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Abstract

We consider the problem of finding the number of permutation non-
equivalent classical irreducible maximal Goppa codes having fixed pa-
rameters q, n and r from a group theory point of view.
Keywords: Goppa codes, Linear codes, Permutation groups

1 Introduction

The study of classical Goppa codes is important since they are a very large
class of codes, near to random codes. They are easy to generate and pos-
sess an interesting algebraic structure. For these reasons they are used in
McEliece’s public key cryptosystem [16]. This cryptosystem is based on the
difficulty to find a generator matrix of a Goppa code when a ”scrambled”
of it is known.

In this paper we consider the problem of finding an upper bound for the
number of permutation non-equivalent irreducible maximal Goppa codes.
This question was considered by several authors (see for example [6], [2],
[3], [7], [9]). In Section 3 we briefly recall these approaches. In particular,
we describe the action of a group FG isomorphic to AΓL(1, qn) on the qn

columns of a suitable parity-check matrix Hα. This induces on maximal
irreducible Goppa codes the same action which arises from [18]. This action
does not describe exactly the orbits of Goppa codes, since in some cases the
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number of permutation non-equivalent Goppa codes is less than the number
of orbits of FG. The group FG acts faithfully on columns of Hα, so that it
may be seen as a subgroup of the symmetric group Sqn . It seems interesting
to study if there is a proper subgroup of Sqn containing FG, acting on the
set Ω of classical irreducible maximal Goppa codes of fixed parameters, and
giving on Ω exactly the orbits of permutation equivalent codes. In order
to consider this problem, we analyze the subgroups of Sqn containing FG
and in Section 4 we find that there exists exactly one maximal subgroup
M , isomorphic to AGL(nm, p) of Sqn (Aqn) containing FG (q = pm). This
suggests that one could consider the action of this M on codes to reach the
right bound.

We are grateful to Andrea Caranti, Andrea Lucchini, John A. Ryan and
Patrick Fitzpatrick for helpful discussions on this subject.

2 Preliminaries

In this section we fix some notation and we recall some basic concepts about
linear codes and in particular about Goppa codes. Our main references are
[11] for coding theory and [5] for group theory.

We denote by Fq the finite field with q elements, where q = pm is a power
of a prime p; let N , k, n and r be natural numbers, k ≤ N . We consider
two extensions of Fq, of degree n and nr, Fqn and Fqnr respectively; Fqn [x]
denotes the polynomial ring over Fqn and ε is a primitive element of Fqn ,
F∗
qn = 〈ε〉. We refer to the vector space of dimension N over Fq as to (Fq)N .

In the following if H is an (N − k) × N matrix with entries in Fq and
rank equal to N −k, the set C of all vectors c ∈ (Fq)N such that HcT = 0 is
an (N, k) linear code over Fq, of length N and dimension k, i.e. a subspace
of (Fq)N of dimension k. The elements of C are called codewords and matrix
H is a parity-check matrix of C. Any k × N matrix G whose rows form a
vector basis of C is called a generator matrix of C.

Definition 2.1. Let E/K be a field extension. A linear code C is called
a subfield subcode if C is obtained as the restriction to Kn of a linear
subspace L of En.

By abuse of notation we call parity-check matrix also a matrix H with
entries in E such that HcT = 0 for all c ∈ C. According to this assumption,
H1 and H2 may be parity-check matrices for the same code even if their
entries are in different extension fields or they have different ranks.
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Definition 2.2 ([11]). Let C1 and C2 be two linear codes over Fq of length
N , let G1 be a generator matrix of C1. Codes C1 and C2 are permutation

equivalent provided there is a permutation σ ∈ SN of coordinates which
sends C1 in C2. Thus C1 and C2 are permutation equivalent provided there
is a permutation matrix P such that G1P is a generator matrix for C2.
They are monomially equivalent provided there is a monomial matrix M
so that G1M is a generator matrix for C2 and equivalent provided there
is a monomial matrix M and an automorphism γ of the field Fq so that
C2 = C1Mγ.

If code C2 is permutation equivalent to C1 with parity-check matrix H1,
we can obtain a parity-check matrix H2 for C2 by permuting columns of H1

(and viceversa).

Definition 2.3. Let g(x) =
∑

gix
i ∈ Fqn [x] and let L = {ε1, ε2, . . ., εN}

denote a subset of elements of Fqn which are not roots of g(x). Then the
Goppa code G(L, g) is defined as the set of all vectors c = (c1, c2, . . ., cN )
with components in Fq which satisfy the condition:

N
∑

i=0

ci
x− εi

≡ 0 mod g(x). (1)

Usually, but now always, the set L = {ε1, ε2, . . ., εN} is taken to be the
set of all elements in Fqn which are not roots of the Goppa polynomial g(x).
In this case the Goppa code is said maximal. If the degree of g(x) is r, then
the Goppa code is called a Goppa code of degree r. It is easy to see ([17])
that a parity-check matrix for G(L, g) is given by

H =













1
g(ε1)

1
g(ε2) . . . 1

g(εN )
ε1
g(ε1)

ε2
g(ε2) . . . εN

g(εN )
...

...
...

...
εr−1

1

g(ε1)
εr−1

2

g(ε2) . . .
εr−1

N

g(εN )













.

Note that the code C = kerH is a subspace of (Fqn)N and the Goppa code
G(L, g) is its subfield subcode on Fq.

Definition 2.4. A Goppa code G(L, g) is called irreducible if g(x) is irre-
ducible over Fqn.

In the following by Goppa code we mean maximal irreducible classical
Goppa code of degree r, so that N = qn. By Definition 2.3, a vector c =
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(c1, c2, . . ., cqn) ∈ (Fq)q
n

is a codeword of G(L, g) if and only if it satisfies

(1). If α is any root of g(x), α ∈ Fqnr , then g(x) =
∏r−1
i=0 (x− αq

ni

) and (1)
is equivalent to the r equations

qn
∑

i=1

ci

αqnj − εi
= 0, 0 ≤ j ≤ r − 1. (2)

Hence G(L, g) is completely described by any root α of g(x) and we may
denote this code by C(α). From (2) we easily get a parity-check matrix
Hα ∈Mat1×qn(Fqnr) for C(α) (see [6]):

Hα =
(

1
α−ε1

, 1
α−ε2

, . . ., 1
α−εqn

)

. (3)

It is important to stress that by using parity-check matrix Hα to define C(α)
we implicitly fix an order in L. So, we set

L = {ε, ε2, . . ., εq
n−1

, ε−∞},

where ε−∞ = 0, εi = εi and the matrix Hα is

Hα =
(

1
α−ε ,

1
α−ε2

, . . ., 1
α−1 ,

1
α

)

.

We observe that the Goppa code C(α) is the subfield subcode of codes
having as parity-check matrices both H and Hα. Moreover, there exist
matrices having structure different from H and Hα, which are parity-check
matrices for C.

We denote by Ω = Ω(q, n, r) the set of Goppa codes, with fixed param-
eters q, n, r.

In the following an action on set S is considered, where S = S(n, r) is
composed of all elements in Fqnr of degree r over Fqn .

3 Three actions on Ω

In this section we briefly present semiaffine actions introduced in [1] and

in [8]. These actions have degrees |S|
r

and |S| respectively. Moreover we
consider an action of the group AΓL(1, qn) on entries of parity-check matrix
of type Hα. This time the degree is qn.

In [1], the author works directly on polynomials by studying automor-
phism groups of several classes of codes.
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If ψ ∈ AGL(1, qn), ψ(z) = az + b, a, b ∈ Fqn , a 6= 0, he defines

gψ(x) =

r
∑

i=0

gi(ax+ b)i.

The map ψ acts also on set L = Fqn , F∗
qn = 〈ε〉, by

Lψ =
(

εψ
−1

, . . ., (εq
n−1)ψ

−1

, (ε−∞)ψ
−1
)

.

The code G(L, g)ψ = G(Lψ, gψ) is said the conjugate of code G(L, g) by ψ.

Proposition 3.1. [1] The Goppa codes are invariant by conjugation under
the affine group AGL(1, qn), i.e. G(L, g)ψ = G(L, g) for all ψ such that
ψ(z) = az + b, a, b ∈ Fqn , a 6= 0.

We get

Corollary 3.2. Goppa codes G(L, gψ) is equivalent to Goppa code G(L, g).

Proof. We known that G(L, g)ψ = G(Lψ, gψ) and from Proposition 3.1
G(L, g)ψ = G(L, g). From Definition 2.2 it follows that G(L, gψ) is equivalent
to G(Lψ , gψ) = G(L, g) so G(L, g) is equivalent to G(L, gψ).

More generally, if ψ ∈ AΓL(1, qn), ψ(z) = azq
t

+b, with a, b ∈ Fqn , a 6= 0
ant t ∈ {0, . . ., n− 1}, we define

gψ(x) =
r
∑

i=0

gi(ax
qt

+ b)i (4)

Equation (4) suggests to consider an action σ on P ⊆ Fqn [x], where P is the
set of irreducible polynomials of degree r. For g ∈ P, gσ(ψ) is the unique
polynomial f of degree r such that g(α) = 0 if and only if f(β) = 0 for

β =
(

α−b
a

)qnr−t

(note gσ(ψ) ∈ P).
Indeed, if g(x) =

∑r
i=0 gix

i, there exist ḡi,∀i = 1, . . . , r, ā, b̄ such that

ḡq
t

i = gi,∀i = 1, . . . , r, āq
t

= a, b̄q
t

= b so that

r
∑

i=0

ḡq
t

i (āq
t

xq
t

+ b̄q
t

)i =

(

r
∑

i=0

ḡi(āx+ b̄)i

)qt

= f(x)q
t

.

It is immediate to recognize that g(α) = 0, for α ∈ S, if and only if f(β) = 0,

with β =
(

α−b
a

)qnr−t

∈ S.
With similar arguments used for Proposition 3.1, one gets
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Proposition 3.3. The Goppa codes are invariant by conjugation under the
semiaffine group AΓL(1, qn), i.e. G(L, g) = G(Lψ, f), where f = gσ(ψ) ∈ P.

Corollary 3.4. Goppa codes G(L, g) is equivalent to Goppa code G(L, f).

In [18] the same action on Ω is obtained considering an action on S of
an ”affine” group T = AGL(1, qn)〈σ〉, where σ is defined as σ : x→ xq; the
group 〈σ〉 has order nr. The main result is the following:

Theorem 3.5. [18] If α, β ∈ S are related as it follows

β = ζαq
i

+ ξ (5)

for some ζ, ξ ∈ Fqn , ζ 6= 0, i = 1. . .nr, then C(α) is equivalent to C(β).

Orbits over S give orbits on Ω.

Fact 3.6. The above actions on S and on P create the same orbits on Ω.

Proof. Let α ∈ S be a root of g(x) ∈ P. Let β = ζαq+ξ ∈ S. There exists an
irreducible polynomial g1 ∈ Fqn [x], such that g1(β) = 0. From Proposition
3.3 we get that the orbit αFG = {t(β), t ∈ T}) induces on Ω the same orbit
than gT = {t(g), t ∈ T}).

The work in [1] is mainly directed to the study of automorphism group
of a given code; [18] is deeply interested in counting the number of non-
equivalent Goppa codes.

In [18] the exact number of orbits on S is given. Unfortunately, several
examples are exhibited where the number of orbits T on S is greater than
the number of non-equivalent Goppa codes.

We introduce an action on columns of Hα =
(

1
α−ε ,

1
α−ε2

, . . ., 1
α−1 ,

1
α

)

,

which induces the same orbits on Ω than T . We state the results and give
a sketch of the proofs. For more details see [9].

Let us consider the subgroup FG ≃ AΓL(1, qn) ≤ Sqn in its natural

action on points of Fqn . If ψ ∈ FG, then ψ(x) = axq
i

+ b, where a, b ∈
Fqn , a 6= 0 and i = 1, . . ., n. Since each entry (column) of Hα is uniquely
determined by an element of Fqn , AΓL(1, qn) realizes a permutation of Hα

entries given by:
(

1

α− ε

)ψ

=
1

α− εψ
.

Writing FG we mean F = AGL(1, qn) and G the automorphism group of
Fqn over Fq.
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The matrices Hβ and ζHqj

β are parity-check matrices for the same Goppa

code C(β). We characterize the permutations mapping Hα into ζHqj

β in the
following proposition.

Proposition 3.7. Let Hα and Hβ be parity-check matrices for Goppa codes
C(α) and C(β). If there exists a permutation ρ ∈ Sqn , such that ρ(Hα) =

ζ(Hβ)
qj

, for some ζ, β ∈ Fqn , ζ 6= 0 and j = 1, . . ., nr, then ρ ∈ FG.

Proof. We consider

ρ(Hα) = H ′
α =

(

1

α− εi1
,

1

α− εi2
, · · · ,

1

α− εiqn−1

,
1

α− εi−∞

)

,

where ij = ρ(j) and matrix ζ(Hβ)
qj

:

ζ(Hβ)
qj

=

(

ζ

βqj − εqj
,

ζ

βqj − ε2qj
, . . . ,

ζ

βqj − 1
,
ζ

βqj

)

.

Suppose ζ = 1 and j = 1 so that ∀t ∈ {1, 2, . . ., qn} we have 1
βq−εtq = 1

α−εit

and then α− βq = εit − εtq.
If α − βq = 0, ρ is the permutation induced by the Frobenius map σ,

since εit = εtq; it follows that

ρ(t) =

{

tq if t = 1, 2, . . . , qn − 1
−∞ if t = −∞

and ρ = σ.
If α − βq 6= 0, as above α − βq ∈ Fqn so that α − βq = εk for some

k ∈ {1, . . ., qn − 1} and then permutation ρ ∈ FG; explicitly it acts as:

ρ(t) =

{

it = tq + fk(ε) if t = 1, 2, . . . , qn − 1
it = k if t = −∞

where it is such that εit = εtq + εk, and fk(ε) is a function depending on
representation of Fqn .

If ζ ∈ F∗
qn , ζ 6= 1 and j = 1, then ζ = εl for some l ∈ {1, · · · , qn − 2}.

With same arguments used in the previous step, we get

ζα− ζεit = βq − εtq =⇒ ζεit = ζα− βq + εtq =⇒ εit = α− ζ−1βq + εtq−l.

Again α− ζ−1βq ∈ Fqn ; then there is h ∈ {1, . . ., qn} so that εit = εh+ εtq−l,
and

ρ(t) =

{

it = tq − l + fh(ε) if t = 1, 2, . . . , qn − 1
it = h if t = −∞
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where εit = εtq−l + εh and fh(ε) depending on the representation of Fqn .
Concluding ρ = τkµζ−1σ; here τk is the translation defined by τk : x→ x+εk,
µζ is the map µζ : x→ ζx and σ is the Frobenius map; this proves ρ ∈ FG.

Finally, if j 6= 1 we have: ζ

βqj
−εtqj = 1

α−εit
and ζα− ζεit = βq

j

− εtq
j

. As

ζ = εl for some l ∈ {1, . . ., qn − 2}, we gain:

εit = α− ε−lβq
j

+ εtq
j−l.

So there is v ∈ {1, . . ., qn} such that α − εlβq
j

= εv and εit = εv + εtq
j−l.

Permutation ρ is:

ρ(t) =

{

it = tqj − l + fv(ε) if t = 1, 2, . . . , qn − 1
it = v if t = −∞

where εit = εtq
j−l + εv and fv(ε) depends on the representation of Fqn .

Concluding ρ = τvµζ−1σj . Clearly in all cases ρ ∈ FG.

Corollary 3.8. Let Hα and Hβ be parity-check matrices for Goppa codes
C(α) and C(β). If there exists a permutation ρ ∈ Sqn , such that ρ(Hα) =
ζHβ, for same ζ, β ∈ Fqn , ζ 6= 0, then ρ ∈ F .

4 Maximal subgroups

The action of AΓL(1, qn) does not reach the exact number of non-equivalent
maximal Goppa codes. So we look for maximal subgroups of Sqn containing
a fixed AΓL(1, qn) = FG.

Theorem 4.1 ([5]). A maximal subgroup of Sqn is one of the following:

1. intransitive, Sk × Sl, k + l = qn;

2. transitive imprimitive: the wreath product SkWrSl in the standard
action, kl = qn;

3. primitive non-basic, the wreath product SkWrSl in the product action,
kl = qn, k 6= 2;

4. affine AGL(d, p), pd = qn;

5. diagonal, T k.(Out(T ) × Sk), T non abelian simple, |T |k−1 = qn; here

Out(T ) denotes, as usual, the factor group Aut(T )
T

.

8



6. almost simple, that is an automorphism group G of a finite non abelian
simple group S, S ≤ G ≤ Aut(S).

A maximal subgroup of the alternating group is the intersection of one of
these groups with the alternating group.

Remark 4.2. We explicitly observe that for p even, d ≥ 3, the groupAGL(d, p)
is actually contained in the alternating group Apd . It is sufficient to real-

ize that, in this case, the translations are product of 2d−1 cycles of length
2, as well as the transvections are product of 2d−2 cycles of length 2. As
the transvections generate the general linear group GL(p, 2), AGL(p, 2) is
contained in A2d .

Proposition 4.3. FG is contained in Aqn if and only if q is even.

Proof. The thesis follows from the following result.

Claim 4.4. [14] Let X be a primitive permutation group of degree n. Then
X contains an abelian regular subgroup G if and only if either

i) X ≤ AGL(d, p), where p is a prime, d ≥ 1 and n = pd; or

ii) X = (T̃1 × . . . × T̃l) · O · P , G = G1 × . . . × Gl where n = ml, l ≥ 1,
Gi < T̃i, with |Gi| = m, T̃1

∼= . . . ∼= T̃l, O ≤ Out(T̃1)× . . .×Out(T̃l), P
is a transitive permutation group of degree l and one of the following
holds:

(a) (T̃i, Gi) = (PSL(2, 11),Z11), (M11,Z11), (M12,Z2
2×Z3), (M23,Z23)

(Mi are the Mathieu groups);

(b) T̃i = PGL(d, q) e Gi = Z qd−1

q−1

is a Singer group;

(c) T̃i = PΓL(2, 8) and Gi = Z9 � PSL(2, 8);

(d) T̃i = Sm or Am and Gi is an abelian group of order m.

Take X = FG. FG contains the subgroup A of translations, A = {τε :
x → x + ε}, so that FG is contained in NSqn (A) = AGL(nm, p). By the
above remark, if p = 2, the group FG is contained in Aqn . If p is odd, then
the element µε : x → εx belongs to FG and it is odd, as its order is qn − 1
(recall that an element of order qn − 1 is said a Singer cycle); this proves
that FG (and AGL(nm, p)) is not a subgroup of Aqn .

Theorem 4.5. Let G = Aqn if q = 2m, G = Sqn for q odd. If M is a maxi-
mal subgroup of G containing FG, then M is isomorphic to the affine group
AGL(nm, p) . Moreover, there is exactly one maximal subgroup containing
FG.

9



Proof. As FG is a primitive 2-transitive group of G, a maximal subgroup
M of Sqn containing FG, is an almost simple group or it is isomorphic to
the affine group AGL(nm, p) ([5]). In the proof of Proposition 4.3 we have
seen that FG is contained in AGL(mn, p). We prove that it is not contained
in an almost simple group. By contradiction, let M be an automorphism
group of a simple non abelian group S, S ≤ M ≤ Aut(S). If M contains
FG, the stabilizer of a point ω in Fqn has index qn = pnm. As S is normal
in M , S is transitive on Fqn , so that we are reduced to consider subgroups
of prime power index in S. These were described by Guralnick and for the
reader’s sake we write the main result of [10].

Claim 4.6 ([10]). Let G be a nonabelian simple group with H < G and
[G : H] = pd = qn, p prime. One of the following holds.

1. G = Aqn and H ∼= Aqn−1;

2. G = PSL(s, t) and H is the stabilizer of a line or hyperplane. Then
[G : H] = ts−1

t−1 = qn (Note s must be prime);

3. G = PSL(2, 11) and H ∼= A5;

4. G = M23 and H ∼= M22 or G = M11 and H ∼= M10;

5. G = PSU(4, 2) ∼= PSp(4, 3), H is the parabolic subgroup of index 27.

Cases 3, 4, 5, are easily ruled out, as pmn is neither a prime number, nor
27. Similarly, case 1 is ruled out when p is odd, as, in this case, the element
µε is odd. If p = 2, then FG is actually contained in M ≃ Aqn . So, we are
left with Case 2. Here, we use Claim 4.4. X satisfies condition ii), with

X = S = PSL(s, t), [S : H] =
st − 1

t− 1
= pnm, l = 1.

and it is easy to see that it is not the case.
Now, we prove that there is exactly one subgroup isomorphic to AGL(nm, p)
containing FG.

Let q be odd: in Sqn there is exactly one conjugacy class of maximal sub-
groups of this type (see for example [15]). So, let FG ≤ M ≃ AGL(nm, p),
where the normal subgroup of the translation of M is exactly the translation
group A of FG ([12]). The element µε generates a Singer subgroup; it is
well known that the Singer cycles are conjugated in M ; from the knowledge
of the overgroups of a Singer cycle [13], [4], one easily proves that also the
normalizers of Singer cycles contained in M are conjugate in M . It follows

10



that if FGg, g ∈ Sqn is contained in M , there exists an element m ∈ M ,
such that FGg = FGm. So, if s denotes the number of the subgroups of M
containing FG, we get:

[Sqn : NSqn (FG)] =
[Sqn : M ] · [M : NM (FG)]

s
;

now, from [14] one gets NSqn (FG) ≤M , so that s = 1.
Now, suppose q is even. FG ≤ Aqn and in Aqn the conjugacy class of Sqn

subgroups which are isomorphic to AGL(nm, p). In Aqn AGL(nm, p) splits
into two classes so that also the class of Singer cycles splits into two different
classes. Same argument used for the odd case leads to the result.
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