from [1] we locally rename the five
points around Pi by Q3 = Pi, and by arbitrarily mapping the remaining four points
to Q1, Q2, Q4, Q5 by a one–to–one map. The desired tangent in the point Q3 is then
calculated by the formula (see [1])

M33 := Q3 ∧ (M15 ∧ (A ∧ B)) , (2)

where Mij = Qi ∧Qj for i 6= j, A = M12 ∧M34, and B = M54 ∧M32. See Figure 1
for an illustration.
We then denote the obtained line in the point Pi by Li and intersect every two
consecutive lines generating the intersection points

Ti = Li ∧ Li+1 ,
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i+2

TiTi−2
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Figure 2: Convex delimiting polygon (dashed line) for a given convex data set (solid
line).

see Figure 2.

The dashed lines in Figure 2 constitute a convex delimiting polygon for the new
points generated in the next subdivision level. If the initial points come from a conic
section, the constructed lines Li are the tangents to this conic in the respective points
Pi. Otherwise the lines Li approximate the tangents with approximation order 4,
see [1].

After this preprocessing step we now get back to the initial subdivision problem
1, i.e., between every two points Pi and Pi+1 insert a new point Ui by applying
a classical result from projective geometry which, for the readers convenience, we
recall in the following theorem (see e.g., [2, 7, 21]).

Theorem 2. a) Let X,E,E0, E1 be four points of a projective line P1, where
the points E,E0, E1 are mutually distinct, and let (x0, x1) be the projective
coordinates of the point X with respect to the projective coordinate system
{E0, E1;E} of P1. Then, the cross ratio cr(X,E,E0, E1) of the four points
X,E,E0, E1 in this order is defined by

cr(X,E,E0, E1) =
x1

x0

.

b) Let P1, P2 be two points on a conic section c, and t1, t2 the tangents of c in
P1, P2 respectively, and let T be the intersection point of t1 and t2 (T = t1∩t2).
Then, the point T and the line P1P2 are pole and polar with respect to the conic
c. Let’s further denote the intersection points of any line lT through T with
the conic c by P and U , and the intersection point of lT and T ’s polar P1P2

by X (lT ∩ c = {P, U}, lT ∩ P1P2 = X). Then

cr(U, P,X, T ) = −1,

and the four points (U, P,X, T ) are said to be in harmonic position.

Theorem 2 gives us the means of constructing a point U from three known
collinear points P,X, T such that the harmonic cross ratio condition for conic sec-
tions is satisfied. For an illustration see Figure 3.
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Figure 3: Harmonic cross ratio condition for conic sections.

For the choice of the parameter point P which is needed for the construction
of the new point Ui inside the triangle ∆PiTiPi+1, the whole region bounded by
the lines Li, Li+1 and PiPi+1 containing the given convex polygon (see Figure 4) is
suitable. In particular, every point Pji of the given convex polygon can be taken as
parameter point (with exception of Pi and Pi+1), and since such a choice guarantees
the reproduction of conic sections we opt for it.

P Pi

i

i+1

T

L
i+1

L
i

Figure 4: Suitable region for the choice of the parameter point P .

Let’s thus denote by Xi the intersection point of the lines PiPi+1 and PjiTi for a
chosen ji ∈ {1, . . . , n} \ {i, i+ 1}, i.e., Xi = PiPi+1 ∩ PjiTi.

In order to guarantee a regular distribution of the inserted points we propose
to choose the index ji by the following angle criterion. To this end we temporarily
come back to the Euclidean plane and introduce the midpoint mi for each segment
pipi+1. Let gi = timi, hij = tipj be the connecting lines of the points ti and mi

respectively ti and pj , and αi
j = ∠(gi, hij) the angle between these two lines1 for

j = i+2, . . . , n+ i− 1 by considering pn+r = pr for r ≥ 1. For every i ∈ {1, . . . , n}
in the case of a closed polygon and for every i ∈ {1, . . . , n − 1} in the case of an
open polygon, we then obtain a value ji from the condition

αi
ji
= min

j=i+2,...,n+i−1
αi
j . (3)

1The smaller one of the two complementary angles is taken in each case.
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Once the point Pji has been selected by exploiting the illustrated criterion, we
then establish the projective coordinate system {Xi, Ti;Pji} on the straight line PjiTi

by calculating the projective representatives of Xi and Ti by solving

γiXi + µiTi = Pji

for γi and µi. We obtain

γi = Di,1/Di , µi = Di,2/Di ,

where

Di = det

(

xi,l ti,l
xi,m ti,m

)

, Di,1 = det

(

pji,l ti,l
pji,m ti,m

)

, Di,2 = det

(

xi,l pji,l
xi,m pji,m

)

,

(4)
l 6= m ∈ {0, 1, 2}.
By Theorem 2 the point Ui is thus obtained as

Ui = Di,1Xi −Di,2Ti.

3 Modification of the scheme for non-convex data

If the input data are not convex, we segment them according to the following criteria
in order to obtain piecewise convex segments.
First, consecutive collinear points are identified in the following way.

By applying a dominant points selection algorithm like, for
instance, the one in [20], we can easily detect the end points
of a sequence containing at least 3 collinear vertices. Let us
denote them by p0

j and p0
l .

(5)

Since in CAD applications as we have in mind linear features are usually intentional,
we do not smooth the angle between a subpolygon consisting of (at least 3) collinear
points and its neighbors. The insertion rule for these straight line subpolygons
between the points pk

j and pk
l (k = 0, 1, 2, 3, . . .) simply reads as:

pk+1

2i+1
=

1

2
(pk

i + pk
i+1) , i = j, . . . , l − 1. (6)

The remaining subpolygons do not anymore contain collinear segments. For these
remaining subpolygons, inflection edges are identified by the following criterion, see
also [9, 16].

An edge p0
ip

0
i+1 is identified as inflection edge if the points

p0
i−1 and p0

i+2 lie in different half planes with respect to it.
(7)

On an inflection edge we insert a new point, e.g., as midpoint of the edge corners,
and we thus have a sequence of subpolygons without inflections. Next, we check

10



each of these subpolygons p0
j . . .p

0
l for total convexity by the following criterion:

If for every edge of the subpolygon all the points of the sub-
polygon lie either on the edge or in the same half plane with
respect to the edge, then the subpolygon is totally convex,
otherwise it is only locally convex.

(8)

If a subpolygon is only locally convex we divide it into two new subpolygons p0
j . . .p

0
i

and p0
i . . .p

0
l , where i = j + x

l−j+1

2
y. We repeat this procedure until we have a

sequence of totally convex subpolygons, each of which we suppose to be composed
of at least five points.

Whereas in the interior of every convex subpolygon we apply the algorithm
detailed in the previous section, we now define the method next to

1. an inserted junction point on an inflection edge, which we refer to as inflection
point,

2. a junction point between two convex subpolygons, which we refer to as convex
junction point.

In the case of an inflection point p0
i let us denote the line of the inflection edge

p0
i−1p

0
ip

0
i+1 by ei, and the convex subpolygons meeting in p0

i by s0l,i and s0r,i. We
estimate a left and a right tangent in p0

i , l
0
l,i and l0r,i respectively, by applying the

tangent estimation method from [1] to the five points p0
i−4, . . . ,p

0
i−1,p

0
i of polygon

s0l,i, respectively p0
i , . . . ,p

0
i+3,p

0
i+4 of polygon s0r,i.

l0l,i

p0
i+1

p0
ip0

i−1

l0i
l0r,i

Figure 5: Definition of an initial tangent l0i in an inflection point p0
i .

We then combine these two lines l0l,i and l0r,i for defining an initial tangent l0i in p0
i

(see Figure 5):
l0i = λ0

i l
0

l,i + µ0

i l
0

r,i , (9)

where λ0
i + µ0

i = 1, λ0
i , µ

0
i > 0. The pair (λ0

i , µ
0
i ) thus plays the role of a shape

parameter. The tangents in the other vertices of the polygons s0l,i and s0r,i, and thus
their new vertices, are calculated as described in the previous section by treating s0l,i
and s0r,i separately. We obtain the new polygons s1l,i and s1r,i. Let us now describe
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ei

γk
l,2ki

pk
2ki

pk
2ki+1

γk
r,2ki

gk
r,2ki

lk−1

2k−1i
lk2ki

pk
2ki−1

gk
l,2ki

Figure 6: Tangent definition in an inflection point.

how to obtain the tangents lk
2ki

in the point p0
i = pk

2ki
in the following iterations

(k = 1, 2, 3, . . .), see Figure 6 for an illustration.

Let
gk
l,2ki = pk

2ki−1
pk
2ki and gk

r,2ki = pk
2kip

k
2ki+1

(10)

be the edges that are incident in p0
i = pk

2ki
, and

γk
r,2ki = ∠(gk

r,2ki, ei) and γk
l,2ki = ∠(gk

l,2ki, ei) (11)

their respective angles with the initial inflection edge ei. We then define the line gk
2ki

by choosing that one of the lines gk
l,2ki

and gk
r,2ki

from (10) yielding the maximum
angle

γk
2ki = max{γk

l,2ki, γ
k
r,2ki} . (12)

The tangent lk
2ki

in the point p0
i = pk

2ki
is then defined as

lk
2ki = λk

2kil
k−1

2k−1i
+ µk

2kig
k
2ki , (13)

where λk
2ki

+ µk
2ki

= 1 and λk
2ki

, µk
2ki

> 0. In the other vertices of skl,i and skr,i we
proceed as in section 2 for estimating the tangents; this allows us to calculate the
new polygons sk+1

l,i and sk+1

r,i by separately applying the “convex” procedure from
the previous section.

In the case of a convex junction point p0
i we suppose our data to be such that

the following condition holds2 (see Figure 7):

the intersection points p0
i−2p

0
i−1 ∩ p0

ip
0
i+1 and p0

i−1p
0
i ∩

p0
i+1p

0
i+2 lie in the same half plane with respect to the

line p0
i−1p

0
i+1 as the point p0

i .
(14)

Let us denote the convex subpolygons meeting in p0
i by s0l,i and s0r,i. As in the

case of an inflection point we estimate a left and a right tangent in p0
i , l0l,i and

2This condition is guaranteed by a sufficiently dense sampling of the initial data points.
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p0
i−2

p0
i

p0
i+1

p0
i+2

p0
i−1

Figure 7: Situation in a convex junction point.

l0r,i respectively, by applying the tangent estimation method from [1] to the five
points p0

i−4, . . . ,p
0
i−1,p

0
i of polygon s0l,i, respectively p0

i , . . . ,p
0
i+3,p

0
i+4 of polygon

s0r,i. If the points p0
i−1 and p0

i+1 lie in different half planes with respect to l0l,i (l
0
r,i

respectively) we replace l0l,i (l
0
r,i respectively) by the line p0

ip
0
i+1 (p

0
i−1p

0
i respectively).

We then combine these two lines l0l,i and l0r,i as in (9) for defining an initial tangent
l0i in p0

i . The tangents in the other vertices of the polygons s0l,i and s0r,i, and thus
their new vertices, are calculated as described in the previous section by treating
s0l,i and s0r,i separately. We obtain the new polygons s1l,i and s1r,i. We then iterate

this procedure and obtain the tangents lk
2ki

in the point p0
i = pk

2ki
in the following

iterations (k = 1, 2, 3, . . .) as

lk
2ki = λk

2kil
k
l,2ki + µk

2kil
k
r,2ki , (15)

where lk
l,2ki

and lk
r,2ki

is the respective left and right tangent in pk
2ki

and λk
2ki

+µk
2ki

= 1,

λk
2ki

, µk
2ki

> 0 (see Figure 8 for an illustration).

pk
2ki

lk2ki

lkl,2ki

lkr,2ki

Figure 8: Tangent definition in a convex junction point.
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In order to avoid a rather slow convergence of the newly inserted points towards
the junction points (inflection points or convex junction points), see Figure 10, we
modify the point insertion rule for the points pk+1

2k+1i−1
and pk+1

2k+1i+1
in the tangent

triangles adjacent to the junction point pk
2ki

formed by the lines lk
2ki−1

, lk
2ki

and the

edge pk
2ki−1

pk
2ki

, and lk
2ki

, lk
2ki+1

and the edge pk
2ki

pk
2ki+1

respectively. The modified
rule for the first and the last new point of a subpolygon reads as follows

p = ρt+ σm , ρ+ σ = 1 , ρ, σ > 0 , (16)

where p stands for the new point pk+1

2k+1i−1
respectively pk+1

2k+1i+1
, t designates the

intersection point of the two tangents in the corner points of the corresponding edge
and m is the mid-point of this edge, see Figure 9.

t

p

pk
2ki

m

pk
2ki+1

lk2ki

lk2ki+1

Figure 9: Modified point insertion rule next to a junction point.

This new “end point rule” avoids holes around the junction points (see Figure 11).

 p
1
0

 p
6
0

(a) k = 1

 p
1
0

 p
6
0

(b) k = 2

 p
1
0

 p
6
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Figure 10: Example of slow convergence of the newly inserted points towards the
inflection point p06.
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Figure 11: Application example of the new “end point rule” in equation (16) to
accelerate convergence of the newly inserted points towards the inflection point p06.

4 The subdivision algorithm

The above detailed procedure may be summarized in the following algorithm, which
we apply to the given point sequence p0 = (p0

i : i ∈ Z). For the sake of clarity
we will first describe the procedure to be used in the case of totally convex data
(Subsection 4.1), which constitutes an essential ingredient of the final algorithm for
general non-convex data presented in Subsection 4.2.

4.1 Algorithm for totally-convex data

Let pk = (pk
i : i = 1, . . . , nk) be the vertices of the totally convex polygon at the

k-level refinement. Hereafter we denote by P k
i the projective counterparts of the

affine points pk
i , see section 2.

The algorithm that implements the function ϕ from (1) proceeds as follows in order
to calculate the points pk+1

2i+1 = ϕ(pk
i−2,p

k
i−1,p

k
i ,p

k
i+1,p

k
i+2,p

k
i+3 ; p).

Step 1: Preprocessing

a) For a closed polygon we set P k
0 = P k

nk
, P k

−1 = P k
nk−1, P

k
nk+1 = P k

1 , P
k
nk+2 =

P k
2 .

For an open polygon we set P k
0 = P k

5 , P
k
−1 = P k

4 , P
k
nk+1 = P k

nk−4, P
k
nk+2 =

P k
nk−3.

For i = 1, . . . , nk we then assign Q1 = P k
i−2, Q2 = P k

i−1, Q3 = P k
i ,

Q4 = P k
i+1, Q5 = P k

i+2, and apply formula (2) for obtaining the tangent
Lk
i in P k

i .

b) According to the angle criterion, we calculate the angles αi
j for j = i +

2, . . . , nk + i − 1 and for i = 1, . . . , nk in the case of a closed polygon,
while for i = 1, . . . , nk −1 in the case of an open polygon. We then select
the value αi

ji
satisfying condition (3).
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Step 2: For a closed polygon we set Lk
nk+1 = Lk

1 and we consider i = 1, . . . , nk, whereas
for an open polygon we consider i = 1, . . . , nk − 1. We thus calculate the
intersection points

T k
i = Lk

i ∧ Lk
i+1 .

Step 3: Calculate the lines (for i = 1, . . . , nk for a closed polygon, and for i =
1, . . . , nk − 1 for an open polygon)

Nk
i = P k

i ∧ P k
i+1 , Λ

k
i = P k

ji
∧ T k

i ,

as well as their intersection points

Xk
i = Nk

i ∧ Λk
i .

Step 4: Calculate the points P k+1

2i+1 as

P k+1

2i+1 = Dk
i,1X

k
i −Dk

i,2T
k
i

with Dk
i,1, D

k
i,2 according to (4).

4.2 Algorithm for non-convex data

Step 1: Preprocessing

We preprocess the data according to the criteria (5), (7) and (8) thus identify-
ing subpolygons contained in a straight line and introducing and /or identifying
inflection vertices and convex junction vertices within the initial data points
of the remaining subpolygons yielding a sequence composed of totally convex
subpolygons and “straight line” subpolygons.

Step 2: • For a “straight line” subpolygon consisting of collinear segments we fix
the tangents at its end points equal to the straight line passing through
them and we apply everywhere the insertion rule (6).

• For a totally convex subpolygon p0
j . . .p

0
l = . . . = pk

2kj
. . .pk

2kl
between

the junction points p0
j and p0

l (where l ≥ j + 4) we apply the algo-
rithm of Subsection 4.1 in order to calculate the tangents in the points
pk
2kj+1

, . . . ,pk
2kl−1

and the new points (with upper index k + 1) between

pk
2kj+1

and pk
2kl−1

. According to the type of the subpolygon end points

pk
2kj

and pk
2kl

, i.e., inflection point or convex junction point, we apply the

rule (13) for an inflection point and (15) for a convex junction point in or-
der to calculate the respective tangent, and apply rule (16) for calculating
the first respectively last new point, i.e., pk+1

2k+1j+1
respectively pk+1

2k+1l−1
. If

pk
2kj

or pk
2kl

is a junction point with a straight line subpolygon, we fix the
tangent at such an end point equal to the straight line passing through it
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and we define the new point in the adjacent triangle using the standard
rule. Finally, if pk

2kj
or pk

2kl
coincides with an end point of the whole

sequence, we proceed by computing the tangent at that location and the
new point closest to it exactly following the same procedure we described
in the open polygon case of Subsection 4.1.

5 Adaptive version of the scheme

Subdivision curves are visualized by drawing a polyline on a level of refinement
which evokes the impression of sufficient approximation of the given data. For a
high quality rendering, the task is therefore to calculate and draw a level of subdivi-
sion which is a visually sufficient approximation of the limit shape. The subdivision
algorithm presented in Section 4 provides a process of global refinement at every
level. Therefore, when the starting polyline is highly non-uniform, the required
level of refinement is determined by those locations which approximate the limit
curve most unfavorably. Obviously, these may cause unnecessary fine subdivisions
at other locations of the curve, thus leading to an unreasonable resource demanding
algorithm.
To overcome this problem we propose an adaptive version of the subdivision algo-
rithm previously described. Adaptive subdivision is achieved by applying the mech-
anism of subdivision only locally, i.e. only at those locations of the initial polyline
that are not approximated with the desired quality. The decision where high res-
olution refinement is needed, strongly depends on the underlying application. As
concerns our algorithm, adaptivity may be controlled either by the user or by an
automatic criterion. In fact, the user may specify which portions of the polygon
should be subdivided or the process may be automated by controlling whether the
length of an edge is greater or not than a specified threshold. Only in the positive
case we insert a new point in correspondence of the considered edge. Of course,
besides improving the visual quality of the limit curve, the adaptive version of the
scheme reduces the computational cost of the algorithm.
In the remainder of this section we take highly non-uniform polylines and compare
our adaptive refinement algorithm with the basic one. Figure 12 shows the com-
parison between the refined polylines obtained by applying the two algorithms to
a totally convex set of points, while Figure 14 compares the two algorithms on a
highly non-uniform polyline with convex junction points and inflection points.

Figures 13 and 15 illustrate the corresponding discrete curvature plots. It can be
easily seen that the use of the adaptive refinement scheme results in a considerable
improvement of the curvature behaviour.
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(a) (b) (c)

Figure 12: Application example of the adaptive algorithm: (a) starting polyline; (b)
refined polyline after 6 steps of the basic algorithm; (c) refined polyline after 6 steps
of the adaptive algorithm.
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Figure 13: Comparison between the discrete curvature plots of the refined polylines
in Figure 12 (b) and 12 (c).
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Figure 14: Application example of the adaptive algorithm: (a) starting polyline;
(b) refined polyline after 6 steps of the basic algorithm; (c) refined polyline after 6
steps of the adaptive algorithm. The labels in Subfigure (a) denote the end points
of consecutive subpolygons: while p07 is a convex junction point, p01 and p013 are
inflection points.

6 Properties of the scheme and smoothness anal-

ysis

By construction the presented scheme enjoys the properties of being shape preserving
and conic reproducing as summarized in the following proposition.
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Figure 15: Comparison between the discrete curvature plots of the refined polylines
in Figure 14 (b) and 14 (c).

Proposition 1. The presented interpolatory curve subdivision scheme

a) is shape preserving, i.e., if the starting point sequence p0 = (p0
i : i =

1, . . . , n0) consists of convex, straight line and concave segments, then all gen-
erated subsequent point sequences pk = (pk

i : i = 1, . . . , nk), for k = 1, 2, 3, . . .
respect the same behavior;

b) reproduces conic sections, i.e., if the starting point sequence p0 is sampled from
a conic section c, then the limit curve coincides with c.

Proof. a) In the preprocessing step the initial point sequence is segmented into
straight line segments and totally convex segments, which are not changed
during the subdivision procedure. A straight line subpolygon is reproduced
as such. For a totally convex subpolygon pk = (pk

i : i = jk, . . . , lk) the
algorithm first generates a line lki in every point pk

i . By construction (see
Section 2 and (13), (15)) these lines form a convex delimiting polygon for the
points of the sequence pk+1 of the next subdivision level, see Figure 2. The
fact that by construction the point pk+1

2i+1
is contained in the triangle formed

by the points pk
i , t

k
i ,p

k
i+1 (p

k+1

2i+1 ∈ ∆(pk
i , t

k
i ,p

k
i+1)) guarantees convexity of the

sequence pk+1.

b) If the point sequence pk comes from a conic section c, then the lines lki gen-
erated in the preprocessing step are the tangents of c in the points pk

i . By
Theorem 2 the constructed points pk+1

2i+1
lie on c.

The special set-up of the presented subdivision scheme allows to obtain a result
on the smoothness of the limit curve as formulated in the following proposition for
which we suppose our data not to contain any subpolygons that consist of consecu-
tive collinear segments. The transitions from and to such subpolygons are purposely
C0 by construction, and these “straight line” subpolygons are exactly reproduced
by the subdivision algorithm. We can thus restrict our attention to polygons not
containing any straight line subpolygons.
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Proposition 2. a) For the presented subdivision scheme the polygon series pk

converges to a continuous curve.

b) The limit curve of the presented subdivision scheme is of continuity class G1.

Proof. The proof is formulated for the non–adaptive version of the subdivision al-
gorithm where every polygon edge is replaced by two new edges in every step. For
the sake of simplicity we omit the details for the adaptive case, where the indices
change but not the general idea. We proceed by demonstrating the C0 and G1 con-
tinuity in two steps. First, we consider (locally) convex segments (including convex
junction points), and then we treat inflection points. The locally convex segments
are composed of several totally convex segments joined together at convex junction
points.

We introduce the following notation. See Figure 16 for an illustration.

pk
i+1

qk
i

tk
i

hk
i

pk
i

dk
i

ρk
i

πk
i

pk+1
2i+1

βk
i

pk
i−1

pk
i+2

Figure 16: Notation used throughout the proof.

qk
i intersection point of the edges pk

i−1p
k
i and pk

i+1p
k
i+2

ρki inner angle in pk
i of the triangle ∆(pk

i+1p
k
i q

k
i )

βk
i inner angle in pk

i of the triangle ∆(pk
i+1p

k
i t

k
i )

πk
i inner angle in pk

i of the triangle ∆(pk
i+1p

k
i p

k+1

2i+1
)

hk
i height of the triangle ∆(pk

i+1p
k
i t

k
i ) from tki onto the edge pk

ip
k
i+1

dki height of the triangle ∆(pk
i+1p

k
i p

k+1

2i+1
) from pk+1

2i+1
onto the edge pk

i p
k
i+1

cki length of the edge pk
i p

k
i+1

lki length of the line segment pk
i t

k
i

C0 continuity for (locally) convex segments:

In order to show the continuity of the limit curve we compute the distance dk between
the polygon pk+1 and the polygon pk. According to the above notation we define
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dk = maxi{d
k
i }. By construction3 the point tki lies inside the triangle ∆(pk

i+1p
k
i q

k
i )

and the point pk+1

2i+1
lies inside the triangle ∆(pk

i+1p
k
i t

k
i ). Thus (see Figures 16, 17)

0 < πk
i < βk

i < ρki (17)

and
ρk+1

2i < ρki . (18)

pk
i+1 = pk+1

2i+2

qk+1
2i

ρk
i

pk
i = pk+1

2i

qk
i

ρk+1
2i

pk+1
2i+1

tk
i

Figure 17: Relation between the angles ρki and ρk+1

2i .

Let pk0
j be a point that appears in the k0–th iteration. Since the presented scheme

is interpolatory we have

pk0
j = pk0+1

2j = pk0+2

4j = . . . = pk0+n
2nj .

From (18) we obtain in the point pk0
j :

ρk0+n
2nj ≤ (ǫj)

nρk0j , (19)

and by (17) we have

βk0+n
2nj ≤ (ǫj)

nρk0j , πk0+n
2nj ≤ (ǫj)

nρk0j , (20)

where the ǫj ’s are constants such that 0 < ǫj < 1. Let ǫ := maxj{ǫj} and ρk0 :=
maxj{ρ

k0
j }, where 0 < ǫ < 1. Then,

ρk0+n
2nj ≤ ǫnρk0 , (21)

βk0+n
2nj ≤ ǫnρk0 , (22)

πk0+n
2nj ≤ ǫnρk0 . (23)

3In a convex junction point this is guaranteed by condition (14) and the respective tangent
definition.
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In the triangle ∆(pk
i+1p

k
ip

k+1

2i+1) we have

sin(πk
i ) =

dki
ck+1

2i

and thus
dk0+n
2nj = ck0+n+1

2n+1j
sin(πk0+n

2nj ). (24)

Since the angles ρki become smaller in every step and the longest edge of a triangle
is the one opposite to its biggest inner angle there exists an index k′ such that for
all k ≥ k′ the circle centered in pk

i with radius cki contains the triangle ∆(pk
i+1p

k
i q

k
i ).

Thus there exists an index n0 such that for all n ≥ n0 and for all j we have

ck0+n+1

2n+1j
≤ ck0+n0+1

2n0+1j
≤ max

j
{ck0+n0+1

2n0+1j
} =: ck0+n0+1.

Since sin(x) ≤ x for x ≥ 0, we deduce from (24) and (23) for n ≥ n0 that:

dk0+n
2nj ≤ ck0+n0+1πk0+n

2nj

≤ ck0+n0+1ǫnρk0 .

Since this holds for all j we have

dk ≤ ck0+n0+1ǫk−k0ρk0 , (25)

where k ≥ k0 + n0. The polygons {pk} thus form a Cauchy sequence and this se-
quence of polygons converges uniformly. Each polygon being piecewise linear, the
limit curve is continuous.

G1 continuity for (locally) convex segments:

Let
hk = max

i
{hk

i } .

For the triangle ∆(pk
i+1p

k
i t

k
i ) it holds

sin(βk
i ) =

hk
i

lki
.

By the analogous reasoning as above for dk we obtain for hk (since there exists an
index k′ such that for all k ≥ k′: lki ≤ cki ):

hk ≤ ck0+n̄ǫk−k0ρk0 ,

where k ≥ k0 + n̄ for a certain value of n̄ and

ck0+n̄ = max
j

{ck0+n̄
2n̄j } .
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In every iteration level the presented subdivision scheme constructs the new points
by sampling them from a G1–continuous conic spline Γk. By its Bézier construction
the distance of the conic segment of Γk corresponding to the edge pk

i p
k
i+1 is bounded

by hk. The sequence of conic splines {Γk} thus converges to the same limit curve as
the sequence of polygons {pk}.
It thus remains to be shown that the sequence of tangents {lk}, where lk = (lki : i ∈
Z) converges uniformly. Let ξk+1

2i be the angle between the tangents lki and lk+1

2i in
pk
i . Then,

|ξk+1

2i | = |βk+1

2i + πk
i − βk

i | ,

see Figure 18.

lki

lk+1
2i

πk
i βk

i

pk
i+1 = pk+1

2i+2

pk+1
2i+1pk

i = pk+1
2i

qk
i

tk
i

qk+1
2i ξk+1

2i

βk+1
2i

Figure 18: Illustration of the uniform convergence of the tangent sequence.

Thus by (22) and (23) with i = 2nj and k = k0 + n:

|ξk0+n+1

2n+1j
| ≤ |βk0+n+1

2n+1j
|+ |πk0+n

2nj |+ |βk0+n
2nj |

≤ ǫn(ǫ+ 2)|ρk0 |.

The set of tangents {lk} thus forms a Cauchy sequence and this sequence converges
uniformly. The limit curve is therefore of continuity class G1.

C0 and G1 continuity for inflection points:
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In an inflection point p0
i = pk

2ki
we define

σk
2ki = ∠(lk−1

2k−1i
, gk

2ki) ,

τk
2ki = ∠(lk

2ki, ei) ,

ξk
2ki = ∠(lk−1

2k−1i
, lk

2ki) ,

βk
l,2ki = ∠(lk

2ki, g
k
l,2ki) ,

βk
r,2ki = ∠(lk

2ki, g
k
r,2ki) ,

where lj
2j i
, gk

2ki
, gk

l,2ki
, and gk

r,2ki
are defined as in section 3, see Figure 19. We have

σk
2ki = τk−1

2k−1i
− γk

2ki , (26)

with γk
2ki

from (12).

eiγk
r,2ki

pk
2ki−1

gk
r,2ki

pk
2ki

pk
2ki+1

lk−1

2k−1i
lk2ki

βk
r,2ki

gk
l,2ki = gk

2ki σk
2ki

ξk
2ki

τ k−1

2k−1i

γk
l,2ki τ k

2ki

βk
l,2ki

Figure 19: Illustration of C0 and G1 continuity for inflection points.

By construction these angles satisfy the following inequalities (see Figure 19):

0 < ξk
2ki < σk

2ki , (27)

0 < τk
2ki < τk−1

2k−1i
, (28)

0 < γk
2ki < γk+1

2k+1i
, (29)

0 < βk+1

l,2k+1i
< βk

l,2ki , (30)

0 < βk+1

r,2k+1i
< βk

r,2ki . (31)

The relations (30) and (31) imply that the tangent triangles adjacent to the in-
flection point p0

i , used for the determination of the new points next to p0
i , become

continuously flatter, thus yielding C0 continuity in p0
i .

Furthermore, we have

σk
2ki = τk−1

2k−1i
− γk

2ki > τk
2ki − γk+1

2k+1i
= σk+1

2k+1i
> 0 . (32)
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By introducing an ǫ with 0 < ǫ < 1 we thus have

σk
2ki ≤ ǫk−1σ1

2i

and consequently
0 < ξk

2ki < σk
2ki ≤ ǫk−1σ1

2i .

The angle between two consecutive tangents in an inflection point p0
i thus continu-

ously decreases yielding a G1 continuous inflection joint in the limit.

7 Numerical examples

In this section we want to illustrate the performance of the basic and adaptive
subdivision algorithms presented in Sections 4 and 5, respectively. Generally, when
the starting points are uniformly spaced we use the first proposal, while in the case
of irregularly distributed vertices we apply the second one.

As concerns the forthcoming examples, we start by applying the subdivision al-
gorithm of Subsection 4.1 to totally convex closed and open polylines with nearly
uniform edges (Figures 20, 22), and successively we exploit the adaptive version of
the scheme in the case of polylines with highly non-uniform edges (Figures 21, 23).
As it appears, the generated curves are always convex and visually pleasing.
Then, concerning Figures 24 and 25, the goal is to illustrate the conic precision
property of the proposed algorithms in both the uniform and non-uniform cases.
Moving from top to bottom, the four plots in the figures have been generated by
repeated application of the subdivision scheme to points sampled from a circle, an
ellipse, a parabola and a hyperbola.
We then continue by showing that the curves computed through the algorithms pre-
sented in Subsection 4.1 and Section 5 are really artifact free. In fact, although a
limit curve can be apparently artifact free, it is hard to tell from the display on the
screen if it is acceptable or not. Two curves may look very similar on the screen, but
their curvature plots may reveal important differences. The most commonly used
tool for revealing significant shape differences is provided by the curvature comb of
the curve. In pictures 26, 27 we have used the graphs of the discrete curvature combs
of the refined polylines to show that the limit curves generated by our algorithms
are indeed artifact free.
In particular, if we compare the results we get by refining the polyline in Figure
27(a) for data, that do not come from a conic section, through our adaptive algo-
rithm and through the subdivision algorithms in [6], [14] and [25] (Figures 27(b),
(c) and (d) respectively), they are only apparently very similar. Yet their curvature
combs reveal substantial differences showing that neither every non-linear nor every
non-uniform subdivision scheme is indeed artifact free (see Figures 27 (e)-(f)-(g)-
(h)).
We close this section by illustrating the results of the subdivision algorithm of Sub-
section 4.2. In the first example we take the D-shape polyline of [9] in order to
show the ability of the scheme to reproduce collinear vertices (see Figure 28). In the
second and third examples we apply the generalized subdivision scheme to a closed,

25



respectively open, sequence of non-convex data to illustrate its G1 continuity and
shape-preserving interpolation properties (Figures 29, 30). The last three examples
in Figures 31 and 32 deal with more complex polylines that respectively represent
the cover of a mobile phone, Micky Mouse face and a bottle opener.
The shapes in Figure 31 are designed by a collection of rectilinear and convex seg-
ments where the most of the latter ones have been sampled from conic sections.
The shape in Figure 32 is made of 4 independent closed polygons, some of which
are non-convex. The data of the first example in Figure 31 and that of Figure 32
are courtesy of the CAD company think3 (www.think3.com). In all the considered
experiments the proposed subdivision scheme turns out to work very well and clearly
manifests all its characteristic features described in the previous sections.

Figure 20: Application examples of the subdivision algorithm of Subsection 4.1 to
nearly uniform closed polylines. From left to right: points at 1st and 2nd level of
refinement; refined polyline after 6 steps of the algorithm.

Figure 21: Application examples of the adaptive subdivision algorithm of Section 5
to highly non-uniform closed polylines. From left to right: points at 1st and 2nd
level of refinement; refined polyline after 6 steps of the algorithm.
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Figure 22: Application examples of the subdivision algorithm of Subsection 4.1 to
nearly uniform open polylines. From left to right: points at 1st and 2nd level of
refinement; refined polyline after 6 steps of the algorithm.

Figure 23: Application examples of the adaptive subdivision algorithm of Section
5 to highly non-uniform open polylines. From left to right: points at 1st and 2nd
level of refinement; refined polyline after 6 steps of the algorithm.

8 Conclusions

Even though in the last years important steps forward have been taken both in the
construction and analysis of interpolatory subdivision schemes [24], several problems
are still open and need to be tackled in order to increase the strength and popularity
of subdivision in more and more fields of application.

First of all, unlike the non-interpolatory subdivision schemes, the interpolatory
ones usually generate shapes of inferior quality because, if applied to points with
an irregular distribution, they provide a limit curve with more convexity changes
than the starting polygon. Since, in several applications it is important to guarantee
shape preservation, in this paper we have described a new interpolating subdivision
algorithm enjoying this important property.

Because in CAGD it is also often necessary to have schemes able to generate clas-
sical geometric shapes, we have enriched our interpolating subdivision scheme with
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Figure 24: Uniform case: reproduction of conic sections from uniform samples by
applying the subdivision algorithm of Subsection 4.1. The dotted blue line is the
conic section to be reconstructed. From left to right: points at 1st and 2nd level of
refinement; refined polyline after 6 steps of the algorithm.

the capability of including the exact representation of all conic sections. The differ-
ent methods of the literature [4, 5, 22] give solutions only when the assigned points
have a regular distribution. These linear subdivision schemes use non-stationary
refinement rules associated with functional spaces defined via the union between
polynomial and exponential functions with a free parameter.

The idea we have explored in this paper is to provide a subdivision scheme in
which the conic section reproduction is obtained by adaptive geometric constructions
on the given points. The advantage of doing this is that the presented non–linear
scheme is able to adapt itself to any data configuration, i.e., to arbitrary irregularly
distributed point sequences. Due to the underlying construction, the properties of
shape preservation, conic reproduction as well as the proof of G1 continuity of the
limit curve, follow straightforwardly. The method has been illustrated by several
significant examples.
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Figure 25: Non-uniform case: reproduction of conic sections from non-equispaced
samples by applying the adaptive subdivision algorithm of Section 5. The dotted
blue line is the conic section to be reconstructed. From left to right: points at 1st
and 2nd level of refinement; refined polyline after 6 steps of the algorithm.
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Figure 27: Comparison with the linear, non-uniform scheme in [6] and with the
non-linear schemes in [14] and [25]. First row: refined polylines obtained after 6
steps of (a) our adaptive algorithm of Section 5; (b) algorithm in [6] with chord
length parameterization; (c) algorithm in [14] with chord length parameterization;
(d) algorithm in [25]. Second row: corresponding curvature combs.
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Figure 28: Application example of the subdivision algorithm of Subsection 4.2 to a
closed sequence of data containing collinear vertices. The labels in the figure denote
the end points of consecutive subpolygons. From left to right: points at 1st and 2nd
level of refinement; refined polyline after 6 steps of the algorithm.
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Figure 29: Application example of the adaptive subdivision algorithm of Section 5
to a closed sequence of non-convex data. The labels in the figure denote the end
points of consecutive subpolygons. From left to right: points at 1st and 2nd level of
refinement; refined polyline after 6 steps of the algorithm.

 p
1
0

 p
7
0

 p
12
0

 p
1
0

 p
7
0

 p
12
0

Figure 30: Application example of the subdivision algorithm of Subsection 4.2 to
an open sequence of non-convex data. The labels in the figure denote the end
points of consecutive subpolygons. From left to right: points at 1st and 2nd level of
refinement; refined polyline after 6 steps of the algorithm.
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complex data. Left: starting polylines. Center and Right: refined polylines obtained
after 7 steps of our algorithm. Data of first row: courtesy of think3.

Figure 32: Application example of the subdivision algorithm of Subsection 4.2 to
complex data. Left: starting polylines. Center and Right: refined polylines obtained
after 7 steps of our algorithm. Data are courtesy of think3.
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