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ien
yDaniele FellettiKeywords: networks, system dynami
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ible matrix,Perron{Frobenius theorem, 
orporate value.Abstra
tA system of produ
ing �rms is 
onsidered here. The �rms ownea
h other through �xed quotas of sto
ks, so they periodi
ally sharethe in
omes and the losses (i.e., they 
lose the books).A network model is introdu
ed to des
ribe the system. The valuesof the �rms evolve dynami
ally a

ording to the �nan
ial 
ows (whi
hdepend on the topology of the network) and to the distribution of theindividual produ
tivities, nevertheless, on the long run, only the systemstru
ture matters. In the limit 
ase in whi
h the shares matrix isirredu
ible (it represents a strongly 
onne
ted graph), the values of the�rms are determined ratios of the total produ
tion, whi
h evolves like aBrownian motion. So the values tend to be perfe
tly 
orrelated. Theseratios are determined only by the shares matrix, while the individualpro�
ien
ies a�e
t only the total produ
tion of the system. When theshares matrix is redu
ible (the graph is 
onne
ted, but not strongly),some �rms in
rease their value mu
h more than the other ones.1 Introdu
tionThe value of a 
ompany is 
learly related to the revenues 
oming from itsprodu
tivity. However, a 
ompany 
an own some shares the other ones. Inthis 
ase its value is a�e
ted not only by its own produ
tivity, but also bythe value of the other ones. Several works have investigated the e�e
t ofmergers and a
quisitions on the sto
k pri
e (e.g., [9℄, [6℄). They a
tuallybind ea
h other in a network of relationships so that it is often not easy tounderstand who 
ontrols who. The network stru
ture of 
ompanies is a fa
t,besides it seems to be s
ale{free ([3℄). It introdu
es a feedba
k e�e
t on thedynami
s and is a

ountable for the systemi
 risks ([2℄ and ([4℄).In this work a basi
 model is introdu
ed in order to a

ount for the �-nan
ial revenues, whi
h 
learly play a part in the total in
omes. The modela
tually des
ribe a distributive system sin
e the �rms, while in
reasing (or1



de
reasing) their value thanks to their produ
tion (whi
h is random, buta

ounts for their individual pro�
ien
y), share their values a

ording to�xed quotas. The result is a N{dimensional, dis
rete time, sto
hasti
 pro-
ess. However, a

ording to the topology of the network, the values on thelong run are weakly related to the individual pro�
ien
y. If the stru
tureis strongly 
onne
ted (it is a dire
ted, weighted graph), they a
tually aredetermined only by the topology and by the total value of the system. Ifthere are some 
onne
ted 
omponents, ea
h one evolves autonomously, whilewhen it is 
onne
ted, but not strongly, one set of �rms has no shares of theremaining �rms. In this 
ase the �rms of the latter group in
rease theirvalue mu
h more qui
kly than those of the former set.2 The dynami
s of the valueLet xt be the ve
tor of the values of the �rms (their 
ash) at time t. xt isthe value ve
tor. At time t+ 1, every �rm 
loses the books, distributing its
ash among the owners a

ording to the shares matrix P. Then i-th �rmre
eives a fra
tion Pij of j-th �rm value xj;t, besides its 
ash is in
reased bythe revenue 
oming from the individual produ
tion "i;t+1 relatively to theperiod [t; t + 1℄. The random ve
tor "t is the output ve
tor. Clearly, if xj;tis negative, the owners must pay, a

ording to the same ratios, to avoid thebankrupt
y.1 The following re
ursive identity holdsxi;t+1 = NXj=1 Pij xi;t + "j;t+1 () xt+1 = Pxt + "t+1 (1)By ba
kward re
urren
e: xt = Pt x0 + tXj=1Pt�j "j (2)3 Gaussian produ
tionsMost of the results do not depend on the probability distribution of theoutput ve
tor, however if "t are Gaussian (and x0 is �xed or Gaussian),the values are Gaussian for every t. Then, to 
onsider Gaussian outputve
tors improves the 
on
ision of the 
omments. Besides, thanks to thelaw of large numbers and the 
entral limit theorem, most of the results holdindependently on the probability distribution of the output ve
tor sin
e they
on
ern the dynami
s of the system on the long run.1The in
lusion of bankrupt
y in the model is straightforward, but the 
onsequen
esare not. So it is a subje
t for further resear
h.2



In this embryoni
 work, only simultaneous produ
tions are supposed tobe 
orrelated, besides the probability distribution of the output ve
tor isassumed 
onstant:"t � N(�;�) () E ["i;t℄ = �i ; 
ov ["i;s; "j;t℄ = �ij Æstwhere Æst is the Krone
ker delta, while � is the 
ovarian
e matrix of simulta-neous produ
tions. Finally the initial value x0 is assumed to be a 
onstant(i.e., not a random ve
tor).The following results holdE [xt℄ = Pt x0 + t�1Pj=0Pj! �C = t�1Pj=0Pj � �Pj�T (3)where Cij = 
ov [xi;t; xj;t℄.Equations (1) and (2) 
learly show the sto
hasti
 dynami
s of the valueve
tor. The hypothesis of Gaussian output ve
tors simpli�es the reasoningsin
e, being the value ve
tor Gaussian for every t, the value ve
tor is totallyidenti�ed by the ve
tor E [xt℄ and the matrix C.24 The dynami
s of the value in the long runThe shares matrix is ne
essarily a sto
hasti
 matrix sin
ePij 2 [0; 1℄ ^ uT P = u (4)where uT = (1; 1; 1; : : : ; 1). The �rst 
ondition is obvious, while the se
ond
ondition states that the 
olumns sum to one. This is ne
essarily true sin
ei-th 
olumn 
onsists of the quotas of ownership of i-th �rm, whi
h must sumto one.Consequently 1 is an eigenvalue for P and u is a left eigenve
tor.Perron{Frobenius theorem and Wielandt's theorems ([7℄) are useful tounderstand the system dynami
s when the shares matrixP is irredu
ible andwhen it is primitive. Even though it is not used in this work, to �gure outthe Jordan 
anoni
al form of P ([1℄) may help to understand the dynami
s.See the Appendix for the details.The theory states that P 
an not have (
omplex) eigenvalues with normgreater than 1, that is its spe
tral radius. Besides, when uT � 6= 0, there isno need to solve the sums to know the asymptoti
 behavior of xt for large t.2This is true even when the output ve
tors are 
orrelated in time, provided they areGaussian. 3



4.1 Primitive shares matrixWhen P is primitive all the (eventually 
omplex) eigenvalues have norm lessthan 1. The ve
tor u alone generates the left eigenspa
e of 1. Let v be aright eigenve
tor for A (the right eigenspa
e is 
learly one{dimensional too,so all the right eigenve
tors of 1 are multiples of ea
h other).Equation (6) states thatlimt!+1Pt = 1uTv vuT = ~v uTwhere ~v = vuT vis the only right eigenve
tor for P whose entries sum to one (i.e., the Perronve
tor of P). The rate of 
onvergen
e depends on the se
ond eigenvalue ofP ([5℄). Then Theorem (7) in the Appendix impliestPj=1Pt�j = t ~vuT + o(t)tPn=1Pt�n � �Pt�n�T = t2 ~v uT �u ~vT + o �t2� = t2 �uT �u� ~v ~vT + o �t2�Consequently, in the long run (t! +1), if uT� 6= 0, the values of the �rmsare xt � t �uT �� ~vi.e., E [xt℄ = t �uT �� ~v + o(t)C = t2 
 v vT + o �t2�where 
 = uT �uLet3 Gt = uT tXj=1 "jthe total produ
tion. Sin
eE [Gt℄ =< G >= �uT �� t ; Var[Gt℄ = 
 t23To 
onsider ~Gt = uT  x0 + t
Pj=1 "j! does not 
hange the results, ex
ept forEh ~Gti = `uT �´ t+ `uT x0´. 4



the values of the �rms are asymptoti
ally equal toxt � Gt ~vThat is: the value of i-th �rm tends to be a �xed quota vi of the totalprodu
tion Gt, being vi determined only by the topology of the network P.It implies that the 
orrelations tend to 1:4
orr[xi;t; xj;t℄ = 
 t2 vi vj + o �t2�q
 t2 v2i + o (t2)q
 t2 v2j + o (t2) � 15 Irredu
ible shares matrixWhen P is irredu
ible, the Perron ve
tor exists sin
e the eigenspa
e of 1 isone{dimensional, but there are h unitary eigenvalues. However the eigen-values are in the form �k = e2 kh� iwith k = 0; : : : ; h, where h is the index of imprimitivity. This is the reasonwhy a non{negative, irredu
ible but not primitive matrix is said periodi
.Besides every eigenvalue is simple (i.e., its eigenspa
e is one{dimensional).Pt does not 
onverge in this 
ase, however it is similar to a matrix inthe following form:~P = 0BBBBBB� 1 0 0 : : : 0 00 e� i 0 : : : 0 00 0 e2� i : : : 0 0: : : : : : : : : : : : : : : : : :0 0 0 : : : e(h�1) � i 00 0 0 : : : 0 A
1CCCCCCAwhere � = 2�h and A is a matrix with spe
tral radius less than 1. Thatis P =M ~PM�1 for some non{singular (
omplex) matrix M. As a 
onse-quen
e Pj =M ~PjM�1.~P is a blo
k{diagonal matrix, then~Pj = 0BBBBBB� 1 0 0 : : : 0 00 ej � i 0 : : : 0 00 0 e2 j � i : : : 0 0: : : : : : : : : : : : : : : : : :0 0 0 : : : e(h�1) j � i 00 0 0 : : : 0 Aj
1CCCCCCA4By Perron{Frobenius theorem, v has positive entries. 
 > 0 unless all the entries ofthe output ve
tor have a perfe
t 
orrelation (the result 
learly holds in this 
ase too).5



with At ! 0 as t ! +1. ~Pt 
an not 
onverge (and so does P) be
ausethe diagonal elements ~P22, ~P33, : : : , ~Phh keep on 
y
ling. However both thematri
es have a Ces�aro limit, whi
h, for P, is:limt!+1 1t t�1Xj=1Pj = ~v uT (5)It is easy to understand, 
onsidering the Ces�aro limit of ~P and remindingthat the �rst 
olumn of M must be a multiple of ~v while the �rst row ofM�1 must be a multiple of uT by a 
oeÆ
ient whi
h is the re
ipro
al of theformer.Every sto
hasti
 matrix has a �nite Ces�aro limit, but it has a di�erentform when the matrix is redu
ible.Equation (5) implies t�1Xj=0Pj = t ~v uT + o(t)for large t. So that, again,5E (xt) = t �uT �� ~v + o(t)With some more 
al
ulations, one obtainsC = t2 
 v vT + o �t2�Thus the values of the �rms tend to 
hange 
oherently even though theshares matrix is not primitive. The irredu
ibility is suÆ
ient.P is irredu
ible if and only if the asso
iated dire
ted graph is strongly
onne
ted ([7℄ or [8℄). This means that for every ordered pair of �rms f1,f2, a sequen
e s1, : : : , sn of �rms 
an be found su
h that f1 owns someshares of s1, whi
h owns some shares of s2 and so on, until sn whi
h ownssome shares of f2. The opposite must be true too (in general by a di�erentsequen
e).Clearly, if the shares matrix is not 
onne
ted, every 
onne
ted 
omponentevolves autonomously.6 Redu
ible shares matrixOnly one 
ase remains: when the shares matrix is 
onne
ted but redu
ible(i.e., not strongly 
onne
ted). In this 
ase P still has a �nite Ces�aro limit,5Sin
e ~P jkk, with k = 2; : : : ; h, 
y
le, the sum on j remains bounded. Aj tend expo-nentially to zero, so their sum 
an not diverge and is bounded. Then the spread o(t) isa
tually o(f(t)) for every in�nite fun
tion f(t), no matter how slow f(t) tends to 0. It
learly holds also in the 
ase of primitive shares matrix.6



but the form is di�erent ([7℄): by a proper permutation, P 
an assume theform P = � T11 0T21 T22 �with T11 lower{triangular blo
k matrix, andT22 =0B� A1 . . . Am 1CAwhere Ak are irredu
ible. This means that the �rms 
an be qualitativelygrouped into "owners" (the last listed one, when the shares matrix has theabove{mentioned form) and "owned �rms" (even though they simply do nothave shares of the se
ond group of �rms). Then, the Ces�aro limit islimt!+1 1t t�1Xj=1Pj = � 0 0ET21 (I�T11)�1 E �where E = 0B� ~v1 uT . . . ~vm uT 1CA~vk is the Perron ve
tor of the matrix Ak. Furthermorelimt!+1Pt = � 0 0ET21 (I�T11)�1 E �if and only if Ak are all primitive. Otherwise the limit does not exist.This means that the value tend to 
on
entrate on the owners (whi
h are"more 
onne
ted"), while the owned �rms tend to (relatively) de
rease theirvalue. A
tually the mean value of the owners is of order t, while the one ofthe owned �rms is just o(t) (so it does not ne
essarily tend to zero).7 Con
lusionsIn this work the evolution of the value of a set of produ
ing �rms sharingtheir property a

ording to �xed quotas has been modelled. The model isstill very simple and 
an be generalized in several manners to approa
h morerealisti
 situations. The shares matrix is kept 
onstant in time, while thisdoes 
learly not o

ur. Besides, the random produ
tions are supposed to beindependent on the values of the �rms and 
orrelated only at simultaneoustimes. However some interesting features emerged: the long run values de-pend weakly on the individual produ
tivities and strongly on the topology7



of the network representing the shares quotas. As just as the stru
ture be-
omes strongly 
onne
ted, the produ
tivities simply 
ontribute to the totalvalue of the system, whi
h tends asymptoti
ally to be shared among the�rms a

ording to quotas that depend only on the network topology. Whenthe network (whi
h is a weighted, dire
ted graph) is 
onne
ted, but notstrongly 
onne
ted, the �rms 
an be grouped into two 
lasses. The "less
onne
ted" ones are penalized with respe
t to the "more 
onne
ted" ones.The model 
an a
tually be applied to a wider range of systems, sin
eit des
ribes the produ
tion and the distribution on a network and showsthat stronger the 
onne
tion, weaker the dependen
e of the individual per-forman
e on the personal pro�
ien
y. Besides it shows that networks tendto get more sti�ening and to trap their dynami
s as they in
rease their
onne
tion.AppendixA Irredu
ible and primitive matri
esHere are 
ited some useful de�nitions and properties:� A matrix A is redu
ible ([8℄) if there is a permutation B su
h thatBAB�1 = � K11 K120 K22 �where K11 and K22 are square matri
es. Otherwise it is irredu
ible.With the model and the 
onsequent formalism used in this work, amatrix is redu
ible ifBAB�1 = � K11 0K21 K22 �� A non{negative matrix A is primitive if there is k > 0 su
h that Akis positive.� A primitive matrix must be irredu
ible.� An irredu
ible matrix is primitive if and only if there is only one eigen-value on its spe
tral 
ir
le.� If a non{negative, irredu
ible matrix has a positive, diagonal entry, itis primitive.� If A is primitive limn!+1� 1�(A) A�n = r lTlT r > 0 (6)8



where r and l are respe
tively a right and a left eigenve
tor of �(A)for A.� A non{negative, irredu
ible matrix is imprimitive if there are h eigen-values on its spe
tral 
ir
le. h is the index of imprimitivity.� if 
(x) = xn + �1xn�k1 + �2xn�k2 + �3xn�k3 + � � � + �sxn�ks is the
hara
teristi
 polynomial of an imprimitive matrix A in whi
h onlythe non{zero terms are listed, then the index of imprimitivity is thegreatest 
ommon divisor of k1, k2, : : : , ks.B Perron-Frobenius theoremIf A is non{negative and irredu
ible then� the spe
tral radius �(A) is an eigenvalue for A;� the eigenspa
e of the spe
tral radius is one{dimensional;� there is a positive eigenve
tor of the spe
tral radius for A;Besides the Collatz{Wielandt formula holds for all non{negative matri
es:�(A) = maxx � 0x 6= 0 0BBBB� min1 � j � nxj 6= 0 [Ax℄jxj 1CCCCAC Wielandt's theoremsC.1If jBj � A and A is irredu
ible then �(B) � �(A). In the 
ase �(B) = �(A)(i.e., �B = �(A) ei � for some �), thenB = ei �DAD�1 with Dij = (ei �i j = i0 j 6= iC.2If A is non{negative and irredu
ible and has h eigenvalues �1, �2, : : : , �hon its spe
tral 
ir
le then� every eigenspa
e of �j is one{dimensional;� �k = �(A) e2� kh i 9



D Some simple proofsD.1 Equation 3
ov [xi;t; xj;t℄ = tXn=1 tXm=1Xa Xb �Pt�n�ia �Pt�m�jb 
ov ["a;n; "b;m℄ == tXn=1 tXm=1Xa Xb �Pt�n�ia �Pt�m�jb Æmn�ab == tXn=1Xa Xb �Pt�n�ia �Pt�n�jb �ab = tXn=1 hPt�n � �Pt�n�T iij == " tXn=1Pt�n � �Pt�n�T#ijD.2 TheoremIf Mn is a 
onverging sequen
e of matri
es and M = limn!1Mn, then asn!1 nXj=1Mj = nM+ o(n) � nM (7)Proof:Sin
e Mn =M+ o(1), for every " > 0 there is n" 2 N su
h thatmaxa;b=1;:::;N j[Mn �M℄abj < " 8n > n"Then1n ������ nXj=1℄Mj � nM������ = 1n ������ nXj=1℄ (Mj �M)������ == 1n ������n"�1Xj=1℄ (Mj �M) + nXj=n" (Mj � M)������ �� 1n ������n"�1Xj=1 (Mj �M)������+ 1n nXj=n" jMj � Mj �� An + 1n nXj=n"N2 " = An + (n� n" + 1)N2 "n � An +B" n!1! 0for some positive numbers A and B.10
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