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The character table of a split extension of the
Heisenberg group H1(q) by Sp(2, q), q odd

Marco Antonio Pellegrini

Abstract

In this paper we determine the full character table of a certain split ex-
tension H1(q)⋊Sp(2, q) of the Heisenberg group H1 by the odd-characteristic
symplectic group Sp(2, q).
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1 Introduction

In his paper ([Gér]) P. Gérardin constructed the Weil representations of the odd-
characteristic symplectic groups using the properties of a certain split extension
Ht(q) ⋊ Sp(2t, q) of the Heisenberg group Ht(q) of order q2t+1 by the symplectic
group Sp(2t, q). In this paper we explicitly determine the character table of this
extension, in the case where t = 1. A motivation lies in the fact that knowledge of
this character table seems to be useful in the study of the restrictions to parabolic
subgroups of certain unipotent characters of odd-dimensional orthogonal groups (see
[DPW]).

Let V be the column vector space of dimension 2t over a finite field F of order q,
where q is odd, and V is provided with a non-degenerate symplectic form j. Given
w ∈ V , we denote by w∗ the element of the dual space (we think at w∗ as a row)
such that w∗w1 = j(w,w1)/2. Let Ht(q) be the group consisting of the matrices

h = h(w,z) =





1 w∗ z
1 w

1



 ∈Mat(2t+ 2, F ),

where w ∈ V and z ∈ F . We call this group the Heisenberg group of V . Ht(q) is
obviously a central extension of (V,+) by (F,+). Furthermore, Ht(q) is a two-step
nilpotent group of order q2t+1 whose center is isomorphic to F (cf. [Gér, Lemma
2.1]).

Let S be the symplectic group associated to the form j and, for each s ∈ S,
denote by sw the image of w under the natural action of S on V . Then, the map
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h(w,z) 7→ h(sw,z) defines an automorphism of Ht(q) fixing pointwise Z(Ht(q)). Viewed
as acting on matrices, this map is the conjugation by the element s = diag(1, s, 1)

Let us denote by G the semidirect product Ht(q)⋊Sp(2t, q) defined by the above
action of S. We want to construct the character table of G in the case where t = 1.
So, G = H1(q) ⋊ Sp(2, q). In this case, we can write in a unique way a generic
element g of G as

g = g(s,w,z) = sh(w,z) =





1 w∗ z
s sw

1



 ,

where s ∈ S = Sp(2, q) (here we identify s ∈ S with s ∈ G ), w ∈ V and z ∈ F .

If w =

(

x
y

)

∈ V , then we can take as w∗ the row 1
2
(−y, x). Note that |G| =

q4(q2 − 1).

2 The conjugacy classes

In the sequel, we denote by (g) the conjugacy class of G containing the element
g, and by |(g)| the size of the conjugacy class (g). The following lemma lists the
conjugacy classes of G.

Lemma 2.1. Let F = GF (q), q odd, and let F× = 〈ν〉 be the multiplicative group
of F . Set

A (z) =









1 z
1

1
1









, B =









1 1
2

1 1
1

1









,

C (z) =









1 z
−1

−1
1









, Dk(z) =









1 z
νk

ν−k

1









,

E (z) =









1 z
−1
−1 −1

1









, F (z) =









1 z
−1
−ν −1

1









,

Gm(z) =





1 z
bm

1



 , H (z) =









1 z
1
1 1

1









,

I (z) =









1 z
1
ν 1

1









, Lm =









1 0 1
2
νm

1 νm

1 1 νm

1









,
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Mm =









1 0 1
2
νm

1 νm

ν 1 νm+1

1









,

where z ∈ F , 1 ≤ k ≤ q−3
2

, 1 ≤ m ≤ q−1
2

and b is an element of order q + 1 (a
‘Singer cycle’) of Sp(2, q). These are elements of G, and G admits exactly q2 + 5q
conjugacy classes (g) with representative g, as listed in the Table below.

g |(g)| Parameters

A (z) 1 z ∈ F
B q(q2 − 1)

C (z) q2 z ∈ F
Dk(z) q3(q + 1) z ∈ F , 1 ≤ k ≤ q−3

2

E (z) 1
2
q2(q2 − 1) z ∈ F

F (z) 1
2
q2(q2 − 1) z ∈ F

Gm(z) q3(q − 1) z ∈ F , 1 ≤ m ≤ q−1
2

H (z) 1
2
q(q2 − 1) z ∈ F

I (z) 1
2
q(q2 − 1) z ∈ F

Lm q2(q2 − 1) 1 ≤ m ≤ q−1
2

Mm q2(q2 − 1) 1 ≤ m ≤ q−1
2

Proof. Let g1 = g(s1,w1,z1) and g2 = g(s2,w2,z2) be two generic elements of G. Then
g1g2g

−1
1 = g(s1s2s−1

1
,s1(w2−w1+s−1

2
w1),z2−(w2+s−1

2
w1+s2w2)∗w1). It easily follows that if g1 is

conjugate to g2 in G, then s1 is conjugate to s2 in S. Moreover, if z1 6= z2, then the
elements g(s1,0,z1) and g(s2,0,z2) cannot be conjugate in G. Observe that g1 ∈ CG(g2)
if and only if







s1 ∈ CS(s2)
w2 + s−1

2 w1 = w1 + s−1
1 w2

w∗
1(s2w2) = w∗

2(s1w1)
.

Let us consider the elements A (z) = g(1,0,z), z ∈ F . It is straightforward to see
that Z(G) = Z(H1(q)) = {A (z) : z ∈ F} ∼= (F,+). Therefore, each of these q el-
ements of G forms a central class of order 1. In particular, A (0) is the identity of G.

Now, let us consider the element g(1,w,0) = B ∈ H1(q) \ Z(H1(q)). Then,
|CG(B)| = q3, i.e. |(B)| = q(q2 − 1). Since

g(s1,w1,z1)Bg−1
(s1,w1,z1)

= g(1,s1w,−2w∗w1),

it turns out that the elements of H1(q)\Z(H1(q)) form a single conjugacy class (B)
of G.

Set g = g(s,0,z) ∈ {C (z),Dk(z), E (z),F (z),Gm(z)}. Recall (e.g., see [Dor, §38])
that S admits elements b of order q + 1, the so-called ‘Singer cycles’. As observed
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before, for different values of z and s the elements g(s,0,z) belong to q2 + q distinct
conjugacy classes of G. Now, an element g(s1,w1,z1) belongs to CG(g) if and only if

{

s1 ∈ CS(s)
sw1 = w1

. (1)

Since s does not have eigenvalue 1, the condition sw1 = w1 implies w1 = 0. It
follows that |CG(g)| = q|CS(s)|, and using the information about the centralizers of
elements of S contained in [Dor, §38], we obtain the results listed in the statement
of the lemma.

Next, let us consider elements g = g(s,0,z) ∈ {H (z),I (z)}. We argue as above,
but note that this time s does admit the eigenvalue 1. This implies that in (1)

w1 =

(

0
y

)

, where y ∈ F . So |CG(g)| = q2|CS(s)| = 2q3, i.e. |(g)| = q(q2−1)
2

.

Finally, let us consider elements g = g(s,w,0) ∈ {Lm,Mm}, where

s =

(

1 0
ǫ 1

)

, w =

(

νm

0

)

,

and ǫ ∈ {1, ν}. Easy calculations show that if 1 ≤ m ≤ q−1
2

the elements g belong
to distinct conjugacy classes of G. An element g(s1,w1,z1) belongs to CG(g) if and
only if















s1 ∈ CS(s) =
{

(

a 0
c a

)

: a = ±1, c ∈ F
}

w + s−1w1 = w1 + s−1
1 w

w∗
1(sw) = w∗(s1w1)

.

Since the condition w + s−1w1 = w1 + s−1
1 w implies a = 1, it follows that g(s1,w1,z1)

can be chosen in q2 different ways. Thus, |CG(g)| = q2, i.e. |(Lm)| = |(Mm)| =
q2(q2 − 1).

So far, we have found q2+5q distinct conjugacy classes, adding up to |G| elements.
Thus, we are done.

3 The character table

First of all, we observe that the character table of SL(2, q) ∼= Sp(2, q) ∼= G/H1(q) is
well-known, e.g., see [Dor, §38], to which we refer for notation and all the information
needed in the sequel.

Next, note that, as Z(G) = {A (z) : z ∈ F}, for any irreducible character χ of G

χ(C (z)) =
χ(A (z))

χ(1)
χ(C (0))
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for all z ∈ F . The same holds for the classes (Dk(z)), (E (z)), (F (z)), (Gm(z)),
(H (z)) and (I (z)). So, in the character table we only report the values of a char-
acter on C (0), Dk(0) and so on.

Since G/H1(q) ∼= SL(2, q), knowledge of the character table of SL(2, q) gives us
by inflation q + 4 characters: namely 1G, η1, η2, ξ1, ξ2, θj (1 ≤ j ≤ q−1

2
), ψ and χi

(1 ≤ i ≤ q−3
2

).

Next, we construct q − 1 distinct irreducible characters of G having degree q.
Denote by λ a fixed non-trivial character of Z(G) ∼= (F,+). Clearly, each of the q
linear characters of Z(G) can be parametrised as λu (u ∈ F ), where λu(z) = λ(uz)
for all z ∈ F . In particular, λ0 = 1Z(G). We know by [Gér, Lemma 1.2] that H1(q)

has exactly q − 1 non-linear irreducible characters λ̃u, defined as

λ̃u(h) =

{

qλu(h) if h ∈ Z(H1(q))
0 if h 6∈ Z(H1(q))

(u ∈ F×).

Furthermore, by [Gér, Theorem 2.4] the characters λ̃u can be extended to G. We
denote such extensions by ωu (u ∈ F×). The values taken by the characters ωu on
the elements of S can be found in [Sze, Proposition 2]. Namely:

g 1 A (z) B C (0) Dk(0) E (0) F (0) Gm(0) H (0) I (0)

ωu(g) q qλu(z) 0 δ (−1)k δ δ (−1)m+1 Q(λu) −Q(λu)

where

Q(λ) =
∑

t∈F

λ(−t2/2), Q(λu) =
∑

t∈F

λu(−t
2/2) =

( u

F

)

Q(λ)

and
( u

F

)

=

{

+1 if u is a square in F
−1 if u is not a square in F

(it turns out that |Q(λ)|2 = q).
We are left to compute the values of the ωu’s on the classes (Lm) and (Mm). To

this purpose, we compute

1 = (ωu, ωu)G =
q4(q2 − 1) + q2(q2 − 1)

∑

q−1

2

m=1(|ωu(Lm)|2 + |ωu(Mm)|2)

q4(q2 − 1)
.

This implies that ωu(Lm) = ωu(Mm) = 0, for all 1 ≤ m ≤ q−1
2

.

It is easy to verify that the characters ωuη1, ωuη2, ωuξ1, ωuξ2, ωuθj, ωuψ and
ωuχi (u ∈ F×) are pairwise distinct irreducible characters of G.

At this stage, q irreducible characters of G are still missing. We construct them
as follows.
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Let us consider the Sylow p-subgroup K of G consisting of the matrices of shape

k(a,x,y,z) =









1 −y/2 x/2 z
1 a x+ ay

1 y
1









,

where a, x, y ∈ F . Define the linear characters µu1,u2
(u1, u2 ∈ F ) of K setting

µu1,u2
(k(a,x,y,z)) = λu1

(a)λu2
(y) = λ(u1a + u2y), where, as above, λu denotes the

non-trivial linear character of Z(G) associated to u ∈ F× (in particular, µ0,0 = 1K).
We consider the induced characters µG

u1,u2
.

First of all, note that (C (z)) ∩K = ∅ and that the same holds also for (Dk(z)),
(E (z)), (F (z)) and (Gm(z)). So, the value of µG

u1,u2
on these classes is 0, whereas

the value on A (z) is

µG
u1,u2

(A (z)) =
q4(q2 − 1)

q4
= q2 − 1.

To compute µG
u1,u2

(B), we observe that if s =

(

s11 s12

s21 s22

)

∈ S and g = g(s,w,z),

then µu1,u2
(gBg−1) = λu1

(0)λu2
(s21) = λu2

(s21). So, if s21 = 0 the matrix s can be
chosen in q(q − 1) ways, whereas if we fix s21 6= 0, s can be chosen in q2 different
ways. For u2 6= 0 we obtain

µG
u1,u2

(B) =
q3[q(q − 1) + q2

∑

s21 6=0 λu2
(s21)]

q4

=
q3[q(q − 1) − q2]

q4
= −1

Next, we look at the classes (H (z)). The matrices s such that gH (z)g−1 ∈ K are

of shape

(

s11 s12

−1/s12 0

)

. It follows that

µu1,u2
(gH (z)g−1) = λu1

(−s2
12)λu2

(0)

and therefore

µG
u1,u2

(H (z)) =
q3q

∑

t6=0 λu1
(−t2)

q4

= −1 +Q(λ2u1
) = −1 +

( 2

F

)

Q(λu)

In a similar way, one also obtains that

µG
u1,u2

(I (z)) =
∑

t6=0

λu1
(−νt2).
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In particular, for u1 = 0 we get µG
0,u2

(H (z)) = µG
0,u2

(I (z)) = q − 1, whereas for
u1 6= 0, we get µG

u1,u2
(I (z)) = −1 −Q(λ2u1

).
The value of µG

u1,u2
on Lm is obtained in the same way as above: s has the same

shape as in the case H (z), but µu1,u2
(gLmg

−1) = λu1
(−s2

12)λu2
(−νm

s12
). Thus,

µG
u1,u2

(Lm) =
q3q

∑

t6=0 λu1
(−t2)λu2

(−νm/t)

q4

=
∑

t6=0

λ
(

−
u1t

3 + u2ν
m

t

)

.

Similarly, in the case of Mm, we obtain

µG
u1,u2

(Mm) =
q3q

∑

t6=0 λu1
(−νt2)λu2

(−νm/t)

q4

=
∑

t6=0

λ
(

−
u1νt

3 + u2ν
m

t

)

.

In particular, for u1 = 0 we get µG
0,u2

(Lm) = µG
0,u2

(Mm) = −1.
Set κ0 = µG

0,1. Computing (κ0, κ0)G, one sees that κ0 is irreducible. Furthermore,
for all u1, u2 ∈ F×, κ0 is different from any of the µG

u1,u2
’s because

κ0(H (0)) + κ0(I (0)) = 2q − 2 6= µG
u1,u2

(H (0)) + µG
u1,u2

(I (0)) = −2.

Next, we show that we can always pick q − 1 pairwise distinct irreducible char-
acters among the µG

u1,u2
’s. For instance, we can take as (u1, u2) the pairs (1, νn) and

(ν, νn), where 1 ≤ n ≤ q−1
2

. Set κ1,n = µG
1,νn, κν,n = µG

ν,νn. We start showing that
these characters are irreducible.

Use of Mackey’s formula implies that

(κ1,n, κ1,n)G =
∑

r∈R
(µ1,νn, rµ1,νn)K∩rK ,

where R is a complete set of representatives for the double cosets of K in G. As R
we can choose the set {s(α), s(β) | α, β ∈ F×}, where

s = s(α) =

(

α 0
0 1/α

)

, s = s(β) =

(

0 −1/β
β 0

)

∈ S.

Note that |KsK| = q4 and |KsK| = q5. Since the µ1,νn’s are linear characters, it
suffices to show that for r 6= s(1), the restrictions of µ1,νn and rµ1,νn to K ∩ rK are
distinct.

First, we look at the double cosets Ks(β)K. For all sk ∈ K ∩ sK, we have
µ1,νn(sk) = λνn(βx) and sµ1,νn(sk) = µ1,νn(k) = λνn(y). It follows that, if µ1,νn =
sµ1,νn, then λνn(βx) = λνn(y), for all x, y ∈ F . In particular, for x = 0, we have
λνn(y) = 1 for all y ∈ F , i.e. Ker(λνn) = Z(H1(q)), forcing νn = 0, a contradiction.
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Next, we look at the double cosets Ks(α)K. For all sk ∈ K ∩ sK, we have
µ1,νn(sk) = λ1(aα

2)λνn( y

α
) and sµ1,νn(sk) = µ1,νn(k) = λ1(a)λνn(y). It follows that,

if µ1,νn = sµ1,νn, then λ1(aα
2)λνn( y

α
) = λ1(a)λνn(y), for all a, y ∈ F . In particular,

for y = 0, we get λα2 = λ1, and so α = 1. Clearly, for α = 1, the two restrictions
are the same character. This proves that the characters κ1,n are irreducible.

In the same way, we can prove that the characters κν,n are also irreducible. To
conclude, we are left to show that the characters κ1,n and κν,n are pairwise distinct.
This can be obtained proving that (κd,n, κd1,n1

)G = 0, for d, d1 ∈ {1, ν}, 1 ≤ n ≤ q−1
2

and (d, n) 6= (d1, n1). As above, we exploit Mackey’s formula. The double cosets
Ks(β)K are dealt with in the same way as before. In the case of the double cosets
Ks(α)K, for d = d1 we can argue as before. In the case (d, d1) = (1, ν), if the
restrictions of µ1,νn and µν,νn1 are the same, then

λ1(aα
2)λνn(

y

α
) = λν(a)λνn1 (y)

for all a, y ∈ F . In particular, for y = 0, we get λα2 = λν , a contradiction, since ν
is not a square in F .

In conclusion, the desired character table of G can be described as follows:

1 A (z) B C (0) Dk(0)

1G 1 1 1 1 1

η1
q−1
2

q−1
2

q−1
2

−δ(q−1)
2 0

η2
q−1
2

q−1
2

q−1
2

−δ(q−1)
2 0

ξ1
q+1
2

q+1
2

q+1
2

δ(q+1)
2 (−1)k

ξ2
q+1
2

q+1
2

q+1
2

δ(q+1)
2 (−1)k

θj q − 1 q − 1 q − 1 (−1)j(q − 1) 0
ψ q q q q 1
χi q + 1 q + 1 q + 1 (−1)i(q + 1) ρik + ρ−ik

κ0 q2 − 1 q2 − 1 −1 0 0
κ1,n q2 − 1 q2 − 1 −1 0 0
κν,n q2 − 1 q2 − 1 −1 0 0

ωu q qλu(z) 0 δ (−1)k

ωuη1
q(q−1)

2
q(q−1)λu(z)

2 0 − (q−1)
2 0

ωuη2
q(q−1)

2
q(q−1)λu(z)

2 0 − (q−1)
2 0

ωuξ1
q(q+1)

2
q(q+1)λu(z)

2 0 (q+1)
2 1

ωuξ2
q(q+1)

2
q(q+1)λu(z)

2 0 (q+1)
2 1

ωuθj q(q − 1) q(q − 1)λu(z) 0 (−1)jδ(q − 1) 0
ωuψ q2 q2λu(z) 0 δq (−1)k

ωuχi q(q + 1) q(q + 1)λu(z) 0 (−1)iδ(q + 1) (−1)k(ρik + ρ−ik)
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E (0) F (0) Gm(0) H (0)

1G 1 1 1 1

η1
−δ(−1+

√
δq)

2
−δ(−1−

√
δq)

2 (−1)m+1 (−1+
√

δq)
2

η2
−δ(−1−

√
δq)

2
−δ(−1+

√
δq)

2 (−1)m+1 (−1−
√

δq)
2

ξ1
δ(1+

√
δq)

2
δ(1−

√
δq)

2 0 (1+
√

δq)
2

ξ2
δ(1−

√
δq)

2
δ(1+

√
δq)

2 0 (1−
√

δq)
2

θj (−1)j+1 (−1)j+1 −(σjm + σ−jm) −1
ψ 0 0 −1 0
χi (−1)i (−1)i 0 1

κ0 0 0 0 q − 1
κ1,n 0 0 0 −1 + ( 2

F
)Q(λ)

κν,n 0 0 0 −1 − ( 2
F

)Q(λ)

ωu δ δ (−1)m+1 Q(λu)

ωuη1
1−

√
δq

2
1+

√
δq

2 1 (−1+
√

δq)Q(λu)
2

ωuη2
1+

√
δq

2
1−

√
δq

2 1 (−1−
√

δq)Q(λu)
2

ωuξ1
1+

√
δq

2
1−

√
δq

2 0 (1+
√

δq)Q(λu)
2

ωuξ2
1−

√
δq

2
1+

√
δq

2 0 (1−
√

δq)Q(λu)
2

ωuθj (−1)j+1δ (−1)j+1δ (−1)m(σjm + σ−jm) −Q(λu)
ωuψ 0 0 (−1)m 0
ωuχi (−1)iδ (−1)iδ 0 Q(λu)

I (0) Lm Mm

1G 1 1 1

η1
(−1−

√
δq)

2
(−1+

√
δq)

2
(−1−

√
δq)

2

η2
(−1+

√
δq)

2
(−1−

√
δq)

2
(−1+

√
δq)

2

ξ1
(1−

√
δq)

2
(1+

√
δq)

2
(1−

√
δq)

2

ξ2
(1+

√
δq)

2
(1−

√
δq)

2
(1+

√
δq)

2
θj −1 −1 −1
ψ 0 0 0
χi 1 1 1

κ0 q − 1 −1 −1

κ1,n −1 − ( 2
F

)Q(λ)
∑

t∈F× λ(− t3+νn+m

t
)

∑

t∈F× λ(−νt3+νn+m

t
)

κν,n −1 + ( 2
F

)Q(λ)
∑

t∈F× λ(−νt3+νn+m

t
)

∑

t∈F× λ(−ν2t3+νn+m

t
)

ωu −Q(λu) 0 0

ωuη1
(1+

√
δq)Q(λu)
2 0 0

ωuη2
(1−

√
δq)Q(λu)
2 0 0

ωuξ1
(−1+

√
δq)Q(λu)
2 0 0

ωuξ2
(−1−

√
δq)Q(λu)
2 0 0

ωuθj Q(λu) 0 0
ωuψ 0 0 0
ωuχi −Q(λu) 0 0

Notations. 1 ≤ i, k ≤ q−3
2

, 1 ≤ j,m, n ≤ q−1
2

. δ = (−1)
q−1

2 , ρ = e
2πı

q−1 , σ = e
2πı

q+1 .
F = GF (q), F× = 〈ν〉, u ∈ F×. λ is a (fixed) non-trivial character of Z(G). λu is

11



the linear character of Z(G) defined by λu(z) = λ(uz) for all z ∈ Z(G).

Q(λ) =
∑

t∈F

λ(−t2/2), Q(λu) =
( u

F

)

Q(λ).

For all χ ∈ Irr(G), we have (but this is omitted from the Table)

χ(C (z)) =
χ(A (z))

χ(A (0))
χ(C (0)),

and likewise for the other conjugacy classes.
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