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Abstract

A system of producing firms is considered here. The firms own
each other through fixed quotas of stocks, so they periodically share
the incomes and the losses (i.e., they close the books).

A network model is introduced to describe the system. The values
of the firms evolve dynamically according to the financial flows (which
depend on the topology of the network) and to the distribution of the
individual productivities, nevertheless, on the long run, only the system
structure matters. In the limit case in which the shares matrix is
irreducible (it represents a strongly connected graph), the values of the
firms are determined ratios of the total production, which evolves like a
Brownian motion. So the values tend to be perfectly correlated. These
ratios are determined only by the shares matrix, while the individual
proficiencies affect only the total production of the system. When the
shares matrix is reducible (the graph is connected, but not strongly),
some firms increase their value much more than the other ones.

1 Introduction

The value of a company is clearly related to the revenues coming from its
productivity. However, a company can own some shares the other ones. In
this case its value is affected not only by its own productivity, but also by
the value of the other ones. Several works have investigated the effect of
mergers and acquisitions on the stock price (e.g., [9], [6]). They actually
bind each other in a network of relationships so that it is often not easy to
understand who controls who. The network structure of companies is a fact,
besides it seems to be scale-free ([3]). It introduces a feedback effect on the
dynamics and is accountable for the systemic risks ([2] and ([4]).

In this work a basic model is introduced in order to account for the fi-
nancial revenues, which clearly play a part in the total incomes. The model
actually describe a distributive system since the firms, while increasing (or



decreasing) their value thanks to their production (which is random, but
accounts for their individual proficiency), share their values according to
fixed quotas. The result is a N-dimensional, discrete time, stochastic pro-
cess. However, according to the topology of the network, the values on the
long run are weakly related to the individual proficiency. If the structure
is strongly connected (it is a directed, weighted graph), they actually are
determined only by the topology and by the total value of the system. If
there are some connected components, each one evolves autonomously, while
when it is connected, but not strongly, one set of firms has no shares of the
remaining firms. In this case the firms of the latter group increase their
value much more quickly than those of the former set.

2 The dynamics of the value

Let x; be the vector of the values of the firms (their cash) at time ¢. x; is
the value vector. At time ¢+ 1, every firm closes the books, distributing its
cash among the owners according to the shares matriz P. Then i-th firm
receives a fraction P;; of j-th firm value x4, besides its cash is increased by
the revenue coming from the individual production €;;; relatively to the
period [t,t + 1]. The random vector €, is the output vector. Clearly, if z;;
is negative, the owners must pay, according to the same ratios, to avoid the
bankruptcy.! The following recursive identity holds

N

Tit41 = Z Pjxit+eji1 = X1 =Pxy +e11 (1)
j=1

By backward recurrence:

t
X; = P! X0 + ZPt_j €; (2)
j=1

3 Gaussian productions

Most of the results do not depend on the probability distribution of the
output vector, however if &, are Gaussian (and x( is fixed or Gaussian),
the values are Gaussian for every ¢. Then, to consider Gaussian output
vectors improves the concision of the comments. Besides, thanks to the
law of large numbers and the central limit theorem, most of the results hold
independently on the probability distribution of the output vector since they
concern the dynamics of the system on the long run.

!The inclusion of bankruptcy in the model is straightforward, but the consequences
are not. So it is a subject for further research.



In this embryonic work, only simultaneous productions are supposed to
be correlated, besides the probability distribution of the output vector is
assumed constant:

et~ N(u,T) <= Eleigl =pi , covleis,ejt] = Lijdst

where dg; is the Kronecker delta, while I is the covariance matrix of simulta-
neous productions. Finally the initial value x¢ is assumed to be a constant
(i.e., not a random vector).

The following results hold

t—1 )
]E[Xt] = PtXO =+ <ZOPJ) 7!
]:

t—1 . T
C= Y P'T (PY)
j=0
where Cj; = cov [z, T ).

Equations (1) and (2) clearly show the stochastic dynamics of the value
vector. The hypothesis of Gaussian output vectors simplifies the reasoning

since, being the value vector Gaussian for every ¢, the value vector is totally
identified by the vector E[x;] and the matrix C.2

4 The dynamics of the value in the long run
The shares matrix is necessarily a stochastic matrix since
P;j€0,1] A u'P=u (4)

where u”’ = (1,1,1,...,1). The first condition is obvious, while the second
condition states that the columns sum to one. This is necessarily true since
i-th column consists of the quotas of ownership of i-th firm, which must sum
to one.

Consequently 1 is an eigenvalue for P and u is a left eigenvector.

Perron-Frobenius theorem and Wielandt’s theorems ([7]) are useful to
understand the system dynamics when the shares matrix P is irreducible and
when it is primitive. Even though it is not used in this work, to figure out
the Jordan canonical form of P ([1]) may help to understand the dynamics.
See the Appendix for the details.

The theory states that P can not have (complex) eigenvalues with norm
greater than 1, that is its spectral radius. Besides, when u” p # 0, there is
no need to solve the sums to know the asymptotic behavior of x; for large .

2This is true even when the output vectors are correlated in time, provided they are
Gaussian.



4.1 Primitive shares matrix

When P is primitive all the (eventually complex) eigenvalues have norm less
than 1. The vector u alone generates the left eigenspace of 1. Let v be a
right eigenvector for A (the right eigenspace is clearly one-dimensional too,
so all the right eigenvectors of 1 are multiples of each other).

Equation (6) states that

lim P'= ——vu' =vu’
t—+oo utv
where
- v
V=—
ul v

is the only right eigenvector for P whose entries sum to one (i.e., the Perron
vector of P). The rate of convergence depends on the second eigenvalue of
P ([5]). Then Theorem (7) in the Appendix implies

t

Zl P'J =tvul +o(t)
]:

t
> PrT (P = 29u" Tud” 40 (12) =2 (W' Tu) 997 + 0 (2)

n=1

Consequently, in the long run (t — +oc), if u” i # 0, the values of the firms

are
xp ~1 (uT u) v
ie.,
E[x] = ¢ (uT ) ¥+ o(f)
C=t’yvvli+o (tZ)
where
y=ulTu
Let?

t
Gy = ul E €;
i=1

the total production. Since

E[G) =< G>= (u"p)t , Var[Gy] =t

- ¢
3To consider G; = u” <xo + > q) does not change the results, except for
j=1

]E[Gt] = (uT u) t+ (uT xo).



the values of the firms are asymptotically equal to
Xt~ Gt v

That is: the value of i-th firm tends to be a fixed quota wv; of the total
production Gy, being v; determined only by the topology of the network P.
It implies that the correlations tend to 1:*

'yt2vivj+o(t2) |

COIT (T 4, Tjt) =
yt2v? 4 o (t2) 4/ 12 0]2- + o (t?)

5 Irreducible shares matrix

When P is irreducible, the Perron vector exists since the eigenspace of 1 is
one—dimensional, but there are h unitary eigenvalues. However the eigen-
values are in the form

with £ = 0,...,h, where h is the index of imprimitivity. This is the reason
why a non-negative, irreducible but not primitive matrix is said periodic.
Besides every eigenvalue is simple (i.e., its eigenspace is one—dimensional).

P! does not converge in this case, however it is similar to a matrix in
the following form:

1 0 0o ... 0 0
0 et 0 ... 0 0
5_| 0 0 e2ot .. 0 0
0 0 0 .. ehDoi ¢
0o o o ... 0 A
where ¢ = 27” and A is a matrix with spectral radius less than 1. That

isP=MP M’l~ for some non-singular (complex) matrix M. As a conse-
quence P/ = MP/ M~
P is a block-diagonal matrix, then

1 0 0o ... 0 0
0 &% 0 ... 0 0
pi_| 0 0 eI 0 0
0 0 0 ... eb-biei g
0 0 0o ... 0 AJ

‘By Perron-Frobenius theorem, v has positive entries. « > 0 unless all the entries of
the output vector have a perfect correlation (the result clearly holds in this case too).



with A® — 0 as t — +00. P! can not converge (and so does P) because
the diagonal elements Pss, P33, ..., Py, keep on cycling. However both the
matrices have a Cesaro limit, which, for P, is:

1 .
lim = > P/ =vu’ (5)

It is easy to understand, considering the Cesaro limit of P and reminding
that the first column of M must be a multiple of v while the first row of
M~! must be a multiple of u” by a coefficient which is the reciprocal of the
former.

Every stochastic matrix has a finite Cesaro limit, but it has a different
form when the matrix is reducible.

Equation (5) implies

t—1
> Pl =tvu’ +o(t)
j=0

for large ¢. So that, again,®
E(x;) =t (u” p) v+o(t)
With some more calculations, one obtains
C=t’yvvli +o (tg)

Thus the values of the firms tend to change coherently even though the
shares matrix is not primitive. The irreducibility is sufficient.

P is irreducible if and only if the associated directed graph is strongly
connected ([7] or [8]). This means that for every ordered pair of firms f,
f2, a sequence sq, ... , s, of firms can be found such that f; owns some
shares of s, which owns some shares of s and so on, until s, which owns
some shares of fo. The opposite must be true too (in general by a different
sequence).

Clearly, if the shares matrix is not connected, every connected component
evolves autonomously.

6 Reducible shares matrix

Only one case remains: when the shares matrix is connected but reducible
(i.e., not strongly connected). In this case P still has a finite Cesaro limit,

%Since 151kk, with k& = 2,..., h, cycle, the sum on j remains bounded. A’ tend expo-
nentially to zero, so their sum can not diverge and is bounded. Then the spread o(t) is
actually o(f(t)) for every infinite function f(¢), no matter how slow f(¢) tends to 0. It
clearly holds also in the case of primitive shares matrix.



but the form is different ([7]): by a proper permutation, P can assume the

form
TH 0
P=
< Ty To )
with Ty lower—triangular block matrix, and

A
Toy =
Ay,

where Ay are irreducible. This means that the firms can be qualitatively
grouped into "owners” (the last listed one, when the shares matrix has the
above-mentioned form) and ”owned firms” (even though they simply do not
have shares of the second group of firms). Then, the Cesaro limit is

t—1
1 | 0 0
lim — S Pi =
1o 1 Zl < ETy (I-Ty) ' E )
J:

where
Vi uT

E=
Vo, ul

v} is the Perron vector of the matrix Aj. Furthermore

. t 0 0
AP = ( ETy (I-Ty) ' E >
if and only if Ay are all primitive. Otherwise the limit does not exist.

This means that the value tend to concentrate on the owners (which are
"more connected”), while the owned firms tend to (relatively) decrease their
value. Actually the mean value of the owners is of order ¢, while the one of
the owned firms is just o(¢) (so it does not necessarily tend to zero).

7 Conclusions

In this work the evolution of the value of a set of producing firms sharing
their property according to fixed quotas has been modelled. The model is
still very simple and can be generalized in several manners to approach more
realistic situations. The shares matrix is kept constant in time, while this
does clearly not occur. Besides, the random productions are supposed to be
independent on the values of the firms and correlated only at simultaneous
times. However some interesting features emerged: the long run values de-
pend weakly on the individual productivities and strongly on the topology



of the network representing the shares quotas. As just as the structure be-
comes strongly connected, the productivities simply contribute to the total
value of the system, which tends asymptotically to be shared among the
firms according to quotas that depend only on the network topology. When
the network (which is a weighted, directed graph) is connected, but not
strongly connected, the firms can be grouped into two classes. The "less
connected” ones are penalized with respect to the "more connected” ones.

The model can actually be applied to a wider range of systems, since
it describes the production and the distribution on a network and shows
that stronger the connection, weaker the dependence of the individual per-
formance on the personal proficiency. Besides it shows that networks tend
to get more stiffening and to trap their dynamics as they increase their
connection.

Appendix

A Irreducible and primitive matrices

Here are cited some useful definitions and properties:

e A matrix A is reducible ([8]) if there is a permutation B such that

K1 Kz >

-1 _
BAB —( 0 Koy

where K17 and Koy are square matrices. Otherwise it is irreducible.
With the model and the consequent formalism used in this work, a
matrix is reducible if

_ Ky 0
BAB ' =
( Ko Koo )

e A non-negative matrix A is primitive if there is k > 0 such that A¥
is positive.
e A primitive matrix must be irreducible.

e An irreducible matrix is primitive if and only if there is only one eigen-
value on its spectral circle.

e If a non—negative, irreducible matrix has a positive, diagonal entry, it
is primitive.

e If A is primitive

im (—La) =Xl oy (6)
n—to0 \ p(A) Ty
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where r and 1 are respectively a right and a left eigenvector of p(A)
for A.

¢ A non—negative, irreducible matrix is imprimitive if there are h eigen-
values on its spectral circle. h is the index of imprimitivity.

o if c(z) = 2™ + 12" + gz 2 4 aza™ R 4 ... 4 2™ P s the
characteristic polynomial of an imprimitive matrix A in which only
the non—zero terms are listed, then the index of imprimitivity is the
greatest common divisor of ki, ks, ..., ks.

B Perron-Frobenius theorem

If A is non—negative and irreducible then
e the spectral radius p(A) is an eigenvalue for A;
e the eigenspace of the spectral radius is one-dimensional;
e there is a positive eigenvector of the spectral radius for A;

Besides the Collatz—Wielandt formula holds for all non—negative matrices:

A xl.
p(A) = max min [Ax];
x>0 | 1<j<n %

X#O :Ej#o

C Wielandt’s theorems

C.1

If |IB| < A and A is irreducible then p(B) < p(A). In the case p(B) = p(A)
(i.e., AB = p(A) e'? for some @), then

i 1 . el j=i
B=¢DAD with D;; = o
0 jF#i
C.2
If A is non—negative and irreducible and has h eigenvalues Aj, Ao, ..., Ay

on its spectral circle then

e every eigenspace of \; is one-dimensional;

o M = p(A)e2mhi



D Some simple proofs

D.1 Equation 3

t t

Cov [Zit, 4] = ZZZZ Pt ” m Pt m] COV [Ean, Ebm| =

n=1m=1 a b
t ot

- Z Z Z Z [Ptin]ia [Ptim]jb 5mnrab =

n=1m=1 a b

S99 ol M ol LA

n=1 a b Y

Spter | i]-

n=1

D.2 Theorem

If M,, is a converging sequence of matrices and M = lim M, then as
n
ZMj:nM—i—o(n)NnM (7)
=1

Proof:

Since M,, = M + o(1), for every ¢ > 0 there is n. € N such that

maxN|[Mn -M], <& Vn>n,

aib:]‘i )
Then
1 | 1 |
~ISTM, - M| =~ —M)| =
n Z j—n n Z (M; — M)
j=1] j=1]
1 ne—1 n
== 1) (M -M)+ ) (M; - M)| <
j=1] j=ne
1 ne—1 n
SE Z(M]_M)+_Z‘M]_M‘<
J=1 J=ne
n _ 2
<Ayl oy A ot DNe AL g o g
n n j=n. n n

for some positive numbers A and B.
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