Università di Milano-Bicocca Quaderni di Matematica

The character table of a split extension of the Heisenberg group $H_1(q)$ by Sp(2,q), q odd

Marco Antonio Pellegrini

QUADERNO N. 7/2008 (arxiv:math/0805.2481)

Stampato nel mese di maggio 2008 presso il Dipartimento di Matematica e Applicazioni, Università degli Studi di Milano-Bicocca, via R. Cozzi 53, 20125 Milano, ITALIA.

DISPONIBILE IN FORMATO ELETTRONICO SUL SITO www.matapp.unimib.it. SEGRETERIA DI REDAZIONE: Ada Osmetti - Giuseppina Cogliandro tel.: +39 02 6448 5755-5758 fax: +39 02 6448 5705

Esemplare fuori commercio per il deposito legale agli effetti della Legge 15 aprile 2004 n.106.

The character table of a split extension of the Heisenberg group $H_1(q)$ by Sp(2,q), q odd

Marco Antonio Pellegrini

Abstract

In this paper we determine the full character table of a certain split extension $H_1(q) \rtimes Sp(2,q)$ of the Heisenberg group H_1 by the odd-characteristic symplectic group Sp(2,q).

Keywords: Character table, Heisenberg group, Symplectic group.

AMS subject classification: 20C15.

1 Introduction

In his paper ([Gér]) P. Gérardin constructed the Weil representations of the oddcharacteristic symplectic groups using the properties of a certain split extension $H_t(q) \rtimes Sp(2t,q)$ of the Heisenberg group $H_t(q)$ of order q^{2t+1} by the symplectic group Sp(2t,q). In this paper we explicitly determine the character table of this extension, in the case where t = 1. A motivation lies in the fact that knowledge of this character table seems to be useful in the study of the restrictions to parabolic subgroups of certain unipotent characters of odd-dimensional orthogonal groups (see [DPW]).

Let V be the column vector space of dimension 2t over a finite field F of order q, where q is odd, and V is provided with a non-degenerate symplectic form j. Given $w \in V$, we denote by w^* the element of the dual space (we think at w^* as a row) such that $w^*w_1 = j(w, w_1)/2$. Let $H_t(q)$ be the group consisting of the matrices

$$h = h_{(w,z)} = \left(\frac{1 | w^* | z}{1 | w}\right) \in Mat(2t+2,F),$$

where $w \in V$ and $z \in F$. We call this group the Heisenberg group of V. $H_t(q)$ is obviously a central extension of (V, +) by (F, +). Furthermore, $H_t(q)$ is a two-step nilpotent group of order q^{2t+1} whose center is isomorphic to F (cf. [Gér, Lemma 2.1]).

Let S be the symplectic group associated to the form j and, for each $s \in S$, denote by sw the image of w under the natural action of S on V. Then, the map

 $h_{(w,z)} \mapsto h_{(sw,z)}$ defines an automorphism of $H_t(q)$ fixing pointwise $\mathbf{Z}(H_t(q))$. Viewed as acting on matrices, this map is the conjugation by the element $\mathbf{s} = diag(1, s, 1)$

Let us denote by G the semidirect product $H_t(q) \rtimes Sp(2t, q)$ defined by the above action of S. We want to construct the character table of G in the case where t = 1. So, $G = H_1(q) \rtimes Sp(2,q)$. In this case, we can write in a unique way a generic element g of G as

$$g = g_{(s,w,z)} = sh_{(w,z)} = \left(\frac{1 | w^* | z}{| s | sw}\right),$$

where $s \in S = Sp(2,q)$ (here we identify $s \in S$ with $\mathbf{s} \in G$), $w \in V$ and $z \in F$. If $w = \begin{pmatrix} x \\ y \end{pmatrix} \in V$, then we can take as w^* the row $\frac{1}{2}(-y,x)$. Note that $|G| = q^4(q^2 - 1)$.

2 The conjugacy classes

In the sequel, we denote by (g) the conjugacy class of G containing the element g, and by |(g)| the size of the conjugacy class (g). The following lemma lists the conjugacy classes of G.

Lemma 2.1. Let F = GF(q), q odd, and let $F^{\times} = \langle \nu \rangle$ be the multiplicative group of F. Set

$$\begin{aligned} \mathscr{A}(z) &= \begin{pmatrix} \frac{1}{||} & \frac{z}{||} \\ 1 & \frac{1}{||} & 1 \\ \hline \\ 1 & 1 & 1 \\ \hline \\ \end{bmatrix}, \qquad \mathscr{B} = \begin{pmatrix} \frac{1}{||} & \frac{1}{||} & \frac{z}{||} \\ \frac{1}{||} & \frac{z}{||} \\ \hline \\ \frac{1}{||} & \frac{z}{||} \\ \hline \\ 1 & 1 & 1 \\ \hline \\ \end{bmatrix}, \qquad \mathscr{B}_k(z) &= \begin{pmatrix} \frac{1}{||} & \frac{z}{||} \\ \frac{1}{||} & \frac{z}{||} \\ \hline \\ 1 & 1 & 1 \\ \hline \\ 1 & 1 & 1 \\ \hline \\ \end{bmatrix}, \qquad \mathscr{F}(z) = \begin{pmatrix} \frac{1}{||} & \frac{z}{||} \\ \frac{1}{||} & \frac{z}{||} \\ \frac{1}{||} & \frac{z}{||} \\ \hline \\ 1 & 1 & 1 \\ \hline \\ 1 & 1 & 1 \\ \hline \\ \end{bmatrix}, \qquad \mathscr{H}(z) = \begin{pmatrix} \frac{1}{||} & \frac{z}{||} \\ 1 & 1 & \frac{z}{||} \\ \hline \end{bmatrix}, \qquad \mathscr{H}_m = \begin{pmatrix} \frac{1}{||} & \frac{1}{||} & \frac{z}{||} \\ 1 & 1 & \frac{z}{||} \\ \hline \end{bmatrix}, \qquad \end{aligned}$$

$$\mathcal{M}_{m} = \begin{pmatrix} 1 & 0 & \frac{1}{2}\nu^{m} & \\ 1 & \nu^{m} & \\ \nu & 1 & \nu^{m+1} \\ \hline & & 1 & 1 \end{pmatrix},$$

where $z \in F$, $1 \le k \le \frac{q-3}{2}$, $1 \le m \le \frac{q-1}{2}$ and **b** is an element of order q+1 (a 'Singer cycle') of Sp(2,q). These are elements of G, and G admits exactly $q^2 + 5q$ conjugacy classes (g) with representative g, as listed in the Table below.

g	(g)	Parameters
$\mathscr{A}(z)$	1	$z \in F$
${\mathscr B}$	$q(q^2 - 1)$	
$\mathscr{C}(z)$	q^2	$z \in F$
$\mathscr{D}_k(z)$	$q^3(q+1)$	$z \in F, \ 1 \le k \le \frac{q-3}{2}$
$\mathscr{E}(z)$	$\frac{1}{2}q^2(q^2-1)$	$z \in F$ $$
$\mathscr{F}(z)$	$\frac{1}{2}q^2(q^2-1)$	$z \in F$
$\mathscr{G}_m(z)$	$q^{3}(q-1)$	$z \in F, 1 \leq m \leq \frac{q-1}{2}$
$\mathscr{H}(z)$	$\frac{1}{2}q(q^2-1)$	$z \in F$
$\mathscr{I}(z)$	$\frac{1}{2}q(q^2-1)$	$z \in F$
\mathscr{L}_m	$\bar{q}^2(q^2-1)$	$1 \le m \le \frac{q-1}{2}$
\mathscr{M}_m	$q^2(q^2 - 1)$	$1 \le m \le \frac{q-1}{2}$

Proof. Let $g_1 = g_{(s_1,w_1,z_1)}$ and $g_2 = g_{(s_2,w_2,z_2)}$ be two generic elements of G. Then $g_1g_2g_1^{-1} = g_{(s_1s_2s_1^{-1},s_1(w_2-w_1+s_2^{-1}w_1),z_2-(w_2+s_2^{-1}w_1+s_2w_2)^*w_1)}$. It easily follows that if g_1 is conjugate to g_2 in G, then s_1 is conjugate to s_2 in S. Moreover, if $z_1 \neq z_2$, then the elements $g_{(s_1,0,z_1)}$ and $g_{(s_2,0,z_2)}$ cannot be conjugate in G. Observe that $g_1 \in \mathbf{C}_G(g_2)$ if and only if

$$\begin{cases} s_1 \in \mathbf{C}_S(s_2) \\ w_2 + s_2^{-1} w_1 = w_1 + s_1^{-1} w_2 \\ w_1^*(s_2 w_2) = w_2^*(s_1 w_1) \end{cases}.$$

Let us consider the elements $\mathscr{A}(z) = g_{(1,0,z)}, z \in F$. It is straightforward to see that $\mathbf{Z}(G) = \mathbf{Z}(H_1(q)) = \{\mathscr{A}(z) : z \in F\} \cong (F, +)$. Therefore, each of these q elements of G forms a central class of order 1. In particular, $\mathscr{A}(0)$ is the identity of G.

Now, let us consider the element $g_{(1,w,0)} = \mathscr{B} \in H_1(q) \setminus \mathbf{Z}(H_1(q))$. Then, $|\mathbf{C}_G(\mathscr{B})| = q^3$, i.e. $|(\mathscr{B})| = q(q^2 - 1)$. Since

$$g_{(s_1,w_1,z_1)} \mathscr{B} g_{(s_1,w_1,z_1)}^{-1} = g_{(1,s_1w,-2w^*w_1)},$$

it turns out that the elements of $H_1(q) \setminus \mathbf{Z}(H_1(q))$ form a single conjugacy class (\mathscr{B}) of G.

Set $g = g_{(s,0,z)} \in \{\mathscr{C}(z), \mathscr{D}_k(z), \mathscr{E}(z), \mathscr{F}(z), \mathscr{G}_m(z)\}$. Recall (e.g., see [Dor, §38]) that S admits elements **b** of order q + 1, the so-called 'Singer cycles'. As observed

before, for different values of z and s the elements $g_{(s,0,z)}$ belong to $q^2 + q$ distinct conjugacy classes of G. Now, an element $g_{(s_1,w_1,z_1)}$ belongs to $\mathbf{C}_G(g)$ if and only if

$$\begin{cases} s_1 \in \mathbf{C}_S(s) \\ sw_1 = w_1 \end{cases}$$
 (1)

Since s does not have eigenvalue 1, the condition $sw_1 = w_1$ implies $w_1 = 0$. It follows that $|\mathbf{C}_G(g)| = q |\mathbf{C}_S(s)|$, and using the information about the centralizers of elements of S contained in [Dor, §38], we obtain the results listed in the statement of the lemma.

Next, let us consider elements $g = g_{(s,0,z)} \in \{\mathscr{H}(z), \mathscr{I}(z)\}$. We argue as above, but note that this time *s* does admit the eigenvalue 1. This implies that in (1) $w_1 = \begin{pmatrix} 0 \\ y \end{pmatrix}$, where $y \in F$. So $|\mathbf{C}_G(g)| = q^2 |\mathbf{C}_S(s)| = 2q^3$, i.e. $|(g)| = \frac{q(q^2-1)}{2}$.

Finally, let us consider elements $g = g_{(s,w,0)} \in \{\mathscr{L}_m, \mathscr{M}_m\}$, where

$$s = \begin{pmatrix} 1 & 0 \\ \epsilon & 1 \end{pmatrix}, \quad w = \begin{pmatrix} \nu^m \\ 0 \end{pmatrix},$$

and $\epsilon \in \{1, \nu\}$. Easy calculations show that if $1 \leq m \leq \frac{q-1}{2}$ the elements g belong to distinct conjugacy classes of G. An element $g_{(s_1,w_1,z_1)}$ belongs to $\mathbf{C}_G(g)$ if and only if

$$\begin{cases} s_1 \in \mathbf{C}_S(s) = \left\{ \begin{pmatrix} a & 0 \\ c & a \end{pmatrix} : a = \pm 1, c \in F \right\} \\ w + s^{-1}w_1 = w_1 + s_1^{-1}w \\ w_1^*(sw) = w^*(s_1w_1) \end{cases}$$

Since the condition $w + s^{-1}w_1 = w_1 + s_1^{-1}w$ implies a = 1, it follows that $g_{(s_1,w_1,z_1)}$ can be chosen in q^2 different ways. Thus, $|\mathbf{C}_G(g)| = q^2$, i.e. $|(\mathscr{L}_m)| = |(\mathscr{M}_m)| = q^2(q^2 - 1)$.

So far, we have found q^2+5q distinct conjugacy classes, adding up to |G| elements. Thus, we are done.

3 The character table

First of all, we observe that the character table of $SL(2,q) \cong Sp(2,q) \cong G/H_1(q)$ is well-known, e.g., see [Dor, §38], to which we refer for notation and all the information needed in the sequel.

Next, note that, as $\mathbf{Z}(G) = \{\mathscr{A}(z) : z \in F\}$, for any irreducible character χ of G

$$\chi(\mathscr{C}(z)) = \frac{\chi(\mathscr{A}(z))}{\chi(1)}\chi(\mathscr{C}(0))$$

for all $z \in F$. The same holds for the classes $(\mathscr{D}_k(z))$, $(\mathscr{E}(z))$, $(\mathscr{F}(z))$, $(\mathscr{G}_m(z))$, $(\mathscr{H}(z))$ and $(\mathscr{I}(z))$. So, in the character table we only report the values of a character on $\mathscr{C}(0)$, $\mathscr{D}_k(0)$ and so on.

Since $G/H_1(q) \cong SL(2,q)$, knowledge of the character table of SL(2,q) gives us by inflation q + 4 characters: namely 1_G , η_1 , η_2 , ξ_1 , ξ_2 , θ_j $(1 \le j \le \frac{q-1}{2})$, ψ and χ_i $(1 \le i \le \frac{q-3}{2})$.

Next, we construct q-1 distinct irreducible characters of G having degree q. Denote by λ a fixed non-trivial character of $\mathbf{Z}(G) \cong (F, +)$. Clearly, each of the qlinear characters of $\mathbf{Z}(G)$ can be parametrised as λ_u ($u \in F$), where $\lambda_u(z) = \lambda(uz)$ for all $z \in F$. In particular, $\lambda_0 = 1_{\mathbf{Z}(G)}$. We know by [Gér, Lemma 1.2] that $H_1(q)$ has exactly q-1 non-linear irreducible characters λ_u , defined as

$$\tilde{\lambda}_u(h) = \begin{cases} q\lambda_u(h) & \text{if } h \in \mathbf{Z}(H_1(q)) \\ 0 & \text{if } h \notin \mathbf{Z}(H_1(q)) \end{cases} \quad (u \in F^{\times}).$$

Furthermore, by [Gér, Theorem 2.4] the characters λ_u can be extended to G. We denote such extensions by ω_u ($u \in F^{\times}$). The values taken by the characters ω_u on the elements of S can be found in [Sze, Proposition 2]. Namely:

g	1	$\mathscr{A}(z)$	\mathscr{B}	$\mathscr{C}(0)$	$\mathscr{D}_k(0)$	$\mathscr{E}(0)$	$\mathscr{F}(0)$	$\mathscr{G}_m(0)$	$\mathscr{H}(0)$	$\mathscr{I}(0)$
$\omega_u(g)$	q	$q\lambda_u(z)$	0	δ	$(-1)^k$	δ	δ	$(-1)^{m+1}$	$Q(\lambda_u)$	$-Q(\lambda_u)$

where

$$Q(\lambda) = \sum_{t \in F} \lambda(-t^2/2), \qquad Q(\lambda_u) = \sum_{t \in F} \lambda_u(-t^2/2) = \left(\frac{u}{F}\right)Q(\lambda)$$

and

$$\left(\frac{u}{F}\right) = \begin{cases} +1 & \text{if } u \text{ is a square in } F \\ -1 & \text{if } u \text{ is not a square in } F \end{cases}$$

(it turns out that $|Q(\lambda)|^2 = q$).

We are left to compute the values of the ω_u 's on the classes (\mathscr{L}_m) and (\mathscr{M}_m) . To this purpose, we compute

$$1 = (\omega_u, \omega_u)_G = \frac{q^4(q^2 - 1) + q^2(q^2 - 1)\sum_{m=1}^{\frac{q-1}{2}} (|\omega_u(\mathscr{L}_m)|^2 + |\omega_u(\mathscr{M}_m)|^2)}{q^4(q^2 - 1)}$$

This implies that $\omega_u(\mathscr{L}_m) = \omega_u(\mathscr{M}_m) = 0$, for all $1 \le m \le \frac{q-1}{2}$.

It is easy to verify that the characters $\omega_u \eta_1$, $\omega_u \eta_2$, $\omega_u \xi_1$, $\omega_u \xi_2$, $\omega_u \theta_j$, $\omega_u \psi$ and $\omega_u \chi_i$ ($u \in F^{\times}$) are pairwise distinct irreducible characters of G.

At this stage, q irreducible characters of G are still missing. We construct them as follows.

Let us consider the Sylow p-subgroup K of G consisting of the matrices of shape

$$k_{(a,x,y,z)} = \begin{pmatrix} 1 & -y/2 & x/2 & z \\ \hline 1 & a & x+ay \\ \hline & 1 & y \\ \hline & & 1 & y \\ \hline & & & 1 \end{pmatrix},$$

where $a, x, y \in F$. Define the linear characters μ_{u_1,u_2} $(u_1, u_2 \in F)$ of K setting $\mu_{u_1,u_2}(k_{(a,x,y,z)}) = \lambda_{u_1}(a)\lambda_{u_2}(y) = \lambda(u_1a + u_2y)$, where, as above, λ_u denotes the non-trivial linear character of $\mathbf{Z}(G)$ associated to $u \in F^{\times}$ (in particular, $\mu_{0,0} = 1_K$). We consider the induced characters μ^G

We consider the induced characters μ_{u_1,u_2}^G .

First of all, note that $(\mathscr{C}(z)) \cap K = \emptyset$ and that the same holds also for $(\mathscr{D}_k(z))$, $(\mathscr{E}(z))$, $(\mathscr{F}(z))$ and $(\mathscr{G}_m(z))$. So, the value of $\mu^G_{u_1,u_2}$ on these classes is 0, whereas the value on $\mathscr{A}(z)$ is

$$\mu_{u_1,u_2}^G(\mathscr{A}(z)) = \frac{q^4(q^2-1)}{q^4} = q^2 - 1.$$

To compute $\mu_{u_1,u_2}^G(\mathscr{B})$, we observe that if $s = \begin{pmatrix} s_{11} & s_{12} \\ s_{21} & s_{22} \end{pmatrix} \in S$ and $g = g_{(s,w,z)}$, then $\mu_{u_1,u_2}(g\mathscr{B}g^{-1}) = \lambda_{u_1}(0)\lambda_{u_2}(s_{21}) = \lambda_{u_2}(s_{21})$. So, if $s_{21} = 0$ the matrix s can be chosen in q(q-1) ways, whereas if we fix $s_{21} \neq 0$, s can be chosen in q^2 different ways. For $u_2 \neq 0$ we obtain

$$\mu_{u_1,u_2}^G(\mathscr{B}) = \frac{q^3[q(q-1)+q^2\sum_{s_{21}\neq 0}\lambda_{u_2}(s_{21})]}{q^4}$$
$$= \frac{q^3[q(q-1)-q^2]}{q^4} = -1$$

Next, we look at the classes $(\mathscr{H}(z))$. The matrices s such that $g\mathscr{H}(z)g^{-1} \in K$ are of shape $\begin{pmatrix} s_{11} & s_{12} \\ -1/s_{12} & 0 \end{pmatrix}$. It follows that

$$\mu_{u_1,u_2}(g\mathscr{H}(z)g^{-1}) = \lambda_{u_1}(-s_{12}^2)\lambda_{u_2}(0)$$

and therefore

$$\mu_{u_{1},u_{2}}^{G}(\mathscr{H}(z)) = \frac{q^{3}q \sum_{t \neq 0} \lambda_{u_{1}}(-t^{2})}{q^{4}}$$
$$= -1 + Q(\lambda_{2u_{1}}) = -1 + \left(\frac{2}{F}\right)Q(\lambda_{u})$$

In a similar way, one also obtains that

$$\mu_{u_1,u_2}^G(\mathscr{I}(z)) = \sum_{t \neq 0} \lambda_{u_1}(-\nu t^2).$$

In particular, for $u_1 = 0$ we get $\mu_{0,u_2}^G(\mathscr{H}(z)) = \mu_{0,u_2}^G(\mathscr{I}(z)) = q - 1$, whereas for $u_1 \neq 0$, we get $\mu_{u_1,u_2}^G(\mathscr{I}(z)) = -1 - Q(\lambda_{2u_1})$. The value of μ_{u_1,u_2}^G on \mathscr{L}_m is obtained in the same way as above: *s* has the same

shape as in the case $\mathscr{H}(z)$, but $\mu_{u_1,u_2}(g\mathscr{L}_m g^{-1}) = \lambda_{u_1}(-s_{12}^2)\lambda_{u_2}(\frac{-\nu^m}{s_{12}})$. Thus,

$$\mu_{u_{1},u_{2}}^{G}(\mathscr{L}_{m}) = \frac{q^{3}q \sum_{t \neq 0} \lambda_{u_{1}}(-t^{2})\lambda_{u_{2}}(-\nu^{m}/t)}{q^{4}}$$
$$= \sum_{t \neq 0} \lambda \Big(-\frac{u_{1}t^{3} + u_{2}\nu^{m}}{t} \Big).$$

Similarly, in the case of \mathcal{M}_m , we obtain

$$\mu_{u_{1},u_{2}}^{G}(\mathscr{M}_{m}) = \frac{q^{3}q \sum_{t \neq 0} \lambda_{u_{1}}(-\nu t^{2})\lambda_{u_{2}}(-\nu^{m}/t)}{q^{4}}$$
$$= \sum_{t \neq 0} \lambda \Big(-\frac{u_{1}\nu t^{3} + u_{2}\nu^{m}}{t} \Big).$$

In particular, for $u_1 = 0$ we get $\mu_{0,u_2}^G(\mathscr{L}_m) = \mu_{0,u_2}^G(\mathscr{M}_m) = -1$.

Set $\kappa_0 = \mu_{0,1}^G$. Computing $(\kappa_0, \kappa_0)_G$, one sees that κ_0 is irreducible. Furthermore, for all $u_1, u_2 \in F^{\times}$, κ_0 is different from any of the μ_{u_1, u_2}^G 's because

$$\kappa_0(\mathscr{H}(0)) + \kappa_0(\mathscr{I}(0)) = 2q - 2 \neq \mu_{u_1, u_2}^G(\mathscr{H}(0)) + \mu_{u_1, u_2}^G(\mathscr{I}(0)) = -2.$$

Next, we show that we can always pick q-1 pairwise distinct irreducible characters among the μ_{u_1,u_2}^G 's. For instance, we can take as (u_1, u_2) the pairs $(1, \nu^n)$ and (ν,ν^n) , where $1 \leq n \leq \frac{q-1}{2}$. Set $\kappa_{1,n} = \mu_{1,\nu^n}^G$, $\kappa_{\nu,n} = \mu_{\nu,\nu^n}^G$. We start showing that these characters are irreducible.

Use of Mackey's formula implies that

$$(\kappa_{1,n},\kappa_{1,n})_G = \sum_{r\in\mathcal{R}} (\mu_{1,\nu^n}, {^r\mu_{1,\nu^n}})_{K\cap {^rK}},$$

where \mathcal{R} is a complete set of representatives for the double cosets of K in G. As \mathcal{R} we can choose the set $\{s(\alpha), \overline{s}(\beta) \mid \alpha, \beta \in F^{\times}\}$, where

$$s = s(\alpha) = \begin{pmatrix} \alpha & 0 \\ 0 & 1/\alpha \end{pmatrix}, \quad \overline{s} = \overline{s}(\beta) = \begin{pmatrix} 0 & -1/\beta \\ \beta & 0 \end{pmatrix} \in S.$$

Note that $|KsK| = q^4$ and $|K\bar{s}K| = q^5$. Since the μ_{1,ν^n} 's are linear characters, it suffices to show that for $r \neq s(1)$, the restrictions of μ_{1,ν^n} and $r\mu_{1,\nu^n}$ to $K \cap rK$ are distinct.

First, we look at the double cosets $K\overline{s}(\beta)K$. For all $\overline{s}k \in K \cap \overline{s}K$, we have $\mu_{1,\nu^n}(\overline{}^sk) = \lambda_{\nu^n}(\beta x)$ and $\overline{}^s\mu_{1,\nu^n}(\overline{}^sk) = \mu_{1,\nu^n}(k) = \lambda_{\nu^n}(y)$. It follows that, if $\mu_{1,\nu^n} = \lambda_{\nu^n}(y)$. $\overline{}^{s}\mu_{1,\nu^{n}}$, then $\lambda_{\nu^{n}}(\beta x) = \lambda_{\nu^{n}}(y)$, for all $x, y \in F$. In particular, for x = 0, we have $\lambda_{\nu^n}(y) = 1$ for all $y \in F$, i.e. $Ker(\lambda_{\nu^n}) = \mathbf{Z}(H_1(q))$, forcing $\nu^n = 0$, a contradiction. Next, we look at the double cosets $Ks(\alpha)K$. For all ${}^{s}k \in K \cap {}^{s}K$, we have $\mu_{1,\nu^{n}}({}^{s}k) = \lambda_{1}(a\alpha^{2})\lambda_{\nu^{n}}(\frac{y}{\alpha})$ and ${}^{s}\mu_{1,\nu^{n}}({}^{s}k) = \mu_{1,\nu^{n}}(k) = \lambda_{1}(a)\lambda_{\nu^{n}}(y)$. It follows that, if $\mu_{1,\nu^{n}} = {}^{s}\mu_{1,\nu^{n}}$, then $\lambda_{1}(a\alpha^{2})\lambda_{\nu^{n}}(\frac{y}{\alpha}) = \lambda_{1}(a)\lambda_{\nu^{n}}(y)$, for all $a, y \in F$. In particular, for y = 0, we get $\lambda_{\alpha^{2}} = \lambda_{1}$, and so $\alpha = 1$. Clearly, for $\alpha = 1$, the two restrictions are the same character. This proves that the characters $\kappa_{1,n}$ are irreducible.

In the same way, we can prove that the characters $\kappa_{\nu,n}$ are also irreducible. To conclude, we are left to show that the characters $\kappa_{1,n}$ and $\kappa_{\nu,n}$ are pairwise distinct. This can be obtained proving that $(\kappa_{d,n}, \kappa_{d_1,n_1})_G = 0$, for $d, d_1 \in \{1,\nu\}, 1 \le n \le \frac{q-1}{2}$ and $(d,n) \ne (d_1,n_1)$. As above, we exploit Mackey's formula. The double cosets $K\overline{s}(\beta)K$ are dealt with in the same way as before. In the case of the double cosets $Ks(\alpha)K$, for $d = d_1$ we can argue as before. In the case $(d, d_1) = (1,\nu)$, if the restrictions of μ_{1,ν^n} and $\mu_{\nu,\nu^{n_1}}$ are the same, then

$$\lambda_1(a\alpha^2)\lambda_{\nu^n}(\frac{y}{\alpha}) = \lambda_{\nu}(a)\lambda_{\nu^{n_1}}(y)$$

for all $a, y \in F$. In particular, for y = 0, we get $\lambda_{\alpha^2} = \lambda_{\nu}$, a contradiction, since ν is not a square in F.

	In conclusion	, the desired	character	table of G	can l	be described as follows:
--	---------------	---------------	-----------	--------------	-------	--------------------------

· · · · · ·	r .	()	\sim	(0)	
	1	$\mathscr{A}(z)$	${}^{\mathcal{B}}$	$\mathscr{C}(0)$	$\mathscr{D}_k(0)$
1_G	1	1	1	1	1
η_1	$\frac{q-1}{2}$	$\frac{q-1}{2}$	$\frac{q-1}{2}$	$\frac{-\delta(q-1)}{2}$	0
η_2	$\frac{q-1}{2}$	$\frac{q-1}{2}$	$\frac{q-1}{2}$	$\frac{-\delta(q-1)}{2}$	0
ξ_1	$\frac{q+1}{2}$	$\frac{q+1}{2}$	$\frac{q+1}{2}$	$\frac{\delta(q+1)}{2}$	$(-1)^{k}$
ξ_2	$\frac{\frac{q-1}{2}}{\frac{q-1}{2}}$ $\frac{\frac{q+1}{2}}{\frac{q+1}{2}}$	$\frac{\frac{q-1}{2}}{\frac{q-1}{2}}$ $\frac{\frac{q+1}{2}}{\frac{q+1}{2}}$	$\frac{\frac{q-1}{2}}{\frac{q-1}{2}}$ $\frac{q+1}{2}$ $\frac{q+1}{2}$	$\frac{\frac{-\delta(q-1)}{2}}{\frac{-\delta(q-1)}{2}}$ $\frac{\frac{\delta(q+1)}{2}}{\frac{\delta(q+1)}{2}}$	$(-1)^k$
$\hat{\theta}_{i}^{2}$	$q^{2} = 1$	q - 1	$q^{2} - 1$	$(-1)^{j} (q-1)$	0
$egin{array}{c} heta_j \ \psi \end{array}$	q	q	\overline{q}	q	1
χ_i	q+1	q+1	q+1	$(-1)^i(q+1)$	$\rho^{ik} + \rho^{-ik}$
κ_0	$q^2 - 1$	$q^2 - 1$	-1	0	0
$\kappa_{1,n}$	$q^2 - 1$	$q^2 - 1$	-1	0	0
$\kappa_{ u,n}$	$q^2 - 1$	$q^2 - 1$	-1	0	0
ω_u	q	$q\lambda_u(z)$	0	δ	$(-1)^{k}$
$\omega_u \eta_1$	$\frac{q(q-1)}{2}$	$\frac{q(q-1)\lambda_u(z)}{2}$	0	$-\frac{(q-1)}{2}$	0
$\omega_u \eta_2$	$\frac{q(q-1)}{2}$	$\frac{q(q-1)\lambda_u(z)}{2}$	0	$-\frac{(q-1)}{2}$	0
$\omega_u \xi_1$	$\frac{q(q+1)}{2}$	$\frac{q(q+1)\lambda_u(z)}{2}$	0	$\frac{(q+\overline{1})}{2}$	1
$\omega_u \xi_2$	$\frac{\frac{q(q-1)}{2}}{\frac{q(q+1)}{2}}$ $\frac{q(q+1)}{2}$	$\frac{q(q+1)\lambda_u(z)}{2}$	0	$ \begin{array}{r} -\frac{(q-1)}{2} \\ -\frac{(q-1)}{2} \\ \frac{(q+1)}{2} \\ (q+1$	1
$\omega_u \theta_j$	q(q-1)	$q(q-1)\lambda_u(z)$	0	$(-1)^j \delta(q-1)$	0
$\omega_u \dot{\psi}$	q^2	$q^2\lambda_u(z)$	0	δq	$(-1)^k$
$\omega_u \chi_i$	q(q+1)	$q(q+1)\lambda_u(z)$	0	$(-1)^i \delta(q+1)$	$(-1)^{k} (\rho^{ik} + \rho^{-ik})$

	$\mathscr{E}(0)$	$\mathscr{F}(0)$	$\mathscr{G}_m(0)$		$\mathscr{H}(0)$	
1_G	1	1	1 1		1	
η_1	$\frac{-\delta(-1+\sqrt{\delta q})}{2}$	$-\delta(-1-\sqrt{\delta q})$	$(-1)^{m+1}$	-1	$\frac{(-1+\sqrt{\delta q})}{2}$	
	$\frac{2}{-\delta(-1-\sqrt{\delta q})}$	$\frac{2}{-\delta(-1+\sqrt{\delta q})}$	$(-1)^{m+}$		$\frac{2}{(-1-\sqrt{\delta q})}$	
η_2	$\delta(1+\sqrt{\delta q})$	$\delta(1 - \sqrt{\delta q})$	0		$\frac{\frac{(-1-\sqrt{\delta q})}{2}}{\frac{(1+\sqrt{\delta q})}{2}}$ $\frac{\frac{(1-\sqrt{\delta q})}{2}}{2}$	
ξ_1	$\frac{2}{\delta(1-\sqrt{\delta q})}$	$\frac{2}{\delta(1+\sqrt{\delta q})}$	0		$\frac{2}{(1-\sqrt{\delta q})}$	
$egin{array}{c} \xi_2 \ heta_j \end{array}$	$\frac{\frac{-\delta(-1-\sqrt{\delta q})}{2}}{\frac{\delta(1+\sqrt{\delta q})}{2}}$ $\frac{\frac{\delta(1-\sqrt{\delta q})}{2}}{(-1)^{j+1}}$	$\frac{2}{(-1)^{j+1}}$	$-(\sigma^{jm}+\sigma$	-jm	$\frac{2}{-1}$	
ψ^{j}	0	$\frac{-\delta(-1-\sqrt{\delta q})}{2}$ $\frac{-\delta(-1+\sqrt{\delta q})}{2}$ $\frac{\delta(1-\sqrt{\delta q})}{2}$ $\frac{\delta(1+\sqrt{\delta q})}{2}$ $(-1)^{j+1}$ 0 $(-1)^{j}$	$-(\sigma^{jm} + \sigma)$		0	
χ_i	$(-1)^{i}$	$(-1)^{i}$	0		1	
κ_0	0	0	$(-1)^i 0 0$		q-1	
$\kappa_{1,n}$	0	0			$-1 + \left(\frac{2}{F}\right)Q(\lambda) -1 - \left(\frac{2}{F}\right)Q(\lambda)$	
$\kappa_{ u,n}$	0	0	0	1	$-1 - (\frac{2}{F})Q(\lambda)$	
ω_u	δ	δ	δ $(-1)^{m+}$		$Q(\lambda_u)$	
$\omega_u \eta_1$	$ \frac{\frac{1-\sqrt{\delta q}}{2}}{\frac{1+\sqrt{\delta q}}{2}} $ $ \frac{\frac{1+\sqrt{\delta q}}{2}}{\frac{1-\sqrt{\delta q}}{2}} $ $ (-1)^{j+1}\delta $ $ 0 $	$ \frac{\frac{1+\sqrt{\delta q}}{2}}{\frac{1-\sqrt{\delta q}}{2}} $ $ \frac{1-\sqrt{\delta q}}{2} $ $ \frac{1+\sqrt{\delta q}}{2} $ $ (-1)^{j+1}\delta $ $ 0 $	$\frac{1+\sqrt{\delta q}}{2}$ 1		$\frac{(-1+\sqrt{\delta q})Q(\lambda_u)}{(-1-\sqrt{\delta q})Q(\lambda_u)}$	
$\omega_u \eta_2$	$\frac{1+\sqrt{\delta q}}{2}$	$\frac{1-\sqrt{\delta q}}{2}$	1		$\frac{(-1-\sqrt{\delta q})Q(\lambda_u)}{(1+\sqrt{2})Q(\lambda_u)}$	
$\omega_u \xi_1$	$\frac{1+\sqrt{\delta q}}{2}$	$\frac{1-\sqrt{\delta q}}{2}$	0		$\frac{(1+\sqrt{\delta q})Q(\lambda_u)}{(1+\sqrt{\delta q})Q(\lambda_u)}$	
$\omega_u \xi_2$	$\frac{1-\sqrt{\delta q}}{2}$	$\frac{1+\sqrt{\delta q}}{2}$.0		$\frac{(1-\sqrt{\delta q})Q(\lambda_u)}{2}$	
$\omega_u \theta_j$	$(-1)^{j+1}\delta$	$(-1)^{j+1}\delta$	$-1)^{j+1}\delta \qquad (-1)^m(\sigma^{jm} + \sigma^{jm})$		$-Q(\lambda_u)$	
$\omega_u \psi$	$\begin{pmatrix} 0 \\ (1)iS \end{pmatrix}$	$\begin{pmatrix} 0 \\ (1)is \end{pmatrix}$	$\begin{array}{c c} 0 & (-1)^m \\ (-1)^i \delta & 0 \end{array}$		O(1)	
$\omega_u \chi_i$	$(-1)^i\delta$	(-1)*0	$(-1)^i \delta = 0$		$\begin{array}{c c} Q(\lambda_u) \\ & \\ & \\ & \\ \hline & \\ 1 \end{array}$	
	$\mathscr{I}(0)$		\mathcal{L}_m		\mathcal{M}_m	
			$\frac{1}{(-1+\sqrt{\delta q})}$			
1_G	$(-1-\sqrt{\delta q})$	(-	$\frac{1}{1+\sqrt{\delta q}}$		$(-1-\sqrt{\delta q})$	
η_1	$\frac{1}{\frac{(-1-\sqrt{\delta q})}{2}}$	<u>(-</u>	$\frac{1}{\frac{1+\sqrt{\delta q}}{2}}$		$\frac{1}{(-1-\sqrt{\delta q})} \frac{2}{(-1+\sqrt{\delta q})}$	
$\eta_1 \ \eta_2$	$ \frac{1}{\frac{(-1-\sqrt{\delta q})}{2}} \frac{\frac{(-1+\sqrt{\delta q})}{2}}{(1-\sqrt{\delta q})} $	<u>(-</u>	$\frac{1}{\frac{1+\sqrt{\delta q}}{2}}$ $\frac{1-\sqrt{\delta q}}{2}$ $\frac{2}{1+\sqrt{\delta q}}$		$\frac{1}{(-1-\sqrt{\delta q})} \\ \frac{2}{(-1+\sqrt{\delta q})} \\ \frac{2}{(1-\sqrt{\delta q})}$	
$egin{array}{c} \eta_1 \ \eta_2 \ \xi_1 \end{array}$	$ \begin{array}{c} 1\\ \underline{(-1-\sqrt{\delta q})}\\ \underline{(-1+\sqrt{\delta q})}\\ \underline{(1-\sqrt{\delta q})}\\ \underline{(1-\sqrt{\delta q})}\\ (1+\sqrt{\delta q}) \end{array} $	<u>(-</u> (<u>-</u> (<u>:</u>	$\frac{1}{\frac{1+\sqrt{\delta q}}{2}}$ $\frac{1-\sqrt{\delta q}}{\frac{2}{1-\sqrt{\delta q}}}$ $\frac{2}{1-\frac{\sqrt{\delta q}}{2}}$ $\frac{2}{1-\frac{\sqrt{\delta q}}{2}}$		$\frac{1}{(-1-\sqrt{\delta q})} \\ \frac{2}{(-1+\sqrt{\delta q})} \\ \frac{1}{(1-\sqrt{\delta q})} \\ \frac{2}{(1+\sqrt{\delta q})} $	
$egin{array}{c} \eta_1 \ \eta_2 \ \xi_1 \end{array}$	$ \begin{array}{c} 1 \\ \underline{(-1-\sqrt{\delta q})}{2} \\ \underline{(-1+\sqrt{\delta q})} \\ \underline{(1-\sqrt{\delta q})} \\ \underline{(1+\sqrt{\delta q})} \\ \underline{(1+\sqrt{\delta q})} \\ 2 \end{array} $	<u>)</u> (<u>-</u>) (<u>-</u>) (<u>-</u>)	$\frac{1}{\frac{1+\sqrt{\delta q}}{2}}$ $\frac{1-\sqrt{\delta q}}{2}$ $\frac{1+\sqrt{\delta q}}{2}$ $\frac{1-\sqrt{\delta q}}{2}$ $\frac{1-\sqrt{\delta q}}{2}$		$\frac{1}{(-1-\sqrt{\delta q})}$ $\frac{(-1+\sqrt{\delta q})}{(-1+\sqrt{\delta q})}$ $\frac{(1-\sqrt{\delta q})}{2}$ $\frac{(1+\sqrt{\delta q})}{2}$	
$egin{array}{c} \eta_1 \ \eta_2 \ \xi_1 \end{array}$	$ \begin{array}{c} 1\\ \frac{(-1-\sqrt{\delta q})}{2}\\ \frac{(-1+\sqrt{\delta q})}{2}\\ \frac{(1-\sqrt{\delta q})}{2}\\ \frac{(1+\sqrt{\delta q})}{2}\\ -1\\ 0\end{array} $	<u>)</u> (<u>-</u> (: (:	$ \frac{1+\sqrt{\delta q}}{2} \\ \frac{1-\sqrt{\delta q}}{2} \\ \frac{1+\sqrt{\delta q}}{2} \\ \frac{1-\sqrt{\delta q}}{2} \\ -1 $		$ \frac{(-1-\sqrt{\delta q})}{2} \\ \frac{(-1+\sqrt{\delta q})}{2} \\ \frac{(1-\sqrt{\delta q})}{2} \\ \frac{(1+\sqrt{\delta q})}{2} \\ -1 $	
$egin{array}{c} \eta_1 \ \eta_2 \ \xi_1 \ \xi_2 \ heta_j \ \psi \end{array}$	0	<u>)</u> (<u>-</u>) (<u>-</u>) (<u>-</u>)	$ \frac{1+\sqrt{\delta q}}{2} \\ \frac{1-\sqrt{\delta q}}{2} \\ \frac{1+\sqrt{\delta q}}{2} \\ \frac{1-\sqrt{\delta q}}{2} \\ -1 \\ 0 $		$ \frac{(-1-\sqrt{\delta q})}{2} \\ \frac{(-1+\sqrt{\delta q})}{2} \\ \frac{(1-\sqrt{\delta q})}{2} \\ \frac{(1+\sqrt{\delta q})}{2} \\ -1 \\ 0 $	
$ \begin{array}{c c} \eta_1 \\ \eta_2 \\ \xi_1 \\ \xi_2 \\ \theta_j \\ \psi \\ \chi_i \end{array} $	$ \begin{array}{c c} & 1 \\ & (-1-\sqrt{\delta q}) \\ & (-1+\sqrt{\delta q}) \\ & (1-\sqrt{\delta q}) \\ & (1+\sqrt{\delta q}) \\ & (1+\sqrt{\delta q}) \\ & -1 \\ & 0 \\ & 1 \\ & q-1 \end{array} $		$ \frac{1+\sqrt{\delta q}}{2} \\ \frac{1-\sqrt{\delta q}}{2} \\ \frac{1-\sqrt{\delta q}}{2} \\ \frac{1-\sqrt{\delta q}}{2} \\ -1 \\ 0 \\ 1 \\ -1 $		$ \begin{array}{r} \frac{(-1-\sqrt{\delta q})}{2} \\ \frac{(-1+\sqrt{\delta q})}{2} \\ \frac{(1-\sqrt{\delta q})}{2} \\ \frac{(1+\sqrt{\delta q})}{2} \\ -1 \\ 0 \\ 1 \\ -1 \end{array} $	
$ \begin{array}{c} \eta_1 \\ \eta_2 \\ \xi_1 \\ \xi_2 \\ \theta_j \\ \psi \\ \chi_i \\ \hline \kappa_0 \end{array} $	$\begin{array}{c} 0\\ 1\\ q-1 \end{array}$		$ \frac{1+\sqrt{\delta q}}{2} \\ \frac{1-\sqrt{\delta q}}{2} \\ \frac{1-\sqrt{\delta q}}{2} \\ \frac{1-\sqrt{\delta q}}{2} \\ -1 \\ 0 \\ 1 \\ -1 $		$ \begin{array}{r} \frac{(-1-\sqrt{\delta q})}{2} \\ \frac{(-1+\sqrt{\delta q})}{2} \\ \frac{(1-\sqrt{\delta q})}{2} \\ \frac{(1+\sqrt{\delta q})}{2} \\ -1 \\ 0 \\ 1 \\ -1 \end{array} $	
$ \begin{array}{c} \eta_1 \\ \eta_2 \\ \xi_1 \\ \xi_2 \\ \theta_j \\ \psi \\ \chi_i \\ \hline \kappa_0 \\ \kappa_{1,n} \end{array} $	$ \begin{array}{c c} 0 \\ 1 \\ -1 - (\frac{2}{F})Q(\end{array} $	$\lambda) \qquad \sum_{t \in F^{\times}} \lambda$	$ \frac{1+\sqrt{\delta q}}{2} \\ \frac{1-\sqrt{\delta q}}{2} \\ \frac{1-\sqrt{\delta q}}{2} \\ \frac{1-\sqrt{\delta q}}{2} \\ -1 \\ 0 \\ 1 \\ -1 $		$ \begin{array}{r} \frac{(-1-\sqrt{\delta q})}{2} \\ \frac{(-1+\sqrt{\delta q})}{2} \\ \frac{(1-\sqrt{\delta q})}{2} \\ \frac{(1+\sqrt{\delta q})}{2} \\ -1 \\ 0 \\ 1 \\ -1 \end{array} $	
$ \begin{array}{c} \eta_1 \\ \eta_2 \\ \xi_1 \\ \xi_2 \\ \theta_j \\ \psi \\ \chi_i \\ \hline \kappa_0 \end{array} $	$ \begin{array}{c c} 0 \\ 1 \\ -1 - (\frac{2}{F})Q(\\ -1 + (\frac{2}{F})Q(\\ -Q(\lambda_u) \end{array} $	$ \begin{array}{c} \lambda \end{pmatrix} \sum_{t \in F^{\times}} \\ \lambda \end{pmatrix} \sum_{t \in F^{\times}} \end{array} $	$ \frac{1+\sqrt{\delta q}}{2} \\ \frac{1-\sqrt{\delta q}}{2} \\ \frac{1+\sqrt{\delta q}}{2} \\ \frac{1-\sqrt{\delta q}}{2} \\ -1 \\ 0 $		$ \frac{(-1-\sqrt{\delta q})}{2} \\ \frac{(-1+\sqrt{\delta q})}{2} \\ \frac{(1-\sqrt{\delta q})}{2} \\ \frac{(1+\sqrt{\delta q})}{2} \\ -1 \\ 0 $	
$ \begin{array}{c} \eta_1 \\ \eta_2 \\ \xi_1 \\ \xi_2 \\ \theta_j \\ \psi \\ \chi_i \\ \kappa_0 \\ \kappa_{1,n} \\ \kappa_{\nu,n} \end{array} $	$ \begin{array}{c c} 0\\ 1\\ \hline q-1\\ -1-(\frac{2}{F})Q(\\ -1+(\frac{2}{F})Q(\\ \hline -Q(\lambda_u)\\ \underline{(1+\sqrt{\delta q})Q(\lambda_u)}\\ \end{array} $	$ \begin{array}{c} \lambda \end{pmatrix} \sum_{t \in F^{\times}} \lambda \\ \lambda \end{pmatrix} \sum_{t \in F^{\times}} \lambda \\ \underline{\lambda} \end{pmatrix} $	$ \frac{1+\sqrt{\delta q}}{2} \\ \frac{1-\sqrt{\delta q}}{2} \\ \frac{1-\sqrt{\delta q}}{2} \\ \frac{1-\sqrt{\delta q}}{2} \\ -1 \\ 0 \\ 1 \\ -1 $		$ \begin{array}{r} \frac{(-1-\sqrt{\delta q})}{2} \\ \frac{(-1+\sqrt{\delta q})}{2} \\ \frac{(1-\sqrt{\delta q})}{2} \\ \frac{(1+\sqrt{\delta q})}{2} \\ -1 \\ 0 \\ 1 \\ -1 \end{array} $	
$ \begin{array}{c} \eta_1 \\ \eta_2 \\ \xi_1 \\ \xi_2 \\ \theta_j \\ \psi \\ \chi_i \\ \kappa_0 \\ \kappa_{1,n} \\ \kappa_{\nu,n} \\ \omega_u \end{array} $	$\begin{array}{c} 0\\ 1\\ \hline q-1\\ -1-(\frac{2}{F})Q(\\ -1+(\frac{2}{F})Q(\\ \hline -Q(\lambda_u)\\ (1+\sqrt{\delta q})Q(\lambda_u)\\ (1-\sqrt{\delta q})Q(\lambda_u)\\ \hline (1-\sqrt{\delta q})Q(\lambda_u)\end{array}$	$\begin{array}{c} \lambda \end{pmatrix} \qquad \sum_{t \in F^{\times}} \lambda \\ \lambda \end{pmatrix} \qquad \sum_{t \in F^{\times}} \lambda \\ \frac{\lambda}{2} \\ \frac{\lambda}{2} \end{array}$	$\frac{1+\sqrt{\delta q}}{2}$ $\frac{1-\sqrt{\delta q}}{2}$ $\frac{1-\sqrt{\delta q}}{2}$ $\frac{1-\sqrt{\delta q}}{2}$ -1 0 1 -1 $\lambda(-\frac{t^3+\nu^{n+m}}{t})$ $\lambda(-\frac{\nu t^3+\nu^{n+m}}{t})$ 0		$ \begin{array}{c} \frac{(-1-\sqrt{\delta q})}{2} \\ \frac{(-1+\sqrt{\delta q})}{2} \\ \frac{(1-\sqrt{\delta q})}{2} \\ \frac{(1+\sqrt{\delta q})}{2} \\ -1 \\ 0 \\ 1 \\ \hline \\ \hline \\ -1 \\ \lambda(-\frac{\nu t^3 + \nu^{n+m}}{t}) \\ \lambda(-\frac{\nu^2 t^3 + \nu^{n+m}}{t}) \\ 0 \\ \end{array} $	
$ \begin{array}{c} \eta_1 \\ \eta_2 \\ \xi_1 \\ \xi_2 \\ \theta_j \\ \psi \\ \chi_i \\ \kappa_0 \\ \kappa_{1,n} \\ \kappa_{\nu,n} \\ \hline \omega_u \\ \omega_u \eta_1 \end{array} $	$\begin{array}{c c} 0\\ 1\\ \hline q-1\\ -1-(\frac{2}{F})Q(\\ -1+(\frac{2}{F})Q(\\ \hline -Q(\lambda_u)\\ \frac{(1+\sqrt{\delta q})Q(\lambda_u)}{(1+\sqrt{\delta q})Q(\lambda_u)}\\ \frac{(1-\sqrt{\delta q})Q(\lambda_u)}{(-1+\sqrt{\delta q})Q(\lambda_u)}\\ \end{array}$	$ \begin{array}{c} \lambda \end{pmatrix} \qquad \sum_{t \in F^{\times}} \lambda \\ \lambda \end{pmatrix} \qquad \sum_{t \in F^{\times}} \lambda \\ \frac{\lambda}{2} \\ \frac{\lambda}{2} \\ \frac{\lambda}{2} \\ \frac{\lambda}{2} \\ \frac{\lambda}{2} \end{array} $	$\frac{1+\sqrt{\delta q}}{2}$ $\frac{1-\sqrt{\delta q}}{2}$ $\frac{1-\sqrt{\delta q}}{2}$ $\frac{1-\sqrt{\delta q}}{2}$ $\frac{1-\sqrt{\delta q}}{2}$ -1 0 $\frac{1}{-1}$ $\lambda(-\frac{t^3+\nu^{n+m}}{t})$ $\lambda(-\frac{\nu t^3+\nu^{n+m}}{t})$ 0 0		$ \begin{array}{c} \frac{(-1-\sqrt{\delta q})}{2} \\ \frac{(-1+\sqrt{\delta q})}{2} \\ \frac{(1-\sqrt{\delta q})}{2} \\ \frac{(1+\sqrt{\delta q})}{2} \\ -1 \\ 0 \\ 1 \\ \hline \\ -1 \\ \lambda(-\frac{\nu t^3 + \nu^{n+m}}{t}) \\ \lambda(-\frac{\nu^2 t^3 + \nu^{n+m}}{t}) \\ 0 \\ 0 \\ \end{array} $	
$ \begin{array}{c} \eta_1 \\ \eta_2 \\ \xi_1 \\ \xi_2 \\ \theta_j \\ \psi \\ \chi_i \\ \kappa_0 \\ \kappa_{1,n} \\ \kappa_{\nu,n} \\ \omega_u \\ \omega_u \eta_1 \\ \omega_u \eta_2 \\ \omega_u \xi_1 \\ \omega_u \xi_2 \end{array} $	$\begin{array}{c c} 0\\ 1\\ \hline q-1\\ -1-(\frac{2}{F})Q(\\ -1+(\frac{2}{F})Q(\\ \hline -Q(\lambda_u)\\ (\underline{1+\sqrt{\delta q}})Q(\lambda_u)\\ (\underline{1+\sqrt{\delta q}})Q(\lambda_u)\\ (\underline{(1-\sqrt{\delta q})Q(\lambda_u)}\\ (\underline{(-1+\sqrt{\delta q})Q(\lambda_u)}\\ (\underline{(-1-\sqrt{\delta q})Q(\lambda_u)}\\ (\underline{(-1-\sqrt{\delta q})Q(\lambda_u)}\\ 2 \end{array}$	$ \begin{array}{c} \lambda \end{pmatrix} \qquad \sum_{t \in F^{\times}} \lambda \\ \lambda \end{pmatrix} \qquad \sum_{t \in F^{\times}} \lambda \\ \frac{\lambda}{2} \\ \frac{\lambda}{2} \\ \frac{\lambda}{2} \\ \frac{\lambda}{2} \\ \frac{\lambda}{2} \end{array} $	$\frac{1+\sqrt{\delta q}}{2}$ $\frac{1-\sqrt{\delta q}}{2}$ $\frac{1-\sqrt{\delta q}}{2}$ $\frac{1-\sqrt{\delta q}}{2}$ -1 0 1 -1 $\lambda(-\frac{t^3+\nu^{n+m}}{t})$ $\lambda(-\frac{\nu t^3+\nu^{n+m}}{t})$ 0 0 0		$ \begin{array}{c} \frac{(-1-\sqrt{\delta q})}{2} \\ \frac{(-1+\sqrt{\delta q})}{2} \\ \frac{(1-\sqrt{\delta q})}{2} \\ \frac{(1+\sqrt{\delta q})}{2} \\ -1 \\ 0 \\ 1 \\ \hline -1 \\ \lambda (-\frac{\nu t^3 + \nu^{n+m}}{t}) \\ \lambda (-\frac{\nu^2 t^3 + \nu^{n+m}}{t}) \\ \lambda (0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	
$ \begin{array}{c c} \eta_1 \\ \eta_2 \\ \xi_1 \\ \xi_2 \\ \theta_j \\ \psi \\ \chi_i \\ \hline \kappa_0 \\ \kappa_{1,n} \\ \kappa_{\nu,n} \\ \hline \omega_u \\ \omega_u \eta_1 \\ \omega_u \eta_2 \\ \omega_u \xi_1 \\ \omega_u \xi_2 \\ \omega_u \theta_j \end{array} $	$\begin{array}{c c} 0\\ 1\\ \hline q-1\\ -1-(\frac{2}{F})Q(\\ -1+(\frac{2}{F})Q(\\ \hline -Q(\lambda_u)\\ \frac{(1+\sqrt{\delta q})Q(\lambda_u)}{(1+\sqrt{\delta q})Q(\lambda_u)}\\ \frac{(1-\sqrt{\delta q})Q(\lambda_u)}{(-1+\sqrt{\delta q})Q(\lambda_u)}\\ \frac{(-1+\sqrt{\delta q})Q(\lambda_u)}{2}\\ \frac{(-1-\sqrt{\delta q})Q(\lambda_u)}{2}\end{array}$	$ \begin{array}{c} \lambda \end{pmatrix} \qquad \sum_{t \in F^{\times}} \lambda \\ \lambda \end{pmatrix} \qquad \sum_{t \in F^{\times}} \lambda \\ \frac{\lambda}{2} \\ \frac{\lambda}{2} \\ \frac{\lambda}{2} \\ \frac{\lambda}{2} \\ \frac{\lambda}{2} \end{array} $	$ \frac{1+\sqrt{\delta q}}{2} \\ \frac{1-\sqrt{\delta q}}{2} \\ \frac{1-\sqrt{\delta q}}{2} \\ \frac{1-\sqrt{\delta q}}{2} \\ -1 \\ 0 \\ \frac{1}{-1} \\ \frac{1}{-1}$		$ \begin{array}{c} \frac{(-1-\sqrt{\delta q})}{2} \\ \frac{(-1+\sqrt{\delta q})}{2} \\ \frac{(1-\sqrt{\delta q})}{2} \\ \frac{(1+\sqrt{\delta q})}{2} \\ -1 \\ 0 \\ 1 \\ \hline -1 \\ \lambda(-\frac{\nu t^3+\nu^{n+m}}{t}) \\ \lambda(-\frac{\nu^2 t^3+\nu^{n+m}}{t}) \\ \lambda(-\frac{\nu^2 t^3+\nu^{n+m}}{t}) \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	
$ \begin{array}{c} \eta_1 \\ \eta_2 \\ \xi_1 \\ \xi_2 \\ \theta_j \\ \psi \\ \chi_i \\ \kappa_0 \\ \kappa_{1,n} \\ \kappa_{\nu,n} \\ \omega_u \\ \omega_u \eta_1 \\ \omega_u \eta_2 \\ \omega_u \xi_1 \\ \omega_u \xi_2 \end{array} $	$\begin{array}{c c} 0\\ 1\\ \hline q-1\\ -1-(\frac{2}{F})Q(\\ -1+(\frac{2}{F})Q(\\ \hline -Q(\lambda_u)\\ (\underline{1+\sqrt{\delta q}})Q(\lambda_u)\\ (\underline{1+\sqrt{\delta q}})Q(\lambda_u)\\ (\underline{(1-\sqrt{\delta q})Q(\lambda_u)}\\ (\underline{(-1+\sqrt{\delta q})Q(\lambda_u)}\\ (\underline{(-1-\sqrt{\delta q})Q(\lambda_u)}\\ (\underline{(-1-\sqrt{\delta q})Q(\lambda_u)}\\ 2 \end{array}$	$ \begin{array}{c} \lambda \end{pmatrix} \qquad \sum_{t \in F^{\times}} \lambda \\ \lambda \end{pmatrix} \qquad \sum_{t \in F^{\times}} \lambda \\ \frac{\lambda}{2} \\ \frac{\lambda}{2} \\ \frac{\lambda}{2} \\ \frac{\lambda}{2} \\ \frac{\lambda}{2} \end{array} $	$ \frac{1+\sqrt{\delta q})}{2} \\ \frac{1-\sqrt{\delta q})}{2} \\ \frac{1-\sqrt{\delta q})}{2} \\ \frac{1-\sqrt{\delta q}}{2} \\ -1 \\ 0 \\ 1 \\ -1 \\ \lambda(-\frac{t^3+\nu^{n+m}}{t}) \\ \frac{1}{\lambda(-\frac{\nu t^3+\nu^{n+m}}{t})} \\ \frac{1}{0} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$		$ \begin{array}{c} \frac{(-1-\sqrt{\delta q})}{2} \\ \frac{(-1+\sqrt{\delta q})}{2} \\ \frac{(1-\sqrt{\delta q})}{2} \\ \frac{(1+\sqrt{\delta q})}{2} \\ -1 \\ 0 \\ 1 \\ \hline \\ \hline \\ -1 \\ \lambda(-\frac{\nu t^3 + \nu^{n+m}}{t}) \\ \lambda(-\frac{\nu t^3 + \nu^{n+m}}{t}) \\ \lambda(-\frac{\nu^2 t^3 + \nu^{n+m}}{t}) \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	

Notations. $1 \leq i, k \leq \frac{q-3}{2}, 1 \leq j, m, n \leq \frac{q-1}{2}$. $\delta = (-1)^{\frac{q-1}{2}}, \rho = e^{\frac{2\pi i}{q-1}}, \sigma = e^{\frac{2\pi i}{q+1}}$. $F = GF(q), F^{\times} = \langle \nu \rangle, u \in F^{\times}$. λ is a (fixed) non-trivial character of $\mathbf{Z}(G)$. λ_u is

the linear character of $\mathbf{Z}(G)$ defined by $\lambda_u(z) = \lambda(uz)$ for all $z \in \mathbf{Z}(G)$.

$$Q(\lambda) = \sum_{t \in F} \lambda(-t^2/2), \qquad Q(\lambda_u) = \left(\frac{u}{F}\right)Q(\lambda).$$

For all $\chi \in Irr(G)$, we have (but this is omitted from the Table)

$$\chi(\mathscr{C}(z)) = \frac{\chi(\mathscr{A}(z))}{\chi(\mathscr{A}(0))}\chi(\mathscr{C}(0)),$$

and likewise for the other conjugacy classes.

References

- [DPW] L. Di Martino, M. A. Pellegrini, T. Weigel, 'Minimal irreducibility and the unipotent characters of groups of type B_m and C_m ', In Preparation
- [Dor] L. Dornhoff, Group representation theory. Part A: Ordinary representation theory, Pure and Applied Mathematics, 7, Marcel Dekker, Inc., New York 1971
- [Gér] P. Gérardin, 'Weil representations associated to finite fields', J. Algebra 46 (1977) 54–101
- [Sze] F. Szechtman, 'Weil representations of the symplectic group', J. Algebra 208 (1998) 662–686

MARCO ANTONIO PELLEGRINI, DIPARTIMENTO DI MATEMATICA E APPLICAZIONI, UNIVER-SITÀ DEGLI STUDI DI MILANO-BICOCCA, VIA R. COZZI, 53, 20125 MILANO (ITALY) e-mail: marco.pellegrini@unimib.it