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Abstract. In this paper we describe and analyze a new class of C2

piecewise rational quintic Hermite interpolants for use in CAGD
which are capable of exactly representing any conic arc of arbitrary
length by using only one segment. They can also provide a variety
of local/global shape parameters for intuitively sculpting free form
curves without affecting the C2 continuity inherent in the original
construction.

§1. Introduction
During the last two decades there has been considerable interest in de-
veloping a C2 solution to the interpolation problem of zeroth, first and
second order derivatives at a given selection of points. This is due to the
fact that such geometric properties turn out to be of primary concern in
geometric modelling or computer aided design applications, e.g., in the
smoothing of curves. However, the work done over the years has resulted
in many C2 interpolation methods [1, 3, 4, 5, 8, 9, 10] that cannot satisfy
at the same time all the properties we have found vital or simply desirable
to include in a user-oriented model, designed to be integrated in a con-
ventional NURBS-based CAD system. For this reason, we are going to
propose a new class of C2 piecewise rational quintic Hermite interpolants
that

• possesses an explicit construction, i.e., that does not involve the
solution of any equations;

• provides local and intuitive sculpting parameters for fast interactive
manipulation of the shape of a curve;

• is capable of representing both smooth shapes and sharp shapes,
and more precisely of mixing smooth zones and sharp ones in the
same curve, so that the transition between them always preserves
the original C2 continuity.

The paper is structured as follows. In Section 2 we develop and con-
struct this new class; in Section 3 we show that our rational quintic Her-
mite interpolants are capable to exactly represent any conic arc of arbi-
trary length by using only one segment with positive weights and finite



40 G. Casciola, L. Romani

control points. Finally, in Section 4 we exploit our model for intuitively
sculpting C2-continuous free form curves by local deformations which do
not compromise the original C2 continuity. Although our proposal is not
limited to parametric sets of points, but works efficiently both in the vecto-
rial and in the scalar cases, we confine our attention here to the parametric
formulation only.

§2. The Class of Piecewise Rational Quintic Hermite Interpolants

Our objective is to construct over an arbitrary non-trivial interval [ti, ti+1]
⊂ R, a rational curve segment ci(t) : [ti, ti+1] → Rν , ν > 1, that satisfies
the following interpolation conditions at the endpoints:

ci(ti) = Fi, c′i(ti) = D
(1)
i , c′′i (ti) = D

(2)
i ,

c′′i (ti+1) = D
(2)
i+1, c′i(ti+1) = D

(1)
i+1, ci(ti+1) = Fi+1.

(1)

To fulfill our aim, we write ci(t) as the rational quintic Bézier curve

ci(t) =
5∑

j=0

Pi
jR

i
j,5(t) (2)

where

Ri
j,5(t) =

µi
jB

i
j,5(t)∑5

k=0 µ
i
kB

i
k,5(t)

with Bi
j,5(t) =

(
5
j

)
(ti+1 − t)5−j(t− ti)

j

(ti+1 − ti)5

(3)

and the control points Pi
j ∈ Rν , j = 0, ..., 5 have to be determined.

Two of them turn out to be quickly defined: Pi
0 = Fi and Pi

5 = Fi+1.
For the remaining four, we recall the first and second endpoint derivative
formulae for rational quintic Bézier curves:

c′i(ti) =
5µi

1(P
i
1−Pi

0)

hiµi
0

, c′′i (ti) =
20µi

2(P
i
2−Pi

0)

h2
iµ

i
0

−
(

5µi
1

µi
0
− 1

)
10µi

1(P
i
1−Pi

0)

h2
iµ

i
0

,

c′′i (ti+1) =
20µi

3(P
i
3−Pi

5)

h2
iµ

i
5

−
(

5µi
4

µi
5
− 1

)
10µi

4(P
i
4−Pi

5)

h2
iµ

i
5

, c′i(ti+1) =
5µi

4(P
i
5−Pi

4)

hiµi
5

where hi = ti+1 − ti and µi
j , j = 0, ..., 5 are the positive weights of the

rational representation (2). Thus, by solving for Pi
1, P

i
2, P

i
3, P

i
4, we get

Pi
1 = Fi +

hi µi
0

5µi
1
D

(1)
i , Pi

2 = Fi +
(5µi

1−µi
0)hi

10µi
2

D
(1)
i +

h2
i µi

0

20µi
2
D

(2)
i ,
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Pi
3 = Fi+1 −

(5µi
4−µi

5)hi

10µi
3

D
(1)
i+1 +

h2
i µi

5

20µi
3
D

(2)
i+1, Pi

4 = Fi+1 − hi µi
5

5µi
4
D

(1)
i+1.

If a sequence of interpolating data Fi, D
(1)
i , D

(2)
i , i = 0, ..., N is given, such

a construction allows to solve the interpolation problem by a piecewise
rational quintic made of pieces ci(t) that join together with the so-called
C2 rational continuity (see [6]). In order to guarantee that adjacent curve
segments join exactly parametrically C0 (not just rationally C0), we set
µi
0 = µi

5 and, without loss of generality, we assume them to be 1. Thus,

Definition 1. Given the interpolating points Fi ∈ Rν , i = 0, ..., N and

the first and second order derivatives D
(1)
i , D

(2)
i ∈ Rν , i = 0, ..., N defined

at the knots ti, i = 0, ..., N (with t0 < t1 < ... < tN ), a piecewise rational
quintic Hermite interpolant c(t) ∈ C2

[t0,tN ] is defined for t ∈ [ti, ti+1],
i = 0, ..., N − 1 by the expression

ci(t) =
5∑

j=0

Pi
jR

i
j,5(t) (4)

where

Pi
0 = Fi, Pi

1 = Fi +
hiD

(1)
i

5µi
1

, Pi
2 = Fi +

(5µi
1−1)hiD

(1)
i

10µi
2

+
h2
iD

(2)
i

20µi
2
, (5)

Pi
3 = Fi+1 −

(5µi
4−1)hiD

(1)
i+1

10µi
3

+
h2
iD

(2)
i+1

20µi
3

, Pi
4 = Fi+1 −

hiD
(1)
i+1

5µi
4

, Pi
5 = Fi+1

and {Ri
j,5(t)}j=0,...,5 are the rational quintic Bézier polynomials in (3)

defined by the positive weights µi
j, j = 0, ..., 5 with µi

0 ≡ µi
5 = 1.

§3. Exact Representation of Conic Arcs of Arbitrary Length

Conic arcs play a fundamental role in CAD/CAM applications. In this
section we will show that a rational quintic Hermite segment can be used
for precisely representing any conic arc of arbitrary length. Thus, the
piecewise interpolatory model presented in Section 2 allows us to incorpo-
rate the class of the so-called conic section subsplines (see [7], page 79),
which contains all those smooth curves made of pieces of conic sections
that pass through given points and assume prescribed derivatives. Such a
model is of great use in engineering applications, e.g. in milling processes
and in the construction of disk cams.

Theorem 1. The rational quintic Hermite segment c0(t), t ∈ [0, 1] in-
terpolating the data in Tab.1 with prescribed positive weights {µ0

j}j=1,...,4,
allows us to exactly represent any conic arc of arbitrary length.
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Parabolic Arc

y = ax2

a ̸= 0

δ ∈ ]0,+∞[

Hyperbolic Arc

x2

a2 − y2

b2
= 1

b ̸= 0

a<>0 left branch
right branch

δ ∈ ]0,+∞[

c = cosh(δ)
s = sinh(δ)

Elliptic Arc

x2

a2 + y2

b2
= 1

a, b ̸= 0

δ ∈ ]0, π]

ρ = 1
2
(1 + tg δ

4
)

ω = 4ρ4 − 8ρ3 + 8ρ2 − 4ρ+ 1

F0 =

[
fx
0

fy
0

] [
−δ
aδ2

] [
ac
−bs

] a(4ρ4−8ρ3+4ρ−1)
ω

4bρ(−2ρ2+3ρ−1)
ω


F1 =

[
fx
1

fy
1

] [
−fx

0

fy
0

] [
fx
0

−fy
0

] [
fx
0

−fy
0

]

D
(1)

0 =

[
f̄x
0

f̄y
0

] [
2δ

−4aδ2

] [
−2as2

2bsc

]  16aρ(−4ρ4+10ρ3−10ρ2+5ρ−1)

ω2

4b(−8ρ6+24ρ5−20ρ4+10ρ2−6ρ+1)

ω2


D

(1)

1 =

[
f̄x
1

f̄y
1

] [
f̄x
0

−f̄y
0

] [
−f̄x

0

f̄y
0

] [
−f̄x

0

f̄y
0

]

D
(2)

0 =

 ¯̄fx
0

¯̄fy
0

 [
0

8aδ2

] [
4as2(2c− 1)

4bs(1 + c− 2c2)

]  16a(−12ρ4+24ρ3−10ρ2−2ρ+1)

ω2

8b(−8ρ5+20ρ4+8ρ3−32ρ2+14ρ−1)

ω2


D

(2)

1 =

 ¯̄fx
1

¯̄fy
1

  ¯̄fx
0

¯̄fy
0

  ¯̄fx
0

− ¯̄fy
0

  ¯̄fx
0

− ¯̄fy
0


µ0
1 = µ0

4 1 3+2c
5

−12ρ4+24ρ3−16ρ2+4ρ+1
5ω

µ0
2 = µ0

3 1 2+3c
5

4ρ4−8ρ3+4ρ2+1
5ω

Tab. 1. Data for exact representation of arbitrary conic arcs via the
rational quintic Hermite interpolatory model.

Proof: Writing the rational quintic Hermite interpolatory model (4) by
using the data given in Tab.1, we obtain an expression of c0(t) whose com-
ponents x(t) and y(t) turn out to satisfy the following canonical equations
in case of parabolic, hyperbolic, or elliptic arcs, respectively:

y(t) = ax2(t), x2(t)
a2 − y2(t)

b2 = 1, x2(t)
a2 + y2(t)

b2 = 1.

Remark. The positive free parameter δ allows us to exactly represent
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Fig. 1. Examples of arbitrary conic arcs exactly represented via a rational
quintic Hermite segment: parabolic arc, hyperbolic arc, elliptic arc/full
ellipse, circular arc/full circle.

conic arcs of arbitrary length. Notice that in case of elliptic arcs of am-
plitude 2δ, by choosing the half-angle δ equal to π, we can precisely
reproduce full ellipses of radii a, b ∈ R0 that pass through the points
F0 ≡ F1 = (−a, 0) and assume the first and second order derivatives

D
(1)
0 ≡ D

(1)
1 = (0, 4b), D

(2)
0 = (16a, 8b), D

(2)
1 = (16a,−8b) (see Fig. 1).

As a special case we can thus represent full circles and circular arcs just
specifying the radius r ≡ a = b and the half-angle δ ∈]0, π] (see Fig. 1).
We remind the reader that, as was proven in [2], the rational quintic
Bézier form is the minimum degree representation that allows to obtain a
full circle/ellipse using only positive weights and finite control points.

§4. Sculpting of Free Form Curves by Local/global Deformations

We now rearrange equation (4) in the equivalent cardinal form

ci(t) =
5∑

j=0

Iijϕ
i
j,5(t)

where

Ii0 = Fi, Ii1 = D
(1)
i , Ii2 = D

(2)
i , Ii3 = D

(2)
i+1, Ii4 = D

(1)
i+1, Ii5 = Fi+1

and
ϕi
0,5(t) = Ri

0,5(t) +Ri
1,5(t) +Ri

2,5(t)

ϕi
1,5(t) = hi

5

[
1
µi
1
Ri

1,5(t) +
5µi

1−1

2µi
2

Ri
2,5(t)

]
ϕi
2,5(t) =

h2
i

20µi
2
Ri

2,5(t)

ϕi
3,5(t) =

h2
i

20µi
3
Ri

3,5(t)

ϕi
4,5(t) = −hi

5

[
5µi

4−1

2µi
3

Ri
3,5(t) +

1
µi
4
Ri

4,5(t)
]

ϕi
5,5(t) = Ri

3,5(t) +Ri
4,5(t) +Ri

5,5(t)

is the rational formulation of the well-known quintic Hermite polynomials.
Since ϕi

0,5(t)+ϕi
5,5(t) ≡ 1, it follows that whenever ϕi

j,5, j = 1, ..., 4 vanish,
the curve segment ci(t) coincides with the line through Fi, Fi+1. As hi is
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never zero, this is easily verified whenever µi
1, µ

i
4 approach infinity and µi

2,
µi
3 approach infinity faster than µi

1, µ
i
4 respectively. This last condition is

trivially satisfied by setting µi
2 = α(µi

1)
β and µi

3 = α(µi
4)

β , with α ≥ 1,
β > 1. Here we choose µi

2 = (µi
1)

2, µi
3 = (µi

4)
2 and reformulate Definition

1 in the following way.

Definition 2. Given the interpolating points Fi ∈ Rν , i = 0, ..., N and the

first and second order derivatives D
(1)
i , D

(2)
i ∈ Rν , i = 0, ..., N assigned

at the knots ti, i = 0, ..., N (with t0 < t1 < ... < tN ), we define over the
interval [ti, ti+1] the piecewise rational quintic Hermite interpolant c(t) ∈
C2

[t0,tN ] by the expression

ci(t) ≡ ci(t, vi, wi) =
5∑

j=0

Ci
jR

i
j,5(t) (6)

where

Ci
0 = Fi, Ci

1 = Fi +
hiD

(1)
i

5vi
, Ci

2 = Fi +
(5vi−1)hiD

(1)
i

10v2
i

+
h2
iD

(2)
i

20v2
i
, (7)

Ci
3 = Fi+1 −

(5wi−1)hiD
(1)
i+1

10w2
i

+
h2
iD

(2)
i+1

20w2
i
, Ci

4 = Fi+1 −
hiD

(1)
i+1

5wi
, Ci

5 = Fi+1

and {Ri
j,5(t)}j=0,...,5 are the rational quintic Bézier polynomials in (3)

defined by the positive weights µi
0 = µi

5 := 1, µi
1 := vi, µ

i
2 := v2i , µ

i
3 := w2

i ,
µi
4 := wi.

Remark. In this way, by choosing wi−1 = 2 − vi ∀i = 1, ..., N − 1, the
piecewise rational quintic Hermite interpolant c(t), represented as NURBS
on a single knot-partition with internal 5-fold knots, becomes parame-
trically C2-continuous at t = ti and thus can be represented on a new
knot-partition with only internal 3-fold knots.

Although the shape of a NURBS curve can be modified by the mani-
pulation of its weights, the possibility of controlling the shape through the
classical change of the weight vector may sometimes be confusing, as the
modifications of two adjacent weights are mutually cancelled, and not very
effective, since the curve is forced to stay in the convex hull of its control
points. For this reason we have proposed an interpolatory rational quin-
tic spline involving two sculpting parameters per interval that, although
corresponding to the weights of the rational representation, influence the
control points definition and thus have large scale effects on the shape of
the curve. In particular, such free parameters provide a variety of local
and global shape controls, like point and interval tension effects. In or-
der to analyze such effects on the shape of the curve, we consider here
the limiting behavior of the rational piecewise interpolant whenever each
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shape parameter approaches infinity, where we assume that the other pa-
rameters are held constant with respect to each limit process (note that
this is possible only because every weight modification do not influence its
neighboring weights). Thus the following shape deformations immediately
follow by inspection of equation (6).

Theorem 2 (Point Tension) Let vi and wi−1 approach infinity. Since

lim
vi→∞

ci(t) = Fi = lim
wi−1→∞

ci−1(t), (8)

we have a point tension parameter controlling the curve tension from both
right and left of the point Fi, where the piecewise rational interpolant c(t)
will appear to have a corner.

Proof: To prove the first (second) equality in (8) we insert the equation
of ci(t) (ci−1(t)), divide both its numerator and denominator by v2i (w2

i−1)
and compute limvi(wi−1)→∞.

While two shape parameters per interval are necessary for providing
point tension effects, we are going to show now that only one shape pa-
rameter per interval is enough when interval tension is required. To this
aim we assume the parameters vi, wi satisfy the relation vi = λiwi, with
λi ∈]0,+∞[, and we show that the parameter wi plays the role of interval
tension parameter for the single piece ci(t, λi, wi).

Lemma 1. Let vi = λiwi with λi ∈]0,+∞[. If wi approaches infinity,
then the rational quintic Hermite interpolant ci(t, λi, wi) converges uni-
formly to the rational linear interpolant of Fi,Fi+1 with weights λ2

i , 1:

lim
wi→∞

||ci(t, λi, wi)− li(t, λi)|| = 0

where

li(t, λi) =
λ2
i (1− θi)Fi + θiFi+1

λ2
i (1− θi) + θi

,

with

t ∈ [ti, ti+1], θi =
t− ti
hi

∈ [0, 1].

Proof: By simple computations on ci(t, λi, wi) it follows that the piece-
wise rational quintic Hermite interpolant ci(t, λi, wi), t ∈ [ti, ti+1] defined
by (6) can be decomposed in the following way:

ci(t, λi, wi) = li(t, λi) + ei(t, λi, wi),

where

li(t, λi) =
λ2
i (1− θi)Fi + θiFi+1

λ2
i (1− θi) + θi

,

and
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f(t) g(t) h(t)
0 1

w2
i
(Fi − Fi+1)

1
w2

i

hi

5w2
i
D

(1)
i

λi

wi
(Fi − Fi+1) +

hi

5w2
i
D

(1)
i

λi

wi

2(5λiwi−1)hiD
(1)
i +h2

iD
(2)
i

20w2
i

2(5λiwi−1)hiD
(1)
i +h2

iD
(2)
i

20w2
i

λ2
i

−2(5wi−1)hiD
(1)
i+1+h2

iD
(2)
i+1

20w2
i

−2(5wi−1)hiD
(1)
i+1+h2

iD
(2)
i+1

20w2
i

1

1
wi

(Fi+1 − Fi)− hi

5w2
i
D

(1)
i+1 − hi

5w2
i
D

(1)
i+1

1
wi

1
w2

i
(Fi+1 − Fi) 0 1

w2
i

Tab. 2. Bézier coefficients of the quintic polynomials f(t), g(t), h(t).

ei(t, λi, wi) =
f(t)λ2

iB
i
2,5(θi) + g(t)Bi

3,5(θi)

h(t)(λ2
iB

i
2,5(θi) +Bi

3,5(θi))
,

with f(t), g(t), h(t) being quintic Bézier polynomials defined by the coef-
ficients in Tab.2. Thus, since limwi→∞ ||ei(t, λi, wi)|| = 0, it trivially
follows that limwi→∞ ||ci(t, λi, wi)− li(t, λi)|| = 0.

Theorem 3 (Interval Tension) Let vi = λiwi, with λi ∈]0,+∞[. If wi

approaches infinity, then the rational quintic Hermite interpolant ci(t, λi,
wi) is pulled towards the line segment through Fi and Fi+1.

Proof: By standard NURBS theory it follows that when ν > 1, whatever
we choose λi ∈]0,+∞[, the rational linear interpolant li(t, λi) coincides
with the line segment through Fi and Fi+1.

As a consequence, when all the interval tension parameters approach
infinity, the piecewise rational linear interpolant c(t) is pulled towards the
polyline through the points Fi, but practically is never a piecewise linear
interpolant because the parameterization is C2 here, whereas it is only C0

for linear interpolants.

Corollary 1 (Global Tension) Let l(t), t ∈ [t0, tN ] denote the piecewise
rational linear interpolant defined ∀t ∈ [ti, ti+1] by li(t, λi). Suppose wi ≡
w and vi = λiw, with λi ∈]0,+∞[, ∀i = 0, · · · , N − 1. Then the piecewise
rational quintic Hermite interpolant c(t) ∈ C2[t0, tN ] converges uniformly
to l(t) as w approaches infinity, i.e. limw→∞ ∥c(t)− l(t)∥ = 0 ∀t ∈ [t0, tN ]
and thus c(t) is pulled towards the polyline through the points Fi.

Proof: The result follows by applying Theorem 3 over each interval
[ti, ti+1] .
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While we have just shown that for sufficiently big values of the interval
tension parameters we are able to introduce straight line segments into a
given piecewise curve, we are going to show now that for sufficiently small
values of the parameters we can pull out a bump or push in an indentation
in a curve segment (see Figs. 2, 3).

Theorem 4 (Interval Warping) Progressively decreasing the shape pa-
rameters vi and wi towards zero, the rational quintic Hermite interpolant
ci(t) produces a looser and looser curve segment.

Proof: If we look at the behavior of the control points Ci
j , j = 1, 2, 3, 4,

and hence of the Bernstein-Bézier convex hull, when the shape parameters
vi and wi progressively decrease towards zero, it is a simple matter to see
that we will get a looser and looser curve.

Corollary 2 (Global Warping) Let vi and wi progressively decrease to-
wards zero ∀i = 0, · · · , N−1. Then the piecewise rational quintic Hermite
interpolant c(t) ∈ C2[t0, tN ] progressively becomes looser and looser over
each interval [ti, ti+1].

Proof: We apply Theorem 4 over each interval [ti, ti+1].

§5. Conclusions and Future Work

In this paper we have presented a new class of piecewise rational quintic
Hermite interpolants which provide a variety of local and global shape
parameters for intuitively sculpting free-form curves, without affecting the
C2 continuity inherent in the original construction.
In addition, the proposed model is capable of producing either a sharp
C2-interpolation or a smooth C2-interpolation, that is, although it always
produces C2-interpolants, it enables the creation of a variety of shape
effects like angular points, sharp edges, bumps and indentations (see Figs.
2, 3). The ability to incorporate exact conic arcs of arbitrary length
and to mix smooth curve segments, sharp corners and flat pieces in an
unrestricted way, makes the piecewise rational quintic Hermite interpolant
model a candidate of choice for many applications.

Our next step will be to show that using a non-linear optimization pro-
cedure for determining the sculpting parameters, we can use the proposed
class also for approximating any trigonometric curve with the desired order
of precision.

Acknowledgments. This work has been supported by FIRB 2002.



48 G. Casciola, L. Romani

−0.5

0

0.5

1

1.5

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

−0.5

0

0.5

1

1.5

−0.2
0

0.2
0.4

0.6
0.8

1
1.2

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

−0.5

0

0.5

1

1.5

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

−0.5

0

0.5

1

1.5

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

−0.5

0

0.5

1

1.5

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

−0.5

0

0.5

1

1.5

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Fig. 2. Examples of local/global deformations on an open 3D curve: no
tension (vi = wi = 1, i = 0, ..., 4), interval tension (v2 = w2 = 50), interval
warping (v3 = w3 = 0.001), point tension (v3 = w2 = 50), global tension
(vi = wi = 50, i = 0, ..., 4), global warping (vi = wi = 0.001, i = 0, ..., 4).
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Fig. 3. Examples of local/global deformations on a closed 3D curve:
no tension (vi = wi = 1, i = 0, ..., 18), interval tension (v3 = w3 =
100), interval warping (v3 = w3 = 0.001), point tension (v7 = w6 = 60),
global tension (vi = wi = 100, i = 0, ..., 18), global warping (vi = wi =
0.001, i = 0, ..., 18).

§6. References

1. Casciola G., Romani L., Rational Interpolants with Tension Parame-
ters, in: Lyche T., Mazure M.-L. and Schumaker L.L. (Eds.), Curve
and Surface Design: Saint-Malo 2002, Nashboro Press (2003), 41-50



A Piecewise Rational Quintic Hermite Interpolant 49
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