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Introduction

Modern portfolio theory has been proposed in early 1950’s with seminal

studies of Markowitz, see Markowitz (1952). In this framework the determin-

istic calculus of maximization of the agent’s utility under budget constraints

is not adequate. The attention is focused on choices made under uncertainty.

The probabilistic notion of expected return and risk become central. The fun-

damental instrument for the development of such a theory of choices made

under uncertainty is given by the definition of expected utility functions, see

Von-Neumann Morgenstern (1947). The second fundamental contribution of

Markowitz in portfolio selection analysis is to point out the role of diversi-

fication. In other words, the optimal portfolio is the one that minimize the

portfolio variance under a certain level of portfolio expected return, where

the diversification helps to reduce portfolio variance by investing in securities

with low return covariances.

Markowitz portfolio selection model fundamentally relies on the assump-

tion that asset returns distributions are Gaussian or, equivalently, that the

investors preferences are described by a quadratic utility function. However,

it has long been recognized that financial assets returns are non-normal.

While normal distributions are entirely described by the first two moments

(mean and variance), asymmetric and fat-tailed distributions are not. Despite

this, Markowitz approach has lead to very good results for a wide range of

vii



viii Introduction

situations. Empirical evidence has shown that the asset allocation obtained

with the mean-variance model is very similar to the one obtained by directly

maximizing the expected utility, see Levy and Markowitz (1979). An expla-

nation of the good results of the mean-variance criterion could be that the

asset returns show elliptical distributions. As a consequence, the expected

utility function can be approximated just by taking into account the first

two moments of returns distribution.

However, when assets returns distribution strongly depart from the Nor-

mal distribution, also elliptical distributions seem to be inadequate in order to

model assets returns. Recent research highlights the importance to consider

higher moments in asset allocation models. Hwang and Satchell (1999) show

that economical agents have preferences for positive skewness and avoid high

level of kurtosis. Moreover, empirical studies on assets returns point out that

skewness and kurtosis significantly differ from the one of the Normal distri-

bution, see for example Campbell and Siddique (1999), Hwang and Satchell

(1999), Fang and Lai (1997).

For asset allocation models, Kraus and Litzemberger (1976), Simaan

(1993) and Gamba and Rossi (1998) showed how to consider mean, vari-

ance and skewness in the asset allocation scheme. Simaan and Gamba and

Rossi approaches differ because of the choice of the objective function to op-

timize: Simaan minimizes portfolio variance under skewness constraint while

Gamba and Rossi directly maximize portfolio skewness. As a consequence, in

Simaan approach the sign of the term that describe systematic skewness is

not given. Gamba and Rossi approach simply resembles Kraus and Litzem-

berger model without making assumptions on the agent utility function. In

addition, Gamba and Rossi provide a closed form solution for the optimiza-

tion problem.
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In recent years Jondeau and Rockinger (2003), Jondeau and Rockinger

(2006), Jondeau and Rockinger (2009) proposed a four moment allocation

model. They underline the importance of considering moments in asset al-

location problems up to the fourth order. This approach is different from

the previous ones because the attention is focused on modelling conditional

moments while a closed form solution for the optimization problem is not

provided. A individual utility function is defined and the optimal portfolio is

derived through a numerical solution procedure.

The aim of the dissertation is to generalize Gamba and Rossi model in

order to take into account the third and the fourth moment of returns distrib-

ution. The general idea behind the model is to require a structure of financial

returns that permits to solve analytically the optimization problem. To do

this, it is assumed that asset returns can be separated into the spherical and

the non-spherical components. The problem to solve is a non-linear optimiza-

tion problem where the portfolio kurtosis is minimized under constraints on

expected return, variance, skewness (and the usual budget constraint). A

structure of preferences for higher moments is proposed such that investors

have preferences for odd order moments and dislike even order moments.

Due to the assumptions on the preferences structure, the economical agent

can choose portfolios with a higher variance compared to mean-variance ef-

ficient ones. Moreover, the extra variance of the portfolio is counterbalanced

by higher levels of skewness and lower levels of kurtosis. The proposed model

is a generalization of Markowitz mean-variance model and of Gamba and

Rossi mean-variance-skewness model. Let underline that a closed form so-

lution of the optimization problem is obtained together with a four funds

separation property. The optimal portfolio results as the sum of three port-

folios: the mean-variance optimal portfolio plus two arbitrage portfolios that
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reflect skewness and kurtosis preferences.

The dissertation is organized as follows. In chapter 1 the classical mean-

variance model is derived after a briefly introduction on expected utility

theory. A derivation of the CAPM model is also provided. In chapter 2 some

extensions of the mean-variance asset allocation model and of the CAPM

model are described. In particular, a three moment portfolio selection model

(Gamba and Rossi (1998)), a four moment portfolio selection model (Jondeau

and Rockinger (2003)) and the four moment CAPM are described. Chapter 3

represents the core of the dissertation. In chapter 3 a four moment portfolio

selection model is proposed. The proposed model results to be a general-

ization of the classical mean-variance model (Markowitz (1952)) and of the

three moment model (Gamba and Rossi (1998)). In chapter 4 an empirical

application on real financial data is performed.



Chapter 1

Mean-Variance Asset Allocation

1.1 Utility Function

In the economic theory it is assumed that each economical agent can

"value" various possible goods in terms of her own subjective preferences,

without assuming the existence of utility functions. In other words, the utility

function is just the instrument used in order to translate on a mathematical

level the consumption preferences of an individual. Let assume that n goods

are available. The nature of "goods" is irrelevant for the development of

the utility theory. For example, in the following chapters the attention will

be focused on financial assets: stocks, bonds, commodities. Note that, the

consumption of the same physical good at different times or in different

states of nature can be label to a different level of utility.

Let define the n vector x as the vector of consumption, where xi represents

selected quantity units of good i. Each consumer selects his consumption x

from a particular set Ξ. Let also assume the set Ξ to be convex and closed.

Preferences are described by the pre-ordering relation &. The statement

x & z (1.1.1)

1



2 1. Mean-Variance Asset Allocation

is read "x is weakly preferred to z". The pre-ordering relation also induces

the related concepts of strict preference > and indifference ∼. Let define the

strict preference as

x & z but not z & x (1.1.2)

and the indifference relation as

x & z and z & x (1.1.3)

In the case of the indifference relation it is also possible to say that x and z are

equivalent. For a pre-ordering relation the following properties are assumed.

Axiom 1.1.1. (COMPLETENESS) For every couple of vectors x, z ∈ Ξ

neither x & z or z & x.

Axiom 1.1.2. (TRANSITIVITY) If x & z and z & y, then x & y, for

x, z, y ∈ Ξ.

Axiom 1.1.3. (REFLEXIVITY) For every x ∈ Ξ, then x & x.

The meaning of the reflexivity axiom is evident and it is deeply linked

to the weak preference and the pre-ordering relation. The completeness ax-

iom appears evident too; however, when choices are made under uncertainty,

many commonly used preference functions do not provide complete order-

ings over all possible choices. The transitivity axiom also seems intuitive,

although among certain choices, it’s possible to imagine comparisons that

are not transitive. The three axioms are insufficient to guarantee the exis-

tence of an ordinal utility function, which describes the preferences in the

pre-ordering relation. Let define an ordinal utility function as a function U

from Ξ into the real numbers R, U : Ξ → R. An ordinal utility function

satisfies the following properties

U(x) > U(z) ⇔ x > z (1.1.4)
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U(x) = U(z) ⇔ x ∼ z (1.1.5)

In order to guarantee the existence of a utility function a fourth axiom is

needed. For this purpose let introduce the continuity axiom. The advantage

of introducing the continuity axiom is that it also ensures the utility function

to be continuous.

Axiom 1.1.4. (CONTINUITY) For every x ∈ Ξ, the two subset of all

strictly preferred and all strictly worse complexes are both open.

The openness of the two subsets of Ξ guaranties continuity of the utility

function U because it requires that the utility function takes all values close

to U(x∗) in a neighborhood of x∗.

The four axioms are sufficient to guarantee the existence of an ordinal

utility function on Ξ consistent with the preferences relation defined on the

elements of Ξ. Note that once a utility function exists, it is not necessary

unique. Furthermore, the derived utility function is an ordinal one and, apart

from continuity guaranteed by the closure axiom, contains no more informa-

tion than the pre-ordering relation defined on Ξ. No meaning can be attached

to the utility level other than that inherent in the "‘greater than"’ relation

in arithmetic.

In this respect, if a particular utility function U(x) is a valid representa-

tion of some pre-ordering, then Φ(x) = Φ[U(x)], where Φ(.) is any strictly

increasing function. This property permits to distinguish from ordinal and

cardinal utility functions. In fact, this last property is not true for cardinal

utility functions. To proceed further to the development of consumer demand

theory, let assume the utility function U to be twice differentiable, increasing,

and strictly concave.

These assumptions guarantee that all of the first partial derivatives of

U are positive everywhere, except possibly at the upper boundaries of the
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feasible set. Therefore, a marginal increase in income can always be profitably

spent on any good to increase utility. The assumption of strict concavity

guarantees that the indifference surfaces, i.e. the sets of points that have the

same utility, are strictly concave upwards. That is, the set of all complexes

preferred to a given complex must be strictly convex. This property can be

used in order to show that a consumer’s optimal choice is unique.

1.2 Expected Utility Function

Let now extend the concept of utility function to cover situations involving

risk. Let assume that the agent knows the true probabilities of the events. In

such a context the economical agent chooses among "lotteries" Li described

by the vector x = (x1, . . . , n) of payoffs and the corresponding vector p =

(p1, . . . , pn) of the probabilities of every single payoff.

Axioms 1.1.1, 1.1.2, 1.1.3 and 1.1.4 are still to be considered as governing

choices among the various payoffs. Let assume that there is a pre-ordering

relation on the set of lotteries that satisfies the following axioms:

Axiom 1.2.1. (COMPLETENESS) For every couple of lotteries L1 and

L2, neither L1 & L2 or L2 & L1.

Axiom 1.2.2. (TRANSITIVITY) If L1 & L2 and L2 & L3, then L1 & L3,

for every lottery L1, L2, L3.

Axiom 1.2.3. (REFLEXIVITY) For every lottery Li, then Li & Li, i =

1, . . . , n.

These axioms are equivalent to those used before and have the same intu-

ition. With them it can be proved that each agent’s choice is consistent with
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an ordinal utility function defined over lotteries or an ordinal utility func-

tional defined over probability distributions of payoffs. The next three axioms

are used in order to develop the concept of choice through the maximization

of the expectation of a cardinal utility function over payoff complexes.

Axiom 1.2.4. (INDEPENDENCE) Let L1 = {(x1, . . . , xv, . . . , xn), p}
and L2 = {(x1, . . . , z, . . . , xn), p}. If xv ∼ z, then L1 ∼ L2z is either a

complex or another lottery. If z is a lottery z = {(xv
1, . . . , x

v
n), pv} then

L1 ∼ L2 ∼ {(x1, . . . , xv−1, x
v
1, . . . , x

v
n, xv+1, . . . , xn),

(p1, . . . , pv−1, pvp
v
1, . . . , pvp

v
n, pv+1, . . . , pn)′}

In the last axiom the interpretation of the probabilities plays a central

role: pv
i is the probability of getting xv

i conditional on outcome v after the

choice of lottery L1. pvp
v
i is the unconditional probability of getting xv

i . This

axiom is equivalent to say that only the utility of the final payoff is considered.

Axiom 1.2.5. (CONTINUITY) If x1 & x2 & x3, then there exists a

probability p such that x2 ∼ {(x1, x3), (p, 1 − p)′}. the probability is unique

unless x1 ∼ x3.

Axiom 1.2.6. (DOMINANCE) Let L1 = {(x1, x2), (p1, 1−p1)
′} and L2 =

{(x1, x2), (p2, 1− p2)
′}. If x1 > x2, then L1 > L2 if and only if p1 > p2.

The last two axioms permit to define the problem of choice of the eco-

nomical agent as an optimization problem with the expected utility function

as objective function.

This utility function is usually called a Von Neumann- Morgenstern util-

ity function, see Von Neumann and Morgenstern (1947). It has the properties

of any ordinal utility function, but, in addition, it is a "cardinal" measure.

The cardinal utility function is different from the ordinal one because the
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values of the function for every consumption choice have a specifical econom-

ical meaning beyond the simple ranking of lotteries. Note that in the next

chapters the generic lottery will be substitute with financial activities.

Von Neumann-Morgenstern utility functions are often called measurable

rather than cardinal. Each cardinal utility function corresponds to a specific

ordinal utility function. Since the latter are distinct only up to a monotone

transformation, two very different cardinal utility functions may have the

same ordinal properties. Thus, two consumers who always make the same

choice under certainty may choose among lotteries differently.

Let px denote the probability density for a particular lottery, and let

φ(x) be the cardinal utility function of a consumer. Then the ordinal utility

functional over all the possible lotteries is

U [p(x)] = E[Φ(x)] =

∫
Φ(x)p(x)dx

If lottery payoffs are drawn from a common family of probability distrib-

utions, it is possible to write the ordinal functional for lotteries as an ordinal

utility function defined over parameters of the distributions of the lotteries.

For example, if there is a single good, the consumer’s cardinal utility

function is Φ(x) = xγ/γ, and the payoff from each lottery is log-normally

distributed [i.e., ln(x) = N(µ, σ2)], then

U [pi(x)] =
1

γ
exp

[
γµi +

γ2σ2
i

2

]
= U(µi, σi)

where µi and σ2
i can be interpreted as "‘goods"’. Since this is an ordinal

utility function, choices can be expressed equivalently by

Φ(µ, σ) =
ln[γU(µ, σ)]

γ
= µ +

γσ2

2
(1.2.1)

Utility function like the one in equation 1.2.1 can be called derived utility

function and it depends only on mean and variance of the probability distri-

bution. This family of utility functions has a very important role in finance.
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1.3 Independence

In the previous section an axiom about independence has been intro-

duced. Let underline that this kind of independence is strictly related with

the structure of preferences defined on the set of available goods. In other

words, the independence axiom states that the utility of a lottery doesn’t

depend on the mechanism that determines the awards of the lottery itself.

In order to describe the preferential independence let consider a simply

lottery with two outcomes x1 and x2 respectively with probability p1 and p2.

Let now consider a set of 2n goods. Goods y, through yn, denote quantities of

goods x1 through xn under outcome 1, and goods yn+1, through y2n denote

quantities of goods x, through x2 under outcome 2. The lottery payoffs are

y′1 = (x′1,0
′) and y′2 = (0′,x′2). The expected utility of this lottery is

E[U(x̃)] = p1U(x1) + p2U(x2) = v1y1 + v2y2 = U(y)

It is clear in the latter form that the ordinal representation displays addi-

tivity, which guarantees preferential independence. In the formulation just

described, the ordinal utility functions v, depend on the lottery through its

probabilities. It is possible to express choices in a general way with the use

of a utility functional as outlined in the previous section. Only the additive

(integral) representation (or monotone transformations) displays preferential

independence. Moreover, it’s possible to construct other functionals in order

to satisfy the other axioms. Note that the other functionals that satisfy the

axioms can’t be written as expectation of the cardinal utility function.

Another kind of independence is the so called utility independence. This

independence can be used in order to simplify the maximization of the ex-

pected utility function. By definition, a subset of goods is utility independent

of its complement subset when the conditional preference ordering over all
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lotteries with fixed payoffs of the complement goods does not depend on this

fixed payoff. If the subset of goods y is utility independent of its complement

z, it’s equivalent to write the following equation

U(y, z) = a(z) + b(z)c(y). (1.3.1)

The utility function in the equation 1.3.1, U(y, z) = Θ[a(z) + b(z)c(y)], dis-

plays preferential independence but not utility independence for any nonlin-

ear function Θ. Note that ordinal utility independence can be described so

any monotone transformation would be permitted while it’s not the same in

this case. Utility independence is not symmetric. By assuming symmetry, i.e.

the goods are mutually utility independent, then it can be shown that the

utility function can be represented as

U(x) = k−1(exp[k
∑

kiUi(xi)]− 1)

with ki > 0 and Ui a cardinal utility function for marginal decision involving

i-th good. If the utility function has the additive form, then the preference

ordering among lotteries depends only on the marginal probability distribu-

tions of the goods. The converse is also true. For multiplicative utility this

simple result does not hold. This can simple be shown with a simple example,

see Ingersoll (1987).

1.3.1 Expected Wealth and Risk Aversion

In finance it is more common to express outcomes in terms of wealth. For

this reason the problem of the optimal choice for an economical agent can be

described trough a maximization problem, where the objective function is the

expected wealth. In this case, utility measures the the satisfaction associated

with a particular level of wealth expressed in monetary values. With a single
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consumption good, this can be the numeraire for wealth, while if there are

n consumption goods, then utility can be expressed as a function of wealth

and the vector of consumption good prices.

When talking about economical choices the assumption of risk averse

agents is common. Risk aversion is a technical definition used to describe the

way the economical agent faces the risk. In other words, risk aversion can

be defined analyzing the expected payoff of a lottery. A decision maker with

a Von Neumann-Morgenstern utility function is said to be risk averse (at a

particular wealth level) if he is unwilling to accept every actuarially fair and

immediately resolved gamble with only wealth consequences, that is, those

that leave consumption good prices unchanged. If the decision maker is risk

averse at all wealth levels, he is said to be globally risk averse.

For state-independent utility of wealth, the utility function is risk averse

at W if U(W ) > EU(W + ε) for all gambles with E(ε) = 0 and positive

dispersion. If this relation holds at all levels of wealth, the utility function is

globally risk averse. In this way it’s possible to describe risk aversion using

the properties of the agent’s utility function.

Theorem 1.3.1. A decision maker is (globally) risk averse if and only if his

Von Neumann-Morgenstern utility function of wealth is strictly concave.

If a utility function is twice differentiable, then it is concave, representing

risk-averse choices, if and only if U”(W ) < 0. To induce a risk-averse indi-

vidual to undertake a fair gamble, a compensatory risk premium would have

to be offered, making the package actuarially favorable. Similarly, to avoid a

present gamble a risk-averse individual would be willing to pay an insurance

risk premium. These two premia are closely related but not identical.

E[U(W + pi + ε)] = U(W ) (1.3.2)
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E[U(W + ε)] = U(W − pi) (1.3.3)

Equation 1.3.2 describes one of the more commonly risk used in economic

analysis. It corresponds in an obvious way to a casualty or liability insurance

premium. Equation 1.3.3 describes the compensatory risk. This risk is the

extra return expected on risky activities. This second kind of risk is the

most common in financial problems. In general, economical agents requires

risk premia in order to play in a certain lottery. The quantity U(W − pi)

is usually called certainty equivalent, i.e. the certain amount which provides

the same expected utility while gambling at the lottery W + ε.

1.3.2 Useful Utility Functions

This section provides a list of utility functions. For every utility function

risk-tolerance and risk aversion properties are described.

HARA Utility Function. This utility functions class is said Hyperbolic

Absolute Risk Aversion, or, equivalently, Linear Risk Tolerance (LRT). Those

utility functions are commonly used and can be defined as

U(W ) =
1− γ

γ

[
aW

1− γ
b

]γ

b > 0 (1.3.4)

The domain of this utility function is b + a W
1−γ

> 0. Note that the parameter

γ is bounded: γ < 1 and γ > 1. For γ > 1 is defined for levels of W above the

upper bound, but the marginal utility is negative. The absolute risk-tolerance

is

R(W ) =
1

A(W )
=

W

1− γ
+

a

b
.

The absolute risk-tolerance in this case is linear in W . If γ < 1 the absolute

risk-tolerance is a increasing function of W while for γ > 1 is decreasing.

Therefore risk aversion is decreasing for γ < 1 and increasing for γ > 1. As

special cases let underline the following: linear risk neutrality corresponds to
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γ = 1, quadratic for γ = 2, negative exponential utility for γ → −∞ and

b = 1, iso-elastic or power utility for b = 0 and γ < 1, and logarithmic for

b = γ = 0.

Negative Exponential Utility functions. This class of utility func-

tions is useful due to the risk aversion properties. Let define the negative

exponential utility functions as

U(W ) = − expaW .

The absolute risk aversion in this case:

A(W ) = a. (1.3.5)

Note that the absolute risk aversion is constant among all the values of W .

Power Utility Functions. Power utility functions are defined as:

U(W ) =
W γ

γ
.

This class of utility functions displays constant relative risk aversion

R(W ) = 1− γ

and, therefore, decreasing absolute risk aversion.

Logarithmic Utility Functions. The logarithmic utility function can

be defined as

U(W ) = log(W ).

This utility function shows constant relative risk aversion R(W ) = 1. The

logarithmic utility function can be obtained as a special case of HARA utility

functions, see equation 1.3.4, for γ = 0. Note that for γ = 0 equation 1.3.4 is

not defined. Let solve the limit for γ → 0 with the use of L’Hospital’s rule:

lim
γ→0

W γ − 1

γ
= lim

γ→0

W γ log(W )

1
= log(W )
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Let underline that the negative utility function, the power utility function

and the logarithmic utility function can be seen as special cases of the HARA

family with particular values of the parameters.

1.4 Stochastic Dominance

Stochastic dominance is a pre-ordering relation on a defined set of stochas-

tic variables. In asset allocation problems, this concept is particularly useful

because it permits to rank risky activities. In finance stochastic dominance

is used to order financial activities on the base of the returns distribution.

From the previous sections is evident the important role of ordering a set

of possible choices before defining a individual utility function coherent with

the order relation. Let underline that it is always possible to define a utility

function coherent with the order relation between the possible choices. De-

spite of this, such a utility function is not unique, i.e. two different agents

with different individual utility functions can have the same preferences on

the set of available choices.

Let define stochastic dominance in a rigorous way following Fishburn

(1980). For any right-continuous distribution function F , with F (x) = 0 for

all x < 0, let define the function F n recursively as

F 1 = F and F n+1(x) =

∫ x

0

F n(y)dy ∀x ≥ 0 and n = 1, 2, . . .

Definition 1.4.1. First Order Stochastic Dominance. For any given

couple of distribution functions F and G, with F 1 and G1 both finite, F

dominates G in the sense of stochastic dominance of first order (F ≥1 G) if

and only if

F 1(x) ≤ G1(x), ∀x ∈ [0, +∞)
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First order stochastic dominance only takes into account the first moment

of the stochastic variable distribution. Translating this concept in a financial

choice framework it is equivalent to say that investors prefer higher returns

to lower returns. In terms of agent’s utility function first order stochastic

dominance is equivalent to a monotonically increasing utility function (i.e.

non-negative first derivative of the utility function). This partial ordering is

not really useful in the portfolio selection framework because it doesn’t take

into account the risk of a certain choice.

Definition 1.4.2. Second Order Stochastic Dominance. For any given

couple of distribution functions F and G, with F i and Gi finite for i = 1, 2, F

dominates G in the sense of stochastic dominance of second order (F ≥2 G)

if and only if

F 2(x) ≤ G2(x), ∀x ∈ [0, +∞)

When risk aversion is taken into account, an additional selection rule can

be maintained, namely second-order stochastic dominance. This risk aversion

(i.e. decreasing marginal utility) assumption is equivalent to a negative sec-

ond derivative of the investors utility function, which implies concavity. In

other words, investors prefer higher returns and lower variances. In a mean-

variance framework, the solution of the standard Markowitz’s optimization

problem leads to the identification of a set of portfolios that are efficient

compared to other portfolios in terms of second-order stochastic dominance.

In classical portfolio theory second order stochastic dominance plays a

central role and it’s linked to the assumption of normality distribution for

financial returns. In fact, in this case the moments of the returns distribution

are function only of the first two moments of the distribution itself. In classical

mean-variance framework second order stochastic dominance is equivalent to

assume the quadratic utility function for the economical agent.
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Definition 1.4.3. Stochastic Dominance of Order n. For any given

couple of distribution functions F and G, with F i and Gi finite for i =

1, . . . , n, F dominates G in the sense of stochastic dominance of order n

(F ≥n G) if and only if

F n(x) ≤ Gn(x), ∀x ∈ [0, +∞)

As shown from the previous definition the concept of stochastic domi-

nance can be easily generalized to order n. This definition will be useful in

the next chapters when the portfolio selection problem will be generalized

taking into account also higher moments of returns distribution. In particular

in chapter 4 a solution for asset allocation problem considering skewness and

kurtosis will be proposed. In this case two assumptions play a central role.

First, the return distributions are considered not to be normal, i.e. skewness

and kurtosis takes values respectively significantly different from 0 and 3.

Second, on the other hand, investors show preferences for third and fourth

moments of the returns distribution.

1.5 Introduction to Mean-Variance Analysis

Modern portfolio selection theory was born in early 1950’s with seminal

studies of Markowitz, see Markowitz (1952). In this framework the determin-

istic calculus of maximization of the agent’s utility under budget constraints

is not adequate. The attention is focused on choices made under uncertainty.

The probabilistic notion of expected return and risk become central. The fun-

damental instrument for the development of such a theory of choices made

under uncertainty is given by the definition of expected utility functions, see

Von-Neumann Morgenstern (1947).
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Before Markowitz, the widely accepted principle for portfolio selection

was to select securities that maximize discounted expected return. Markowitz

showed that, following this rule, the optimal portfolio is composed only by

the security with the highest discounted expected return. The second funda-

mental contribution of Markowitz in portfolio selection analysis is to point

out the role of diversification. In other words, the optimal portfolio is the

one that minimize the portfolio variance under a certain level of portfolio

expected return, where the diversification helps to reduce portfolio variance

by investing in securities with low return covariances.

In the following sections the classical mean-variance approach is described.

It will be assumed that investor’s preferences are represented by an utility

function that doesn’t enter explicitly in the optimization problem. It is as-

sumed that an utility function exists and that is defined over the mean and

variance of the portfolio returns. A convenient approach consists in approxi-

mating the utility function using a Taylor series expansion around the current

value of the portfolio return. In this context, the expected utility function is

re-written as

Et[U(Wt+1)] ≈ U(Wt) + U (1)(Wt)Et[Wt+1 −Wt] +
1

2
U (2)(Wt)Et[Wt+1 −Wt]

2

(1.5.1)

up to some remainder in the Taylor expansion of U , where U is the utility

of the investor and W represents the invested amount of wealth. The util-

ity function has the further property of favoring higher mean and smaller

variance.
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1.6 Mean-Variance Portfolio Selection

In this section the following notation is used. Let

• x = (x1, ..., xn)′ be the vector of fractions of wealth allocated to the

various assets

• r = (r1, ..., rn)′ be the vector of returns of n risky assets. Let also assume

that not all the elements of vector r are equal.

• V be the (n, n) covariance matrix with entries σi,j, i, j = 1, ..., n. The

covariance matrix V is symmetric and positive definite.

• x′V x and x′r be respectively the variance, denoted by σ2
P , and the

expected return, rP , of portfolio P .

The formulation of portfolio selection problem can be stated as

min
x

σ2
P = x′V x (1.6.1)

s.t. x′1 = 1

x′r = rP

where 1 is an n-row vector of ones. In problem 1.6.1 the variance σ2
P of the

portfolio is minimized subject to two constraints; the first constraint is also

called budget constraint and it means that all wealth is invested, while the

second constraint set the portfolio expected return equal to rP . Technically,

problem 1.6.1 requires the minimization of a convex function under linear

constraints. The variance of the portfolio σ2
P is a convex function because of

the positive definiteness of matrix V . Therefore, the problem has a unique

solution and only first order conditions are needed. The solution for the

optimization problem in 1.6.1 is

x∗ = V −1[r 1]A−1[rP 1]′.
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Let now derive the optimal portfolio in a analytical way. From the Lagrangian

function

L = x′V x− λ1(x
′r− rP )− λ2(x

′1− 1). (1.6.2)

The first order conditions are

∂L

∂x
= 2V x− λ1r− λ21 = 0, (1.6.3)

where 0 is an n-vector of 0 and

∂L

∂λ1

= rP − x′r = 0, (1.6.4)

∂L

∂λ2

= 1− x′1 = 0. (1.6.5)

From equation 1.6.3

x =
1

2
V −1(λ1r + λ21) =

1

2
V −1[r 1][λ1 λ2]

′. (1.6.6)

In the last equation the term λ1r+ λ21 is written in matrix form because it

will be used 1.6.4 and 1.6.5 in order to solve for [λ1 λ2]
′. Then, it is possible

to rewrite 1.6.4 and 1.6.5 as

[r 1]′x = [rP 1]′. (1.6.7)

Pre-multiply both sides of 1.6.6 by [r 1]′ and use 1.6.7 in order to obtain

[r 1]′x =
1

2
[r 1]′V −1[r 1][λ1 λ2]

′ = [rP 1]′. (1.6.8)

For notational convenience let denote by

A = [r 1]′V −1[r 1] =


 a c

c d


 (1.6.9)

the above 2× 2 symmetric matrix. The entries of the matrix A are equal to:

a = r′V −1r, c = r′V −11 and d = 1′V −11. The matrix A is a definite positive
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matrix by the properties of the matrix V −1. In fact, for any y1, y2 such that

at least one of the elements y1, y2 is non-zero,

[y1 y2]A[y1 y2]
′ = [y1 y2][r 1]′V −1[r 1][y1 y2]

′ > 0. (1.6.10)

By substituting A in equation 1.6.8 the following equation is obtained

1

2
A[λ1 λ2]

′ = [rP 1]′ (1.6.11)

from which it’s possible to solve for the multipliers since A is non-singular.

Thus
1

2
[λ1 λ2]

′ = A−1[rP 1]′. (1.6.12)

From these manipulations, the n-vector of portfolio weights x∗ that minimize

portfolio variance for a given mean return is

x∗ =
1

2
V −1[r 1][λ1 λ2]

′ = V −1[r 1]A−1[rP 1]′. (1.6.13)

Let compute the variance of any minimum variance portfolio with a given

expected return equal to rP . Using the definitions of the variance of the

portfolio σ2
P , the matrix A and the optimal weights x∗, the set of optimal

portfolios can be written as

σ2
p = x∗

′
V x∗ = [rP 1]A−1[r 1]′V −1V V −1[r 1]A−1[rP 1]′ (1.6.14)

= [rP 1]A−1[rP 1]′ = [rP 1]
1

ad− c2


 d −c

−c a


 [rP 1]′

=
a− 2crP + dr2

P

ad− c2

In equation 1.6.14 the relation between the variance of the minimum variance

portfolio σ2
P for any given mean rP is expressed as a parabola.

Figure 1.1 graphs equation 1.6.14 and distinguishes between the upper half

(solid curve) and the bottom half (dashed curve). The upper half of the
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Figure 1.1: Efficient Frontier

minimum variance portfolio frontier identifies the set of portfolios having the

highest return for a given variance; these are called mean-variance efficient

portfolios. The portfolios on the bottom half are inefficient. Portfolios to

the right of the parabola are called feasible and they are still inefficient in

the sense of second order stochastic dominance. For a given variance, the

mean return of a feasible portfolio is less than the mean return of an efficient

portfolio and higher than the mean return of an inefficient one.

Figure 1.1 also identifies the global minimum variance portfolio. This is the

portfolio with the smallest variance for any expected return. Its mean rG and

variance σ2
G are respectively given by

rG =
c

d
,

σ2
G =

a− 2crG + dr2
G

ad− c2
=

a− 2c( c
d
) + d( c

d
)2

ad− c2
=

1

d
.
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The global minimum variance portfolio is on the efficient frontier and the

correspondent vector of weights xG can be evaluated as follows

xG = V −1[r 1]A−1


 rG

1


 =

V −1[r 1]


 d −c

−c a







c
d

1




ad− c2
=

V −11
d

.

An additional notion also illustrated in Figure 1.1 is that of orthogonal port-

folio. Two minimum variance portfolios xP and xZ are said to be orthogonal

if their covariance is zero, that is

x′ZV xP = 0.

It’s possible to show that for any minimum variance portfolio, except the

global minimum variance portfolio, the orthogonal portfolio is unique. Fur-

thermore, if the first portfolio has expected return rP , its orthogonal one has

expected return rZ equal to

rZ =
a− crP

c− drP

Figure 1.1 also shows the geometry of orthogonal portfolios. Given an arbi-

trary efficient portfolio P on the efficient frontier, the line between P and the

global minimum variance portfolio can be shown to intersect the expected

return axis at rZ .
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1.7 Mean-Variance Portfolio With a Risk-less

Asset

In order to build the efficient mean-variance portfolios in presence of n

risky assets and one risk-less asset, let first consider the two fund separation

property. The economic implications of this property are significant because

the following theorem establishes that the minimum variance portfolio fron-

tier can be generated by any two distinct frontier portfolios.

Theorem 1.7.1 (Two-fund separation). Let xa and xb be two minimum

variance portfolios with expected return ra and rb respectively, such that ra 6=
rb.

• Then every minimum variance portfolio xc is a linear combination of

xa and xb.

• Conversely, every portfolio which is a linear combination of xa and xb,

i.e. βxa + (1− β)xb, β ∈ R, is a minimum variance portfolio.

• In particular, if xa and xb are minimum variance efficient portfolios,

then βxa + (1− β)xb is a minimum variance efficient portfolio for 0 ≤
β ≤ 1.

It is of historical interest that this fact was discovered by Tobin (1958).

Tobin uses only two assets (risk-less cash and a risky consol), and demon-

strates that nothing essential is changed if there are many risky assets. He

argues that the risky assets can be viewed as a single composite asset (mutual

fund) and investors find it optimal to combine their cash with a specific port-

folio of risky assets. In particular, the two fund separation property shows

that any mean variance efficient portfolio can be generated by two arbitrary
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distinct mean-variance efficient portfolios. In other words, an investor who

wants a mean-variance efficient portfolio can achieve this goal by investing

in an appropriate linear combination of any two mutual funds that are also

mean-variance efficient.

Let now return to Tobin’s original idea of introducing a risk-less asset. The

portfolio selection problem with n risky assets and a risk-less one can eas-

ily be formulated and solved. Let there be n + 1 assets, i = 0, ..., n, where

0 denotes the risk-less asset with return r0. The vector of expected excess

returns has elements defined as ri = ri − r0, i = 1, ..., n, and is denoted by r.

Wealth is now allocated among (n + 1) assets with weights x0, x1, ..., xn. In

the various calculations the vector of weights x1, ..., xn is denoted by x and

x0 = 1− x′1.

For a given portfolio P , the expected excess return is

rP = x′r + (1− x′1)r0 − r0 = x′r. (1.7.1)

The variance of p is

σ2
P = x′V x, (1.7.2)

where in equations 1.7.1 and 1.7.2, r and V are defined as in the previous

section. Obviously, the risk-less asset doesn’t contribute to the variance of

the portfolio.

The mean-variance optimization problem with a risk-less asset can be stated

as

min
x

σ2
P = x′V x (1.7.3)

s.t. x′r = rP .

In problem 1.7.3, the variance of the n−risky assets is minimized subject

to a given expected excess return rP . Note that x′1 = 1 is not a constraint
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because the whole wealth need not all to be allocated into the n−risky assets

but some can be held in the risk-less asset.

Writing the Lagrangian function L(x, λ1) for problem 1.7.3

L = x′V x− λ1(x
′r− rp)

where λ1 is the Lagrange multiplier, the first order conditions are

∂L

∂x
=

1

2
V x− λ1r = 0 (1.7.4)

∂L

∂λ1

= rp − x′r = 0. (1.7.5)

As in the previous case, V being positive definite, the first order conditions

are sufficient for a minimum for problem 1.7.3. By solving equations 1.7.4

and 1.7.5, one obtains the solution

x∗ =
( rP

r′V −1r

)
V −1r (1.7.6)

which gives the variance of the minimum variance portfolio with a given

excess expected return

σ2
P = x′V x =

( rP

r′V −1r

)2

r′V −1V V −1r (1.7.7)

=
r2
P

r′V −1r

The tangency portfolio T, as shown in figure 1.2, is the minimum variance

portfolio for which

1′xT = 1. (1.7.8)

Combining equations 1.7.6 and 1.7.8 it can be obtained

rT =
r′V −1r
1′V −1r

>< 0. (1.7.9)

It is economically plausible that risk-less return is lower than the expected

return of the minimum global variance portfolio of the risky assets, that is,
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Figure 1.2: Efficient Frontier: n risky assets and 1 risk-less asset.

r0 < rG. It is possible to prove that 1′V −1r > 0. Also r′V −1r > 0 by the

positive definiteness of matrix V . It then follows that rT and the slope of the

tangency line in figure 1.2 is positive. This positive slope line is called capital

market line and defines the set of minimum variance efficient portfolios.

1.8 The Capital Asset Pricing Model

The CAPM model was first introduced by Sharpe (1964), Lintner (1965)

an Mossin (1966). The first step is to consider the universe of investors as

a whole, which leads to the deduction of the Capital Asset Pricing Model

(CAPM). The idea is to derive a theory of asset valuation in an equilibrium

situation, drawing together expected returns and market risk. This model

is considered as the first to explain asset valuation by using the notion of

risk. This risk can be split into a systematic risk, common to all assets in

the same market segment and an unsystematic risk attributed to the specific
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asset. The CAPM is built on the following main assumptions:

• Investors are risk averse and maximize the expected utility of wealth

at the end of the period.

• Investors are considered to be homogeneous, i.e. agents have the same

preferences and they are considered to be rational.

• The asset returns are normally distributed or the investor only considers

the first two moments of their return distribution, that is equivalent to

assume a quadratic utility function for the investors.

• Investors only consider one investment period which is the same for all

investors.

• Investors have limitless access to financial markets and can borrow and

lend at a risk-free rate rF .

• Markets are complete (perfect information) and perfect (no taxes, no

transaction costs).

In order to consider market equilibrium all the investors have to be taken into

account. The introduction of a risk-free asset, whose return is denoted rF ,

enables the investor to spread her wealth between an efficient portfolio and

this risk free asset, which leads to the following equation, where rE denotes

the return of the chosen efficient portfolio and rP the return of the resulting

portfolio composed of the risky and the risk-less asset:

E(rP ) = xrF + (1− x)E(rE) (1.8.1)

with x the proportion of wealth invested in the risk-free asset. Equation 1.8.1

is obtained by combining the classical mean variance approach and the two
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funds separation theorem, see the previous section. The portfolio’s risk is

than simply given by:

σP = (1− x)σE (1.8.2)

Combining the equations 1.8.1 and 1.8.2 let write the following expression:

E(rP ) = rF +
(E(rE)− rF )

σE

σP

For each efficient portfolio a line represents all the combinations between the

efficient portfolio and the risk-free asset. Among this set of lines there is one

that dominates all others. This line corresponds to the point (portfolio) T ,

the tangency portfolio. Thus, the efficient frontier in a world with a risk-free

asset is a straight line from the point rF to T . This line is also called capital

market line, as already mentioned in the previous sections.

Investors benefit from the risk-free opportunity, since for a given expected

return the risk on this new efficient frontier is less than or equal to the risk

of the corresponding portfolio consisting of risky assets. In other words, the

efficient frontier with a risk-free asset dominates the efficient frontier without

the risk-free asset. As in the Markowitz Model the choice of a specific point

on this line depends on the individual utility function or, more precisely, on

the level of risk-aversion of the investor. If the investor has unlimited access

to an efficient financial market, i.e. can borrow money to a rate rF , the

efficient frontier to the right of point T corresponds to the extension of the

line between rF and T . If the investor is constrained to borrow to a rate

(rF ) > rF the efficient frontier is flatter to the right of point T .

If the investor has no access at all to financial markets the efficient frontier

with a risk-free asset corresponds to the efficient frontier without a risk-free

asset for E(rP ) > E(rM). These results do not only depend on the respective

financial market and its accessibility but also on the assumption that all

assets are infinitely divisible.
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The following derivation of the CAPM assumes an efficient financial mar-

ket (rF ) = rF and infinite divisibility of assets. This kind of market is called

frictionless. The portfolio decision problem can be divided into two parts:

first the investor chooses the optimal risky portfolio corresponding to one

point on the efficient frontier without the risk-free asset and second, the in-

vestor chooses how split his portfolio between the risk-free asset and the risky

portfolio. This is known as Tobin’s (1958) two-fund separation theorem, as

already mentioned.

Taking all investors into account, let move on to the market equilibrium

framework. Since every investor is supposed to hold a mean-variance portfolio

and assuming homogenous expectations of moments, all agents have to solve

the same optimization problem and derive the same efficient frontier, since

the one passing through T dominates all the others. Depending on their level

of risk aversion they invest a certain proportion in the risk-free asset and the

rest in the portfolio T . In equilibrium, all assets are held and since the only

traded risky portfolio is portfolio T it must contain all assets. Hence, this

portfolio is the market portfolio and it holds all the assets in proportions of

their market capitalization.

The Capital Asset Pricing Model aims to value each asset by considering

an equilibrium situation. By applying the two-fund theorem only the risky

part of the portfolio has to be taken into account in order to price each asset,

since the two decisions are independent. Similar to equations 1.8.1 and 1.8.2

let define

E(rP ) = xri + (1− x)E(rT )

σP = [x2σi + (1− x)2σ2
T + 2x(1− x)σiT ]

1
2

By varying x, all possible efficient portfolios consisting of the risky asset

and the market portfolio in the E(rP )− σP− space can be described. In the
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optimum the leading coefficient of the tangent to this efficient frontier must

be equal to the slope coefficient of the capital market line:

∂E(rP )

∂σP

=
E(rT )− rF

σT

(1.8.3)

Considering the functional relations above let write:

∂E(rP )

∂σP

=
∂E(rP )

∂x

∂x

∂σP

The two derivatives are:

∂E(rP )

∂x
= E(ri)− E(rT )

∂σP

∂x
=

2xσi − 2(1− x)σ2
T + 2(1− 2x)σiT

2σP

which gives:
∂E(rP )

∂σP

=
[E(ri)− E(rT )]σP

x(σ2
i + σ2

T − 2σiT ) + σiT − σ2
T

In equilibrium the market portfolio contains all assets. The proportion x

is therefore an excess in asset i in the portfolio P that must be zero at

equilibrium (considering all investors). The Portfolio P is then the market

portfolio (σP = σT ) and for the point T :

∂E(rP )

∂σP

(T ) =
[E(ri)− E(rT )]σT

σiT − σ2
T

From equation 1.8.3, the following equation holds:

[E(ri)− E(rT )]σT

σiT − σ2
T

=
E(rT )− rf

σT

That last expression can also be written as

E(ri) = rf +
E(rT )− rf

σ2
T

σiT (1.8.4)

Defining

βi =
σiT

σ2
T
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the characteristic relationship of the CAPM:

E(ri) = rf + βi(E(rM)− rf ) (1.8.5)

This equation can be understood as follows: the expected return of the risky

asset i equals the return of the risk-free asset plus a risk premium. βi is also

called the systematic risk of asset i. By consequence, the risk-free asset has a

beta of zero and the market portfolio a beta of one. The CAPM establishes

a theory for valuing individual securities and highlights the importance of

taking risk into account. It states that there are two kinds of risk. First, the

systematic risk, common to all assets, which is rewarded by the market (risk

premium). Second, each asset has an individual non-rewarded risk which can

also be called diversifiable risk, since it can be avoided by constructing well

diversified portfolios. Let rewrite equation equation 1.8.5:

ri = rf + βi(E(rM)− rf ) + εi (1.8.6)

with E(εi) = 0 and V ar(ε) the specific risk.
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Chapter 2

The Reasons to Consider Higher

Moments in Asset-Allocation

To solve asset-allocation problems, the well-known mean-variance crite-

rion proposed by Markowitz (1952) has provided very sensible results for a

very wide range of situations. While some authors have argued that the

expected utility function may be more appropriately approximated by a

function of higher moments, for example see Arditti (1967), and Samuel-

son (1970), early empirical evidence suggests that mean-variance criterion

results in allocations that are very similar to the ones obtained using a di-

rect optimization of the expected utility function, see Levy and Markowitz

(1979), Pulley (1981), and Kroll, Levy and Markowitz (1984).

An explanation of the good performance of the mean-variance criterion may

be that, although returns are non-normal, they are driven by an elliptical dis-

tribution, for which the mean-variance approximation of the expected utility

remains good for all utility functions, see Chamberlain (1983). In contrast,

under large departure from normality, in particular when the distribution is

severely asymmetric, Chunachinda et al. (1997), Athayde and Flôres (2004)

31
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and Jondeau and Rockinger (2003) show that the mean-variance criterion

may fail to correctly approximate the expected utility. In such a case, a

three- or four-moment optimization strategy should provide a better approx-

imation of the expected utility.

A limitation of this previous evidence is that it assumes constant invest-

ment opportunities while a huge literature has argued that asset returns have

time varying moments. However, extension to a conditional asset-allocation

is much more difficult to implement.

Modelling asset returns requires rather general distributions that are able to

incorporate volatility clustering, asymmetry, and fat-tails features found in

empirical data.

2.1 About Mean-Variance Hypothesis

The presence of skewness and kurtosis in asset return distributions apart

from normality is well known. Here the research is focused instead on the

analysis of co-skewness and co-kurtosis and, if any, their relevance in mod-

elling asset pricing and asset allocation.

On one hand, peculiar return distribution patterns may be originated

from the use of specific trading strategies. Hedge fund managers pursue

varied hedging and arbitrage strategies that engender pay-off profiles ex-

tremely different from traditional assets. The number of new assets traded

on global market is increasing continuously and these new financial prod-

ucts may have different returns distribution compared to classical products

(stocks and bonds).

On the other hand, skewed and / or kurtotic return distributions may be

seen as the statistical expression of market inefficiency and market frictions.
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Specifically, non-normal return distributions may be due to illiquidity, lack of

divisibility, and low information transparency. All these factors contrast with

the assumptions underpinning the standard CAPM model and the standard

Mean-Variance model.

Active investing strategies. It is worth emphasizing that trading strate-

gies applied by hedge fund managers engender return distribution typically

different from equity market or mutual fund returns. Hedge funds are often

able to protect investors against declining markets. Hedge fund managers

pursue downside protection by utilizing a variety of hedging strategy and in-

vestment styles. As a result, some hedge funds generate non-negative returns

even in declining markets. This automatically leads to a positive asymmetry

of returns distribution.

The use of leverage and derivatives contributes to the realization of par-

ticular risk-performance profiles characterized by low correlation with tradi-

tional asset markets. The hedge fund trading strategies widely benefit from

options, option-like trading strategies and, in general, financial engineering.

Hedge funds are less regulated than mutual funds. The weaker restrictions

allow short selling to boost performance.

Sample Data frequency. A lot of empirical studies show how data fre-

quency can affect the distribution of financial returns. In particular, higher

frequency data (like daily or hourly) show non-elliptic distributions of re-

turns. This fact can be relevant in active investing strategies when high fre-

quency data are used to frequently update the asset allocation.

Illiquidity. Illiquid assets do not allow trading of any volume size with an
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immediate execution and / or without price impact. In particular, hedge

funds are generally considered illiquid assets. In fact, the investing strategies

of hedge funds are frequently based on highly illiquid and / or volatile assets.

Illiquidity is in contrast with one of the main assumptions of the standard

CAPM model and standard asset-allocation models. A low level of liquidity

in hedge funds would require a risk premium, and hence an asymmetry in

returns distribution.

Lack of divisibility. Another assumption behind the CAPM and standard

asset-allocation models is that assets are infinitely divisible. This means that

investors could take any position in an investment, regardless of the invest-

ment size. On the contrary, a minimum investment in a hedge fund is always

required. This is a high barrier to entry. High entry barriers may represent

a considerable opportunity cost to exit or to undertake short-run trading

strategies. Another example of entry and exit barriers in hedge funds is rep-

resented by the number of entry and exit dates.

Information transparency. Market inefficiency may be also due to opaque

or asymmetric information. It is well known that hedge funds do not easily

disclose information about their current positions. The low degree of infor-

mation transparency is partially justified by the short positions and arbitrage

strategies undertaken by hedge fund managers. This kind of trading strate-

gies implies disguising trading positions especially in illiquid markets. In fact,

full and transparent information disclosure would jeopardize trading oppor-

tunities.
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2.2 Three Moment Asset Allocation Problem

Some asset allocation models has been proposed in the literature in order

to generalize mean-variance approach and taking into accounts also higher

moments. From this point of view, let follow Gamba and Rossi (1998). This

approach can be classified as a classical approach to asset allocation due to

the hypothesis made on the assets returns. These assumptions permit to give

a closed form solution to the optimization problem. Let assume that n risky

assets and 1 risk-less asset are available. Let

• x be the column vector of portfolio weights.

• ri be the return of i-th asset, with µi, σi and ξi respectively the expected

value, the standard deviation and the skewness of asset i.

• µ0 be the return of the risk-less asset.

• y be a random variable with E(y) = 0, E(y2) = σ2
y, E(y3) = ξ3

y 6= 0.

• εi be the i-th entry of a random vector of joint Gaussian variables

conditional to y.

• bi be a real number.

Let assume that i-th asset return is:

ri = µi + εi + biy.

According with the assumptions, the covariance matrix of returns is

D = [E(εiεj|y) + bibjσ
2
y] = σij, i, j = 1, . . . , n (2.2.1)

while the co-skewness is

E[(ri − µi)(rj − µj)(rk − µk)] = ξijk = bibjbkξ
3
y . (2.2.2)
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A stochastic dominance rule on mean-variance and skewness is proposed.

Let ra and rb be two random returns with moments respectively (µa, σa, ξa)

and (µb, σb, ξb).

Definition 2.2.1. Return ra E-V-S (expected return-variance-skewness) dom-

inates rb if µa ≥ µb, σb ≥ σa, ξa ≥ ξb, with at least a strict inequality.

The structure of preferences is defined such that an investor prefers the

higher values for odd moments (expected return and skewness) and lower

levels for even (variance in this case). This structure of preferences, i.e. the

expected return-variance-skewness is in general not compatible with the Ex-

pected Utility theory. Although no such general compatibility exists, but,

by suitably restricting the set of possible distributions and the set of Von

Neumann-Morgenstern utility functions the Expected return-variance-skewness

criterion can be made compatible with Expected Utility theory.

2.2.1 No Risk-less Asset

In the case of n risky assets, the portfolio optimization problem can be

written as follows:

max
x

x′bξy (2.2.3)

s.t. x′Dx = σ2
P2

x′µ = µP

x′1 = 1

where µP and σ2
P2

are respectively the expected return and the variance of

portfolio P . The portfolio optimization problem 2.2.3 can be solved analyt-

ically due to the assumptions made on the assets returns. Let define the
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matrix P2 and the matrix A as

P2 = M ′D−1M =




a c f

c d g

f g e


 A =


 a c

c d




where the (n, 3) matrix M is defined as M = (µ,1, b). The matrix M is

assumed to be of full column rank, i.e. the vectors µ,1 and b are assumed to

be linearly independent. The matrix P2 is symmetric by construction. The

entries of matrix P2 are: a = µ′D−1µ, c = µ′D−11, f = µ′D−1b, d = 1′D−11,

g = 1′D−1b, e = b′D−1b.

Let also define the quantity σ2
A as

σ2
A = (µP 1)A−1


 µP

1


 > 0. (2.2.4)

Note that σ2
A is the set of optimal portfolios represented in mean-variance

plane, see Huang and Litzenberger (1988).

Given µP ∈ R, σP2 ≥ σA and ξy > 0 the optimal solution x∗ for problem

2.2.3 is:

x∗ =


D−1b−D−1(µ 1)A−1


 f

g







√
σ2

P2
− σ2

A

e− h
+D−1(µ,1)A−1


 µP

1




(2.2.5)

where h = (f g)A−1(f g)′.For more details on the derivation of the opti-

mal portfolio x∗ see Gamba and Rossi (1998).

The optimal portfolio in equation 2.2.5 can be written as the sum of two

portfolios x∗1 and x∗2

x∗1(µP ) = D−1(µ,1)A−1


 µP

1



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x∗2(µP , σP ) =


D−1b−D−1(µ,1)A−1


 f

g







√
σ2

P2
− σ2

A

e− h
.

Portfolio x∗1 is the variance-minimizing one for a given µP , in the classical

mean-variance framework. Portfolio x∗2 represents an arbitrage portfolio, i.e.

µ′x∗2 = 0. It can be thought of as a fair bet made by the agent to exploit

the distributional asymmetry of returns. The arbitrage portfolio increases

volatility of portfolio x∗1 from σ2
A up to σ2

P2
. This higher variance is counter -

balanced by a higher skewness.

2.2.2 With a Risk-less Asset

In the case of n risky assets and a risk-less one, the optimization problem

can be written as:

max
x

x′bξy (2.2.6)

s.t. x′Dx = σ2
Q2

x′(µ− µ01) = µP − µ0

where µ0 is the return of the risk-less asset. Also in the case of n + 1 assets,

the portfolio optimization problem 2.2.6 can be solved analytically due to

the assumptions made on the assets returns structure.

Let define the matrix Q2 as

Q2 = N ′D−1N =


 m l

l e




where the (n, 2) matrix N is defined as N = (µ− µ01 b). The matrix N is

assumed to be of full column rank, i.e. the vectors µ−µ01 and b are assumed

to be linearly independent. The matrix Q2 is symmetric by construction. The

entries of matrix Q2 are: m = (µ− µ01)′D−1(µ− µ01), l = (µ− µ01)′D−11,

e = b′D−1b.
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Let define the quantity σ2
m as

σ2
m =

µ− µ0√
m

Given µP ∈ R, σ2
Q2
≥ σ2

m and ξy > 0 the optimal solution for problem

2.2.6 is x = (1− x∗
′1, x∗

′
) with

x∗ =

[
D−1b− l

m
D−1(µ− µ01)

] √
σ2

Q2
− σ2

m

e− k
+

µP − µ0

m
D−1(µ− µ01)

(2.2.7)

where k = l2

m
. For more details on the derivation of the optimal portfolio see

Gamba and Rossi (1998).

The portfolio x∗ in equation 2.2.7 can be split into two different portfolios

x∗1 and x∗2

x∗1 =
µP − µ0

m
D−1(µ− µ01)

x∗2 =

[
D−1b− l

m
D−1(µ− µ01)

] √
σ2

Q2
− σ2

m

e− k

The optimal portfolio is the sum of two portfolios. Portfolio x1 = (1 −
x∗

′
1 1, x∗

′
1 ), which is the usual variance minimizing portfolio given µP in the

mean-variance framework. Portfolio x∗2 has the same features and play the

same role of portfolio x∗2 for the n risky asset optimization problem. For more

details on the calculations of the optimal portfolio, see Gamba Rossi (1998).

2.3 The Four Moment CAPM

Let start with the simple idea that the investor has a specific utility func-

tion and is willing to optimize her expected utility of wealth. In the mean-

variance approach of Markowitz, upon which the CAPM is built, the risk

was represented by the variance (or the standard deviation) of the portfolio

returns. Consequently, the investor tried to maximize the expected portfolio
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return given a certain standard deviation or tried to minimize the standard

deviation given a level of expected return of her portfolio. Depending on

her level of risk aversion the investor chooses a point on the efficient fron-

tier representing an expected utility-standard-deviation couple. Considering

only the first two moments of the portfolio return distribution is only an

approximation of the real portfolio allocation game, except in two situations:

• When the portfolio returns are normally distributed.

• When the representative agent (investor) has an utility function only

depending on the first two moments, i.e. quadratic utility function.

However, empirical results have proved that the corresponding third and

fourth moment (skewness and kurtosis) significantly differ from those of the

normal distribution, see Kraus and Litzenberger (1976), Campbell and Sid-

dique (1999), Hwang and Satchell (1999), Fang and Lai (1997). Hence, an

equilibrium analysis such as the CAPM, that is built on the expected utility-

risk duality, should take these higher moments into account. In addition, this

approach is justified by the fact that the most used utility functions yield

existing derivatives of higher order different from zero. Instead of fixing one

particular utility function, let concentrate on a general method that is ap-

plicable to a large class of functions with the objective to show the need of

considering higher moments.

Let consider any arbitrary utility function. As in Markowitz (1952), the

investor only tries to maximize her wealth stemming from her asset invest-

ment, assuming a world without labor income. Hence, she will consider the

utility of the investment return (r). The fourth-order Taylor expansion is:

U(r) =
4∑

i=0

U (i)E(r)

i!
(r − E(r))i + o[(r − E(r))4]
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where U (n) denotes the n-th derivative of the function U . Taking the expec-

tation on both sides yields:

E[U(r)] = U [E(r)] +
U (2)[E(r)]

2
σ2 +

U (3)[E(r)]

6
s +

U (4)[E(r)]

24
k (2.3.1)

with s the non-standardized skewness and k the non-standardized kurtosis of

the portfolio return distribution. Note that the usual definitions of skewness

and kurtosis coefficients are normalized:

S =
E[r − E(r)]3

σ3

K =
E[r − E(r)]4

σ4

By neglecting the influence of the third and fourth moments, equation 2.3.1

coincides with the mean-variance approach, since the second derivative is

negative. Maximizing expected utility is equivalent to the portfolio trade-

off between mean and variance and depends on the level of risk aversion.

Similarly, if the utility function only depends on the first two moments (i.e.

U = U(µ, σ2)), the third and fourth derivatives are zero and the last two

terms are consequently equal to zero. This is the underlying quadratic utility

function in the Markowitz approach.

Analyzing equation 2.3.1, let assume that investors have preference for

a higher skewness and an aversion towards kurtosis which had already been

found by Horvath and Scott (1980). Looking at the distribution this is rather

easy to understand. A positive skewness means a higher probability for higher

values of wealth relative to lower values.

Concerning the fourth moment, a high kurtosis reflects the so called "fat

tails", i.e. higher probability for extreme values than in the case of a normal

distribution. Following expected utility theory, the negative value that is

attributed to the chance of highly negative returns excesses the positive value
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that is attributed to the opportunity of higher returns. Moreover, Jondeau

and Rockinger (2004) showed that the fourth-order Taylor expansion of a

CARA Utility function leads to excellent approximations of the underlying

utility function in the framework of optimal portfolio allocation even under

large departure from normally distributed portfolio returns. On the contrary,

the mean-variance approach yields large deviation from the optimal portfolio

constructed by direct expected utility maximization.

As a result, let consider the approximation of the utility function by a

fourth-order Taylor expansion as satisfactory. Beside using the variance as a

risk and uncertainty measure, this approach also incorporates skewness and

kurtosis. Since the traditional CAPM does not consider the latter, the model

needs a correction by introducing two more factors.

Approximating a utility function as a function of the expected return,

the standard deviation, the skewness and the kurtosis of the portfolio return

distribution function, the maximization problem is:

max
xp,x0

Φ(µP , σ2
p, sp, kp) (2.3.2)

s.t.

n∑
i=1

xip = 1− x0

with

µP = x0r0 + E(x′pr) = x0r0 + x′pµ

σ2
p = x′pE[(r − µ)(r − µ)′]xp = x′pΣxp

sp = x′pE[(r − µ)(r − µ)′ ⊗ (r − µ)′](xp ⊗ xp) = x′pΩxp

kp = x′pE[(r − µ)(r − µ)′ ⊗ (r − µ)′ ⊗ (r − µ)′](xp ⊗ xp ⊗ xp) = x′pΨxp

where ⊗ denotes the Kronecker-product, r = (r1, . . . , rn)′ the vector of asset

returns, xp = (x1p, . . . , xnp)
′ the vector of portfolio portions invested in a

single asset, xop the part invested in the risk-free asset, with return r0, and
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µ = (E(r1), . . . , E(rn))′. Ωxp is the vector of co-skewness for the weighting

vector xp and Ψxp the vector of co-kurtosis respectively. Writing the La-

grangian function for problem 2.3.2 gives:

L(xp, λ) = Φ(µP , σ2
p, sp, kp)− λ(x′p1 + x0p − 1)

The first order conditions are:

∂L(xp, λ)

∂x′p
= Φ1µ + 2Φ2Σxp + 3Φ3Ωxp + 4Φ4Ψxp − λ1 = 0 (2.3.3)

∂L(xp, λ)

∂x0p

= Φ1r0 − λ = 0 (2.3.4)

∂L(xp, λ)

λ
= x′p1 + x0p − 1 = 0 (2.3.5)

where Φi is the partial derivative of the i-th variable. Assuming equilibrium,

every investor behaves optimal. From equations 2.3.3, 2.3.4 and 2.3.5, let

write

(µ− r0)1 = α1Σxp + α2Ωxp + α3Ψxp (2.3.6)

with

α1 = −2Φ2

Φ1

, α2 = −3Φ3

Φ1

α3 = −4Φ4

Φ1

In order to move from optimal conditions for individuals to the resulting

market equilibrium, let refer to Cass and Stiglitz (1970). Under identical

agent’s probability beliefs, a necessary and sufficient condition to apply a

two-fund separation theorem is that all agents have a hyperbolic absolute risk

aversion utility function (HARA), i.e. that each investor’s risk tolerance is a

linear function of his wealth (−U ′
i/U

′′
i = ai + biW ) with the same parameter

bi. In this case the portfolio weights of each portfolio are the same. Summing

up all these portfolios, let conclude that the condition in equation 2.3.6 must

hold also for the market portfolio. Moreover, let define

β =
ΣxM

σ2
M

(2.3.7)
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γ =
ΩxM

sM

(2.3.8)

θ =
ΨxM

kM

(2.3.9)

it’s possible to write the four moment CAPM as follows:

µ− r0 = b1β + b2γ + b3θ (2.3.10)

The coefficients bi can be understood as the corresponding premia associated

with the respective risk. Moving to a single asset, the four moment CAPM

model can be written in a more intuitive and comprehensible version:

E(ri)− r0 = b1βi + b2γi + b3θi (2.3.11)

Referring to the traditional CAPM βi denotes the systematic beta, γi the

systematic skewness and θi the systematic kurtosis of asset i. It is easy to

verify that:

βi =
Cov(ri, rm)

σ2
M

(2.3.12)

γi =
CoS(ri, rm)

sM

(2.3.13)

θi =
CoK(ri, rm)

kM

(2.3.14)

with

CoS(X,Y ) = E[(X − E(X))(Y − E(Y ))2] (2.3.15)

CoK(X,Y ) = E[(X − E(X))(Y − E(Y ))3] (2.3.16)

the corresponding co-moments, and

sM = E[(rM − E(rM))]3 (2.3.17)

kM = E[(rM − E(rM))]4 (2.3.18)

respectively the skewness and the kurtosis of the market portfolio. Even if the

four moment CAPM can be seen as a multi-factor model, the three factors go
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back to the same root. Indeed, they measure the relation of the asset with the

market portfolio concerning the respective risk. Hence, only one appropriated

index is needed in contrast to "real" multi-factor models.

In order to estimate the four moment CAPM it’s needed to assume that

it’s possible to observe the market portfolio in some way. The difficulty in

approximating and defining the market portfolio refers to the critique of Roll

(1977).

As a consequence of the four-moment CAPM, the agent will be rewarded

a risk premium not only for the volatility (variance) of the market portfolio

but also premia for the market skewness and the market kurtosis. In other

words, the asset is correlated with the market portfolio in the sense of the

specific order (i.e. the co-moments of higher order are significant).

2.3.1 Risk Premia

The expected excess return of the market portfolio becomes:

E(rm)− r0 = b1 + b2 + b3

Let now discuss about the premia: investors have a positive preference for

expected returns and skewness, on the contrary they have an aversion towards

high variance (standard deviation) and high kurtosis1. As a consequence

Φ1 > 0, Φ2 < 0, Φ3 > 0, Φ4 < 0

and bi coefficients can be written as follows:

b1 = −2Φ2

Φ1

σ2
M > 0

b2 = −3Φ3

Φ1

sM >=< 0

1The individual preferences for higher moments will be studied also in the next sections.
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b3 = −4Φ4

Φ1

kM > 0

For the systematic beta, the sign is the same as already determined in the

framework of the traditional CAPM. The risk premium that is rewarded for a

beta reduction is assumed to be positive (b1 > 0). Higher market risk results

in a higher risk premium.

For the systematic skewness the result concerning the sign is ambiguous.

Let underline that sM can take either positive or negative values. As a con-

sequence, b2 will take the opposite sign of the market skewness. Since agents

have a preference for higher values of skewness, a negative market skewness

is considered as a risk and will be rewarded with a positive risk premium.

When the market skewness is positive, b2 can be seen as a risk discount. The

risk discount is directly related to the fact that a positive market skewness

means that positive returns have higher probability than negative returns.

The analysis of the sign of b2 gives an intuitive interpretation of the concepts

of risk premia and risk discount.

For the Kurtosis the argument is the same as for the second moment: high

kurtosis ("fat tails") is a negative investment incentive and the corresponding

kurtosis risk premium will be positive. Hwang and Satchell (1999) showed

that the four-moment CAPM yields better results in terms of explanation

of cross-sectional returns than the standard mean-variance approach. This is

especially true in the case of emerging markets or hedge funds, since skewness

and kurtosis are particulary significant in these contexts.



2.4. Four Moment Asset Allocation Problem 47

2.4 Four Moment Asset Allocation Problem

Let begin with the investor’s asset allocation problem. In general the

four moment asset allocation problem cannot be solved analytically. Then,

let describe how the Taylor series expansion can be used to approximate

the allocation problem. Conditions for the expansion to be convergent are

detailed for the utility function under study. Last, portfolio moments are

computed from asset return moments.

Let consider an investor who allocates her portfolio in order to maxi-

mize the expected utility U(W ) over her end-of-period wealth W . The initial

wealth is arbitrarily set equal to one. There are n risky assets with return

vector r = (r1, ..., rn)′ and joint cumulative distribution function F (r1, ..., rn).

End-of-period wealth is given by W = (1+ rp), with rp = x′r, where the vec-

tor x = (x1, ..., xn)′ represents the fractions of wealth allocated to the various

risky assets. Let assume that the investor does not have access to a risk-less

asset, implying that the portfolio weights sum to one (
∑n

i=1 xi = 1). In ad-

dition, portfolio weights are constrained to be positive, so that short-selling

is not allowed. Formally, the optimal asset allocation is obtained by solving

the following problem:

max
xt

Et[U(Wt+1)] (2.4.1)

s.t.

n∑
i=1

xi,t = 1

xi,t ≥ 0 i = 1, . . . , n

The n first-order conditions (FOCs) of the optimization problem are

∂E[U(W )]

∂x
= E[U (1)(W )] = 0 (2.4.2)

where U (j)(W ) denotes the j-th derivative of U. Let assume that the utility

function satisfies the usual properties so that a solution exists and is unique.
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On one hand, when the empirical distribution of returns is used, the solution

to this problem can be easily obtained, see Levy and Markowitz (1979),

Pulley (1981), Kroll et al (1984). On the other hand, when a parametric

joint distribution for returns is used, the first order conditions in equation

2.4.2 do not have a closed-form solution.

This approach has been applied to normal iid returns by Campbell and

Viceira (1999) or to a regime-switching multivariate normal distribution by

Ang and Bekaert (2002). The difficulty for non-normal distributions and in

particular for distributions that involve asymmetry and fat tails, is that the

required number of quadrature points is likely to increase exponentially with

the number of assets. Therefore, solving the optimization problem using nu-

merical integration becomes tricky for more than two or three assets. For

more general distributions of returns, Monte-Carlo simulations may be nec-

essary to approximate the expected utility function.

Being interested in measuring the effect of higher moments on the asset

allocation, let’s approximate the expected utility by a Taylor series expansion

around the expected wealth. For this purpose, the utility function is expressed

in terms of the wealth distribution, so that

E[U(W )] =

∫ +∞

−∞
U(w)f(w)dw (2.4.3)

where f(w) is the probability distribution function of end-of-period wealth,

that depends on the multivariate distribution of returns and on the vector

of weights x. Hence, the infinite-order Taylor series expansion of the utility

function is

U(W ) =
∞∑

k=0

U (k)(W )(W −W )k

k!
(2.4.4)

where W = E(W ) = 1 + x′µ denotes the expected end-of-period wealth,

with µ = E(r) the expected return vector. Under rather mild conditions, see
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Lhabitant (1997), the expected utility is given by

E[U(W )] = E

[ ∞∑

k=0

U (k)(W )(W −W )k

k!

]
=

∞∑

k=0

U (k)(W )

k!
E[W −W ]k.

(2.4.5)

Therefore, the expected utility depends on all central moments of the distri-

bution of the end-of-period wealth.

Necessary conditions for the infinite Taylor series expansion to converge

to the expected utility have been explored by Loistl (1976) and Lhabitant

(1998). The region of convergence of the series depends on the considered

utility function. In particular, the exponential or polynomial utility func-

tions do not put any restriction on the wealth range, while the power utility

function converges for wealth levels in the range [0, 2(W )]. It is worth em-

phasizing that such a range is likely to be large enough for bonds and stocks

when short-selling is not authorized. In contrast, it may be too small for

options, due to their leverage effect. These results hold for arbitrary return

distributions. Now, since the infinite Taylor series expansion is not suitable

for numerical implementation, a solution is to approximate the expected util-

ity by truncating the infinite expansion at a given order k. For instance, the

standard mean-variance criterion proposed by Markowitz (1952) corresponds

to the case k = 2. More generally, an expansion truncated at k provides an

exact solution to the expected utility when utility is described by a polyno-

mial function of order k. This result holds because such a utility function

depends only on the first k moments of the return distribution and the Tay-

lor expansion is an exact approximation for polynomials of order less than

or equal to k. This avenue has been followed for instance by Levy (1969),

Hanoch and Levy (1969), or Jurczenko and Maillet (2001) for k = 3 (cubic

utility function) and by Benishay (1992) and Jurczenko and Maillet (2006)

for k = 4.
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However, it is not clear a priori the order the Taylor series expansion

should be truncated. For instance, Hlawitschka (1994) provides examples

in which, even if the infinite expansion converges, adding more terms may

worsen the approximation at a given truncation level. In contrast, Lhabi-

tant (1998) describes an example in which omitted terms are of importance.

Some arguments put forward by Ederington (1986) as well as Berényi (2001)

suggest that introducing the fourth moment will generally improve the ap-

proximation of the expected utility.

It should be noticed, at this point, that the approximation of the expected

utility by a Taylor series expansion is related to the investor’s preference (or

aversion) towards the moments of the distribution, that are directly given by

derivatives of the utility function. Scott and Horvath (1980) show that, under

the assumptions of positive marginal utility, decreasing absolute risk aversion

at all wealth levels together with strict consistency for moment preference,

the following inequalities hold:

U (k)(W ) > 0 ∀W, if k is odd (2.4.6)

U (k)(W ) < 0 ∀W, if k is even (2.4.7)

Further discussion on the conditions that yield such moments preferences

or aversions may be found in Pratt and Zeckhauser (1987), Kimball (1993),

and Dittmar (2002). Brockett and Garven (1998) provide examples indicat-

ing that expected utility preferences do not necessarily translate into mo-

ment preferences. Under rather mild assumptions, a general condition for

the smoothness of the convergence of the Taylor series expansion, so that the

inclusion of an additional moment will improve the quality of the approxi-

mation, is that preference-weighted odd central moments are not dominated
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by their consecutive preference-weighted even central moments, so that

U (2n+1)[E(W )]

2n + 1
E[W − E(W )](2n+1) < −U (2n+2)[E(W )]

2n + 2
E[W − E(W )](2n+2)

with n integer. In this case, including skewness and kurtosis always leads to

a better approximation of the expected utility. Focusing on terms up to the

fourth one, the expected utility function can be written as

Et[U(Wt+1)] ≈ U(Wt) + U (1)(Wt)Et[Wt+1 −Wt] +

1

2
U (2)(Wt)Et[Wt+1 −Wt]

2 +
1

6
U (3)(Wt)Et[Wt+1 −Wt]

3 +

1

24
U (4)(Wt)Et[Wt+1 −Wt]

4 + O(W 4)

where O(W 4) is the Taylor remainder. Let define the expected return, vari-

ance, skewness, and kurtosis of the end-of-period return as

µP = E[rp] = x′µ

σ2
p = E[(rp − µP )2] = E[(W −W )2]

s3
p = E[(rp − µP )3] = E[(W −W )3]

k4
p = E[(rp − µP )4] = E[(W −W )4].

Hence, the expected utility is simply approximated by the following prefer-

ence function

E[U(W )] ≈ U(W ) +
1

2
U (2)(W )σ2

p +

1

3!
U (3)(W )s3

p +
1

4!
U (4)(W )k4

p.

Under conditions established by Scott and Horvath (1980), the expected

utility depends positively on expected return and skewness and negatively

on variance and kurtosis. Let consider now the CARA (for Constant Absolute

Risk Aversion) utility function. The CARA utility function is defined by:

U(W ) = − exp(−λW )
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where λ measures the investor’s constant absolute risk aversion. This specifi-

cation has been widely used in the literature because of the appealing inter-

pretation of the associated parameter. The approximation for the expected

utility is given by

E[U(W )] ≈ − exp(−λW )

[
1 +

λ2

2
σ2

p +
λ3

3!
s3

p +
λ4

s!
k4

p

]
(2.4.8)

After simplifications, the FOCs (first order conditions) can be written as:

µ

[
1 +

λ2

2
σ2

p +
λ3

3!
s3

p +
λ4

s!
k4

p

]
=

λ

2

∂σ2
p

∂x
+

λ2

3!

∂s3
p

∂x
+

λ3

4!

∂k4
p

∂x
(2.4.9)

Optimal portfolio weights can be obtained alternatively by maximizing ex-

pression 2.4.8 or by solving equalities 2.4.9. Equation 2.4.9 reveals that com-

puting this expression would be rather simple if the variance, skewness, and

kurtosis of the portfolio return and their derivatives are known.

Let briefly describe how the moments of a portfolio return can be ex-

pressed in a very convenient way and how their derivatives may be obtained.

First the definition of the (n, n2) co-skewness matrix is needed

M3 = E[(r − µ)(r − µ)′ ⊗ (r − µ)′] = {sijk}

The (n, n3) co-kurtosis matrix can be defined as

M4 = E[(r − µ)(r − µ)′ ⊗ (r − µ)′ ⊗ (r − µ)′] = {kijkl}

The entries of M3 and M4 are respectively

{sijk} = E[(ri − µi)(rj − µj)(rk − µk)] i, j, k = 1, . . . , n

{kijkl} = E[(ri − µi)(rj − µj)(rk − µk)(rl − µl)] i, j, k, l = 1, . . . , n

Such notation has been used by Harvey et al. (2000), Prakash et al. (2003). It

should be noticed that, because of certain symmetries, not all the elements of
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these matrices need to be computed. The dimension of the covariance matrix

is (n, n), but only n(n + 1)/2 elements have to be computed. Similarly, the

co-skewness and co-kurtosis matrices have dimensions (n, n2) and (n, n3), but

involve only n(n+1)(n+2)/6 elements and n(n+1)(n+2)(n+3)/24 different

elements respectively.

Now, using these notations, moments of the portfolio return can be com-

puted in a very tractable way. For a given portfolio weight vector, expected

return, variance, skewness, and kurtosis of the portfolio return are, respec-

tively:

µP = x′µ

σ2
p = x′M2x

s3
p = x′M3(x⊗ x)

k4
p = x′M4(x⊗ x⊗ x)

where M2 denotes the usual (n, n) covariance matrix. The moments of the

portfolio returns may also be expressed as follows:

σ2
p = E

[
n∑

i=1

xi(ri − µi)(rp − µP )

]
= x′Σp

s3
p = E

[
n∑

i=1

xi(ri − µi)(rp − µP )2

]
= x′Sp

k4
p = E

[
n∑

i=1

xi(ri − µi)(rp − µP )3

]
= x′Kp

where

Σp = E [(ri − µi)(rp − µP )] = M2x

Sp = E
[
(ri − µi)(rp − µP )2

]
= M3(x⊗ x)

Kp = E
[
(ri − µi)(rp − µP )3

]
= M3(x⊗ x⊗ x)
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are the (n, 1) vectors of covariances, co-skewness, and co-kurtosis between

the asset returns and the portfolio return respectively. These notations are

obviously equivalent to the previous ones and they offer the advantage of

requiring only small-dimensional vectors. Notations above allow a straight-

forward computation of the derivatives with respect to the weight vector,

that is:
∂µP

∂x
= µ

∂σ2
p

∂x
= 2M2x

∂s3
p

∂x
= 3M3(x⊗ x)

∂k4
p

∂x
= 4M4(x⊗ x⊗ x)

Equations 2.4.9 can thus be rewritten as

µ− δ1(x)[M2x] + δ2(x)[M3(x⊗ x)]− δ3(x)[M4(x⊗ x⊗ x)] = 0

where δ1, δ2, and δ3 are non-linear functions of x, such that δi(x) = δi/(i!A),

i = 1, 2, 3, with A = 1 + λ2

2
σ2

p − λ3

3!
s3

p + λ4

4!
k4

p. The n equations in condition

2.4.9 can be easily solved numerically, using a standard optimization pack-

age. The difficulty to solve this problem is not of the same order as compared

to problems involving numerical integration of the utility function. This ap-

proach provides an alternative way of solving the asset allocation problem

to the PGP approach developed by Lai (1991) and Chunhachinda et al.

(1997). The main advantage of the approach proposed here is that weights

attributed to the various portfolio moments in equation 2.4.9 are selected on

the basis of the utility function, while they are arbitrarily chosen in the PGP

approach. Solving equation 2.4.9 also provides an alternative to the rather

time-consuming approach based on maximizing the expected utility numer-

ically. Here, a very accurate solution is obtained in just a few seconds, even
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in the case of a large number of assets. The price to pay is that the focus is

put on a finite number of moments only.

2.4.1 Model For Returns

Following Joundeau and Rockinger (2003) a conditional set-up that incor-

porates most statistical features of stock market returns is proposed. First,

the model takes into account properties of volatility clustering, see Engle

(1982), and time-varying correlations, see Engle and Sheppard (2002). Sec-

ond, in order to describe asymmetry and fat-tails of asset returns distrib-

utions a multivariate skewed Student t distribution is proposed for assets

returns, see Hansen (1994) for the univariate case, Bauwens and Laurent

(2002) for the multivariate case.

Let define the following notations: ri,t is the rate of return of asset i from

time t − 1 to time t, in excess of the risk-free rate. Let µi,t be the expected

excess return of asset i conditional on information available at time t − 1.

Then, εi,t = ri,t − µi,t is the unexpected return of asset i. Let define rt =

(r1,t, . . . , rn,t)
′ the vector of asset returns, and εt = (ε1,t, . . . , εn,t)

′ the vector

of unexpected returns. σi,t is the conditional variance of ri,t. σij,t denotes

the conditional covariance between ri,t and rj,t. The conditional covariance

matrix is denoted Σt = {σij,t}.

2.4.2 The DCC Model

Let start with a description of the dynamics of the first two moments of

the return distribution. The DCC model is able to capture both volatility

clustering and persistence in correlation. The conditional mean of returns

is described as an AR(1) dynamic to capture the possible first-order serial
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correlation of returns:

rt = µ + ϕrt−1 + Σ
1
2
t zt (2.4.10)

where µ is a vector of size (n, 1), ϕ is a diagonal matrix and zt is a stan-

dardized residual drawn from multivariate Sk-t distribution. The conditional

covariance matrix is

Σt = DtΓtDt (2.4.11)

Dt =




√
σ11,t 0 . . . 0

0
√

σ22,t
. . . ...

... . . . . . . 0

0 . . . 0
√

σnn,t




σii,t = ωi + βiσii,t−1 + γiε
2
i,t−1 i = 1, . . . , n

Γt = [diag(Qt)]
−1Qt[diag(Qt)]

−1

Qt = (1− δ1 − δ2)(Q) + δ1(ut−1u
′
t−1) + δ2Qt−1 (2.4.12)

Q =




1 ρ12 . . . ρ1n

ρ12 1
. . . ...

... . . . . . . ρn−1,n

ρ1n . . . ρn−1,n 1




where εt = Σ
1
2 zt is the vector of error terms, ut = D−1

t εt the vector of

standardized errors, diag(Qt) denotes the diagonal of the matrix Qt and Q is

the unconditional covariance matrix of ut. In equation 2.4.11 the covariance

matrix Σt is a function of the univariate standard deviations in Dt and of

the conditional correlation matrix Γt, where each conditional variance σii,t

is represented by a GARCH model. Note that the correlation matrix Γt is

time-varying and that the restriction γi + βi < 1 guarantees stationarity of

the variance process. Other restrictions are imposed on the values of the

coefficients δ in order to assure the positive definiteness of the conditional

correlation matrix: in particular, δ1 ≥ 0, δ2 ≤ 1 and δ1 + δ2 ≤ 1.
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2.4.3 The Multivariate Sk-t Distribution

To extend the univariate t distribution to the multivariate case it is pos-

sible to assume that the χ2 which appears in the definition of the t variable

is the same for each component. This feature could be a strong restriction

when analyzing financial data because it imposes the same fat-tails to every

component.

A second way to generalize the t distribution to the n-dimensional case

is by using a covariance matrix. In this case, the equality of the degree-of-

freedom parameters has to be tested in a second step. Let assume that zt is

drawn from the multivariate Sk-t distribution as

t(zt|ν1, . . . , νn, λ1, . . . , λn) =
n∏

i=1

bici

(
1 +

ζ2
i,t

νi − 2

)− νi+1

2

(2.4.13)

where

ζ =





(bizi,t+ai)

(1−λi)
if zi,t < −ai

bi

(bizi,t+ai)

(1+λi)
if zi,t ≥ −ai

bi

ai = 4λici
νi − 2

νi − 1

b2
i = 1 + 3λ2

i − a2
i .

Fixing the i-th component, λi introduces asymmetry on the standard t dis-

tribution. The parameters a and b are scale parameters and can be set in

order to obtain mean equal to zero and unit variance. Each component has a

well-defined distribution if νi > 2 and −1 < λi < 1. Note that this distribu-

tion is a generalization of the t distribution; when λi = 0 the i-th component

shows standard t distribution. If νi < ∞ the i-th component shows positive

excess kurtosis. In fact, it is well known that the normal distribution can

be obtained as a limit of Student t distribution when the degree of freedom

parameter tend to infinity. Let define Mr = E[z∗ri,t ] as the r-th moment of the
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non-standardized random variable z∗i,t drawn from the univariate Sk-t dis-

tribution. The first four moments of the returns distribution can be written

as

Mi,1 = 4ciλi
νi − 2

νi − 1
= ai

Mi,2 = 1 + 3λ2
i = b2

i + a2
i

Mi,3 = 16ciλi(1 + λ2
i )

(νi − 2)2

(νi − 1)(νi − 3)
if νi > 3

Mi,4 = 3
νi − 2

νi − 4
(1 + 10λ2

i + 5λ4
i ) if νi > 4

As a consequence the moments of the standardized variable zi,t =
(z∗i,t−ai)

bi
are

respectively

µ
(1)
i = 0

µ
(2)
i = 1

µ
(3)
i =

Mi,3 − 3aiMi,2 + 2a3
i

b3
i

µ
(4)
i =

Mi,4 − 4aiMi,3 + 6a2
i Mi,2 − 3a4

i

b4
i

where µ
(r)
i = E[zr

i,t]. The skewness and kurtosis are non-linear functions of

the parameters λi and νi that describe respectively the asymmetry and the

degrees-of-freedom.

2.4.4 Higher Moments Dynamic

Time variability in higher moments has been analyzed more directly in

Hansen (1994), Harvey and Siddique (1999), and Jondeau and Rockinger

(2003). Parameters λi and νi following recent contributions. For the asym-

metry parameter, Ang and Bekaert (2002) show that bearish and bullish

markets tend to be persistent, suggesting that there may be some clustering

in this parameter. Second, the lower the degree-of-freedom parameter, the



2.4. Four Moment Asset Allocation Problem 59

higher the probability of extreme events in market returns. As argued by

Das and Uppal (2004), such extreme events are not likely to be persistent.

As a consequence, after a large shock, it’s more likely to expect a decrease in

kurtosis. In other words the degree-of-freedom parameter is expected to be

negatively correlated with the size of shocks. Let underline that in case of a

distribution very close to the normal one, the parameter νi,t → +∞, and so,

it could be easier to estimate the inverse 1
νi,t

.

For higher moments dynamic the following models are proposed:

1

ν̃i,t

=
1

ν̃i

+ b1

p∑
i=1

ωi|εt−i| (2.4.14)

λ̃i,t = λ̃i + b2

p∑
i=1

ωiεt−i (2.4.15)

where ν̃i,t and λ̃i,t are respectively mapped into [2, +∞) × [−1, 1] and ωi =

1− i
p
is the weight on lag i.

The dynamic of the degree-of-freedom parameter νi,t depends on the ab-

solute value of residuals, because it translates the heaviness of the distribu-

tion’s tails regardless of the sign of shocks over the recent period. Since the

degree-of-freedom parameter is very large in the case of very small recent

shocks, ν̃i can be set to a large value in order to describe normality in asset

returns.

In contrast, the dynamic of the asymmetry parameter naturally depends

on signed residuals, λi,t being likely to reflect the sign and size of shocks over

the recent period. Equations 2.4.14 and 2.4.15 look like ARCH(p) models

because of the introduction of some lags in the function of unexpected re-

turns. It is assumed that parameters b1 and b2 are the same for all markets.

This assumption is made in order to avoid the curse of dimensionality, for

example see the DCC model of Engle and Sheppard (2002). Jondeau and
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Rockinger (2003) showed that different estimation of parameters b1 and b2

doesn’t change significantly the results. Moreover, it can increase the uncer-

tainty related to the estimation of the parameters.

2.4.5 Parameters Estimation

In order to solve the asset allocation problem a set of parameters need to

be estimated. Let call this set of parameters θ, with θ = (µi, ϕi, ωi, βi, γi, (i =

1, . . . , n), δ1, δ2, ρjk, (1 ≤ j ≤ k ≤ n)). This first set of parameters refers

to the DCC model. A second set of parameters needs to be estimated. Let

call this set κ. The parameters in κ refer to the shape of the distribution.

Assuming that innovations are drawn from a multivariate Sk-t distribution

with constant shape parameters, κ becomes κ = (λ1, . . . , λn, ν1, . . . , νn). In

contrast, if the shape parameters of the multivariate Sk-t distribution are

assumed to be time varying, κ becomes κ = (λ1, . . . , λn, b1, b2).

Let now define the sample log-likelihood function of the DCC model, see

section 2.4.11, when returns are drawn from a multivariate Sk-t distribution

as

ln L(r1, . . . , rt|θ, κ) =
T∑

t=1

ln
[
t
(
σt(θ)

− 1
2 (rt − µt(θ))|κ

)]

=
T∑

t=1

ln [t(zt|κ)]− 1

2

T∑
t=1

ln |σt(θ)| (2.4.16)

where T is the sample size and (zt|κ) is defined as in equation 2.4.13. The

maximization of equation 2.4.16 leads to the log-likelihood estimation of the

parameters.

For large dimensional systems, the estimation can be significantly speed

up by performing the estimation in two steps. In the first step, the quasi-

ML (maximum likelihood) estimation of the univariate conditional mean and
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variance equations is obtained assuming normality. The unconditional corre-

lation matrix of standardized residuals is then used to estimate the matrix Q.

In the second step, the parameters referring to the dynamics of correlation

(δ1 and δ2) and to the shape of the distribution κ are estimated simultane-

ously. As shown by Joundeau and Rockinger (2003), the two step estimation

procedure gives similar results to the estimation obtained by the direct max-

imization of the log-likelihood function.
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Chapter 3

Four Moment Asset Allocation

Model: a Proposal

3.1 Introduction

In this chapter a four moment asset allocation model is proposed. Some

assumptions are made in order to simplify the optimization model and to

obtain a closed form solution for the optimal portfolio. In particular, the

key assumption concerns the representation of skewness and kurtosis. The

obtained optimal portfolio is a generalization of the classical two moments

optimal portfolio, see Markowitz (1952). This generalization permits to write

the optimal portfolio as the sum of three portfolios: the first one is the mean-

variance optimal portfolio, the second one depends on the skewness only

and the third one on the kurtosis only. When the kurtosis is equal to 3, i.e.

no kurtosis in excess from the case of normal distribution returns is present,

then the optimal portfolio is composed only by the mean variance one and the

component due to the skewness. This portfolio is the mean-variance-skewness

optimal portfolio as obtained in Gamba and Rossi (1998). Therefore, the four

63
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moments model moves a step forward in the direction proposed by Gamba

and Rossi (1998).

The general idea behind this model is that in presence of skewness and

kurtosis the optimal portfolio can present an higher variance compared to

the mean-variance optimal one due to the investor preferences for skewness

and kurtosis. The problem of taking into account higher moments in the

definition of the individual utility function is not directly treated in the next

sections. The preference structure is easily defined starting from the idea

that an investor has preferences for mean and positive skewness while avoids

high volatility and kurtosis. This is intuitive: an higher value of skewness

means that there’s an higher probability of positive returns, while, kurtosis

is a dispersion measure as variance, and so, a higher value of it could mean

an increasing risk for the portfolio, see Horvath and Scott (1980).

Let underline that the evidence that returns of financial activities are not

normally distributed is not enough to justify the introduction of a portfolio

selection model that considers also the the third and fourth moment. It has

to be assumed also that the individual utility function depends on the higher

order moments.

Some empirical evidence suggested that mean-variance criterion results

in allocations could be good also when returns are non normal, Levy and

Markowitz (1979), Pulley (1981), and Kroll, Levy and Markowitz (1984).

An explanation of the good performance of the mean-variance criterion may

be that the returns are driven by an elliptical distribution, for which the

mean-variance approximation of the expected utility remains good for all

utility functions (Chamberlain (1983)). In contrast, under large departure

from normality, in particular when the distribution is severely asymmetric,

Chunachinda et al. (1997), Athayde and Flôres (2004) and Jondeau and
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Rockinger (2004) show that the mean-variance criterion can lead to unsatis-

factory results. In such a case, a three- or four-moment optimization strategy

can improve the results.

The model proposed in this chapter is very general and it permits to

express the optimal portfolio as a function of the first four moments of the

returns distribution. Moreover, the result of the optimization problem is the

generalization of the efficient frontier in the E-V-S-K framework, where E-

V-S-K stands for expected return-variance-skewness-kurtosis.

3.2 Assumptions

Let now define the assumptions that will be used in the next section. Let

assume that n + 1 assets are available, n with random return distributions

and one with a deterministic return, i.e. the risk-less asset. Let define

• x : the column vector of portfolio weights.

• r : the column vector of returns with mean, standard deviation, skew-

ness and kurtosis respectively represented by the vectors µ, σ, ξ and

k.

• µ0 : the risk-less return.

• y : a random variable such that E(y) = 0, E(y2) = σ2
y, E(y3) = ξ3

y 6= 0

and k4
y = E(y4)− 3 = 0.

• z : a random variable such that E(z) = 0, E(z2) = σ2
z , E(z3) = ξ3

z = 0

and k4
z = E(z4)− 3 6= 01.

1The variable k4
z is the excess kurtosis of the random variable z. Considering excess

kurtosis implies to obtain negative values for the variable k4
z .
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• y and z are assumed to be independent random variables.

• ε : a column vector where the entries are Gaussian variables conditional

to y and z with E(ε|y, z) = 0 and conditional covariance matrix C =

[E(εε′|y, z)].

• b, t : two column vector of real numbers.

From the previous assumptions the role of the two random variables y and

z is clear. Note that, y is assumed to have skewness different from zero and

kurtosis equal to 3. The value of the kurtosis is chosen not to give any a

contribution to the kurtosis of the returns due to y. Moreover, note that for

E(y3) is just asked to be different from 0 and the sign of the skewness itself

is not important. In other words, as it will be more clear in the following,

the skewness of the variable y only play the role of a numeraire, useful to

measure the assets skewness in a proportional way.

Similarly, the same considerations are valid for the random variable z. In

this case, the kurtosis of variable z play the role of a numeraire2 to measure

assets returns kurtosis. As a consequence, in this framework it is indifferent

to directly calculate the kurtosis or express it as excess kurtosis with respect

to 3, where 3 is the value of kurtosis for a random variable with normal dis-

tribution. Obviously, when considering excess kurtosis, it’s possible to obtain

also negative values.

Following Ingersoll (1987), let assume that the vector of the returns r can

be written as follows:

r = µ + ε + by + tz (3.2.1)

2In this case kz plays the role of a numeraire only when excess kurtosis to the value

three is taken into account.
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Note that the previous equation it’s a generalization of the representation

of returns made by Ingersoll (1987) that permits to take into account also

the kurtosis. Moreover, note that ε describes the Gaussian component of the

returns while the variables y and z add separately the asymmetry (skewness)

and the fat-tails (kurtosis) to the returns distribution. Moreover, let recall

that the 2 random variables y and z are assumed to be independent. This

assumption plays a central role in the following model because it allows to

handle separately the skewness and the kurtosis, y and z being the only

sources of asymmetry and fat taildness of the returns. The implications of

the last assumption will be underlined more specifically in the empirical

section. Let now define the covariance matrix of returns as:

D = [E(εε′|y, z) + bb′σ2
y + tt′σ2

z ] (3.2.2)

The covariance matrix D is positive definite being the sum of a positive

definite matrix, the covariance matrix of ε conditional to y and z, and two

semi-positive definite matrices by construction, the results being of outer

products. Furthermore, the covariance matrix D is a non-singular matrix.

The co-skewness between i, j, l assets and the co-kurtosis between i, j, l, m

assets can be defined as:

E[(ri − µi)(rj − µj)(rl − µl)] = ξi,j,l = bibjblξ
3
y (3.2.3)

E[(ri − µi)(rj − µj)(rl − µl)(rm − µm)] = ki,j,l,m = titjtltmk4
z (3.2.4)

where the indexes i, j, l, m represent the entries of the vectors. Note that at

least three assets are needed in order to define the co-skewness and at least

four for the definition of co-kurtosis. Moreover, the definitions in equations

3.2.3 and 3.2.4 are linear functions of ξ3
y and k4

z .
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In particular, due to the assumptions made on the returns, the moments

of the portfolio can be defined as follows

µP = x′µ + (1− 1′x)µ0

σ2
P = x′Dx

s3
P = x′bξy

k4
P = x′tkz.

Let underline that the first and second moments are computed like in the

mean-variance framework while skewness and kurtosis are linear functions

respectively of the skewness of y and the kurtosis of z.

The introduction of the third and fourth moments has strong implications

on the definition of the structure of preferences. In general it is assumed that

the agent has a preference for high values of skewness and for low values of

kurtosis. Formally, let define a stochastic dominance rule (E-V-S-K: expected

return, variance, skewness, kurtosis).

Definition 3.2.1. Return rA E-V-S-K dominates rB (rA >EV SK rB) if µA ≥
µB and σB ≥ σA and ξA ≥ ξB and kB ≥ kA.

The E-V-S-K dominance is a simple generalization of the classical second

order stochastic dominance. As shown in section 1.4, it’s also possible to

define the general concept of stochastic dominance of order n.

Under suitable regularity conditions on the individual utility function U,

the E-V-S-K can be characterized as U ′ > 0, U ′′ < 0, U ′′′ > 0 and U ′′′′ < 0.

Despite of this, it’s always possible to find a couple rA and rB and a utility

function U∗ such that rA >4 rB but U∗(rB) ≥ U∗(rA). In other words, in

general there is no general compatibility between expected utility theory and

stochastic dominance, see for example Brockett and Kahane (1992). This
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incompatibility doesn’t affect the proposed model for two order of reasons.

First, it is always possible to restrict the set of Von Nuemann-Morgenstern

expected utility functions in order to obtain a correspondence with E-V-

S-K dominance rule. Second, as it will be clearer in the next pages, the

model doesn’t need to assume a particular utility function. The optimization

problem can be solved explicitly: the optimal solution then is a function of

the first four moments of returns distribution.

3.3 Four Moment Optimal Portfolio

In this section the optimal portfolio in a four-moment framework is de-

rived. The optimal portfolio is the one that minimize the kurtosis subject

to expected return, variance, skewness and budget constraints. In order to

simplify the calculations the optimization problem will be written as a max-

imization problem. Short sellings are allowed in the following model and

negative portfolio weights have the usual interpretation of short selling.

3.3.1 No Risk-less Asset

Let consider the problem with no risk-less asset. The rational agent, ac-

cording to the preference to skewness and kurtosis, chooses a portfolio that

minimizes the kurtosis, given the mean, skewness and kurtosis . The objective

function can be written as:

F (x) =
n∑

i=1

n∑
j=1

n∑

l=1

n∑
m=1

xixjxlxmki,j,l,m (3.3.1)

where x is the column vector of portfolio weights. Let underline that in

order to perform the four moment allocation model at least four assets are

needed. Using the assumptions on returns distribution, the objective function
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in equation 3.3.1 can be expressed in an equivalent form as

F (x) = (x′t)4k4
z

The optimization problem given the expected return µP , the variance σ2
P and

the skewness ξ3
P is

max
x

−x′tkz (3.3.2)

s.t. x′Dx = σ2
P (3.3.3)

x′µ = µP (3.3.4)

x′1 = 1 (3.3.5)

x′bξy = ξP ⇒ x′b =
ξP

ξy

. (3.3.6)

The optimization problem presents a linear objective function, three linear

constraints and a quadratic constraint. Following the assumptions on the

investors’s preferences (E-V-S-K dominance), the optimization problem in

3.3.2 can be written equivalently as a minimization problem where the ob-

jective function is the portfolio kurtosis. The first constraint in equation 3.3.3

sets the level of portfolio variance. Note that, in the classical mean-variance

framework, the agent’s problem is written as a quadratic optimization prob-

lem with linear constraints. Equation 3.3.4 is the usual constraint on the

portfolio expected return. Equation 3.3.5 is the usual budget constraint: no

assumptions are made on the sign of the portfolio weights, i.e. short selling is

allowed. Equation 3.3.6 is the constraint on skewness. Note that it’s possible

to write the constraint as in equation 3.3.6 and divide by ξy because the

variable y is assumed to have skewness different from 0.
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Let now define the matrix P as:

P = M ′D−1M =




a c f p

c d g q

f g e r

p q r s




where the (n, 4) matrix M is defined as M = (µ,1, b, t). The matrix M is

assumed to be of full column rank, i.e. the vectors µ,1, b and t are assumed

to be linearly independent. The matrix P is symmetric by construction. The

entries of matrix P are: a = µ′D−1µ, c = µ′D−11, f = µ′D−1b, p = µ′D−1t,

d = 1′D−11, g = 1′D−1b, q = 1′D−1t, e = b′D−1b, r = b′D−1t, s = t′D−1t.

Let define also the matrices A and P2 as sub-matrices of P :

P2 =




a c f

c d g

f g e


 A =


 a c

c d


 .

The matrices A and P2 will be useful in the next pages for further calculations.

The matrix A coincides to the matrix A defined in equation 1.6.9 in the mean-

variance framework. Let ψ′ = (p q r) and H = ψ′P−1
2 ψ.

Lemma 3.3.1. If rank(M) = 4 then

(s−H) =
detP

detP2

> 0.

Proof: Let y = Mx, by substitution it’s possible to write:

x′Px = x′M ′D−1Mx = y′D−1y.

D being a positive definite matrix, then also P is a positive definite matrix,

i.e. det(P ) > 0 and det(P2) > 0 (P and P2 are leading principal minors of

matrix P ). Moreover, it’s easy to show that (s − H)det(P2) = det(P ), and
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then (s−H) > 0. ?

Let define the quantity σ2
P2

= β′P−1
2 β, where β = (µP 1 ξP

ξy
)′. Note that

the number σ2
P2

is a positive number by construction, P−1
2 being a positive

definite matrix. As it will be more clear in the next pages, the quantity σ2
P2

can be interpreted as a variance. Let now calculate the optimal portfolio for

problem 3.3.2.

Proposition 3.3.1. Given µP , σ2
P ≥ σ2

P2
, ξP > 0 and kz < 0 the optimal

portfolio for problem 3.3.2 is

x∗ = D−1(µ 1 b)P−1
2 β + (3.3.7)

+

√
σ2

P − σ2
P2

(s−H)


D−1t−D−1(µ 1 b)P−1

2




p

q

r







and the optimal kurtosis k∗ is

k∗ = kz


(p q r)P−1

2




µP

1

ξP

ξy


 +

√
s−H

√
σ2

P − σ2
P2


 . (3.3.8)

Proof: The Lagrangian function for problem 3.3.2 is:

L(x, λ) = −x′tkz−λ1(x
′Dx−σ2

P )−λ2(x
′µ−µP )−λ3(x

′1−1)−λ4(x
′bξy−ξP )

The first order conditions for the optimization problem 3.3.2 are:

∂L

∂x
= −tkz − 2λ1Dx− λ2µ− λ31− λ4bξy = 0 (3.3.9)

∂L

∂λ1

= x′Dx− σ2
P = 0 (3.3.10)

∂L

∂λ2

= x′µ− µP = 0 (3.3.11)
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∂L

∂λ3

= x′1− 1 = 0 (3.3.12)

∂L

∂λ4

= x′bξy − ξP = 0 (3.3.13)

The Hessian matrix for problem 3.3.2 is Hx(L) = ∂2L
∂x2 = −2λ1D. D

being positive definite, then −2λ1D is negative definite when λ1 > 0. In the

following, the sign of λ1 will be investigated in order to ensure the first order

conditions to be sufficient for problem 3.3.2.

From equation 3.3.9, assuming λ1 6= 0, the optimal portfolio can be writ-

ten as

x∗ = − λ4

2λ1

ξyD
−1b− λ2

2λ1

D−1µ− λ3

2λ1

D−11− kz

2λ1

D−1t (3.3.14)

The assumption λ1 6= 0 is equivalent to ask the quadratic restriction to

hold. Let re-name some parts of the previous equation in order to simplify

calculations. Let define the vector γ′ = (γ1 γ2 γ3 γ4) where

γ1 = − λ2

2λ1

γ2 = − λ3

2λ1

γ3 = − λ4

2λ1

ξy γ4 = − kz

2λ1

(3.3.15)

Let re-write equation 3.3.14 as a function of γ:

x∗ = D−1Mγ.

Plugging the optimal x∗ into the constraints, equations 3.3.3, 3.3.4, 3.3.5 and

3.3.6, the following equations hold:

x′Dx = γ′M ′D−1DD−1Mγ = γ′Pγ = σ2
P (3.3.16)

µ′x = µD−1Mγ = µP (3.3.17)

1x = 1D−1Mγ = 1 (3.3.18)

ξyb
′x = ξyb

′D−1Mγ = ξP ⇒ b′D−1Mγ =
ξP

ξy

(3.3.19)
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From the 3 linear constraints, 3.3.17, 3.3.18 and 3.3.19, it’s possible to obtain

γ1, γ2 and γ3 as functions of γ4:



γ1

γ2

γ3


 = P−1

2




µP

1

ξP

ξy


− P−1

2




p

q

r


 γ4.

By substitution in the quadratic restriction, it’s possible to solve for γ4:

γ4 = ±
√

σ2
P − σ2

P2

(s−H)
.

From equation 3.3.15, λ1 can be expressed as:

λ1 = − kz

2γ4

. (3.3.20)

The first order conditions are sufficient for problem 3.3.2 if λ1 > 0. Therefore,

for kz < 0 (kz > 0) the value of γ4 is

γ4 =

√
σ2

P − σ2
P2

(s−H)


γ4 = −

√
σ2

P − σ2
P2

(s−H)




It’s easy now to write the optimal kurtosis k∗ associated with the opti-

mal portfolio x∗ just recalling that k = x′tkz and substituting the optimal

portfolio x∗

k∗ = kz


(p q r)P−1

2




µP

1

ξP

ξy


 +

√
s−H

√
σ2

P − σ2
P2


 ? . (3.3.21)

The optimal portfolio x∗ in equation 3.3.9 is the optimal one in a E-V-S-

K framework. This representation is pretty obscure and doesn’t allow to get
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any easy insight about it. It’s useful then to re-write the optimal portfolio in

a form that allows to make some considerations more directly. Moreover, re-

writing the optimal portfolio in a more suitable form permits to decompose

it in different components that underline the role of skewness and kurtosis.

Let calculate the values of γ as functions of the matrix A instead of P2.

To do this, it is necessary to write (γ1 γ2) as function of γ3 and γ4 using

the first 2 linear restrictions, equations 3.3.17 and 3.3.18:

 γ1

γ2


 = A−1


 µP

1


− A−1


 f

g


 γ3 − A−1


 p

q


 γ4 (3.3.22)

Remark 3.3.1. From Lemma 3.3.1, the following equation holds:

γ′Pγ = σ2
P > σ2

P2
= (γ1 γ2 γ3) P2




γ1

γ2

γ3


 (3.3.23)

A simple interpretation of the Remark 3.3.1 is that an investor with the

given structure of preferences for higher moments are willing to choose port-

folios with higher variance compared to the mean-variance efficient ones. In

other words, such an investor balances the higher values of portfolio variance

with a increasing value of skewness and decreasing values of kurtosis.

Let evaluate the value of γ3 plugging equation 3.3.22 into the quadratic

constraint, equation 3.3.3. The value of γ3 can be written as follows:

γ2
3(e− h) = σ2

P2
+ 2γ4(p q)A−1


 µP

1


−

−(µP 1)A−1


 µP

1


− γ2

4(p q)A−1


 p

q


 (3.3.24)

Let re-write equation 3.3.24 in a more useful way:

γ2
3(e− h) = σ2

P2
− σ2

B (3.3.25)
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where

σ2
B = [µP 1 γ4p γ4q]T




µP

1

γ4p

γ4q




with T =


 A−1 A−1

A−1 A−1




(3.3.26)

Let note that the quadratic form that defines σ2
B is semi-positive definite. In

fact, A being positive definite, then A−1 is positive definite. Therefore, the

matrix T has two positive eigenvalues and two null eigenvalues by construc-

tion. It’s useful to define also the quantity σ2
A as

σ2
A = (µP 1)A−1


 µP

1




The quantity σ2
A plays a central role in this model because it permits to

directly compare the optimal portfolio in E-V-S-K framework with the one

obtained by Gamba and Rossi (1998) in a three moments framework. More-

over, note that σ2
A is equivalent to the quantity defined in equation 2.2.4.

Let now evaluate the value of γ3 for ξy > 0 (ξy < 0):

γ3 =

√
σ2

P2
− σ2

A

(e− h)


γ3 = −

√
σ2

P2
− σ2

A

(e− h)


 (3.3.27)

It’s possible now to express the optimal portfolio for problem 3.3.2 as a func-

tion of matrix A. This allows to directly compare E-V-S-K optimal portfolio

with three moment optimal portfolios , see Gamba and Rossi (1998).

Corollary 3.3.1. Given µP , σ2
P ≥ σ2

P2
≥ σ2

B, ξP > 0 and kz < 0 then the
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optimal portfolio for problem 3.3.2 can equivalently be written as:

x∗ = D−1(µ 1)A−1


 µP

1


 +

+


D−1b + D−1(µ 1)A−1


 f

g







√
σ2

P2
− σ2

B

e− h
+

+


D−1t + D−1(µ 1)A−1


 p

q







√
σ2

P − σ2
P2

s−H
(3.3.28)

3.3.2 Optimal Portfolio Returns Analysis

Let now analyze the properties of the optimal portfolio in equation 3.3.28.

The optimal portfolio in equation 3.3.28 is equivalent to the one in equation

3.4.5 and it can be separated as follows:

x∗1 = D−1(µ 1)A−1


 µP

1


 (3.3.29)

x∗2 =


D−1b + D−1(µ 1)A−1


 f

g







√
σ2

P2
− σ2

B

e− h
(3.3.30)

x∗3 =


D−1t + D−1(µ 1)A−1


 p

q







√
σ2

P − σ2
P2

s−H
(3.3.31)

Portfolio x∗1 is the classical optimal portfolio given µp in the M-V framework,

see Huang and Litzemberger (1988). The portfolio x∗1 displays the properties

1′x∗1 = 1 and µ′x∗1 = µP .

Note that, by construction, portfolios x∗2 has the property x∗
′

2 1 = 0. Ac-

cording to Ingersoll (1987), portfolios x∗2 is said to be an arbitrage portfolio.

Portfolio x∗2 is useful to add variance to the optimal mean-variance portfolio

following the skewness individual preferences. The extra variance due to the
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skewness preference depends on the quantity σ2
P2
− σ2

B. Moreover, portfolio

x∗2 is a null vector if and only if ξy = 0, i.e. σ2
P2

= σ2
B.

Portfolio x∗3 displays the property x∗
′

3 1 = 0. According to Ingersoll (1987),

portfolio x∗3 is said to be an arbitrage portfolio. Portfolio x∗3 is useful to add

variance to the optimal mean-variance portfolio following the kurtosis indi-

vidual preferences. The extra variance due to the kurtosis preference depends

on the quantity σ2
P − σ2

P2
. Moreover, portfolio x∗3 is a null vector if and only

if kz = 0, i.e. σ2
P = σ2

P2
.

Let underline that the cases when σ2
P2

= σ2
B and σ2

P = σ2
P2

are trivial.

Those two situations occur respectively when ξy = 0 and kz = 0. In those

cases the rank of matrix P is less than 4 and it simply means that skewness

or kurtosis or both of them are not taken into account3.

Let now analyze what happens to the optimal portfolio x∗ for particular

values of σ2
P2
. In this way it will be clear that the proposed model is a gener-

alization of classical mean-variance model, see Markowitz (1952), and of the

three moments asset allocation model proposed by Gamba Rossi (1998).

• σ2
P = σ2

P2
= σ2

B.

In this case, being σ2
P = σ2

P2
= σ2

B, no extra variance is taken into

account. The optimal portfolio x∗ in equation 3.3.28 becomes

x∗ = D−1(µ 1)A−1


 µP

1


 (3.3.32)

This portfolio is exactly the mean-variance optimal portfolio, see Huang

and Litzenberger (1988).

3The assumptions made in section 3.2 require ξy 6= 0 and kz 6= 0. The only reason of

those assumptions is to guarantee that the model takes into account both the third and

the fourth moments.
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• σ2
P > σ2

P2
> σ2

B.

In this case, positive extra variance is taken into account. Portfolio x∗2

and x∗3 are both different from the null vector. The optimal portfolio

x∗ becomes

x∗ = D−1(µ 1)A−1


 µP

1


 +

+


D−1b + D−1(µ 1)A−1


 f

g







√
σ2

P2
− σ2

B

e− h
+

+


D−1t + D−1(µ 1)A−1


 p

q







√
σ2

P − σ2
P2

s−H
. (3.3.33)

Note that, when σ2
P2
↓ σ2

B almost all the extra variance taken into ac-

count is used in order to increase the skewness of the optimal portfolio.

On the contrary, when σ2
P2
↑ σ2

p the extra variance is almost all used in

order to decrease the kurtosis of the optimal portfolio. In other words,

by varying σ2
P2
, it’s possible to give different importance to skewness

and kurtosis in the optimal portfolio and build the efficient frontier in

E-V-S-K framework.

Let also underline that portfolio x∗1 + x∗2 is different from the optimal

portfolio in obtained by Gamba and Rossi (1998) considering the first

three moments of returns distribution. This is reasonable because the

rate of substitution between skewness and kurtosis preferences is not

explicitly defined in this model. To do that, the definition of the indi-

vidual utility function is needed.

• σ2
P > σ2

P2
= σ2

B.

This is the case where the extra-variance is used just to decrease the

value of the optimal portfolio kurtosis. The optimal portfolio x∗ be-
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comes

x∗ = D−1(µ 1)A−1


 µP

1


 +

+


D−1t + D−1(µ 1)A−1


 p

q







√
σ2

P − σ2
P2

s−H
(3.3.34)

Let underline that this model permits to consider mean, variance and

kurtosis by themselves without considering the the moments in a cer-

tain order.

• σ2
P = σ2

P2
> σ2

B.

This case is very interesting because it directly shows that the proposed

model is a generalization not only of the mean-variance model but also

of the three moments model proposed by Gamba and Rossi (1998).

When σ2
P = σ2

P2
the kurtosis is not taken into account and, at the same

time, the quantity σ2
B becomes equal to σ2

A, see equation 2.2.4. In fact,

let recall that

γ2
3(e− h) = σ2

P2
+ 2γ4(p q)A−1


 µP

1


−

−(µP 1)A−1


 µP

1


− γ2

4(p q)A−1


 p

q


 (3.3.35)

but

γ4 =

√
σ2

P − σ2
P2

(s−H)
= 0 (3.3.36)

and so

γ2
3(e− h) = σ2

P2
− (µP 1)A−1


 µP

1


 ⇒ γ3 =

√
σ2

P2
− σ2

A

e− h
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The optimal portfolio x∗ becomes

x∗ = D−1(µ 1)A−1


 µP

1


 +

+


D−1b + D−1(µ 1)A−1


 f

g







√
σ2

P2
− σ2

A

e− h
(3.3.37)

The optimal portfolio x∗ in equation coincides with the optimal port-

folio in the three moment framework as obtained in Gamba e Rossi

(1998), see equation 2.2.3.

Another interesting case is when the optimal portfolio in equation

3.3.28 can be split exactly into the sum of the optimal portfolio in

E-V-S framework plus the component due to the kurtosis. Let note

that σ2
B = σ2

A not only for γ4 = 0. The equality σ2
B = σ2

A also holds

when

2γ4(p q)A−1


 µP

1


− γ2

4(p q)A−1


 p

q


 = 0. (3.3.38)

Solving equation 3.3.38, the condition becomes

γ4


2(p q)A−1


 µP

1


− γ4(p q)A−1


 p

q





 = 0

and so

γ4 =

2(p q)A−1


 µP

1




(p q)A−1


 p

q




. (3.3.39)

When the condition on γ4 in equation 3.3.39 holds, the optimal portfolio
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x∗ becomes

x∗ = D−1(µ 1)A−1


 µP

1


 +

+


D−1b + D−1(µ 1)A−1


 f

g







√
σ2

P2
− σ2

A

e− h
+

+


D−1t + D−1(µ 1)A−1


 p

q







√
σ2

P − σ2
P2

s−H
. (3.3.40)

Portfolio x∗ is now the sum of the optimal portfolio in E-V-S frame-

work, see equation 3.3.2, plus portfolio x∗3 that translates the kurtosis

correction, i.e. the variation of the optimal weights due to the intro-

duction of the kurtosis.

3.3.3 Four Funds Decomposition

Due to the assumptions made in the previous sections4 it is possible to

decompose the optimal portfolio in presence of higher moments into four

funds. The result is obtained re-writing the portfolio selection optimization

problem in a more suitable way. The four funds have the shape of four vectors

that can be used in order to span the space of optimal portfolios.

Lemma 3.3.2. When the returns follow equation 3.2.1, the efficient set is

4The structure of returns is chosen in order to guarantee the four funds decomposition

property, see equation 3.2.1.
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spanned by the following 4 vectors:

v1 =
D−1µ

1′D−1µ

v2 =
D−11
1′D−11

v3 =
D−1b

1′D−1b

v4 =
D−1t

1′D−1t

Proof: Let rewrite the optimization problem as a quadratic optimization

problem with linear restrictions.

min
x

1

2
x′V x

s.t. x′µ = µP

x′1 = 1

x′bξy = ξP ⇒ x′b =
ξP

ξy

x′tkz = kP ⇒ x′t =
kP

kz

where V = E(εε′|y, z). From the definition of the covariance matrix, see

equation 3.2.2, the matrix V can be written as a function of D as V =

[D − bb′σ2
y − tt′σ2

z ].

The new objective function of the optimization problem is a quadratic

form in V , with linear constraints that represent respectively portfolio ex-

pected return, the budget constraint, portfolio skewness and portfolio kur-

tosis. Note that the covariance matrix in equation 3.2.2 is positive definite

by construction and, therefore, the first order conditions are sufficient for a

global minimum point.
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The langrangian function for the optimization problem is:

L(x, δ) =
1

2
x′Dx− 1

2

(
ξP

ξy

)2

σ2
y −

1

2

(
kP

kz

)2

σ2
z +

+δ1(µP − x′µ) + δ2(1− x′1) + δ3

[
ξP

ξy

− x′b
]

+ δ4

[
kP

kz

− x′t
]

The first order condition for x is:

∂L

∂x
= Dx− ξP

ξy

σ2
yb−

kP

kz

σ2
zt− δ1µ− δ21− δ3b− δ4t = 0

Dx− δ1µ− δ21−
[
ξP

ξy

σ2
y + δ3

]
b−

[
kP

kz

σ2
z + δ4

]
t = 0

Solving for x, the optimal solution is:

x∗ = δ1D
−1µ + δ2D

−11 +

[
ξP

ξy

σ2
y + δ3

]
D−1b +

[
kP

kz

σ2
z + δ4

]
D−1t (3.3.41)

By equation 3.3.41 and using the linear constraints, the optimal portfolio x∗

can be written as:

x∗ = λ1
D−1µ

1′D−1µ
+ λ2

D−11
1′D−11

+ λ3
D−1b

1′D−1b
+ λ4

D−1t

1′D−1t

where

λ1 = δ1(1′D−1µ)

λ2 = δ2(1′D−11)

λ3 =

[
δ3 +

ξP

ξy

σ2
y

]
(1′D−1b)

λ4 =

[
δ4 +

kP

kz

σ2
z

]
(1′D−1t)

and λ1 + λ2 + λ3 + λ4 = 1. ?

The advantage of the previous procedure is the possibility to directly com-

pare the spanning funds to the ones obtained in the classical mean-variance

framework. More precisely, in order to obtain the first two spanning vectors

v1 = D−1µ
1′D−1µ

and v2 = D−11
1′D−11 equal to the ones of the classical mean-variance

framework it’s needed to write the optimization problem as the minimization

of portfolio variance and add skewness and kurtosis through the constraints.
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3.4 With a Risk-less Asset

In the case of presence of a risk-less asset with return µ0, the optimization

problem in E-V-S-K framework changes and it can be written as follows:

max
x

−x′tkz (3.4.1)

s.t. x′Dx = σ2
P (3.4.2)

x′(µ− µ01) = µP − µ0 (3.4.3)

x′b =
ξP

ξy

. (3.4.4)

In the optimization problem the objective function is linear as two of the

restrictions while the first restriction is a quadratic form in x. The quadratic

constraint in equation 3.4.2 sets the desired value of portfolio variance. Equa-

tion 3.4.3 is the usual constraint on portfolio expected return in presence of

a risk-less asset. Equation 3.4.4 is the restriction on portfolio skewness and

it’s equivalent to the one in equation 3.3.6.

Note that in this case the restrictions for problem 3.4.1 are just 3. This

depends on the fact that the weight on the risk-less asset is calculated as the

residual after allocating in the risky assets. By intuition, the risk-less return

µ0 is deterministic and so it doesn’t give any contribution to the standardized

central moments of the returns distribution.

Let now define the matrix Q as:

Q = N ′D−1N =




m1 l1 f1

l1 e g1

f1 g1 s




where the (n, 3) matrix N is defined as N = [(µ − µ01), b, t]. The matrix

Q is assumed to be of full column rank, i.e. the vectors (µ − µ01), b and

t are assumed to be linearly independent. The matrix Q is symmetric and
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positive definite by construction. The entries of matrix Q are: m1 = (µ −
µ01)′D−1(µ − µ01), l1 = (µ − µ01)′D−1b, f1 = (µ − µ01)′D−1t, e = b′D−1b,

g1 = b′D−1t, s = t′D−1t. Let define also the matrix Q2 as a sub-matrix of Q:

Q2 =


 m1 l1

l1 e




The matrix Q2 will be useful in the next pages for further calculations.

Let ι′ = (f1 g1) and H1 = ι′Q−1
2 ι.

Lemma 3.4.1. If rank(N) = 3 then

(s−H1) =
detQ

detQ2

> 0.

Proof: Let y = Nx, by substitution it’s possible to write:

x′Qx = x′N ′D−1Nx = y′D−1y.

D being a positive definite matrix, then also Q is a positive definite matrix,

i.e. det(Q) > 0 and det(Q2) > 0 ( Q and Q2 are leading principal minors of

matrix Q). Moreover, it’s easy to show that (s −H1)det(Q2) = det(Q), and

then (s−H1) > 0. ?

Let define the quantity σ2
Q2

= β′Q−1
2 β, where β = (µp 1 ξp

ξy
)′. Note that

the number σ2
Q2

is a positive number by construction Q−1
2 being a positive

definite matrix. Let now calculate the optimal portfolio for problem 3.4.1.

Lemma 3.4.2. Given µP , σP > σ2
Q2
, ξP > 0 and kz < 0 the optimal portfolio

for problem 3.4.1 is x̃ = (1− x∗
′1, x∗

′
) with

x∗ = D−1[(µ− µ01) b]Q−1
2


 µP − µ0

ξP

ξy


 +

+

√
σ2

P − σ2
Q2

(s−H1)


D−1t−D−1[(µ− µ01) b]Q−1

2


 f1

g1





 (3.4.5)
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and the optimal kurtosis k∗ is

k∗ = kz


(f1 g1)Q

−1
2


 µP − µ0

ξP

ξy


 +

√
σ2

P − σ2
Q2

√
s−H1


 (3.4.6)

Proof: The Lagrangian function for problem 3.4.1 is:

L(x, λ) = −x′tkz−λ1(x
′Dx−σ2

P )−λ2[x
′(µ−µ01)−(µP−µ0)]−λ3(x

′bξy−ξP )

The first order conditions for problem 3.4.1 are:

∂L

∂x
= −tkz − 2λ1Dx− λ2(µ− µ01)− λ3bξy = 0 (3.4.7)

∂L

∂λ1

= x′Dx− σ2
P = 0 (3.4.8)

∂L

∂λ2

= x′(µ− µ01)− (µp − µ0) = 0 (3.4.9)

∂L

∂λ3

= x′bξy = ξP (3.4.10)

The Hessian matrix for problem 3.4.1 is Hx(L) = ∂2L
∂x2 = −2λ1D. D being

positive definite, then −2λ1D is negative definite when λ1 > 0. In the fol-

lowing, the sign of λ1 will be investigated in order to ensure the first order

conditions to be sufficient for problem 3.4.1.

From equation 3.4.7, assuming λ1 6= 0, the optimal portfolio can be writ-

ten as

x∗ = − kz

2λ1

D−1t− λ2

2λ1

D−1(µ− µ01) +
λ3

2λ1

D−1ξyb (3.4.11)

The assumption λ1 6= 0 is equivalent to ask the quadratic restriction to hold.

Let rename some parts of the equation 3.4.7 in order to simplify calculations.

Let define the vector δ′ = (δ1 δ2 δ3) where

δ1 = − λ2

2λ1

δ2 = − λ3

2λ1

ξy δ3 = − kz

2λ1

(3.4.12)



88 Chapter 3. Four Moment Asset Allocation Model: a Proposal

Let re-write equation 3.4.11 as a function of δ:

x∗ = D−1Nδ.

The 3 restrictions can now be re-written as functions of δ:

x′Dx = δ′N ′D−1DD−1Nδ = δ′Qδ = σ2
P (3.4.13)

(µ− µ01)′x = (µ− µ01)′D−1Nδ = µP − µ0 (3.4.14)

ξyb
′x = ξyb

′D−1Nδ = ξP ⇒ b′D−1Nδ =
ξP

ξy

(3.4.15)

From the 2 linear constraints it’s possible to obtain δ1 and δ2 as functions of

δ3: 
 δ1

δ2


 = Q−1

2


 µP − µ0

ξP

ξy


−Q−1

2


 f1

g1


 δ3.

By substitution in the quadratic restriction, it’s possible to solve for δ3:

δ3 = ±
√

σ2
P − σ2

Q2

(s−H1)
.

From equation 3.4.12, λ1 can be expressed as:

λ1 = − kz

2δ3

. (3.4.16)

The first order conditions for problem 3.4.1 are sufficient if λ1 > 0. Therefore,

for kz < 0 (kz > 0) the value of γ4 is

δ3 =

√
σ2

P − σ2
Q2

(s−H1)


δ3 = −

√
σ2

P − σ2
Q2

(s−H1)




Recalling that the kurtosis of the portfolio is k = x′tkz, the optimal

kurtosis associated to x∗ can be easily obtained by substitution:

k∗ = kz


(f1 g1)Q

−1
2


 µP − µ0

ξP

ξy


 +

√
σ2

P − σ2
Q2

√
s−H1


 ? .

(3.4.17)
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The portfolio x∗ in equation 3.4.11 is the optimal one in a E-V-S-K frame-

work in presence of n risky assets and a risk-less one. This representation

doesn’t permit to split the effects of the higher moments on the optimal

portfolio. It’s useful then to re-write the optimal portfolio in a form that al-

lows to make some considerations. Moreover, re-writing the optimal portfolio

in a more suitable form, it permits to decompose it in different components

that underline the role of skewness and kurtosis.

Let calculate the values of δ as a function m1 instead of the matrix Q2.

To do this it is necessary to write δ1 as functions of δ2 and δ3 using the first

linear restriction in equation 3.4.14:

δ1 =
µP − µ0

m1

− l1
m1

δ2 − f1

m1

δ3 (3.4.18)

where m1 is the first entry of matrix Q.

Remark 3.4.1. From Lemma 3.4.2, the following equation holds:

δ′Qδ = σ2
Q > σ2

Q2
= (δ1, δ2) Q2


 δ1

δ2


 (3.4.19)

A simple interpretation of Remark 3.4.1 is that an investor with the given

structure of preferences for skewness and kurtosis is willing to choose port-

folios with a higher variance compared to the mean-variance optimal ones.

As in the case of n risky assets, the higher variance is counterbalanced by an

increased value of portfolio skewness and a lower value of portfolio kurtosis.

Let evaluate the value of δ2 plugging equation 3.4.18 into the quadratic

constraint. The value of δ2 can be written as follows:

δ2
2

(
e− l21

m1

)
= σ2

Q2
+ 2δ3(µP − µ0)

f1

m1

(3.4.20)

−(µP − µ0)
2

m1

− f 2
1

m1

δ2
3 (3.4.21)
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Let rewrite equation 3.4.21 in a more useful way:

δ2
2(e− k) = σ2

Q − σ2
B (3.4.22)

where

k =
l21
m1

(3.4.23)

σ2
B = 2δ3(µP − µ0)

f1

m1

−

−(µP − µ0)
2

m1

− f 2
1

m1

δ2
3 (3.4.24)

Note that the quantity σ2
B is non negative by construction; in fact

[(µP − µ0)− f1]
2

m1

and m1 > 0.

It’s possible now to express the optimal portfolio for problem 3.4.1 as a func-

tion of matrix m1. This allows to directly compare E-V-S-K optimal portfolio

in presence of a risk-less asset with the three moment optimal portfolio, see

Gamba and Rossi (1998).

Corollary 3.4.1. Given µP , σ2
Q ≥ σ2

Q2
≥ σ2

B, ξy > 0 and kz < 0 then

the optimal portfolio for problem 3.4.1 can equivalently be written as, x̃ =

(1− x∗
′1, x∗′):

x∗ = D−1(µ− µ01)
(µP − µ0)

m1

+

+

[
D−1b + D−1(µ− µ01)

l1
m1

] √
σ2

Q2
− σ2

B

e− k
+

+

[
D−1t + D−1(µ− µ01)

f1

m1

] √
σ2

Q − σ2
Q2

s−H1

(3.4.25)
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3.4.1 Optimal Portfolio Returns Analysis

This section is very similar to section 3.3.2 for the case of n risky assets.

Let now analyze the properties of the optimal portfolio in equation 3.4.25.

The optimal portfolio in equation 3.4.25 is equivalent to the one in equation

3.4.5 and it can be divided as follows:

x∗1 = D−1(µ− µ01)
(µP − µ0)

m1

(3.4.26)

x∗2 =

[
D−1b + D−1(µ− µ01)A−1 l1

m1

] √
σ2

Q2
− σ2

Q

e− k
(3.4.27)

x∗3 =

[
D−1t + D−1(µ− µ01)

f1

m1

] √
σ2

P − σ2
Q2

s−H1

(3.4.28)

Portfolio x∗1 is the classical optimal portfolio given µP in the mean-variance

framework when considering n+1 assets, see Huang and Litzemberger (1988).

The portfolio x∗1 displays the properties 1′x∗1 = 1 , µ′x∗1 = µP and x∗
′

1 V x∗1 =

σ2
Q.

Note that, by construction, portfolios x∗2 has the property x∗21 = 0. Ac-

cording to Ingersoll (1987), portfolio x∗2 is said to be an arbitrage portfolio.

Portfolio x∗2 is useful to add variance to the optimal mean-variance portfolio

following the skewness individual preferences. The extra variance due to the

skewness preference depends on the quantity σ2
Q2
− σ2

B. Moreover, portfolio

x∗2 is a null vector if and only if ξy = 0, i.e. σ2
Q2

= σ2
B.

Portfolio x∗3 displays the property x∗
′

3 1 = 0. According to Ingersoll (1987),

portfolio x∗3 is said to be an arbitrage portfolio. Portfolio x∗3 is useful to add

variance to the optimal mean-variance portfolio following the kurtosis indi-

vidual preferences. The extra variance due to the kurtosis preference depends

on the quantity σ2
Q − σ2

Q2
. Moreover, portfolio x∗3 is a null vector if and only

if kz = 0, i.e. σ2
P = σ2

Q2
.
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Let now analyze what happens to the optimal portfolio x∗ for particular

values of σ2
Q2
. In this way it will be clear that the proposed model is a

generalization of classical mean-variance model, see Markowitz (1952), and

of the three moments asset allocation model proposed by Gamba and Rossi

(1998).

• σ2
Q = σ2

Q2
= σ2

B.

In this case, being σ2
Q = σ2

Q2
= σ2

B, no extra variance is taken into

account. The optimal portfolio x∗ in equation 3.4.25 becomes

x∗ = D−1(µ− µ01)
(µP − µ0)

m1

This portfolio is exactly the mean-variance optimal portfolio when the

risk-less asset is taken into account, see Huang and Litzenberger (1988).

• σ2
Q > σ2

Q2
> σ2

B.

In this case, positive extra variance is taken into account. Portfolio x∗2

and x∗3 are both different from the null vector. The optimal portfolio

x∗ becomes

x∗ = D−1(µ− µ01)
(µP − µ0)

m1

+

+

[
D−1b + D−1(µ− µ01)

l1
m1

] √
σ2

Q2
− σ2

B

e− k
+

+

[
D−1t + D−1(µ− µ01)

f1

m1

] √
σ2

Q − σ2
Q2

s−H1

Note that, when σ2
Q2

↓ σ2
B almost all the extra variance taken into

account is used in order to increase the skewness of the optimal port-

folio. On the contrary, when σ2
Q2

↑ σ2
Q the extra variance is almost

all used in order to decrease the kurtosis of the optimal portfolio. In
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other words, by varying σ2
Q2
, it’s possible to give different importance

to skewness and kurtosis in the optimal portfolio and build the efficient

frontier in E-V-S-K framework. Let also underline that portfolio x∗1+x∗2

is different from the optimal portfolio obtained by Gamba and Rossi

(1998) considering the first three moments of returns distribution. This

is reasonable because the rate of substitution between skewness and

kurtosis preferences is not explicitly defined in this model. To do that,

the definition of the individual utility function is needed.

• σ2
Q > σ2

Q2
= σ2

B.

This is the case where the extra-variance is used just to decrease the

value of the optimal portfolio kurtosis. The optimal portfolio x∗ be-

comes

x∗ = D−1(µ− µ01)
(µP − µ0)

m1

+

+

[
D−1t + D−1(µ− µ01)

f1

m1

] √
σ2

Q − σ2
Q2

s−H1

(3.4.29)

Let underline that this model permits to consider mean, variance and

kurtosis by themselves without considering the moments in the increas-

ing order.

• σ2
Q = σ2

Q2
> σ2

B.

This case is very interesting because it directly shows that the proposed

model is a generalization not only of the mean-variance model but also

of the three moments model proposed by Gamba and Rossi (1998).

When σ2
Q = σ2

Q2
the kurtosis is not taken into account and, at the same
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time, the quantity σ2
Q becomes equal to σ2

m. In fact, let recall that

δ2
2

(
e− l21

m1

)
= σ2

Q2
+ 2δ3(µP − µ0)

f1

m1

−(µP − µ0)
2

m1

− f 2
1

m1

δ2
3

but

δ3 =

√
σ2

Q − σ2
Q2

(s−H1)
= 0.

and so

δ2
2(e− k) = σ2

Q2
− σ2

m ⇒ δ2 =

√
σ2

Q2
− σ2

m

e− k

where σ2
m = (µP−µ0)2

m1
. The optimal portfolio x∗ becomes

x∗ = D−1(µ− µ01)
(µP − µ0)

m1

+

+

[
D−1b + D−1(µ− µ01)

l1
m1

] √
σ2

Q2
− σ2

m

e− k
(3.4.30)

The optimal portfolio x∗ in equation 3.4.30 coincides with the optimal

portfolio in the three moment framework as obtained in Gamba and

Rossi (1998), see equation 2.2.7.

Another interesting case is when the optimal portfolio in equation 3.4.1

can be be split exactly in the sum of the optimal portfolio in E-V-

S framework plus the component due to the kurtosis. Let note that

σ2
B = σ2

m not only for δ3 = 0. The equality σ2
B = σ2

m also holds when

2δ3(µP − µ0)
f1

m1

− f 2
1

m1

δ2
3 = 0

Solving equation 3.4.31, the condition becomes

δ3

[
2(µP − µ0)

f1

m1

− δ3
f 2

1

m1

]
= 0
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and so

δ3 =
2(µP − µ0)

f1

m1

f2
1

m1

. (3.4.31)

When the condition on δ3 in equation 3.4.31 holds, the optimal portfolio

x∗ becomes

x∗ = D−1(µ− µ01)
(µP − µ0)

m1

+

+

[
D−1b + D−1(µ− µ01)

l1
m1

] √
σ2

Q2
− σ2

m

e− k
+

+

[
D−1t + D−1(µ− µ01)

f1

m1

] √
σ2

Q − σ2
Q2

s−H1

(3.4.32)

Portfolio x∗ is now the sum of the optimal portfolio in E-V-S frame-

work, see equation 2.2.7, plus portfolio x∗3 that translates the kurtosis

correction, i.e. the variation of the optimal weights due to the intro-

duction of the kurtosis.

3.4.2 Four Funds Decomposition

Also in the case of n risky assets and a risk-less one it’s possible to decom-

pose the optimal portfolio in presence of higher moments into three funds.

The result is obtained rewriting the portfolio selection optimization problem

in a more tractable way as in subsection 3.3.3. The three funds have the shape

of three vectors that can be used to span the space of optimal portfolios, i.e.

the E-V-S-K space.

Lemma 3.4.3. When the returns follow equation 3.2.1 and n + 1 assets are
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considered, the efficient set is spanned by the following 3 vectors:

v1 =
V −1(µ− µ01)

1′V −1(µ− µ01)

v2 =
V −1b

1′V −1b

v3 =
V −1t

1′V −1t

The proof of this result is analogous to the one for the case of n risky

assets, for details see subsection 3.3.3 and Simaan (1993).



Chapter 4

Application

4.1 Data Set

Let now apply the model presented in the previous chapter to a real

financial data. Let first introduce the data base. The basket of asset classes

taken into account is composed of the following 9 financial indexes: ESX

Eurostoxx 50 index, DAX German stock market index composed of 30 largest

companies in term of book volume and market capitalization, FIB Italian

stock market index composed of 30 largest Italian companies, IBEX Spanish

stock market index composed of 35 largest Spanish companies, FTI Dutch

stock market index, V ix implied volatility index on S&P500 index, V nasdaq

implied volatility index on Nasdaq index, V daxx implied volatility index on

DAX index, V stoxx implied volatility index on ESX index. The time series

is composed of 240 weekly observations from September 2004 to April 2009.

In table 4.1 the first four moments of the return distribution for equity

indexes are reported. The Jarque-Bera test is performed in order to investi-

gate normality of assets returns. As shown in table 4.1, none of the equity

indexes show a distribution compatible with the normal distribution. Note

97
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Table 4.1: Equity Indexes

ESX DAX FIB IBEX FTI

Mean 0.000220468 0.000466 -0.00111 0.000393 -0.00057

Standard Deviation 0.01291557 0.010152 0.013547 0.012523 0.013822

Skewness -2.029736721 -0.49269 -1.79556 -1.58298 -2.45641

p-value (T statistics) 1 0.99 1 1 1

Kurtosis 13,97719396 4.027769 9.695811 8.705369 17.66857

p-value (T statistics) 0 0 0 0 0

J. Bera test < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

that Jarque-Bera test isn’t able to show if the non-normality is due to asym-

metry, fat tails or both of them. In order to verify the reason of non-normality

a T test on skewness and kurtosis is performed. Table 4.1 shows that for eq-

uity indexes non-normality depends only on kurtosis. Even if skewness for

equity indexes is not statistically significant, let underline that generally eq-

uity markets show negative skewness values.

In table 4.2 the first four moments of the return distribution for volatility

indexes are reported. The Jarque-Bera test is performed in order to investi-

gate normality of assets returns. Has shown in table 4.2 none of the volatility

indexes show a distribution compatible with the normal distribution. In this

case all the indexes show non-normal distribution both for asymmetry and

kurtosis1. Let underline that all the volatility indexes show positive asymme-

1The values of kurtosis for some volatility indexes are less than three because excess

kurtosis compared to the value 3 (the kurtosis for a normal random variable) is taken into

account.
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Table 4.2: Volatility Indexes

V nasdaq V ix V daxx V stoxx

Mean -0.000655622 9.7E-05 0.000349 -0.00026

Standard Deviation 0.042622394 0.048601 0.043145 0.046794

Skewness 0.572282007 0.471078 0.640776 0.704584

p-value (T statistics) 1.93(10−8) 3.544(10−10) 1.55(10−15) 6.88(10−12)

Kurtosis 1.702582958 1.517476 2.278429 3.42027

p-value (T statistics) 1.40(10−13) 0 0 0

J. Bera test < 10−3 < 10−3 < 10−3 < 10−3

try.

The interesting thing about volatility indexes is that they show a strong

negative correlation with equity markets. This feature could be of big interest

in asset allocation problems giving the possibility of diversifying portfolio

risk. Let underline that usually volatility indexes are considered to represent

implied volatility, where implied volatility directly recall the definition of

volatility in Black and Scholes formula for option pricing. Despite this, the

value of volatility indexes is calculated as an average of out of the money call

and put options on the underlying, i.e. the equity index itself.

The opportunity of using indexes instead of usual financial assets is pos-

sible thanks to the existence of efficient future markets. Futures markets are

usually more liquid than standard equity markets and therefore, the use of

futures can be considered as an advantage. The only difference with the use

of futures contracts is the interpretation of the portfolio weights. In fact, a

short position on a certain asset class can be directly taken without recalling
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the usual interpretation of short selling.

4.2 Estimation of the Parameters

In order to calculate the optimal portfolio in E-V-S-K framework it’s

needed to estimate the model parameters. The expected returns µ and the

covariance matrix D can be easily evaluated by using the historical returns.

The difference with M-V framework is in the evaluation of the skewness

and kurtosis coefficients that are not present in the classical framework. Let

recall the key assumption of the proposed approach:

r = µ + ε + by + tz. (4.2.1)

Assuming that the asset returns follow the previous equation the estimation

of coefficients b and t is needed. The skewness of returns depends only on the

random variable y. Note that in this framework the skewness of an asset is

assumed to be proportional to the skewness of the non-spherical variable y.

The bi parameter can be estimated as suggested by Simaan (1986) as

b̂i =

[
1
T

∑T
t=1(rit − E(ri))

3
] 1

3

E
1
3 (y)3

where bi is the i-th entry of vector b and T is the sample size. The order be-

tween the assets doesn’t depend on the variable y. Therefore the distribution

of y is totally arbitrary. Moreover, b being proportional to y, the value of the

skewness of y can be chosen as a numeraire, for example E
1
3 (y)3 = ξy = 1.

For kurtosis parameters t no estimation has been proposed in the litera-

ture. As in the previous case, the kurtosis of the returns depends only from

the random variable z because of the assumption made on the returns struc-

ture. Simply generalizing the proposal for the estimation of bi, the following
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Table 4.3: Estimated Skewness Parameters

ESX DAX FIB IBEX FTI V nasdaq V ix V daxx V stoxx

b̂ 0 0 0 0 0 0.382 0.314 0.427 0.470

Table 4.4: Estimated Kurtosis Parameters

ESX DAX FIB IBEX FTI V nasdaq V ix V daxx V stoxx

t̂ 2.795 0.805 1.939 1.741 3.534 0.341 0.303 0.456 0.684

estimation for parameter ti is proposed:

t̂i =

[
1
T

∑T
t=1(rit − E(ri))

4
] 1

4

E
1
4 (z)4

where ti is the i-th entry of vector t and T is the sample size. Again, the

order between the assets doesn’t depend on the variable z and therefore the

distribution of z is totally arbitrary. Moreover, t being proportional to z,

the value of the kurtosis of z can be chosen as a numeraire, for example

E
1
4 (z)4 = kz = 1.

The complete knowledge of the distribution of the latent variables y and

z is not needed in order to estimate the model’s parameters. Despite of this,

for simplicity it’s possible to assume a distribution for the variables y and

z. For example, it’s possible to assume that y and z are drawn respectively

from a Sk − t distribution with the desired skewness ξy and a t distribution

with the desired kurtosis kz.

In tables 4.3 and 4.4 are reported the estimated values for b and t respec-
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tively. Let note that the skewness parameters for equity indexes are set equal

to zero. This choice depends on the fact that equity indexes show a skewness

non significantly different from 0, see the previous section.

4.3 The Four Moment Efficient Frontier

Let now draw some frontiers in the E-V-S-K framework. As shown in

Lemma 3.3.1, the optimal kurtosis can be written as:

k∗ = kz


(p q r)P−1

2




µP

1

ξP

ξy


 +

√
s−H

√
σ2

P − σ2
P2


 .

Note that k∗ is a function of the portfolio mean µP , the portfolio vari-

ance σ2
P and the portfolio skewness ξP . In general, k∗ is defined on R3. As

consequence, in order to draw the efficient frontier is necessary to set one of

the variables equal to a given value. In figures 4.1, 4.2 and 4.3 the E-V-S-K

frontier is represented with given values of ξP respectively equal to 1.5, 1.8

and 2.

Note that in figures 4.1, 4.2 and 4.3 the kurtosis represented on Z ax

takes negative values. This is a consequence of the assumptions made on the

random variable z. The kurtosis is defined as excess kurtosis compared to the

value 3. Therefore, the portfolios on the E-V-S-K frontier show kurtosis less

than 3, i.e. a returns distribution with tails that are less fat than the normal

distribution.

As in the case of the mean-variance frontier, the efficient frontier is com-

posed only of a subset of the optimal portfolio set. In other words, some

of the portfolios on the frontier are trivially dominated in the sense of the

E-V-S-K dominance by other portfolios. Figure 4.4 shows the efficient part
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Figure 4.1: E-V-S-K Frontier: ξP = 1.5
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Figure 4.2: E-V-S-K Frontier: ξP = 1.8
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of the E-V-S-K frontier for ξP = 2.

In figure 4.5 the mean-variance efficient frontier and the E-V-S-K efficient
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Figure 4.3: E-V-S-K Frontier: ξP = 2
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Figure 4.4: Efficient Frontier: ξP = 2
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frontier are compared in the mean-variance space. The yellow line represents

the mean-variance efficient frontier while the yellow area represents the pro-
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jection of the E-V-S-K efficient frontier (with ξP = 2) on the mean-variance

space. Note that, according to the proposed model, the variance of the E-

V-S-K efficient portfolios is higher compared to the mean-variance efficient

ones. As a consequence, E-V-S-K efficient portfolios are dominated in the

mean-variance space by the portfolios belonging to the two moments effi-

cient frontier.

Figure 4.5: Comparison Between Efficient Frontiers
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4.4 Back Test

In this section the mean-variance optimal portfolio and some of the E-

V-S-K optimal portfolios are compared through a back test. Let recall that

x∗MV (mean-variance) and x∗EV SK are respectively equal to:

x∗MV = D−1(µ 1)A−1


 µp

1




x∗EV SK = D−1(µ 1 b)P−1
2 β+

√
σ2

P − σ2
P2

(s−H)


D−1t−D−1(µ 1 b)P−1

2




p

q

r





 .

The back test is built in the following way: the data base is divided

into two parts. The first part of the data set (training set) is used in order to

estimate the model’s parameters. The second part of the data base (validation

set) is used in order to evaluate the performances of the portfolios. Portfolios

x∗MV and x∗EV SK are chosen to have the same expected return. For x∗EV SK

some values for σ2
p such that σ2

p > σ2
P2

and for ξp are arbitrary chosen. Let

underline that the reason of random choosing some portfolios on the E-V-S-K

efficient frontier is not to define the agent utility function.

In figures 4.6, 4.7, 4.8 and 4.9 the returns of x∗MV and x∗EV SK , for dif-

ferent values of portfolio variance and skewness, are represented. In order

to simplify the comparison between the portfolios, a Kernel smoothing (see

Bowman and Azzalini (1997)) on returns distribution has been performed.

For example, in figure 4.10 shows the comparison between the smoothed re-

turns density functions of two of the selected portfolios. In figure 4.10 the

blue and the red lines correspond to the distribution of returns respectively

of x∗EV SK3
and x∗MV . Note that, from figure 4.10, the returns distribution of

portfolio x∗MV presents tails that are fatter then the ones associated with
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Figure 4.6: Back-Test: Returns of x∗MV portfolio.
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Figure 4.7: Back-Test: Returns of x∗EV SK1
portfolio, ξP = 2, σ2

P = 0.5.
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returns distribution of E-V-S-K optimal portfolio.

Let now analyze the moments of the returns distributions of the efficient
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Figure 4.8: Back-Test: Returns of x∗EV SK2
portfolio, ξP = 1.5, σ2

P = 0.6.
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Figure 4.9: Back-Test: Returns of x∗EV SK3
portfolio, ξP = 1.2, σ2

P = 0.7.
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portfolios. Portfolio x∗MV shows a mean and a variance respectively equal to

−0.0105 and 0.0058. Note that, in this case, the portfolios selected on the
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Figure 4.10: Kernel Smoothing for Optimal Portfolios Returns.
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Table 4.5: Moments of the Optimal Portfolios

x∗MV x∗EV SK1
x∗EV SK2

x∗EV SK3

Mean -0.0105 -0.0093 -0.0084 -0.0071

Standard Deviation 0.058 0.055 0.053 0.051

four moments efficient frontier show a higher expected return and a lower

standard deviation compared to the mean-variance portfolio, as shown in

table 4.5. In other words, the mean-variance optimal portfolio is dominated

in the sense of the mean-variance stochastic dominance by some portfolios

chosen in the four moments framework. Of course, this is possible only in a

out of sample context.

A first explanation of the result is that adding the third and the fourth

moment to the classical mean-variance model permits to take into account

more information with the consequence of a better asset allocation.
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Let give a more intuitive explanation of the obtained result. As shown

in the previous chapter, the optimal portfolio in E-V-S-K framework can be

decomposed as follows:

x∗1 = D−1(µ 1)A−1


 µp

1




x∗2 =


D−1b + D−1(µ 1)A−1


 f

g







√
σ2

P2
− σ2

B

e− h

x∗3 =


D−1t + D−1(µ 1)A−1


 p

q







√
σ2

P − σ2
P2

s−H
.

Portfolio x∗2 is an arbitrage portfolio depending on skewness and it permits

to change the allocation in portfolio x∗1 moving weight from the asset classes

with lower values of skewness to the ones with higher values of skewness.

Similarly, portfolio x∗3 permits to move weight to the asset classes with lower

values of kurtosis.

Figure 4.11: Back Test: Portfolios Value History.
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In general, it seems not be intuitive to find portfolios able to dominate the

optimal mean-variance portfolio in the sense of the mean-variance dominance.

On the other hand, this result give strong empirical evidence of the needs

of considering higher order moments in asset allocation problems. Moreover,

it’s interesting to underline that the portfolios chosen in the four moments

framework are sub-optimal in the mean-variance model. A rational economi-

cal is going to choose those portfolios only through the definition of the four

moments efficient frontier.

In figure 4.11 the values of x∗MV , x∗EV SK1
, x∗EV SK2

and x∗EV SK3
are com-

pared. Again, it is clear that the portfolios with higher moments result as a

better asset allocation compared to the classical mean-variance one.
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Conclusions

In this dissertation the consequences of non-normality of financial returns

have been investigated. In chapter 3 a novel model for asset allocation that

consider mean, variance, skewness and kurtosis has been proposed. This new

model is based on the assumption that asset returns can be seen as the

sum of a spherical random variable and two non-spherical variables that

describe skewness and kurtosis. Together with the definition of the E-V-S-K

stochastic dominance rule, the assumption on asset returns permit to write

the optimization problem in a suitable way as the minimization of portfolio

kurtosis, under budget, skewness, variance and expected return constraints.

The optimization problem has been solved analytically and a closed form

solution for the optimal portfolio has been derived. The expression of the

optimal kurtosis as a function of skewness, variance and expected return has

been calculated. As first result, it has been shown that the optimal portfolio,

solution of the proposed asset allocation model, is a generalization of classical

asset allocation models. In fact, Markowitz and Gamba and Rossi optimal

portfolios can be found as special cases for particular values of model’s pa-

rameters, as shown in chapter 3.

Moreover, the returns of optimal portfolio have been analyzed. The opti-

mal portfolio results as the sum of the mean-variance optimal portfolio plus

two arbitrage portfolios that describe respectively investors preferences for

113
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skewness and kurtosis. In other words, the variance of the four moments op-

timal portfolio is higher than the variance of the mean-variance optimal one

and the extra variance is counterbalanced by the investors preferences for

higher order moments.

As last result, in chapter 3 a four funds separation theorem has been

proved. This property is very useful and it permits to define four vectors

that span the E-V-S-K space. Let underline that the separation property

directly follows from the assumption on asset returns structure. The four

spanning funds are directly comparable to the ones obtained in the classical

asset allocation models.

In chapter 4, in order to test the model an empirical application on real

financial data has been provided. In this section a technique for the esti-

mation of skewness and kurtosis parameters has been proposed. A compari-

son between the mean-variance optimal portfolio and some E-V-S-K optimal

portfolios is proposed. The results are really interesting. The back test shows

that some four moments optimal portfolios beat in term of expected return

and variance the two moments optimal one in an out of sample framework.

Therefore it seems clear, also from the empirical results, that higher moments

have to be taken into account for asset allocation problems.

No conditional moments are considered in the proposed framework. De-

spite of this, the proposed model is still valid also with the introduction of

conditional moments. The choice not to consider conditional moments in this

dissertation deals with the argument that the better is the estimation of the

moments the better are the results of the asset allocation. As a consequence,

with conditional moments the forecasting model becomes central. The intro-

duction of conditional model in the proposed scheme will be the subject of

further research.
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The proposed model results as a natural extension of classical asset allo-

cation models. The appeal of the model is to give a closed form solution to

the optimization problem and obtain a functional form for the efficient fron-

tier in the E-V-S-K framework. Through the decomposition of the optimal

portfolio the role of skewness and kurtosis is clearly pointed out.
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