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INFINITE HORIZON AND ERGODIC OPTIMAL QUADRATIC CONTROL
FOR AN AFFINE EQUATION WITH STOCHASTIC COEFFICIENTS

GIUSEPPINA GUATTERI AND FEDERICA MASIERO

Abstract. We study quadratic optimal stochastic control problems with control dependent noise
state equation perturbed by an affine term and with stochastic coefficients. Both infinite horizon
case and ergodic case are treated. To this purpose we introduce a Backward Stochastic Riccati
Equation and a dual backward stochastic equation, both considered in the whole time line. Besides
some stabilizability conditions we prove existence of a solution for the two previous equations
defined as limit of suitable finite horizon approximating problems. This allows to perform the
synthesis of the optimal control.

Key words. Linear and affine quadratic optimal stochastic control, random coefficients, infinite
horizon, ergodic control, Backward Stochastic Riccati Equation.
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1. Introduction

Backward Stochastic Riccati Equations (BSREs) are naturally linked with stochastic optimal
control problems with stochastic coefficients. The first existence and uniqueness result for such a
kind of equations has been given by Bismut in [3], but then several works, see [4], [14], [15], [16],
[17], [19] and [20], followed as the problem, in its general formulation, turned out to be difficult to
handle and challenging. Indeed only very recently Tang in [22] solved the general non singular case
corresponding to the linear quadratic problem with random coefficients and control dependent noise.

In his paper the so-called linear quadratic optimal control problem is considered: minimize over
u ∈ L2

F (0, T ;Rm) the following cost functional

JT (0, x, u) = E
∫ T

0

[〈SsXs, Xs〉+ |us|2]ds + E〈PXT , XT 〉 (1.1)

where Xs ∈ Rn is solution of the following linear stochastic system:



dXs = (AsXs + Bsus)ds +
d∑

i=1

(
Ci

sXs + Di
sus

)
dW i

s s ≥ 0

X0 = x,

(1.2)

where W is a d dimensional brownian motion and A,B, C, D, S are stochastic processes adapted to
its natural filtration completed {Ft}t≥0 while P is random variable FT measurable.

All these results cover the finite horizon case.

In this paper starting from the results of [22], we address the infinite horizon case and the ergodic
case. Since our final goal is to address ergodic control, in the state equation we consider a forcing
term. Namely, the state equation that describe the system under control is the following affine
stochastic equation:




dXs = (AsXs + Bsus)ds +
d∑

i=1

(
Ci

sXs + Di
sus

)
dW i

s + fsds s ≥ 0

X0 = x,

(1.3)

Our main goal is to minimize with respect to u the infinite horizon cost functional,

J∞(0, x, u) = E
∫ +∞

0

[〈SsXs, Xs〉+ |us|2]ds (1.4)
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and the following ergodic cost functional:

lim inf
α→0

αJα(0, x, u) (1.5)

where

Jα(0, x, u) = E
∫ +∞

0

e−2αs[〈SsXs, Xs〉+ |us|2]ds, (1.6)

In order to carry on this programme we have first to reconsider the finite horizon case since now
the state equation is affine. As it is well known the value function has in the present situation a
quadratic term represented in term of the solution of the Backward Stochastic Riccati Equation
(BSRE) in [0, T ]:

dPt = −
[
A∗t Pt + PtAt + St +

d∑

i=1

((
Ci

t

)∗
PtC

i
t +

(
Ci

t

)∗
Qt + QtC

i
t

)]
dt +

d∑

i=1

Qi
tdW i

t +, (1.7)

[
PtBt +

d∑

i=1

((
Ci

t

)∗
PtD

i
t + QiDi

t

)][
I +

d∑

i=1

(
Di

t

)∗
PtD

i
t

]−1[
PtBt +

d∑

i=1

((
Ci

t

)∗
PtD

i
t + Qi

tD
i
t

)]∗
dt,

PT = P,

and a linear term involving the so-called costate equation (dual equation):




drt = −H∗
t rtdt− Ptftdt−

d∑

i=1

(
Ki

t

)∗
gi

tdt +
d∑

i=1

gi
tdW i

t , t ∈ [0, T ]

rT = 0.

(1.8)

The coefficients H and K are related with the coefficients of the state equation and the solution to
the BSRE in [0, T ]. In details, if we denote for t ∈ [0, T ]

f (t, Pt, Qt) = −[I +
d∑

i=1

(
Di

t

)∗
PtD

i
t]
−1[PtBt +

d∑

i=1

(Qi
tD

i
t +

(
Ci

t

)∗
PtD

i
t)],

∗

then we have: Ht = At + Btf (t, Pt, Qt) and Ki
t = Ci

t + Di
tf (t, Pt, Qt). The solution (r, g) of this

equation together with the solution (P,Q) of the BSRE equation (1.7) allow to describe the optimal
control and perform the synthesis of the optimal equation. Equation (1.8) is the generalization of
the deterministic equation considered by Bensoussan in [1] and by Da Prato and Ichikawa in [9] and
of the stochastic backward equation introduced in [24] for the case without control dependent noise
and with deterministic coefficients.

The main difference from the equation considered in [24] is that, being the solution to the Riccati
equation a couple of stochastic processes (P, Q) with Q just square integrable, equation (1.8) has sto-
chastic coefficients that are not uniformly bounded. So the usual technique of resolution does not ap-
ply directly. When r is one dimensional also the non linear case has been studied in [5] using Girsanov
Theorem and properties of BMO martingales. Here being the problem naturally multidimensional
we can not apply the Girsanov transformation to get rid of the term

∑d
i=1

(
Ki

t

)∗
gi

tdt+
∑d

i=1g
i
tdW i

t .
Nevertheless we can exploit a duality relation between the dual equation (1.8) and the following

equation




dXs = HsXsds +
d∑

i=1

Ki
sXsdW i

s s ∈ [t, T )

Xt = x.

(1.9)

This equation is indeed the closed loop equation related to the linear quadratic problem and can be
solved following [11] and its control interpretation allows to gain enough regularity to perform the
duality relation with (r, g).
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Once we are able to handle the finite horizon case, we can proceed to study the infinite horizon
problem. The BSRE corresponding to this problem is, for t ≥ 0

dPt = −
[
A∗t Pt + PtAt + St +

d∑

i=1

((
Ci

t

)∗
PtC

i
t +

(
Ci

t

)∗
Qt + QtC

i
t

)]
dt +

d∑

i=1

Qi
tdW i

t + (1.10)

[
PtBt +

d∑

i=1

((
Ci

t

)∗
PtD

i
t + QiDi

t

)][
I +

d∑

i=1

(
Di

t

)∗
PtD

i
t

]−1[
PtBt +

d∑

i=1

((
Ci

t

)∗
PtD

i
t + Qi

tD
i
t

)]∗
dt,

note that differently from equation (1.7), the final condition has disappeared since the horizon is
infinite. It turns out that, under a suitable finite cost condition, see also [12], there exists a minimal
solution (P , Q) and we can perform the synthesis of the optimal control with f = 0. More precisely
we introduce a sequence (PN , QN ) of solutions of the Riccati equation in [0, N ] with PN (N) = 0
and we show that for any t ≥ 0 the sequence of PN pointwise converge, as N tends to +∞, to a limit
denoted by P . The sequence of QN instead only converge weakly in L2(Ω× [0, T ]) to some process
Q and this is not enough to pass to the limit in the fundamental relation and then to conclude that
the limit (P , Q) is the solution for the infinite horizon Riccati equation (1.10). Therefore, as for the
finite horizon case, we have to introduce the stochastic Hamiltonian system to prove the limit (P , Q)
solves the BRSE (1.10), see Corollary 3.7. Indeed studying the stochastic Hamiltonian system we
can prove that the optimal cost for the approximating problem converge to the optimal cost of the
limit problem and this implies that P is the solution of the BSRE.

In order to cope with the affine term f we have to introduce an infinite horizon, this time,
backward equation

drt = −H∗
t rtdt− Ptftdt−

d∑

i=1

(
Ki

t

)∗
gi

tdt +
d∑

i=1

gi
tdW i

t , t ≥ 0. (1.11)

Notice that the typical monotonicity assumptions on the coefficients of this infinite horizon BSDE
are replaced by the finite cost condition and the Theorem of Datko. As a consequence of this new
hypothesis we have that the solution to the closed loop equation considered in the whole positive
time line with the coefficients evaluated in P and Q, is exponentially stable.

Hence a solution (r̄, ḡ) to this equation is obtained as limit of the sequence (rT , gT ) defined in
(1.8), indeed using duality and the exponential stability property of the solution to (1.9), we can
prove that the sequence of r′T s and its limit r̄ are uniformly bounded. Hence, having both (P , Q)
and (r̄, ḡ), we can express the optimal control and the value function.

Eventually we come up with the ergodic case: first of all we set Xα
s := e−αsXs and uα

s := e−αsus

and we notice that the functional Jα(0, x, u) can be written as an infinite horizon functional in terms
of Xα and uα:

Jα(0, x, u) = E
∫ +∞

0

[〈SsX
α
s , Xα

s 〉+ |uα
s |2]ds.

This allows us to adapt the previous results on the infinite horizon when α > 0 is fixed.
Then, in order to study the limit (1.5), we need to investigate the behaviour of Xα, of the solution
Pα of the Riccati equation corresponding to J

α
(x) := infu Jα(0, x, u) and the solutions (rα, gα) of

the dual equations corresponding to Hα,Kα and fα
t = e−αtft. In the general case it turns out that

the ergodic limit has the following form:

limα→0αJ
α
(x) = limα→0α

∫ +∞

0

〈rα
s , fα

s 〉ds.

A better characterization holds if we assume all the coefficients (A,B, C, D) and f to be stationary
processes, see definition 6.9. If this is the case we can prove that the stationarity property extends
to both P̄ and r̄, and hence the optimal ergodic cost simplify to:

lim
α→0

α inf
u∈U

Jα(x, u) = E〈f(0), r̄(0)〉
When the coefficients of the state equation are deterministic similar problems have already been
treated: we cite [2], [24] and bibliography therein. In [2] in the state equation all the coefficients
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are deterministic and no control dependent noise is studied, while in [24] only the forcing term f is
allowed to be random.

Finally we describe the content of each section: in section 2, after recalling some results of [22],
we solve the finite horizon case when the state equation is affine: the key point is the solution of
the dual equation (1.8), which is studied in paragraph 2.2; in section 3 we solve the infinite horizon
case with f = 0, in section 4 we study the infinite horizon equation (1.11), in section 5 we complete
the general infinite horizon case, finally in section 6 we study the ergodic case.

Acknowledgments. The authors wish to thank Philippe Briand for the very useful discussions
on the role of BMO martingales in the theory of Backward Stochastic Differential Equations.

2. Linear Quadratic optimal control in the finite horizon case

Let (Ω, E , (Ft)t≥0,P) be a stochastic base verifying the usual conditions. In (Ω, E ,P) we consider
the following stochastic differential equation for t ≥ 0:




dXs = (AsXs + Bsus)ds +
d∑

i=1

(
Ci

sXs + Di
sus

)
dW i

s + fsds s ∈ [t, T ]

Xt = x

(2.1)

where X is a process with values in Rn and represents the state of the system and is our unknown,
u is a process with values in Rk and represents the control,

{
Wt :=

(
W 1

t , ..., W d
t

)
, t ≥ 0

}
is a d-

dimensional standard Ft-Brownian motion and the initial data x belongs to Rn. To stress dependence
of the state X on u, t and x we will denote the solution of equation (2.1) by Xt,x,u when needed.
The norm and the scalar product in any finite dimensional Euclidean space Rm, m ≥ 1, will be
denoted respectively by |·| and 〈·, ·〉.

Our purpose is to minimize with respect to u the cost functional,

J(0, x, u) = E
∫ T

0

[
〈
SsX

0,x,u
s , X0,x,u

s

〉
+ |us|2]ds + E | X0,x,u

T |2 . (2.2)

We also introduce the following random variables, for t ∈ [0, T ]:

J(t, x, u) = EFt

∫ T

t

[
〈
SsX

0,x,u
s , X0,x,u

s

〉
+ |us|2]ds + EFt | X0,x,u

T |2 . (2.3)

We make the following assumptions on A, B, C and D.

Hypothesis 2.1.
A1) A : [0, T ] × Ω → Rn×n, B : [0, T ] × Ω → Rn×k, Ci : [0, T ] × Ω → Rn×n, i = 1, ..., d and

Di : [0, T ]×Ω → Rn×k, i = 1, ..., d, are uniformly bounded processes adapted to the filtration
{Ft}t≥0.

A2) S : [0, T ] × Ω → Rn×n is uniformly bounded and adapted to the filtration {Ft}t≥0 and it is
almost surely and almost everywhere symmetric and nonnegative.

A3) f : [0, T ]× Ω → Rn is adapted to the filtration {Ft}t≥0 and f ∈ L∞ ([0, T ]× Ω).

2.1. Preliminary results on the unforced case. Next we recall some results obtained in [22] for
the finite horizon case, with f = 0 in equation 2.1. In that paper a finite horizon control problem
was studied, namely minimize the quadratic cost functional

J(0, x, u) = E〈PX0,x,u
T , X0,x,u

T 〉+ E
∫ T

0

[
〈
SsX

0,x,u
s , X0,x,u

s

〉
+ |us|2]ds,

where P is a random matrix uniformly bounded and almost surely positive and symmetric, T > 0
is fixed and X0,x,u is the solution to equation (2.1) with f = 0. To this controlled problem, the
following (finite horizon) backward stochastic Riccati differential equation (BSRDE in the following)
is related: 



−dPt = G (At, Bt, Ct, Dt; St; Pt, Qt) dt +

d∑

i=1

Qi
tdW i

t

PT = P.

(2.4)
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where

G (A,B, C, D;S; P, Q) = A∗P + PA + S +
d∑

i=1

((
Ci

)∗
PCi +

(
Ci

)∗
Q + QCi

)
−G1 (B, C,D; P, Q) ,

and

G1 (B, C,D; P, Q) =

[
PB +

d∑

i=1

((
Ci

)∗
PDi + QiDi

)]
∗

[
I +

d∑

i=1

(
Di

)∗
PDi

]−1

∗

∗
[
PB +

d∑

i=1

((
Ci

)∗
PDi + QiDi

)]∗

Definition 2.2. A pair of adapted processes (P,Q) is a solution of equation (2.4) if

(1)
∫ T

0

|Qs|2 ds < +∞, almost surely,

(2) ∫ T

0

|G (As, Bs, Cs, Ds; Ss; Ps, Qs)| ds < +∞,

(3) for all t ∈ [0, T ]

Pt = P +
∫ T

t

G (As, Bs, Cs, Ds; Ss;Ps, Qs) ds−
∫ T

t

d∑

i=1

Qi
sdW i

s .

Theorem 2.3 ([22], Theorems 3.2 and 5.3). Assume that A,B, C, D and S verify hypothesis 2.1.
Then there exists a unique solution to equation (2.4). Moreover the following fundamental relation
holds true, for all 0 ≤ t ≤ s ≤ T , and all u ∈ L2

P
(
[0, T ]× Ω,Rk

)
:

〈Ptx, x〉 = EFt
〈
PXt,x,u

T , Xt,x,u
T

〉
+ EFt

∫ T

t

[
〈
SrX

t,x,u
r , Xt,x,u

r

〉
+ |ur|2]dr (2.5)

− EFt

∫ T

t

∣∣∣∣∣∣

(
I +

d∑

i=1

(
Di

s

)∗
PsD

i
s

)1/2

∗

∗

us +

(
I +

d∑

i=1

(
Di

s

)∗
PsD

i
s

)−1 (
PsBs +

d∑

i=1

(
Qi

sD
i
s +

(
Ci

s

)∗
PsD

i
s

))∗

Xt,x,u
s




∣∣∣∣∣∣

2

ds

Then the value function is given by

〈P0x, x〉 = inf
u∈L2

P([0,T ]×Ω,Rk)
EFt

〈
PXt,x,u

T , Xt,x,u
T

〉
+ EFt

∫ T

t

[
〈
SrX

t,x,u
r , Xt,x,u

r

〉
+ |ur|2]dr

and the unique optimal control has the following closed form:

ut = −
(

I +
d∑

i=1

(
Di

t

)∗
PtD

i
t

)−1 (
PtBt +

d∑

i=1

(
Qi

tD
i
t +

(
Ci

t

)∗
PtD

i
t

))∗

X0,x,ū
t .

If X is the solution of the state equation corresponding to u (that is the optimal state), then X is
the unique solution to the closed loop equation:




dXs = (AsXs −Bs

(
I +

d∑

i=1

(
Di

t

)∗
PtD

i
t

)−1 (
PtBt +

d∑

i=1

(
Qi

tD
i
t +

(
Ci

t

)∗
PtD

i
t

))∗

Xs)ds+

d∑

i=1


Ci

sXs −Di
s

(
I +

d∑

i=1

(
Di

t

)∗
PtD

i
t

)−1 (
PtBt +

d∑

i=1

(
Qi

tD
i
t +

(
Ci

t

)∗
PtD

i
t

))∗

Xs)


 dW i

s ,

Xt = x
(2.6)
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The optimal cost is therefore given in term of the solution of the Riccati matrix

J(0, x, u) = 〈P0x, x〉. (2.7)

and also the following identity holds, for all t ∈ [0, T ]:

J(t, x, u) = 〈Ptx, x〉. (2.8)

For t ∈ [0, T ], we denote by

f (t, Pt, Qt) = −
(

I +
d∑

i=1

(
Di

t

)∗
PtD

i
t

)−1 (
PtBt +

d∑

i=1

(
Qi

tD
i
t +

(
Ci

t

)∗
PtD

i
t

))∗

,

Ht = At + Btf (t, Pt, Qt) ,

Ki
t = Ci

t + Di
tf (t, Pt, Qt) .

(2.9)

So the closed loop equation (2.6) can be rewritten as



dXs = Hsds +
d∑

i=1

Ki
sXsdW i

s s ∈ [t, T )

Xt = x

(2.10)

It is well known, see e.g. [11], that equation (2.10) admits a solution.

Remark 2.4. f , H and K defined in (2.9) are related to the feedback operator in the solution of the
finite horizon optimal control problem with f = 0. By the boundedness of P and by the fundamental
relation (2.5), it turns out for every stopping time 0 ≤ τ ≤ T a.s.,

EFτ

∫ T

τ

|f (t, Pt, Qt) |2dt ≤ C,

where C is a constant depending on T and x. Since A, B, C and D are bounded, this property
holds true also for H and K:

EFτ

∫ T

τ

|Ht|2dt + EFτ

∫ T

τ

|Kt|2dt ≤ C,

where now C is a constant depending on T , x, A, B, C and D. In particular, f , H and K are square
integrable. In the following we denote by

CH = sup
τ
EFτ

∫ T

τ

|Ht|2dt,

CK = sup
τ
EFτ

∫ T

τ

|Kt|2dt.

(2.11)

where the supremum is taken over all stopping times τ , τ ∈ [0, T ] a.s..

2.2. Costate equation and finite horizon affine control. In order to solve the optimal control
problem related to the nonlinear controlled equation 2.1, we introduce the so called dual equation,
or costate equation,




drt = −H∗
t rtdt− Ptftdt−

d∑

i=1

(
Ki

t

)∗
gi

tdt +
d∑

i=1

gi
tdW i

t , t ∈ [0, T ]

rT = 0.

(2.12)

We look for a solution of (2.12), that is a pair of predictable processes (r, g) s.t. r∈L∞loc ([0, T ]×Ω,Rn)
and gi ∈ L2

loc ([0, T ]× Ω,Rn), for i = i, ..., d. L∞loc ([0, T ]× Ω,Rn) is the space of predictable processes
r with values in Rn such that

P

(
sup

t∈[0,T ]

|rt| < ∞
)

= 1.
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L2
loc ([0, T ]× Ω,Rn) is the space of predictable processes g with values in Rn such that

P

(∫ T

0

|gs|2ds < ∞
)

= 1.

Lemma 2.5. The backward equation (2.12) admits a unique solution (r, g) that belongs to the space
L∞loc ([0, T ]× Ω,Rn)× L2

loc

(
[0, T ]× Ω,Rn×d

)
.

Proof. In order to construct a solution to equation (2.12), we essentially follow [25], chapter 7, where
linear BSDEs with bounded coefficients are solved directly. Besides equation (2.12) we consider the
two following equations with values in Rn×n:





dΦs = −HsΦsds +
d∑

i=1

(
Ki

s

)∗ (
Ki

s

)∗ Φsds−
d∑

i=1

(
Ki

s

)∗ ΦsdW i
s s ∈ [0, T ]

Φ0 = I,

(2.13)

and 



dΨs = ΨsH
∗
s ds +

d∑

i=1

Ψs

(
Ki

s

)∗
dW i

s s ∈ [0, T ]

Ψ0 = I.

(2.14)

By applying Itô formula it turns out that ΦtΨt = I. By transposing equation (2.14), we obtain the
following equation for Ψ∗:





dΨ∗s = +HsΨ∗sds +
d∑

i=1

Ki
sΨ

∗
sdW i

s s ∈ [0, T ]

Ψ∗0 = I.

(2.15)

By [11], equations (2.13), (2.14) and (2.15) admit a unique solution. Moreover, since H and K are
related to the feedback operator, see (2.9) where f , H and K are defined, it follows that

E|Ψt|2 ≤ C|I|2, t ∈ [0, T ] , (2.16)

where C is a constant that may depend on T , see also theorem 2.2 in [22], with Ψ∗t h = φ0,th, h ∈ Rn.

We set θ := −
∫ T

0

ΨsPsfsds. By boundedness of P and f , and by estimate (2.16) on Ψ, it turns

out that θ ∈ L2 (Ω). We define

rt = Φt[
∫ t

0

ΨsPsfsds + EFtθ],

and we want to show that it is solution to equation (2.12). Since EFtθ is a square integrable
martingale, by the representation theorem for martingales, there exists a unique η =

(
η1, ...ηd

) ∈
L2

(
Ω× [0, T ] ,Rn×d

)
such that

EFtθ = Eθ +
d∑

i=1

∫ t

0

ηi
sdW i

s .

So

rt = Φt

(
Eθ +

d∑

i=1

∫ t

0

ηi
sdW i

s +
∫ t

0

ΨsPsfsds

)
:= Φtξt,

7



and by this definition we get r ∈ L∞loc ([0, T ]× Ω,Rn). By applying Ito formula to r we obtain

drt =

{
−H∗

t Φtξt +
d∑

i=1

(
Ki

t

)∗ (
Ki

t

)∗
Φtξt + ΦtΨtPtft

}
dt

−
d∑

i=1

(
Ki

t

)∗
ΦtξtdW i

t +
d∑

i=1

Φtη
i
tdW i

t −
d∑

i=1

(
Ki

t

)∗
Φtη

i
tdt

= −H∗
t Φtξtdt +

d∑

i=1

(
Ki

t

)∗
gi

tdt + Ptftdt−
d∑

i=1

gi
tdW i

t ,

where

gi
t :=

(
Ki

t

)∗
Φtξt − Φtη

i
t, i = 1, ..., d.

By this definition it turns out that g =
(
g1, ..., gd

) ∈ L2
loc

(
[0, T ]× Ω,Rn×d

)
.

We can prove that the solution (r, g) to equation (2.12) is more regular. To prove this regularity,
we need the following duality relation.

Lemma 2.6. Let (r, g) be solution to the equation (2.12), and let Xt,x,η be solution to the equation




dXt,x,η
s = HsX

t,x,η
s ds +

d∑

i=1

Ki
sX

t,x,η
s dW i

s + ηsds, s ∈ [t, T ] ,

Xt,x,η
t = x,

(2.17)

where x ∈ L2 (Ω,Ft), η is a predictable process in L2 (Ω× [0, T ],Rn). Then the following duality
relation holds true:

EFt
〈
rT , Xt,x,η

T

〉− 〈rt, x〉 = −EFt

∫ T

t

〈
Psfs, X

t,x,η
s

〉
ds + EFt

∫ T

t

〈ηs, rs〉 ds. (2.18)

Proof. The proof is an easy application of Itô formula:
〈
rT , Xt,x,η

T

〉− 〈rt, x〉

= −
∫ T

t

〈
H∗

s rs, X
t,x,η
s

〉
ds−

∫ T

t

〈
Psfs, X

t,x,η
s

〉
ds−

∫ T

t

d∑

i=1

〈
(Ki

s)
∗gi

s, X
t,x,η
s

〉
ds

+
∫ T

t

d∑

i=1

〈
gi

s, X
t,x,η
s

〉
dW i

s +
∫ T

t

〈
rs,HsX

t,x,η
s

〉
ds +

∫ T

t

d∑

i=1

〈
rs,K

i
sX

t,x,η
s

〉
dW i

s +
∫ T

t

〈rs, ηs〉 ds

+
∫ T

t

〈
gi

s,K
i
sX

t,x,η
s

〉
ds

By simplifying and by taking conditional expectation on both sides we obtain the desired relation.

We also need to find a relation between the solution (r, g) of the equation (2.12) and the opti-
mal state X corresponding to the optimal control u. This can be achieved, following e.g. [1], by
introducing the so called stochastic Hamiltonian system





dXs = [AsXs + Bsus]ds +
d∑

i=1

[Ci
sXs + Di

sus]dW i
s + fsds,

dys = −[A∗sys +
d∑

i=1

(
Ci

s

)∗
zi
s + SsXs]ds +

d∑

i=1

zi
sdW i

s , t ≤ s ≤ T,

Xt = x,
yT = PT XT ,

(2.19)
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where y, zi ∈ Rn, for every i = 1, ..., d. By the so called stochastic maximum principle, the optimal
control for the finite horizon control problem is given by

us = −
(

B∗
sys +

d∑

i=1

(
Di

s

)∗
zi
s

)
. (2.20)

By relation (2.20), equations (2.19) become a fully coupled system of forward backward sto-
chastic differential equations (FBSDE in the following), which admits a unique solution (X, y, z) ∈
L2 (Ω× [0, T ],Rn)× L2 (Ω× [0, T ],Rn)× L2

(
[0, T ]× Ω,Rn×d

)
, see Theorem 2.6 in [21].

Lemma 2.7. Let (r, g) be the unique solution to equation (2.12), and let (X, y, z) be the unique
solution to the FBSDE (2.19). Then the following relation holds true:

yt = PtXt + rt, 0 ≤ t ≤ T. (2.21)

Proof. We only give a sketch of the proof. For t = T relation (2.21) holds true. By applying Ito
formula it turns out that yt − PtXt and rt solve the same BSDE, with the same final datum equal
to 0 at the final time T . By uniqueness of the solution of this BSDE, the lemma is proved.

Remark 2.8. We note that by theorem 2.6 in [21], y ∈ L2 (Ω× [0, T ],Rn). Moreover, by standard
calculations, it is easy to check that y admits a continuous version and y ∈ L2 (Ω, C([0, T ],Rn)).
Moreover, if f = 0, we get, for every 0 ≤ t ≤ s ≤ T ,

EFt |Xs|2 ≤ C|x|2.
This estimate can be easily achieved by applying the Gronwall lemma, and by remembering that
from (2.8), for the optimal control u the following holds:

EFt

∫ T

t

|us|2 ≤ 〈P tx, x〉 ≤ C|x|2.

As a consequence, if f 6= 0, for every 0 ≤ t ≤ s ≤ T ,

EFt |Xs|2 ≤ C(1 + |x|2).
Since P is bounded, by lemma 2.7, we get that for every 0 ≤ t ≤ s ≤ T

EFt sup
t≤s≤T

|rs|2 ≤ C, (2.22)

where C is a constant that can depend on T . Moreover, since X is continuous an P admits a
continuous version, also r admits a continuous version.

We are now ready to prove the following regularity result on (r, g).

Proposition 2.9. Let (r, g) be the solution to equation (2.12). Then (r, g) ∈ L2 (Ω, C ([0, T ] ,Rn))×
L2

(
[0, T ]× Ω,Rn×d

)
. Moreover r ∈ L∞(Ω× [0, T ]).

Proof. Let (r, g) be the solution to equation (2.12) built in lemma 2.5. By the previous remark
we know that r ∈ L2 (Ω, C ([0, T ] ,Rn)), and moreover we have deduced estimates (2.22) on r. By
applying Itô formula we get for 0 ≤ t ≤ w ≤ T ,

|rt|2 = |rw|2 + 2
∫ w

t

〈H∗
s rs, rs〉 ds + 2

∫ w

t

〈Psfs, rs〉 ds + 2
∫ w

t

d∑

i=1

〈(
Ki

s

)∗
gi

s, rs

〉
ds

+ 2
∫ w

t

d∑

i=1

〈
(gi

s)
∗dW i

s , rs

〉−
∫ w

t

d∑

i=1

|gi
s|2ds.

(2.23)
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We introduce a sequence of stopping times (τn)n, where τn = inf
{
t ≥ 0 : sup0≤s≤t |rs| ≥ n

}
.

Since r ∈ L∞ ([0, T ]× Ω,Rn), τn ∧ T → T as n → ∞. By (2.23) and by estimates involving
Bulkholder-Davis-Gundy inequality and Young inequality, we get

E|rt∧τn
|2 + E

∫ T∧τn

t∧τn

d∑

i=1

|gi
s|2ds

≤ E|rT∧τn |2 + 2n2E
∫ T∧τn

t∧τn

|Hs|2ds + 2nE
∫ T∧τn

t∧τn

|Psfs|ds + 4n2E
∫ T∧τn

t∧τn

d∑

i=1

| (Ki
s

)∗ |2ds

+
1
4
E

∫ T∧τn

t∧τn

d∑

i=1

|gi
s|2ds + E

∫ T∧τn

t∧τn

|rs|2ds +
1
4
E

∫ T∧τn

t∧τn

d∑

i=1

|gi
s|2ds.

So

E
∫ T∧τn

t∧τn

d∑

i=1

|gi
s|2ds ≤ C(n, ‖f‖∞, ‖P‖∞, CH , CK),

for the definition of CH and CK see (2.11). For every n ∈ N, we consider the process Xn
s , s ∈

[t ∧ τn, T ], which is solution to the following stochastic differential equation




dXn
s = HsX

n
s ds +

d∑

i=1

Ki
sX

n
s dW i

s , s ∈ [t ∧ τn, T ] ,

Xn
t∧τn

= rt∧τn .

(2.24)

By remark 2.8, we get for 0 ≤ t ∧ τn ≤ s ≤ T

EFt |Xn
s |2 ≤ CEFt |rt∧τn |2.

By applying the duality relation (2.18) to Xn and r we get

EFt |rt∧τn |2 = EFt

∫ T∧τn

t∧τn

〈Psfs, X
n
s 〉 ds− EFt

〈
rT∧τn , Xn

T∧τn

〉
,

and so

EFt |rt∧τn |2 ≤ |EFt
〈
rT∧τn , Xn

T∧τn

〉 |+ |EFt

∫ T∧τn

t∧τn

〈Psfs, X
n
s 〉 ds|

≤ |EFt
〈
rT∧τn , Xn

T∧τn

〉 |+ µ

4
EFt

∫ T

0

|Psfs|2ds +
1
µ
EFt

∫ T∧τn

t∧τn

|Xn
s |2ds

≤ |EFt
〈
rT∧τn , Xn

T∧τn

〉 |+ µ

4
EFt

∫ T

0

|Psfs|2ds +
CT

µ
EFt |rt∧τn |2.

By choosing µ such that
CT

µ
=

1
2
, we get

EFt |rt∧τn |2 ≤ |EFt
〈
rT∧τn , Xn

T∧τn

〉 |+ C‖P‖2∞‖f‖2∞.

Moreover, by similar estimates,

|EFt
〈
rT∧τn , Xn

T∧τn

〉 | ≤ µ

4
EFt |rT∧τn |2 +

C

µ
EFt |rt∧τn |2.

By choosing µ such that
C

µ
=

1
2
, we get

EFt |rt∧τn |2 ≤
µ

4
EFt |rT∧τn |2 + C. (2.25)

We want to let n →∞ in the previous relation. By lemma 2.7 and remark 2.8, estimate (2.22), and
by the dominated convergence theorem on the right hand side we get that

lim
n→∞

EFt |rT∧τn |2 = 0.
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So by taking the limit on both sides in inequality (2.25), and again by dominated convergence
theorem applied on the left hand side, we get

|rt| ≤ C, , 0 ≤ t ≤ T, (2.26)

where C is a constant that can depend on T . So r ∈ L∞(Ω× [0, T ]). By applying Itô formula as in
(2.23), we get

EFt∧τn |rt∧τn |2 + EFt∧τn

∫ T∧τn

t∧τn

d∑

i=1

|gi
s|2ds = EFt∧τn |rT∧τn

|2 + 2EFt∧τn

∫ T∧τn

t∧τn

〈H∗
s rs, rs〉 ds

+ 2EFt∧τn

∫ T∧τn

t∧τn

〈Psfs, rs〉 ds + 2EFt∧τn

∫ T∧τn

t∧τn

d∑

i=1

〈(
Ki

s

)∗
gi

s, rs

〉
ds

By estimate (2.26) and by taking t = 0, we get

E
∫ T∧τn

0

d∑

i=1

|gi
s|2ds ≤ C,

where C is a constant not depending on n. So by monotone convergence,

E
∫ T

0

d∑

i=1

|gi
s|2ds ≤ C,

and the proof is concluded.

Remark 2.10. The last part of the proof is inspired by arguments used in [5] to prove that, for a one
dimensional BSDE, if a solution is bounded then its martingale part is a BMO martingale.

We are ready to prove the main result of this section

Theorem 2.11. Assume A, B, C, D and f satisfy hypothesis 2.1. Fix x ∈ Rn, then:
(1) there exists a unique optimal control u ∈ L2

(
Ω× [0, T ] ,Rk

)
such that for every 0 ≤ t ≤ T ,

J (0, x, u) = inf
u∈L2(Ω×[0,T ],Rk)

J (0, x, u)

(2) If X is the mild solution of the state equation corresponding to u (that is the optimal state),
then X is the unique mild solution to the closed loop equation:





dXt =

[
AtXt −Bt(f(t, Pt, Qt)Xt + (I +

d∑

i=1

(
Di

t

)∗
PtD

i
t)−1(B∗

t rt +
d∑

i=1

(
Di

t

)∗
gi

t))

]
dt+

d∑

i=1


Ci

sXt −Di
s(f(t, Pt, Qt)Xt +

(
I +

d∑

i=1

(
Di

t

)∗
PtD

i
t

)−1

(B∗
t rt +

d∑

i=1

(
Di

t

)∗
gi

t))


 dW i

t ,

X0 = x
(2.27)

(3) The following feedback law holds P-a.s. for almost every 0 ≤ t ≤ T .

ut = −
(

I +
d∑

i=1

(
Di

t

)∗
PtD

i
t

)−1 (
PtBt +

d∑

i=1

(
Qi

tD
i
t +

(
Ci

t

)∗
PtD

i
t

))∗

Xt + B∗
t rt +

d∑

i=1

(
Di

t

)∗
gi

t.

(2.28)
(4) The optimal cost is given by

J(0, x, u) = 〈P0x, x〉+ 2〈r0, x〉 − E〈PT XT , XT 〉+ 2E
∫ T

0

〈rs, fs〉ds

− E
∫ T

0

|(I +
d∑

i=1

(
Di

t

)∗
PtD

i
t)
−1(B∗

t rt +
d∑

i=1

(
Di

t

)∗
gi

t|2)ds.
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Proof. By computing d〈Pt, Xt〉+ 2〈rt, Xt〉, we get the so called fundamental relation

EFt

∫ T

t

[
〈
SsX

0,x,u
s , X0,x,u

s

〉
+ |us|2]ds

= 〈Ptx, x〉+ 2〈rt, x〉 − EFt〈PT XT , XT 〉+ 2EFt

∫ T

t

〈rs, fs〉ds

= EFt

∫ T

t

|
(

I +
d∑

i=1

(
Di

s

)∗
PsD

i
s

)−1(
PsBs +

d∑

i=1

(
Qi

sD
i
s +

(
Ci

s

)∗
PsD

i
s

))∗

Xs + B∗
srs +

d∑

i=1

(
Di

s

) |2ds

− EFt

∫ T

t

|(I +
d∑

i=1

(
Di

s

)∗
PsD

i
s)
−1(B∗

srs +
d∑

i=1

(
Di

s

)∗
gi

s)|2ds.

The theorem now easily follows.

3. Preliminary results for the infinite horizon case

The next step is to study the optimal control problem in the infinite horizon case and with f 6= 0.
To this aim we have to study solvability and regularity of the solution of a BSRDE with infinite
horizon, in particular we study P . At first we consider the case when f = 0. Namely, in this section
we consider the following stochastic differential equation where Xt,x,u represents the state:





dXt,x,u
s = (AsX

t,x,u
s + Bsus)ds +

d∑

i=1

(
Ci

sX
t,x,u
s + Di

sus

)
dW i

s s ≥ t

Xt,x,u
t = x

(3.1)

As a by product of the preliminaries studies, we are able to solve the following stochastic optimal
control problem: minimize with respect to every admissible control u the cost functional,

J∞(0, x, u) = E
∫ +∞

0

[
〈
SsX

0,x,u
s , X0,x,u

s

〉
+ |us|2]ds. (3.2)

We define the set of admissible control

U =
{

u ∈ L2([0,+∞)) : E
∫ +∞

0

〈
SsX

0,x,u
s , X0,x,u

s

〉
+ |us|2ds ≤ +∞

}
. (3.3)

We also introduce the following random variables, for t ∈ [0,+∞]:

J∞(t, x, u) = EFt

∫ +∞

t

[
〈
SsX

t,x,u
s , Xt,x,u

s

〉
+ |us|2]ds

We will work under the following general assumptions on A, B, C and D that will hold from now
on:

Hypothesis 3.1.
A1) A : [0,+∞)× Ω → Rn×n, B : [0,+∞)× Ω → Rn×k, Ci : [0, +∞)× Ω → Rn×n, i = 1, ..., d

and Di : [0, +∞) × Ω → Rn×k, i = 1, ..., d, are uniformly bounded process adapted to the
filtration {Ft}t≥0.

A2) S : [0, +∞) × Ω → Rn×n is uniformly bounded and adapted to the filtration {Ft}t≥0 and it
is almost surely and almost everywhere symmetric and nonnegative.

In order to study this control problem in infinite horizon, we consider the following backward
stochastic Riccati equation on [0,+∞):

dPt = −
[
A∗t Pt + PtAt + St +

d∑

i=1

((
Ci

t

)∗
PtC

i
t +

(
Ci

t

)∗
Qt + QtC

i
t

)]
dt +

d∑

i=1

Qi
tdW i

t + (3.4)

[
PtBt +

d∑

i=1

((
Ci

t

)∗
PtD

i
t + QiDi

t

)][
I +

d∑

i=1

(
Di

t

)∗
PtD

i
t

]−1[
PtBt +

d∑

i=1

((
Ci

t

)∗
PtD

i
t + Qi

tD
i
t

)]∗
dt,
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where we stress that the final condition has disappeared but we ask that the solution can be extended
to the whole positive real half-axis.

Definition 3.2. We say that a pair of processes (P, Q) is a solution to equation (3.4) if for every
T > 0 (P,Q) is a solution to equation (2.4) in the interval time [0, T ], with PT = P (T ).

Definition 3.3. We say that (A, B,C, D) is stabilizable relatively to the observations
√

S (or
√

S-
stabilizable) if there exists a control u ∈ L2

P([0, +∞)× Ω; U) such that for all t ≥ 0 and all x ∈ Rn

EFt

∫ +∞

t

[
〈
SsX

t,x,u
s , Xt,x,u

s

〉
+ |us|2]ds < Mt,x. (3.5)

for some positive constant Mt,x.

This kind of stabilizability condition has been introduced in [12].
In the following, we consider BSRDEs on the time interval [0, N ], with final condition PN = 0.

For each integer N > 0, let
(
PN , QN

)
be the solution of the Riccati equation




−dPN

t = G
(
At, Bt, Ct, Dt;St; PN

t , QN
t

)
dt +

d∑

i=1

QN,i
t dW i

t

PN
N = 0.

PN can be defined in the whole [0, +∞) setting PN
t = 0 for all t > N . We prove the following

lemma.

Lemma 3.4. Assume hypothesis 3.1 and that (A,B, C, D) is stabilizable relatively to the obser-
vations

√
S. There exists a random matrix P uniformly bounded and almost surely positive and

symmetric such that P
{
limN→+∞ PN (t)x = P (t)x, ∀x ∈ Rn

}
= 1.

Proof. The proof essentially follows the first part of the proof of proposition 3.2 in [12]. For each
t > 0 fixed the sequence PN

t is increasing. Indeed by definition

〈PN+1
t x, x〉 = inf

u∈L2
P([t,N+1]×Ω;U)

EFt

∫ N+1

t

(|
√

SrX
t,x,u
r |2 + |ur|2) dr

≥ inf
u∈L2

P([t,N+1]×Ω;U)
EFt

∫ N

t

(|
√

SrX
t,x,u
r |2 + |ur|2) dr

≥ inf
u∈L2

P([t,N ]×Ω;U)
EFt

∫ N

t

(|
√

SrX
t,x,u
r |2 + |ur|2) dr = 〈PN

t x, x〉.

The above implies that for all t > 0:

P
{〈PN+1(t)x, x〉 ≥ 〈PN (t)x, x〉 ∀N ∈ N, ∀x ∈ Rn

}
= 1 (3.6)

Moreover for each t let ū be the ‘stabilizing’ control that exists thank to definition 3.3 then

〈PN
t x, x〉 = |

√
PN

t x|2 = inf
u∈L2

P([t,N ]×Ω;U)

∫ N

t

(|
√

Sry
t,x,u(r)|2 + |ur|2) dr

≤
∫ N

t

(|
√

SrX
t,x,ū
r |2 + |ūr|2) dr (3.7)

≤
∫ +∞

t

(|
√

SrX
t,x,ū
r |2 + |ūr|2) dr ≤ Mt,x, P− a.s.

for a suitable constant Mt,x. If we consider the operator
√

PN
t as a linear operator from Rn to

L∞(Ω,Ft,P,Rn) by the Banach-Steinhaus theorem there exists Mt such that

|
√

PN
t |L(Rn,L∞(Ω,Ft,P,Rn)) ≤ Mt.

Again since PN
t ∈ Mat(n× n)- P-a.s. the above implies that

P
{〈PN

t x, x〉 ≤ Mt|x|2, ∀N ∈ N, ∀x ∈ Rn
}

= 1 (3.8)
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or equivalently
P

{|PN
t |Mat(n×n) ≤ Mt, ∀N ∈ N}

= 1 (3.9)

We finally notice that by construction Px is, for all x ∈ Rn, predictable. We claim that for each
T ≥ 0 there exists a positive constant CT , eventually depending on T and on known parameters,
such that:

|P t|Mat(n×n) ≤ CT ∀ 0 ≤ t ≤ T.

In order to prove this property for P̄ we fix N > T and we write the fundamental relation for PN

corresponding to the control u = 0:

〈PN
t x, x〉 ≤ EFt

∫ T

t

∣∣∣
√

SsX
t,x,0
s

∣∣∣
2

ds (3.10)

where Xt,x,0 is solution to equation (3.1) corresponding to the control u ≡ 0. By standard estimates
and by Gronwall lemma, there exists a positive constant KT such that sups∈[t,T ] EFt

∣∣Xt,x,0
s

∣∣2 ≤
KT |x|2 , and so, since S is bounded, we get that

〈PN
t x, x〉 ≤ CT |x|2 , P-a.s.

Again the exceptional set does not depend on x, so for all t ∈ [0, T ] ,

P
(
〈PN

t x, x〉 ≤ CT |x|2 , ∀N ∈ N, ∀x ∈ Rn
)

= 1,

and
P

(
〈P tx, x〉 ≤ CT |x|2 , ∀x ∈ Rn

)
= 1.

Remark 3.5. It is clear from the above proof that condition (3.5) is equivalent to the following one:

EFt

∫ +∞

t

[
〈
SsX

t,x,u
s , Xt,x,u

s

〉
+ |us|2]ds < M |x|2. (3.11)

where the constant M may depend on t.

Next we want to prove that P built in the previous lemma is the solution to the BSRDE (3.4).
This is achieved through the control meaning of the solution of the Riccati equation. For T > 0 fixed
and for each N > T , we consider the following finite horizon stochastic optimal control problem:
minimize the cost, over all admissible controls,

J(0, x, u) = E〈PN
T X0,x,u

T , X0,x,u
T 〉+ E

∫ T

0

[(
〈
SsX

0,x,u
s , X0,x,u

s

〉
+ |us|2]ds,

where X0,x,u is solution to equation (3.1). Let uN be the optimal control, and XN the corresponding
optimal state. Let ũ be the optimal control, and X̃ the corresponding optimal state for the following
finite horizon optimal control problem: minimize the cost, over all admissible controls,

J(0, x, u) = E〈PT X0,x,u
T , X0,x,u

T 〉+ E
∫ T

0

[(
〈
SsX

0,x,u
s , X0,x,u

s

〉
+ |us|2]ds,

Let us consider the so called stochastic Hamiltonian system




dXs = [AsXs −Bs(B∗
sys +

d∑

i=1

(
Di

s

)∗
zi
s)]ds +

d∑

i=1

[Ci
sXs + Di

s(B∗
sys +

d∑

k=1

(Dk
s )∗zk

s )]dW i
s ,

dys = −[A∗sys +
d∑

i=1

(
Ci

s

)∗
zi
s + SsXs]ds +

d∑

i=1

zi
sdW i

s , t ≤ s ≤ T,

Xt = x,
yT = PT XT ,

(3.12)
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where y, zi ∈ Rn, for every i = 1, ..., d. By the so called stochastic maximum principle, the optimal
control of the finite horizon control problem is given by

us = −
(

B∗
sys +

d∑

i=1

(
Di

s

)∗
zi
s

)
.

Let us consider the stochastic Hamiltonian systems relative to the optimal control uN and to
the optimal control ũ, and let us denote by

(
XN , yN , zN

)
and by

(
X̃, ỹ, z̃

)
the solutions of the

corresponding stochastic Hamiltonian systems.

Lemma 3.6. EFt

∫ T

t

[
∣∣∣
√

Ss(X̃s −XN
s )

∣∣∣
2

+|B∗
s (ỹs−yN

s )+
d∑

i=1

(
Di

s

)∗
(z̃i

s−zN,i
s )|2]ds → 0 as N →∞.

Proof. The proof is based on the application of Itô formula to 〈ỹt − yN
t , X̃t −XN

t 〉.

EFt〈ỹT − yN
T , X̃T −XN

T 〉 = EFt

∫ T

t

d〈ỹs − yN
s , X̃s −XN

s 〉

= EFt

∫ T

t

〈d (
ỹs − yN

s

)
, X̃s −XN

s 〉+ EFt

∫ T

t

〈ỹs − yN
s , d

(
X̃s −XN

s

)
〉

+ EFt

∫ T

t

d∑

i=1

〈Ci
s

(
X̃s −XN

s

)
−D∗

s

(
B∗

s

(
ỹs − yN

s

)
+

d∑

k=1

(
Dk

s

)∗
(z̃k

s − zN,k
s )

)
, z̃i

s − zN,i
s 〉ds

= −EFt

∫ T

t

[
∣∣B∗

s

(
ỹs − yN

s

)∣∣2 +

∣∣∣∣∣
d∑

i=1

(
Di

s

)∗ (
z̃i
s − zN,i

s

)
∣∣∣∣∣

2

+ 2
d∑

i=1

〈B∗
s

(
ỹs − yN

s

)
,
(
Di

s

)∗ (
z̃i
s − zN,i

s

)〉]ds

− EFt

d∑

i=1

∫ T

t

∣∣∣
√

Ss

(
X̃s −XN

s

)∣∣∣
2

ds

= −EFt

d∑

i=1

∫ T

t

∣∣∣∣∣B
∗
s

(
ỹs − yN

s

)
+

d∑

i=1

(
Di

s

)∗ (
z̃i
s − zN,i

s

)
∣∣∣∣∣

2

ds− EFt

d∑

i=1

∫ T

t

∣∣∣
√

Ss

(
X̃s −XN

s

)∣∣∣
2

ds.

Since ỹT = PT X̃T and yN
T = PN

T XN
T , we finally get

EFt

〈
PT X̃T − PN

T XN
T , X̃T −XN

T

〉

= −EFt

d∑

i=1

∫ T

t

∣∣∣∣∣B
∗
s

(
ỹs − yN

s

)
+

d∑

i=1

(
Di

s

)∗ (
z̃i
s − zN,i

s

)
∣∣∣∣∣

2

ds− EFt

d∑

i=1

∫ T

t

∣∣∣
√

Ss

(
X̃s −XN

s

)∣∣∣
2

ds.

By adding and subtracting EFt

〈
PN

T X̃T , X̃T −XN
T

〉
,

EFt

〈
PN

T

(
X̃T −XN

T

)
, X̃T −XN

T

〉
+ EFt

〈(
PT − PN

T

)
X̃T , X̃T −XN

T

〉

= −EFt

∫ T

t

∣∣∣B∗
s

(
ỹs − yN

s

)
+

(
Di

s

)∗ (
z̃i
s − zN,i

s

)∣∣∣
2

ds− EFt

d∑

i=1

∫ T

t

∣∣∣
√

Ss

(
X̃s −XN

s

)∣∣∣
2

ds.

Since
〈
PN

T

(
X̃T −XN

T

)
, X̃T −XN

T

〉
≥ 0, and by definition EFt

〈(
P̃T − PN

T

)
X̃T , X̃T −XN

T

〉
→ 0

for N sufficiently large, also

EFt

∫ T

t

∣∣∣∣∣B
∗
s

(
ỹs − yN

s

)
+

d∑

i=1

(
Di

s

)∗ (
z̃i
s − zN,i

s

)
∣∣∣∣∣

2

ds + EFt

∫ T

t

∣∣∣
√

Ss

(
X̃s −XN

s

)∣∣∣
2

ds → 0

as N →∞. In particular this means that EFt

∫ T

t

∣∣ũs − uN
s

∣∣2 ds → 0 as N →∞.

As a consequence of the previous results we deduce the following:
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Corollary 3.7. Assume hypothesis 3.1 and that (A,B,C, D) is stabilizable relatively to
√

S. The
process P is the minimal solution of the Riccati equation in the sense of definition 3.2.

Proof. Fix T < N and on [0, T ] consider the Riccati equation



−dPN

t = G
(
At, Bt, Ct, Dt; St; PN

t , QN
t

)
dt +

d∑

i=1

Qi,N
t dW i

t

PN
T = PN (T ).

(3.13)

Then
〈
PN

t x, x
〉

= EFt
〈
PN

T XN
T , XN

T

〉
+ EFt

∫ T

t

[
〈
SrX

N
r , XN

r

〉
+ |uN

r |2]dr (3.14)

By lemma 3.6 we deduce that

EFt

〈
PN

T

(
X̃T −XN

T

)
, X̃T −XN

T

〉
→ 0 as N → +∞.

So EFt
〈
PN

T XN
T , XN

T

〉 → EFt

〈
PT X̃T , X̃T

〉
as N → +∞, since

EFt
〈
PN

T XN
T , XN

T

〉
= EFt

〈
PN

T

(
X̃T −XN

T

)
, X̃T −XN

T

〉
+ 2〈PN

T X̃T , XN
T 〉 − 〈PN

T X̃T , X̃T 〉.

By the construction of P and by lemma 3.6, we have that, letting N → +∞ in (3.14)

〈
P tx, x

〉
= EFt

〈
PT X̃T , X̃T

〉
+ EFt

∫ T

t

[
〈
SrX̃r, X̃r

〉
+ |ũr|2]dr

So P is the minimal solution of the Riccati equation in the sense of definition 3.2.

Remark 3.8. Thanks to its construction it is easy to prove that (P , Q) is the minimal solution, in the
sense that if another couple (P, Q) is a solution to the Riccati equation then P −P is a non-negative
matrix, see also Corollary 3.3 in [12].

By the previous calculations, we can now solve the optimal control problem with infinite horizon,
when f = 0.

Theorem 3.9. If A1)−A2) hold true and if (A,B, C,D) is stabilizable relatively to S, given x ∈ Rn,
then:

(1) there exists a unique optimal control u ∈ L2
(
Ω× [0, +∞) ,Rk

)
such that

J∞ (0, x, u) = inf
u∈L2(Ω×[0,+∞),Rk)

J∞ (0, x, u)

(2) The process P defined in lemma 3.4 is the minimal solution of the Riccati equation.
(3) If X is the mild solution of the state equation corresponding to u (that is the optimal state),

then X is the unique mild solution to the closed loop equation:




dXt =


AXt −Bt

(
I +

d∑

i=1

(
Di

t

)∗
P tD

i
t

)−1 (
PtBt +

d∑

i=1

(
Qi

tD
i
t +

(
Ci

t

)∗
P tD

i
t

))∗

Xt


 dt+

d∑

i=1


Ci

tXt −Di
t

(
I +

d∑

i=1

(
Di

t

)∗
P tD

i
t

)−1 (
P tBt +

d∑

i=1

(
Qi

tD
i
t +

(
Ci

t

)∗
P tD

i
t

))∗

Xt


 dWt,

X0 = x.
(3.15)

(4) The following feedback law holds P-a.s. for almost every t:

ut = −
(

I +
d∑

i=1

(
Di

t

)∗
P tD

i
t

)−1 (
P tBt +

d∑

i=1

(
Qi

tD
i
t +

(
Ci

t

)∗
P tD

i
t

))∗

Xt. (3.16)

(5) The optimal cost is given by J∞(0, x, u) = 〈P 0x, x〉.
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The proof of this theorem is similar, and more immediate, to the proof of theorem 5.1, which is
given in detail in section 5. In particular we deduce that

〈P tx, x〉 = EFt

∫ ∞

t

[
〈
SrX̃

t,x,u
r , X̃t,x,u

r

〉
+ |ũr|2]dr. (3.17)

4. The infinite horizon dual equation

We first introduce some definitions. We say that a solution P of equation 3.4 is bounded, if there
exists a constant M > 0 such that for every t ≥ 0

|Pt| ≤ M P− a.s.

Whenever the constant Mt,x that appears in definition 3.3 can be chosen independently of t, then
the minimal solution P is automatically bounded.

Definition 4.1. Let P be a solution to 3.4. We say that P stabilizes (A,B, C, D) relatively to the
identity I if for every t > 0 and x ∈ Rn there exists a positive constant M , independent of t, such
that

EFt

∫ +∞

t

|Xt,x(r)|2, dr ≤ M P− a.s., (4.1)

where Xt,x is the mild solution to:



dXt =


AXt −Bt

(
I +

d∑

i=1

(
Di

t

)∗
PtD

i
t

)−1 (
PtBt +

d∑

i=1

(
Qi

tD
i
t +

(
Ci

t

)∗
PtD

i
t

))∗

Xt


 dt+

d∑

i=1


Ci

sXt −Di
s

(
I +

d∑

i=1

(
Di

t

)∗
PtD

i
t

)−1 (
PtBt +

d∑

i=1

(
Qi

tD
i
t +

(
Ci

t

)∗
PtD

i
t

))∗

Xt


 dWt,

X0 = x
(4.2)

From now on we assume that the process P is bounded and stabilizes (A,B, C,D) with respect
to the identity I.

Remark 4.2. It is possible to verify in some concrete situations that (A,B,C, D) is stabilizable
relatively to the observations

√
S and that P stabilizes (A,B, C,D) relatively to the identity I.

Here we present the case when, for some α > 0, A and C satisfy

〈Atx, x〉+
1
2
〈Ctx, Ctx〉 ≤ −α|x|2, (4.3)

for every t ≥ 0 and x ∈ Rn, then (A,B,C, D) is stabilizable relatively to the observations
√

S
uniformly in time. Indeed, by taking the control u = 0, applying the Itô formula to the state
equation we get, for 0 ≤ t ≤ s,

EFt |Xt,x,0
s |2 ≤ |x|2 + 2EFt

∫ s

t

〈ArX
t,x,0
r , Xt,x,0

r 〉dr + EFt

∫ s

t

〈CrX
t,x,0
r , CrX

t,x,0
r 〉dr

≤ |x|2 − 2αEFt

∫ s

t

|Xr|2dr.

By the Gronwall lemma we get

EFt |Xt,x,0
s |2 ≤ |x|2e−2α(s−t).

So for every 0 ≤ t ≤ T

EFt

∫ +∞

t

|
√

SXt,x,0
r |2dr ≤ Mx,

where Mx is a constant dependent on the initial condition x, but independent on the initial time
t. So, according to definition 3.3, (A, B,C, D) is stabilizable relatively to the observations

√
S,

uniformly in time. Moreover, assuming that S ≥ εI, for some ε > 0, by (4.3), we also get that P
stabilizes (A, B,C, D) relatively to the identity I. Indeed, by the previous calculations, denoting
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by X and u respectively the optimal state and the optimal control for the infinite horizon control
problem with f = 0, it follows that

EFt

∫ +∞

t

[|Xr|2 + |u|2]dr ≤ EFt

∫ +∞

t

|Xt,x,0
r |2dr ≤ Mx,

which immediately implies (4.1).

Remark 4.3. Here and in the following sections we need to adapt the Dakto Theorem to this case,
see for instance the proof of Proposition 4.6 in [12] and also [10] and [13], in order to prove an
exponential bound for the process X which solves the following equation




dXs = −H∗
s Xsds−

d∑

i=1

(
Ki

s

)∗
XsdW i

s , s ≥ t

Xt = x

Indeed, for every s > t, we get

EFt |Xs|2 ≤ C[|x|2 + EFt |
∫ s

t

H∗
r Xrdr|2 + EFt |

∫ s

t

d∑

i=1

(
Ki

r

)∗
XrdW i

rdr|2]

≤ C[|x|2 + EFt

∫ s

t

|H∗
r Xr|2dr + EFt

∫ s

t

d∑

i=1

|(Ki
r)
∗Xr|2dr]

≤ C[|x|2 + EFt

∫ s

t

|A∗rXr|2 + |Brur|2dr + EFt

∫ s

t

|Xr|2dr

+ EFt

∫ s

t

d∑

i=1

|(Ci
r)
∗Xr|2 +

d∑

i=1

|(Di
r)
∗ur|2dr]

where u is the optimal control defined in (3.16), and so, by (3.17), for every t > 0,

EFt

∫ s

t

|ur|2dr ≤ 〈P tx, x〉 ≤ C|x|2,

where the last inequality follows since we are assuming that P is bounded. Since C and D are
bounded, by applying the Gronwall lemma we get

EFt |Xs|2 ≤ MeM(s−t)|x|2
for some positive constant M . By adapting the Datko Theorem , there exist K, a > 0 such that for
every s ≥ t:

EFt |Xs|2 ≤ Ke−a(s−t)|x|2 P− a.s. (4.4)

In order to study the optimal control problem with infinite horizon and with f 6= 0, we need to
study the BSDE on [0,∞),

drt = −H∗
t rtdt− Ptftdt−

d∑

i=1

(
Ki

t

)∗
gi

tdt +
d∑

i=1

gi
tdW i

t , t ≥ 0 (4.5)

where the final condition has disappeared but we ask that the solution can be extended to the whole
positive real axis. We make the following assumption on f :

Hypothesis 4.4. f is a process in L2(Ω× [0, +∞),Rn) ∩ L∞(Ω× [0,+∞),Rn).

Proposition 4.5. Let hypotheses 3.1 and 4.4 hold true and assume that P is bounded and stabilizes
(A,B, C, D) with respect to the identity I. Then equation (4.5) admits a solution (r̄, ḡ) ∈ L2(Ω ×
[0, +∞),Rn)× L2(Ω× [0, T ],Rn×d), for every T > 0.

Proof. For integer N > 0, we consider the BSDEs



drN
t = −H∗

t rN
t dt− Ptftdt−

d∑

i=1

(
Ki

t

)∗
gi,N

t dt +
d∑

i=1

gi,N
t dW i

t , t ∈ [0, T ]

rN
N = 0.

(4.6)
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By proposition 2.9, we know that equation (4.6) admits a unique solution
(
rN , gN

)
that belongs

to L2 (Ω, C ([0, N ] ,Rn)) × L2
(
[0, N ]× Ω,Rn×d

)
, for every N ∈ N. The aim is to write a duality

relation, see lemma 2.6, between rN and the process XN , solution of the following equation




dXN
s = −H∗

s XN
s ds +

d∑

i=1

(
Ki

s

)∗
XN

s dW i
s , s ∈ [t,N ]

XN
t = rN

t .

By duality between rN and the process XN , and by estimate (4.4) we get

EFt |rN
t |2 = EFt

∫ N

t

〈P sfs, X
N
s 〉ds

≤ C

∫ N

t

‖P s‖L∞(Ω)‖fs‖L∞(Ω)e
− a

2 (s−t)(EFt |rN
t |2)

1
2 ds

≤ C

µ

∫ N

t

e−
a
2 (s−t)‖P s‖2L∞(Ω)‖fs‖2L∞(Ω)ds + µ

2
a
EFt |rN

t |2,

where we can take µ > 0 such that µ
2
a

=
1
2
. So we get

|rN
t |2 ≤ C,

where now C is a constant depending on a, P , f , but C does not depend on N .
So also supt≥0 E|rN

t |2 ≤ C. By computing d|rN
t |2, see e.g. relation (2.23) and by the previous

estimate we get for every fixed T > 0,

E
∫ T

0

d∑

i=1

|gi,N
s |2ds ≤ C,

where C > 0 does not depend on N . Then we can conclude that for every fixed T > 0 there exists r̄
and ḡ such that rN ⇀ r̄ in L2(Ω× [0, T ],Rn) and gN ⇀ ḡ in L2(Ω× [0, T ],Rn×d). Moreover, (r̄, ḡ)
satisfy

r̄t = r̄T +
∫ T

t

H∗
s r̄sds +

∫ T

t

P sfsds +
∫ T

t

d∑

i=1

(Ki
s)
∗gi

sds−
∫ T

t

d∑

i=1

(gi
s)
∗dW i

s .

So the pair (r̄, ḡ) is a solution to the elliptic dual equation (4.5). Since T > 0 is arbitrarily, (r̄, ḡ) is
defined on the whole [0,+∞). It remains to prove that r̄ ∈ L2(Ω× [0, +∞),Rn). We set

ηN
t =

{
r̄t 0 ≤ t ≤ N,
0 t > N.

So ηN
t ∈ L2(Ω × [0, +∞),Rn). We write a duality relation, see (2.18) between r̄ and XηN

solution
of the following stochastic differential equation





dXηN

s = HsX
ηN

s ds +
d∑

i=1

Ki
sX

ηN

s dW i
s + ηN

s ds,

XηN

t = 0.

By duality we get

E
∫ N

0

|r̄s|2ds = E
∫ N

0

〈P sfs, X
ηN

s 〉ds + E〈r̄N , XηN

N 〉.

Letting N →∞ on both sides we get on the left hand side

limN→∞E
∫ N

0

|r̄s|2ds = lim
N→∞

E
∫ N

0

|r̄s|2ds = E
∫ +∞

0

|r̄s|2ds,
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by monotone convergence. On the right hand side, also by remark 4.3, we get

limN→∞E
∫ N

0

〈Psfs, X
ηN

s 〉ds + E〈r̄N , XηN

N 〉

≤ limN→∞
1
2
‖P‖2L∞(Ω×[0,+∞))E

∫ N

0

|fs|2ds +
1
2
E

∫ N

0

|XηN

s |2ds +
1
2
E|r̄N |2 +

1
2
E|XηN

N |2

≤ 1
2
‖P‖2L∞(Ω×[0,+∞))‖f‖2L2(Ω×[0,+∞))ds + limN→∞

1
2

∫ N

0

e−2aN |ηN |2ds + C + e−aNE|r̄N |2

1
2
‖P‖2L∞(Ω×[0,+∞))‖f‖2L2(Ω×[0,+∞)) +

1
2
E

∫ ∞

0

|r̄s|2ds + C.

Putting together these inequalities we get

E
∫ ∞

0

|r̄s|2ds ≤ 1
2
‖P‖2L∞(Ω×[0,+∞))‖f‖2L2(Ω×[0,+∞)) + C,

and this concludes the proof.

Remark 4.6. As a consequence of the previous proof, we get

E|r̄T |2 → 0 as T →∞. (4.7)

Remark 4.7. Equation (4.5) has non Lipschitz coefficients and is multidimensional BSDE thus we
can not use the Girsanov Theorem, as done in [6], to get rid of the terms involving K. Moreover
the typical monotonicity assumptions on the coefficients of this infinite horizon BSDE, see [7], are
replaced by the finite cost condition and by the requirement that the minimal solution (P , Q) of
(1.10) stabilize the coefficients relatively the identity, see definition 4.1.

5. Synthesis of the optimal control in the infinite horizon case

We consider the following stochastic differential equation for t ≥ 0:




dXs = (AsXs + Bsus)ds +
d∑

i=1

(
Ci

sXs + Di
sus

)
dW i

s + fsds s ≥ t

Xt = x,

(5.1)

Our purpose is to minimize with respect to u the cost functional,

J∞(0, x, u) = E
∫ +∞

0

[
〈
SsX

0,x,u
s , X0,x,u

s

〉
+ |us|2]ds (5.2)

We also introduce the following random variables, for t ∈ [0,+∞):

J∞(t, x, u) = EFt

∫ +∞

t

[
〈
SsX

t,x,u
s , Xt,x,u

s

〉
+ |us|2]ds

Theorem 5.1. Let hypotheses 3.1 and 4.4 hold true, let (A,B,C, D) be stabilizable relatively to S,
given x ∈ Rn and assume that the process P is bounded and stabilizes (A,B, C, D) with respect to
the identity I, then:

(1) there exists a unique optimal control u ∈ L2
(
Ω× [0, +∞) ,Rk

)
such that

J∞ (0, x, u) = inf
u∈L2(Ω×[0,+∞),Rk)

J∞ (0, x, u)

20



(2) If X is the mild solution of the state equation corresponding to u (that is the optimal state),
then X is the unique mild solution to the closed loop equation for:





dXt =

[
AtXt −Bt

(
f(t, P t, Qt)Xt + (I +

d∑

i=1

(
Di

t

)∗
P tD

i
t)
−1(B∗

t rt +
d∑

i=1

(
Di

t

)∗
gi

t)

)]
dt+

d∑

i=1


Ci

sXt −Di
s(f(t, P t, Qt)Xt +

(
I +

d∑

i=1

(
Di

t

)∗
P tD

i
t

)−1

(B∗
t rt +

d∑

i=1

(
Di

t

)∗
gi

t))


 dW i

t , t > 0

X0 = x
(5.3)

(3) The following feedback law holds P-a.s. for almost every t ≥ 0.

ut =−
(

I +
d∑

i=1

(
Di

t

)∗
P tD

i
t

)−1(
P tBt +

d∑

i=1

(
Q

i

tD
i
t +

(
Ci

t

)∗
QtD

i
t

))∗

Xt + B∗
t rt +

d∑

i=1

(
(Di

t)
∗gi

t

)
.

(5.4)
(4) The optimal cost is given by

J(0, x, u) = 〈P 0x, x〉+ 2〈r0, x〉+ 2E
∫ ∞

0

〈rs, fs〉ds

− E
∫ ∞

0

|(I +
d∑

i=1

(
Di

t

)∗
P tD

i
t)
−1(B∗

t rt +
d∑

i=1

(
Di

t

)∗
gi

t)|2ds.

Proof. By computing d〈sXs, Xs〉+ 2〈r̄s, Xs〉 we get, for every T > 0,

EFt

∫ T

t

[〈SsXs, Xs〉+ |us|2]ds = E〈P tx, x〉 − EFt〈PT XT , XT 〉+ 2〈r̄t, x〉 − 2EFt

∫ T

t

〈r̄s, fs〉ds

+ EFt

∫ T

t

|
(

I +
d∑

i=1

(
Di

s

)∗
P sD

i
s

)1/2 (
us + (I +

d∑

i=1

(
Di

s

)∗
P sD

i
s)
−1 ∗

∗
(

P sBs +
d∑

i=1

(
Q

i

sD
i
s +

(
Ci

s

)∗
P sD

i
s

))∗

Xs + B∗
s r̄s +

d∑

i=1

Di
s(ḡ

i
s)
∗
)
|2ds

− EFt

∫ T

t

|
(

I +
d∑

i=1

(
Di

s

)∗
P sD

i
s

)−1

(B∗
s r̄s +

d∑

i=1

(
Di

s

)∗
ḡi

s)|2ds. (5.5)

and so

EFt

∫ T

t

[〈SsXs, Xs〉+ |us|2]ds ≤ E〈P tx, x〉+ 2〈r̄t, x〉 − 2EFt

∫ T

t

〈r̄s, fs〉ds

− EFt

∫ T

t

(
I +

d∑

i=1

(
Di

s

)∗
P sD

i
s

)−1

|B∗
s r̄s +

d∑

i=1

(
Di

s

)∗
ḡi

s|2ds.

Since P is bounded, and by L2 estimates on r̄ we get for every T > 0

EFt

∫ T

t

[〈SsXs, Xs〉+ |us|2]ds ≤ C,

and so also

EFt

∫ T

t

|
(

I +
d∑

i=1

(
Di

s

)∗
P sD

i
s

)−1

(B∗
s r̄s +

d∑

i=1

(
Di

s

)∗
ḡi

s)
2ds ≤ C,

where C is a constant independent of T and on t. So

EFt

∫ +∞

t

[〈SsXs, Xs〉+ |us|2]ds ≤ C,
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and

EFt

∫ ∞

t

|
(

I +
d∑

i=1

(
Di

s

)∗
PsD

i
s

)−1

(B∗
s r̄s +

d∑

i=1

(
Di

s

)∗
ḡi

s)|2ds ≤ C. (5.6)

Since 0 ≤
d∑

i=1

(
Di

s

)∗
P sD

i
s ≤ C, where C is a constant independent of s, also

EFt

∫ ∞

t

|B∗
s r̄s +

d∑

i=1

(
Di

s

)∗
ḡi

s|2ds ≤ C.

Moreover we obtain, letting T → +∞ and choosing t = 0,

E
∫ +∞

0

[〈SsXs, Xs〉+ |us|2]ds ≤ E〈P̄0x, x〉+ 2E〈r̄,x〉 − 2E
∫ +∞

t

〈r̄s, fs〉ds

− E
∫ +∞

0

(
I +

d∑

i=1

(
Di

s

)∗
P̄sD

i
s

)−1

|B∗
s r̄s +

d∑

i=1

(
Di

s

)∗
ḡi

s|2ds.

Now we need to prove the opposite inequality. We compute d〈PN
s Xs, Xs〉+ 2〈r̄s, Xs〉:

EFt

∫ N

t

[〈SsXs, Xs〉+ |us|2]ds = E〈PN
t x, x〉+ 2〈r̄t, x〉 − 2EFt

∫ N

t

〈r̄s, fs〉ds

+ EFt

∫ N

t

|
(

I +
d∑

i=1

(
Di

s

)∗
PN

s Di
s

)1/2 (
us + (I +

d∑

i=1

(
Di

s

)∗
PN

s Di
s)
−1 ∗

∗
(

PN
s Bs +

d∑

i=1

(
Qi,N

s Di
s +

(
Ci

s

)∗
PN

s Di
s

))∗

Xs + B∗
s r̄s +

d∑

i=1

Di
s(ḡ

i
s)
∗
)
|2ds

− EFt

∫ N

t

|
(

I +
d∑

i=1

(
Di

s

)∗
PN

s Di
s

)−1

(B∗
s r̄s +

d∑

i=1

(
Di

s

)∗
ḡi

s)|2ds. (5.7)

We observe that,

EFt

∫ N

t

|
(

I +
d∑

i=1

(
Di

s

)∗
PN

s Di
s

)−1

(B∗
s r̄s +

d∑

i=1

(
Di

s

)∗
ḡi

s)|2ds

→ EFt

∫ +∞

t

(
I +

d∑

i=1

(
Di

s

)∗
P̄sD

i
s

)−1

|B∗
s r̄s +

d∑

i=1

(
Di

s

)∗
ḡi

s|2ds,

indeed, by dominated convergence that we can apply thanks to estimate (5.6),

EFt

∫ +∞

t

|
(

I +
d∑

i=1

(
Di

s

)∗
PN

s Di
s

)−1

(B∗
s r̄s +

d∑

i=1

(
Di

s

)∗
ḡi

s)|2ds

→ EFt

∫ +∞

t

|
(

I +
d∑

i=1

(
Di

s

)∗
P̄sD

i
s

)−1

(B∗
s r̄s +

d∑

i=1

(
Di

s

)∗
ḡi

s)|2ds

EFt

∫ +∞

N

|
(

I +
d∑

i=1

(
Di

s

)∗
PN

s Di
s

)−1

(B∗
s r̄s +

d∑

i=1

(
Di

s

)∗
ḡi

s)|2ds → 0
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So, by (5.7) we get for every admissible control u

E
∫ +∞

0

[〈SsXs, Xs〉+ |us|2]ds ≥ E〈P̄0x, x〉+ 2E〈r̄,x〉 − 2E
∫ +∞

t

〈r̄s, fs〉ds

− E
∫ +∞

0

(
I +

d∑

i=1

(
Di

s

)∗
P̄sD

i
s

)−1

|B∗
s r̄s +

d∑

i=1

(
Di

s

)∗
ḡi

s|2ds.

The theorem now easily follows.

6. Ergodic control

In this section we consider cost functional depending only on the asymptotic behaviour of the
state (ergodic control). To do it we first consider discounted cost functional that fit the assumptions
of section 5 and then we compute a suitable limit of the discounted cost. Namely, we consider the
discounted cost functional

Jα(0, x, u) = E
∫ +∞

0

e−2αs[
〈
SsX

0,x,u
s , X0,x,u

s

〉
+ |us|2]ds, (6.1)

where X is solution to equation (5.1), with A, B, C and D satisfying hypothesis 3.1 and f ∈
L∞(Ω× [0, +∞)). When the coefficients are deterministic the problem has been extensively studied,
see e.g. [2] and [24].

Throughout this section we assume that

Hypothesis 6.1. We will make the following assumptions:
• S ≥ εI, for some ε > 0.
• (A,B, C, D) is stabilizable relatively to S.
• The first component of the minimal solution P is bounded in time.

Notice that these conditions implies that (P , Q) stabilize (A,B, C,D) relatively the identity.
Our purpose is to minimize the discounted cost functional with respect to every admissible control

u. We define the set of admissible controls as

Uα =
{

u ∈ L2(Ω× [0, +∞)) : E
∫ +∞

0

e−2αs[
〈
SsX

0,x,u
s , X0,x,u

s

〉
+ |us|2]ds < +∞

}
.

Fixed α > 0, we define Xα
s = e−αsXs and uα

s = e−αsus: we note that if u ∈ Uα, then uα ∈ U .
Moreover we set Aα

s = As − αI and fα
s = e−αsfs, and fα ∈ L2(Ω × [0, +∞)) ∩ L∞(Ω × [0, +∞)).

Xα
s is solution to equation





dXα
s = (Aα

s Xα
s + Bsv

α
s )ds +

d∑

i=1

(
Ci

sX
α
s + Di

sv
α
s

)
dW i

s + fα
s ds s ≥ 0

Xα
0 = x,

(6.2)

By the definition of Xα, we note that if (A,B,C, D) is stabilizable with respect to the identity,
then (Aα, B, C,D) also is. We also denote by (Pα, Qα) the solution of the infinite horizon Riccati
equation (3.4), with Aα in the place of A. Since, for 0 < α < 1, Aα is uniformly bounded in α, also
Pα is uniformly bounded in α. Now we apply theorem 5.1 to the control problem for the discounted
cost Jα. Let us denote by (rα, gα) the solution of the BSDE obtained by equation (4.5), where f is
replaced with fα, and H and K are replaced respectively by Hα and Kα. Hα and Kα are defined
as in (2.9), with Aα and Pα respectively in the place of A and P .

Theorem 6.2. Let hypotheses 3.1 and 4.4 hold true; assume that f ∈ L∞(Ω× [0,+∞)) and that ,
given x ∈ Rn, then:

(1) there exists a unique optimal control uα ∈ L2
(
Ω× [0,+∞) ,Rk

)
such that

Jα (0, x, uα) = inf
u∈Uα

Jα (0, x, u)
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(2) The following feedback law holds P-a.s. for almost every t ≥ 0:

uα
t = −

(
I +

d∑

i=1

(
Di

t

)∗
Pα

t Di
t

)−1(
Pα

t Bt +
d∑

i=1

(
Qα,i

t Di
t +

(
Ci

t

)∗
Pα

t Di
t

))∗

X
α

t +B∗
t rα

t +
d∑

i=1

Di
t(g

α,i
t )∗,

(6.3)
where X

α
is the optimal state.

(3) The optimal cost Jα (0, x, uα) := J
α
(x) is given by

J
α
(x) = 〈Pα

0 x, x〉+ 2〈rα
0 , x〉+ 2E

∫ ∞

0

〈rα
s , fα

s 〉ds

− E
∫ ∞

0

|(I +
d∑

i=1

(
Di

t

)∗
Pα

t Di
t)
−1(B∗

t rα
t +

d∑

i=1

(
Di

t

)∗
gα,i

t )|2ds. (6.4)

The optimal cost J
α
(x) → +∞ as α → 0. We want to compute

lim
α→0

αJ
α
(x).

In order to do this, we need some convergence results, the first concerning the Riccati equation. To
prove this convergence, we note that, by applying the Datko theorem, we are able to prove estimates
independent on α.

Remark 6.3. By the Dakto Theorem, see also remark 4.3, we can prove an exponential bound for
the process Xα which solves the following equation





dXα
s = −(Hα

s )∗Xα
s ds−

d∑

i=1

(
Kα,i

s

)∗
Xα

s dW i
s , s ≥ t

Xα
t = x

We can conclude that there exist K, a > 0, independent on α such that for every s ≥ t:

EFt |Xα
s |2 ≤ Ke−a(s−t)|x|2 P− a.s. (6.5)

Lemma 6.4. Assume that hypothesis 3.1 holds true, that f ∈ L∞(Ω× [0, +∞)). Then Pα(t) → P (t)
as α → 0 for all t ≥ 0, where P is the minimal solution of the BRSE.

Proof. We can consider the case t = 0 without loss of generality.
Since 〈P0x, x〉, respectively 〈Pα

0 x, x〉, is the optimal cost of the linear quadratic control problem
with state equation given by (5.1), respectively by (6.2), in the particular case of f = 0, and cost
functional given by (5.2), respectively by (6.1), we immediately get that

Pα ≤ P for all α > 0.

Moreover we get that

〈Pαx, x〉 = E
∫ +∞

0

[〈SsX̂
α(s), X̂α(s)〉+ |ûα(s)|2],

where

ûα = −
(

I +
d∑

i=1

(
Di

t

)∗
Pα

t Di
t

)−1 (
Pα

t Bt +
d∑

i=1

(
Qα,i

t Di
t +

(
Ci

t

)∗
Pα

t Di
t

))∗

X̂α
t ,

and X̂α is the state corresponding to the control ûα. So the pair (X̂α, ûα) is bounded in L2(Ω ×
[0, +∞))×L2(Ω×[0,+∞)), so there exists a sequence αj → 0 as j → +∞ and a pair (X̂, û) such that
(X̂αj , ûαj ) ⇀ (X̂, û) in L2(Ω× [0,+∞))× L2(Ω× [0, +∞)). As a consequence of this convergence,
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the process X̂ is solution to equation (5.1), with control û. So we get

〈Px, x〉 ≤ E
∫ +∞

0

[〈SsX̂(s), X̂(s)〉+ |û(s)|2]

≤ limj→+∞

∫ +∞

0

[〈SsX̂
αj (s), X̂αj (s)〉+ |ûαj (s)|2]

= limj→+∞〈Pαj x, x〉.

We remark that we can exploit a sort of separation principle, typical of the linear quadratic case,
that allow to estimate separately the quadratic part from the linear part. Next we want to prove
that, as α → 0, the optimal pair for the discounted control problem, that we denote by (X̂α, ûα) as
in the previous proof, converges to the optimal pair (X, u), defined in theorem 5.1.

Lemma 6.5. Assume that hypothesis 3.1 holds true, that f ∈ L∞(Ω × [0, +∞)). Then, for every
T > 0, X̂α → X and ûα → u in L2(Ω× [0, T ]) as α → 0.

Proof. We consider the stochastic Hamiltonian system (3.12) and the stochastic Hamiltonian sys-
tem for the discounted problem




dXα
s = [Aα

s Xα
s −Bs(B∗

syα(s)+
d∑

i=1

(
Di

s

)∗
zα,i
s )]ds +

d∑

i=1

[Ci
sX

α
s + Di

s(B∗
syα

s +
d∑

k=1

(Dk
s )∗zα,k

s )]dW i
s ,

dyα
s = −[(Aα

s )∗yα
s +

d∑

i=1

(
Ci

s

)∗
zα,i
s + SsX

α
s ]ds +

d∑

i=1

zα,i
s dW i

s , t ≤ s ≤ T,

Xα
t = x,

yα
T = P

α

T Xα
T ,

(6.6)
Proceeding as in lemma 3.6, we get

EFt〈yα
T − yT , Xα

T −XT 〉 = EFt

∫ T

t

α〈yα
s , Xs〉 − α〈ys, X

α
s 〉ds

− EFt

∫ T

t

|
√

Ss(Xα
s −Xs)|2ds− EFt

∫ T

t

|B∗
s (Xα

s −Xs) +
d∑

i=1

(Di
s)
∗(zα,i

s − zi
s)|2ds,

that is

EFt〈Pα
T (Xα

T −XT ), Xα
T −XT 〉+ EFt〈(Pα

T − PT )XT , Xα
T −XT 〉=EFt

∫ T

t

α〈yα
s − ys, X

α
s 〉ds

− EFt

∫ T

t

α〈yα
s , Xα

s −Xs〉ds− EFt

∫ T

t

|B∗
s (Xα

s −Xs) +
d∑

i=1

(Di
s)
∗(zα,i

s − zi
s)|2ds.

− EFt

∫ T

t

|
√

Ss(Xα
s −Xs)|2ds

It follows that

EFt

∫ T

t

|
√

Ss(Xα
s −Xs)|2ds + EFt

∫ T

t

|B∗
s (Xα

s −Xs) +
d∑

i=1

(Di
s)
∗(zα,i

s − zi
s)|2ds → 0

as α → 0.
Finally we need to investigate the convergence of rα to r, where (r, g) is the solution of equation

(4.5).

Lemma 6.6. For all fixed T > 0, rα |[0,T ]→ r |[0,T ] in L2(Ω× [0, T ]).
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Proof. First we note that fα is uniformly bounded in α and

EFτ

∫ T

τ

|Hα
t |2dt + EFτ

∫ T

τ

|Kα
t |2dt ≤ C, (6.7)

where C is a constant depending on T , x, A, B, C and D, but not on α. So, see proposition 4.5,
equation (4.5), where f is replaced by fα, and H and K are replaced respectively by Hα and Kα

admits a solution (rα, gα) ∈ L2(Ω × [0,+∞),Rn) × L2(Ω × [0, T ],Rn×d), for every T > 0. Now let
us consider γ, η ∈ L2(Ω × [0, T ]). γ, η can be defined on [0, +∞): we set γt, ηt = 0 for t > T . Let
Xt,x,γ,η be the solution of equation (2.17) and let Xα,t,x,γ,η be the solution of an equation obtained
by equation (2.17) by replacing H with Hα and K with Kα. By relation (2.18), we get

E
∫ T

0

〈rα
s , γs〉+ 〈

d∑

i=1

gα,i
s , ηi

s〉ds

E
∫ T

0

〈Pα
s fα

s , Xα,0,0,γ,η
s 〉ds + E

∫ +∞

T

〈Pα
s fα

s , X
α,T,Xα,0,0,γ,η

T
s 〉ds. (6.8)

and also

E
∫ T

0

〈r̄s, γs〉+ 〈
d∑

i=1

ḡi
s, η

i
s〉ds

E
∫ T

0

〈
Psfs, X

0,0,γ,η
s

〉
ds + E

∫ +∞

T

〈
Psfs, X

T,X0,0,γ,η
T

s

〉
ds. (6.9)

Take in (6.8) and in (6.9) η = 0. By remark 4.3 and by lemmas 6.4 and 6.5 the right hand side in
(6.8) converges to the right hand side of (6.9). So we get that rα |[0,T ]⇀ r |[0,T ] in L2(Ω× [0, T ]). In
order to get that rα |[0,T ]→ r |[0,T ] in L2(Ω× [0, T ]), it suffices to prove that ‖rα |[0,T ] ‖L2(Ω×[0,T ] →
‖r |[0,T ] ‖L2(Ω×[0,T ]. We take in (6.8) γt = rα

t for 0 ≤ t ≤ T , and η = 0. We get

E
∫ T

0

|rα
s |2ds = E

∫ T

0

〈Pα
s fα

s , Xα,0,0,rα,0
s 〉ds + E

∫ +∞

0

〈Pα
s fα

s , X
α,T,Xα,0,0,rα,0

T
s 〉ds.

By remark 4.3 and by lemmas 6.4 and 6.5 the right hand side converges to

E
∫ T

0

〈Psfs, X
0,0,r̄,0
s 〉ds + E

∫ +∞

0

〈Psfs, X
T,X0,0,r̄,0

T
s 〉ds,

and this concludes the proof.

Remark 6.7. Following the proof of proposition 4.5, it is easy to check that there exists a constant
C > 0, independent on α such that for every t > 0, |rα

t | ≤ C.

We can now study the convergence of αJ
α
.

Theorem 6.8. Assume that hypothesis 3.1 holds true, that f ∈ L∞(Ω× [0, +∞)). Then

limα→0αJ
α
(x) = limα→0α

∫ +∞

0

〈rα
s , fα

s 〉ds. (6.10)
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Proof. For every fixed T > 0 we get

EFt

∫ T

t

[〈SRSXα
s , Xα

s 〉+ |uα
s |2]ds = EFt〈Pα

t x, x〉+ 2EFt〈rα
t , x〉 − EFt〈Pα

T Xα
T , Xα

T 〉 − 2EFt〈rα
T , Xα

T 〉

+ 2EFt

∫ T

t

〈rα
s , fα

s 〉ds− EFt

∫ T

t

|(I +
d∑

i=1

(
Di

s

)∗
Pα

s Di
s)
−1(B∗

srα
s +

d∑

i=1

(
Di

s

)∗
gα,i

s )|2ds

+ EFt

∫ T

t

|(I +
d∑

i=1

(
Di

s

)∗
Pα

BSDi
s)

1/2(uα
s +

(
I +

d∑

i=1

(
Di

s

)∗
Pα

s Di
s

)−1

∗

∗
(

Pα
s Bs +

d∑

i=1

(
Qα,i

s Di
s +

(
Ci

s

)∗
Pα

s Di
s

))∗

Xα
s + B∗

srα
s +

d∑

i=1

(
Di

s(g
α,i
s )∗

)
)|.

So for every T > 0 we get

EFt

∫ T

t

|(I +
d∑

i=1

(
Di

s

)∗
Pα

s Di
s)
−1(B∗

srα
s +

d∑

i=1

(
Di

s

)∗
gα,i

s )|2ds

≤ EFt〈Pα
t x, x〉+ 2EFt〈rα

t , x〉 − 2EFt〈rα
T , Xα

T 〉,
so by remark 6.7 and by the Datko Theorem, see remark 6.3, we get that

EFt

∫ T

t

|(I +
d∑

i=1

(
Di

s

)∗
Pα

s Di
s)
−1(B∗

srα
s +

d∑

i=1

(
Di

s

)∗
gα,i

s )|2ds

is uniformly bounded in T and α. So, see also relation (6.4),

limα→0αJ
α
(x) = limα→0α〈Pα

0 x, x〉+ 2limα→0α〈rα
0 , x〉+ limα→0α

∫ +∞

0

rα
s fα

s ds

− limα→0α

∫ +∞

0

|(I +
d∑

i=1

(
Di

s

)∗
Pα

s Di
s)
−1(B∗

srα
s +

d∑

i=1

(
Di

s

)∗
gα,i

s )|2ds

= limα→0α

∫ +∞

0

〈rα
s , fα

s 〉ds.

6.1. Stationary case. In this paragraph we set a stationary framework, see [8]. (Ω, E , (Ft)t≥0,P) is
a stochastic base verifying the usual conditions. Moreover {Wt : t ≥ 0} is a Ξ-valued, (Ft)t≥0-Wiener
process and we assume that {Wt : t ≥ 0} is independent of F0 and that Ft = σ{F0;Ws, s ∈ [0, t]}.
Finally we introduce the semigroup (θt)t≥0 of measurable mappings θt : (Ω, E) → (Ω, E) verifying

(1) θ0 = Id, θt ◦ θs = θt+s, for all t, s ≥ 0
(2) θt is measurable: (Ω,Ft) → (Ω,F0) and {{θt ∈ A} : A ∈ F0} = Ft

(3) P{θt ∈ A} = P(A) for all A ∈ F0

(4) Wt ◦ θs = Wt+s −Ws

According to this framework we introduce the definition of stationary stochastic process.

Definition 6.9. We say that a stochastic process X : [0,∞[×Ω → Rm, is stationary if for all s > 0

Xt ◦ θs = Xt+s P-a.s. for a.e. t ≥ 0

We consider a particular case in which we assume all the coefficients of hypotheses (3.1) and (4.4)
to be stationary stochastic processes. In this case a direct comparison of the integral for equation
(6.11) and (6.12) below immediately gives:
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Lemma 6.10. Fix T > 0. Let (P, Q) be the solution of the finite horizon BSRE



−dPt = G (At, Bt, Ct, Dt; St; Pt, Qt) dt +

d∑

i=1

Qi
tdW i

t , t ∈ [0, T ]

PT = PT .

(6.11)

For fixed s > 0 we define P̂ (t + s) = P (t)θs, Q̂(t + s) = Q(t)θs then (P̂ , Q̂) is the unique solution in
[s, T + s] of the equation




−dP̂t = G

(
At, Bt, Ct, Dt;St; P̂t, Q̂t

)
dt +

d∑

i=1

Q̂i
tdW i

t , t ∈ [s, T + s]

P̂T = PT ◦ θs.

(6.12)

Proposition 6.11. Assume Hypothesis 3.1, hypothesis 6.1 and stationarity of the coefficients, then
the minimal solution (P , Q) of the infinite horizon stochastic Riccati equation (3.4) is stationary.

Proof. Extending the notation introduced before Lemma 3.4 for all ρ > 0 we denote by P ρ the
solution of equation (6.11) in [0, ρ] with final condition P ρ(ρ) = 0. Denoting by bρc the integer part
of ρ, we have, following Lemma 3.4, that for all N for all t ∈ [0, bN + sc], P bN+sc(t) ≤ PN+s(t) ≤
P bN+sc+1(t), P-a.s.. Thus we can conclude noticing that by the previous Lemma

PN+s(t + s) = PN (t) ◦ θs.

Thus letting N → +∞ we obtain that for all t ≥ 0, and s > 0:

P
{
P (t + s) = P (t) ◦ θs

}
= 1.

Now PT+s = PT ◦ θs = PT so if one consider (6.11) in the intervall [s, T + s] with final data
PT+s and (6.12) with final data PT ◦ θs, by the uniqueness of the solution it follows that Q(r) =
Q̂(r), P− a.s. and for all r ∈ [s, T + s].

Notice that, thanks to the stationarity assumptions the stabilizability condition can be simplified,
see Remark 5.7 of [12]. Hence all the coefficients that appear in equation (2.12) are stationary so
exactly as before we deduce that for the solution (rT , gT ) the following holds:

Lemma 6.12. Fix T > 0 and rT ∈ L∞(Ω,FT ;Rn). Let (r, g) a solution to equation




drt = −H∗
t rtdt− Ptftdt−

d∑

i=1

(
Ki

t

)∗
gi

tdt +
d∑

i=1

gi
tdW i

t , t ∈ [0, T ]

rT = rT .

(6.13)

For fixed s > 0 we define r̂(t + s) = r(t)θs, ĝ(t + s) = g(t)θs then (r̂, ĝ) is the unique solution in
[s, T + s] of the equation





dr̂t = −H∗
t r̂tdt− P̄tftdt−

d∑

i=1

(
Ki

t

)∗
ĝi

tdt +
d∑

i=1

ĝi
tdW i

t , t ∈ [s, T + s]

r̂T = rT ◦ θs.

(6.14)

Hence arguing as for the first component P̄ , we get that the first component of the infinite horizon
equation r̄ has to be stationary:

Proposition 6.13. Beside Hypothesis 3.1 and stationarity of coefficients assume that (A,B, C, D)
is
√

S stabilizable, we have that first component of the solution of

drt = −H∗
t rtdt− P̄tftdt−

d∑

i=1

(
Ki

t

)∗
gi

tdt +
d∑

i=1

gi
tdW i

t , t ∈ [0, T ] (6.15)

obtained as the pointwise limit of rT is stationary.

This is enough to characterize the ergodic limit, since the value function is unique. Indeed we
have that:
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Theorem 6.14. Assuming that all the coefficients are stationary processes we get the following
characterization of the optimal cost:

lim
α→0

α inf
u∈U

Jα(x, u) = E〈f(0), r̄(0)〉
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