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Abstract

The aim of this paper is to investigate the ability of the Dynamic
Variance Gamma model, recently proposed by Bellini and Mercuri (2010),
to evaluate option prices on the S&P500 index. We also provide a simple
relation between the Dynamic Variance Gamma model and the Vix index.
We use this result to build a maximum likelihood estimation procedure
and to calibrate the model on option data.
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1 Introduction

In this work, we investigate the ability of the Dynamic Variance Gamma model,
recently proposed by Bellini and Mercuri (2010), to reproduce the option prices
on the S&P500 index (SPX). We also propose a simple historical estimation
procedure based on the SPX index and the Vix index.

The Dynamic Variance Gamma model (DVG henceforth) is a discrete time
stochastic volatility model where the logreturns follow a conditional Variance
Gamma distribution (VG henceforth). The VG distribution belongs to the class
of normal variance-mean mixture and corresponds to the case of a Gamma mix-
ing density. Madan and Seneta (1990) have shown the strong ability of the VG
to reproduce the stylized fact of the �nancial logreturns and empirical tests seem
to justify the VG option pricing model (see Lam et al. (2002) for example).
The aim of the DVG model is to generalize a model with i.i.d. VG innovations.
For this reason, the DVG model has been built to capture a time varying condi-
tional distribution by means of a time varying mixing density. To achieve this
result, the shape parameter of the mixing density follows an a¢ ne Garch with
Gamma innovations. Moreover, the model captures a time varying conditional

�Dipartimento di Metodi Quantitativi, Università di Milano Bicocca, Italy. E-mail:
lorenzo.mercuri@unimib.it

1



variance and a time dynamics of higher order moments.
Another feature of the DVG model is that it is possible to obtain a recursive
procedure for the characteristic function of the logprice at maturity and hence
a semi-analitycal option pricing formula based on inverse Fourier transform as
in Heston (1993) and Carr and Madan (1999).

The �rst aim of this paper is to provide a simple historical estimation pro-
cedure for the DVG model. As mentioned before, the model is a stochastic
volatility model and the construction of a maximum likelihood function requires
extensive computational methods, since the variance dynamics is not observable
from SPX logreturns. Our idea is to extrapolate this information from the Vix
data. We �nd a linear relation between the variance dynamics and the current
Vix value (a similar result has been provided by Zang and Zhu (2006) under the
assumption that the logreturns follow the Heston model (1993)).
The Vix index was introduced by the Chicago Board Options Exchange (CBOE)
in 1993 and it was originally designed to measure the market�s expectation of
30-day volatility implied by at-the money S&P100 Index (OEX) option prices.
In 2003, CBOE together with Goldmann Sachs has substantially modi�ed the
Vix index. The OEX has been replaced by the SPX and a new methodology
of evaluating the Vix has been based on an option portfolio (see the CBOE�s
white paper (2003) for details)

In order to assess the capability of the DVG model to capture the option
market�s behavior, we follow two approaches applied in �nancial literature.
The �rst approach is to calibrate the parameters using only option prices (see
for example Bakshi et al (1996)); since the DVG model allows a semi-analytical
procedure for option pricing formula this approach is easy to implement. How-
ever, as observed by Christo¤ersen and Jacobs (2004), the results could depend
on the choice of the objective function and they could be unstable over time.
The second methodology is a "mixed" approach; the idea is to estimate the
parameters using underlying time series and the available option prices in the
market. As observed by Menn and Rachev (2009), this method tries to obtain
more stable estimations and to reproduce the behavior of option markets at the
same time.

The paper is organized as follows. In Section 2, we review some features and
results of the DVG model. In Section 3, we construct a maximum likelihood
estimation procedure using the Vix data and we compare its results to a model
with i.i.d. VG innovations. In Section 4, The DVG option pricing model is
tested on 2009 daily closing European option prices on the S&P500 index and
compared with the VG model.

2 Dynamic Variance Gamma model

The aim of this section is to review the main features and the main results of
option pricing for the DVG model. We consider a discrete-time market com-
posed by a risky asset and a free-risk bond. The dynamics of riskless security
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is given by
Bt = Bt�1 exp (r)

where r is the risk-free rate, for simplicity assumed constant.
The stock price dynamics is speci�ed by

St = St�1 exp (Yt)

and the logreturns Yt follow a DVG model de�ned as:8>><>>:
Yt = r + �Vt + �

p
VtZt

VtjFt�1 s � (aht; 1)
Zt s N (0; 1) i:i:d:
ht = �0 + �1Vt�1 + �1ht�1

(1)

with a; �0; �1; �1 > 0:
By posing

a =
1�

�2 + �2
�

the ht process is the variance dynamics.

As observed by Bellini and Mercuri (2010), the basic idea of the model is to make
the conditional distribution of logreturns time-varying and this result is achieved
by imposing that the shape parameter of the Gamma mixing density evolves
according to a predictable process ht. Therefore the model is able to capture
the time varying conditional variance exactly as in Garch models, moreover it
allows a time dynamics for conditional skewness and kurtosis in a simple way.
The �rst four conditional moments are given by:

Et�1 (Yt) = r + a�ht
V art�1 (Yt) = a

�
�2 + �2

�
ht

Skewt�1 (Yt) =
(2�2+3�2)�p
a(�2+�2)3ht

kurtt�1 (Yt) = 3
n
1 + 2�4+�4+4�2�

a(�2+�2)2ht

o (2)

We can see that the asymmetry has the same sign of the parameter � and the
kurtosis is always greater than 3 and it is a decreasing function of the ht. When
�0 = �1 = 0 and �1 = 1 we obtain a model with i.i.d. Variance Gamma
logreturns and when � = 0 we recover an a¢ ne Gamma Garch model that has
been studied by Bellini and Mercuri (2007)

As Heston and Nandi (2000), Bellini and Mercuri (2010) showed that the
DVG process has a recursive procedure for the conditional m.g.f. of the terminal
log-price of stock asset:

Et (S
c
T ) = S

c
t exp (A(t;T; c) +B (t;T; c)ht+1)
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where the time-dependent coe¢ cients A(t;T; c) and B (t;T; c) follow the recur-
sions:(
A(t;T; c) = cr +A(t+ 1;T; c) + �0B (t+ 1;T; c)

B (t;T; c) =
h
�1B (t+ 1;T; c)� a log

h
1�

�
c�+ �1B (t+ 1;T; c) +

c2�2

2

�ii
with terminal conditions �

A(t;T; c) = 0
B(t;T; c) = 0

We conclude this section reviewing the issue of option pricing. The DVG
model is an incomplete market, therefore it is necessary to identify an equiv-
alent martingale measure and the standard way of choosing it is based on the
conditional Esscher transform proposed by Buhlmann et al. (1996).
Under the new measure, the logreturns dynamics is given by8>>>>><>>>>>:

St = St�1 exp (Yt)

Yt = r �
�2Q
2 Vt + �Q

p
VtZt

VtjFt�1 s � (aht; 1)
ht = �0 + �1Vt�1 + �1ht�1
�2Q = � 8�4

�4�4�2�8�2

(3)

(see Bellini and Mercuri (2010) for details).
In order to identify the martingale measure we need �ve parameters (a; �0; �1; �1; �Q)
and the �rst four are the same under real measure.

3 Historical estimation procedure and compar-
ison with the Variance Gamma model

The purpose of this section is to deal with the issue of historical estimation for
the DVG model and we provide a comparison with the VG model based on SPX
and VIX time series.
In order to build a maximum likelihood procedure, we have to address two
problems. First, the VG density has not got a simple analytical form. However,
as reported in Bellini and Mercuri (2010), it is well approximated by a �nite
mixture of normals. Indeed the VG belongs to the class of normal variance
mean mixture and the key idea of approximating its density is based on the
Gauss-Laguerre quadrature of the following integral:

ft�1 (yt) =

+1Z
0

1p
2��2s

exp(� (yt � r � �s)
2

2�2s
)
saht�1

� (aht)
e�sds

~=
MX
i=1

' (yt; r + �xi; �
p
xi)

uaht�1i

� (aht)
w (xi)
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where ' (y; �; �) is a normal density with mean � and variance �2, xi are the
roots of the Laguerre polynomials Ln (x) and the weights w (xi) are calculated
as

w (xi) =
ui

(n+ 1)
2
L2n+1 (xi)

(see Abromowitz and Stegun 1972).
As shown in the �gure 1, the approximation seems to work very well in practice.

Insert �g. 1 here

The second problem arises from the fact that the DVG model is a stochastic
volatility model, hence a maximum likelihood procedure based exclusively on
the time series of logreturns seems to be di¢ cult. For this reason, we provide a
relation between the ht process and the Vix index.
The methodology of computing the Vix index is based on the replication strategy
of variance swaps proposed by Demeter� et al. (1999). Indeed the current Vix
value is related to a portfolio composed by out-of-the money put/call options
on the S&P500 index. Although the Vix index depends on the available option
quotes on the market, it is reasonable to assume that the strike prices are
continuously distributed from 0 to +1. We neglect the discretization error and
the Vix formula is de�nitively given by:

�
V ixt
100

�2
=

2er(T�t)

T � t

24S�Z
0

1

K2
P (St;K) dK +

+1Z
S�

1

K2
C (St;K) dK

35 =
=

2er(T�t)

T � t

�
EQt

�
ST � S�
S�

� ln
�
ST
S�

���
: (4)

where K are the strike prices and S� is the forward price of the S&P500 index.
When the SPX logreturns follow a DVG model, the equation (4) becomes:�

V ixt
100

�2
=
�2Qe

r(T�t)

T � t (At +Btht+1) (5)

where

At = a�0

0@ (T � t)� 1� (�1a+ �)
�
1�(�1a+�)(T�t)�1

1�(�1a+�)

�
1� (�1a+ �)

1A
Bt = a

1� (�1a+ �)T�t

1� (�1a+ �)

(see the appendix for a complete derivation of the formula).
In conclusion the log-likelihood function is given by

L (�; �; a; �0; �1; �) =
TX
t=1

ln

 
MX
i=1

' (yt; r + �xi; �
p
xi)

uaht�1i

� (aht)
w (xi)

!
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We obtain the parameters �; �; a; �0; �1; � by solving the optimization problem
as de�ned:

max
�;�;a;�0;�1;�

L (�; �; a; �0; �1; �)

with constrains ( �
V ixt
100

�2
=

�2Qe
r(T�t)

T�t (At +Btht+1)

�2Q = � 8�4

�4�4�2�8�2

The dataset is composed by 1575 SPX logreturns and 1575 observations of the
Vix index ranging from 02/01/2004 to 06/04/2010. The SPX logreturns have
been corrected by the dividend yield computed by Bloomberg and we have
used the free risk rate extracted by Bloomberg�s C079 curve. The optimization
problem have been solved by using the Matlab function FMINCON and the results
have been reported in the following table:

Insert tab. 1 here

In both cases, the risk premium is positive, moreover for the DVG model
the parameters �1 and � are di¤erent from zero, therefore a portion of the
previous ht and previous Vt will propagate to future variance. To evaluate
the improvement of the DVG model with respect to the VG model we have
also performed a likelihood ratio test that supports the idea of a time varying
conditional distribution for logreturns.

4 Calibration and Comparison

In the preceding section we saw that the DVG model is an improvement com-
pared to a model with i.i.d. Variance Gamma innovations when we consider a
historical estimation. In this section we investigate the capability of this model
to �t the option market prices and, as we did for the historical procedure, we
compare its performance with the VG model.

We use SPX European options quoted on CBOE. The dataset is composed
by closing prices collected every Wednesday from 01/01/2007 to 12/31/2009.
We include only options with time to maturity more than 10 days and less
than 100 and moneyness ranging from 0.9 to 1.10. All options have to obey
the Merton�s constraints and the condition of the "convex in strike". Starting
initially with 5799 price quotes we end up with 2009 remaining option prices.
On each Wednesday, we have approximately 16 option prices

In order to estimate the DVG model from option prices we follow the cal-
ibration and the "mixed" approach, both procedures have been implemented
in Matlab environment. In the �rst case, the parameters have been found by
minimizing the (dollar) root mean squared error (RMSE) de�ned as:

$RMSE =

vuut 1

N

NX
i=1

�
Ctheoi � Cmkti

�2
(6)
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and the current value of the process ht has been extrapolated by the Vix index
using the preceding result (5) : In the "mixed" approach, the parameters of the
process ht have been estimated from the time series of the S&P500 index and
the Vix index by maximum likelihood estimation while the parameters of the
logreturns Yt dynamics have been obtained by calibration.
As is customary in empirical works, we split the dataset into in-sample and
out-of-sample data. We estimate the model in-sample data and we measure its
performances in out-of-sample. To check the performance of the �t we adopt
the RMSE.

The following tables refer respectively to the in-sample estimation of the
DVG model obtained by calibration and "mixed" procedures

Insert tab. 2, 3 here

In the in-sample analysis, we used only the Wednesdays reported in tables
2 and 3. For the "mixed" approach, we perform the maximum likelihood es-
timation using the preceding 1000 observations of the SPX index and the Vix
index. With regards to the out-of-sample analysis, we report the RMSE in the
following �gures:

Insert �g. 2, 3, 4 here

The best result is achieved by the DVG model with calibration (DVG1).
Indeed its RMSE is less than that obtained by "mixed" procedure (DVG2)
in the 63.26% of cases while, compared to the VG model (VG), the percentage
goes up to the 77.51%. The second best performance is obtained by the "mixed"
approach. Indeed DVG2 improves VG in the 63.94% of cases.
In order to further analyze and compare the pricing error, we report the average
RMSE for di¤erent levels of moneyness and maturity in the following table:

Insert tab. 4 here.

On the one hand the table 4 seems to con�rm the preceding result between
DVG1 and VG. On the other, the comparison between DVG2 and VG deserves
more attention. Since in the �rst two years we see that DVG2 has got smaller
pricing error than VG but, in 2009, we observe a di¤erent situation. Moreover
if we look to options with maturity less than 30 days the VG model obtain
better performance than the DVG model with both procedures. Nevertheless
in general the idea of a model with the time varying conditional distribution
seems to be supported by option markets.
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5 Appendix

Vix and the Dynamic Variance Gamma model.
The formula of the Vix index is

�
V ixt
100

�2
=

2er(T�t)

T � t

24S�Z
0

1

K2
P (St;K) dK +

+1Z
S�

1

K2
C (St;K) dK

35 =
=

2er(T�t)

T � t

�
EQt

�
ST � S�
S�

� ln
�
ST
S�

���
where C (St;K) and P (St;K) are respectively the prices of out-of-the money
call and put options, S� is the forward price of the SPX Index. Therefore the
Vix is given by �

V ixt
100

�2
= �2e

r(T�t)

T � t E
Q
t

�
ln

�
ST
S�

��
(7)

Under the assumption that the underlying process follows a DVG model, the
(7) becomes �

V ixt
100

�2
=
er(T�t)

T � t �
2
QE

Q
t

 
TX

d=t+1

Vd

!
(8)

We assume that the conditional expected value in (8) has the following form

EQl

 
TX

d=t+1

Vd

!
=

lX
d=t+1

Vd +Al +Blhl+1 (9)

we suppose the relation holds at time l + 1 and by the iteration law of the
conditional expected value we obtain

EQl

 
TX

d=t+1

Vd

!
=

lX
d=t+1

Vd + E
Q
l (Vl+1 +Al+1 +Bl+1hl+2) =

=
lX

d=t+1

Vd +Al+1 + �0Bl+1 + [a+ (�1a+ �)Bt+1]ht+1(10)

by comparison the assumption (9) with (10) we obtain the following recursive
system for the coe¢ cients Al+1 and Bl+1�

Al = Al+1 + �0Bl+1
Bl = a+ (�1a+ �)Bt+1

(11)

with �nal condition �
AT = 0
BT = 0
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We solve analytically the system (11) and we have:

At = a�0

0@ (T � t)� 1� (�1a+ �)
�
1�(�1a+�)(T�t)�1

1�(�1a+�)

�
1� (�1a+ �)

1A
Bt = a

1� (�1a+ �)T�t

1� (�1a+ �)

then

�
V ixt
100

�2
=

er(T�t)�2Qa

T � t

24�0
0@ (T � t)� 1� (�1a+ �)

�
1�(�1a+�)(T�t)�1

1�(�1a+�)

�
1� (�1a+ �)

1A+
+
1� (�1a+ �)T�t

1� (�1a+ �)
ht+1

#

VG model DVG model
a 2,24 (4,56E-03) 39,07 (4,19)
� 4,73E-03 (1,06E-05) 3,34E-03 (1,12E-03)
� 5,75E-04 (5,06E-06) 1,06E-03 (2,08E-03)
�0 - 2,94E-07 (2,52E-02)
�1 - 1,24E-02 (5,32E-03)
� - 0,79 (0,35)
Logl 4846,93 4933,14
LR statistic 172,41
p value 3,82E-37

Tab.1 Estimated parameters by maximum likelihood procedure

a lambda_Q sigma_Q alpha_0 alpha_1 beta_1 RMSE
17/01/07 192,46 -4,05E-06 2,85E-03 5,48E-04 3,28E-03 3,25E-01 2,02
18/04/07 51,12 -2,28E-05 6,76E-03 1,48E-03 1,63E-02 3,05E-05 2,32
15/08/07 75,91 -3,48E-04 2,64E-02 3,39E-04 8,51E-03 1,59E-01 15,99
12/12/07 152,83 -1,45E-05 5,39E-03 7,75E-04 3,46E-03 4,46E-01 4,80
16/04/08 422,13 -2,94E-06 2,43E-03 2,79E-02 3,11E-04 1,13E-02 7,50
13/08/08 2,53 -6,57E-05 1,15E-02 5,42E-02 2,98E-01 6,75E-07 2,18
17/12/08 0,05 -2,87E-02 2,39E-01 1,90E-01 8,18E-01 6,16E-02 7,85
15/04/09 1,09 -4,15E-04 2,88E-02 3,26E-02 8,72E-01 6,64E-07 3,49
12/08/09 0,87 -5,66E-04 3,36E-02 1,90E-02 1,00E-01 2,97E-03 2,73
16/12/09 60,46 -2,69E-04 2,32E-02 5,63E-04 1,33E-02 4,05E-06 2,62

Tab. 2 Estimated parameters of the DVG model by calibration procedure using in-sample data
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a lambda_Q sigma_Q alpha_0 alpha_1 beta_1 RMSE
17/01/07 203,67 -6,04E-06 3,48E-03 5,30E-04 3,55E-03 2,46E-01 2,16
18/04/07 127,54 -2,91E-05 7,63E-03 9,60E-04 3,20E-03 2,41E-01 2,46
15/08/07 154,00 -1,01E-12 1,42E-06 1,44E-03 3,60E-03 4,43E-01 16,14
12/12/07 120,04 -4,64E-11 9,64E-06 1,41E-03 3,45E-03 5,69E-01 4,91
16/04/08 48,78 -1,73E-03 5,89E-02 3,30E-04 7,29E-03 1,07E-01 7,74
13/08/08 0,97 -4,39E-06 2,96E-03 3,30E-04 3,46E-01 9,70E-07 5,66
17/12/08 2,86 -6,35E-05 1,13E-02 3,30E-04 3,55E-01 9,70E-07 8,07
15/04/09 0,02 -2,55E-09 7,14E-05 1,48E-16 8,28E-01 1,29E-04 17,08
12/08/09 1,12 -3,34E-05 8,18E-03 1,48E-16 8,97E-01 7,19E-05 3,27
16/12/09 2,17E-04 -1,43E-03 5,34E-02 1,48E-16 1,55E-02 6,81E-06 4,96

Tab. 3 Estimated parameters of the DVG model by mixed procedure using in-sample data

­3 ­2 ­1 0 1 2 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
inv . Fourier transf .
Laguerre 5 comp.
Laguerre 10 comp.

Fig.1 Comparison between the Gauss-Laguerre approximation densities and
the inverse Fourier transform. We choose r = 0; � = 1:30; a = 0:28 and

� = 0:72
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Fig.2 Out-of-sample root Mean Squared Error
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Fig.3 Out-of-sample root Mean Squared Error
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Fig.4 Out-of-sample root Mean Squared Error

13



Moneyness K/S Time to Maturity Tot.

VG

2007
2008
2009

0.9-0.95 0.95-1.05 1.05-1.1

10,65 13,76 15,11
21,59 11,67 17,39
8,01 7,91 9,89

0-30 31-60 61-100

9,25 12,25 14,43
9,29 20,65 16,47
3,04 6,05 18,89

13,25
17,04
8,25

DVG1

2007
2008
2009

0.9-0.95 0.95-1.05 1.05-1.1

9,88 6,23 4,82
15,63 8,04 9,00
6,61 5,88 8,35

0-30 31-60 61-100

3,92 8,27 7,31
6,43 12,98 12,19
4,01 5,18 8,67

7,24
11,65
6,59

DVG2

2007
2008
2009

0.9-0.95 0.95-1.05 1.05-1.1

9,93 6,14 7,09
16,27 10,05 9,50
8,48 8,75 6,27

0-30 31-60 61-100

4,58 8,17 7,88
6,83 13,35 13,92
5,58 5,58 11,24

7,61
12,71
8,33

Tab. 4 Out-of-sample root Mean Squared Error for Moneyness and Time to Maturity
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