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ATOMIC DECOMPOSITIONS

AND OPERATORS ON HARDY SPACES

STEFANO MEDA, PETER SJÖGREN AND MARIA VALLARINO

Abstract. This paper is essentially the second author’s lecture at the CIMPA–
UNESCO Argentina School 2008, Real Analysis and its Applications. It sum-
marises large parts of the three authors’ paper [MSV]. Only one proof is
given. In the setting of a Euclidean space, we consider operators defined and
uniformly bounded on atoms of a Hardy space H

p. The question discussed is
whether such an operator must be bounded on H

p. This leads to a study of
the difference between countable and finite atomic decompositions in Hardy
spaces.

1. Introduction and definitions

We start by introducing the Hardy spaces in R
n. In this paper, we shall have

0 < p ≤ 1, except when otherwise explicitly stated. We write as usual

‖f‖p =

(
∫

|f(x)|p dx

)1/p

for f ∈ Lp(Rn). Observe that for 0 < p < 1, this is only a quasinorm, in the sense
that there is a factor C = C(p) > 1 in the right-hand side of the triangle inequality.

The Hardy spaces Hp = Hp(Rn) have several equivalent definitions. The oldest
is for n = 1; the space Hp(R) can be defined as the boundary values on the real
axis of the real parts of those analytic functions F in the upper half-plane which
satisfy

sup
y>0

∫

|F (x+ iy)|p dx <∞.

The definition by means of maximal functions works in all dimensions, in the
following way. Let ϕ ∈ S be any Schwartz function with

∫

ϕ 6= 0 and write
ϕt(x) = t−nϕ(x/t) for t > 0. The associated maximal operator Mϕ is then defined
by

Mϕf(x) = sup
t>0

|ϕt ∗ f(x)|,

where f can be any distribution in S′. To define the so-called grand maximal
function, one takes the supremum of this expression when ϕ varies over a suitable
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subset of S. More precisely, for a fixed, large natural number N we set

BN = {ϕ ∈ S : sup
x

(1 + |x|)N |∂αϕ(x)| ≤ 1 for α ∈ N
n, |α| ≤ N}.

Then

Mf(x) = sup
ϕ∈BN

Mϕf(x).

Choose again a ϕ ∈ S such that
∫

ϕ 6= 0. Given f in S′, one can prove that
Mϕf is in Lp if and only if Mf is in Lp, and their Lp norms are equivalent. Here
N = N(n, p) must be taken large enough; actually N > 1+n/p always works. One
now defines Hp as the space of distributions f in S′ such that Mf is in Lp. For
further details, we refer to [St, Ch. III].

Example. The function f = 1B, where B is the unit ball, is not in Hp for any
0 < p ≤ 1. Indeed, Mϕf decays like |x|−n at infinity. But if one splits B into
halves, say B+ and B−, and considers instead g = 1B+

− 1B−
, the decay of Mϕg

will be better, and one verifies that g is in Hp for n/(n+1) < p ≤ 1. What matters
here is the vanishing of the integral, i.e., the moment of order 0, of g. This is
actually an example of (a multiple of) an atom.

Definition. Given q ∈ [1,∞] with p < q, a (p, q)-atom is a function a ∈ Lq

supported in a ball B, verifying ‖a‖q ≤ |B|1/q−1/p and having vanishing moments
up to order [n(1/p− 1)], i.e.,

∫

f(x)xα dx = 0 for α ∈ N
n, |α| ≤ [n(1/p− 1)].

Observe that each (p,∞)-atom is a (p, q)-atom, and also that for n/(n + 1) <
p ≤ 1 only the moment of order 0 is required to vanish.

It is easy to verify that any (p, q)-atom is in Hp. More remarkably, this has
a converse, if one passes to linear combinations of atoms. Indeed, let q be as
above. Then a distribution f ∈ S′ is in Hp if and only if it can be written as
f =

∑∞

j=1 λjaj , where the aj are (p, q)-atoms and
∑∞

j=1 |λj |
p < ∞. The sum

representing f here converges in S′, and for p = 1 also in L1.
To define the quasinorm ‖f‖Hp , one can use either of the three equivalent ex-

pressions

‖Mϕf‖p, ‖Mf‖p or inf
{(

∞
∑

j=1

|λj |
p
)1/p

: f =

∞
∑

j=1

λjaj , aj (p, q)−atoms
}

.

Different admissible choices of ϕ and q will lead to equivalent quasinorms. In
the sequel, we shall choose the third expression here. If p = 1, this quasinorm is a
norm, otherwise not.

In Section 2 we state the results. Section 3 contains a proof of one of the results
in the case 0 < p < 1.

In the sequel, C will denote several different positive constants. The open ball
of centre x and radius R is written B(x,R).
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2. Statement of results

Hardy spaces are often used to state so-called endpoint results for Lp bounded-
ness of operators. In particular, many linear and sublinear operators are bounded
on Lp for 1 < p <∞ but not on L1. However, they often turn out to be bounded
from H1 to L1, and this is useful, since one can in many cases start by proving this
last property and then obtain the Lp boundedness by interpolation.

To prove the boundedness from H1 to L1, or from Hp to Lp, of an operator,
a common method is to take one atom at a time. It is usually not hard to verify
that (p, q)-atoms are mapped into Lp, uniformly. From this one wants to conclude
the boundedness from Hp to Lp, by summing over the atomic decomposition. We
shall see that without extra assumptions this conclusion is correct in some cases,
but not always.

With p and q as above, we consider a linear operator T , defined on the space
Hp,q

fin of all finite linear combinations of (p, q)-atoms. This space is endowed with
the natural quasinorm

‖f‖Hp,q

fin
= inf

{(

N
∑

j=1

|λj |
p
)1/p

: f =

N
∑

j=1

λjaj . aj (p, q)−atoms. N ∈ N

}

.

Notice that Hp,q
fin coincides with the space of Lq functions with compact support

and vanishing moments up to order [n(1/p− 1)]. It is dense in Hp.
For linear operators and q < ∞, the above conclusion about the boundedness

of operators is always correct. More precisely, one has the following extension
theorem.

Theorem 1. Let q ∈ [1,∞) with p < q. Assume that T : Hp,q
fin → Lp is a linear

operator such that

sup{‖Ta‖p : a is a (p, q)−atom} <∞.

Then T has a (necessarily unique) extension to a bounded linear operator from Hp

to Lp.

The case q = 2 of this theorem was obtained independently by Yang and Zhou
[YZ1]. Theorem 1 is an immediate consequence of the following quasinorm equiv-
alence result and the density of Hp,q

fin in Hp.

Proposition 2. Let q be as in Theorem 1. The two quasinorms ‖·‖Hp,q

fin
and ‖·‖Hp

are equivalent on Hp,q
fin .

It is a remarkable fact that this proposition does not hold for q = ∞. An explicit
construction of a counterexample for q = ∞ and p = 1 can be found in Meyer,
Taibleson and Weiss [MTW, p. 513]. See also Garćıa-Cuerva and Rubio de Francia
[GR, III.8.3]. Bownik [B] used this contruction to show that Theorem 1 fails for
q = ∞, if p = 1. He also extended the counterexample to the case 0 < p < 1.

The construction in [MTW] is based on the discontinuities of the function con-
sidered. This is crucial; the two results above hold also in the “bad” case q = ∞,
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if only continuous atoms are considered. Indeed, let Hp,∞
fin,cont be the space of fi-

nite linear combinations of continuous (p,∞)-atoms, endowed with the quasinorm
‖f‖Hp,∞

fin,cont
defined as the infimum of the ℓp quasinorm of the coefficients, taken

over all such atomic decompositions. Then one has the following results.

Theorem 3. Assume that T : Hp,∞
fin,cont → Lp is a linear operator and

sup{‖Ta‖p : a is a continuous (p,∞)−atom} <∞.

Then T has a (necessarily unique) extension to a bounded linear operator from Hp

to Lp.

Proposition 4. The two quasinorms ‖ · ‖Hp,∞

fin,cont
and ‖ · ‖Hp are equivalent on

Hp,∞
fin,cont.

Observe that if T is a linear operator defined on Hp,∞
fin and uniformly bounded

on (p,∞)-atoms, then by Theorem 3 its restriction to Hp,∞
fin,cont has an extension T̃

to a bounded operator from Hp to Lp. But T̃ will in general not be an extension
of T , since these two operators may differ on discontinuous atoms.

In [MSV], Theorem 1 was proved for p = 1 also in the setting of a space of
homogeneous type with infinite measure. Grafakos, Liu and Yang [GLY] then dealt
with a space of homogeneous type which locally has a well-defined dimension, and
there proved Theorems 1 and 3 and the propositions, for p close to 1. See also
Yang and Zhou [YZ2].

These results were extended to the weighted case by Bownik, Li, Yang and Zhou
[BLYZ]. It should be pointed out that most of the papers mentioned consider op-
erators from Hp into general (quasi-)Banach spaces rather than into Lp. Recently,
Ricci and Verdera [RV] found a description of the completion of the space Hp,∞

fin

and of its dual space, for 0 < p ≤ 1.

3. A proof

In [MSV], the proofs of the results stated above were given for the case p =
1; in the case p < 1, the proof of Proposition 2 was only sketched and that of
Proposition 4 omitted. Therefore, we shall prove the case p < 1 of Proposition 4
here.

Assuming thus p < 1, we first observe that the estimate ‖f‖Hp ≤ ‖f‖Hp,∞

fin,cont
is

obvious. For the converse inequality, let f ∈ Hp,∞
fin,cont be given. This means that f

is a continuous function with compact support and vanishing moments up to order
[n(1/p − 1)]. We must find a finite atomic decomposition of f , using continuous
atoms and with control of the coefficients.

As in the first part of the proof of [MSV, Theorem 3.1], we assume that the
support of f is contained in a ball B = B(0, R), and introduce the dyadic level sets
of the grand maximal function Ωk = {x : Mf(x) > 2k}, k ∈ Z. Now f is bounded,
and so is Mf , since the operator M is bounded on L∞. Thus Ωk will be empty if
k > κ, for some κ ∈ Z. Following [MSV], we cover each Ωk, k ≤ κ, with Whitney
cubes Qk

i , i = 1, 2, . . .. We then invoke the proof of the atomic decomposition in
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Hp given in [St, Theorem III.2, p. 107] or [Sj, Thm 3.5, p. 12]. This produces a
countable decomposition

f =
∑

k≤κ

∞
∑

i=1

λk
i a

k
i ,

where the ak
i are (p,∞)-atoms and (

∑

k

∑

i |λ
k
i |

p)1/p ≤ C‖f‖Hp . The sum con-

verges in the distribution sense. Moreover, the ak
i are supported in balls Bk

i con-
centric with the Qk

i and contained in Ωk. As pointed out in [MSV, p. 2924], the
balls Bk

i , i = 1, 2, ..., will have bounded overlap, uniformly in k, if the Whitney
cubes are chosen in a suitable way. Further, one will have the bound

|λk
i a

k
i | ≤ C 2k (1)

in the support of ak
i . A few more properties can also be seen from the construction

in [St] or [Sj]. In particular, the continuity of f will imply that of each ak
i . Moreover,

each term λk
i a

k
i will depend only on the restriction of f to a ball B̃k

i = CBk
i , a

concentric enlargement of Bk
i . It will also depend continuously on this restriction,

in the sense that

sup |λk
i a

k
i | ≤ C sup

B̃k
i

|f |. (2)

In this estimate, one can replace f by f − c for any constant c; in particular ak
i will

vanish when f is constant in B̃k
i .

We next consider Mf in the set B(0, 2R)
c
, which is far from the support of f .

Lemma 5. Assume that |x|, |y| > 2R and 1/2 < |x|/|y| < 2. Then there exists a
positive constant C depending only on N such that

1

C
Mf(y) ≤ Mf(x) ≤ CMf(y).

Proof. We shall estimate

|ϕt ∗ f(x)| = t−n

∣

∣

∣

∣

〈

f, ϕ

(

x− ·

t

)〉∣

∣

∣

∣

, (3)

where ϕ ∈ BN and t > 0, with an analogous expression containing y instead of x.
Here the brackets 〈·, ·〉 denote the scalar product in L2.

Consider first the case t ≥ |x|. Defining ψ(z) = ϕ(z + (x− y)/t), we get

ϕ

(

x− ·

t

)

= ψ

(

y − ·

t

)

.

Since by our assumptions |x−y| ≤ C|x| and so |x−y|/t ≤ C, we see that ψ ∈ CBN ,
i.e., ψ/C ∈ BN . Thus the expression in (3) is no larger than CMf(y).

In the case t < |x|, we choose a function β ∈ C∞
0 supported in the ball B(0, 3/2)

and such that β = 1 inB(0, 1). Since supp f ⊂ B(0, R) and |x| > 2R, the expression
in (3) will not change if we replace the right-hand side of the scalar product by

ϕ

(

x− ·

t

)

β

(

.

|x|/2

)

.
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We therefore define

ϕ̃(z) = ϕ(z)β

(

x− tz

|x|/2

)

(4)

and conclude that ϕt ∗ f(x) = t−n〈f, ϕ̃((x − ·)/t)〉. Since t/|x| < 1, the last factor
in (4) and all its derivatives with respect to z are bounded, uniformly in t and
x. It follows that ϕ̃ is a Schwartz function and that ϕ̃ ∈ CBN . A point z in the
support of ϕ̃ must verify x − tz ∈ B(0, 3|x|/4), so that t|z| > |x|/4. Thus supp ϕ̃
is contained in the set {z : |z| ≥ |x|/(4t)}. Define now ψ(z) = ϕ̃(z + (x − y)/t).
We claim that ψ ∈ CBN ,which would make it possible to repeat the translation
argument above and again dominate the expression in (3) by CMf(y).

This would end the proof of the lemma, since in both the cases considered
we could conclude that Mf(x) ≤ CMf(y). Symmetry then gives the converse
inequality.

It thus only remains to verify the claim ψ ∈ CBN . This results from the next
lemma, with r = |x|/(4t) and x0 = (x− y)/t.

Lemma 6. If η ∈ BN is supported in B(0, r)c for some r > 0 and |x0| < Ar with
A > 0, then the translate η(· + x0) is in CBN , for some C = C(A,N).

Proof. We must verify that

(1 + |x|)N |∂αη(x + x0)| ≤ C (5)

for |α| ≤ N . When |x| > 2Ar, we have (1 + |x|)N ≤ C(1 + |x + x0|)
N , and

(5) follows from the fact that η ∈ BN . For |x| ≤ 2Ar, one can use the estimate
(1+ r)N |∂αη(x)| ≤ 1, which is for all x a consequence of the assumed properties of
η. This ends the proof of the two lemmata. 2

Lemma 5 implies that Mf(x) ≤ CR−n/p‖f‖Hp for |x| > 2R. Indeed, if
this were false for some x, the conclusion of the lemma would force Mf to be
large in the ring {y : |x| < |y| < 2|x|}, and this would contradict the fact that

‖Mf‖p ≤ C‖f‖Hp . It follows that Ωk ⊂ B(0, 2R) if k > k′, for some k′ satisfying

C−1R−n/p‖f‖Hp ≤ 2k′

≤ CR−n/p‖f‖Hp .
Now define

h =
∑

k≤k′

∑

i

λk
i a

k
i and ℓ =

∑

k′<k≤κ

∑

i

λk
i a

k
i , (6)

so that f = h+ ℓ. Since both f and ℓ are supported in B(0, 2R), so is h.
We first consider ℓ. Let ε > 0. The uniform continuity of f implies that there

exists a δ > 0 such that

|x− y| < δ =⇒ |f(x) − f(y)| < ε.

We split ℓ as ℓ = ℓε1 + ℓε2, where ℓε2 is that part of the sum defining ℓ involving only

those atoms ak
i for which diam B̃k

i < δ. Notice that the remaining part ℓε1 will then
be a finite sum. Since the atoms are continuous, ℓε1 will be a continuous function.

The estimate (2), with f replaced by f − f(y) for some point y ∈ B̃k
i , implies that

each term occurring in the sum defining ℓε2 satisfies |λk
i a

k
i | < Cε. As i varies, the

supports of the ak
i have bounded overlap, and the sum defining ℓε2 involves only
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κ− k′ values of k. It follows that |ℓε2| ≤ C(κ− k′)ε. This means that one can write
ℓ as the sum of one continuous term and one which is uniformly arbitrarily small.
Hence, ℓ is continuous, and so is h = f − ℓ.

To find the required finite atomic decomposition of f , we use again the splitting
ℓ = ℓε1 + ℓε2. The part ℓε1 is a finite sum of multiples of (p,∞)-atoms, and the
ℓp quasinorm of the corresponding coefficients is no larger than that of all the
coefficients λk

i , which is controlled by ‖f‖Hp . The part ℓε2 is supported in B(0, 2R).
It satisfies the moment conditions, since it is given by a sum which converges in S′

and whose terms are supported in a fixed ball and verify the moment conditions.
By choosing ε small, we can make its L∞ norm small and thus make ℓε2/‖f‖Hp into
a (p,∞)-atom.

As for h, we know that it is a continuous function supported in B(0, 2R). Since
h = f − ℓε1 − ℓε2, we see that it also satisfies the moment conditions. The bound (1)
and the bounded overlap for varying i imply that

|h| ≤ C
∑

k≤k′

2k ≤ C2k′

≤ CR−n/p‖f‖Hp

at all points. This means that h is a multiple of a (p,∞)-atom, with a coefficient no
larger than C‖f‖Hp . Together with the splitting of ℓ just discussed, this gives the
desired finite atomic decomposition of f , and the norm of f in Hp,∞

fin,cont is controlled

by C‖f‖Hp . The proof is complete.
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