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MULTIPLE SOLUTIONS FOR A HENON-LIKE EQUATION ON
THE ANNULUS

MARTA CALANCHI, SIMONE SECCHI, AND ELIDE TERRANEO

Abstract. For the equation −∆u =
˛̨|x| − 2

˛̨α
up, 1 < |x| < 3, we prove the

existence of two solutions for α large, and of two additional solutions when p
is close to the critical Sobolev exponent 2∗ = 2N/(N − 2). In particular, a
symmetry–breaking phenomenon appears when α → +∞, showing that the
least–energy solution cannot be a radial function.

1. Introduction

In this paper we will consider the following problem:

(1)





−∆u = Ψαu
p−1 in Ω,

u > 0 in Ω,
u = 0 on ∂Ω,

where Ω = {x ∈ RN | 1 < |x| < 3} is an annulus in RN , N ≥ 3, α > 0, p > 2 and
Ψα is the radial function

Ψα(x) =
∣∣∣|x| − 2

∣∣∣
α

.

This equation can be seen as a natural extension to the annular domain Ω of the
celebrated Hénon equation with Dirichlet boundary conditions (see [10, 12])

(2)

{
−∆u = |x|α|u|p−1 for |x| < 1
u = 0 if |x| = 1.

Actually, the weight function Ψα reproduces on Ω a similar qualitative behavior of
| · |α on the unit ball B of RN .

A standard reasoning shows that the infimum

(3) inf
u∈H1

0 (B)
u 6=0

∫
B
|∇u|2 dx

(∫
B
|x|α|u|p dx)2/p

is achieved for any 2 < p < 2∗ and any α > 0. In 1982, Ni proved in [12] that the
infimum

(4) inf
u∈H1

0,rad(B)

u 6=0

∫
B
|∇u|2 dx

(∫
B
|x|α|u|p dx)2/p

is achieved for any p ∈ (2, 2∗+ 2α
N−2 ) by a function in H1

0,rad(B), the space of radial
H1

0 (B) functions. Thus, radial solutions of (2) exist also for (Sobolev) supercritical
exponents p. Actually, radial H1

0 elements show a power–like decay away from the
origin (as a consequence of the Strauss Lemma, see [19, 1]) that combines with the
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weight |x|α and provides the compactness of the embedding H1
0,rad(B) ⊂ Lp(B) for

any 2 < p < 2∗ + 2α
N−2 .

A natural question is whether any minimizer of (3) must be radially symmetric.
This is a non-trivial question, since the weight | · |α is an increasing function to
which neither rearrangement arguments nor the moving plane techniques of [9] can
be applied.

In their pioneering paper [17], Smets, Su and Willem proved some symmetry–
breaking results for (2). They proved that minimizers of (3) (the so-called ground-
state solutions, or least energy solutions) cannot be radial, at least for α large
enough. As a consequence, (2) has at least two solutions when α is large.

Later on, Serra proved in [16] the existence of at least one non–radial solution
to (2) in the critical case p = 2∗, and in [2] the authors proved the existence of
more than one solution to the same equation also for some supercritical values of
p. These solutions are non-radial and they are obtained by minimization under
suitable symmetry constraints.

Quite recently, Cao and Peng proved in [6] that, for p sufficiently close to 2∗,
the ground-state solutions of (2) possess a unique maximum point whose distance
from ∂B tends to zero as p→ 2∗.

This kind of result was improved in [15], where multibump solutions for the
Hénon equation with almost critical Sobolev exponent p are found, by means of
a finite–dimensional reduction. These solution are not radial, though they are
invariant under the action of suitable subgroups of O(N), and they concentrate at
boundary points of the unit ball of RN as p→ 2∗. The rôle of α is however a static
one.

In this paper we will prove that similar phenomena take place for problem (1) on
the annulus Ω. In Section 2, we present some estimates for the least energy radial
solutions of (1) when p < 2∗ is kept fixed but α → +∞. These will lead us to a
first symmetry–breaking result, stating that for α sufficiently large there exist at
least two solutions of (1): a global minimizer of the associated Rayleigh quotient,
and a global minimizer among radial functions.

In Section 3, another symmetry–breaking is proved, with α fixed and p→ 2∗. To
show this phenomenon, we will use a decomposition lemma in the spirit of P.L. Li-
ons’ concentration and compactness theory, and inspired by [6]. It will turn out
that global minimizers of the same Rayleigh quotient concentrate as p → 2∗ at
precisely one point of the boundary ∂Ω, which has two connected components. A
second nonradial solution can then be found in a tricky but natural way, by min-
imization over functions that are “heavier” on the opposite connected component
of ∂Ω.

In Section 4, a third nonradial solution is singled out, by means of a linking
argument. Roughly speaking, the previous nonradial solutions can be used to build
a mountain pass level. In particular, this third solution will not be a local minimizer
of the Rayleigh quotient.

Section 5 describes the behavior of ground-state solutions of (1) as α → +∞
and p < 2∗ is kept fixed. Although the conclusion is not as precise as in the case
p → 2∗, we can nevertheless show that a sort of concentration near the boundary
∂Ω still appears. For more results about asymptotic estimates for solutions of the
Hénon equation with α large, see [4, 5].

The paper ends with an appendix containing some technical proofs.
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2. Symmetry breaking for α large

Let H1
0,rad(Ω) be the space of radially symmetric functions of H1

0 (Ω). With a
slight but common abuse of notation, we will systematically write u(x) = u(|x|) for
u ∈ H1

0,rad(Ω).
Consider the minimization problem

(5) Srad
α,p = inf

u∈H1
0,rad(Ω)\{0}

Rα,p(u),

where

(6) Rα,p(u) =

∫
Ω
|∇u|2dx

(∫
Ω

Ψα|u|pdx
) 2

p

, u ∈ H1
0 (Ω), u 6= 0

is the Rayleigh quotient associated to (1). It is known that the minimizers of (5)
can be scaled so as to become solutions of (1). Therefore, we will use freely this
fact in the sequel.

Unlike the result of [12], the fact that the annulus Ω does not contain the origin
implies the existence of a radial solution of (1) for any p > 2. This is the content
of the next Proposition.

Proposition 1. Let N ≥ 3. Then Srad
α,p is attained for every p > 2 and every α > 0.

In particular, equation (1) possesses a radial solution for every p > 2.

Proof. Observe that for any u ∈ H1
0,rad(Ω), the Hölder inequality implies

|u(x)| = |u(|x|)− u(1)| ≤
∫ |x|

1

|u′(t)|dt

≤
√

1− 32−N

(N − 2)ωN−1
‖∇u‖L2(Ω) for a.e. x ∈ Ω,

where ωN−1 is the surface measure of SN−1. Therefore H1
0,rad(Ω) is continuously

embedded into L∞(Ω). It follows from standard arguments that this embedding
H1

0,rad(Ω) ⊂ Lq(Ω) is compact for every q > 2, and this easily implies that Srad
α,p is

attained. A suitable scaling gives the desired solution of (1). ¤
In the next Proposition, we provide an estimate of the energy Srad

α,p as α→∞.

Proposition 2. Let p > 2. As α → ∞, there exist two constants C1 and C2

depending on p such that

(7) 0 < C1 ≤
Srad

α,p

α1+2/p
≤ C2 < +∞.

Moreover, for any M > 2 it is possible to choose the constants C1 and C2 indepen-
dent of p ∈ (2,M ].

Proof. Fix a positive, radial function ψ ∈ C∞0 (Ω), and set ψα(x) = ψα(|x|) =
ψ(α(|x| − 3 + 3/α)). Then

∫

Ω

|∇ψα|2 dx = ωN−1

∫ 3

3− 2
α

(ψ′α(r))2 rN−1 dr

= ωN−1

∫ 3

1

α2ψ′(s)2
(
s

α
+ 3− 3

α

)N−1

α−1 ds

= α ωN−1

∫ 3

1

ψ′(s)2
(
s+ 3α− 3

αs

)N−1

sN−1 ds

≤ 3N−1α

∫

Ω

|∇ψ|2 dx, (since 1 ≤ s+3α−3
αs ≤ 3)
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and ∫

Ω

Ψαψ
p
α dx ≥

(
1− 2

α

)α

α−1

∫

Ω

ψp dx.

This proves that Srad
α,p ≤ C(α, p)α1+ 2

p , where

C(α, p) = 3N−1

∫
Ω
|∇ψ|2dx

(1− 2
α )

2α
p (

∫
Ω
ψp(x) dx)

2
p

≤ C2 for any p > 2 and α > 1.

To check the other inequality, we will perform some scaling. Let us define the
functions ψ1 : [1, 2] → [1, 2] and ψ2 : [2, 3] → [2, 3] as follows:

ψ1(r) = 2− (2− r)β(8)

ψ2(r) = 2 + (r − 2)β ,(9)

where β ∈ (0, 1) will be chosen hereafter. It is clear that we can obtain a piecewise
C1 homeomorphism ψ : [1, 3] → [1, 3] by gluing ψ1 and ψ2. Now, for any radial
function u ∈ H1

0 (Ω), we set v(ρ) = u(ψ(ρ)) and compute:
∫

Ω

|∇u|2 dx = ωN−1

∫ 3

1

|u′(r)|2rN−1 dr

≥ ωN−1

∫ 3

1

|u′(r)|2 dr

= ωN−1

(∫ 2

1

|v′(ρ)|2 1
ψ′1(ρ)

dρ+
∫ 3

2

|v′(ρ)|2 1
ψ′2(ρ)

dρ

)

= ωN−1
1
β

(∫ 2

1

|v′(ρ)|2(2− ρ)1−β dρ

+
∫ 3

2

|v′(ρ)|2(ρ− 2)1−β dρ

)

= ωN−1
1
β

∫ 3

1

|v′(ρ)|2|ρ− 2|1−β dρ

≥ ωN−1
1
β

∫ 3

1

|v′(ρ)|2|ρ− 2| dρ.(10)

Choosing β = 1/(α+ 1),
∫

Ω

Ψα(x)|u(|x|)|p dx = ωN−1

∫ 3

1

Ψα(r)|u(r)|prN−1 dr

≤ 3N−1ωN−1

∫ 3

1

Ψα(r)|u(r)|p dr

= 3N−1ωN−1

(∫ 2

1

Ψα(ψ1(ρ))|v(ρ)|pψ′1(ρ) dρ

+
∫ 3

2

Ψα(ψ2(ρ))|v(ρ)|pψ′2(ρ) dρ
)

= 3N−1ωN−1β

∫ 3

1

|v(ρ)|p dρ.(11)

Therefore,

(12) Rα,p(u) ≥ Cα1+ 2
p inf

v∈H1
0 (Ω)

v 6=0

∫ 3

1
|v′(ρ)|2|4ρ− 3| dρ

(∫ 3

1
|v(ρ)|p dρ

)2/p
.

where C depends only on N . To complete the proof, we will show that the right-
hand side of (12) is greater than zero. This follows from some general Hardy–type
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inequality (see [13, Theorem 1.14]), but we present here an elementary proof for
the sake of completeness. Indeed, given v ∈ H1

0,rad(Ω), we can write for ρ ∈ [1, 2]

|v(ρ)| = |v(ρ)− v(1)| ≤
∫ ρ

1

|v′(t)||2− t|1/2 dt

|2− t|1/2

≤
(∫ ρ

1

|v′(t)|2|2− t| dt
)1/2 (∫ ρ

1

dt

|2− t|
)1/2

≤
(∫ 3

1

|v′(t)|2|2− t| dt
)1/2

(− log |2− ρ|)1/2
.

Hence
∫ 2

1

|v(ρ)|p dρ ≤
(∫ 3

1

|v′(ρ)|2|2− ρ| dρ
)p/2 ∫ 2

1

(− log(2− ρ))p/2
dρ

=
(∫ 3

1

|v′(ρ)|2|2− ρ| dρ
)p/2 ∫ ∞

0

tp/2e−t dt

= Γ
(
p+ 2

2

)(∫ 3

1

|v′(ρ)|2|2− ρ| dρ
)p/2

,

and in a similar way
∫ 3

2

|v(ρ)|p dρ ≤ Γ
(
p+ 2

2

)(∫ 3

1

|v′(ρ)|2|2− ρ| dρ
)p/2

.

Therefore
∫ 3

1

|v′(ρ)|2|2− ρ| dρ ≥ 1

22/pΓ
(

p+2
2

)2/p

(∫ 3

1

|v(ρ)|p dρ
) 2

p

.

This implies that the infimum in (12) is strictly positive and for any M > 2 there

exists a constant C1 > 0 such that 2−2/p ≥ C1 Γ
(

p+2
2

)2/p
for any p ∈ (2,M ],

since the Gamma function is positive, C∞ and Γ
(

p+2
2

) ∼ (p/2)p/2e−p/2√πp for
p→ +∞. We finally collect (10) and (11) to get the desired conclusion

Srad
α,p ≥ C1 α

1+ 2
p .

¤

Set now

(13) Sα,p = inf
u∈H1

0 (Ω)
u 6=0

Rα,p(u).

It is easily proved that Sα,p is attained by a function uα,p that satisfies (up to a
scaling) equation (1).

In order to prove that this solution is not radial (at least for α large) we need
an estimate from above of the level Sα,p.

Lemma 3. Let p ∈ (2, 2∗). There exists ᾱ such that for α ≥ ᾱ

(14) Sα,p ≤ Cα2−N+ 2N
p .

Proof. Let ψ be a positive smooth function with support in the unit ball B. Fol-
lowing [17], let us consider ψα(x) = ψ(α(x − xα)), where xα = (3 − 1

α , 0, . . . , 0).
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Since ψα has support in the ball B(xα,
1
α ), by the change of variable y = α(x−xα)

we obtain:∫

Ω

Ψα(x)ψp
α(x) dx =

∫

B(xα, 1
α )

||x| − 2|αψp
α(x) dx ≥

(
1− 2

α

)α

α−N

∫

B

ψp(y) dy

Moreover∫

Ω

|∇ψα|2 dx = α2

∫

Ω

|∇ψ(α(x− xα))|2 dx = α2−N

∫

B

|∇ψ|2 dx,

so that
Sα,p ≤ Rα,p(ψα) ≤ Cα2−N+ 2N

p

for all α sufficiently large. This proves the Lemma. ¤
By comparing (14) and (7), we deduce a first symmetry–breaking result.

Theorem 4. Let p ∈ (2, 2∗). For α sufficiently large, the ground state uα,p is a
non-radial function.

Proof. From (14) and (7) it follows that Sα,p < Srad
α,p when α is large. ¤

3. Symmetry breaking as p→ 2∗

In this section we consider α fixed, p close to 2∗ and we establish the following

Theorem 5. Let α > 0. For p close to 2∗ the quotient Rα,p has at least two non
radial local minima.

We briefly explain how the proof proceeds. Of course, we already know that any
global minimizer of Rα,p produces a first solution uα,p. As the Theorem 6 states,
this solution concentrates at precisely one point of the boundary ∂Ω. Since this
boundary has two connected components, we will minimize Rα,p over the set Λ of
H1

0 functions which “concentrate” at the opposite component of the boundary. A
careful estimate is proved in order to show that minimizers fall inside the interior
of Λ.

Consider now uα,p. As in [6] we have a description of the profile of uα,p as
p→ 2∗.

Theorem 6. Let p ∈ (2, 2∗) and α > 0. The minimum uα,p of Rα,p(u) in H1
0 \{0}

satisfies (passing to a subsequence) for some x0 ∈ ∂Ω
i) |∇uα,p|2 → µδx0 in the sense of measure as p→ 2∗,
ii) |uα,p|2∗ → νδx0 in the sense of measure as p→ 2∗,

where µ > 0 and ν > 0 are such that µ ≥ S0,2∗ν
2/2∗ and δx is the Dirac mass at x.

Proof. Postponed to the Appendix. ¤
To get a second local minimizer, we will assume without loss of generality that

uα,p concentrates at some point on the sphere |x| = 3 (a similar argument holds
if uα,p concentrates at some point x with |x| = 1). After a rotation, we can even
assume that uα,p concentrates at the point (3, 0, . . . , 0).

Let

Ω− =
{
x ∈ RN | 1 < |x| < 2

}
, Ω+ =

{
x ∈ RN | 2 < |x| < 3

}

and

Σ =
{
u ∈ H1

0 \ {0} |
∫

Ω+
|∇u|2 dx =

∫

Ω−
|∇u|2 dx

}
.

Let us denote
Tα,p = inf

u∈Σ
Rα,p(u).
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We have the following uniform estimate for Tα,p.

Proposition 7. Let α > 0. There exists δ > 0 such that

lim inf
p→2∗

Tα,p > S0,2∗ + δ.

Proof. By standard compactness argument Tα,p is achieved by a function vα,p.
Moreover for any α > 0, and 2 < p < 2∗ we have Tα,p ≥ Sα,p. We want to prove
that the inequality is strict at least for p→ 2∗. Indeed assume on the contrary that

lim inf
p→2∗

Tα,p = lim inf
p→2∗

Rα,p(vα,p) = S0,2∗ .

From the definition of S0,2∗ and Hölder inequality we get, for a subsequence p =
pk → 2∗

S0,2∗ ≤
∫
Ω
|∇vα,p|2 dx(∫

Ω
|vα,p|2∗ dx

)2/2∗ ≤ |Ω| (2
∗−p)2
2∗p

∫
Ω
|∇vα,p|2 dx

(
∫
Ω
|vα,p|p dx)2/p

≤ |Ω| (2
∗−p)2
2∗p

∫ |∇vα,p|2 dx
(
∫
Ω

Ψα(x)|vα,p|p dx)2/p
= S0,2∗ + o(1)

since the weight satisfies Ψα(x) ≤ 1. In particular
∫
Ω
|∇vα,p|2 dx(∫

Ω
|vα,p|2∗ dx

)2/2∗ → S0,2∗ ,

and vα,p is a minimizing sequence of S0,2∗ .
In the same way as we do in the proof of Theorem 6 for uα,p, we can prove that

vα,p concentrates at precisely one point one of the boundary ∂Ω. This contradicts
the fact that

∫
Ω+ |∇vα,p|2 dx =

∫
Ω− |∇vα,p|2 dx. ¤

Consider now the points

x0,ε = x0 =
(

3− 1
| log ε| , 0, . . . , 0

)
, x1,ε = x1 =

(
1 +

1
| log ε| , 0, . . . , 0

)

and
U(x) =

1

(1 + |x|)(N−2)/2
.

We recall that S0,2∗ is not achieved on any proper subset of RN , and that it is
independent of Ω. However, it is known that S0,2∗(RN ) is achieved, and all the
minimizers can be written in the form

Uθ,y(x) =
1

(θ2 + |x− y|2)N−2
2

, θ > 0, y ∈ RN .

We set

U i
ε(x) = ε−

N−2
2 U

(
x− xi√

ε

)
=

1

(ε+ |x− xi|2)N−2
2

,

and denote by ϕi (i = 0, 1) two cut-off functions such that 0 ≤ ϕi ≤ 1, |∇ϕi| ≤
C| log ε| for some constant C > 0, and

ϕi(x) =





1, if |x− xi| < 1
2| log ε|

0, if |x− xi| ≥ 1
| log ε| .

The following Lemma shows that the truncated functions

(15) ui
ε(x) = ϕi(x)U i

ε(x), i = 0, 1,

are almost minimizers for S0,2∗ .
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Lemma 8. Let α > 0. There results

lim
p→2∗

Rα,p(ui
ε) = S0,2∗ +K(ε)

with lim
ε→0

K(ε) = 0.

Proof. Postponed to the Appendix. ¤

Remark 9. A direct consequence of Lemma 8 is that S0,2∗ = Sα,2∗ . Indeed
S0,2∗ ≤ Sα,2∗ since Ψα(|x|) ≤ 1 . On the other hand by Lemma 8

Rα,2∗(ui
ε) = lim

p→2∗
Rα,p(ui

ε) = S0,2∗ +K(ε).

Therefore S0,2∗ + K(ε) ≥ Sα,2∗ for every ε > 0. Letting ε → 0 we conclude
S0,2∗ ≥ Sα,2∗ .

We are now ready to prove the Theorem 5.

Proof of Theorem 5. Let uα,p be a ground state solution. Let us suppose that it
concentrates on the outer boundary. Consider the open subset

Λ =
{
u ∈ H1

0 (Ω) :
∫

Ω−
|∇u|2 dx >

∫

Ω+
|∇u|2 dx

}
.

The infimum of Rα,p on Λ is achieved. However it cannot be achieved on the
boundary ∂Λ = Σ. Indeed, by Proposition 7,

inf
Σ
Rα,p > S0,2∗ + δ as p→ 2∗

and
inf
Λ
Rα,p(u) ≤ Rα,p(u1

ε) → S0,2∗ +K1(ε) as p→ 2∗

since u1
ε ∈ Λ for ε small enough. Then the infimum is achieved in a interior point

of Λ and is therefore a critical point of Rα,p.
¤

4. existence of a third non-radial solution

In the previous section we proved the existence of two solutions of (1) which are
local minima of the Rayleigh quotient for p near 2∗. One would expect another
critical point of Rα,p located in some sense between these minimum points. This is
precisely the idea we are going to pursue further in the current section.

For ε small enough let ui
ε = ϕiU

i
ε, i ∈ {0, 1}, be defined as in (15). We will prove

that Rα,p has the Mountain Pass geometry.

Let us introduce the minimax level

β = β(α, p) = inf
γ∈Γ

max
t∈[0,1]

Rα,p(γ(t)),

where Γ = {γ ∈ C([0, 1], H1
0 (Ω)) | γ(0) = u0

ε, γ(1) = u1
ε} is the set of continuous

paths joining u0
ε with u1

ε.
We begin to prove that β is larger, uniformly with respect to ε, than the values

of the functional Rα,p at the points u0
ε and u1

ε.

Lemma 10. Let Mε = max{Rα,p(u0
ε), Rα,p(u1

ε)}. There exists σ > 0 such that
β ≥Mε + σ uniformly with respect to ε.
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Proof. We prove that there exists σ such that for all γ ∈ Γ

maxRα,p(γ(t)) ≥Mε + σ.

A simple continuity argument shows that for every γ ∈ Γ there exists tγ such that
γ(tγ) ∈ Σ, where

Σ =
{
u ∈ H1

0 \ {0} |
∫

Ω+
|∇u|2 dx =

∫

Ω−
|∇u|2 dx

}
.

Indeed the map t ∈ [0, 1] 7→ ∫
Ω+ |∇γ(t)|2 dx−

∫
Ω− |∇γ(t)|2 dx is continuous and it

takes a negative value at t = 0 and a positive value at t = 1. Now Proposition 7
implies, for p near 2∗ the existence of δ > 0 with

max
t∈[0,1]

Rα,p(γ(t)) ≥ Rα,p(γ(tγ)) ≥ inf
u∈Σ

Rα,p(u) ≥ S0,2∗ + δ.

On the other hand, for ε sufficiently small,

Mε < S0,2∗ +
δ

2
.

This concludes the proof. ¤

The previous estimate allows us to show that β is a critical level for Rα,p. There-
fore a further nonradial solution to (1) arises.

Proposition 11. There exist ᾱ > 0 and 2 < p̄ < 2∗ such that for all α ≥ ᾱ and
p̄ ≤ p < 2∗ it results that β is a critical value for Rα,p and it is attained by a
non-radial function.

Proof. From the previous result we can apply a deformation argument (see [1, 20])
to prove that β is a critical level and it is attained (since the PS condition is
satisfied) by a function w. From the asymptotic estimate (7) for the radial level
Srad

α,p , one has that there exists a constant C independent from p such that

Srad
α,p ≥ Cα1+2/p.

In particular
Srad

α,p → +∞ as α→ +∞.

This allows us to choose α0 such that Srad
α,p ≥ 3S0,2∗ for all α ≥ α0.

Define ζ ∈ Γ by ζ(t) = tu1
ε + (1− t)u0

ε for all t ∈ [0, 1], and let τ ∈ [0, 1] be such
that Rα,p(ζ(τ)) = maxt∈[0,1]Rα,p(ζ(t)).

Since u1
ε and u0

ε have disjoint supports one has, for ε sufficiently small,

Rα,p(w) = β ≤ Rα,p(ζ(τ)) =

∫
Ω
|∇(τu1

ε + (1− τ)u0
ε)|2 dx(∫

Ω
Ψα|τu1

ε + (1− τ)u0
ε|p dx

)2/p

=

∫
Ω
τ2|∇u1

ε|2 dx+
∫
Ω
(1− τ)2|∇u0

ε|2 dx(
τp

∫
Ω

Ψα|u1
ε|p dx+ (1− τ)p

∫
Ω

Ψα|u0
ε|p dx

)2/p

≤ τ2
∫
Ω
|∇u1

ε|2 dx(
τp

∫
Ω

Ψα|u1
ε|p dx

)2/p
+

(1− τ)2
∫
Ω
|∇u0

ε|2 dx(
(1− τ)p

∫
Ω

Ψα|u0
ε|p dx

)2/p

= Rα,p(u0
ε) +Rα,p(u1

ε) ≤ 2Mε < 3S0,2∗ ≤ Srad
α,p .

This concludes the proof. ¤
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5. Behaviour of the ground-state solutions for α large

This section is devoted to the analysis a ground state solution as α→ +∞. Even
in this case this solution tends to “concentrate” at the boundary ∂Ω. However, this
concentration is much weaker than the concentration as p→ 2∗.

We use the notation C(r1, r2) = {x ∈ RN | r1 < |x| < r2}. Let δ be sufficiently
small (say δ < 1

2 ) and φ be a smooth cut-off function such that 0 ≤ φ ≤ 1 with

(16) φ(x) =

{
1, x ∈ C(1, 1 + δ) ∪ C(3− δ, 3)
0, x ∈ C(2− δ, 2 + δ)

From now on, since p ∈ (2, 2∗) is fixed we denote the ground state solution of
problem (1) uα,p with uα.

Proposition 12. Let uα be such that Rα,p(uα) = Sα,p. If φ is as in (16), then

(17) Rα,p(φuα) = Sα,p + o(Sα,p) as α→ +∞.

Proof. It is not restrictive, by the homogeneity of Rα,p, to assume
∫
Ω
|∇uα|2 dx = 1.

We split the proof into two steps.
Step 1. We claim that

(18)
∫

Ω

Ψα(uαφ)p dx =
∫

Ω

Ψαu
p
α dx + o

(∫

Ω

Ψαu
p
α dx

)

Indeed, suppose on the contrary that

lim sup
α→∞

∫
Ω

Ψαu
p
α(1− φp) dx∫

Ω
Ψαu

p
α dx

= β > 0

This implies that, up to some subsequence,∫
Ω

Ψαu
p
α(1− φp) dx∫

Ω
Ψαu

p
α dx

> β/2 > 0

Since 1− φp ≡ 0 on C(1, 1 + δ) ∪ C(3− δ, 3) we have∫

Ω

Ψαu
p
α(1− φp) dx =

∫

C(1+δ,3−δ)

Ψαu
p
α(1− φp) dx

≤ (1− δ)α

∫

Ω

up
α(1− φp) dx ≤ (1− δ)α

∫

Ω

up
α dx.

Therefore ∫

Ω

up
α dx ≥ (1− δ)−α

∫

Ω

Ψαu
p
α(1− φp) dx

Now ∫
Ω
up

α dx∫
Ω

Ψαu
p
α dx

≥ (1− δ)−α

∫
Ω

Ψαu
p
α(1− φp) dx∫

Ω
Ψαu

p
α dx

≥ (1− δ)−α β

2
.

Since Sp/2
α,p =

(∫
Ω

Ψαu
p
α dx

)−1 the last inequality can be written as

Sp/2
α,p ≥

β

2
(1− δ)−α

∫
Ω
up

α dx
≥ β

2
(1− δ)−αS

p/2
0,p ,

where

S0,p = inf
u 6=0

∫
Ω
|∇u|2 dx

(
∫
Ω
up dx)2/p

On the other hand from (14) one has the estimate

Sp/2
α,p ≤ Cαp−N

2 p+N ,

which gives a contradiction for α large. This proves (18).
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Step 2. Now we prove that

(19)
∫

Ω

|∇uαφ|2 dx =
∫

Ω

|∇uα|2 dx + o(1) = 1 + o(1).

It is not difficult to prove that uα satisfies the problem

(20)





−∆uα = S
p/2
α,p Ψαu

p−1
α in Ω,

uα > 0 in Ω,
uα = 0 on ∂Ω,

Since ‖∇uα‖2 = 1, up to subsequences, we have that, as α→∞,

uα → u weakly in H1
0 (Ω), strongly in Lq(Ω), and a.e.

We now prove that u = 0. Indeed, multiplying equation (20) by a smooth function
ψ with suppψ ⊂⊂ Ω and integrate, we obtain∫

Ω

∇uα∇ψ dx =
∫

Ω

Sp/2
α,p Ψαu

p−1
α ψ dx→ 0, α→ +∞

since, by (14), Sp/2
α,p Ψα → 0 uniformly on suppψ and uα is uniformly bounded in

Lq for 1 ≤ q < 2∗. This implies that u = 0.
Now we estimate the difference

(21)
∣∣∣∣
∫

Ω

|∇uα|2 dx−
∫

Ω

|∇(uαφ)|2 dx
∣∣∣∣ ≤

≤
∫

Ω

|∇uα|2(1− φ2) dx+
∫

Ω

|∇φ|2u2
α dx+ 2

∣∣∣∣
∫

Ω

∇uα∇φuαφ dx

∣∣∣∣
The last terms tend to zero thanks to the strong convergence in Lq for all q ∈
[1, 2∗). In order to estimate the term

∫
Ω
|∇uα|2(1 − φ2) dx, we multiply (20) by

uα(1− φ2) = uαη and integrate. Since supp η = supp(1− φ2) ⊂⊂ Ω we have∫

Ω

∇uα∇(ηuα) dx =
∫

Ω

Sp/2
α,p Ψαu

p
αη dx,

so that∣∣∣∣
∫

Ω

|∇uα|2η dx
∣∣∣∣ ≤

∣∣∣∣
∫

Ω

uα∇η∇uα dx

∣∣∣∣ +
∣∣∣∣
∫

Ω

Sp/2
α,p Ψαu

p
αη dx

∣∣∣∣

≤ ||∇η||∞
∫

supp η

|∇uαuα | dx+
∣∣∣∣
∫

supp η

Sp/2
α,p Ψαu

p
αη dx

∣∣∣∣ → 0.

¤

In proposition 12 we proved that the infimum of the Rayleigh quotient Rα,p is
essentially attained by the function φuα. Thanks to the definition of φ, we can
decompose φuα = uα,1 + uα,2, where uα,1 vanishes in C(2− δ, 3) and uα,2 vanishes
in C(1, 2 + δ). The following proposition is the main step in order to prove that
the function φuα concentrates at one of the boundaries.

Proposition 13. Let φuα = uα,1 + uα,2, where suppuα,1 ⊂ C(1, 2 − δ) and
suppuα,2 ⊂ C(2 + δ, 3). Then

(22) either lim
α→+∞

∫
Ω

Ψαu
p
α,1 dx∫

Ω
Ψαu

p
α,2 dx

= 0 or lim
α→+∞

∫
Ω

Ψαu
p
α,2 dx∫

Ω
Ψαu

p
α,1 dx

= 0.

Proof. By the definition of uα,1 and uα,2 we have

(23) Rα,p(φuα) =

∫
Ω
|∇uα,1|2 dx+

∫
Ω
|∇uα,2|2 dx

(∫
Ω

Ψαu
p
α,1dx+

∫
Ω

Ψαu
p
α,2dx

) 2
p

.
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Let us define λα as
∫
Ω

Ψαu
p
α,1 = λα

∫
Ω

Ψαu
p
α,2. Since uα is a positive solution and

it depends continuously on the parameter α, the function λα is continuous in α and
λα > 0. We obtain the following identity:

Rα,p(φuα) =

∫
Ω
|∇uα,1|2 dx+

∫
Ω
|∇uα,2|2 dx(

λα

∫
Ω

Ψαu
p
α,2 dx+

∫
Ω

Ψαu
p
α,2 dx

)2/p

=

∫
Ω
|∇uα,1|2 dx

(λα + 1)2/p (∫
Ω

Ψαu
p
α,2 dx

)2/p
+

∫
Ω
|∇uα,2|2 dx

(λα + 1)2/p (∫
Ω

Ψαu
p
α,2 dx

)2/p

=
λ

2
p
α

∫
Ω
|∇uα,1|2 dx

(λα + 1)
2
p

(∫
Ω

Ψαu
p
α,1 dx

)2/p
+

∫
Ω
|∇uα,2|2 dx

(λα + 1)
2
p

(∫
Ω

Ψαu
p
α,2 dx

)2/p
.(24)

By the definition of Sα,p each quotient Rα,p(uα,1) and Rα,p(uα,2) in the last term
is greater than or equal to Sα,p. Therefore by Proposition 12 and equation (24) one
obtains

(25) Sα,p + o(Sα,p) ≥ 1 + λ
2
p
α

(λα + 1)
2
p

Sα,p.

We notice that the function f(x) = 1+x2/p

(x+1)2/p is strictly greater than 1 for every
x > 0, f(0) = 1 and f(x) → 1 as x → +∞. Moreover it is increasing in [0, 1]
and decreasing in [1,+∞) and maxx>0 f(x) = f(1) = 21−2/p. Let us denote L =
lim supα→+∞ λα and l = lim infα→+∞ λα. By the inequality (25) it is easy to see
that either l = L = +∞ or L = l = 0. In fact if let α → +∞ in (25), we obtain
that 1 ≥ 1+l2/p

(l+1)2/p and 1 ≥ 1+L2/p

(L+1)2/p and so either l = 0 and L = +∞, or l = +∞
and L = 0. Let us prove that the case L = +∞ and l = 0 cannot happen. Let
us suppose by contradiction that L = +∞ and l = 0. Then the continuity of λα

implies that there exists a sequence such that limn→+∞ λαn = 1. If we evaluate
the inequality (25) on this sequence λαn we obtain the contradiction 1 ≥ 21−2/p.
So we have proved that either L = l = +∞ or L = l = 0 and this concludes the
proof of the proposition. ¤

Corollary 14. With the notation of Proposition 13 one has

(26) either lim
α→+∞

∫
Ω
|∇uα,1|2 dx∫

Ω
|∇uα,2|2 dx = 0 or lim

α→+∞

∫
Ω
|∇uα,2|2 dx∫

Ω
|∇uα,1|2 dx = 0.

Proof. By virtue of Proposition 13 we may assume that λα =

∫
Ω

Ψαu
p
α,1 dx∫

Ω
Ψαu

p
α,2 dx

→ 0, up

to subsequences. Suppose that lim supα→∞ ξα > 0. Up to subsequences, ξα > ξ > 0
for some ξ. Therefore we have

Sα,p + o(Sα,p) =

∫
Ω
|∇uα,1|2 dx+

∫
Ω
|∇uα,2|2 dx

(∫
Ω

Ψαu
p
α,1dx+

∫
Ω

Ψαu
p
α,2dx

) 2
p

=
(1 + ξα)

∫
Ω
|∇uα,2|2 dx

(∫
Ω

Ψαu
p
α,2dx

) 2
p (1 + λα)

≥ Rα,p(uα,2)
1 + ξ

1 + o(1)
≥ (1 + ξ)Sα,p + o(Sα,p),

which is a contradiction. Hence

ξα =

∫
Ω
|∇uα,1|2 dx∫

Ω
|∇uα,2|2 dx → 0.

¤
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Remark 15. An immediate consequence of the previous results is that in particular

(27) lim
α→+∞

∫

Ω

|∇uα,1|2 dx = 0 or lim
α→+∞

∫

Ω

|∇uα,2|2 dx = 0,

that is the ground state solution concentrates at only one component of the bound-
ary.

6. appendix

We present here the proofs of some result used in the third section. They appear
in [6] in the case of the ball. Although the proofs for the annulus follow the same
lines, we repeat the details for the sake of completeness.

Proof of Lemma 8. By a straightforward computation we have the following esti-
mates of Brezis-Nirenberg type (see [3], [6])

‖ui
ε‖2p = ‖U‖2pε

n
p−(n−2) + CK1(ε)‖U‖2−p

p ε
(n−2)p

2 −n
2 + n

p−(n−2)

where K1(ε) = C| log ε|(n−2)p−n and

(28) ‖∇ui
ε‖22 = ‖∇U‖22ε−

n−2
2 +





C| log ε|n−2 + o(| log ε|n−2), n ≥ 5
C| log ε|2(log(2| log ε|)) +O(| log ε|2), n = 4
C| log ε|2 + o(| log ε|2), n = 3.

Moreover if x0 = (3− 1
| log ε| , 0, ..., 0)

∫

Ω

Ψα(|x|)|u0
ε(x)|p dx ≥

∣∣∣∣
(

3− 2
| log ε|

)
− 2

∣∣∣∣
α ∫

Ω

|u0
ε(x)|p dx

=
(

1− 2
| log ε|

)α ∫

Ω

|u0
ε(x)|p dx

and if x1 = (1 + 1
| log ε| , 0, ..., 0) we have

∫

Ω

Ψα(|x|)|u1
ε(x)|p dx ≥

∣∣∣∣
(

1 +
2

| log ε|
)
− 2

∣∣∣∣
α ∫

Ω

|u1
ε(x)|p dx

=
(

1− 2
| log ε|

)α ∫

Ω

|u1
ε(x)|p dx.

Therefore for n ≥ 5 we get

lim
p→2∗

∫
Ω
|∇ui

ε|2 dx(∫
Ω

Ψα(x)|ui
ε(x)|p dx

)2/p

≤ lim
p→2∗

1
(
1− 2

| log ε|
)2α/p

‖∇U‖22ε−
(n−2)

2 + C| log ε|n−2 + o(| log ε|n−2)

‖U‖2pε
n
p−(n−2) + CK1(ε)‖U‖2−p

p ε
(n−2)p

2 −n
2 + n

p−(n−2)

=
1

(
1− 2

| log ε|
)2α/2∗

‖∇U‖22ε−
(n−2)

2 + C| log ε|n−2 + o(| log ε|n−2)

‖U‖22∗ε−
n−2

2 + C| log ε|nε

=
1

(
1− 2

| log ε|
)2α/2∗

‖∇U‖22 + C(ε
1
2 | log ε|)n−2 + o(| log ε|n−2ε

n−2
2 )

‖U‖22∗ + C(ε
1
2 | log ε|)n

=
‖∇U‖22
‖U‖22∗

+K(ε).

(29)
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On the other hand ∫
Ω
|∇ui

ε|2 dx(∫
Ω

Ψα|ui
ε|p dx

) 2
p

≥
∫
Ω
|∇ui

ε|2 dx(∫
Ω
|ui

ε|p dx
) 2

p

and

lim
p→2∗

∫
Ω
|∇ui

ε|2 dx(∫
Ω

Ψα|ui
ε|p dx

) 2
p

≥ ‖∇U‖22
‖U‖22∗

+K(ε).

Similar estimates hold for n = 3 and n = 4. ¤

Proof of Theorem 6. We split the proof in two steps.
Step 1. We claim that,

(30) lim
p→2∗

∫
Ω
|∇uα,p|2 dx

(
∫
Ω

Ψα|uα,p|p dx)2/p
= S0,2∗ and lim

p→2∗

∫
Ω
|∇uα,p|2 dx

(
∫
Ω
|uα,p|2∗ dx)2/2∗ = S0,2∗ .

Indeed from the definition of S0,2∗ and Hölder inequality we get:

S0,2∗ ≤
∫
Ω
|∇up,α|2 dx(∫

Ω
|up,α|2∗ dx

)2/2∗ ≤ |Ω| (2
∗−p)2
2∗p

∫
Ω
|∇up,α|2 dx

(
∫
Ω
|up,α|p dx)2/p

.

Then, since the weight satisfies Ψα(x) ≤ 1,
∫
Ω
|∇up,α|2 dx

(
∫
Ω
|up,α|p dx)2/p

≤
∫
Ω
|∇up,α|2 dx

(
∫
Ω

Ψα|up,α|p dx)2/p
≤

∫
Ω
|∇ui

ε|2 dx
(
∫
Ω

Ψα|ui
ε|p dx)2/p

,

where in the last inequality we used the fact that uα,p is a minimum. Thanks to
Lemma 8 the right hand side of the inequalities goes to S0,2∗ and this proves the
claim.
Step 2. Without loss of generality we set ‖up,α‖2∗ = 1. From the previous step for
any subsequences pk → 2∗ as k → +∞ ∫

Ω
|∇uα,pk

|2dx→ S0,2∗ . So the subsequence
upk

is bounded in H1
0 . By the concentration compactness principle (see [11]), there

exist nonnegative measures µ and ν on RN , a function u ∈ H1
0 and an at most

countable set J such that as k → +∞
upk

→ u weakly in H1
0 ;

|∇upk
|2 → µ in the sense of measure on RN ;

|upk
|2∗ → ν in the sense of measure on RN ;

and

ν = |u|2∗ +
∑

j∈J

νjδxj

µ ≥ |∇u|2 +
∑

j∈J

µjδxj

µj ≥ S0,2∗ν
2/2∗

j

where xj ∈ RN , δxj is the Dirac measure at xj and µj , νj are positive constants. The
convergence in the sense of measure reads as follows: for any ϕ ∈ L∞(RN )∩C(RN ),
as k → +∞ ∫

RN

ϕ|∇upk
|2dx→

∫

RN

ϕdµ

and ∫

RN

ϕ|upk
|2∗dx→

∫

RN

ϕdν.
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When ϕ(x) ≡ 1 we get
∫

RN

|∇upk
|2dx→

∫

RN

dµ = µ(RN )

and ∫

RN

|upk
|2∗dx→

∫

RN

dν = ν(RN ).

Now we prove that J is not empty. Suppose on the contrary that J is empty then

ν = |u|2∗ ,
∫

RN

|upk
|2∗dx→

∫

RN

|u|2∗dx

and

S0,2∗ = lim
k→+∞

∫

Ω

|∇upk
|2dx = µ(RN ) ≥

∫

Ω

|∇u|2 dx.

Finally since
R
Ω |∇u|2 dx

(
R
Ω |u|2

∗ dx)2/2∗ ≥ S0,2∗ we have that S0,2∗ =
∫
Ω
|∇u|2 dx. But this is

impossible since the critical Sobolev constant S0,2∗ is not achieved in any bounded
domain.

Moreover we have that u ≡ 0. Assume on the contrary that u 6≡ 0, so that
0 <

∑
j∈J νj < 1. By

S0,2∗ = lim
k→+∞

‖∇upk
‖22 ≥

∫

Ω

|∇u|2 dx+
∑

j∈J

S0,2∗ν
2/2∗

j ,

1 = ν(RN ) =
∫

Ω

|u|2∗ dx+
∑

j∈J

νj

we have
∫

Ω

|∇u|2 dx ≤ S0,2∗−
∑

j∈J

S0,2∗ν
2/2∗

j < S0,2∗(1−
∑

j∈J

νj)2/2∗ = S0,2∗

(∫

Ω

|u|2∗ dx
)2/2∗

,

which is impossible. Hence u ≡ 0. Finally we prove that J is a single point set.
Assume on the contrary that J contains at least two points. Since u = 0 we have

S0,2∗ = lim
k→+∞

‖∇upk
‖22 ≥

∑

j∈J

S0,2∗ν
2/2∗

j

and

1 = ν(RN ) =
∑

j∈J

νj .

So

0 ≤ S0,2∗ −
∑

j∈J

S0,2∗ν
2/2∗

j < S0,2∗(1−
∑

j∈J

νj) = 0

which is impossible. Finally we prove that x0 ∈ ∂Ω. Suppose on the contrary that
x0 ∈ Ω. Then there exists c ∈ (0, 1) such that dist(x0, ∂Ω) = c+r, r > 0. Therefore
thanks to the concentration property of the solution we have

∫

Ω\B(x0,r)

Ψα|upk
|pk dx→ 0
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so that, by (30),

S0,2∗ = lim
k→+∞

∫
Ω
|∇upk

|2 dx
(∫

Ω
Ψα|upk

|pk dx
)2/pk

= lim
k→+∞

∫
Ω
|∇upk

|2 dx
(∫

Ω\B(x0,r)
Ψα|upk

|pk dx+
∫

B(x0,r)
Ψα|upk

|pk dx
)2/pk

≥ lim
k→+∞

∫
Ω
|∇upk

|2 dx
(1− c)2α/pk

(∫
B(x0,r)

|upk
|pk dx

)2/pk

≥ 1

(1− c)2α/2∗ lim
k→+∞

∫
Ω
|∇upk

|2 dx
(∫

Ω
|upk

|pk dx
)2/pk

=
1

(1− c)2α/2∗ S0,2∗

which is impossible since (1− c)2α/2∗ < 1. ¤
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