Valencia, 19 nov. 2009

Fitness Landscapes

a scientific tool, its epistemological status, and the quest for synthesis in evolutionary biology

- Dr. Emanuele Serrelli University of Milano-Bicocca, Italy
- emanuele.serrelli@unimib.it
- www.epistemologia.eu

Sewall Wright (1932)

FIGURE 2.—Diagrammatic representation of the field of gene combinations in two dimensions instead of many thousands. Dotted lines represent contours with respect to adaptiveness.

Genetic Map

- a chromosome map of <u>a species</u> that shows the position of its known genes [...] relative to each other
- genes can be
 - located
 - numbered
 - named
- and these are typical of a species

Allele

 One of the variant forms of a gene at a particular locus, or location, on a chromosome.
 Different alleles produce variation in inherited characteristics such as hair color or blood type.

Sewall Wright (1932)

of possible combinations. Type of history under specified conditions indicated by relation

Epistemological status

to initial field (heavy broken contour) and arrow.

Image? (es. Kaplan 2008)

Picture?

Pictorial representation?

Visual representation?

Idea?

Notion?

Metaphor? (Pigliucci 2008, Kaplan 2008)

Model? (Calcott 2008)

Family of models? (Calcott 2008)

Scientific tool

Chart (mapping function)

Topographical map (Eldredge 1985)

Diagrammatic representation (Provine), diagram

FIGURE 2.—Diagrammatic representation of the field of gene combinations in two dimen since in the field of gene combinations in two dimensions instead of many thousands. Dotted lines represent contours with respect to adapt

Ex. Known number of genes is of higher order

Ex. Frequency of mutations

Ex. Phenotypic landscapes

Ex. Macroevolution

Ex. Neutralism

Sergey Gavrilets's Holey Landscape (1997)

Fig. 2. A holey adaptive landscape. Genotype fitnesses are only equal to zero or one.

The end of the adaptive landscape metaphor?

Jonathan Kaplan

Received: 25 February 2008/Accepted: 29 April 2008/Published online: 5 June 2008 © Springer Science+Business Media B.V. 2008

Abstract The concepts of adaptive/fitness landscapes and adaptive peaks are a central part of much of contemporary evolutionary biology; the concepts are introduced in introductory texts, developed in more detail in graduate-level treatments, and are used extensively in papers published in the major journals in the field. The appeal of visualizing the process of evolution in terms of the movement of populations on such landscapes is very strong; as one becomes familiar with the metaphor, one often develops the feeling that it is possible to gain deep insights into evolution by thinking about the movement of populations on landscapes consisting of adaptive valleys and peaks. But, since Wright first introduced the metaphor in 1932, the metaphor has been the subject of persistent confusion, from equivocation over just what the features of the landscape are meant to represent to how we ought to expect the landscapes to look. Recent advances-conceptual, empirical, and computational-have pointed towards the inadequacy and indeed incoherence of the landscapes as usually pictured. I argue that attempts to reform the metaphor are misguided; it is time to give up the pictorial metaphor of the landscape entirely and rely instead on the results of formal modeling, however difficult such results are to understand in 'intuitive' terms.

Epistemological status

 $\textbf{Fig. 2.} \ \textbf{A} \ \textbf{holey} \ \textbf{adaptive landscape}. \ \textbf{Genotype fitnesses} \ \textbf{are only equal to zero or one}.$

FIGURE 2.—Diagrammatic representation of the field of gene combinations in two dimensions instead of many thousands. Dotted lines represent contours with respect to adap

...metaphors are similar to mathematical models, but «the requirements for metaphorical pictures are much less strict than for exact mathematical constructions» (Gavrilets 2004) Represents one population

1 population = a cloud of points

Fitness is individual relative FL depends on local environment

Ordering by overall affinity
Genotype

Discrete

Pulsation movement

Recombination of alleles space

Mutation is deletetious and rare

NS + stochastic processes

Depends on demography

Represents a splitting population (microevolution)

Cloud of points (fitness vs. adaptive landscape)

Viability (individual fitness is 1 or 0)

Mostly independent from environment

Overall affinity

Genotype

Discrete (varying density)

Wandering (neutral evolution)

Fig. 2. A holey adaptive landscape. Genotype fitnesses are only equal to zero or one FIXED NUMBER OF LOCI

(restores this persistent loss)?

Mutation?

Neutral evolution

Depends on demography?

In common: (1) visual shape (2) vertical dimension

COMMENTARY

doi:10.1111/j.1558-5646.2007.00246.x

DO WE NEED AN EXTENDED EVOLUTIONARY SYNTHESIS?

Massimo Pigliucci

Department of Ecology & Evolution, Stony Brook University, 650 Life Science Bldg., Stony Brook New York 11794

E-mail: pigliucci@genotypebyenvironment.org

© 2007 The Author(s). Journal compilation © 2007 The Society for the Study of Evolution. Evolution 61-12: 2743–2749 Sewall Wright's adaptive landscapes: 1932 vs. 1988

Massimo Pigliucci

Given the serious conceptual issues surrounding Wright's **metaphor** of adaptive landscapes, one could reasonably ask whether it is not time to **simply drop the metaphor** altogether.

Synthesis in evolutionary biology

- (a) correct identification of the *epistemological status* of scientific tools
- (b) consideration of scientific tools in their proper context of origin and domain of applicability, also (even especially) in occasion of updates and revisions
- (c) profiting by limits and overinterpretations concerning particular tools αs opportunities for clarification and correction of misunderstandings, rather than as flaws and reasons for leaving that tools behind.

Valencia, 19 nov. 2009

Fitness Landscapes

a scientific tool, its epistemological status, and the quest for synthesis in evolutionary biology

- Dr. Emanuele Serrelli University of Milano-Bicocca, Italy
- emanuele.serrelli@unimib.it
- www.epistemologia.eu

Richard Dawkins (1996)

Differences

Represents one population

1 population = a cloud of points

Fitness is individual relative

FL depends on local environment

Ordering by overall affinity

Genotype

Discrete

Genotype space Pulsation movement

Recombination of alleles

Mutation is deletetious and rare

NS + stochastic processes

Depends on demography

Represents several species

1 species = 1 spoint

Fitness is mean and absolute

FL is fixed and abstracted from local contexts

Ordering by one trait

Phenotype

Continuous

Linear paths towards optimality

Mutation

Mutation is necessary and constant

NS

Demography irrelevant

In common: (1) visual shape (2) vertical dimension