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Abstract

In the present paper we study the well-posedness for the one-dimensional cubic NLS perturbed
by a generic point interaction. Point interactions are described as the 4-parameter family of self-
adjoint extensions of the symmetric 1-d laplacian defined on the regular functions vanishing at
a point, and in the present context can be interpreted as localized defects interacting with the
NLS field. A previously treated special case is given by a NLS equation with a δ defect (see
[21]) which we generalize and extend, as far as well-posedness is concerned, to the whole family
of point interactions. We prove existence and uniqueness of the local Cauchy problem in strong
form (initial data and evolution in the operator domain of point interactions) and weak form
(initial data and evolution in the form domain of point interactions). Correspondingly, a related
blowup-eternity alternative is given and studied. Conservation laws of mass and energy are proved
for finite energy weak solutions of the problem, which imply global existence of the dynamics. A
technical difficulty arises due to the fact that a power nonlinearity does not preserve the form
domain for a subclass of point interactions; to overcome it, a technique based on the extension of
resolvents of the linear part of the generator to maps between a suitable Hilbert space and the
energy space is devised and estimates are given which show the needed regularization properties
of the nonlinear flow.

1 Introduction

The present paper is devoted to the well-posedness of a nonlinear Schrödinger equation with a point
defect in dimension one. The Schrödinger equation bears a cubical nonlinearity, and the defect is
described by the general point interaction in dimension one. To be precise, the equation to be studied
is given by

{
i∂tψ(t) = Hψ(t) + λ|ψ(t)|2ψ(t)
ψ(0) = ψ0

(1.1)

or in weak form

ψ(t) = e−iHtψ0 − iλ

∫ t

0
ds e−iH(t−s)|ψ(s)|2ψ(s) (1.2)

where ψ0 represents the initial data and H is the Hamiltonian operator generating a point interaction
at the origin. Point interactions are singular perturbations of the Laplace operator; restricting the
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Laplacian on the set of regular functions vanishing at a point gives a symmetric non self-adjoint
operator; its self-adjoint extensions are by definition point interactions ([5]). In one dimension they
form a four-parameter family of s.a. operators ([4]), and they describe in an effective way a variety
of situations relevant to the dynamics and scattering of quantum particles acted on by strongly
concentrated potentials. In dimension one their domains are characterized by suitable boundary
conditions, which apart from the standard ones (i.e. Dirichlet, Neumann, Robin, one sided or two
sided), comprise analogous boundary conditions involving the jump of the functions ([ψ]) or their
derivatives at the point where the interaction takes place. Among the main non trivial examples
are the well-known δ interaction (where the boundary condition is [ψ′](0) = αψ(0)) often called
Fermi pseudopotential in the physics literature, or the δ′ interaction ([f ](0) = αf ′(0)). Precise
definitions will be given in the next section of the paper. In the case of NLS with δ interaction
there exists a certain amount of literature, physical, numerical and mathematical, concerning the
existence of stationary states ([10, 27, 8, 9]), the asymptotic behaviour in time ([20, 21]), and the
reduced dynamics on the stable soliton manifold ([14, 18]). Little is known for the δ′ interaction,
and nothing in the generic case. Quite generically, equation 1.1 is a prototype of the interactions
of nonlinear waves propagating in media in which inhomogeneities are present. A first possible
physical interpretation of the model described by the equation 1.1 is given by the interaction of a
1-d Bose condensate with an impurity. To the right and to the left of the point perturbation the
Bose condensate satisfies, as an effective equation in the limit of infinite bosons (see for the one
dimensional case [1], for the three-dimensional setting [16], [17], [23]), the NLS equation, usually
called Gross-Pitaevskii equation in this context. At the defect or impurity location a boundary
condition establishes the nature of interaction, and gives the link between the two sides of the
condensate. Bose condensates are quantum many-body systems which display typical macroscopic
behaviour, measured in an effective way through the scattering length of the underlying two-body
interaction. So the use of a point interaction in 1.1 is legitimate if the scale length at which takes
place the interaction is far smaller than the characteristic scattering length of the Bose condensate.
A second interpretation is of classical origin. It is well-known that the propagation of an optical
wave pulse in a nonlinear dispersive medium (such as an optical fiber) gives rise to a nonlinear
Schrödinger equation for the evolution of the pulse envelope. The presence of defects or junctions
in the fiber can be modeled through boundary conditions, and in the simple and generally adopted
case of 1-dimensional propagation along the fiber this corresponds to consider a point perturbation.
A different occurrence of an effective point (δ) interactions is in the study of bimodal optical fibers;
these devices are described by two coupled NLS which admit two-soliton solutions; in a typical
situation the solitons are one narrow and one wider. At a formal level it turns out that in a suitable
limit the pulse propagation is described by a single NLS and the effect of the narrower soliton can
be represented by a δ interaction, at least as far as its influence on the dynamics of the wider
one is concerned (see [10] and references therein). The previous applications acquire an additional
interest due to the evidence, both on the numerical and rigorous side, of a certain persistence of the
soliton behaviour even in the presence of a breaking of translational invariance due to a δ interaction
([20, 21]); in particular a fast soliton breaks in two pieces, one reflected and one transmitted, the
relative amplitude of which being controlled by the scattering matrix of the δ interaction at least
within times long with respect to the interaction time. This is a meaningful phenomenon quite
different from orbital stability and indicates a peculiar robustness of the soliton solutions of NLS,
even in the case of strong interaction with external perturbation.
Among the possible future perspectives, let us cite the analysis of the dynamics of the system
investigated in [12], where the ground states of stationary Maxwell-Schr̈odinger system in a bounded
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domain with a point defect are studied. In such a case the nonlinearity arises from a Hartree type
interaction, and is milder than in the usual NLS; nevertheless the results and the techniques are
interesting because they apply in dimension three.
As a final quotation, we mention the paper [24], which deals with well-posedness, direct and inverse
scattering for a family of NLS with potential terms.
We are not concerned here with a rigorous justification (which is lacking) of the point interaction
as an effective model of scatterer or junction in the NLS propagation phenomenon. We assume it
as a plausible one and we proceed to show existence and uniqueness in the small and in the large
and qualitative properties as energy conservation for the whole family of point interactions. At a
rigorous level, well-posedness of the problem 1.2 is well-known for the case of δ interaction only (see
[21, 18]).

In the following we give a brief summary of the results obtained in the paper and the techniques
involved in the proofs. In section 2 the definition and main properties of general point interactions
are given. In particular the form domain and quadratic form of the family is completely described (as
far as we know this material is not published elsewhere). Moreover, the dual space of form domains
are given, in that they are needed in the proof of of well-posedness in energy spaces. In section 3,
some estimates of the Gagliardo-Nirenberg type are given for functions in the energy spaces of point
interactions. These are needed in the subsequent analysis as a technical tool.
In section 4 we state and prove local existence, uniqueness and blow-up alternative for strong solution
to 1.1 (theorem 4.1). By strong solutions we mean solutions t → ψ(t) with values in the domain
of H. Then we prove energy conservation for the strong flow, proposition 4.3, as a consequence
of which blow-up does not occur and maximal solutions are in fact global in time. The proof of
theorem 4.1 is through a contraction in a suitable neighbourhood of the initial point in the space
X = C([0, T ],D(H)) ∩ C1([0, T ], L2(R3)); the main technical points are a bound on the L∞ norm
on ψ and its graph norm ||(HU + m)ψ||L2(R), and an integration by parts in the integral form of
problem 1.1 to get a regularization of singular terms due to nonlinearity. The last problem treated
is local and global well-posedness in the finite energy space, i.e. form domains. Quite general results
of local existence in which the linear part of the generator is self-adjoint are known in the literature
(see theorem 3.9.9 in [11] and section 3.7). In such a case one obtains a local existence of a solution
ψ ∈ C([0, T ],X) ∩ C1([0, T ],X⋆), where X is the form domain of the linear part of the generator,
if uniqueness is known and a set of hypotheses are satisfied. Here we prefer to proceed in a direct
way, because the verification of the hypotheses of the quoted general results for a part of the family
of point interactions is not simpler than a direct proof; moreover, we prefer to directly treat the
delicate case in which a boundary condition is present in the definition of the energy space: this is
indeed the case for a subclass of the family of point interactions, whose form domain is given by
Qωa = {ψ ∈ H1(R+) ⊕ H1(R−) | ψ(0+) = ωaψ(0−), |ω| = 1, a ∈ R\{0,±1}}. In the first place
the nonlinearity does not preserve the boundary condition. As a consequence, for these interactions
there appear terms in the Duhamel formula which are not in the energy space. To get the relevant
estimates, we prove that the resolvent of the linear part can be continuously extended to a suitable
Banach space, larger than the dual of the energy spaces, with values still in the energy space. In the
end, one obtains for NLS with arbitrary point interactions local and global well-posedness on the
form domain of point interaction itself, stated and proved in theorem 6.9.

Our results extend to dynamics on graphs, which is the subject of a paper in preparation.

1.1 Notation

Here we fix some basic notation that we will use through the paper.
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1. The symbol (ψ, φ) denotes the scalar product in L2(R) between the functions ψ and φ, according
to the definition

(ψ, φ) =

∫

R

ψ(x)φ(x) dx.

2. The symbol 〈f, ψ〉X⋆,X denotes the duality product between the functional f ∈ X⋆ and the
vector ψ ∈ X. The space X will be always specified.

3. We denote by ψ̂ or Fψ the Fourier transform of the function ψ ∈ L2(R); the convention on the
normalization is the one given (when meaningful) by

ψ̂(k) = (2π)−1/2

∫

R

ψ(x)e−ikx dx.

The symbol F will be used also to denote the Fourier transform in the distribution space.

4. The symbols χ± denote the characteristic function of the sets R
±.

5. Some particular functions will play an important role and we will need to use them frequently.
Therefore, we define a notation for them:

ϕ±(x) = χ±(x)e∓x

ϕν(x) = νϕ+(x) + ϕ−(x)
(1.3)

Notice that, as a particular case, ϕ1 = e−|·|. We will use also

ϕz±(x) = χ±(x)e∓
√
zx

ϕz(x) = ϕz+(x) + ϕz−(x) = e−
√
z|x| (1.4)

where z ∈ C, Re
√
z > 0

6. The norm of ψ in the space Lp(R) is denoted by ‖ψ‖p, except for p = 2, in which case we omit
the subscript. For any other space we explicitly refer to the space in the subscript (e.g., for
the H1 norm we use ‖ · ‖H1(R)).

2 Spaces

We start recalling definitions and basic notions on one-dimensional point interactions. We construct
the form domain for the entire family of Hamiltonians of point interaction.

2.1 Point interactions in dimension one: operators and forms

By definition, the family of hamiltonian operators describing the dynamics of a particle in dimension
one under the influence of a scattering centre located at the origin, is obtained as the set of self-adjoint
extensions (s.a.e.) of the operator

Ĥ0 = −∂2
x (2.1)

defined on the domain
D(Ĥ0) = C∞

0 (R\{0}). (2.2)
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By the Krein’s theory of s.a.e. for symmetric operators on Hilbert spaces one easily proves that there
is a 4-parameter family of s.a.e. of (2.1). Besides, such a family can be translated into a 4-parameter
family of boundary conditions at the point 0. Finally, following [4] and [15] we know that any s.a.e.
of Ĥ0 can be described in one of the two following way:

• Given ω, a, b, c, d such that |ω| = 1, ad− bc = 1, we define the s.a.e. HU as follows:

U = ω

(
a b
c d

)
,

DU := D(HU) =

{
ψ ∈ H2(R\{0}),

(
ψ(0+)
ψ′(0+)

)
= U

(
ψ(0−)
ψ′(0−)

)}
,

(HUψ)(x) = −ψ′′(x), x 6= 0, ∀ψ ∈ D(HU ).

(2.3)

• Given p, q ∈ R ∪ {∞} we define the s.a.e Hp,q as follows:

Dp,q := D(Hp,q) =
{
ψ ∈ H2(R\{0}), ψ(0+) = pψ′(0+), ψ(0−) = qψ′(0−)

}

(Hp,qψ)(x) = −ψ′′(x), x 6= 0 ∀ψ ∈ D(Hp,q)
(2.4)

Remark 2.1. Using the description provided by the matrix U , and choosing ω = a = d = 1,
b = c = 0, one reconstructs the free-particle Hamiltonian H0. Furthermore, the choice ω = a = d = 1,
b = 0, c 6= 0 corresponds to the well-known case of a pure Dirac’s δ interaction of strength c. On
the other hand, the case ω = a = d = 1, c = 0, b ∈ R corresponds to the case of the so-called δ′

interaction of strength b, namely, to the boundary condition

ψ′(0+) = ψ′(0−)

ψ(0+) − ψ(0−) = bψ′(0−)
(2.5)

Remark 2.2. The Neumann or Dirichlet boundary conditions in 0+ are realized by choosing p = ∞
or p = 0, respectively, and in 0− by choosing q = ∞ or q = 0, respectively.

Preliminarily, we need to endow the space D(H), domain of the Hamiltonian operator H, where
H is a general notation for HU and Hp,q, with the structure of a Hilbert space. To this aim, we first
define the quantity

m := 1 − inf σ(H). (2.6)

From the general theory we know that m is finite. Next, for any ψ ∈ D(H) we introduce the norm

‖ψ‖H := ‖(H +m)ψ‖ (2.7)

Notice that such a norm can be derived by a scalar product. Moreover, it is easily shown that it is
equivalent to the standard graph norm.

In the following we investigate the problem of finding solutions to (1.1) in the form domain of
the linear part of the generator. In order to do that we preliminarily describe such form domains.
To this purpose we adapt the classification of form domains given in [22] to our context and our
notation.

Proposition 2.3. The quadratic forms associated to the self-adjoint extensions of Ĥ0 are defined as
follows:
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1. For the Hamiltonian H0,0 with Dirichlet boundary conditions, the energy space is

Q0 := {ψ ∈ H1(R), ψ(0) = 0} (2.8)

and the form reads
B0(ψ) = ‖ψ′‖2. (2.9)

2. For the Hamiltonian H0,q, q 6= 0, with Dirichlet boundary conditions on 0+ only, one has

Q0+ := {ψ ∈ H1(R+) ⊕H1(R−), ψ(0+) = 0} (2.10)

and the form reads

B0,q(ψ) = ‖ψ′‖2
L2(R+) + ‖ψ′‖2

L2(R−) − |q|−1|ψ(0−)|2. (2.11)

Analogously,
Q0− := {ψ ∈ H1(R+) ⊕H1(R−), ψ(0−) = 0} (2.12)

and the form reads

Bp,0(ψ) = ‖ψ′‖2
L2(R+) + ‖ψ′‖2

L2(R−) + |p|−1|ψ(0+)|2. (2.13)

3. For the Hamiltonian HU , defined in (2.3), with b = 0 the energy space is

Qωa := {ψ ∈ H1(R+) ⊕H1(R−), ψ(0+) = ωaψ(0−)} (2.14)

and the form reads

Bωa(ψ) = ‖ψ′‖2
L2(R+) + ‖ψ′‖2

L2(R−) + ac|ψ(0−)|2 (2.15)

4. For any other s.a.e. of Ĥ0 the energy space is given by

Q := H1(R+) ⊕H1(R−) (2.16)

To describe the action of the form we have to consider two cases:

(a) if the Hamiltonian is of the type HU described in (2.3), with b 6= 0, then

BU (ψ) := ‖ψ′‖2
L2(R+) + ‖ψ′‖2

L2(R−) + b−1[d|ψ(0+)|2 + a|ψ(0−)|2 − 2Re(ωψ(0+)ψ(0−))]
(2.17)

(b) if the Hamiltonian is of the type Hp,q described in (2.4), with p, q both different from zero,
then

Bp,q(ψ) := ‖ψ′‖2
L2(R+) + ‖ψ′‖2

L2(R−) + p−1|ψ(0+)|2 − q−1|ψ(0−)|2 (2.18)

Remark 2.4. For a pure Dirac’s δ interaction formula (2.15) applies. The form domain coincides
with H1(R) and the action of the form reads

B1(ψ) = ‖ψ′‖2 + c|ψ(0)|2.
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Remark 2.5. In the case 4. the form domain can be represented by the sum of a regular part and
a jump:

Q := {ψ ∈ H1(R\{0})} = {ψ ∈ H1(R\{0}), ψ = φ+ q
ǫ

2
, φ′ ∈ L2(R), q ∈ C} (2.19)

where ǫ denotes the sign function. Notice that

q = ψ(0+) − ψ(0−) (2.20)

For a pure δ′ interaction one has
B(ψ) := ‖φ′‖2 + b−1|q|2 (2.21)

Besides, if ψ belongs to the operator domain of a δ′-interaction then

B(ψ) := ‖φ′‖2 + b|ψ′(0)|2 (2.22)

where, with a slight abuse of notation, we denoted by ψ′(0) the quantity ψ′(0+) = ψ′(0−).

Remark 2.6. In the following we will frequently use the decomposition of the elements of the form
domain introduced in (2.19).

Obviously, such a decomposition holds for all other energy spaces too. Notice that for the elements
of Q0 and Q1(= H1(R)) one has q = 0.

We will usually refer to φ as to the regular part, to qǫ
2 as to the singular part, to q as to the jump

of ψ. Notice that if q 6= 0 then the function φ is not square integrable, even though it is locally H1:
indeed, at least one of the two quantities limx→±∞ φ(x) is different from zero.

All energy spaces can be endowed with the structure of Hilbert space by introducing the norm

‖ψ‖2
X = ‖ψ‖2 + lim

ε→0+

∫ +∞

ε
|ψ′(x)|2 dx+ lim

ε→0+

∫ −ε

−∞
|ψ′(x)|2 dx (2.23)

where X denotes any form domain introduced in proposition 2.3. It is immediately seen that such a
norm is induced by the scalar product

(ψ, φ)X = (ψ, φ) + lim
ε→0+

∫ +∞

ε
ψ(x)φ(x) dx + lim

ε→0+

∫ −ε

−∞
ψ(x)φ(x) dx. (2.24)

In proposition 5.2 we prove that the norm defined in (2.23) is equivalent to the following energy
norm

‖ψ‖2
B := B(ψ) +m‖ψ‖2 (2.25)

where B is any form introduced in proposition 2.3 and the quantity m was defined in (2.6).

2.2 Dual of energy spaces

In the proof of the well-posedness for problem (1.2) in the energy domain we need to know the duals
of the energy spaces (at least in the case 3. of proposition 2.3). By definitions (2.8), (2.16), (2.14)
one has

Q0 ⊂ Qωa ⊂ Q, ω ∈ C, |ω| = 1, a ∈ R. (2.26)
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Proposition 2.7. The following orthogonal decompositions hold

Qωa = Q0 ⊕⊥ Span(ϕωa)

Q = Qωa ⊕⊥ Span(ϕ−ωa−1) = Q0 ⊕⊥ Span(ϕ+, ϕ−) (2.27)

where the notation ϕ0, ϕ± where introduced in section 1.1.

Proof. One can decompose any ψ ∈ Qωa as follows:

ψ = ξ + ψ(0+)ϕ+ + ψ(0−)ϕ− = ξ + ψ(0−)ϕωa.

Obviously ξ belongs to Q0. One can directly verify orthogonality by performing the scalar products,
as defined in (2.24).

Now the duals of form domains in proposition 2.3 can be easily computed.

Proposition 2.8. The following relationships hold between the spaces Q⋆0, Q
⋆
ωa, and Q⋆:

Q⋆ωa = Q⋆/Q⊥
ωa (2.28)

Q⋆0 = Q⋆ωa/Q
⊥
0 = Q⋆/Q⊥

0 (2.29)

where, given Y ⊂ X, the space Y ⊥ ⊂ X⋆ is defined as follows:

Y ⊥ := {f ∈ X⋆, s.t. 〈f, y〉X⋆,X = 0, ∀y ∈ Y } (2.30)

Proof. The proposition immediately follows from a classical result in functional analysis (see e.g.
[26], sec. 4.5).

Proposition 2.9. The spaces Q⋆0, Q
⋆
ωa, and Q⋆ can be represented as follows:

Q⋆0 =

{
f ∈ H−1(R), s.t.

∫

R

f̂(k)

k2 + 1
dk = 0

}
(2.31)

Q⋆ωa = Q⋆0 ⊕ Span(δωa(0+)) (2.32)

Q⋆ = Q⋆0 ⊕ Span(δ(0+), δ(0−)) (2.33)

We used the notation δ(0±) to denote the functionals acting as follows:

〈δ(0±), ψ〉X⋆ ,X = lim
x→0±

ψ(x)

with the quotient notation for duals introduced in (2.30).
Besides, we denoted δωa(0+) the functional that vanishes on Q0 ⊕ Span(ϕ−ωa−1) and gives ωa

when acting on ϕωa.

Proof. From the first decomposition in proposition 2.7, choosing ω = 1, a = 1, we obtain

H1(R) = Q0 ⊕⊥ Span(ϕ1).

Then, the second formula in proposition 2.8 provides

Q⋆0 = H−1(R)/Q⊥
0 .
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From elementary linear algebra we know that the dimension of Q⊥
0 as a subspace of H−1(R) is given

by
dim[(Q⊥

0 )H−1(R)] = dim(H1(R)/Q0) = 1.

Since δ(0) belongs to the one-dimensional space (Q⊥
0 )H−1(R), it spans the whole space. So formula

(2.31) is proven.
Imposing the constraint that any element f of Q⋆0 must be orthogonal to the function e−|·| one

obtains the representation in the Fourier space (2.31).
Now we prove formula (2.32). First, reasoning as in the previous case it is immediately seen that

dim[(Q⊥
0 )Q⋆

ωa
] = dim(Qωa/Q0) = 1.

Since δωa(0+) belongs to the one-dimensional space (Q⊥
0 )Q⋆

ωa
, it spans the whole space. So formula

(2.32) is proven.
The proof of (2.33) is analogous. So we proved proposition 2.9.

Corollary 2.10 (Decomposition of dual spaces). For any f ∈ Q⋆ there exist f0 ∈ Q⋆0, fωa ∈ Q⋆ωa,
α, β ∈ C, such that:

f = f0 + αδ(0+) + βδ(0−) (2.34)

f = fωa +
β − ωa−1α

1 + a2
[a2δ(0−) − ωaδ(0+)] (2.35)

Proof. Let f be an element of Q⋆. For any ψ ∈ Q define

f0(ψ) := f(ψ0) (2.36)

where ψ0 is the H1
0 -component of ψ according to decomposition (2.27). Moreover, define

α := f(ϕ+), β := f(ϕ−) (2.37)

and decomposition (2.34) is proven. Furthermore, we define the functional fωa as follows:

fωa := f0(ψ) +
ωaα+ β

1 + a2
[ωaδ(0+) + δ(0−)] (2.38)

To see that fωa is indeed in Q⋆ωa it is sufficient to show that it is orthogonal to Q−ωa−1 , where
orthogonality is to be understood in the sense of (2.30). But this is straightforward: since such
orthogonal space must be one-dimensional (see (2.27)), so it must be spanned by the function ϕ−ωa−1 ,
which is manifestly orthogonal to fωa. So (2.35) is proven.

Corollary 2.11. The functional f1 reads as follows:

f1(ψ) := f0(ψ) +
1

2
(α+ β)(ψ(0+) + ψ(0−)) (2.39)

and the related decomposition gives

f = f1 +
β − α

2
[δ(0−) − δ(0+)]. (2.40)
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Remark 2.12. Sometimes the correspondence between the functional f and its Q⋆0 or H−1 compo-
nent may be not so evident. For instance, consider the functional fη ∈ Q⋆, defined by

〈fη, ψ〉Q⋆,Q := (η, ψ),

where η ∈ C∞
0 \{0}. Even though represented by a smooth function in Q0, it has non-trivial δ(0+)

and δ(0−) components. Indeed, applying fη to any function ψ ∈ Q one gets

〈fη, ψ〉Q⋆,Q :=(η, ψ0) + ψ(0+)(η, ϕ+) + ψ(0−)(η, ϕ−) (2.41)

and therefore the functional fη decomposes as follows:

fη = fη0 + (η, ϕ+)δ(0+) + (η, ϕ−)δ(0−) (2.42)

where fη acts on Q0 as the scalar product in L2 with the function η, and vanishes on Q⊥
0 .

Definition 2.13. For any energy domain X we define the norm in X⋆ by

‖f‖X⋆ := sup
ψ∈X\{0}

|〈f, ψ〉X⋆,X |
‖ψ‖X

. (2.43)

Remark 2.14. It appears that, for any f ∈ X⋆, ω ∈ C with |ω| = 1, and a ∈ R,

‖f0‖Q⋆
0

≤ ‖fωa‖Q⋆
ωa

≤ ‖f‖Q⋆ . (2.44)

Vice versa, given f ∈ Q⋆0, it is possible to define its trivial extension f̃ to Qωa as the functional acting

like f on Q0 and vanishing on ϕωa. Obviously, it can be further extended to f̃ , that vanishes on
ϕ−ωa−1 . One has

‖f‖Q⋆
0

= ‖f̃‖Q⋆
ωa

= ‖f̃‖Q⋆ . (2.45)

3 Estimates

In this section we prove estimates for functions in the energy spaces. We give results for functions
in Q, but it is obvious that they hold for the other form domains introduced in proposition 2.3 too.

First of all, we introduce a decomposition for the elements of Q, that in the sequel will prove
useful.

Lemma 3.1. For any function ψ ∈ Q, there exists a unique couple of even functions ψ+, ψ− ∈ H1(R)
such that

ψ(x) = χ+(x)ψ+(x) + χ−(x)ψ−(x), (3.1)

Proof. Given ψ ∈ Q we define the functions ψ+, ψ− as follows:

ψ±(x) :=





ψ(±x), x ∈ (0,+∞)
ψ(0±), x = 0
ψ(∓x), x ∈ (−∞, 0)

(3.2)

It is immediately seen that both functions ψ± belong to H1(R) and satisfy (3.1). Any other decom-
position in even functions lying in H1 must fulfil (3.2), so uniqueness is proven.
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Remark 3.2. The following formulae link decomposition (3.1) to the one introduced in (2.19):

φ(x) = χ+(x)
(
ψ+(x) − q

2

)
+ χ−(x)

(
ψ−(x) +

q

2

)
(3.3)

φ′(x) = χ+(x)ψ′
+(x) + χ−(x)ψ′

−(x) (3.4)

q = ψ+(0) − ψ−(0) (3.5)

Remark 3.3. As a consequence, the following estimates hold:

‖ψ‖2 =
1

2
‖ψ+‖2 +

1

2
‖ψ−‖2 (3.6)

‖φ′‖2 =
1

2
‖ψ′

+‖2 +
1

2
‖ψ′

−‖2 (3.7)

‖ψ′
±‖ ≤

√
2‖φ′‖ (3.8)

|q| ≤ 1√
2
‖ψ+ − ψ−‖H1 ≤ 1√

2
(‖ψ+‖H1 + ‖ψ−‖H1) (3.9)

Remark 3.4. The norm introduced in (2.23) for elements of the energy space can be expressed as
follows:

‖ψ‖2
Q :=

1

2
‖ψ+‖2

H1 +
1

2
‖ψ−‖2

H1 = ‖ψ‖2 + ‖φ′‖2 (3.10)

Remark 3.5. From the previous remarks we know that

‖ψ‖∞ ≤ C‖ψ‖Q (3.11)

‖φ′‖ ≤ C‖ψ‖Q (3.12)

|q| ≤ C‖ψ‖Q. (3.13)

Therefore, using (3.3),
‖φ‖∞ ≤ C‖ψ‖Q (3.14)

Notice that, since the H-norm is stronger than the Q-norm, all these estimates hold in D(H)
too.

We prove a lemma that extends the one-dimensional Gagliardo-Nirenberg’s estimate to the space
Q.

Lemma 3.6. For any p ∈ (2,+∞] there exists Cp > 0 such that, for any ψ ∈ Q, ψ = φ+ q ǫ2 ,

‖ψ‖p ≤ Cp‖φ′‖
1

2
− 1

p ‖ψ‖
1

2
+ 1

p (3.15)

Proof. Let ψ be an element of Q. Using lemma 3.1, we can write ψ as

ψ = χ+ψ+ + χ−ψ−

Then,

‖ψ‖p ≤ Cp(‖ψ+‖p + ‖ψ−‖p)
Applying standard Gagliardo-Nirenberg’s inequality and recalling (3.8)

‖ψ‖p ≤ Cp

(
‖ψ′

+‖
1

2
− 1

p ‖ψ+‖
1

2
+ 1

p + ‖ψ′
−‖

1

2
− 1

p ‖ψ−‖
1

2
+ 1

p

)

≤ Cp‖φ′‖
1

2
− 1

p

(
‖ψ+‖

1

2
+ 1

p + ‖ψ−‖
1

2
+ 1

p

)

≤ Cp‖φ′‖
1

2
− 1

p ‖ψ‖
1

2
+ 1

p

and the lemma is proven.
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Remark 3.7. In particular, for p = ∞ we obtain the generalization to Q of the embedding of H1 in
L∞:

‖ψ‖∞ ≤ C‖φ′‖ 1

2 ‖ψ‖ 1

2 . (3.16)

Furthermore, by (3.13),

|q| ≤ C‖φ′‖ 1

2 ‖ψ‖ 1

2 . (3.17)

4 Global well-posedness in D(H)

In this section we prove existence and uniqueness for the problem (1.2) in the operator domain of
H. Furthermore, we show that L2-norm and energy are conserved quantities and use this result to
prove that all maximal solutions are global in time (i.e. there is no blow-up phenomenon).

Theorem 4.1 (Existence and uniqueness for solutions in D(H)). Let H be any self-adjoint extension
of the operator Ĥ0 defined in (2.1), (2.2). Let its domain be denoted by D(H).

For any ψ0 ∈ D(H) there exists T ∈ (0,+∞) such that the equation (1.2) has a unique solution
ψ ∈ C([0, T ),D(H)) ∩ C1([0, T ), L2(R)).

Moreover, equation (1.2) has a maximal solution ψ(t) defined on the interval [0, T ⋆). For such a
solution, the following alternative holds: either T ⋆ = +∞ or

lim
t→T ⋆

‖ψ(t)‖H = +∞.

Proof. Let us use the notation

X = C0([0, T ],D(H)) ∩ C1([0, T ], L2(R3)) (4.1)

and provide the space X with the norm

‖ψ‖X := max
t∈[0,T ]

‖ψ(t)‖H + max
t∈[0,T ]

‖∂tψ(t)‖ (4.2)

where the norm ‖ · ‖H has been defined in (2.7).
Given ψ0 ∈ D(H), we define the function G : X → X , as

Gψ := e−iH·ψ0 − iλ

∫ ·

0
ds e−i(·−s)H |ψ(s)|2ψ(s) (4.3)

First, it is immediately seen that

‖e−iHtψ0‖H = ‖ψ0‖H , ‖∂te−iHtψ0‖ = ‖Hψ0‖ (4.4)

Therefore,
‖e−iHtψ0‖X = ‖ψ0‖H + ‖Hψ0‖ ≤ 2‖ψ0‖H . (4.5)

Next, integrating by parts we obtain the identity
∫ t

0
ds e−iH(t−s)|ψ(s)|2ψ(s)

= − i(H +m)−1|ψ(t)|2ψ(t) + ie−iHt(H +m)−1|ψ0|2ψ0 +m(H +m)−1

∫ t

0
ds e−iH(t−s)|ψ(s)|2ψ(s)

+ 2i(H +m)−1

∫ t

0
ds e−iH(t−s)|ψ(s)|2∂sψ(s) + i(H +m)−1

∫ t

0
ds e−iH(t−s)ψ2(s)∂sψ̄(s)

= (I)t + (II)t + (III)t + (IV )t + (V )t
(4.6)
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Furthermore,

‖(I)t‖H ≤ ‖ψ(t)‖2
∞‖ψ(t)‖ ≤ C‖ψ(t)‖3

H

‖(II)t‖H ≤ C‖ψ0‖3
H

‖(III)t‖H = |m|
∥∥∥∥
∫ t

0
ds e−iH(t−s)|ψ(s)|2ψ(s)

∥∥∥∥ ≤ CT max
t∈[0,T ]

‖ψ(t)‖3
H

‖(IV )t‖H = 2

∥∥∥∥
∫ t

0
ds e−iH(t−s)|ψ(s)|2∂sψ(s)

∥∥∥∥ ≤ CT max
t∈[0,T ]

(
‖ψ(t)‖2

H‖∂tψ(t)‖
)

‖(V )t‖H ≤ CT max
t∈[0,T ]

(
‖ψ(t)‖2

H‖∂tψ(t)‖
)

(4.7)

Then, ∥∥∥∥
∫ t

0
ds e−iH(t−s)|ψ(s)|2ψ(s)

∥∥∥∥
H

≤ CT‖ψ‖3
X (4.8)

Now we estimate the L2-norm of the time derivative of terms (I)t, (II)t, (III)t, (IV )t, (V )t.

‖∂t(I)t‖ = ‖(H +m)−1(2|ψ(t)|2∂tψ(t) + ψ2(t)∂tψ̄(t))‖ ≤ C‖ψ(t)‖2
H‖∂tψ(t)‖

‖∂t(II)t‖ ≤ ‖ψ0‖3
H

‖∂t(III)t‖ =

∥∥∥∥m(H +m)−1|ψ(t)|2ψ(t) − im

∫ t

0
ds e−iH(t−s)H(H +m)−1|ψ(s)|2ψ(s)

∥∥∥∥

≤ C‖ψ(t)‖2
H‖ψ(t)‖ + CT max

t∈[0,T ]
‖ψ(t)‖2

H‖ψ(t)‖

‖∂t(IV )t‖ ≤ C
∥∥(H +m)−1|ψ(t)|2∂tψ(t)

∥∥ + 2

∫ t

0
ds

∥∥∥e−iH(t−s)H(H +m)−1|ψ(s)|2∂sψ(s)
∥∥∥

≤ C‖ψ(t)‖2
H‖∂tψ(t)‖ + CT max

t∈[0,T ]
(‖ψ(t)‖2

H‖∂tψ(t)‖)

‖∂t(V )t‖ ≤ C‖ψ(t)‖2
H‖∂tψ(t)‖ + CT max

t∈[0,T ]
(‖ψ(t)‖2

H‖∂tψ(t)‖)

(4.9)

Therefore ∥∥∥∥∂t
[∫ t

0
ds e−iH(t−s)|ψ(s)|2ψ(s)

]∥∥∥∥ ≤ CT‖ψ‖3
X (4.10)

and from (4.8), (4.10) and (4.5) one finally finds

‖Gψ‖X ≤ 2‖ψ0‖H + CT‖ψ‖3
X (4.11)

Now let us consider two elements of X , say ψ and ξ. As before, integrating by parts
∫ t

0
ds e−iH(t−s)(|ψ(s)|2ψ(s) − |ξ(s)|2ξ(s))

= − i(H +m)−1(|ψ(t)|2ψ(t) − |ξ(t)|2ξ(t)) + ie−iHt(H +m)−1(|ψ0|2ψ0 − |ξ0|2ξ0)

+m(H +m)−1

∫ t

0
ds e−iH(t−s)(|ψ(s)|2ψ(s) − |ξ(s)|2ξ(s))

+ 2i(H +m)−1

∫ t

0
ds e−iH(t−s)(|ψ(s)|2∂sψ(s) − |ξ(s)|2∂sξ(s))

+ i(H +m)−1

∫ t

0
ds e−iH(t−s)(ψ2(s)∂sψ̄(s) − ξ2(s)∂sξ̄(s))

= (V I)t + (V II)t + (V III)t + (IX)t + (X)t

(4.12)
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Now,

‖(V I)t‖H =‖|ψ(t)|2ψ(t) − |ξ(t)|2ξ(t)‖ ≤ C
(
‖ψ(t)‖2

H + ‖ξ(t)‖2
H

)
‖ψ(t) − ξ(t)‖H

≤ C
(
‖ψ‖2

X + ‖ξ‖2
X

)
‖ψ − ξ‖X

‖(V II)t‖H ≤ C
(
‖ψ‖2

X + ‖ξ‖2
X

)
‖ψ − ξ‖X

‖(V III)t‖H ≤ m

∥∥∥∥
∫ t

0
ds e−iH(t−s)(|ψ2(s)ψ̄(s) − ξ2(s)ξ̄(s))

∥∥∥∥ ≤ CT
(
‖ψ‖2

X + ‖ξ‖2
X

)
‖ψ − ξ‖X

‖(IX)t‖H ≤ 2

∥∥∥∥
∫ t

0
ds e−iH(t−s)(|ψ2(s)∂sψ̄(s) − ξ2(s)∂sξ̄(s))

∥∥∥∥ ≤ CT (‖ψ‖2
X + ‖ξ‖2

X )‖ψ − ξ‖X

‖(X)t‖H ≤CT (‖ψ‖2
X + ‖ξ‖2

X )‖ψ − ξ‖X
(4.13)

Then,

∥∥∥∥
∫ t

0
ds e−iH(t−s)(|ψ(s)|2ψ(s) − |ξ(s)|2ξ(s))

∥∥∥∥
H

≤ CT (‖ψ‖2
X + ‖ξ‖2

X )‖ψ − ξ‖X (4.14)

Moreover,

‖∂t(V I)t‖H ≤ C‖|ψ(t)|2∂tψ(t) − |ξ(t)|2∂tξ(t)‖ + ‖ψ2(t)∂tψ̄(t) − ξ2(t)∂tξ̄(t)‖
≤ C(‖ψ‖2

X + ‖ξ‖2
X )‖ψ − ξ‖X

‖∂t(V II)t‖ ≤ C(‖ψ‖2
X + ‖ξ‖2

X )‖ψ − ξ‖X
‖∂t(V III)t‖ ≤ C(‖ψ‖2

X + ‖ξ‖2
X )‖ψ − ξ‖X + CT (‖ψ‖2

X + ‖ξ‖2
X )‖ψ − ξ‖X

‖∂t(IX)t‖ ≤ C‖|ψ(t)|2∂tψ(t) − |ξ(t)|2∂tξ(t)‖ + C

∫ t

0
ds ‖|ψ(s)|2∂sψ(s) − |ξ(s)|2∂tξ(s)‖

≤ CT (‖ψ‖2
X + ‖ξ‖2

X )‖ψ − ξ‖X
‖∂t(X)t‖ ≤ CT (‖ψ‖2

X + ‖ξ‖2
X )‖ψ − ξ‖X

(4.15)

Then,

∥∥∥∥∂t
∫ t

0
ds e−iH(t−s)(|ψ(s)|2ψ(s) − |ξ(s)|2ξ(s))

∥∥∥∥ ≤ CT (‖ψ‖2
X + ‖ξ‖2

X )‖ψ − ξ‖X (4.16)

From (4.14) and (4.16)

‖Gψ −Gξ‖X ≤ CT (‖ψ‖2
X + ‖ξ‖2

X )‖ψ − ξ‖X (4.17)

Let us fix M := 4‖ψ0‖H and consider the ball of radius M in the space X , namely

Y := {ψ ∈ X , ‖ψ‖X ≤M} (4.18)

Obviously, Y is a complete metric space with the norm induced by X . From (4.11) and (4.17) one
has that

‖Gψ‖X ≤M
2

+ CTM3

‖Gψ −Gξ‖X ≤ CM2T‖ψ − ξ‖X
(4.19)
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If one chooses T = (2CM2)−1, then G is a contraction in Y. By Banach-Caccioppoli’s contraction
lemma we immediately obtain the well-posedness of the problem (1.2) in D(H). The blow-up alter-
native follows from the fact that the size of the interval of existence of the solution is a function of
the H-norm of the solution.
The theorem is proven.

Remark 4.2. Actually, existence and uniqueness hold in the space C([0, T ),D(H)), as appears from
the fact that the time derivative of any solution in such space must belong to C([0, T ), L2(R)).

Corollary 4.3 (Local existence and uniqueness for strong solutions). Let H be any s.a.e. for the
operator Ĥ0 defined in (2.1), (2.2). Then, for any ψ0 ∈ D(H) there exists T ∈ (0,+∞) s.t. the
initial value problem {

i∂tψ(t) = Hψ(t) + λ|ψ(t)|2ψ(t)
ψ(0) = ψ0

(4.20)

has a unique solution ψ ∈ C([0, T ),D(H)) ∩ C1([0, T ), L2(R)).

Proof. The solution of the integral equation (1.2), whose existence has been shown in theorem 4.1,
solves (4.20) too.

Proposition 4.4 (Conservation laws for strong solutions). For any solution ψ ∈ C([0, T ),D(H)) to
the problem (1.2) the following conservation laws hold at any time t in the interval [0, T ):

‖ψ(t)‖ = ‖ψ0‖ (4.21)

E [ψ(t)] = E [ψ0] (4.22)

where the energy functional is defined as

E [ψ] = B(ψ) +
λ

2
‖ψ‖4

4 (4.23)

and B is the quadratic form associated to the operator H.

Proof. Let ψ0 be an element of D(H), and ψ(t) the solution to (4.20) at time t.
The conservation law for the L2-norm can be immediately obtained recalling that

∂t‖ψ(t)‖2 = 2Re (ψ(t), ∂tψ(t))

and applying (4.20).
For the conservation of energy, first we prove that for any t ∈ (0, T ) the quantity (ψ(t),Hψ(t))

is differentiable and
∂t(ψ(t),Hψ(t)) = 2Re (∂tψ(t),Hψ(t)) (4.24)

Indeed, exploiting self-adjointness of H one easily finds

(ψ(t+ h),Hψ(t + h)) − (ψ(t),Hψ(t))

h

=

(
ψ(t+ h) − ψ(t)

h
,Hψ(t + h)

)
+

(
Hψ(t),

ψ(t+ h) − ψ(t)

h

) (4.25)
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In order to prove (4.24) one needs only to show that

lim
h→0

Hψ(t+ h) = Hψ(t) (4.26)

in the strong L2 sense. To this aim, one notices that, after some algebra, integrating by parts yields

H

∫ t+h

t
ds eiHs|ψ(s)|2ψ(s)

= − ieiH(t+h)|ψ(t+ h)|2ψ(t+ h) + ieiHt|ψ(t)|2ψ(t)

+ 2i

∫ t+h

t
ds eiHs|ψ(s)|2∂tψ(s) + i

∫ t+h

t
ds eiHsψ2(s)∂tψ(s)

(4.27)

and taking the strong limit term by term one easily sees that the sum in the r.h.s. goes to zero. This
proves (4.26) and thus, by (4.25), equality (4.24) is proven.

Then,
∂t(ψ(t),Hψ(t)) = −2λ Im (|ψ(t)|2ψ(t),Hψ(t)) (4.28)

On the other hand,

∂t(ψ(t), |ψ(t)|2ψ(t)) = ∂t(ψ
2(t), ψ2(t)) = 4λ Im (|ψ(t)|2ψ(t),Hψ(t)) (4.29)

By (4.28) and (4.29) conservation of energy is proven.

Now we use the conservation laws to prove that strong solutions are global in time.

Proposition 4.5 (Eternity of strong solutions). Any solution to (1.2) with ψ0 ∈ D(H) is global in
t.

Proof. We treat the case of H = HU with b 6= 0 (see definition (2.3)). All other cases can be treated
in the same way.

Using standard techniques one can prove that for any ψ0 there exists a maximal time T ⋆(ψ0) of
existence for the solution ψ(t) to the initial value problem (4.20). We prove that T ⋆(ψ0) is infinite.
If not, by the blow-up alternative, one should have

lim
t→T ⋆(ψ0)

‖ψ(t)‖H = +∞ (4.30)

On the other hand integration by parts yields

(H +m)

∫ t

0
ds e−iH(t−s)|ψ(s)|2ψ(s)

= − i|ψ(t)|2ψ(t) + ie−iHt|ψ0|2ψ0 +m

∫ t

0
ds e−iH(t−s)|ψ(s)|2ψ(s)

+ 2i

∫ t

0
ds e−iH(t−s)|ψ(s)|2∂sψ(s) + i

∫ t

0
ds e−iH(t−s)ψ2(s)∂sψ̄(s)

(4.31)

Then,
∥∥∥∥
∫ t

0
ds e−iH(t−s)|ψ(s)|2ψ(s)

∥∥∥∥
H

≤ ‖ψ(t)‖2
∞‖ψ(t)‖ + ‖ψ0‖2

∞‖ψ0‖ +m

∫ t

0
ds ‖ψ(s)‖2

∞‖ψ(s)‖

+ 3

∫ t

0
ds ‖ψ(s)‖2

∞‖Hψ(s)‖ + 3|λ|
∫ t

0
ds ‖ψ(s)‖2

∞‖|ψ(s)|2ψ(s)‖

(4.32)
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Using conservation of energy, conservation of L2-norm, and inequality (3.15) first with p = ∞ and
then with p = 4 one easily finds that, for any t < T ⋆(ψ0),

E [ψ0] = E [ψ(t)] ≥ ‖φ′(t)‖2 − 2M(‖ψ0‖)‖φ′(t)‖ (4.33)

where φ(t) is the regular part of ψ(t) (see (2.19)) and

M(‖ψ0‖) :=
1

2
C2
∞|b|−1(|a| + |d| + 2)‖ψ0‖ +

|λ|
4
C4

4‖ψ0‖3. (4.34)

Therefore, from (4.33) one obtains

‖φ′(t)‖ ≤ 2M(‖ψ0‖) +
√

E [ψ0], for any t < T ⋆(ψ0) (4.35)

and then, by (3.15) with p = ∞ one has

‖ψ(t)‖2
∞ ≤ 2C2

∞‖ψ0‖[M(‖ψ0‖) +
√
E [ψ0]] := K(ψ0), for any t < T ⋆(ψ0). (4.36)

From (4.32) one then has
∥∥∥∥
∫ t

0
ds e−iH(t−s)|ψ(s)|2ψ(s)

∥∥∥∥
H

≤K2(ψ0)

[
(2 +mt)‖ψ0‖ + 3

∫ t

0
ds ‖Hψ(s)‖ + 3|λ|

∫ t

0
ds ‖|ψ(s)|2ψ(s)‖

]

≤K2(ψ0)

[
(2 + t(m+ 3|λ|K2(ψ0)))‖ψ0‖ + 3

∫ t

0
ds ‖ψ(s)‖H

]
.

(4.37)

Therefore,

‖ψ(t)‖H ≤ ‖ψ0‖H + |λ|K2(ψ0)

[
(2 + t(m+ 3|λ|K2(ψ0)))‖ψ0‖ + 3

∫ t

0
ds ‖ψ(s)‖H

]
. (4.38)

Then, by a Gronwall-type estimate one obtains

‖ψ(t)‖H ≤
(
‖ψ0‖H + 2|λ|K2(ψ0)‖ψ0‖ +

m

3
‖ψ0‖ + |λ|K2(ψ0)‖ψ0‖

)
e3|λ|K

2(ψ0)t, (4.39)

then
lim sup

t→T ⋆(ψ0)−0
‖ψ(t)‖H ≤ C(ψ0)e

3|λ|K2(ψ0)T ⋆(ψ0) < +∞ (4.40)

that contradicts the blow-up alternative and then the finiteness of T ⋆(ψ0). The proof is complete.

5 Global well-posedness in Q

In this section we prove the global well-posedness for the problem (1.2), provided that the operator
H is a s.a.e. of Ĥ0 (see (2.1), (2.2)) with energy domain equal to Q (see proposition 2.3). The other
cases will be treated in the next section.

Lemma 5.1. For any function ψ ∈ Q,

‖|ψ|2ψ‖Q ≤ C‖ψ‖3
Q. (5.1)

Furthermore, for any couple of functions ψ1, ψ2 ∈ Q the following estimate holds:

‖|ψ1|2ψ1 − |ψ2|2ψ2‖Q ≤ C(‖ψ1‖2
Q + ‖ψ2‖2

Q)‖ψ1 − ψ2‖Q (5.2)
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Proof. By (3.16) ψ is a bounded function, then |ψ|2ψ is in L2. Exploiting decomposition ψ = φ+ q ǫ2
given in (2.19), we obtain an analogous decomposition for |ψ|2ψ, namely

|ψ|2ψ = η + µ
ǫ

2

where

η =|φ|2φ+ q2
φ̄

4
+ |q|2φ

2
+ q̄[φ2 − φ2(0)]

ǫ

2
+ 2q[|φ|2 − |φ(0)|2] ǫ

2

µ =qφ2(0) + 2q|φ(0)|2 +
|q|2q

4

(5.3)

To show that η′ ∈ L2 we first notice that η is continuous, since the coefficient of ǫ appearing in the
first equality in (5.3) vanishes at the origin. Now let us consider the first term in the definition (5.3)
of η. It can be rewritten as φ2φ. Its x-derivative consists of two terms: we analyse only one of them,
for instance φ2φ

′
. To show that it belongs to L2, we estimate the factor φ2 by its L∞-norm, so we

are left with the L2-norm of φ
′
, which is finite. Then we obtain

‖φ2φ
′‖ ≤ ‖φ‖2

∞‖φ′‖ ≤ C‖ψ‖3
Q.

The L2-norm of the other terms in η′ can be estimated similarly: indeed, each term consists of three
factors, and it turns out that one of such factors is in L2, while the two others can be estimated by
their L∞-norm. Using remark 3.5 one finally obtains

‖|ψ|2ψ‖Q ≤ C‖ψ‖3
Q. (5.4)

Now we estimate the Q-norm of |ψ1|2ψ1 − |ψ2|2ψ2. We have

‖|ψ1|2ψ1 − |ψ2|2ψ2‖Q ≤ ‖|ψ1|2ψ1 − |ψ2|2ψ2‖ + ‖η′1 − η′2‖ (5.5)

where ηi denotes the regular part of |ψi|2ψi. For estimating the first term in the r.h.s of (5.5) we
add and subtract the terms |ψ1|2ψ2 and |ψ2|2ψ1. By triangular inequality,

‖|ψ1|2ψ1 − |ψ2|2ψ2‖ ≤
(
‖ψ1‖2

∞ + ‖ψ1‖∞‖ψ2‖∞ + ‖ψ2‖2
∞

)
‖ψ1 − ψ2‖

≤ C
(
‖ψ1‖2

∞ + ‖ψ2‖2
∞

)
‖ψ1 − ψ2‖ (5.6)

Now we estimate ‖η′1 − η′2‖. By formula (5.3) we have

‖η′1 − η′2‖
≤ C

(
‖(|φ1|2φ1)

′ − (|φ2|2φ2)
′‖ + ‖q21φ

′
1 − q22φ

′
2‖ + ‖|q1|2φ′1 − |q2|2φ′2‖

+‖q̄1[(φ2
1 − φ2

1(0))ǫ]
′ − q̄2[(φ

2
2 − φ2

2(0))ǫ]
′‖ + ‖q1[(|φ1|2 − |φ1(0)|2)ǫ]′ − q2[(|φ2|2 − |φ2(0)|2)ǫ]′‖

)

= (I) + (II) + (III) + (IV ) + (V ) (5.7)

To estimate term (I) we rewrite it as

(|φ1|2φ1)
′ − (|φ2|2φ2)

′

= 2
[
φ1φ

′
1(φ1 − φ2) + φ1φ2(φ

′
1 − φ′2) + φ′2φ2(φ1 − φ2)

]
+ φ

′
1(φ

2
1 − φ2

2) + φ2
2(φ

′
1 − φ

′
2) (5.8)
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Then

(I) ≤ 2
(
‖φ1‖∞‖φ′1‖ + ‖φ2‖∞‖φ′2‖ + ‖φ′1‖‖φ1 + φ2‖∞

)
‖φ1 − φ2‖∞ + 2(‖φ1‖2

∞ + ‖φ2‖2
∞)‖φ′1 − φ′2‖

(5.9)
Inequality (3.14) implies

‖φ1 − φ2‖∞ ≤ C‖ψ1 − ψ2‖Q (5.10)

Then, by (3.14), (5.9), (5.10)

(I) ≤ C(‖ψ1‖2
Q + ‖ψ2‖2

Q)‖ψ1 − ψ2‖Q (5.11)

Terms (II), (III), (IV ), (V ) are estimated similarly using (3.13), (3.14) and (5.10), and the proof is
complete.

Proposition 5.2 (Equivalence of energy norms). The energy space norms defined in (2.25) and
(2.23) are equivalent.

Proof. We give the proof for the case at point 4. in the proposition (2.3). The others are simpler
and can be treated the same way. So the energy space coincides with Q and the expression of the
form is given by (2.17).

Denoting by φ the regular part of ψ and defining

A := max

(
1,
C2
∞|b|−2(|a| + |d| + 1)2

m

)
,

where the constant C∞ was given in (3.15), one has

A‖ψ‖2
B ≥ B(ψ) + C2

∞|b|−2(|a| + |d| + 1)2‖ψ‖2

≥ ‖φ′‖2 − C∞|b|−1(|a| + |d| + 1)‖φ′‖‖ψ‖ + C2
∞|b|−2(|a| + |d| + 1)2‖ψ‖2

≥ 1

2

(
‖φ′‖2 + C2

∞|b|−2(|a| + |d| + 1)2‖ψ‖2
)
≥ c‖ψ‖2

Q,

(5.12)

where c := min(1
2 ,

1
2 |b|−2C2

∞(|a| + |d| + 1)2).
On the other hand,

‖ψ‖2
B ≤ ‖φ′‖2 + C∞|b|−1(|a| + |d| + 1)‖φ′‖‖ψ‖ +m‖ψ‖2 ≤ C‖ψ‖2

Q (5.13)

where C := max(1,m) + 1
2 |b|−1C∞(|a| + |d| + 1).

So we showed the existence of A, c,C > 0 s.t. cA−1‖ψ‖2
Q ≤ ‖ψ‖2

B ≤ C‖ψ‖2
Q and the proof is

complete.

Lemma 5.3. Let H be a s.a.e. of Ĥ0 (see (2.1), (2.2)), and X be the related energy space (see
proposition 2.3). Then, for any ψ0 ∈ X, t ∈ R,

‖e−itHψ0‖X ≤ C̃‖ψ0‖X (5.14)

where the constant C̃ depends on ψ0 and H, but not on t.
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Proof. As in the previous proof, we treat the case at point 4. in proposition 2.3 only, the others
being easier. Since b 6= 0, the domain of the form B associated to the operator H coincides with Q.
Besides, the value of the form is conserved by the linear flow, namely

B(ψt) = B(ψ0)

where we used the notation ψt = e−itHψ0. Then, from equation (2.21) and the unitary character of
the propagator e−itH in L2(R), denoting by φt the regular part of ψt one has

|B(ψ0)| ≥ ‖φ′t‖2 − C∞|b|−1(|a| + |d| + 1)‖φ′t‖‖ψ0‖ (5.15)

where the constant C∞ was defined in (3.15).
From (5.15) one immediately has

‖φ′t‖2 ≤ C|B(ψ0)| (5.16)

where C depends on |a|, |b|, |d|, and ‖ψ0‖ only.
Conversely,

|B(ψ0)| ≤ ‖φ′0‖2 + |b|−1(|a| + |d| + 1)‖φ′0‖‖ψ0‖ ≤ C‖ψ0‖2
Q (5.17)

Then, from (5.17) and (5.15) one immediately has

‖φ′t‖ ≤ C‖ψ0‖Q

and, since ‖ψt‖ = ‖ψ0‖, the proof is complete.

Now we can prove the well-posedness for the local Cauchy problem in the form domain of the
s.a.e. H, provided that it coincides with the space Q.

Theorem 5.4 (Local existence and uniqueness for weak solutions in Q). Let H be a s.a.e. of Ĥ0

(see (2.1), (2.2)) whose corresponding quadratic form has domain Q.
Then, for any ψ0 ∈ Q there exists T ∈ (0,+∞) such that the integral equation (1.2) has a unique

solution ψ ∈ C([0, T ), Q).

Proof. Given ψ0 ∈ Q we consider the Banach space

Y := {ψ ∈ Q, ‖ψ‖Q ≤ 2C̃‖ψ0‖Q}

where C̃ is the constant appearing in (5.14).
We define the operator Γ acting on L∞([0, T ],Y), with T to be specified:

(Γψ)(t) := e−itHψ0 − iλ

∫ t

0
ds e−i(t−s)H |ψ(s)|2ψ(s). (5.18)

By lemmas 5.1, 5.3
‖(Γψ)(t)‖Q ≤ C̃‖ψ0‖Q + CT‖ψ‖3

L∞([0,T ],X) (5.19)

and for any ψ1, ψ2 ∈ L∞([0, T ], Q)

‖(Γψ1)(t) − (Γψ2) (t)‖Q ≤ CT (‖ψ1‖2
L∞([0,T ],Q) + ‖ψ2‖2

L∞([0,T ],Q))‖ψ1 − ψ2‖L∞([0,T ],Q) (5.20)

From (5.19), (5.20) it follows that for T = (9CC̃2‖ψ0‖2
Q)−1, Γ is a contraction of L∞([0, T ],Y),

then there exists a unique solution of equation (1.2) in L∞([0, T ],Y).
By a one-step bootstrap in (1.2) it is immediately seen that the solution actually belongs to

C0([0, T ],Y).
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Now we give a simple lemma in order to immediately prove a corollary on well-posedness. Yet
the lemma proves useful for showing the conservation laws too.

Lemma 5.5. The function t 7→ eiHtψ(t) is differentiable both as a function in L2 and in Q, and

∂te
iHtψ(t) = −iλeiHt|ψ(t)|2ψ(t) (5.21)

Proof. Indeed,

|λ|
∥∥∥∥h

−1

∫ t+h

t
eiHs|ψ(s)|2ψ(s) ds − eiHt|ψ(t)|2ψ(t)

∥∥∥∥

≤|λ||h|−1

∫ t+h

t
ds ‖eiHs|ψ(s)|2ψ(s) − eiHt|ψ(t)|2ψ(t)‖

≤|λ||h|−1

∫ h

0
ds ‖eiH(t+s)|ψ(t+ s)|2ψ(t+ s) − eiH(t+s)|ψ(t)|2ψ(t)‖

+ |λ||h|−1

∫ h

0
ds ‖eiH(t+s)|ψ(t)|2ψ(t) − eiHt|ψ(t)|2ψ(t)‖

(5.22)

The first term can be estimated using continuity in time of the solution ψ, the second by the continuity
of the propagator e−iHt. Notice that the norm can be understood either in L2 or in Q.

Corollary 5.6. The local solution in Q to the problem (1.2) lies in the space C([0, T ], Q)∩C1([0, T ), Q).

Proof. Consider a function ξ ∈ D(H). One then has

〈∂tψ(t), ξ〉Q⋆,Q := ∂t(ψ(t), ξ) = ∂t(e
iHtψ(t), eiHtξ)

= (−iλ|ψ(t)|2ψ(t), ξ) +B(ψ(t), ξ)
(5.23)

where we used formula (5.21).
Then

|〈∂tψ(t), ξ〉Q⋆,Q| ≤ |λ|‖ψ(t)‖3
Q‖ξ‖ + C‖ψ(t)‖Q‖ξ‖Q, (5.24)

so ∂tψ(t) belongs to Q⋆. Furthermore, the correspondence t 7→ ∂tψ(t) is continuous in Q⋆ due to the
continuity of t 7→ ψ(t) in Q and to estimate (5.24).

Remark 5.7 (Blow-up alternative). Since the size T of the time interval where the solution exists
depends on the Q-norm of the solution only, one obtains the following alternative: either the solution
is global in time, or there exists T ⋆ <∞ such that

lim
t→T ⋆−0

‖ψ(t)‖Q = +∞.

5.1 Conservation laws and global existence

As for the usual nonlinear Schrödinger equation, the main conserved quantities are the L2-norm and
the energy of the solution.

Proposition 5.8 (Conservation of the L2-norm). For any solution ψ ∈ C([0, T ), Q) to the problem
(1.2), the following conservation law holds:

‖ψ(t)‖ = ‖ψ0‖ for any t ∈ [0, T ). (5.25)

23



Proof. Using (5.21) one immediately finds

∂t(ψ(t), ψ(t)) = ∂t(e
iHtψ(t), eiHtψ(t)) = 2Re(eiHtψ(t), ∂te

iHtψ(t))

=2Im(eiHtψ(t), eiHt|ψ(t)|2ψ(t)) = 2Im(ψ(t), |ψ(t)|2ψ(t)) = 0
(5.26)

Proposition 5.9 (Conservation of the energy for solutions in Q). For any solution ψ ∈ C([0, T ), Q)
to the problem (1.2) the conservation of energy (4.23) holds.

Proof. Let T ⋆ be the maximal time of existence of ψ. Due to the density of D(H) in Q, there exists
a sequence ψ0,n ∈ D(H) that converges to ψ0 in Q. We prove that time evolution propagates the
convergence in Q at any time T ∈ (0, T ⋆).

Indeed, denoted by ψn(t) the solution to (1.2) with initial data ψ0,n, one immediately has

ψ(t) − ψn(t) = e−iHt(ψ0 − ψ0,n) − iλ

∫ t

0
ds e−iH(t−s)(|ψ(s)|2ψ(s) − |ψn(s)|2ψn(s)) (5.27)

Then, using (5.14) and (5.2) we have

‖ψ(t) − ψn(t)‖Q ≤ C‖ψ0 − ψ0,n‖Q + C

∫ t

0
ds (‖ψ(s)‖2

Q + ‖ψn(s)‖2
Q)‖ψ(s) − ψn(s)‖Q (5.28)

From (4.35) we know that ‖ψn(s)‖Q is bounded uniformly in s and n. Notice that ‖ψ(s)‖Q must be
bounded for s in (0, T ) too, otherwise the blow-up alternative would prevent the solution from being
extended up to T ⋆. Therefore, there exists CT > 0 such that, by (5.28),

‖ψ(t) − ψn(t)‖Q ≤ C‖ψ0 − ψ0,n‖Q + CT

∫ t

0
ds ‖ψ(s) − ψn(s)‖Q (5.29)

and then, by standard Gronwall’s inequality,

‖ψ(t) − ψn(t)‖Q ≤ C eCT T ‖ψ0 − ψ0,n‖Q, ∀ t ∈ [0, T ). (5.30)

Then, we have that

lim
n→∞

ψn(t) = ψ(t), in the topology of Q, for any t ∈ [0, T ). (5.31)

Since the energy functional is continuous in Q, and exploiting conservation of the energy for solutions
in H, we get

E [ψ(t)] = lim
n→∞

E [ψn(t)] = lim
n→∞

E [ψ0,n] = E [ψ0] (5.32)

and the proposition is proven.

Proposition 5.10 (Eternity of solutions in Q). Any solution of (1.2) with ψ0 ∈ Q is global in t.

Proof. It suffices to proceed further with the previous proof. The energy conservation (5.32) implies
inequality (4.35). Therefore, the quantity ‖ψ(t)‖Q can be estimated uniformly in t ∈ (0, T ⋆). There-
fore, by continuity of time evolution in Q, ‖ψ(T ⋆)‖Q is bounded, and so the blow-up alternative
implies T ⋆ = +∞.

Remark 5.11. All proofs in this section can be extended to any s.a.e. H of Ĥ0 whose energy domain
is Q0, Q0+, Q0− or Q±ω: the only condition is the stability of the energy domain under the action of
the cubic nonlinearity.
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6 Global well-posedness in Qωa

In this section we prove the well-posedness for the problem (1.2) in the form domain Qωa of a
hamiltonian operator H defined by boundary conditions (2.3) with b = 0.

When dealing with such s.a. extensions the main problem lies in the fact that the boundary
condition that defines Qωa is not stable under the action of the nonlinearity, therefore the simple
proof given for the well-posedness in Q cannot be extended to this case and a more careful analysis
is required.

As already pointed out, if a = ±1 then the proof for the problem in Q holds for this case too.
In order to cover all other cases we shall use the “integrated by parts” form of the Duhamel

formula. To that purpose we need to extend the action of the resolvent of H from L2(R) to the
whole space Q⋆.

6.1 Extension of the resolvent to Q⋆

We start by extending the resolvent of the free Laplacian to H−1(R).

Definition 6.1. Let H0 be the s.a.e. of Ĥ0 (see (2.1), (2.2)), defined on H2(R). For any z ∈
C\(−∞, 0] denote by R0(z) the resolvent operator (H0 + z)−1, acting on L2(R).

We define the extended free resolvent R̃0(z) as follows. Given f ∈ Q⋆,

R̃0(z)f = F−1 f̂1(k)

k2 + z
(6.1)

where, according to (2.40), f1 is the H−1-component of f , f̂1 is its Fourier transform as a Schwartz
distribution, and F−1 denotes the inverse Fourier transform in the same space.

Remark 6.2. We point out that:

• for any f ∈ Q⋆, R̃0(z)f ∈ H1(R);

• R̃0(z) is not invertible, indeed its kernel coincides with the subspace of Q⋆ generated by δ(0+)−
δ(0−). However, its restriction on H−1(R) is invertible;

• R̃0(z) is bounded as an operator from Q⋆ to H1(R).

Indeed,

‖R̃0(z)f‖2
H1(R) ≤ C

∫

R

|f̂1(k)|2
k2 + 1

dk ≤ C‖f‖2
Q⋆ (6.2)

As a second step we extend to Q⋆ the resolvent of the s.a.e. of Ĥ0 with Dirichlet boundary
condition at zero.

Definition 6.3. Let H0,0 be the s.a.e. of Ĥ0 (see (2.1), (2.2)), whose domain DD contains all
functions in H2(R) vanishing at x = 0. For any z ∈ C\(−∞, 0] denote by RD(z) the resolvent
operator (H0,0 + z)−1 acting on L2(R).

We define the action of the extended resolvent R̃D(z) on f ∈ Q⋆ as follows:

R̃D(z)f := R̃0(z)f − ϕz

2
√
z
〈f, ϕz〉Q⋆,Q (6.3)

where the functions ϕz were introduced in section 1.1.
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Remark 6.4. Notice that:

• R̃D(z)f = RD(z)f if f ∈ L2(R).

• R̃D(z) is a continuous linear map from Q⋆ to H1
0 (R).

Indeed, from continuity of R̃0(z) and continuity of the second term in the definition (6.3) of
R̃0(z), we have that R̃D(z) is continuous from Q⋆ to H1(R). Now, fix f ∈ Q⋆ and consider a
sequence fn ∈ L2(R)∩Q⋆ that converges to f in the topology of Q⋆. Obviously, R̃Dfn(0) = 0,
and by continuity R̃Dfn converges to R̃Df in H1(R). But this implies pointwise convergence,
then R̃Df(0) = 0.

• Decomposing f as in (2.34) one immediately has

R̃D(z)f = R̃0(z)f0 −
ϕz

2
√
z
〈f0, ϕ

z〉Q⋆,Q. (6.4)

• From (6.4),
R̃D(z)f = R̃D(z)f0.

Now we can extend to Q⋆ the resolvent of any s.a.e. of Ĥ0.

Definition 6.5. Let H be any s.a.e. of Ĥ0. For any z in the resolvent set of H we define the
extended resolvent R̃(z) as follows:

R̃(z)f := R̃D(z)f +
∑

j,k=±

µj,k(z)

2
√
z
ϕzj 〈f, ϕzk〉Q⋆,Q (6.5)

where the coefficients α and β were defined in (2.34), the function ϕzj in (1.4), and the parameters
µj,k(z) give the difference between the ordinary resolvent operators R(z)−RD(z) according to Krein’s
formula (see [3], chapter 7, section 84).

Remark 6.6. As in the previously discussed cases,

• R̃(z)f = (H + z)−1(z)f if f ∈ L2(R).

• it is easily seen that R̃(z) is a continuous linear map from Q⋆ to Q;

• by decomposition (2.34), one has

R̃(z)f := R̃D(z)f0 +
∑

j,k=±

µj,k(z)

2
√
z
ϕzj 〈f0, ϕ

z
k − ϕk〉Q⋆,Q +

α

2
√
z

∑

j=±
µj,+(z)ϕzj +

β

2
√
z

∑

j=±
µj,−(z)ϕzj

(6.6)

Remark 6.7. Applying Krein’s theory one easily verifies that, if H is a hamiltonian operator defined
by the boundary condition (2.3) with b = 0, a 6= ±1, then the action of its extended resolvent is
represented by the integral kernel

R̃ω,a,c(z;x, y)f := R̃D(z;x, y)f +
1

(a2 + 1)
√
z + ac

[
a2θ+(x)θ+(y)e−

√
zxe−

√
zy

+ωaθ+(x)θ−(y)e−
√
zxe

√
zy + ωaθ−(x)θ+(y)e

√
zxe−

√
zy + θ−(x)θ−(y)e

√
zxe

√
zy

]

(6.7)

where the functions ϕz± were explicitly written.
Moreover,
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• for any f ∈ Q⋆, we find R̃ω,a,c(z)f ∈ Qωa. To prove it, we just notice that for any f ∈ Q⋆

R̃ω,a,c(z)f(0+) =
1

(a2 + 1)
√
z + ac

[
a2〈f, ϕz+〉Q⋆,Q + ωa〈f, ϕz−〉Q⋆,Q

]

R̃ω,a,c(z)f(0−) =
1

(a2 + 1)
√
z + ac

[
ωa〈f, ϕz+〉Q⋆,Q + 〈f, ϕz−〉Q⋆,Q

]
.

(6.8)

Then the correct boundary condition is fulfilled;

• R̃ω,a,c(z) is not invertible, since its kernel coincides with the subspace of Q⋆ generated by
δ(0+) − ωaδ(0−). However, its restriction to Q⋆ωa is invertible;

• R̃ω,a,c(z) is bounded as an operator from Q⋆ to Qωa.

6.2 Proof of the well-posedeness

Before proving the well-posedness for the problem (1.2) in the space Q⋆ωa, we notice that, by using
continuity of R̃(m) one immediately has the following lemma:

Lemma 6.8. Let f be a map in C0([0, T ), Qγ ) ∩ C1([0, T ), Q⋆ρ), with γ, ρ ∈ C. Then,

∂te
i(H+m)tR̃(m)f(t) = iei(H+m)tf(t) + ei(H+m)tR̃(m)∂tf(t), (6.9)

where H is any s.a.e. of Ĥ0 and the derivative of f is to be understood in Q⋆ρ.

Then formula (4.6) can be generalized to

∫ t

0
ds e−iH(t−s)|ψ(s)|2ψ(s)

= − iR̃(m)|ψ(t)|2ψ(t) + ie−iHtR̃(m)|ψ0|2ψ0 +mR̃(m)

∫ t

0
ds e−iH(t−s)|ψ(s)|2ψ(s)

+ 2iR̃(m)

∫ t

0
ds e−iH(t−s)|ψ(s)|2∂sψ(s) + iR̃(m)

∫ t

0
ds e−iH(t−s)ψ2(s)∂sψ̄(s).

(6.10)

We finally prove global well-posedness in Qωa.

Theorem 6.9 (Existence and uniqueness for global solutions in Qωa). Let H be any self-adjoint
extension of the operator Ĥ0 (see (2.1), (2.2)), defined by the boundary conditions (2.3) with b = 0,
a 6= ±1. Let its energy domain be denoted by Qωa.

Then, for any ψ0 ∈ Qωa the equation (1.2) has a unique solution ψ ∈ C([0,+∞), Qωa) ∩
C1([0,+∞), Q⋆ωa). Moreover, for the solution the conservation laws of L2-norm and of energy
Bωa(ψ(t)) + λ/2‖ψ(t)‖4

4 hold.

Proof. We define Z := C([0, T ), Qωa) ∩ C1([0, T ), Q⋆ωa) and show that the map

Θ : Zr → Zr

ψ 7→ e−iH·ψ0 − iλ

∫ ·

0
ds eiH(·−s)|ψ(s)|2ψ(s),

(6.11)

where Zr is a closed ball of radius r (to be chosen) in Z, is a contraction, at least for small values of
T .
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The proof of the first estimate of interest closely follows the line of the proof of the bound (4.8)
in theorem 4.1. Some more care is required in the estimate of the two last term of (6.10). We show
how to proceed considering the second-last term.

By continuity of R̃(m) : Q⋆ωa−1 → Qωa one gets

‖R̃(m)|ψ(t)|2∂tψ(t)‖Qωa
≤ C‖|ψ(t)|2∂tψ(t)‖Q⋆

ωa−1
. (6.12)

Furthermore, approximating ∂tψ(t) by a sequence in L2 and using continuity it is clear that the
multiplication by |ψ(t)|2 is to be understood by duality, therefore

〈|ψ(t)|2∂tψ(t), ξ〉Q⋆

ωa−1
,Q

ωa−1
= 〈∂tψ(t), |ψ(t)|2ξ〉Q⋆

ωa,Qωa
. (6.13)

where ξ is an element of Qωa−1 .
Hence,

‖|ψ(t)|2∂tψ(t)‖Q⋆

ωa−1
≤ ‖ψ(t)‖2

∞‖∂tψ(t)‖Q⋆
ωa

≤ C‖ψ(t)‖2
Qωa

‖∂tψ(t)‖Q⋆
ωa

(6.14)

Then,
‖R̃(m)|ψ(t)|2∂tψ(t)‖Qωa

≤ C‖ψ(t)‖2
Qωa

‖∂tψ(t)‖Q⋆
ωa

(6.15)

Now we estimate the time derivative of Θψ(t) as a functional on Q⋆ωa. First, we define it in the
usual way: given ζ ∈ Qωa

〈Θψ(t), ζ〉Q⋆
ωa,Qωa

:= (Θψ(t), ζ).

Then,

〈∂tΘψ(t), ζ〉Q⋆
ωa,Qωa

:= ∂t(Θψ(t), ζ) = iλ(|ψ(t)|2ψ(t), ζ) +Bωa(ψ(t), ζ)

≤ C‖ψ(t)‖3
Qωa

‖ζ‖Qωa

(6.16)

where we exploited formula (5.21), with eiHtΘψ(t) replacing eiHtψ(t) in the l.h.s.. The proof proceeds
as in theorem 4.1 so we omit repeating it.

We can conclude
‖Θψ‖Z ≤ C̃‖ψ0‖Qωa

+ CT‖ψ‖Z (6.17)

For the proof of the Lipschitz condition we first consider the C([0, T ), Qωa) norm. The situation
is analogous to the one discussed in the proof of the analogous point in theorem (4.1). More care
is needed to treat the analogues of terms (IX) and (X) in that proof. We show how to proceed for
term analogous to (IX), the other being very akin.

‖|ψ(t)|2∂tψ(t) − |ξ(t)|2∂tξ(t)‖Q⋆

ωa−1
≤ ‖|ψ(t)|2 − |ξ(t)|2‖Q‖∂tψ(t)‖Q⋆

ωa
+ ‖ξ(t)‖2

Qωα
‖∂tψ(t) − ∂ξ(t)‖Q⋆

ωa

and then

‖Θψ − Θξ‖C([0,T ),Qωa) = |λ|
∥∥∥∥R̃(m)

∫ ·

0
ds e−iH(·−s) (

|ψ(s)|2∂sψ(s) − |ξ(s)|2∂sξ(s)
)∥∥∥∥
C([0,T ),Qωa)

≤ CT (‖ψ‖2
Z + ‖ξ‖2

Z)‖ψ − ξ‖Z
(6.18)

The Lipschitz bound in the norm C1([0, T ),Z) is easily obtained applying formula (6.16). So we
have

‖Θψ − Θξ‖Z ≤ CT (‖ψ‖2
Z + ‖ξ‖2

Z)‖ψ − ξ‖Z (6.19)
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Mimicking the proof of theorem 4.1 from formula (4.17) to the end we prove that Θ is a contraction
when restricted to a suitable ball centered at the origin and a suitable time interval [0, T/2]. Since
both the size of the ball and T depend on ‖ψ0‖Qωa

only, we have the blow-up alternative.
Conservation of the L2-norm and of the energy, and therefore the global character of the solution,

can be proved following the line used for the analogous issues for solutions in Q. The only delicate
point arises when proving the conservation of the energy. Indeed, the persistence of a boundary
condition in the definition of the energy domain prevents one from directly generalizing (5.30) to
Qωa. We sketch the necessary modifications to the proof of proposition 5.9: first, as in the case of
Q, one approximates the initial data ψ0 by a sequence ψ0,n in D(H); second, denoted by ψn the
solution to (1.2) with initial data ψ0,n, and using that ψ(t) lies in Qωa, one proves, proceeding as in
proposition 5.9, that

‖ψ(t) − ψn(t)‖ ≤ C eCT T ‖ψ0 − ψ0,n‖, ∀ t ∈ [0, T ); (6.20)

for any T in the existence interval of ψ. Therefore ψn(t) converges to ψ(t) uniformly in L2(R); third,
integrating by parts in the Duhamel’s formula (see (6.10)) one gets

‖ψn(t)−ψ(t)‖Qωa
≤ C

(
‖ψ0,n − ψ0‖Qωa

+ max
t∈[0,T ]

‖ψn(t) − ψ0(t)‖
)

+C

∫ t

0
ds ‖∂sψn(s)−∂sψ(s)‖Q⋆

ωa
.

(6.21)
Finally, using (6.20) and Gronwall’s inequality again one has that ψn(t) converges to ψ(t) in Qωa.
Then, by continuity of energy in Qωa, the proof is complete.

Remark 6.10. The well-posedness result holds in the space C([0,+∞), Qωa) too. Indeed, from
(5.23), (5.24) we immediately obtain that any solution in such space has a time derivative in Q⋆ωa.
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[9] Brazhnyi V., Konotop V., Perez-Garćıa V.: Defect modes of a Bose Einstein condensate in an
optical lattice with a localized impurity, Phys. Rev.A, 74 023614 (2006).

[10] Cao Xiang D., Malomed A. B.: Soliton defect collisions in the nonlinear Schrödinger equation,
Phys. Lett. A 206 177-182 (1995)

[11] Cazenave, T.: Semilinear Schrödinger Equations, vol. 10 Courant Lecture Notes in Mathematics
AMS, Providence (2003).

[12] Coclite, G. M., Holden, H.: The Schrödinger-Maxwell system with Dirac mass, Ann.Inst. H.
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