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Introduction

Phase change materials based on chalcogenide alloys are attracting an increasing interest

worldwide due to their ability to undergo reversible and fast transitions between the amor-

phous and crystalline phases upon heating [1]. This property is exploited in rewritable

optical media (CD, DVD, Blu-Ray Discs) and electronic nonvolatile memories of new

concept, the Phase Change Memories (PCM) [2, 3]. The strong optical and electronic

contrast between the crystal and the amorphous allows discriminating between the two

phases that correspond to the two bits of binary information zero and one. The mate-

rial of choice for applications is the ternary compound Ge2Sb2Te5 (GST). However, the

related binary alloy GeTe has also been thoroughly investigated because of its higher

crystallization temperature and better data retention at high temperature with respect

to GST.

PCM devices, born thanks to the work of Ovshinsky in the late 1960s [4], offer ex-

tremely fast programming, extended cycling endurance, good reliability and inexpensive,

easy integration. A PCM is essentially a resistor of a thin film of the chalcogenide alloy

with a low field resistance that changes by several orders of magnitude across the phase

change. In memory operations, cell read out is performed at low bias. Programming the

memory requires instead a relatively large current to heat up the chalcogenide and in-

duce the phase change, either the melting of the crystal and subsequent amorphization

(RESET) or the recrystallization of the amorphous (SET).

In the last few years, atomistic simulations based on density functional theory (DFT)

have provided useful insights into the properties of phase change materials [5–8]. However,

several key issues such as the thermal conductivity at the nanoscale or the origin of

the fast crystallization, just to name a few, are presently beyond the reach of ab initio

simulations due to the high computational cost. In fact, first principles simulations can

deal at most with 102 atoms on the timescale of 102 ps, while many properties like thermal

conductivity or direct simulations of the crystallization process require at least 103 atoms

on the timescale of 103 ps.

The development of reliable classical interatomic potentials is a possible route to

overcome the limitations in system size and time scale of ab initio molecular dynamics.

However, traditional approaches based on the fitting of simple functional forms for the

interatomic potentials are very challenging due to the complexity of the chemical bonding
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in the crystalline and amorphous phases revealed by the ab initio simulations. A possible

solution has been proposed recently by Behler and Parrinello [9], who developed high-

dimensional interatomic potentials with close to ab initio accuracy employing artificial

neural networks (NN).

In this thesis work, we developed a classical interatomic potential for the bulk phases

of GeTe employing this NN technique. The potential was validated by comparing results

on the structural and dynamical properties of liquid, amorphous, and crystalline GeTe

derived from NN-based simulations with the ab initio data obtained here and in previous

works [10]. The NN potential displays an accuracy close to that of the underlying DFT

framework at a much reduced computational load that scales linearly with the size of the

system. It allows us to simulate several thousands of atoms for tens of ns, which is well

beyond present-day capabilities of DFT MD. The development of a reliable interatomic

potential with close to DFT accuracy is thus a breakthrough in the modeling of phase

change materials.

To date, we employed our NNP in order to investigate three issues:

1. the thermal conductivity of the amorphous phase

2. the viscosity and atomic mobility in the supercooled liquid and overheated amor-

phous phases

3. the dynamics of homogeneous crystallization of the liquid and amorphous phases

Thermal conductivity is a key property for the PCM operation, as the phase changes

corresponding to the memory writing/erasing processes strongly depend upon heat dissi-

pation and transport. Moreover, thermal cross-talks among the different bits is a crucial

reliability issue in PCM. Although experimental data on thermal conductivity are avail-

able for few materials in this class [11, 12] it is unclear whether the value measured in the

bulk phase could also describe the behavior of the material in nanoscaled devices (10-20

nm) which might be smaller than the phonon mean free path. This is particularly relevant

for PCM architectures based on nanostructures employing nanowires, colloidal nanopar-

ticles, thin bridges and nanotubes [13, 14]. In fact, amorphous materials can also display

propagating phonons with mean free path as long as 0.5 µm. This has been demonstrated

for amorphous Si [15] where propagating modes with long mean free path contribute to

half of the total thermal conductivity. It is therefore of great technological relevance to

assess whether similar propagating modes with long mean free path might be present

in amorphous phase change materials as well. Atomistic simulations can provide crucial

insights into the thermal transport properties of phase change materials suitable to aid

a reliable modeling of the device operation. However, the calculation of the thermal con-

ductivity in an amorphous system requires very long simulations (on the ns scale) of large

models (thousands of atoms) that are presently beyond the reach of fully DFT simula-

tions. The use of NN potentials allowed us to compute the mean free path of phonons in

a-GeTe and to assess that ballistic transport is inhibited by disorder even at the nanoscale.
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The key property that makes some chalcogenide alloys suitable for applications in

PCM is the high speed of the transformation which leads to full crystallization on the

time scale of 10-100 ns upon Joule heating. What makes some compounds alloys so special

in this respect and so different from most amorphous semiconductors is, however, still a

matter of debate. The driving force for crystallization of the supercooled liquid is actually

the free energy difference between the crystal and the supercooled liquid. However, the

crystallization is controlled both by the driving force and by the atomic mobility. The

driving force vanishes at melting and increases upon cooling. A large atomic mobility at

high supercooling can thus boost the crystallization speed. These conditions can actually

be met by fragile liquids. In fact, supercooled liquids are classified as fragile or strong

on the basis of the temperature dependence of their viscosity [16]. An ideal strong liquid

shows an Arrhenius behavior of the viscosity η from the melting temperature Tm down

to the glass transition temperature Tg. On the contrary, in a fragile liquid η is very low

down to a crossover temperature T∗, below which a steep rise of the viscosity (and thus

a steep decrease in the mobility) is observed. If T∗ is sufficiently far from the melting

temperature (Tm), high supercooling and large atomic mobility can be met at the same

time. The question is thus whether phase change materials are fragile liquids or not. Due

to the high crystallization speed it is unfortunately not possible to measure η below Tm

experimentally. We have thus addressed this problem by MD simulations and we have

demonstrated that indeed GeTe is a very fragile liquid (fragility index ∼ 100). Moreover

a breakdown of the Stokes-Einstein relation between the viscosity and the diffusion co-

efficient is found, which further increase the atomic mobility down to temperatures very

close to Tg. Hysteretic effects in the heating of the amorphous phase above Tg have been

addressed as well.

Finally, we have performed direct simulations of the homogeneous crystallization of

the supercooled liquid and amorphous phases with 4000-atom models and simulation

times of several ns. Although similar simulations have been previously performed by fully

DFT simulations [17], the limitations in size (about 200 atoms) and time scale (500 ps)

prevented a reliable estimate of the size of the critical nucleus and of the crystallization

speed, which are instead accessible by our large scale simulations.

This thesis is organized as follows: in the introductory chapter 1 I provide essential

information about phase change materials and phase change memories. Chapter 2 is

dedicated to theory and methods, while chapters 3,4,5 and 6 are devoted to the results

on the thermal conductivity of the amorphous phase of GeTe, on the properties of its

supercooled liquid phase and on the homogeneous crystallization from the melt and the

overheated amorphous phase.
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Chapter 1

Phase Change Materials

1.1 Phase change change memories

Phase change materials are systems of great technological interest as they are nowadays

widely employed in optical memories (e.g. DVD-RW) and in a novel and promising class

of non volatile memories (NVM) known as Phase Change Memory (PCM) [3, 11]. Both

applications rely on the fast and reversible transition between the crystalline and the

amorphous phase, induced by heating produced by laser pulses in optical memories and

Joule effect in PCM. Crystalline and amorphous phases show large differences in reflec-

tivity and resistivity, exploited in optical memories and PCM for information reading and

writing.

Non volatile memories based on phase change memories have been proposed by Ovshin-

sky [4] around 1960, but they gained importance as effective industrial applications only

recently, mainly because of scaling problems suffered by the current NVM Flash technol-

ogy (Floating-Gate, FG [18]). The first PCM devices landed on the market few years ago,

and in June 2012 Micron 1 announced the production of devices at the 45 nm scale.

Phase change materials used in optical and electronic devices are typically tellurium

based chalcogenide alloys. The family of the pseudobinary compounds (GeTe)x(Sb2Te3)y
of which phase diagram is shown in Fig. 1.1, represents a prototypical system.

So far, the material of choice for PCM is Ge2Sb2Te5 (GST), which shows high trans-

formation speed and great stability of the amorphous phase. Several other compositions

along the pseudobinary line have been proposed and scrutinized. Moreover, systems con-

taining Ag, In or Se have been considered as candidates for high temperatures appli-

cations [20]. The binary compound GeTe itself shares many structural, vibrational and

electronic properties with ternary GST, and in the last few years it has been considered

as an alternative to GST because of its higher crystallization temperature.

1Micron (former Numonyx) is a microeletronics company involved in a fruitful collaboration with the
research group I worked with during my PhD.
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Figure 1.1: Sketch of the Ge Sb Te ternary phase diagram. Composition intervals of
interest for applications are highlighted (Ref. [19]).

At the moment different architectures for a PCM device have been proposed (see

Fig, 1.2).

(a) (b)

Figure 1.2: Architectures of a PCM cell: a) mushroom cell on the left and and line
cell on the right. A SEM image of a line cell from Ref. [19] is shown in panel b).

The architecture of the device commercialized by Micron consists of a resistor made

of a thin film of chalcogenide in between a metallic contact and a resistive electrode

(mushroom cell, see Fig. 1.2). Memory programming is realized by applying current pulses

to the cell, and involves two different processes. In the RESET process the material

switches from the crystalline to the (insulating) amorphous phase, while in the SET
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process the chalcogenide switches back from the amorphous to the crystalline phase.

During the RESET process (see Fig. 1.3) a short (∼ 100 ns) current pulse is applied to

the crystal, whose temperature in the neighborhood of the resistive electrode rises beyond

the melting point (998 K for GeTe [21]) due to Joule effect. After the current pulse the

system experiences a fast (∼ 50 ns) cooling by which the liquid freezes into the amorphous

phase, characterized by a resistance of the order of MΩ. The process of SET (Fig. 1.3)

is achieved by current pulses of length similar to those used in the RESET process but

less intense, sufficient to heat the chalcogenide at a temperature below the melting point

but high enough to induce the re-crystallization of the material in about 100 ns. The

resistance of the cell in this state is of the order or kΩ.

Figure 1.3: RESET (a,b) and SET (c) process typically used in PCM programming.
The same concepts apply to the programming of optical memories based on phase
change materials like e.g. DVD-RAM and Blu-Ray disks.

It turns out that phase change materials are particularly suitable to be employed in

PCM devices, because of the huge resistivity contrast between the amorphous and the

crystalline phase (three orders of magnitude) and the amazing speed by which these sys-

tems crystallize. Crystallization requires heating by Joule effect of the amorphous phase,

which is highly resistive. This can be achieved at low biases in the device thanks to the fact

that the amorphous phase displays two different states, each characterized by a different

electronic resistance. Let us consider again the SET process (see Fig. 1.4). At the begin-

ning, by applying low biases in the amorphous phase, the system has a high resistance that
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prevents heat dissipation in the material. However, above a threshold voltage of about one

V, the material undergoes a purely electronic transition (threshold switching) that brings

the system in a state of much lower resistivity. Current rises consequently in the amor-

phous region of the cell, dissipating enough heat to reach the crystallization temperature

of the chalcogenide. PCM programming is performed on very short timescales (50-100

ns), far shorter than those of the FG (Floating Gate) technology currently employed in

NVM. The reading process is also very fast (∼ 50 ns), and consists of the measure of

chalcogenide resistance at low bias (100 mV). PCM display a promising scalability, as the

device operation depends only on the contrast between the properties of the two phases,

amorphous and crystalline. In fact, there are indications that this contrast could survive

in an active volume of about 10 nm.

(a) (b)

Figure 1.4: Electrical characteristics of a PCM cell (line cell architecture). a) Current
as a function of applied voltage during 50 ns pulses and b) evolution of the resistance
as a function of voltage after the above mentioned pulses during SET and RESET
processes (Ref. [19]).

1.2 GeTe

In Fig. 1.5 the phase diagram of GeTe is shown. In this thesis work, we deal with the

stoichiometric composition GeTe. It should be noticed that this system has an eutectic

composition at Ge15Te85, and that there are more than just one crystalline phase stable

at ambient pressure depending on composition and temperature.

At the stoichiometric composition and at room temperature the stable crystalline

phase is the so called α phase, which is a trigonal crystal that can be seen as a rocksalt

structure distorted along the < 111 > direction (see Fig. 1.7). The octahedral atomic

environment of the rocksalt is distorted as well, so that there is an alternance of three

short and three long bonds, each atom having three short and three longer bonds (see

Fig. 1.6).
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Figure 1.5: Phase diagram of the system Ge-Te [22].

Figure 1.6: Trigonal structure of crystalline GeTe, which can be seen as a cubic
rocksalt geometry with an elongation of the [111] diagonal. Ge atoms are on the vertex
of the cell while Te atom stands in the center. The distance between Ge and Te atoms
along the [111] direction is indicated by d.
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Figure 1.7: Trigonal distortion (α phase) of the cubic phase (β phase) of GeTe. The
rombohedral primitive cell of the rocksalt structure of β GeTe is elongated along the
< 111 > cubic direction.

α-GeTe is stable up to 700 K, where it undergoes a ferroelectric/paraelectric transition

into a rocksalt structure (β-GeTe).

If we keep on heating, we reach the melting point at about 1000 K. In contrast to

most tetrahedrally coordinated semiconductors, melting in GeTe is not associated with

a semiconductor → metal transition. The conductivity of GeTe upon melting is only 9%

higher than that of the solid, classifying GeTe as a semiconductor [23]. The coordination

number of liquid GeTe was measured to be 5.1 [24], noticeably larger then the value

of 4 common for semiconducting II-VI liquids but clearly smaller than the coordination

number 6 found for the metallic IV and III-IV liquids. Raty and coworkers [25] suggested

that the alternation of short and long bonds also seen as a Peierls distortion of the cubic

phase survives in the local order of liquid GeTe.

The theoretical structure factor of liquid GeTe obtained via DF simulations by Akola

et al. [26] is shown in Fig. 1.8 together with experimental data [27]. The agreement is

remarkable, and provides a direct proof of the ability of PBE-GGA DFT simulations in

describing the structure of phase change materials.

If we cool down the liquid (quenching) below the melting point sufficiently rapidly to

avoid crystallization, at a certain temperature known as glass transition temperature Tg
we obtain a glass.

The structural properties of amorphous GeTe, and in general of the amorphous phase

of the other GeSbTe systems, have been matter of debate for years, together with the

mechanism driving the phase transitions. A step toward comprehension of these issues

was provided by extended x-ray absorption fine structure (EXAFS) experiments [29–31],

which showed that the local structure of GST and GeTe changes upon amorphization.

The average coordination number of Ge atoms in a-GST and a-GeTe decreases from
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Figure 1.8: Structure factor of liquid GeTe calculated by Fourier transforming the
calculated partial pair correlation functions with weights appropriate to x-ray (xr)
and neutron scattering (ns). Experimental curves are shown: xr and ns at 653 K from
Ref. 27, ns at 773 K from Ref. 28.
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six-fold in the crystal to fourfold in the amorphous phase. Models of amorphous GeTe

and GST have been obtained by quenching from the melt in DFT molecular dynamics

simulations [3, 32, 33], revealing that indeed Ge atoms are mostly fourfold coordinated,

but as opposed to the proposal inferred from EXAFS data [29] only approximately one

third of Ge atoms display tetrahedral coordination, whereas the majority of Ge and all

Te and Sb atoms are in a defective octrahedral environment (see Fig. 1.9). The fraction

of tetrahedra actually depends on the preparation conditions of the amorphous. In fact,

it has been shown that models of as-deposited a-GST generated by DFT simulations [34]

show a larger fraction of tetrahedra than models generated by quenching from the melt.

Figure 1.9: Different atomic environment in a-GeTe. a), b) Defective octahedral en-
vironments, c) tetrahedral environment.

In Fig. 1.10 the experimental structure factor S(Q) of a-GST is compared with the

S(Q) obtained by DFT simulations [8]. The agreement is remarkable, and it can be

improved by reverse Monte Carlo refinement [35]. Signatures of Ge in tetrahedral sites

were assigned to specific features of the Raman spectrum of a-GeTe [36]. Based on ab

initio calculations, Mazzarello et. al [10] provided an assignment of the Raman spectrum

of GeTe to vibrations of specific local structures in the amorphous network which, by

comparison with experimental Raman spectra (see Fig. 1.11), yields a compelling evidence

of the existence of both tetrahedral and defective octahedral structures in a-GeTe.

First principles simulations provided useful insights also into the crystallization mech-

anism of the amorphous phase. In fact, it has been shown [26] that the amorphous network

of a-GeTe and a-GST contains a consistent number of four membered rings (see Fig. 1.12

and Fig. 1.9) that are the building blocks of the crystal phase itself.

The realignment of the squared rings to form the crystalline phase was suggested to

be aid by the presence of nanovoids in amorphous phase (see Fig. 1.13 and section 2.3.4

as well). The role of four membered rings has been underlined also by studying the

amorphization of GST under pressure [37]. By pressurizing the cubic crystalline phase,

first Te atoms move to fill the vacancy voids giving rise to topological defects in the

rocksalt crystal made of homopolar Ge-Sb bonds in squared rings rotated by 45 degrees

with respect to the crystalline axis (see Fig. 1.14). By further increasing pressure, the

concentration of the latter topological defects increases up to 21 GPa at which the system

transforms into an amorphous phase. The amorphization occurs on the time scale of a few

picoseconds, and it is driven by the higher compressibility of the amorphous phase with
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Figure 1.10: Structure factor of a-GST. The experimental curve is displaced by 0.4.
From Ref. 8 and Ref. 27.

Figure 1.11: Reduced Raman spectrum of a 216-atoms a-GeTe model from Ref. 10
compared with the analogous experimental spectrum from Ref. 36.
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Figure 1.12: Simulation box of a-GeTe (216 atoms) with four membered rings high-
lighted. Red, Ge; yellow, Te. From Ref. 26.

Figure 1.13: Cavities in melt-quenched GST (8,2,11). The volumes have been con-
structed around regions at least 2.8 Å away from any atom.
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respect to the crystal [37]. Direct molecular dynamics simulations of crystallization of

GST and GeTe have been recently [17] performed, since the timescale on which the phase

transitions take place for this class of materials is short, of the order of few hundred of ns.

However, due to the still high computational cost the results reported in Ref. 17 refer to

small models (102 atoms), where the effect of periodic boundary conditions strongly affects

the simulations. Overall the simulations performed on GST, GeTe and related materials

demonstrated the reliability of the DFT-PBE framework in describing the structural and

dynamical properties of materials in this class.

Figure 1.14: Snapshot of a molecular dynamics simulation at 14 GPa showing the
appearance of squared rings formed by homopolar Ge-Sb bonds rotated by 45 degrees
with respect to the crystal axis. Large spheres indicate atoms involved in the formation
of rotated rings (blue: Ge; green: Sb; light blue: Te). Small red spheres indicate the
position of Ge=Sb vacancies. From Ref. 37.

1.3 Thermal transport

Thermal transport plays an important role in PCM. In fact, the very idea upon which

the devices are based is the phase transition between the crystalline and the amorphous

phase and viceversa driven by Joule heating. It is therefore clear that heat dissipation and

transport can strongly affect the performances of the device. The electrothermal modeling

of the device requires a value for the thermal conductivity of the chalcogenide which has

been obtained from measuring in thick films. However, the transferability to the nanoscale
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device of the values of the thermal conductivity measured in the bulk needs further vali-

dation. Due to the small size of the device, ballistic transport might in fact occur even in

the amorphous phase. This issue will be even more critical in the novel PCM architectures

based on nanowires [13] or colloidal nanoparticles [14]. Actually, it has been shown e.g.

for amorphous Si [15] that even disordered systems can display propagating vibrations

with a very long mean free path, up to 0.5 µm, thus possibly greater than the size of

the nanodevice itself. Unraveling the microscopic origin of thermal conductivity in amor-

phous phase change materials is therefore needed to assess whether ballistic transport

might be observed in nanodevices or not. To this aim, one has to consider the different

kinds of vibrations that can be observed in disordered systems. Owing to the structural

disorder, one can anticipate the existence of non-harmonic motions, usually described by

two-level states (TLS) and tunneling [38]. However, in this thesis we limit ourselves to

harmonic and quasi harmonic vibrations, neglecting TLS and tunneling which are ex-

pected to play a role only at low temperatures. Plane wave acoustic phonons are present

for wavelengths sufficiently long to consider the amorphous as a continuum. Up to which

wavevector value such a description is still meaningful is a central question. On the other

hand, the structural units can collectively execute their own vibrations corresponding to

optical branches. In glasses, something quite analogous to optic modes should be expected

at sufficiently small ~q. Propagating plane waves are surely not a description of vibrations

above the Ioffe-Regel crossover frequency ωco [39], at which their mean free path is com-

parable to the wavelength. A new taxonomy has thus been introduced [40] to address

properly the different kinds of vibrational modes in glasses. The vibrational eigenmodes

are called vibrons rather than phonons, as the latter refer to plane waves like propagating

modes. The extended vibrons are called extendons. Each one of these is distributed rather

evenly over the entire system. In other words, the inverse participation ratio (IPR) of the

jth extendon, defined as

IPR =

∑

i

∣
∣
∣
~e(j,i)√

Mi

∣
∣
∣

4

(
∑

i
|~e(j,i)|2

Mi

)2 . (1.1)

is basically of the order of 1/N . In Eq. 1.1 ~e(j, i) are phonon eigenvectors and the

sum over i runs over the N atoms with masses Mi in the unit cell. According to this

definition, the value of IPR varies from 1/N for a completely delocalized phonon, to one

for a mode completely localized on a single atom. The extendons can be either propagative

(ω < ωco) or diffusive (ω > ωco). The formers are called propagons and the latter diffusons.

As ω is raised further, diffusons reach a mobility edge beyond which the modes become

truly localized (the IPR is low). These modes are then called locons. The eigenvectors

of a given locon decay exponentially away from its center, as electrons do in Anderson

localization [41]. In real systems, these locons are usually at very high frequencies, and

they usually display a rather small contribution to the total density of vibrational states.

The taxonomy of vibrations in glasses (from Ref .42) is shown in the scheme of Fig. 1.15
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and is used in Fig. 1.16 to classify the phonons of amorphous Si in Ref .42.

Figure 1.15: Taxonomy of vibrations in glasses.

Figure 1.16: Phonon density of states for a 4096-atom model of amorphous Silicon
compared with experimental neutron scattering data from the work of Allen et al. [42].
The different spectral regions correspond to different type of phonons.

In these thesis work, we investigated the microscopic origin of thermal conductivity

as the sum of two different contributions: the first one comes from propagating vibra-

tions, that can be computed by means of the Boltzmann Transport Equation, while the

second accounts for diffusons treated according to the theory developed by Allen and

Feldman [40]. Both approaches are discussed in section 4. These approaches follow the

work by Donadio et al, who in the last few years investigated the origin of thermal con-

ductivity in amorphous silicon [15] showing that indeed both propagating vibrations and

diffusons contribute to the thermal conductivity.
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1.4 Supercooled liquid phase and crystallization

Let us consider a liquid at a certain temperature above its melting temperature Tm. As

the melt is quenched below the melting point, the system becomes increasingly rigid.

Eventually, when the temperature is brought low enough, a liquid-solid transition takes

place (with some exceptions like liquid helium). A liquid may solidify in two ways: dis-

continuously to a crystalline solid or continuously to an amorphous solid (glass). In a

quenching experiment carried out at a sufficiently low cooling rate, crystallization is usu-

ally the route taken to reach the solid state. But at sufficiently high cooling rates, many

materials follow a different behavior. The crystallization is bypassed, and the liquid phase

persists until a lower temperature, the glass transition temperature Tg, is reached. Here

the second solidification scenario is realized. The atomic mobilities D become too small for

structural rearrangements required to reach thermal equilibrium. Thus, the undercooled

liquid is ”frozen in” an amorphous solid. It is worth noticing that Tg depends upon the

cooling rate, Tg shifting to lower temperatures when the cooling rate decreases The glass

transition temperature is commonly defined as the temperature at which the viscosity

equals 1 · 1012 Pa·s. The viscosity η of the liquid is linked to the self diffusion coefficient

D via

D =
kBT

6πηrsph
(1.2)

where rsph is the radius of the particles, usually taken as the average of the atomic Van

der Waals radii if for a multicomponent system. Whether a glass can be formed at low

cooling rates (easy or good glass former) or whether this may only be accomplished via

rapid quenching (marginal or bad glass former) as in the case of phase change materials, it

depends on the atomic mobility and on the driving force for crystallization. Equivalently,

it also The temperature dependence of η varies among materials, classifying them in

strong or fragile supercooled liquids.

As sketched in Fig. 1.17, for a strong liquid, the viscosity follows an Arrhenius behavior

from Tm down to Tg while in the case of a fragile liquid the viscosity follows an Arrhenius

behavior only above a crossover temperature T † where the curvature of η(T ) displays

a marked change and below which a super Arrhenius behavior is observed and usually

described by the so called Vogel-Tammann-Fulcher (VTF) function[16]

η = η0e
E

kB(T−T0) (1.3)

with η0, E and T0 as fitting parameters, even though many other functional forms have

been proposed. Given that the viscosity at both Tg and Tm would be fixed, crystallization

upon cooling of a strong undercooled melt is more likely bypassed even at moderate cooling

rates as compared to the case where the melt is a fragile liquid. Hence, a link between

fragility and the ease of glass formation can be drawn. Glass transition temperatures can

experimentally be assigned via differential scanning calorimetry (DSC) since the transition
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Figure 1.17: Schematic Angell plot for strong and a fragile supercooled liquids show-
ing the temperature dependence of viscosity between the melting (Tm) and the glass
transition temperature (Tg).

from the glass to an undercooled liquid appears as an endothermic peak upon cooling.

However, in the case of phase change materials such a measurement is difficult, because the

system crystallizes so fast that the glass transition is easily obscured by crystallization.

Tg is thus often considered equal to the crystallization temperature Tc obtained upon

heating with a moderate heating rate. To date, no reliable values if Tg for phase change

materials are available from experiments.

The crystallization process takes place via nucleation and growth. The nucleation

can be homogeneous when it takes place in the bulk of the material or heterogeneous

when it occurs at the interface with the surrounding material. Nucleation and growth are

usually investigated by means of classical nucleation theory [43, 44] (CNT). In this theory

crystal nucleation is controlled by the competition between the free energy gain due to

the liquid-crystal transformation and the free energy loss associated with the formation

of the liquid-crystal interface. Assuming that the crystal nucleus is a sphere or radius R,

its total free energy cost is

∆G = −4

3
πR3ns∆µ+ 4πR2γ (1.4)

where ns is the number density of particles in the solid, ∆µ is the difference between

the liquid and the solid chemical potentials, and γ is the liquid-solid interfacial tension.

This ∆G gets trough a maximum at Rc = 2γ/(ns∆µ) (critical nucleus size) and the

height of the free energy barrier is given by



24 Phase Change Materials

∆Gc =
16πγ3

3(ns∆µ)2
(1.5)

CNT predicts a us the steady state nucleation rate Iss, that is the frequency by which

crystal nuclei pop up at a certain temperature as

Iss = scΓz
6D

λ2
e
−
[

∆Gc

kBT

]

(1.6)

where sc is the number of surface sites in the critical cluster, λ is a typical jump

distance in the diffusion process and Γz is the Zeldovich factor, typically of the order

of 1/100 and smoothly dependent on temperature. The factor governing Iss are thus

self diffusion coefficient, and ∆µ which enter in the definition of ∆Gc. Upon cooling the

driving force for crystallization (∆µ) displays an opposite trend with respect to atomic

mobility. This is sketched in Fig. 1.18: the driving force increases upon cooling while the

diffusion coefficient rises up.

Figure 1.18: Schematic representation of the opposite trend upon cooling of atomic
mobility with respect to the driving force for crystallization. From Ref. 5.

One of the most noticeable issues of CNT is the fact that the nuclei are supposed to

be spherical. This is not true in most cases, and indeed there are corrections to CNT

that can take into account the effect of strain and the fact that the nucleus can have

nonspherical shapes with a diffuse interface with the liquid [45, 46].

Since it has been established [47] that crystal growth in phase change materials is a

diffusion-limited process, following Ediger et al [48] we can assume continuous growth of

supercritical nuclei with crystal growth velocity U given by

U(T ) = Ukin(T )

[

1− exp

(

−∆µ(T )

RT

)]

(1.7)
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where ∆µ(T ) is the driving force for crystallization and Ukin(T ) is a kinetic coefficient

that includes geometrical factors and -more importantly- the temperature dependence of

the diffusion coefficient, that usually can be described by an Arrhenius behavior. Ukin(T )

is usually written as

Ukin(T ) = γs
6D(T )

λ
(1.8)

where γs is a geometric factor which value is typically in the range 0-1. It is possible [49]

to estimate ∆µ(T ) from the latent heat of melting ∆Hm and the melting temperature Tm.

For glass forming system, and particularly for fragile chalcogenide liquids, the following

expression can be used [50]:

∆µ(T ) =
∆Hm(Tm − T )

Tm

(
2T

Tm + T

)

(1.9)

The temperatures at which nucleation and growth exhibit their respective peak values

are not the same, and also one process might generally be dominant over the other. In fact,

one can distinguish between nucleation-dominated and growth-dominated crystallization

(see Fig. 1.19).

In the case of nucleation dominated crystallization, the time needed to crystallize an

amorphous or a liquid bit does not depend on its volume. Growth-dominated materials,

on the other hand, do exhibit a volume dependence: the smaller the volume, the shorter

is the time for complete the crystallization. One can distinguish between three tempera-

ture regimes relevant for the crystallization kinetics. The first regime is located around

the glass transition temperature where crystallization is ought to proceed very slowly

due to the low atomic mobility. The slow crystallization enables the experimental direct

observation of nucleation and growth [51, 52]. A second temperature regime of interest

is situated just below the liquid temperature where crystallization is slow because of the

small driving force for crystallization. thermal analysis. The experimentally most chal-

lenging yet technologically relevant temperature regime is located somewhere between

liquid and glass transition temperature, where crystallization proceeds the fastest.

Recently, Orava et al. [53] succeeded in measuring the crystallization speed U(T ) in

the temperature range of interest for device application. They unravel the crystallization

kinetics by employing differential scanning calorimetry (DSC), which measures the energy

required to heat the sample. They utilize an ultrafast-heating calorimeter that enables

heating rates higher than 4·104 K· s−1 to investigate the crystallization of GST. The high

heating rates enabled them to study crystallization at temperatures ranging from 450 to

650 K of interest for device operation. On the basis of several assumptions on the crys-

tallization process, the crystal-growth velocity and then Ukin from Eq. 1.7 are extracted.

The calculated values of D are however inconsistent with the values of η expected at Tg.

Therefore a fraction SER has been proposed with

Ukin ∝ D ∼ η−ξ (1.10)
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Figure 1.19: Schematic representation of a) nucleation dominated crystallization
and b) growth dominated crystallization in which the crystal grows from the crys-
tal/liquid(amorphous) interface.
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with ξ less than one. The dependence of Ukin and thus η on temperature also suggested

that GST is a fragile liquid (see Fig. 1.20). However, a number of crucial assumptions have

been made in this work: for example, the authors ignore the contribution of nucleation

to their DSC data, and the glass transition temperature is set to 383 K with no direct

measurements.

Figure 1.20: a) Angell plot for temperature dependence of viscosity. The solid green
line shows the data for U−1

kin in GST. The dashed green lines are extrapolations based
on fitting to Eq. 5.6. b) Crystal growth rate of GST as a function of temperature. Both
of the panels are adapted from Ref. [53].

However, direct experimental measurements of viscosity are not possible in the case of

phase change materials because of their fast crystallization. In this thesis work we investi-

gated the dynamical properties of supercooled liquid GeTe by calculating independently

the diffusion coefficient and the viscosity. The analysis of this two quantities as a function

of temperature provided direct evidence of the fragility of GeTe (and possibly of other

phase change materials) and the breakdown of SER close to Tg.
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Chapter 2

Methods

2.1 Neural Networks

Neural Networks (NN) constitute a broad subject, for they concern many different fields

in which they can play different roles. In order to provide an useful -and possibly clear-

definition of NN in the context of this thesis work, we begin by making a distinction

between Biological and Artificial Neural Networks. The formers are the building blocks

of our brains, and can be defined as sets of interconnected neurons. It was actually in the

attempt of both understand and emulate one of the most powerful and effective machinery

that nature has ever developed that Artificial Neural Networks showed up at the beginning

of the forties [54]. From then on, they undergo an impressive growth in terms of popularity

among many different research areas, so that a comprehensive definition of an Artificial

Neural Network cannot be properly formulate. Indeed, there is no such thing as ”The

Artificial Neural Network”, but instead this term includes a whole class of algorithms. In

this thesis we will obviously refer only to Artificial Neural Networks -from now on simply

Neural Networks, NN- and choose for them the following definition [55]:

A cognitive information processing structure based upon models of brain func-

tions. In a more formal engineering context: a highly parallel dynamical system

with the topology of a directed graph that can carry out information process-

ing by means of its state response to continuous or initial input.

Nowadays NN are extensively employed as valuable tools in classification problems, such as

speech [56] or text recognition [57], optimization tasks like solving the traveling salesman

problem [58], prediction issues as financial market analysis [59] or weather forecast [60]

and fitting algorithms [61]. The latter context is the one in which we are interested in,

because it has been proven [62] that in principle it is always possible to construct a NN

able to fit to arbitrary accuracy any continuous, real-valued function of any dimension.

An interatomic potential is basically a representation -to be precise an approximation-
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of the potential energy surface (PES) of the system, which in turn is a continuous real

valued function, often of high dimensionality.

2.1.1 The curse of dimensionality

NN are not the only way by which one can try to approximate a function. Among the

many alternatives, splines [63], Taylor expansions [64], Gaussian based methods [65] can

be used. One of the most tricky problem when using most of this approaches, consists

in the fact that they often fail when the dimensionality of the function is huge, like

for example in the case of an high dimensional PES. This issue is known as ”the curse

of dimensionality” [66]. In fact, in any real fitting procedure we are always forced to

work with a limited quantity of input data, that is, a limited database of known data

-actually belonging to the function that we want to fit- that constitute the input of our

fitting algorithm. Let us take a function f{~x} that depends on a set of variable {~x}
of dimension n. When the dimensionality of the function increases, the volume of the

space spanned by {~x} increases exponentially, so that our dataset becomes very sparse,

in which case it provides a very poor representation of f . In the case of a PES of a system

containing for example one thousand atoms, we would like to fit a function that depends

on one thousands three dimensional vectors, that is the set of atomic coordinates. This

is a formidable task, that requires extreme flexibility. NN are not that susceptible to the

curse of dimensionality as the majority of the above mentioned fitting methods. At first,

they can exploit the fact that the input variables are generally correlated in some way,

so that the data points do not fill out the entire input space but tend to be restricted to

a sub space of lower dimensionality. The input of a NN can be build such that the input

variables are parametrized in basis function that can be regularized in order to improve the

result. Besides, for most mappings of practical interest, the value of the output variables

will not change arbitrarily from one region to another, but will typically vary smoothly

as a function of the input variables. NN can be nested to create hierarchical algorithms

that provide a very high degree of flexibility, being able to handle fitting procedures of

high dimensional functional mapping in a massively parallel way.

2.1.2 Feed-forward network mapping

Feed-forward neural networks provide a general framework for representing non-linear

functional mappings between a set of input variables and a set of output variables. This

is achieved by representing the non linear function of many variables in terms of com-

positions of non-linear functions of a single variable, called activation functions. In this

case each multivariate function can be represented in terms of a network diagram such

that there is a one-to-one correspondence between components of the function and the

elements of the diagram, that is, any topology of network diagram can be translated into

the corresponding mapping function, as long as the network is a purely feed-forward one.

In feed-forward networks, there are no feedback loops, that is, it is possible to attach
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successive numbers to the inputs and to all of the hidden and output units such that each

unit only receives connections from inputs or previous units. In this case, outputs can

be always expressed as a deterministic function of the inputs, and so the whole network

represents a multivariate non-linear functional mapping. A feed-forward NN (from now

on, simply NN), is a mathematical object made of different layers. A very simple NN

topology is shown in Fig. 2.1, and for sake of simplicity we will refer to it in the following

discussion.

Figure 2.1: Sketch of simple NN topology with two hidden layers.

Each layer is a set of nodes, and each node mimics a single neuron of a biological NN.

There are always a single input layer and a single output layer, plus a certain number of

so-called hidden layers and optionally a bias layer. The number of hidden layers has to be

determined a posteriori. As the term ”hidden” suggests, nodes in hidden layers have no

physical meaning, being just auxiliary mathematical constructs that provide the required

flexibility of the NN. Increasing the number of input layers and/or the number of nodes in

each hidden layer increases the number of parameters by which our approximate functional

form depends on, so that the flexibility of the NN increases along with the capabilities to

fit more complicated functions. Still, increasing flexibility does not always leads to better

results. This issue is know as overfitting, that will be addressed in section 2.1.5.

Each node in each layer is connected to the nodes in the adjacent layers by ”weights”,

i.e. the fitting parameters of the NN that define the functional mapping (see Fig. 2.1).

Weight connecting node i in layer k with node j in layer l is indicated by wkl
ij in Fig. 2.1.

In addition to this, nodes in the hidden layers and in the output layers are connected to

a bias layer via a set of bias weights bji , which purpose will be discussed in section 2.1.3.

The output of the NN is calculated as follows. At the beginning, each point xi of the

fitting dataset is assigned to a different node in the input layer. The values y1j of the nodes

in the first hidden layer are then calculated in two steps: first, for each node a weighted
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sum χ1
j of the input x1i is calculated and the bias weight b1j is added:

χ1
j = b1j +

4∑

i

w01
ij · xi (2.1)

this corresponds to a linear combination of the input coordinates using the weights as

coefficients. Then, a non-linear function f1j is applied to χ1
j in order to allow the NN to fit

arbitrary function (activation functions are discussed in detail in section 2.1.3), yielding

the value y1j of the hidden node:

y1j = f1j (χ
1
j ) (2.2)

Once all values of all nodes in a hidden layer have been determined, the values of the

subsequent layer can be calculated and so forth until the output of the NN is obtained.

The complete functional form of the NN depicted in Fig. 2.1 is given by:

E = f31



b31 +

3∑

i=1

w23
i1 + f2i



b2i +

4∑

j=1

w12
ji f

1
j −

(

b1j +

3∑

k=1

w01
kjxk

)





 (2.3)

In principle the NN output can be a vector of values. Here we have chosen to sum

up the result of the hidden layers manipulations in a single output node. The ability of

the NN to accurately describe a function depends on the numerical values of the weights,

that are typically determined in iterative optimization processes (see section 2.1.4).

2.1.3 Activation functions and the bias weights

The activation functions (also called ”transfer functions” or ”basis function”), typically

converge asymptotically to a constant value for very large and very small arguments, but

in between they display a non-linear region. Possible choices are the sigmoid function

f(x) =
1

1 + e−x
(2.4)

or the hyperbolic tangent, but also Gaussian, exponential and even periodic functions.

Sigmoid, hyperbolic tangent and Gaussian functions converge to a constant number for

very small and very large arguments. This property is important for the numerical stability

of the NN fitting process. On the other hand, these functions have a narrow range of

possible function values, which not necessarily coincides with the range of values of the

functional mapping in which we are interested in. Therefore, from the last hidden layer to

the output layer, activation functions are usually linear in order to avoid any constraint

in the range of output values. By a proper adjustment of the weights, activation functions

can be shifted up and down or left and right with respect to the reference frame, and

they also can undergo a slope change or a rescaling. In particular the bias weights act as

an adjustable offset and shift the nonlinear region of the activation functions. The high
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flexibility of e.g. the hyperbolic tangent as a function of the weights is shown in Fig. 2.2,

and is one of the reasons why NN are capable to adapt very accurately to any kind of

function by combining a large number of these simple elements.
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Figure 2.2: Illustration of the flexibility of the sigmoid function. f1(x) = 1

1+e−x ,

f2(x) =
(

1

1+e−x

)

+ 0.5, f3(x) =
(

1

1+e−x

)

· 0.5, f4(x) =
1

1+e−(x·0.5) , f5(x) =
1

1+e−(x−5) .

2.1.4 Error back-propagation and training

We can define an error function, such as the sum-of-squares errors

Γ =
1

2N

N∑

i=1

(Ei,NN − Ei,ref )
2

(2.5)

where N is the number of point in the dataset, Ei,NN is the i-th output of the NN

and Ei,ref is the reference value of the dataset. If the activation functions of a NN are

differentiable, then the output is a differentiable function of both the input variables

and the weights (bias weights included) and the error is itself a differentiable function of

the weights. We can therefore evaluate the derivatives of the error with respect to the

weights, and these derivatives can then be used to find weight values which minimize

the error function, by using an optimization method like for example a simple gradient

descent. The algorithm for evaluating the derivatives of the error function is known as

”back propagation”, since it corresponds to a propagation of errors backwards through

the NN.

The process by which the weights are iteratively improved until they provide a reason-

able approximation of the underlying function is called ”training” or ”learning”, and each

iteration of this process is known as ”epoch” in the NN context. In spite of the availability

of a large number of optimization algorithms, finding low minima in a high-dimensional
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weight parameter space is a formidable task. Although NN can in principle be used to fit

any real-valued function to arbitrary accuracy, in practical fits this knowledge is not of

much help, and there is no hope to find the global minimum. According to experience,

however, NN do not often get stuck in a poor local minima but tend to find sufficiently

accurate local minima in the majority of cases.

2.1.5 Overfitting

Employing an extremely flexible functional form immediately rises the possibility of ”over-

fitting”, that is, a set of the points of the dataset is fitted very accurately while other

points not included in the training set are poorly described. In other words, overfitting

is an improvement of the fit in one region of the configuration space at the cost of a

poor quality in another region. A simple example is shown in Fig. 2.3, where the dashed

line connects the training points with a very low error. However, a lower error cannot

guarantee an improved fitting if the underlying function. In fact, the solid line in Fig. 2.3

represents a fit with an even lower error, since the curve cross exactly each training point,

but it is clear that the fit gives very poor result in intermediate regions between the

points, including many local extrema not present in the training data.

Figure 2.3: A schematic representation of overfitting of a simple function.

This is a typical example of overfitting, an issue particularly relevant in NN as is

very easy to increase flexibility of the NN functional form by simply adding more hidden

layers (or more nodes in each hidden layer). In a high dimensional weight space, a visual

inspection of the fit quality is impossible. A commonly employed method in order to

avoid overfitting is the ”early-stopping” method, where the input dataset is split into

a training set, which is used to update the weights, and a test set, which is not used

in the optimization procedure. A comparison of the errors of the training and the test

sets allows for an estimate of the properties of the NN fit. Typically, along the different
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epochs the test error decreases together with the training error until the former reaches a

minimum after which it begins to rise up. This means that from then on we are improving

the accuracy of the fit with respect the training points on the expense of the regions in

configuration space that lie in between them. Thus, in the early stopping method the set

of weights that minimizes the test error is usually taken as the best result of the fit.

2.1.6 Neural Network potential energy surfaces for atomistic sim-

ulations

NN as a way to construct potential energy surfaces for atomistic simulations have been

proposed and implemented in many different fashions. Most of them deal typically with

molecular systems, for which a single NN is often used to calculate the total energy the

molecule. In this approach the input data are typically the atomic internal coordinates of

the molecular system. The use of a single NN for all the atoms is easy to implement, NN

standard software is readily available and the number of weights is small, so that fitting

turns out to be easy and fast. However, these kinds of NN potentials suffer from severe

limitations. At first, they have a fixed dimensionality, i.e., once fitted, the NN potential

cannot be applied to systems with a different number of atoms. Further, the number of

degrees of freedom of the system must be necessarily small. In practice, single-NN PES are

typically used for systems with up to about ten to twenty degrees of freedom corresponding

to molecules containing only six or seven atoms. Still, there exists several useful application

of single-NN potentials [67–69] Beside isolated molecules in the gas phase, potentials based

on a single NN have also been applied to small molecules interacting with surfaces [70–72].

NN potentials became competitive in the field of molecular simulations only if they

can provide energies and forces for large systems containing many -i.e. thousands and

more- atoms. While most classical force fields and empirical potentials easily fulfill this

requirement, for NN potentials it is not immediately obvious how high-dimensional po-

tentials can be constructed. There is in fact a number of conceptual problems that need

to be solved to apply NN to the construction of high-dimensional PES. First of all, a NN

has a fixed number of input nodes corresponding to the degrees of freedom of the system.

Once the weights have been determined, the architecture of the NN cannot be changed.

Therefore, a PES based on a standard NN is only valid for a specific system size, as each

additional atom would contribute another three degrees of freedom. It is neither desir-

able nor feasible to construct a separate NN potential for each system size. Further, the

number of input nodes of a NN needs to be kept reasonably small. With growing number

of input nodes, the NN evaluation becomes computationally more demanding, and the

number of weights increases rapidly, slowing down the fitting process.

Thus, in spite of being very accurate and successful, the low-dimensional NN po-

tentials for isolated molecules, or for simple molecular interactions with ideal surfaces

discussed above will remain special-purpose solutions. They can very accurately repre-

sent the PES of a single molecule or small clusters, but a straightforward extension to

larger systems is not possible. In most cases is not even possible to apply these potentials
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to systems containing several molecules of the same kind, since the intermolecular inter-

actions are completely missing in the NN potentials. The first NN scheme to deal with

high-dimensional PES has been suggested already at a very early stage of NN potential

development for carbon and the binary C-H system [73]. In this scheme the NN is not

directly used to express the energy of the system as a function of the coordinates of the

atoms. Still, it is conceptually important as it first develops the idea to employ a NN

of variable size, which has later been extended to an efficient high-dimensional NN PES

by improving the functional form of the Tersoff potential [74]. The breakthrough in this

approach is that the NN is now applicable to systems containing an arbitrary number

of atoms, and the problem of variable system size has been solved by decomposing the

chemical environment of each bond in the system into a variable number of input vectors

characterizing three-atom chains, which all have the same dimensionality. A drawback

of the method is that its accuracy is certainly limited, since the functional form of the

Tersoff potential is kept and only a few close atoms in the chemical environments of the

bonds are taken into account. Starting from this work, Tersoff functional form has been

recently abandoned and the energy of the system has been rewritten as the sum of atomic

energies [75], derived from individual atomic NN. Therefore, for each atom in the system

there is one separate NN, and each NN can process multiple input vectors depending on

the local environment of each atom, and the output of each NN is the atomic energy. The

method has been successfully applied in the construction of NN potential for silicon [76].

A further improvement with respect to the above mentioned approaches came in 2007

thanks to the work of Behler and Parrinello [9], who developed the method that has been

applied in this thesis work to the study of the phase change material GeTe. Again, the

total energy of the system is written as the sum of atomic energies:

ETot. =
N∑

i=1

Ei({~r}) (2.6)

The novelty of the methods lies in the fact that the architecture of the NN is fixed

for a given chemical element, so that for each atom a standard NN can be used. Only

one input vector of fixed dimensionality is needed per atom to describe its local chemical

environment, which is considered up to a certain cutoff radius function that introduce the

following cutoff function:

fc(rij) =

{

0.5
[

cos
(

πrij
rc

)

+ 1
]

for rij < rc,

0 for rij > rc,
(2.7)

The number of input nodes used to describe an atomic environment is decoupled from

the number of neighboring atoms by transforming the Cartesian coordinates of the atoms

in the local environment into special types of many-body so-called ”symmetry functions

”. These symmetry functions provide information on the radial and angular arrangement

of neighbors for each atom in the system. A sketch depicting the NN scheme adopted by
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Behler and Parrinello is shown in Fig.2.4.

Figure 2.4: Sketch of a NN according to the Behler and Parrinello framework.

A general problem when constructing NN potentials is the correct inclusion of the

invariance of the total energy with respect to symmetry operations such as the exchange of

two atoms or translations and rotations of the system as a whole. In the scheme proposed

by Behler and Parrinello, this feature is realized by a proper choice of the symmetry

functions. For a generic system containing N atoms, the coordinates are transformed into

a vector of symmetry function values {~gi}. Each symmetry function value depends on all

coordinates of the atoms in the environment. The set of values of symmetry functions is the

input of an atomic NN which yields an atomic energy. For a given chemical element, the

architecture and weights of the atomic NN are constrained to be the same. Therefore, the

total energy of the system is invariant with respect to the exchange of the positions of any

two atoms of the same element. This NN scheme is applicable to any number of atoms: if an

atom is removed or added from the system, we remove or add the corresponding atomic

NN. The NN weights can be determined using total energies from electronic structure

calculations, because a partitioning into atomic energies before fitting is not required.

From now on, we will restrict our discussion to the NN proposed by Behler and Parrinello

applied in this thesis to GeTe.

Symmetry Functions

Two different class of symmetry functions have been used: radial and angular symmetry

functions. The formers are written as sums of two-body terms, while the latter contain

also three-body terms. To describe the radial environment of atom i, two different kind

of radial symmetry functions have been employed:
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G1
i =

∑

j

fc(Rij)

G2
i =

∑

j

e−η(Rij−Rs)
2 · fc(Rij) (2.8)

Function G1
i is simply the sum of the cutoff functions with respect to all neighboring

atoms j, while function G2
i is a sum of Gaussians centered at a certain radial distance

Rs and multiplied by the cutoff function. These ”shifted” G2
i functions are suitable to

describe a spherical coordination shell around the reference atom. For small values of η

and Rs = 0 function G2
i reduces to function G1

i . The radial distribution of neighbors can

be described by using a set of radial functions with different spatial extensions, e.g. G1
i

functions with different cutoff radii, or G2
i functions with different cutoffs and/or η and

RS parameters. Typical forms of the radial symmetry functions are plotted in Fig. 2.5 for

several parameter values.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8

G
1

Rij [Å]

Rc=2
Rc=3
Rc=4
Rc=5
Rc=6
Rc=7

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  1  2  3  4  5  6  7  8

G
2

Rij [Å]

Rs=2
Rs=3
Rs=4
Rs=5
Rs=6
Rs=7

a) b)

Figure 2.5: Radial symmetry functions. a) G1
i -type symmetry functions for different

cutoff radii. b) G2
i -type symmetry functions for different radial distances Rs with η=2

and Rc=8 Å respectively.

Since the radial functions are sums over all neighbors, they give a measure of the pair

correlation function at various distances. The angular symmetry functions are functions

of the angle θijk between the central atom i and two neighbors j and k as

G3
i = 21−ξ

all∑

j,k 6=i

(1 + λcosθijk)
ξ · e−η(R2

ij+R2
ik+R2

jk)
2 · fc(Rij) · fc(Rik) · fc(Rjk) (2.9)

The parameter λ can have values +1 or -1, shifting the maxima from 0◦ and 180◦.
The angular resolution is controlled by the parameter ξ. High ξ values yield a narrower

range of nonzero symmetry function values. Therefore, a set of angular functions with
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different ξ-values can be used to obtain a measure of the bond angle distribution function

of each reference atom. The angular distribution is sampled at various distances from the

central atom by a suitable choice of η and Rc, which control the radial part. An example

of angular symmetry function is depicted in Fig.2.6.
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Figure 2.6: Angular symmetry functions G3
i for several values of ξ with λ = 1.

The parameters that define the symmetry functions are fixed in the training process

of the NN. The resulting set of function values is different for each atomic environment.

Therefore, the total number of symmetry function values describing a given structure is

clearly larger than the number of degrees of freedom of the system. This ensures that

the full dimensionality of the system is captured, and the resulting redundancy of the

information is not usually a problem for a NN algorithm. It should be noted that the

introduction of a cutoff radius rc represents an issue if long-range interactions are present

in the system under investigation. However, the Behler and Parrinello NN approach has

been successfully extended by the same authors in order to properly include electrostatic

interactions, and a NN potential for the strongly ionic compound ZnO has been recently

constructed [77]. However, in this thesis work long-range interactions has been neglected.

Forces and stress evaluation

The NN energy is an analytical function of the symmetry functions and thus of the atomic

coordinates. Atomic forces and the stress tensor can thus be evaluated analytically. In

order to calculate the force component ~Fk acting on atom k is sufficient to apply the

chain rule:
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~Fk = − ∂E

∂ ~Rk

= −
N∑

i=1

∂Ei

∂ ~Rk

= −
N∑

i=1

Mi∑

j=1

∂Ei

∂Gi,j

∂Gi,j

∂ ~Rk

(2.10)

where ~Rk is the position of atom k, N is the number of atoms andMi is the number of

symmetry functions describing the environment of atom i. The first term, ∂Ei

∂Gj
is given by

the architecture of the NN, the second term
∂Gj

∂ ~Rk
is given by the definition of the employed

symmetry functions.

Concerning the stress tensor, we refer to its static contribution. Since the energy is a

function of interatomic distances ~Rkj = ~Rk − ~Rj , the stress tensor can be obtained from

the virial theorem as [78]

σstatic
α,β =

N∑

i=1

N∑

k=1

Rik,α · Fk,β (2.11)

where α and β are Cartesian coordinates, i and k are atomic indexes and j runs over

the number of symmetry functions. Eq. 2.11 must be evaluated taking into account the

fact that Fk,β come from radial or angular symmetry functions derivatives. It is worth

noticing that partitioning the total stress of a system into atomic contribution is in general

a non-unique choice. However, in the case of the NN architecture we employed, atomic

stress tensors can be easily defined and calculated.

Extrapolation

NN are powerful fitting methods which allow interpolation of the points in the dataset

but not extrapolation outside the configurational space spanned. Luckily is pretty easy to

rapidly check if we are outside the known configurational space or not. In fact, every local

atomic environment is described by a set of symmetry functions, that depending on the

atomic environment assume different values. The first step of the NN fitting procedure

is the construction of the symmetry function input vector, so that we can keep memory

of the minimum and maximum values assumed by each symmetry function for the whole

input dataset. If a certain atomic configuration cause one or even more than one symmetry

function to assume values outside the range included in th fitting, a so called extrapolation

occurred, and we cannot trust our NNP results. Fixing this issue is relatively simple. Once

detected the atomic environment that causes the extrapolation, we can add it to the input

dataset and fit again, obtaining a NNP that would be now able to behave correctly also
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for that particular configuration. Still, care must be taken since absence of extrapolations

cannot guarantee the reliability of NNP.

2.1.7 The Kalman filter

An optimization scheme which has become very popular in the context of neural networks

is the extended Kalman filter. The global extended Kalman filter is a very sophisticated

algorithm originating from estimation and control theory [79]. It is used as an online

learning method, that is the NN weights are optimized after each individual training point

has been taken into account. In order to update the weights ~w after a certain number

of dataset points n, an history of previous updated is used, according to the following

relations:

¯̄K(n) = λ−1 ¯̄P (n− 1) ¯̄J(n)[ ¯̄I + λ−1 ¯̄JT (n) ¯̄P (n− 1) ¯̄J(n)]−1

¯̄P (n) = λ−1 ¯̄P (n− 1)− λ−1 ¯̄K(n) ¯̄JT (n) ¯̄P (n− 1)

~w(n) = ~w(n− 1) + ¯̄K(n)[ ¯̄Eref (n)− ¯̄ENN (~w(n− 1))] (2.12)

where ¯̄K is the so called Kalman matrix gain, ¯̄P is the covariance matrix1 , ¯̄I is the

identity matrix and ¯̄J is the Jacobi matrix which elements are defined by:

Ji =
∂E

∂wi
(2.13)

For each training point, a three steps procedure takes place. At first, the Kalman filter

gain matrix is updated using the covariance matrix of the previous epoch and the current

weight derivatives in the Jacobi matrix. Then the new vector of weight parameters is

determined using ¯̄K. Finally, the covariance matrix is updated according to Eq.2.12. A

forgetting schedule is introduced via λ to ensure that only the recent history of updates

is taken into account for update of point n:

λ(n) = λ0λ(n− 1) + 1− λ0 (2.14)

The constant λ0 is usually chosen to be around 0.995. Adapting the weight parame-

ters after each training point is computationally rather costly. In its adaptive form, the

Kalman filter is not used to update the weights after each individual training point, but

an error threshold α is defined in terms of the actual root mean squared error (RMSE)

of the full training set. Only if the error of a training point is larger than the product

of α and the current RMSE, the point will be used to update the weights. This can

reduce the computational effort significantly. For the construction of NN potentials, the

extended Kalman filter often shows a performance which is superior to other optimization

1In general, Pij = E[(xi − µi)(xj − µj)], where µi = E(xi) is the expected value of the i-th element
of the vector ~x.
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algorithms [80, 81], mainly because is less likely to get trapped in shallow local minima

The fitting procedure of a NN employing the Kalman filter can take hours or even days,

according to a huge number of variables like the NN architecture, the number and the

complexity of the symmetry functions chosen, the dimension of the input dataset and the

numerical precision required to the fit. Nevertheless, once the NN potential is constructed

it can be used to predict energy and forces in a straightforward way. In principle, the

computational load scales linearly with system size.

2.2 Molecular dynamics

Molecular dynamics [78, 82] is a computational technique which provides the time evo-

lution of the positions and momenta of a finite system of atoms, considered as classical

particles, once the initial conditions and the interaction potential are specified. Depending

on the choice of the interatomic forces there is a trade-off between accuracy and size of

the system and time scale affordable by the simulations: on parallel computers available

today empirical force fields enable the simulation of millions of atoms for microseconds,

whereas more accurate methods which take explicitly into account the electronic structure

at the DFT level (e.g. Car-Parrinello method) are limited to hundreds of atoms for few

hundreds of picoseconds.

Neglecting quantum effects like zero-point energy and tunneling, which may be rele-

vant only for the lightest atoms, the motion of atoms is accurately described by Newtonian

dynamics at low temperatures.

2.2.1 Integration of the equation of motions

Within molecular dynamics the equations of motion are integrated by means of numerical

algorithms which rely on a discrete time-scale. The systems considered typically include

many atoms interacting in a complex way, thus the trajectories are extremely sensitive

to initial conditions: small unavoidable numerical errors lead rapidly to a divergence with

respect to the correct trajectories [82]. However, this does not hamper the calculation of

observable properties of the system, which usually are time correlation functions, decay-

ing before the divergence takes place, or statistical averages, which rely on the ergodic

hypothesis (see section 2.2.2). The velocity Verlet algorithm [83], which we adopt in our

simulations, being a democratization of Hamilton’s principle of stationary action, has the

important property of providing trajectories which are overall very close to real trajecto-

ries between the assigned endpoints in space-time, although with different initial velocities

than the input ones. According to this algorithm at every timestep ∆t the position ~Ri

and velocity ~̇Ri of atom i are updated as
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~Ri(t+∆t) = ~Ri(t)∆t+
~Fi(t)

2Mi
∆t2

~̇Ri(t+∆t) = ~̇Ri(t)∆t+
~Fi(t) + ~Fi(t+∆t)

2Mi
∆t (2.15)

This algorithm is a time reversible symplectic transformation in the phase space,

therefore total energy is well conserved in the absence of external forces [82, 84].

2.2.2 Statistical averages and size effects

According to the ergodic hypothesis the ensemble average of any dynamical quantity

A(q, p) is equivalent, for long times, to the time average over the trajectory of the system

in phase space [82]:

〈A〉 =
∫

dqdpρ(q, p)A(q, p) = lim
t→∞

1

τ

∫ τ

0

dtA(q(t), p(t)) (2.16)

where the density function ρ(q, p) depends on the thermodynamic ensemble considered.

Within this approach molecular dynamics provides equilibrium observables, e.g. the pair

correlation function g(r), from time averages over atomic trajectories.

The bulk properties of a material can be calculated by simulating explicitly only a

small number of atoms, of the order of 102, using periodic boundary conditions [78]: this

amounts to consider the infinite lattice resulting from periodic replica of the simulation

cell in all directions. When one atom exits from a face of the cell it enters from the opposite

face, and the distance between atoms i and j is taken as the minimum distance between

all the periodic replicas of i and j (minimum image convention). In this scheme physical

phenomena whose correlation length exceeds the cell size can not be described properly,

whereas spurious correlation between periodic replicas of the same atom can affect the

accuracy of results. Moreover, investigating dynamical properties often require ensemble

average that converge very slowly with simulation time, so that the size of the system

plays an important role. There are even many quantities that under certain conditions are

size dependent (e.g. the diffusion coefficient in the hydrodynamic regime, see section 5.2).

2.2.3 First principles molecular dynamics

In first principles molecular dynamics interatomic forces are obtained by solving the elec-

tronic structure problem during the simulation. According to Born-Oppenheimer approx-

imation [85] the motion of slow nuclear and fast electronic degrees of freedom, having well

separated typical time scales, can be conveniently decoupled:

MI
~̈RI = −∇~RI

U(~R) = −∇~RI
〈ψ0(~r; ~R)|He|ψ0(~r; ~R)〉 (2.17)
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where ψ0 is the ground state electronic wavefunction at fixed nuclear configuration,

Heψ(~r; ~R) = Eeψ(~r; ~R)

He =
∑

i

− ~
2

2me
∇2

i +
∑

i<j

e2

|~ri − ~rj |
+
∑

i,I

−ZIe
2

|~ri − ~RI |
+
∑

I<J

ZIZJe
2

|~RI − ~RJ |

For every instantaneous nuclear configuration, electrons obey to a Schröedinger equa-

tion at frozen nuclei, always remaining in the ground state. This amounts to neglecting

possible electronic excitations due to coupling with the nuclear motion (non adiabatic

effects). On the other hand nuclei move according to classical dynamics, with the total

electronic energy as the interaction potential U(~R). The ground state electron wavefunc-

tion ψ0(~r; ~R) depends only parametrically on ~R, therefore the interatomic forces can be

calculated by applying the Hellmann-Feynman theorem [86, 87]

MI
~̈RI = −∇~RI

〈ψ0|He|ψ0〉 = −〈ψ0|∇~RI
He|ψ0〉 (2.18)

In the Born-Oppenheimer scheme ψ0 is computed at every step of the molecular

dynamics simulation, and the atomic positions are updated according to the forces in

Eq. 2.18. Ab initio molecular dynamics is computationally expensive due to the solution

of the electronic problem: a convenient approach to the latter is density functional the-

ory (DFT), which is presented in the next section. Explicit inclusion of the electronic

structure is mandatory for systems where the chemical bonding between atoms is not

easily described by empirical force fields. Besides molecular dynamics, the calculation of

interatomic forces ~Fi is applied to obtain the equilibrium geometry of a system: several

algorithms exist in which fictitious dynamics are exploited to minimize the energy reach-

ing the equilibrium geometry and also to find different local minima. In the present work

we employed geometry optimization techniques based on the BFGS algorithm [63] for

systems up to 102 atoms and simulated annealing [88] for bigger systems.

2.2.4 Density functional theory

The most widespread method for the calculation of the ground state electronic structure in

condensed matter is density functional theory (DFT) within the Kohn-Sham scheme [89,

90], based on the two celebrated theorems of Hohenberg and Kohn [91] and Kohn and

Sham [92]. The first Hohenberg and Kohn theorem states that the ground state energy

of the electronic Hamiltonian He is a functional of the electronic density as (we do not

explicitly consider the spin):
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E0 = 〈ψ0|He|ψ0〉 =
∫

d3~rVext(~r)n0(~r) + F [n0]

n0(~r1) = N

∫

d3(~r2) . . . d
3(~rN )|ψ0(~r1, ~r2, . . . , ~rN )|2

where Vext is the ”external” potential acting on electrons (usually the Coulomb in-

teraction with nuclei) and F [n0] is a universal functional of the ground state electronic

density, independent from Vext. This formally maps the calculation of E0 from a 3N vari-

ables problem (considering the coordinates of all the electrons, needed to describe ψ0) to

a 3-variables problem, at the expense of the introduction of F [n0]. The second Hohenberg

and Kohn theorem states that E0 has a variational character:

min
n

〈He〉[n] = E0[n0] (2.19)

i.e. the minimum energy E0 corresponds to the true ground state density n0. The

Kohn-Sham theorem states that it is possible to switch from the true N-electrons Hamil-

tonian He to an effective one electron Hamiltonian HKS involving just a local effective

potential VKS :

HKSφi(~r) =

[

− ~
2

2me
∇2 + VKS(~r)

]

ψi(~r) = ǫiψi(~r) (2.20)

with

〈ψi|ψj〉 = δij (2.21)

The real and the fictitious system share the common total density n, which is obtained

by occupying the first N one electron Kohn-Sham orbitals ψi

n(~r) =

N∑

i=1

|ψi(~r)|2 (2.22)

The effective potential VKS reads

VKS(~r) = Vext(~r) + VH(~r) + Vxc(~r) (2.23)

where VH is the Hartree potential due to the mean field electron-electron interaction,

and Vxc is the exchange-correlation potential, which includes the most complex part of

the many-body electron-electron interaction:
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Vext(~r) =
∑

I

−Zie
2

|~r − ~RI |

VH(~r) =

∫

d3~r′
n(~r′)e2

|~r − ~r′|

Vxc(~r) =
δExc[n]

δn(~r)

(2.24)

where δ/δn is the functional derivative with respect to the density. The exchange-

correlation energy functional Exc[n] is the unknown part of the total ground-state energy

of the interacting system

E[n] = TKS [n+]

∫

d3n(~r)Vext(~r) +
1

2

∫

d3~rn(~r)VH(~r) + Exc[n] (2.25)

TKS is the kinetic energy of the auxiliary Kohn-Sham system of (formally) independent

electrons

TKS [n0] =
N∑

i=1

− ~
2

2me
〈ψi|∇2|ψi〉 (2.26)

Thus Exc includes the many-body part of both the Coulomb interaction and the kinetic

energy. The Kohn-Sham theorem reduce the variational determination of the minimum of

E0[n] to the solution of the single-particle equation. The difficulties of the many electrons

problem are not eliminated, rather they are concentrated in the building of the unknown

functional Exc[n0]: DFT has great effectiveness because good approximations for this

functional are available, as shown in the next section. The Kohn-Sham equations are non

linear, because the effective potential VKS depends upon the solutions φi through the total

density, thus they are usually solved by means of iterative methods until self-consistency

is reached [93].

The term Exc contributes just a little fraction to the total electronic energy. Never-

theless, it is fundamental because it is the largest fraction of the bonding energy which

keeps together the atoms in condensed matter. The simplest approximation to Exc, yet

remarkably effective, is the local density approximation(LDA) [92]

ELDA
xc =

∫

d3~rn(~r)ǫLDA
xc (n(~r)) (2.27)

where ǫLDA
xc [n0] is the exchange-correlation energy of one electron in a uniform infi-

nite jellium of density n0, obtained from very accurate Quantum-Monte Carlo calcula-

tions [94]. The LDA satisfies many requirements on the exact Exc functional, like the

normalization of the exchange-correlation hole, leading to unexpectedly good description

also of non-uniform systems because of extensive error-cancellation [89, 90]. The agree-
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ment with experiments can be improved in some cases including in Exc also a degree of

non locality through the gradient of the density (generalized gradient approximations,

GGA), according to the general expression

EGDA
xc [n] =

∫

d3f(n(~r),∇n(~r)) (2.28)

Compared to LDA, the GGA functional generally provide a less uniform density,

improved cohesion and activation energies and more accurate energy difference between

the crystalline phases of the material. moreover often LDA underestimates and GGA

overestimates the bond lengths. The functionǫLDA
xc is uniquely defined, whereas various

possible f functions have been proposed in the literature: in our calculations we adopted

the PBE [95].

The PBE-GGA expression for the exchange-correlation energy is free of empirical

parameters, and gives total energy dependent properties in good agreement with experi-

ment [96]. The PBE-GGA functional has been extremely influential, both for performing

actual calculations and as a basis for functional involving higher derivatives and exact

exchange [97]. As both the density and the gradient can be constant in the homogeneus

electron gas limit, there can be no unique GGA and the constraints of the PBE-GGA

are not sufficient to uniquely define the functional. The PBE functional form is based on

a numerical GGA [95] where a model of the exchange correlation hole was constructed

to satisfy known exact hole constraints. The constraints are satisfied using a sharp real

space cutoff and a dampign function, which were choices of the authors [95] and different

choiches would lead to different functionals. The GGAs write the exchange energy density

per particle as

ǫx(n, s) = ǫx(n)Fx(s) (2.29)

where ǫx(n) is the LDA exchange energy density per particle and Fx is the enhance-

ment factor due to density gradients and is dependent on the reduced density gradient

s =
|∇n(~r)|

2(3π2)1/3n(~r)4/3
(2.30)

The PBE enhancement factor is given as

FPBE
x (x) = 1 + κ

(

1− 1

1 + x/κ

)

(2.31)

where x = µp and p = s2. The parameters of Eq. 2.31, µ = 0.2195 and κ = 0.804,

are determined to ensure that the exchange gradient correction cancels for the PBE

correlation as s→ 0 and to ensure that the local Lieb-Oxford bound is obeyed. The latter

is an exact quantum-mechanical property of any Coulomb interacting system, and states

that [98]
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Exc[n] ≥ −C
∫

d3rn4/3 (2.32)

In comparison with LDA, PBE-GGA tend to improve total energies, atomization ener-

gies, energy barriers and structural energy differences. The PBE-GGA for the exchange-

correlation energy has been succesfully used in DFT simulations of phase change ma-

terials [7, 8, 26, 33]. The structural and dynamical properties of crystalline, liquid and

amorphous phases are in good agreement with experimental data (see section 1.2), but

several details are open to improvement. For example, known drawback of PBE-GGA and

in general of all the GGA formulations, is that these functionals expand and soften atomic

bonds. Akola et al. [99] found that indeed bond lengths in models of amorphous GST

and GeTe generated by DFT using the PBE-GGA are longer than those experimentally

measured. This discrepancy can be reduced [99] by using the GGA-PBEsol [100] and the

TPPS metafunctional [101].

2.2.5 The Quickstep algorithm

Density functional theory is an efficient framework for electronic structure calculations.

Solving the Kohn-Sham equation (Eq. 2.20) is an algebric problem, namely the diagonal-

ization of a matrix obtained by expanding the eigenvectors ψi in certain basis functions.

When dealing with condensed matter, the eigenvectors ψi are usually expanded in plane

waves; this choice allows a straighforward calculation of the Hartree potential VH and

of the exchange-correlation energy Exc. On the other hand, for systems like isolated

molecules the eigenvectors ψi are usually expressed as Gaussian functions localized on

individual atoms. In this case, the number of basis functions is much smaller compared

to the number of plane waves needed, so that the ortogonalization of the eigenvectors ψi

is simpler and matrix operations become less expensive in terms of computational load.

However, solving the Poisson equation for the Hartree potential ∇2VH = −4πn(~r) is less

demanding by using plane waves instead of localized basis functions. One way to combine

the benefits of the two approaches is the mixed basis set GPW (hybrid Gaussian and

plane waves) [102] implemented in the Quickstep (QS) algorithm [103].

In this scheme the wavefunctions ψi are expanded in a Gaussian basis set, while the

electronic density is expanded in terms of an auxiliary plane waves basis set as

n(~r) =
1

Ω

∑

~G

ñ( ~G)ei
~G·~r =

∑

µν

Pµνϕµ(~r)ϕν(~r) (2.33)

where ψi = Cµ
i ϕµ and Pµν =

∑

i C
µ
i C

ν
i is the element of the density matrix ¯̄P , Ω is

the unit cell volume and ~G is a reciprocal lattice vector limited by the cutoff imposed

into the plane wave expansion. Besides, also in Eq. 2.33 ϕµ(~r) =
∑

i diµgi(~r), where gi(~r)

are Gaussian functions with contraction coefficients diµ. Once the representation of the

density in a plane waves basis on a grid is known, the computational load needed for the
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calculation of the Hartree energy scales linearly with system size, and the Poisson equation

can be solved by a Fourier transform. The latter operation can easily take advantage of the

very rapid algorithms available for computing Fourier transforms (FT), like FFTW [104].

Using this dual representation, the DFT energy can be written as

E[n] = ET [n] + EV [n] + EH [n] + EXC [n] + EII

=
∑

µν

Pµν〈ϕµ(~r)| −
1

2
▽

2|ϕν(~r)〉+
∑

µν

Pµν〈ϕµ(~r)|V loc
PP (r)|ϕν(~r)〉

+
∑

µν

Pµν〈ϕµ(~r)|V nl
PP (~r, ~r

′

)|ϕν(~r
′

)〉+ 2πΩ
∑

~G

n∗( ~G)n( ~G)
~G2

+

∫

εXC(~r)d~r +
1

2

∑

I 6=J

ZIZJ

|~RI − ~RJ |
(2.34)

where ET [n] is the kinetic energy of the electrons, EV [n] is the energy due to the

interaction of the electrons with the ionic cores, EH [n] is the Hartree energy, EXC [n] is

the exchange-correlation energy and EII is the energy coming from interactions between

ions. Usually only valence electrons are taken into account. The interaction between ionic

cores and valence electrons can be described by pseudopotentials VPP , built from all-

electrons calculations. In the Quickstep scheme, pseudopotentials are written as linear

combination of Gaussian functions as proposed by Goedecker, Teter and Hutter [105].

Once the electronic problem has been solved, it is possible to evaluate the forces acting

on the ions by explicitly calculating the gradient of the GPW energy defined in Eq. 2.34

with respect to the atomic positions.

The evaluation of the electronic ground state requires the minimization of the elec-

tronic energy with respect to the single particle orthonormal orbitals or with respect to

the single particle density matrix. The solution of the Kohn-Sham equation can be also

considered as a global optimization problem of the functional of the energy, which is in-

deed a function in a multidimensional space of the coefficients of the expansion of the ψi

in the finite basis set. Thus, within the QS framework the Kohn-Sham problem is tackled

using different techniques for the minimization of functionals in multidimensional spaces,

like the direct inversion of the iterative subspace (DIIS) [106].

Beyond Born-Oppenheimer MD

In Born-Oppenheimer Molecular Dynamics (BOMD) the potential energy of the system

is minimized with respect to the Kohn-Sham orbitals under the holonomic constraint

〈ψi(~r)|ψj(~r)〉 = δij (2.35)

by a self consistent electronic structure calculations. This procedure has to be repeated
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at each step of the dynamics, so that in general BOMD is computationally expensive.

An alternative approach has been proposed in 1985 by Car and Parrinello [107]. This

technique is based on the transformation of the Kohn-Sham eigenstates in classical fields.

These fields are associated to a fictitious kinetic energy in the Lagrangian of the system

as

L =
∑

i

1

2
µ|ψi|2 +

∑

I

1

2
MI

~̇R2
I − EDF [n(~r), ~R] (2.36)

The Eulero-Lagrange equations obtained from Eq. 2.36 produce a dynamics in which

the fields ψi follow adiabatically the ion motion by performing small oscillations around

the Born-Oppenheimer surface defined by EDFT . The adiabatic separation between elec-

tron fields and the ionic motion is ensured by choosing the fictitious mass µ sufficiently

small, so that the characteristic oscillation frequency of the fields ψi are much larger

than the characteristic vibrational frequencies of the ions. This scheme avoids the self-

consistent solution of the Kohn-Sham problem at every molecular dynamics step, but

there is a price to be paid. In fact, the time step used for the integration of the equation

of motions is of the order of 1/10-1/100 smaller with respect to what is typically used in

BOMD.

Recently, Kühne et al. [108] proposed a novel approach to first principles molecular

dynamics that combines the advantages of both BOMD and CPMD. The electronic states

are propagated without self-consistent cycles (in a CPMD -like fashion) while maintaining

time steps typical of BOMD.

In this scheme, the wavefunctions are self-consistently calculated only for the first

moleculary dynamics steps. Then, the density matrix ¯̄P = ¯̄C ¯̄C
T
is propagated using the

ASPC (always stable predictor corrector) algorithm [109]. The coefficients of the expansion

of the Kohn-Sham states in the local basis ¯̄C are calculated via the following algorithm

(predictor):

¯̄Cp(tn) ∼=
K∑

m=1
(−1)m+1m

(
2K

K−m

)

(
2K−2
K−1

)
¯̄C(tn−m) ¯̄C

T
(tn−m)

︸ ︷︷ ︸

= ¯̄P (tn−m)

¯̄S(tn−m) ¯̄C(tn−1) (2.37)

where ¯̄S is the overlap matrix. In Eq. 2.37 there is a linear combination of the matrixes
¯̄P and ¯̄S at different tm subsequent steps. Since ¯̄P ¯̄S is invariant with respect to unit

transformations of the coefficients ¯̄C, it is easier to predict then the ¯̄C themselves. Once

the matrix ¯̄C
p
(tn) has been calculated, a corrector step is applied, in order to minimize

the error in the propagation:

¯̄C(tn) = ωMIN [ ¯̄C
p
(tn)] + (1− ω) ¯̄C

p
(tn) (2.38)

where
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ω =
K

2K − 1
(2.39)

and MIN [ ¯̄C
p
(tn)] is a single minimization step. This procedure inevitably introduces

an error into the calculation of the ground state density, since ¯̄C(tn) is only an approx-

imation eigenfunction of H[np] into the subspace sampled by the finite basis set. Thus,

the error in the evaluation of the forces acting on the ions is negligible only if ¯̄C(tn) is

always sufficiently close to the ground state. However, it turns out that this error can be

approximated to a white noise.

The precision by which this dynamics follows the Born-Oppenheimer surface depends

on the system itself, but in any case the dynamics is dissipative, as

~FPC = ~FBO − γD ~̇RI (2.40)

where ~FPC are the forces generated by the dynamics described in here, ~FBO are the

forces coming from a pure Born-Oppenheimer dynamics and γD is a friction coefficient.

In Ref. 108 it has been shown how to compensate for this frictional term by using a

thermostat on the ions thus recovering a canonical sampling of atomic velocities. The

method proposed by Kühne and Parrinello [108] has been implemented in the CP2K

package [110].

2.2.6 Classical molecular dynamics

In classical molecular dynamics, the electronic problem is not, at least explicitly, taken

into account. Thanks to the Born-Oppenheimer approximation, ionic and electronic de-

grees of freedom are decoupled, and one can assume a functional form for the interatomic

potential. For example, an expression of the interatomic potential U(~r) analytical in the

atomic positions and dependent on a number of parameters can be fitted e.g. to an exper-

imental or theoretical available dataset. Since the potential energy is analytically known,

evaluation of forces, which usually is the most time consuming part of an MD simulation,

is straightforward, order of magnitude faster than solving Schroedinger equation for the

electronic system at each or every several steps like in first principles MD. Of course,

while the latter relies on solid physical bases, in classical MD the whole reliability of the

simulation depends on the choice of the interatomic potential.

2.3 Thermodynamic Integration of the free energy

To validate our NN potential for GeTe we computed the melting temperature Tm. A

proper calculation of Tmrequires comparing the free energies of the liquid and the solid

phases. The method of choice in this context is known as thermodynamic integration [82].

Once a coexistence point (in the PT space) is located, it is possible to obtain the melting

line by the so called Gibbs-Duhem integration method of Kofke [111].
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The second law of thermodynamics states that for a closed system with energy E,

volume V, and number of particles N, the entropy S is at maximum when the system is in

equilibrium. That means that in the NVT ensemble, the Helmoltz free energy F = E−TS
is at a minimum in equilibrium. If for example we wish to know which of the two phases

(solid or liquid) is stable at a given temperature and density, we have to compare the

Helmoltz free energies Fs and Fl of the solid and the liquid. Entropy, free energy and

relative quantities are not simply averages of functions of the phase space coordinates of

the system. To compute the free energy of a system at given temperature and density, we

should find a reversible path in the V-T plane that links the state under consideration to

a state whose free energy is known. The change in F along the path can then simply be

evaluated by integration of the equations

(
∂F

∂V

)

NT

= −P
(
∂F/T

∂1/T

)

NV

= E (2.41)

The formalism that allows calculating the free energy difference between a reference

state whose free energy is analytically known and the real phase is called Krikwood’s

coupling parameter method [112]. There are only very few thermodynamic states for

which the free energy of a substance is known. We chose as reference systems the Einstein

crystal for the solid phase, and the Lennard-Jones liquid for the liquid phase. Let us

consider a N-particle system with a potential energy function U . We assume that U

depends linearly on a coupling parameter λ such that, for λ = 0, U corresponds to the

potential energy of our reference system Uref while for λ = 1 we recover the potential

energy of the system of interest, that in our case is described by the NN potential and so

we indicate it with UNN . Thus

Uλ = λUNN + (1− λ)Uref . (2.42)

We now write the partition function for a system with a potential energy function

that correspond to a value of λ between 0 and 1 as

QN,V,T,λ =
1

ξ3NN !

∫

e−βUλd~rN (2.43)

where ξ is the thermal de Broglie wavelength and β = 1
KBT . The derivative of the

Helmoltz free energy Fλ with respect to λ can the be written as an ensemble average

(
∂Fλ

∂λ

)

NV T

=

〈
∂Uλ

∂λ

〉

(2.44)

where 〈. . .〉λ denotes an ensemble average for a system with a potential energy function
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Uλ defined in Eq. 2.42. If we integrate Eq. 2.44 we obtain an expression for the free energy

difference between the reference state and the actual state

FNN = Fref +

∫ λ=1

λ=0

〈
∂Uλ

∂λ

〉

dλ (2.45)

It should be noticed that Eq. 2.45 expresses a free energy difference in terms of an

ensemble average, which, unlike a free energy, can be calculated directly in a simulation.

In particular, we obtained the derivative of the energy in a series of equilibrium MD

simulations.

2.3.1 The solid phase

As the reference system for the crystalline phase of GeTe we chose an Einstein crystal,

i.e. a solid of non-interacting particles that are all coupled to their respective lattice sites

by harmonic springs. In thermodynamic integration we switch on these spring constants

and consequently switch off the intermolecular interactions by varying the λ parameter

that mixes the NN interatomic potential UNN and the Einstein crystal potential Uref .

Because GeTe is a binary system, we need to assign to Ge and Te atoms different coupling

constants. The Einstein crystal potential (or internal energy) is

Uref = U(~rN0 ) +
αGe

2

NGe∑

i=1

(~ri − ~r0,i)
2 +

αTe

2

NTe∑

i=1

(~ri − ~r0,i)
2 (2.46)

where ~rN0 is the set of coordinates of the minimum energy configuration (the equi-

librium atomic coordinates) and U(~rN0 ) its potential energy, that can be evaluated by

averaging in a MD run the potential energy of the NN system in the minimum of the

equation of state at the temperature of interest. The second term is the harmonic po-

tential of the N oscillators, where αGe and αTe are the associated force constants These

force constants can be adjusted to optimize the accuracy of the numerical integration of

Eq. 2.45. The integration is optimal if the interactions in the pure Einstein crystal differ

as little as possible from those in the actual GeTe crystal. This suggest that αGe and αTe

should be chosen such that the mean-squared displacement for λ = 0 and λ = 1 are equal.

For a non interacting Einstein crystal, the mean square displacement is given by

〈r2k〉λ=0 =
3

βαk
(2.47)

so the following condition holds for αk, where k can be Ge or Te:

αk =
3

β〈 1
N

∑

i=1Nk(~ri,k − ~ri,0,k)2〉λ=1

(2.48)

where ~ri,0,k is the equilibrium lattice position of atom i. We obtained αGe = 9.555

N/m and αTe = 12.879 N/m. The potential energy difference between the real and the
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reference crystal can be calculated along a reversible pathway that links the two systems

by changing λ. It should be notice that the path must not cross a first order phase

transition. The potential Uλ will then read

Uλ = λUNN + (1− λ)Uref

= λUNN + (1− λ)[U(~rN0 ) +
αGe

2

NGe∑

i=1

(~ri − ~r0,i)
2+

αTe

2

NTe∑

i=1

(~ri − ~r0,i)
2]

where for λ = 0 we have the pure Einstein crystal while for λ = 1 we recover the

actual GeTe crystal. In the Einstein solid, the equilibrium lattice positions are fixed to

an absolute frame, so that the energy is not invariant with respect to a translation of

the crystal as a whole. On the other hand, when λ = 1 the center of mass of the system

drifts due to inaccuracies in the integration of the equation of motion, and the particles

may be allowed to move far away from their absolute equilibrium lattice positions, so

that Uref becomes uncontrollably large. We thus need to perform simulations under the

constraint that the center of mass of the solid is fixed. This constraint introduces two

additional terms in Eq. 2.45. The first accounts for the center of mass constraint, so that

the Helmoltz free energy of an Einstein crystal under the above mentioned constraint can

be written as as [113]

βFref

NGeTe
= 3 ln ξGe + 3 ln ξTe −

3NGe

2NGeTe
ln

(
2π

βαGe

)

− 3NTe

2NGeTe
ln

(
2π

βαTe

)

− 3

2NGeTe
ln

(
βαGe

2πNGeµ2
Ge

)

− 3

2NGeTe
ln

(
βαTe

2πNTeµ2
Te

)

− 3

2NGeTe
ln

(
βh2

2π(NGemGe +NTemTe)

)

(2.49)

where µi is the fractional mass of each species, ξi is the thermal de Broglie wavelength

of the i-th species given by ξi = h/
√
2πmikBT and NGeTe is the number of GeTe for-

mula units. The other additional term originates from the finite system-size corrections

associated with the center of mass constraint, and it is [113]

βFFS

NGeTe
=

1

NGeTe
ln

(
NGeTe

V

)

+

3

2NGeTe
ln

(
βh2

2π(NGemGe +NTemTe)

) (2.50)
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We now rewrite the final expression for the Helmoltz free energy of crystalline GeTe

in β units:

βFNN

NGeTe
=

βFref

NGeTe
+

β

NGeTe

∫ λ=1

λ=0

〈
∂Uλ

∂λ

〉

dλ+
βFFS

NGeTe
(2.51)

with Fref and FFS given by Eq. 2.50 and Eq. 2.51 respectively. In order to compute

the integral in Eq. 2.51, we performed ten simulations for ten different values of λ chosen

in order to allow a ten point computation of the integral by Gauss-Legendre quadrature,

an integration scheme that accurately approximates the value of a definite integral of the

non-singular function f(x) as

∫ x2

x1

f(x)dx =

N∑

j=1

wjf(xj) (2.52)

where the abscissas xj for the quadrature of order N are given by the roots of the

Legendre polynomials PN (x) symmetric around zero and weights wj are given by

wj =
2

(1− x2j )[P
′
N (xj)]

(2.53)

2.3.2 The liquid phase

In order to compute the Helmoltz free energy of liquid GeTe, we proceed as discussed

in the case of the crystal, but for the choice of another reference system. We chose the

Lennard-Jones (LJ) liquid, whose free energy at various temperatures and densities were

computed using the equation of state (EOS) proposed by Johnson et al. [114]. These

authors determined semi-empirical parameters for the excess Helmoltz free energy Fxs

with respect to the ideal gas of the cut and shifted LJ interatomic potential given by

ULJ (r) =







4ǫ

[
(
σ
r

)12 −
(

σ
rc

)12

−
(
σ
r

)6
+
(

σ
rc

)6
]

r ≤ rc

0 r ≥ rc

(2.54)

The EOS of Johnson et al. allows evaluating Fref,LJ as:

Fref,LJ = Fid + Fxs + Fcorr + Fsize (2.55)

where Fid is the ideal gas mixture Helmoltz free energy

βFid

N
= XGe[3 ln(ξGe) + ln(N/V )− 1]+

XTe[3 ln(ξTe) + ln(N/V )− 1] + [XGe ln(ξGe) +XTe ln(ξTe)]
(2.56)
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where Xi =
NGe/Te

N is the atomic fraction of each species. Fxs is the excess Helmoltz

free energy, given by [114]

βFxs

N
=

8∑

i=1

aiρ
LJ
i

i
+

6∑

i=1

biGi (2.57)

where ρLJ is the density in reduced LJ units (ρLJ = ρσ3 and TLJ = kBT/ǫ). This

is the so called modified Benedict-Webb-Rubin (MBWR) equation of state [114], that

through the coefficients ai and bi contains 32 parameters, that depend on temperature

and have been obtained by an extensive and accurate fitting of a huge set of reference data

along a wide (ρ, T ) region of the LJ liquid. The functions Gi contain instead exponential of

the density and a single nonlinear parameter. The full form and value of all the parameters

and functions contained in Eq. 2.57 can be found in Ref. 114. Using the cut and shifted

form of the LJ potential of Eq. 2.54 introduces a correction to the excess free energy of

Eq. 2.57, analytically computed by Johnson et al. [114]:

βFcorr

N
= −32Nσ3ǫβ

9πV

[(
σ

rc

)9

− 3

2

(
σ

rc

)3
]

(2.58)

Finally, a term accounting on finite size effects must be taken into account:

βFsize

N
= (ln 2πN)

1

2N
(2.59)

We used the same set of LJ parameters σ and ǫ for all the interatomic interactions.

The LJ σ parameter was determined by matching the position of the first peak of the

radial distribution functions (g(r)) of the NN liquid GeTe and the LJ liquid, ensuring op-

timal similarity between the structure of the two liquids. The LJ ǫ parameter was chosen

such that, at the selected temperature, the LJ liquid was above the critical temperature

in order to avoid phase transitions which would preclude the use of thermodynamic inte-

gration. On the other hand, the liquid should not be too far from the critical temperature:

in fact, the radial distribution function g(r) given by the NN potential for liquid GeTe

has pronounced secondary peaks beyond the first coordination shell. Thus, a rather struc-

tured LJ liquid had to be preferred for convergence of the thermodynamic integration.

The requirements are matched by choosing a LJ liquid in the proximity of the critical

temperature. In our case, we chose ρLJ = 0.75 and TLJ = 1.3, which assign σ and ǫ of the

LJ potential. Thermodynamic integration was performed for a given reference tempera-

ture T ′ corresponding to the experimental Tm at normal pressure (998 K for GeTe [21])

at the experimental density of liquid GeTe at Tm (0.0339 atoms/Å3 [21]).

2.3.3 Chemical potentials

To estimate the melting temperature we have to compare the chemical potential of the two

phases. To compute the chemical potentials at constant pressure and temperature from
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the Helmoltz free energy computed at constant density and temperature we proceeded as

follows. We computed the equation of state P = P (ρ, T ′) for each phase at the reference

temperature T ′. The P (ρ) isotherm was fitted to a quadratic polynomial

P (ρ, T ′) = a(T ′) + b(T ′)ρ+ c(T ′)ρ2 (2.60)

Once determined the three parameters a, b and c, we can solve Eq. 2.60 with respect

to the density to obtain ρ = ρ(P, T ′). We now write the chemical potential as

Nµ = F + PV (2.61)

and

µ(ρ) = µ(ρ′) + ∆µ

= µ(ρ′)− 1

N

[
∫ ρ′

ρ

∂F

∂ρ
dρ+

P (ρ)

ρ
− P (ρ′)

ρ′

]

(2.62)

where ρ′ is the number density at the initial state point. Working out the integral in

Eq. 2.62 with

∂F

∂ρ
=
P

ρ2
(2.63)

and the aid of Eq. 2.60 we got

µ(ρ) =
F ′

N
+

(
a

ρ′
b ln

ρ

ρ′
+ b+ c(2ρ− ρ′)

)

(2.64)

where F ′ is the Helmoltz free energy of either liquid or solid GeTe at the reference

temperature T ′ = 998K. From the equation of state ρ = ρ(P, T ) we finally obtain the

chemical potential µ = µ(P, T ). By equating µliq = µliq(P, T
′) and µsol = µsol(P, T

′) we
obtain the transition pressure at T ′.

In order to obtain the full melting curve Tm = Tm(P ), one can integrate the Clausius-

Clapeyron equation, for example using the numerical technique proposed be Kofke [111].

However, since the transition pressure P ′ is not too far from ambient pressure it is possible

to compute the melting temperature at normal conditions from the slope of the Clausius-

Clapeyron equation at T ′, i.e.

Tm = T ′ +
dT

dP
(P − P ′) (2.65)

where

dT

dP
=
T∆V

∆S
(2.66)
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at T ′, where ∆V and ∆S are the changes of volume and entropy across the phase

change at the point (T ′, P ′). Moreover T∆S = ∆E + P∆V which allows computing dT
dP

from ∆E and ∆V obtained from the simulations at the equilibrium for the liquid and the

solid phase.

2.3.4 Van der Waals correction

Since the NN potential has been fitted on a database DFT-PBE, it does not include vdW

interactions. Actually, the equation of state of liquid GeTe does not even show a minimum

if long range vdW interactions are not taken into account in DFT-PBE calculations.

Thus, in order to reproduce the equilibrium density of the liquid at Tm, an empirical Van

der Waals (vdW) correction had to be added to the NN potential. We chose the vdW

correction according to the scheme proposed by Grimme [115]. This is a semiempirical

correction that can be applied a posteriori to the energy (or to the pressure) in the form

Edisp = −s6
N−1∑

i=1

N∑

j=i+1

Cij
6

R6
ij

· 1

1 + e−d[(Rij/RvdW )−1]
(2.67)

where Cij
6 is the dispersion coefficient for atoms pair ij, s6 is a global scaling factor, and

Rij is the interatomic distance. A damping function which turns off the vdW interaction at

short distances is given by the term 1

1+e−d[(Rij/RvdW )−1] in Eq. 2.67 where RvdW is the sum

of atomic vdW radii. The values of Cij
6 have been obtained for a large number of elements

including Ge and Te and can be found in Ref. 115. We tuned the s6 parameter to 0.55 to

reproduce the experimental equilibrium volume of the liquid at Tm [116]. We have verified

that by changing the value of s6 from 0.4 to 0.7 the value of the melting temperature of

GeTe at ambient pressure changes by at most 5 K. The experimental equilibrium volume

of the amorphous and crystalline phases are instead well reproduced by the NN potential

without the need of the vdW interaction. The inability of the NN potential (and of PBE

calculations as well) in reproducing the equilibrium volume of the liquid can be traced

back to the presence of nanovoids in the melt [8]. In the liquid the nanovoids can coalesce

and increase in size by decreasing the density which results into a reduced tensile stress

upon expansion. This effect is hindered by vdW interactions. Nanovoids are also present

in the amorphous phase[8], but their distribution cannot change by scaling the volume

at fixed temperature because of the low atomic mobility in the amorphous phase. By

investigating the properties of supercooled liquid GeTe, we verified that the distribution

of voids in the liquid increases by decreasing the density. The volume occupied by the voids

is computed according to the definition of Ref. 117 and the algorithm of Ref. 118. The

volume fraction Ξl occupied by voids as a function of density is reported in Fig. 2.7. Clearly

the empty space in the system increases as density decreases. By decreasing density small

nanocavities collapse forming larger voids. The distributions of the volume of nanocavities

at two different densities are shown in Fig. 2.8. At low density large voids 500 Å3 in size

are formed. A graphic representation of the liquid GeTe voids is shown in Fig. 2.9.
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Figure 2.7: Volume fraction of liquid GeTe at 998 K occupied by voids as a function
of density.
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Figure 2.8: Distribution of the volume of cavities in liquid GeTe at 998 K for two
different densities.



60 Methods

Figure 2.9: Snapshot of liquid GeTe at 1000 K at its theoretical equilibrium density
(see section 3.2.2). White spheres and their superposition mark the region of space
occupied by nanocavities (or voids).



2.3 Thermodynamic Integration of the free energy 61

The vdW correction is used in this work only in the calculation of the equations of state

to assign an equilibrium volume t different temperatures, but not in the MD simulations

due to uncertainties in the reliability of the correction at short interatomic distance.
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Chapter 3

The Neural Network Potential

for GeTe

3.1 A Neural Network potential for GeTe

To generate the NN potential, we fitted the total energies of about 30.000 configurations

of 64-, 96- and 216-atom supercells computed within Density Functional Theory (DFT).

We started with a relatively small dataset of about 5.000 structures, where we considered

crystalline configurations, snapshots of the liquid phase and of the amorphous phase gener-

ated by quenching from the melt at ambient conditions and at different pressures up to 50

GPa. We also considered mixed crystalline/amorphous models generated by partially crys-

tallizing the amorphous phase by means of the metadynamics technique [119]. All these

configurations were generated within DFT molecular dynamics simulations at different

temperatures (up to 3000 K) with the code CP2k [103] and the Perdew-Burke-Ernzerhof

(PBE) [95] exchange-correlation functional. The Kohn-Sham orbitals were expanded in

a Triple-Zeta-Valence plus Polarization (TZVP) Gaussian-type basis set and the charge

density was expanded in a planewave basis set with a cut-off of 100 Ry to efficiently

solve the Poisson equation within the Quickstep scheme [103]. Goedecker-type pseudopo-

tentials [105] with four and six valence electrons were used for Ge and Te, respectively.

Brillouin Zone (BZ) integration was restricted to the supercell Γ point. A time step of 2 fs

was used for the simulations. The same scheme was applied in previous works on GeTe,

GST and other phase change materials [33, 120] and previously validated by comparison

with plane waves molecular dynamics simulations with the CPMD code [121]. This frame-

work was used to generate the atomic configurations for the fitting of the NN potential

and to generate the DFT models of liquid and amorphous GeTe to check to transferability

of the NN potential. However, since the NN fitting relies only on tiny differences in the

total energy of supercells also including configurations with different number of atoms, a

very high accuracy in the total energy is mandatory. An accurate integration of the BZ is
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indeed needed to achieve the required convergence in the total energy for the NN fitting.

To generate the energies dataset for the fitting, we thus used the atomic configurations

generated with the CP2k code and computed their total energy by performing BZ inte-

gration over a dense 4× 4× 4 Monkhorst-Pack (MP) [122] mesh for the 64-atom cell and

employing meshes of a corresponding k-point density for the larger systems. To this aim

we used the QUANTUM-ESPRESSO package [123]. Norm conserving pseudopotentials

were employed, considering only the outermost s and p electrons in the valence shell. The

Kohn-Sham orbitals were expanded in a plane waves basis up to a kinetic energy cutoff

of 40 Ry. These settings ensure convergence of the total energy to 2 meV/atom. The fact

that we used two different DFT setups to generate the atomic configurations and to com-

pute their total energy for the NN fitting is immaterial as we could have generated the

atomic configurations by any means including empirical interatomic potentials provided

that the database is large enough to include all the relevant configurations.

This first dataset was then expanded by adding randomly distorted structures of the

initial dataset at slightly different pressures and temperatures and models with slight

deviations from the perfect stoichiometry. The refinement of the potential was achieved

by inserting in the data set the ab initio energy of configurations generated by Molecular

Dynamics simulations (see below) using the not yet refined NN potential.

The best NN fit we found employs three hidden layers with 20 nodes each. The total

number of weights of our NN architecture is 8080. For each species, we have 159 symmetry

functions in the input layer. From the input layer to the first hidden layer, which contains

20 nodes, we need 159·20=3180 weights. From the first to the second hidden layer we need

20·20=400 weights, and the same holds for the path from the second to the third hidden

layer (from there to the output layer we just perform a summation, so there is no weight

involved). So far, we have 3980 weights for species. We now add the bias weights; for each

hidden layer of n nodes, we choose to add n bias weights in order to adjust the offset of

the output of each node in each hidden layer. Since we have three hidden layers of 20

nodes each, we need 60 bias weights. Thus, for each species we employed 4040 weights, so

that our NN potential is an analytical expression of 8080 parameters. Sigmoid activation

functions were used in the nodes of the hidden layers, while a linear function was used

for the output node. The dependence of the results on these choices is discussed in the

next section. The local environment of each atom is defined by the value of 159 symmetry

functions (see Ref. [124] for details) defined in terms of the positions of all neighbors

within a distance cutoff of 6.88 Å. We checked that by decreasing the cutoff from 6.88Å

to 6.00Å the structural properties of the liquid and amorphous phases do not change by

inspection on the partial pair correlation functions. However, the larger cutoff turned out

to be necessary to reproduce the DFT diffusion coefficient of the liquid.

The generation of the NN potential and the calculation of the forces for the MD

simulations were performed with the NN code RuNNer [125]. We used the DL POLY [126]

code as MD driver. The time step for the MD runs was set to 0.2 fs, and constant

temperature simulations were performed using the Berendsen thermostat [127].
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3.1.1 Details on the Neural Network architecture

In order to construct our NNP, we expanded the initial input dataset in an iterative fash-

ion, trying to sample the whole configurational space of interest for bulk GeTe. The final

dataset is depicted in Fig. 3.1 as an energy versus density plot. The experimental densi-

ties of liquid, amorphous and crystalline GeTe are 0.0340 atoms/Å3 [116] at the melting

temperature Tm = 998 K, 0.0371 atoms/Å3 in its trigonal phase stable at zero temper-

ature [128] and 0.03327 atoms/Å3 at zero temperature[129], respectively. The dataset is

much more dense in the density region of interest for the applications. Still, it is important

to sample the high density region as well, because the NN potential has to learn how to

behave when bonds became shorter i.e. it must properly describe repulsive interaction

at short distances. Moreover, high density configurations are useful if one would like to

study the behavior of GeTe under pressure. The equilibrium configurations of all the bulk

phases of GeTe lie in the lowest energy region of Fig. 3.1, below -164 eV/atom. However,

in order to sample exotic configurations that indeed may be present even in ordinary MD

simulations like for example liquid GeTe at very high temperature, where atoms move

almost gas-like and can really explore a vast region of configurational space, it is necessary

to include a huge number of high energy structures, which are not needed to be described

with accuracy but contribute to establish the reliability of the NN potential.
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Figure 3.1: Input dataset points. DFT Energies have been calculated according to
details given in section 3.1.

In Fig. 3.2 a sort of density of states for both energy and density of the input dataset
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is shown in panel a) and b) respectively. In constructing the dataset, it is important not

to let holes in the energy-density space, as the NN can encounter numerical problems in

fitting accurately two very different regions of the configurational space.
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Figure 3.2: Energy a) and density b) DOS of the input dataset points.

Concerning the quality of the NN fit, there is a number of variables in the architecture

of the NN that have to be carefully tuned. We shall review the most important ones with

the aid of Fig. 3.3 and Fig. 3.4, where we report the accuracy of different NN fits (mea-

sured by the root means standard error RMSE) as a function of different NN variables.

We underline that numerical accuracy is not sufficient to guarantee the reliability of the

NN interatomic potential. The real benchmark is given instead by the comparison be-

tween physical properties of the systems obtained by the NN potential and the reference

potential (in our case, the DFT data). In Fig. 3.3 and Fig. 3.4 results for the same dataset

are compared with the same architecture of NN potential but for a single variable which

is changed at once.

The order by which the dataset points are feed to the NN affects the quality of the

fit, because the optimization algorithm used to fit the weights (the Kalman filter, see

section 2.1.7) is based on online learning, that is, the NN weights are optimized after each

individual training point has been taken into account. In panels a) and b) of Fig. 3.3

we compare the RMSEs of two fits, one in which the training points are fed in blocks

of similar datapoint in a pseudo-random fashion, while the other has been obtained by

shuffling the whole dataset in a real random fashion. The difference in the quality of the

fits is evident, and similar in energies and forces. At this point we should point out that

energies and forces often do not show a similar behavior with respect to a change of NN

variables.

In principle, the NN weights can assume any value in any numerical range, but it is

convenient to rescale them in a certain interval, in order to make the activation function

application more effective. In panels c) and d) of Fig.3.3 the accuracy of different fits

is compared with respect to different ranges in which the initial NN weights have been

initialized. It appears that reducing the range gives better results, but in practice one has
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to tune the initial weights range with non linear region width of the activation function.

Our best fit has been obtained with a [−1,+1] range for all the weights.

Different activation functions (see section 2.1.3) can be used. In panel e) and f) of

Fig.3.3 we compared different fits, each one employing a different activation function for

all the nodes and layers of the NN (with the exception of the output layer, in which a

linear function has been always used in this work). Because is much more difficult to

reduce the RMSE of the forces than the RMSE of the energy, we have chosen the sigmoid

(sigma) activation function. The smoothness and the position of the inflession point of

the sigmoid function can also be tuned. In panels h) and g) of Fig.3.3 we shown how the

numerical quality of the fits is affected by different choices of σ, a parameter that modifies

the sigmoidals function as

f(x) =
1

1 + e−σx
+ β (3.1)

where β shifts the sigmoid into a different range. Our best fit has been obtained with

σ = 0.6 and β = +0.5. It can be noticed that in this case energies and forces display

opposite behavior with respect the choice of the smoothing. We have found that the

more flexible the NN is, the better the energy RMSE gets but forces RMSE simply rises

up. This behavior is not general, as each system and each NN potential constitute an

unique situation that must be handled in a different way. Still, in the case of GeTe this

is particularly true if we take a look to panels a) and b) of Fig. 3.4, that clearly show

what happens if we increase the number of hidden layers. In fact, increasing NN flexibility

results in a better RMSE for energy but a worse RMSE for forces.

Something similar happens if we increasing the number of nodes in the hidden layers,

as shown in panels c) and d) of Fig. 3.4, even if in this case only the RMSE of the forces

displays a clear trend. Our best fit was obtained using three hidden layers of twenty nodes

each, which is a compromise in terms of flexibility.

A role of paramount importance not only in the numerical quality of the fit, but also in

the transferability of the NN potential, is played by the symmetry functions (SF) choice.

In panels e) and f) of Fig. 3.4 we compare results obtained with different kind of SF,

together with the effect of the cutoff radius choice in panels g) and h) of Fig. 3.4. It turns

out that even varying only a couple of symmetry functions of the whole (typically huge,

we used 159 SF for each atomic species) set of SF can lead to important differences in

the physical properties of GeTe predicted by the NN potential.

As a proof of the numerical accuracy of our best fit, we report in Fig. 3.5 the reference

DFT energies versus the predicted NN energy) for the whole dataset (training and test

points as well). The plot shows a remarkable agreement.

The results of the fitting process of the NN potential are summarized in Fig. 3.6. The

root mean square error (RMSE) for the energy is 5.01 and 5.60 meV/atom for the training

and the test set, respectively, while the RMSEs of the forces are 0.46 and 0.47 eV/Å, for

the two sets. Among all structures considered, only a negligible fraction shows noticeable

absolute errors, up to 25.8 meV/atom and 11.2 eV/Å for energies and forces (see Fig.
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Figure 3.3: Comparison of energy and forces RMSEs for different NN architectures
and parameters.
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Figure 3.4: Comparison of energy and forces RMSEs for different NN architectures
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3.6 insets). We have found that these configurations correspond to high-energy structures

that are not visited in MD simulations carried out in the present work.
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and test data sets for the energies (a) and forces (b). Standard histograms for the same
data are presented as insets.
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3.2 Structural and Dynamical Properties of Liquid,

Amorphous and Crystalline GeTe

In this section we present our results on the validation of our NN potential. We investi-

gated structural and dynamical properties of the bulk phases of GeTe, comparing the NN

results with DFT data. Comparison of NN results of the liquid and amorphous phases

with experimental data is not discussed here, since the ability of DFT simulations in

describing the structural and vibrational properties of GeTe has been demonstrated in a

number of previous works [7, 8, 26, 33] and discussed already in section 1.2.

3.2.1 Crystalline phase

The equilibrium geometry of the trigonal phase of crystalline GeTe (R3m space group) was

obtained by optimizing all structural parameters consisting of the lattice parameter a, the

trigonal angle α and the internal parameter x that assigns the positions of the two atoms

in the unit cell, namely Ge at (x,x,x) and Te at (-x,-x,-x) [128]. The residual anisotropy

in the stress tensor at the optimized lattice parameter at each volume is below 0.02 kbar.

The energy versus volume data were fitted with a Murnaghan equation of state [130].

The theoretical structural parameters of the trigonal phase of GeTe at equilibrium are

compared in Tab. 3.1 with experimental data [128] and DFT results obtained with a

12 × 12 × 12 MP k-point mesh in the BZ integration. DFT data are similar to those

reported previously [131]. The length of the short and long Ge-Te bonds are also given.

The structure of trigonal GeTe can be seen as a distorted rocksalt geometry with an

elongation of the cube diagonal along the [111] direction and an off-center displacement

of the inner Te atom along the [111] direction, which moves to a distance d from the Ge

atom at the vertex as shown in Fig. 3.7a. The energy gained by the off-center displacement

is analyzed by varying the distance d at fixed lattice parameters a and α. The resulting

energy as a function of d is reported in Fig.3.7 for the NN and the DFT calculations.

We note that the DFT values in Fig.3.7 were not included in the training set but were

calculated to investigate the transferability of the NN potential. The double well potential

identifies the two possible ferroelectric configurations while the maximum corresponds to

an ideal paraelectric configuration.

As a further validation of the potential, we computed the difference in energy between

the trigonal phase and an ideal rocksalt phase at their equilibrium volumes at zero tem-

perature that amounts to 44 meV/atom or 55 meV/atom in NN and DFT calculations,

respectively.

The elastic properties of trigonal GeTe were investigated by computing the elastic

constants from finite deformations of the lattice parameters. The NN and DFT results

are compared in Table 3.2. The elastic constants obtained here with the PBE functional

are somehow softer than those obtained with the LDA functional in Ref. [132]. The bulk

modulus obtained either from the elastic constants or from the equation of state is 34

GPa and 33 GPa for the NN and DFT calculations.
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Figure 3.7: Energy of trigonal GeTe as a function of d at fixed values of the lattice
parameters at the theoretical equilibrium geometry.

Table 3.1: Structural parameters of the trigonal phase of crystalline GeTe from NN
and DFT calculations and from the experimental data of Ref.128. The lengths of the
short and long bonds are also given.

Structural parameters NN DFT Exp.

a (Å) 4.47 4.33 4.31
α 55.07◦ 58.14◦ 57.9◦

Volume (Å3) 55.95 54.98 53.88
x 0.2324 0.2358 0.2366

Short, long bonds (Å) 2.81, 3.31 2.85, 3.21 2.84, 3.17

Table 3.2: Elastic constants (GPa) of trigonal GeTe from DFT and NN calculations.

c11 c12 c13 c14 c33 c44
DFT 92 18 22 35 40 24
NN 73 10 30 24 36 20
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The agreement between NN and DFT results is overall very good, the largest discrep-

ancy being the cell angle and the difference between the short and long Ge-Te bonds which

might also be the source of the slight misfit in the elastic constants. The results are overall

satisfactory considering that long range Coulomb interactions are not included in our NN

potential. In fact, in the case of GeTe, we are faced with the problem of developing a

potential suitable to describe both the semiconducting crystalline and amorphous phases

as well as the metallic liquid. As a first step toward the development of a NN potential

for GeTe, we neglect long-range Coulomb interactions for atoms being separated by a

larger distance than the cutoff radius of the symmetry functions (6.88 Å). The resulting

“short-ranged” NN potential just consists of atomic energy contributions arising from the

local chemical environments, but it is important to note that also short-ranged electro-

static interactions are fully taken into account implicitly. Although long range Coulomb

interactions are expected to play a role in the ferroelectric/paraelectric phase change of

crystalline GeTe, they are probably less important in the liquid and amorphous phases

we are primarily interested in. In fact, the resulting potential is not be able to describe

the dielectric response and LO-TO splitting of crystalline GeTe in its ferroelectric phase,

but it will be suitable to reproduce structural properties of the liquid, amorphous and

crystalline phases and the dynamical properties of the disordered phases. In Fig. 3.8 we

show the phonon density of states of crystalline GeTe compared with DFT data [10]. The

discrepancy between NN and DFT results is partially due to the lack of long range forces

in the NN potential.
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Figure 3.8: Phonon density of states of crystalline trigonal GeTe. DFT data are from
Ref. 10.
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3.2.2 Liquid phase

The liquid phase of GeTe was simulated by a 4096-atom model at 1150 K. Total and par-

tial pair correlation functions are compared in Fig. 3.9 with results from previous ab initio

simulations in a small 216-atom cell at the same temperature [10]. Results from the NN

simulations of a 216-atom cell are also reported. The density of 0.0334 atoms/Å3 is the

same for all simulations and corresponds to the value chosen in the ab initio simulations

of Ref. 10, which is close to the experimental density of the amorphous phase [129]. Distri-

butions of coordination numbers are reported in Fig. 3.10 as computed by integrating the

partial pair correlation functions up to the cutoff shown in Fig. 3.9. Average coordination

numbers are given in Table 3.3 while angle distribution functions are shown in Fig. 3.11.

The agreement between NN and ab initio data is excellent. The NN results obtained

with 216-atom and 4096-atom cells are very close, which demonstrates that structural

properties of the liquid can be reliably described by the cells few hundred atoms large

used in previous ab initio works [10, 33]. The self-diffusion coefficients computed from NN

simulations are also in good agreement with the ab initio results of Ref. 8 as shown in

Table 3.4. These latter data refer to simulations at 1000 K to enable a comparison with

previous ab initio results obtained at this temperature.

Table 3.3: Average coordination numbers for different pairs of atoms computed from
the partial pair correlation functions of liquid GeTe from a NN molecular dynamics
simulation at 1150 K with a 4096-atom and a 216-atom cell (cf. Fig.3.9), compared
with results from a DFT simulation of a 216-atom cell at the same temperature [10].
The interatomic distance thresholds defined in Fig.3.9 are used.

With Ge With Te Total
DFT NN216 NN4096 DFT NN216 NN4096 DFT NN216 NN4096

Ge 1.00 1.11 1.15 2.71 2.78 2.67 3.71 3.89 3.82
Te 2.71 2.78 2.67 0.26 0.28 0.26 2.97 3.07 2.93

Table 3.4: Diffusion coefficient of Ge and Te atoms in the 4096-atom model of liquid
GeTe at 1000 K. NN results were obtained from the slope of the mean square displace-
ment versus time. The same values within the figures given here are obtained from the
integral of the velocity-velocity autocorrelation function. DFT data of a 216-atom cell
at the same temperature are from Ref.8.

NN DFT
DGe (10−5 cm2/s) 4.96 4.65
DTe (10−5 cm2/s) 3.62 3.93
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Figure 3.9: Total and partial pair correlation functions of liquid GeTe from a NN
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3.2.3 Amorphous phase

The structural properties of a-GeTe and a-GST have been elucidated recently by ab

initio simulations [7, 8, 10, 133]. In these systems Ge and Te atoms are mostly four-

coordinated and three-coordinated, respectively. Te atoms are in a defective octahedral-

like environment, which resembles the local environment of the corresponding crystalline

phases. The majority of Ge atoms are in a defective octahedral environment too, but about

one quarter of Ge atoms are in a tetrahedral-like geometry. The presence of homopolar

Ge-Ge (and, in the case of GST, Ge-Sb) bonds favors the tetrahedral coordination.

In the following, we compare the structural properties of models of amorphous GeTe

generated by NN and DFT simulations. The DFT simulations were performed with the

CP2k code. A large NN amorphous model was generated by quenching the 4096-atom

liquid model. We also considered ten small 216-atom NN models of a-GeTe to investigate

the size of the fluctuations in the structural properties due to the use of a small cell.

For sake of comparison, we similarly generated ten 216-atom DFT models of a-GeTe by

quenching the melt in 100 ps at the same density of 0.0334 atoms/Å3. The NN amorphous

models were generated by quenching the molten sample from 1150 K to room temperature

in 100 ps. Average properties are obtained from a NVE simulation 40 ps long at an

average temperature of 300 K. Doubling or even tripling the quenching time (up to 300

ps) does not introduce sizable changes in the structural and vibrational properties of our

NN 4096-atom model of a-GeTe. Structural properties are described in Figs. 3.12-3.15.

The partial pair correlation functions of our NN models are compared with DFT data in

Fig. 3.12. The distribution of coordination numbers and their average values are reported

in Fig. 3.13 and Table 3.5 for NN and DFT simulations. Bond angles distribution functions

are reported in Fig. 3.14. By decreasing the system size from 4096-atom to 1728-atom one

obtains essentially the same results. The NN and DFT data of the small 216-atom cell

are averaged over the ten independent models. The properties averaged over the ten NN

216-atom are close to those of the larger 4096-atom NN model. However, in the small cells

we observed fluctuations in the structural properties within the ten independent models

both for NN and DFT simulations. The fluctuations are slightly larger for the NN models

than for the DFT ones.

The agreement between NN and DFT data is overall very good. The largest discrep-

ancy is on the height of the first peak of the Ge-Ge pair correlation function. Another

discrepancy with the DFT results is the presence of a small peak at around 60◦ in the NN

angle distribution function due to a very small fraction of three membered rings (see be-

low). The same discrepancy is present in the NN angle distribution function of the liquid

(cf. Fig. 3.9). Following previous works [7], we quantified the fraction of Ge atoms in a

tetrahedral geometry by computing the local order parameter q = 1− 3
8

∑

i>k(
1
3+cosθijk)

2

where the sum runs over the pairs of atoms bonded to a central atom j. q = 1 for the

ideal tetrahedral geometry, q = 0 for the six-coordinated octahedral site, and q = 5/8 for

a four-coordinated defective octahedral site. The distribution of the local order parameter

q for Ge atoms is reported in Fig. 3.15 for different coordination numbers. The q distri-
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Figure 3.12: Total and partial pair correlation functions of amorphous GeTe from
a NN molecular dynamics simulation at 300 K with a 4096-atom and 216-atom cell,
compared with results from DFT simulation at the same temperature using 216-atom
cells. The vertical lines are the interatomic distance thresholds used to define the
coordination numbers, 3.0 Å 3.22 Å and 3.0 Å for Ge-Ge, Ge-Te and Te-Te bonds,
respectively. NN and DFT data for the small cell are averaged over ten independent
models here and in all the subsequent figures if not specified otherwise.

Table 3.5: Average coordination number for different pairs of atoms computed from
the partial pair correlation functions of amorphous GeTe from NN molecular dynamics
simulations at 300 K with a 4096-atom and 216-atom cell, compared with results from
DFT simulations at the same temperature of 216-atom cells. The interatomic distance
thresholds defined in Fig. 3.12 are used.

With Ge With Te Total
DFT NN216 NN4096 DFT NN216 NN4096 DFT NN216 NN4096

Ge 0.76 0.78 0.88 3.28 3.31 3.22 4.03 4.09 4.10
Te 3.28 3.31 3.22 0.02 0.04 0.05 3.30 3.35 3.27
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Figure 3.13: Distribution of coordination numbers of Ge and Te atoms in a-GeTe
from NN and DFT simulations with 4096- and 216-atom cells. The interatomic distance
thresholds defined in Fig. 3.12 are used.
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Figure 3.14: Total and partial angle distribution functions of amorphous GeTe from
a NN molecular dynamics simulation at 300 K with a 4096-atom and 216-atom cell,
compared with results from DFT simulation at the same temperature of 216-atom cells.
Partial distributions refer to X-Ge-Y and X-Te-Y triplets (X,Y= Ge or Te).
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bution for 4-coordinated Ge is bimodal with peaks corresponding to defective octahedra

and tetrahedra. In contrast, the q-distribution for Te does not show any signature of the

tetrahedral geometry (cf. Fig. 3.15). We estimated the fraction of tetrahedral Ge atoms

by integrating the q-distribution of 4-coordinated Ge from 0.8 to 1. This procedure was

demonstrated to provide reliable values for the fraction of tetrahedral Ge from the analy-

sis of the Wannier functions that allow a direct identification of the tetrahedral geometry

in terms of the electronic structure [133]. In fact, Ge in tetrahedral sites has four bond-

ing sp3-like Wannier functions, while Ge in defective octahedra has three p-like bonding

Wannier functions and one s-like lone pair. The fraction of tetrahedral Ge atoms for all

the ten 216-atom NN models, for the large 4096-atom model and the DFT result average

over ten 216-atom models are compared in Fig. 3.16. The average values of the small

216-atom DFT and NN models are both very close to the value for the large 4096-atom

NN model (24 %) and also for an intermediate 1728-atom model (22 %).
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Figure 3.15: Order parameter q for tetrahedricity for 3-, 4-, and 5-fold coordinated
Ge and Te atoms in amorphous GeTe from NN molecular dynamics simulations at 300
K with a 4096-atom and 216-atom cells, compared with results from a DFT simulation
at the same temperature and 216-atom cells.

Turning now to the medium range order, we report in Fig. 3.17 the distribution of ring

lengths computed according to Ref. 32 for the large and small NN models and for the small

DFT models. The amorphous phases of GeTe and GST have been shown to display a large

concentration of nanocavities [8]. The distribution of the volume of nanocavities computed

according to the definition of Ref. 117 and the algorithm of Ref. 118 is compared in

Fig. 3.18 for the NN and DFT models. The same scheme for the calculation of nanocavities

was applied in previous works on different phase change materials [33]. These comparisons

show that the agreement between NN and DFT results is very good for the medium range
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Figure 3.16: Fraction of tetrahedral Ge atoms in amorphous GeTe from ten statisti-
cally independent 216-atom models generated with the NN potential, compared with
results averaged over ten DFT 216-atom models. The average (AVG) over the ten NN
models and from the 4096-atom model are also reported.
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Figure 3.17: Distribution of ring lengths in the 4096- and 216-atom NN models and
in the DFT 216-atom models.

We also optimized the density of the amorphous model at zero temperature by inter-

polating the energy-volume points with a Murnaghan equation of state. We obtained an

equilibrium density of 0.03351 atoms Å−3 to be compared with the value of 0.03156 atoms

Å−3 resulting from the DFT equation of state of a 216-atom cell with the BZ integration

restricted to the Γ-point [10]. The experimental equilibrium density [129] of a-GeTe is

0.03327 atoms Å−3. The NN and DFT bulk moduli of a-GeTe are 17 GPa and 14 GPa,
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respectively.

Concerning the vibrational properties, the phonon density of states of amorphous

GeTe from NN and DFT simulations are compared in Fig. 3.19. Phonon frequencies are

computed by diagonalizing the dynamical matrix obtained in turn from the variation of

atomic forces due to finite atomic displacements 0.02 Å large. Only phonons with the

periodicity of our supercells (Γ-point phonons) were considered. Ab initio phonons are

computed in a single 216-atom cell [10] while NN phonons are obtained from either the

4096-atom cell or averaged over ten 216-atom models. Projections on the different type

of atoms (Te, Ge in tetrahedral and defective octahedral geometries) are also shown.

In an amorphous material, phonons display localization properties, which depend on

frequency. To address this issue and following our previous DFT works [10], we computed

the inverse participation ratio (IPR) of the j-th vibrational mode (see section 1.3).

The values of IPR for the NN and DFT models of a-GeTe are reported in Fig. 3.20.

The NN potential reproduces the strong localization on tetrahedra of phonons above

200 cm−1. The overall shape and frequency range of the phonon DOS is reasonably

reproduced by the NN potential. A discrepancy is present in the relative height of the

two main structures at 50 cm−1 and 150 cm−1, which, however, might be partially due

to the still small size of the 216-atom cell. The size of the fluctuations in the DOS among

the 216-atom NN models can be appreciated in Fig. 6.19 in appendix 6.2. The total DOS

averaged over the ten models is however close to that of the larger 4096-atom model

although differences in the projected DOS are still sizable.

The results discussed in this chapter, on the development of the NN potential and its

validation by comparison with DFT results have been published in Ref. [134].
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Figure 3.19: Phonon density of states of amorphous GeTe from 4096- and 216-atom
NN models. Results for a single 216-atom DFT model [10] are also reported. Only
phonons at the supercell Γ point are considered. Projections of the DOS on the dif-
ferent atomic species (Te atoms and Ge atoms in tetrahedral and defective octahedral
geometries) are also shown.
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Chapter 4

Thermal conductivity of

amorphous GeTe

Thermal conductivity tensor κµν relates the heat current Jµ that flows in a material to

the temperature gradient ∂T
∂xν

via Fourier’s law as

Jµ = −
∑

ν

κµν
∂T

∂xν
(4.1)

The thermal conductivity of a material is the sum of two different contribution: the

electronic thermal conductivity, which depends on the electronic band structure, electron

scattering, and electron-phonon interaction, and the lattice conductivity, which depends

on phonons and phonon scattering. In this thesis work, we only considered the lattice

thermal conductivity, as in amorphous GeTe electrons give a negligible contribution to

the thermal conductivity due to the very low electrical conductivity [11]. The lattice

thermal conductivity can be computed by means of molecular dynamics with two differ-

ent approaches, the direct method [135] and the Green-Kubo method [135]. The direct

method is a non equilibrium MD method that relies on imposing a temperature gradient

across the simulation cell, and it is therefore analogous to the experimental situation. By

contrast, the Green-Kubo method approach is an equilibrium MD method that allows to

computing the thermal conductivity from energy current fluctuations via the fluctuation-

dissipation theorem. We chose to apply the latter approach, which is described in detail

in the following. The Green-Kubo method in a general technique to compute response

functions in the linear response regime based on the fluctuation dissipation theorem.

The dynamical properties of a system show fluctuations at equilibrium and these

fluctuations can be used to determine the desired properties. This is made possible through

linear response theory by using relations proven by Green-Kubo (GK) or alternatively -

and equivalently- by Einstein. Transport coefficients are defined in terms of the response of

the system to perturbations. The fluctuation-dissipation theorem states that the response
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function is related to the fluctuation of the observable A which is coupled to the external

perturbation. Thus, properties are considered as perturbations from equilibrium values.

The transport coefficient γ is determined by the autocorrelation function of A via

γ =

∫ ∞

0

〈Ȧ(t)Ȧ(0)〉dt (4.2)

Green-Kubo relations can be derived for many transport coefficients such as diffusiv-

ity, shear viscosity, and thermal conductivity. The expression for the latter involves the

autocorrelation function of the energy current given by

κ =
1

3kBT 2Ω

3∑

α=1

∫ ∞

0

〈Jα(0)Jα(t′)〉dt′, (4.3)

where α runs over Cartesian coordinates, kB is the Boltzmann constant, T the temper-

ature and Ω is the volume of the system. The object J in Eq. 4.3 is ensemble dependent.

In the microcanonical (NVE) ensemble Jα(t
′) is the energy current, which can be written

as

Jα(t
′) = −

N∑

i=1

3∑

β=1

σi,αβ(t
′) · vi,β(t′) =

N∑

i=1

Jiα(t
′) (4.4)

where vi,β(t
′) is the velocity of atom i at time t′ and σi,αβ(t

′) are the elements of

the atomic stress tensor. It is worth to notice that usually there is no unique way of

partitioning the total stress into the sum of single-particle contributions. However, in the

NN framework the total energy of the system is written as the sum of the energies of

individual atoms, so that the definition of an atomic stress follows in a straightforward

and consistent manner [124].

Since diffusion processes are negligible in a-GeTe at 300 K, we neglected the convec-

tive contribution to the energy flux [136]. To achieve a faster convergence and a better

statistical accuracy in the time integral and averages, we can recast Eq. 4.3 by using the

Einstein relation [137]

κ =
1

6kBT 2Ω
lim
t→∞

d

dt

N∑

i=1

3∑

α=1

〈[ǫi,α(t)− ǫi,α(0)]
2〉, (4.5)

with

ǫi,α(t)− ǫi,α(0) =

∫ t

0

dt′Jiα(t
′). (4.6)

Very long simulation times appear to be needed to sufficiently converge the current-

current autocorrelation function [138]. The truncation time in Eq. 4.6 was tested and

settled to 40 ps, but long simulations (2 ns) are needed to gain good accuracy in the aver-

age 〈[ǫi,α(t)− ǫi,α(0)]2〉 over the initial state (t = 0) in Eq. 4.5. We used four independent
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4096-atom models of a-GeTe generated by quenching from the melt to 300 K in 100 ps.

The density was fixed to the value of 0.0334 atoms/Å3 very close to the experimental

one for the amorphous phase [129]. The models were equilibrated at 300 K by stochastic

velocity rescaling [139].

The value of κ resulting from the GK formula (Eq. 4.2) at 300 K is 0.27±0.05 W/(mK),

where the error bar is the sum of two contributions, one from the uncertainties in the

linear fit of Eq.4.5 (± 0.048 W/(mK), see Fig.4.1) and a second due to the spread in the

value of κ obtained from the four different models (± 0.0087 W/(mK)).
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Figure 4.1: Normalized autocorrelation function of the energy current operator. Inset
shows the MSD of J according to Eq. 4.5.

Our value of κ is close to those measured experimentally for GexTe1−x and GeSbTe

alloys [11], all in the range 0.1-0.3 W/mK, including Ge0.20Te0.80 (0.19 W/mK) [12]. An

experimental value of κ is available also for a-GeTe [140] which, however, is about 2.5

W/(mK), one order of magnitude larger than our result and than other experimental

data on very similar systems. The origin of this discrepancy is unclear and suggests the

need of new experimental measurements on a-GeTe.

The value of κ obtained by MD simulations (either via the Green-Kubo approach

or the NEMD direct method) accounts for the whole value of the lattice thermal con-

ductivity, that is, it collects all contributions coming from the vibrational modes of the

systems. However, as discussed in section 1.3 in the case of amorphous materials, there

exist different kind of phonons, each one contributing to the total value of κ by a different

mechanism. It is therefore important to investigate further the microscopic origin of κ to

identify which and to what extent different phonons contribute to thermal conductivity.

As discussed in section 1.3 propagating and non-propagating (diffusons) phonons con-

tribute to the thermal conductivity of an amorphous material. In the following we discuss
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separately the contributions from the two types of phonons.

4.1 Propagating phonons

The Peierls-Boltzmann theory allows one to compute the contribution to the thermal

conductivity of propagating phonons by applying the Boltzmann Transport Equation

(BTE), under certain assumptions, to a phonon gas. We begin by rewriting Eq. 4.1 as

~J = −~κ · ∇T (4.7)

The BTE can be used to track the time evolution of the positions and velocities of

a system of particles. In the case of a gas of phonon in steady state to first order in the

temperature gradient, the BTE for a specific phonon mode takes the form [141]

~vg · ∇T
∂ft
∂T

=

(
∂ft
∂t

)

coll

(4.8)

where ft and ~vg are the phonon distribution function and group velocity vector and
∂ft
∂t coll

is the collision term. The left hand side of Eq. 4.8 describes a system of non

interacting phonons. On the right-hand side, the collision term accounts for all possible

mechanism of phonon interaction and is generally quite complex. The main challenge in

working with BTE is in specifying and evaluating an expression for the collision term.

The single relaxation time approximation (SRTA) is commonly used to make the BTE

tractable. In SRTA, the phonon distribution functions and the collision term are written

as

ft = f + f ′t
(
∂ft
∂t

)

coll

= −f
′

τ
(4.9)

where f is the Bose-Einstein equilibrium distribution function fi = (eβ~ωi −1)−1, f ′ is
the change of the distribution function from equilibrium, and τ is the phonon relaxation

time (lifetime). Now, using the SRTA we write the following expression for distribution

about equilibrium starting from Eq. 4.8

~vg · ∇T
∂ft
∂T

= −f
′

τ

which at the first order in ∇T leads to

f ′ = −~vg · ∇T
∂f

∂T
τ (4.10)

In the harmonic approximation, the volumetric phonon specific heat ci is
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ci =
~ωi

V

∂f

∂T
(4.11)

The net flux due to phonon motion is given in terms of f ′ by [142]

~J =
1

V

∑

i

~ωi~vgf
′ (4.12)

where V is the system volume and the sum runs over the phonon branches. By pluggin

Eq. 4.10 into Eq. 4.12 we obtain the following expression for the thermal conductivity

~κ = −
~J

∇T
~κ = − 1

∇T
1

V

∑

i

~ωi~vgf
′

~κ = − 1

∇T
1

V

∑

i

~ωi~vg ·
(

−~vg · ∇T
∂f

∂T
τ

)

~κ =
∑

i

ci~v
2
gτ (4.13)

We define the mean free path Λ of a certain phonon as Λ = vg · τ . The Peierls-

Boltzmann theory is very successful for crystalline matter. For perturbations varying

slowly [143] in space and time, the only limitations of the Boltzmann approach is either

(a) that each i-th phonon should have a sufficiently long mean free path so that its wave

vector ~q can be defined, i.e. Λi >> λi = 2π/|~q|, or alternately (b) if the wave vector ~q

is impressed externally, then the resulting oscillation should have a long enough lifetime

(or dephasing time) τi so that its frequency ωi is well defined, i.e. τi >> Ti = 2π/ωi.

Amorphous materials have usually only a small bunch of phonons which satisfy both cri-

terions, typically very long wavelength acoustic-like modes. Thus, the Peierls-Boltzmann

model can only deal with these particular phonons, that according to the classification

we presented in section 1.3 would be propagons. Thus, we need three ingredients in order

to compute κBTE : the specific heat per unit volume ci, the groups velocity v and the

lifetime τ . Specific heat can be easily computed by Eq.4.11. In order to obtain group

velocities, we need to define them in the case of an amorphous system. In lattice dynam-

ics calculations, the dynamical matrix D has been obtained by computing derivatives of

forces acting on atoms as finite differences. D was computed and diagonalized to obtain

egienvectors and eigenvalues at the Γ point (~q = 0) of the supercell Brillouin zone and

for several small, finite ~q points. In fact, in a supercell the group velocities at the Γ point

are zero, except for the three acoustic modes corresponding to ω = 0. However, it is often

possible that a number of low frequency modes retain propagating character with ~vg 6= 0

for ~q very close to Γ. Those modes are propagons, for which an effective group velocity

can be defined without defining the limit for ~q → 0. We differentiated the dispersion
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curves over a uniform grid of 18 points within a radius of 0.08 Å−1 around the Γ point.

Phonon lifetimes are obtained from the autocorrelation functions of the eigenmodes as

τj = 2 ·
∫∞
0

〈Ej(t)Ej(0)〉
〈Ej(0)Ej(0)〉dt where the kinetic energy of mode j is obtained from the eigen-

mode amplitude as Ej(t) = 1
N |∑N

i=1

√
Mi e(j, i) · ~vi(t)|2. The truncation time in the

integral above was settled to 20 ps, but a long 2 ns MD trajectory was needed to achieve

convergence in the average over the initial state (t = 0).

Fig. 4.2 demonstrates that the single relaxation time approximation can be safely

applied at least for the majority of a-GeTe phonons. In fact, the energy of the normal mode

decades with an oscillatory behavior following an exponential trend that clearly indicates

that phonons have a single relaxation time. The resulting group velocities, lifetimes and

mean free paths (λj = vgj · τj), calculated as described above, are reported in Fig. 4.3.

One can notice that in a-GeTe essentially all the modes have mean free path in the range

1-10 Å i.e. shorter than the average interatomic distance. In fact, group velocities (see

panel a) of Fig. 4.3) are really small, of the order of 102 m/s, along the whole vibrational

spectrum. Only a bunch of acoustic-like phonons display group velocities of the order of

103 m/s. In amorphous silicon [15], the fraction of phonons with group velocities of the

order of 103 m/s, i.e. of the order of the speed of sound, is actually noticeable, as can

be expected since silicon is much stiffer than GeTe, and phase materials in general, even

in the amorphous phase. Above 200 cm−1, group velocities become even smaller, since

phonons beyond that frequency are strongly localized and simply do not propagate at all.

Lifetimes are also one order of magnitude smaller with respect to what is obtained in the

case of amorphous silicon [15]. In summary, both of the group velocities and the lifetimes

are really small, leading to a very small value of κBTE=0.01 W/mK, which is one order of

magnitude smaller than the total value of κ obtained from EMD. Therefore propagating

phonons do not contribute sizably to the thermal conductivity of a-GeTe.

4.2 Diffusons

In section 1.3, we introduced diffusons. They are extended, delocalized and not propa-

gating modes. Thus, their contribution to thermal conductivity cannot be computed by

BTE or anharmonic hopping models. In the early nineties Allen and Feldman proposed

a theory that specifically takes into account diffusons. The theory applies when disorder

is sufficient to make the majority of states to propagate very little, but insufficient to

make all the states localized. Also it is necessary that the material is stiff enough or the

temperature low enough that the harmonic approximation is applicable. In this model,

localized states contribute no heat current (anharmonic terms are needed for hopping).

Nevertheless, significant heat currents are carried by diffusons. The basic idea is that

the heat current operator has off-diagonal matrix elements Jij between the harmonic for

foamy systems. The starting point is the Kubo formula of Eq. 4.3. For a disordered har-

monic solid the exact many-body states are simply the various ways of occupying the 3N

harmonic-oscillator states. If one writes down the heat current operator in terms of these
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Figure 4.2: Decay of the energy of a normal mode at ∼150 cm−1 as a function of
time.

oscillator states [40], it is possible to recast the Kubo formula Eq. 4.3 as

κµν(ω) =
πΩ

T

∑

i,j

fi − fj
~(ωi − ωj)

(Jµ)ij(Jν)jiδ(ωi − ωj − ω) (4.14)

where ω represents the frequency of an applied temperature gradient, Jij are the off

diagonal matrix elements of the heat current operator defined in Ref. 40, and fi is the

equilibrium Bose-Einstein occupation of the i-th exact oscillator mode. Eq. 4.14 is the

phonon analog of the Kubo-Greenwood approach for electrical conductivity of disordered

metals. The factor (fi − fj)/(ωi −ωj) becomes − ∂f
∂ωi

, and this relates to the specific heat

described in Eq. 4.11 which leads to

κ =
∑

i

ci
1

3

3∑

α=1

Dαi (4.15)

where Di is the mode diffusivity, temperature independent, defined in a microscopic

way for an harmonic disordered solid as

Dαj =
Ω2

8π2~2ν2i

∑

n6=j

|〈ej |Jα|en〉|2δ(νj − νn) (4.16)

Here 〈en|Jα|ej〉 are the matrix elements of the α Cartesian component of the energy

flux operator between two harmonic normal mode en and ej with frequencies νn and νj
[40].
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In periodic systems, the delta function if Eq. 4.16 must be replaced by a Lorentzian

function of a certain width η greater than the spacing between the vibrational levels.

The choice of η has a sizable effect on the value of κ obtained in this way, and must be

chosen with care. In principle, η → 0 when the volume Ω → ∞, but in practice one has to

choose a value of η that allows the overlap of vibrational modes within a tiny frequency

window. In any case the choice of η rises an error that must be taken into account. In the

case of a-GeTe we chose a broadening δ between 0.1 and 1 cm−1. In Fig. 4.4 we report

the diffusivity of each normal mode of a-GeTe for the two choices of δ. One can notice

how the width affects the degree of overlap between the normal modes, thus increasing

or decreasing their diffusivity. In any case, diffusivity in a-GeTe rapidly decreases as the

frequency rises.

−0.04

−0.03

−0.02

−0.01

 0

 0.01

 0.02

 0.03

 0.04

 0  50  100  150  200  250  300

D
iff

us
iv

ity
 [c

m
2 /s

]

ω [cm−1]

δ=1 cm−1

δ=0.1 cm−1

Figure 4.4: Diffusivity of each normal mode of a-GeTe with two different choices of
Lorentzian broadening δ.

The cumulative contribution of propagating (κBTE) and non-propagating modes (κAF )

to the thermal conductivity as a function of the spectral range of the vibrational modes

are reported in Fig. 4.6. The error bar, depicted by the dashed area in Fig. 4.6, rises from

the uncertainties in our choice of the spreading δ in the range 0.1-1 cm−1. The κBTE term

is negligible compared to κAF and their sum is very close to the EMD result which indi-

cates that the decomposition κ ≃ κBTE + κAF captures essentially all the contributions

to the thermal conductivity at 300 K. The specific heat in the expression for κAF has

already reached the classical value at 300 K. Therefore κAF will not change by increasing

temperature above 300 K (see Fig. 4.5).

The cumulative value of κAF is converged at about 200 cm−1 because phonons at

higher frequency are mostly localized on tetrahedra and do not contribute to κAF . On the

other hand, the fact that κAF essentially accounts for the whole value of κ obtained from
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EMD means that energy transfer among localized modes due to anharmonic interactions

are negligible, at least at 300 K. The lack of propagating modes with long mean free path

is also responsible for a relatively fast convergence of κ with system size. Indeed the value

of κAF of a smaller 1728-atom model is 0.24±0.01 W/(mK), i.e. almost the same value

obtained for the larger 4096-atom model. This result suggests that confinement effects

of phonons in nanoscaled GeTe devices are negligible. The lack of propagating modes

with long mean free path can be traced back to the rich topology of the amorphous

network in a-GeTe which displays a coexistence of tetrahedra, defective octahedra and

the presence large nanovoids [8] suitable to scatter phonons and to enhance the fraction

of non-propagating, quasi-stationary modes with respect to propagating modes with large

group velocities.

An approximate expression for the contribution of diffusons to thermal conductivity

under the assumption of a Debye-like phonon DOS was proposed by Cahill et al. [144]. In

the high temperature limit, where all the modes are thermally excited, which is the case

for a-GeTe at 300 K, the predicted minimum thermal conductivity according to Ref. 144

model is κmin = 3
2kB(

π
6 )

1
3 ρ

2
3 vs, where ρ is the atomic density and vs is the speed of sound

taken as an average over longitudinal and transverse modes: 3vs=vL + 2 vT . In our case,

vs = 2.1 km/s which gives κmin =0.36 W/mK, close the value we obtained for κAF .

In conclusion, we used our NN interatomic potential to investigate thermal transport

in the amorphous phase of the GeTe compound. We computed the thermal conductiv-

ity κ from equilibrium molecular dynamics and the Green-Kubo formula. The resulting

value κ= 0.27±0.05 W/(mK) is within the range of values measured for several other
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GeSbTe phase change materials. The calculation of phonons group velocity and phonon

lifetimes reveal that essentially all phonons have short mean free path in the range 1-10

Å. The contribution to the thermal conductivity by propagating modes is thus negligible.

The thermal conductivity is in fact mostly due to non-propagating, delocalized modes

(diffusons) which can transport heat according to the theory developed by Allen and

Feldman [40]. Our results thus suggest that the bulk value of κ measured for instance in

films can indeed be used to model the thermal transport of GeTe also in nanoscale devices,

as the contribution from propagating modes that may endure ballistic transport at the

scale of 10-20 nm is negligible. Phase change ternary alloys GeSbTe have all very similar

lattice thermal conductivity with values [11] close to what we have found for GeTe. The

phonon spectrum and the structure of amorphous GeTe are also very similar to those of

other GeSbTe compounds with coexistence of tetrahedra and defective octahedra and the

presence of nanovoids [8, 10, 33]. It is therefore conceivable that the absence of phonons

with long mean free path and the dominance of non-propagating, delocalized modes in

the thermal transport found here for GeTe might be extended to other materials in the

same class. The results discussed in this chapter, concerning the investigation of thermal

transport in the amorphous phase of GeTe, have been published in Ref. [145].



Chapter 5

Viscosity and atomic mobility

in the Supercooled Liquid and

Overheated Amorphous Phases

As discussed in section. 1.4, the properties of the supercooled liquid control the speed

of crystallization. It has been proposed that the higher crystallization speed of phase

change materials is due to a high fragility of the supercooled liquid phase. However no

experimental data on the viscosity of the supercooled liquid are available. In this work

we have addressed this problem by means of NN molecular dynamics which allowed us to

compute independently viscosity and diffusivity in large simulation cells. A breakdown of

the Stokes-Einstein relation close to the glass transition has been found. We also studied

hysteretic effects in the glass transition by analyzing the properties of the overheated

amorphous phase.

5.1 Melting temperature

To study the properties of the supercooled liquid, we first assessed the ability of the

NN potential, and thus of the underlying DFT-PBE framework, to reproduce Tm. The

melting temperature was computed according to the framework described in section 2.3.

Thermodynamic integration yielded Tm=1001 K, a number very close to the experimental

value at normal pressure of 998 K [21]. To obtain Tm, we first computed the difference

in the Helmholtz free energy F between the NN system and a reference system for which

an analytic expression for F is known, at a given temperature T ′ and density ρ′. Namely

FNN (T ′, ρ′)− Fref (T
′, ρ′) =

∫ 1

0

dλ〈U(λ)〉, (5.1)
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where the average is taken over a MD simulation with the potential U(λ) = λUNN −
(λ − 1)Uref . The temperature and density were set to the experimental values at the

melting point at normal conditions [21]. As discussed in section 2.3.1, the reference system

was chosen as an Einstein crystal for the solid and a Lennard-Jones fluid for the liquid. In

the next step, the chemical potentials were evaluated by integrating the free energy as a

function of density (see Eq. 2.64). By equating the chemical potential of the two phases one

obtains a transition pressure of -0.44 GPa at the chosen temperature T′=998 K. From

the calculated Clausius-Clapeyron equation (dT/dP=6.85 K/GPa from the calculated

∆S=∆E/T and ∆V on the theoretical melting line at T=998 K) we then obtained

the theoretical melting temperature at normal pressure which is Tm=1001 K. 〈U〉 as

a function of λ for the two phases is shown in Fig. 5.1 and the chemical potential of the

two phases as a function of pressure at T ′=998 K is shown in Fig. 5.2.

−60

−50

−40

−30

−20

−10

 0

 0  0.2  0.4  0.6  0.8  1

<
 U

LJ
+

U
0−

U
N

N
 >

 [H
ar

tr
ee

/c
el

l]

λ

Liquid

−100

−80

−60

−40

−20

 0

 0  0.2  0.4  0.6  0.8  1

<
 U

E
IN

+
U

0−
U

N
N

 >
 [H

ar
tr

ee
/c

el
l]

λ

Solid

a) b)

Figure 5.1: Ensamble average of the total potential energy of the system as a function
of the mixing parameter λ (see section 2.3 for details). a) Liquid phase of GeTe with a
Lennard Jones liquid as reference system b) Crystalline phase of GeTe with an Einstein
crystal as reference system.

5.2 Supercooled liquid

We analyzed the properties of the supercooled liquid below Tm by computing indepen-

dently the viscosity η and the self diffusion coefficient D in microcanonical MD simula-

tions. The volume of the supercooled liquid was scaled with temperature according to the

calculated thermal expansion coefficient α =4.73· 10−5 K−1. At Tm α is little dependent

on temperature [21]. We scaled the temperature from 1000 K to 500 K in eleven steps. At

each step the system is equilibrated for 25 ps with the thermostat. Overall the system is

thus quenched from 1000 K to 500 K in 250 ps. At each temperature statistical averages

are then collected on longer microcanonical simulations up to 2 ns long for the calculation

of the viscosity as discussed below.

We first computed D from the atomic mean square displacement (MSD) as
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D =
1

6
lim
t→∞

∂〈|~ri(t)− ~ri(0)|2〉
∂t

(5.2)

where ~ri(t) is the position of atom i at time t. The average 〈. . .〉 is over atoms and over

the initial times in ~ri(0) to improve statistical accuracy.D can be computed on a timescale

of 50 ps on which the system does not crystallize at the temperatures we considered. The

MSD as a function of time for selected temperatures are shown in Fig. 5.3.

The values of D as a function of temperature are reported in Fig. 5.4a. D is still of

the order of 10−6 cm2/s at the lowest temperature of 505 K considered here; it follows

an Arrhenius behavior from Tm to 505 K. The activation energy is 0.220 ± 0.002 eV,

a value much lower than the activation energy of 1.76 eV obtained from the Arrhenius

dependence of viscosity in GST measured in the temperature range 333-373 K (probably

below Tg) [146]. The ratio between the self-diffusion coefficient of Ge and Te (DGe/DTe)

increases by decreasing temperature as shown in Fig. 5.5. The values of D obtained from

the NN simulations were also validated by direct DFT molecular dynamics simulations at

few selected temperatures with a small 216-atom cell (cf. Fig. 5.4a). The DFT result at

1000 K is equal to that previously obtained in Ref.[8] with the same cell and functional

used here. We checked that the change of volume with temperature has a little effect on

the diffusion coefficient as shown in Fig. 5.4a which also reports the values of D as a

function of temperature once the density is fixed to the value at the melting point.

We then computed η between Tm and a temperature T∗=700 K which turned out to
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eV for D and 0.17 ± 0.035 eV for η. Tm is the theoretical melting temperature (see
text).
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be our crossover temperature by means of the Green-Kubo (GK) formula.

η =
V

kBT

∫ ∞

0

〈σxy(t) · σxy(0)〉dt (5.3)

where σxy(t) is the off diagonal component of the stress tensor. The time autocor-

relation function of the stress tensor has been computed by means of the fast Fourier

transform method [78] that exploits the convolution/correlation theorem by which the

autocorrelation

Cσσ(t) = 〈σxy(t) · σxy(0)〉 (5.4)

can be easily evaluated by taking the Fourier transform

Ĉσσ(ν) = σ̂∗
xy(ν) · σ̂xy(ν) (5.5)

This product can easily take advantage of the very rapid algorithms available for com-

puting Fourier transforms (FT), like FFTW [104]. Once computed, the inverse FT gives

the autocorrelation. Care must be taken also in truncating the integral of Eq. 5.3. The

stress autocorrelation function decays slowly, especially upon cooling, so that convergence

of the integral with respect to truncation time must be carefully checked. The integral in

Eq. 5.3 is converged by restricting the integration time to 60 ps due to the decay of the

self-correlation function above the melting temperature. However, long simulation times

up to 2 ns are needed to converge the average (< .. >) over different initial times t = 0.

Above T∗ the viscosity can be described by a simple Arrhenius (Fig. 5.4b) function
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with an activation energy of 0.17 ± 0.035 eV, very close to the value of 0.2 eV measured

experimentally for the Ge0.15Te0.85 eutectic alloy above Tm[147]. For the GeTe composi-

tion, experimental values of η are available only at 1000 K yielding η=2.59 mPa·s which
is twice as large as our result (cf. Fig. 5.4b). This discrepancy is not due to the NN po-

tential but possibly to limitations of the underlying DFT framework. Previous works on

GeSe2 have indeed shown that different choices of the exchange and correlation functional

affect the dynamical properties of the liquid phase [147]. The viscosity can be computed

from the GK formula only above T∗ since at lower temperatures the system crystallizes

spontaneously on the time scale of few hundreds of ps which is not long enough to get

the value of η converged. In the supercooled liquid, η can not be defined on a time scale

longer than the crystallization time which in GeTe is very short in the temperature range

500-700 K.

We thus attempted to extrapolate η below T∗ by a VTF-like function (see section 1.4)

with the constraint of matching the typical value of 1015 mPa· s expected at Tg [16].

Unfortunately, a reliable value of Tg for is not available from experiments because of the

fast crystallization of GeTe, and its theoretical estimate from simulations is uncertain as

discussed at the end of this section. Experimental data on Tg are available for the better

glass formers GexTe(1−x) alloys with x=0.15-0.23 [148]. By a linear extrapolation of these

latter data on Tg with x one obtains Tg=511 K for x=0.5 which is probably too high.

On the other hand, Tg is customarily assumed to be slightly below the crystallization

temperature, that is about 450 K in GeTe [149]. We then used the function proposed in

[150] that allows fitting η over a wider range of temperatures

log10 η(T ) = log10 ηo + (15− log10 ηo)·
·Tg

T exp
[(

m
15−log10 ηo

− 1
)(

Tg

T − 1
)] (5.6)

where m and ηo are fitting parameters. In Eq. 5.6 η=1012 Pa· s at Tg.

The parameter m is is the fragility index of the supercooled liquid. The fragility of

a supercooled liquid can be quantified by finding a measure of how much the viscosity

deviates from the Arrhenius behavior with respect to the temperature expected in the

case of a ideal strong liquid. In particular, the logarithmic derivative of η at Tg is defined

by the fragility index

m =
d(log10 η)

d(Tg/T )
|T=Tg

(5.7)

We performed two fittings at two temperatures as shown in Fig. 5.6: the first with

Tg=450 K that yields m=111 (log10ηo=-0.18), and a second one with a somehow lower

temperature Tg=400 K which yields a very similar value of m=104 (log10ηo=-0.15). Sim-

ilar results are obtained by using the modified VFT function proposed in Ref. [151]. Our

data on viscosity above T∗ are thus consistent with a high fragility of the supercooled

liquid. For sake of comparison we remark that m=20 in silica which is a typical strong

liquid while m=191 in PVC which is a typical fragile liquid [152]. Unfortunately, due to
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the lack of data on η below T∗ and the uncertainties in the value of Tg, we can not assign

accurately the degree of fragility. Nevertheless, even for a value of m as large as 100, the

viscosity rises too steeply in the range 500-600 K to be consistent with the calculated val-

ues of D and the application of the Stokes-Einstein relation. In the hydrodynamic regime

when the SER holds it is actually possible to estimate the viscosity on the shorter time

scale of 50 ps by a finite size scaling analysis [153] of the self-diffusion coefficient based

onto the SER:

D(L) = D∞ − 2.387kBT

6πηL
(5.8)

where D∞ is the non size dependent diffusion coefficient, and L is the edge of the

cubic simulation cell. It is worthwhile to remember that Eq. 5.8 can be applied only in

the hydrodynamic regime when the SER (Eq. 1.2) holds. One can perform different MD

simulations at the same temperature with different system sizes (different L) and obtain

η from Eq. 5.8.

We considered three cubic models with 512, 1728 or 4096 atoms. By applying Eq. 5.8

above T∗, we obtained values for η very close to the GK data (Fig.5.7) and consistent

with the SER. However, when Eq. 5.8 is applied below T∗, one obtains values of η that

are three orders of magnitude larger than those obtained from D and the application of

the SER (η = kBT
6πRD , where R is the average van der Waals radius of the two species)

as shown in Fig.5.7. This inconsistency demonstrates that the SER indeed breaks down.

We remark that the numerical values of η reported in Fig.5.7 below T∗ are not reliable

since they are obtained from Eq.5.8 which is not applicable when the SER breaks down.

Note also that the values of η obtained from the scaling of D above T∗ are better fitted

by an Arrhenius function than the GK data (cf. Fig.5.4b) possibly because of numerical

inaccuracy in the GK values at the lowest temperatures.

5.3 Overheated amorphous phase

We have seen how atomic mobility in supercooled liquid GeTe remains high even in the

neighborhood of the glass transition temperature. Now we can ask ourselves if the amor-

phous phase would display the same properties once heated above the glass transition.

Thus, we investigated the overheated amorphous phase of GeTe applying exactly the same

framework used in the previous section for the supercooled liquid. We chose a density of

0.0334 atoms/Å3 [134] very close to the experimental one for the amorphous phase [129].

We used the two models generated by quenching from 1150 K to 300 K in 100 or 300 ps

which yielded the same structural and dynamical properties [134]. The volume was then

increased according to the calculated linear thermal expansion coefficient of α=11·10−6

K−1 at 300 K which is in the range of values measured for other materials in this class

[146]. We increased the temperature from 300 K to 700 K in 5 steps. At each step the

system is equilibrated for 25 ps with the thermostat. Overall the system is thus heated
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from 300 K to 700 K in 125 ps. At each temperature statistical averages are then collected

on longer microcanonical simulations.

We first computedD from the atomic mean square displacement on the time scale of 50

ps. The values of D as a function of temperature are reported in Fig. 5.8 and compared

with the corresponding values in the supercooled liquid phase. The ratio between the

self-diffusion coefficient of Ge and Te (DGe/DTe) decreases by increasing temperature as

shown in Fig. 5.9. We remark that the temperature in the supercooled liquid is changed

in time along the curve in Fig. 5.8 following a protocol similar to that used to generate

the amorphous model. In fact the liquid was quenched from 1000 K to 500 K in 250 ps

along the curve in Fig. 5.8 while the amorphous models were generated by quenching

from 1150 K to 300 K in either 100 ps or 300 ps with the same results.
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Figure 5.8: Self-diffusion coefficient D as a function of temperature calculated from the
mean square displacement in the overheated amorphous phase (open circles) and in the
supercooled liquid phase. The straight lines are Arrhenius fits of the data that give an
activation energy of 0.405 ± 0.008 eV for the overheated amorphous phase and 0.220 ±

0.002 eV for the supercooled liquid. Tm is the theoretical melting temperatures. Inset:
Atomic mean square displacement as a function of time in the overheated amorphous
phase at 505 K and 700 K.

Clearly a hysteresis is present, the values of D are lower in the amorphous phase than
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in the supercooled liquid it originates from. The overheated amorphous is in fact more

structured than the supercooled liquid at 505 K as shown by the comparison of their pair

distribution functions (PDF) in Fig. 5.10a. At 700 K the differences in the PDF of the

overheated amorphous and the supercooled liquid are instead very small (cf. Fig. 5.10b).

Whether it is necessary or not to distinguish between the two phases in the phase change

memory cell and to take into account the hysteresis in the glass transition, it depends

on the details of the programming current in the set operation which controls the value

of the intermediate temperature between Tg and Tm reached during the recrystallization

process.

To assess the validity of the SER, the viscosity in the overheated amorphous phase as

a function of temperature should be computed. However, a direct calculation of the vis-

cosity is possible only for temperatures at which the system, in the supercooled liquid or

in the amorphous phases, does not crystallize on the time scale needed to define/compute

the viscosity. The Green-Kubo formula (see Eq. 5.3) requires simulation time about 1 ns

long to converge the average (< .. >) over initial states. On this time scale the overheated

amorphous models spontaneously crystallize for temperatures below 700 K, preventing a

reliable estimate of the viscosity exactly as observed in the supercooled liquid. Neverthe-

less, it is possible also in the case of overheated amorphous GeTe to assess the validity of

SER by studying the finite size scaling of the self-diffusion coefficient on the shorter time

scale of 50 ps. In the hydrodynamic regime when the SER holds it is actually possible to

estimate the viscosity from the scaling of D with the edge L of the cubic simulation cell

as Eq. 5.8. We again considered three models with 512, 1728 and 4096 atoms at the same

atomic density. By applying Eq. 5.8 to the supercooled liquid above 700 K, where the

system does not crystallize on the time scale of about 1 ns, we obtained values for η very
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close to that computed directly from the Green-Kubo formula (Fig. 5.11) and consistent

with the SER. However, when Eq. 5.8 is applied below 700 K in supercooled liquid and

here in the overheated amorphous phase one obtains values of η that are three orders of

magnitude larger than those obtained from D and the application of the SER (η = kBT
6πRD ,

where R is the average van der Waals radius of the two species). This inconsistency, shown

in Fig. 5.11, demonstrates that the SER indeed breaks down in the overheated amorphous

phase as well as in the supercooled liquid below 700 K. We remark that the numerical

values of η reported in Fig. 5.11 below 700 K are not reliable since they are obtained from

Eq. 5.8 which is not applicable when the SER breaks down (Fig. 5.11). At 700 K the two

approaches yielded the same result which is also equal to the value of η computed directly

from the GK formula. Note that η from the GK formula at 700 K is 2.2 mPa·s in the

overheated amorphous phase and 2.4 mPa·s in the supercooled liquid.

As discussed previously. a reliable experimental value of Tg is not available for GeTe

nor for the other fast crystallizing phase change compounds. In principle Tg could be

estimated for the temperature dependence of the volume. In fact, by freezing the liquid

sufficiently fast to prevent crystallization we would observe a decrease in the specific

volume V as sketched in Fig. 5.12 down to the glass transition temperature Tg at which

a change in the slope of V = V (T ) is expected.

On the contrary the specific volume experiences a discontinuous jump upon crystal-

lization at Tm (see Fig. 5.12). The glass transition temperature Tg of GeTe could then

be estimated by a plot of the type sketched in Fig. 5.12 for our system. Unfortunately

the equilibrium volume of the liquid phase of GeTe strongly depends on the choice of the

vdW correction to the NN potential that is needed to reproduce the equilibrium density
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Figure 5.12: The two general cooling path by which a system can condense into the
solid phase. Route 1© is the path to the crystalline state; route 2© is the rapid-quench
path to the amorphous solid state. From Ref. 154.

of the liquid as discussed in section 2.3.4. Nevertheless we can attempt to estimate Tg by

assuming a vdW correction equal for the amorphous and the liquid phase obtained by

matching the experimental equilibrium density of the liquid at Tm. The resulting volume

versus temperature points for our models of the amorphous and liquid phases of GeTe

are reported in Fig. 5.13, which yields Tg=505 K.

Although this result looks like a reasonable value, we remark that the equilibrium

volume of the amorphous at room temperature is now 10% smaller then in experiments,

which suggests that the vdW correction could not be taken equal for the two phases. As

a final remark we mention that the fast crystallization of GeTe and GeSbTe alloys has

been ascribed to the similarity of the bonding topology in the amorphous and crystalline

phases [17]. In fact, the must abundant rings in amorphous GeSbTe and GeTe are the four-

membered ABAB rings (A=Ge/Sb and B=Te) which are also the building blocks of the

cubic crystalline phase. The presence of nanocavities [8] in the amorphous phase has also

been proposed as a structural feature that aids the alignment of the four-membered rings

during crystallization. The results presented here suggest that in addition to the presence

of these structural features in the amorphous phase, the crystallization is promoted also

by a high atomic mobility just above Tg where, due to high supercooling, a large driving

force (∆µ) boosts the crystallization speed. A large atomic diffusivity coexists with a

large viscosity due to the breakdown of SER both in the supercooled liquid and in the

overheated amorphous phases. Therefore the self-diffusion coefficient to be used in the

modeling of the crystallization process by classical nucleation theory can not be inferred

from the expected viscosity and the SER, nor the crystallization speed can be extrapolated

from measurements below Tg. Indeed the crystallization of the amorphous phase at low
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that the value of Tg obtained is not reliable at all, while thermal expansion coefficients
-coming from the slopes of the curves- are correct due to the fact that they are not
affected by Van der Waals corrections. Experimental points was adapted from Ref.116.

temperatures below Tg of interest for data retention might take place in a different manner

with respect to the crystallization of the highly mobile overheated amorphous phase and

of the supercooled liquid above Tg. Large scale simulations based on the NN potential

hold the promise to shed light on the crystallization at low temperatures below Tg as well

in the near future. The results discussed in this chapter on the SL have been published

in Ref. [155].



Chapter 6

Crystallization of Amorphous

and Liquid GeTe

6.1 Homogeneous crystallization

We investigated homogeneous nucleation and growth by direct molecular dynamics sim-

ulations. We considered the supercooled liquid (SL) GeTe at 550, 600, 650 and 700 K.

Models of 512, 1728 and 4096-atoms have been considered to study finite size effects. We

also performed simulations at the same temperatures of the overheated amorphous (OA)

GeTe. The density of each phase was scaled according to the calculated thermal expansion

coefficients (see Fig. 5.13), and simulations lasted 1 ns in the NVT ensemble after 25 ps

of equilibration at each temperature. In Fig. 6.2 we show the potential energy profiles for

both the SL and the OA. The OA does not crystallize at all at 700 K, due to the fact

that approaching Tm the nucleation rate decreases. We actually observed crystallization

at 700 K for SL, in which by chance a single critical nucleus pops up and immediately

grows very fast.

In order to measure the crystal growth speed, we have to identify the atoms belong-

ing to the crystalline nuclei. To this aim, we used a local order parameter constructed

according to Steinhardt [156] and Frenkel [157] as:

η(i) =

Nb(i)∑

j=1

∑l
m=−l q6m(i)q∗6m(j)

√
∑l

m=−l |q6m(i)|2
√
∑l

m=−l |q6m(j)|2
(6.1)

where

ql(i) =

√
√
√
√

(

4π

2l + 1

l∑

m=−l

|qlm(i)|2
)

(6.2)
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and

qlm(i) =
1

∑Nb(i)
j=1

Nb(i)∑

j=1

Ylm(~rij) (6.3)

where Nb(i) is the number of bonds for particle i defined within a cut-off radius of 3.2

Å, Ylm are spherical harmonics and ~rij are interatomic distances vectors. The η(i) order

parameter is able to discriminate with great accuracy between the amorphous and the

crystalline phase as shown in Fig. 6.1.

Figure 6.1: Order parameter η distribution for crystalline and amorphous GeTe

We identify the size of the critical nucleus as the minimum size of the cluster that one

formed dose not disappear but continue growing until the model is fully crystallized. A

more compelling definition requires the calculation of the nucleus free energy as a function

of time which is beyond the scope of this work
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Figure 6.2: Potential energy of SL a) and OA B) GeTe as a function of simulation
time at different temperatures.

In Fig. 6.3 we report the temperature dependence of the critical nucleus size. When
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more than one column is drawn for a certain temperature, it means that for that temper-

ature more than one critical nucleus size is present at the same time and grows together

with the other nuclei. As expected from Classical Nucleation Theory (CNT), the size of

the critical nucleus increases with temperature.
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Figure 6.3: Temperature dependence of critical nucleus size for a) Supercooled liquid
and b) overheated amorphous GeTe.

By using the order parameter defined in Eq. 6.1, we tracked the number of crystalline

atoms in the simulations. The results are shown in Fig. 6.4 for both SL and OA. The

crystallization speeds appear similar in the two phases, although the OA crystallizes faster

than SL at 550 K and slower than SL at 600 and 650 K. In principle, SL should crystallize

faster then OA because the diffusion coefficient of the former is larger than that of the

latter, and the kinetic prefactor Ukin(T ) of Eq. 1.7 depends on the diffusion coefficient.

Still, this effect is competitive with the fact that the free energy difference between the

amorphous and the crystal is different from the free energy difference between the liquid

and the crystal, so that it is possible that crystallization speed is faster for OA in certain

temperature ranges only. At low temperatures the nucleation probability is high. In fact,

as shown in Fig. 6.3, at low temperatures there are several supercritical nuclei.

On the other hand, at high temperatures, e.g. SL at 700 K, nucleation probability

is low. In that particular simulation, only one nucleus appears and grows (see Fig. 6.5).

After an initial transient, the number of crystalline atoms grows in a perfect cubic fash-

ion until eventually the nucleus starts interacting with its periodic images (this is the

region in Fig. 6.4 in which the growth curve becomes a constant), leading to an almost

complete crystallization of the model. The fraction of uncrystallized material depends on

temperature.

Since different nuclei can coexist and grow at the same time, different crystalline grains

are formed with different crystallographic orientations, as shown in Fig. 6.6.

An important issue in simulating crystallization is the effect of periodic boundary

conditions. Because of the interaction with periodic images, in small cells (512-atom)

it was actually difficult to estimate a speed of crystal growth since the model was fully
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Figure 6.4: Fraction of crystalline atoms (Nc) as a function of time for a) supercooled
liquid and b) overheated amorphous GeTe.

crystallized before the growth of the nucleus reached a steady state. The 4096-atom models

are actually large enough to provide an estimate of the growth speed. In Fig. 6.7 we show

a typical example. In panel a), the crystalline nucleus interact with its periodic images;

in panel b) a nucleus of the same size can grow freely in a larger 4096-atom cell. In panel

c) and d) an example of an almost spherical and of a strongly elongated critical nucleus

are shown.

CNT assumes that nuclei are spherical. This is not true in general, and many attempt

to overcame this assumption can be found in literature (see for example Ref. 45). In

GeTe, we observed that the higher the temperature, the more the nuclei tend to become

spherical. We quantify the deviation of a nucleus shape from a perfect sphere by the

asphericty parameter [158]

s0 =
(Ixx − Iyy)

2 + (Ixx − Izz)
2 + (Iyy − Izz)

2

2(Ixx + Iyy + Izz)2
(6.4)

where Iij are the elements of the tensor of inertia defined by

Iij =
N∑

k=1

mk(r
2
kδij − rkirkj) (6.5)

where rki is the i-th component of the vector between the center of mass and par-

ticle k, rk is the overall magnitude of this vector and δij is the Kronecker delta. The

eigenvalues of this tensor are the principal components of the moment of inertia used in

Eq .6.4 to determine s0, which ranges from zero for a perfectly spherical cluster unity for

extremely elongated ones. The nuclei with s0 < 0.2 appears very much spherical by visual

inspection. We remark that while s0 measure spherical symmetry, it does not measure

the compactness. Asphericity of the nuclei is shown in Fig. 6.8.

In order to obtain the crystal growth speed, we calculate the volume of each nucleus
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c)

a) b)

d)

Figure 6.5: Crystallization of a supercooled liquid model of 4096-atom at 700 K.
Panel a) shows the critical nucleus, that rapidly (snapshots are taken every 20 ps)
grows (panels b) e c)) until almost the whole system is crystallized (panel d)) in a
single grain.



120 Crystallization of Amorphous and Liquid GeTe

a) b)

Figure 6.6: Different crystalline grains. a) Snapshot of a MD simulation of a 4096-
atom OA at 600 K after 1 ns. Different nuclei are present, each one displaying a different
orientation. b) Snapshot of a MD simulation of a 4096-atom SL at 550 K after 1 ns,
with a single grain interacting with its periodic images.

as a function of time. One can then approximate the nucleus with a sphere (or a cube),

and obtain the dependence of the radius (or the edge) on the simulation time. This gives a

rough estimate of the linear crystal growth speed measured in experiments. In particular,

we chose to define the radius as

R(t) =
1

2
3
√

Vcr(t) (6.6)

where the volume of a crystalline nucleus Vcr is computed as the sum of the volumes

of the Voronoi polyedra centered on the atoms of the nucleus identified by the order

parameter defined in Eq. 6.1. To this aim we used a modified version of the Voro++

library [159]. In Fig. 6.9 we show the radius of the growing nucleus as a function of time

for selected temperatures. When more than one nucleus is present (see Fig. 6.9) the crystal

growth speed has been calculated as the average of the speeds of the different nuclei.

In Fig. 6.10 the crystal growth speed of SL and OA are shown, together with the

experimental data for GST from the work of Orava [53]. Since the diffusion coefficient D

and the free energy difference between the solid and the liquid is different from SL and

OA, the two phases display different crystallization speeds.

In order to obtain the crystal growth speed U(T ) at all intermediate temperatures,

we calculated the free energy difference ∆µ(T ) according to Eq. 1.9, using our estimate

for the melting temperature and the enthalpy of fusion. The latter was obtained from

the enthalpy difference between the liquid and the crystal at their equilibrium volumes

at the melting temperature, ∆Hm =36.29 kJ/mol. Using Eq. 1.7 we can then extract the
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a) b)

c) d)

Figure 6.7: Asphericity of crystalline nuclei. In panel a) the effect of periodic boundary
conditions on the crystalline growth in a small (512-atom) simulation cell. In panel b),
a growing nucleus containing more or less the same number of atoms displayed in panel
b). In this case, the simulation cell contains 4096 atoms, an the nucleus can grow freely
without interacting with its periodic replica. Both simulations were performed at 600 K
with models of supercooled liquid GeTe. In panel c) an almost spherical critical nucleus
in amorphous GeTe overheated at 550 K. In panel d) a strongly non spherical nucleus
growing in amorphous GeTe overheated at 650 K. Both simulations were performed
with 4096-atom models.
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Figure 6.10: Crystal growth speed as a function of temperature for homogeneous
crystallization of supercooled liquid and overheated amorphous GeTe. Data refer to
4096-atom models. The experimental data for GST obtained from differential scanning
calorimetry by Orava et al. [53] are also shown.

kinetic prefactor Ukin(T ) from U(T ) for the simulated temperatures (550-700 K). The

results are shown in Fig. 6.11 for SL and also for OA although it has been assumed that

∆Hm(liquid− crystal) = ∆Hm(liquid− amorphous).

By fitting Ukin(T ) with an Arrhenius equation we obtained activation energies for

crystallization of 0.26 and 0.22 eV for SL and OA respectively. These values are very sim-

ilar to the activation energies extracted from the temperature dependence of the diffusion

coefficients of SL and OA reported in section 5.3 and section 5.2. Ukin is 5.6·102 cm/s for

SL at 700 K (see Fig. 6.11). If we substitute this value in Eq. 1.8 with λ = 3 Å and using

the computed value of the diffusion coefficient at 700 K, D = 1.1 ·10−5 cm2/s, we obtain a

reasonable value of γs = 0.25 which suggests that the high crystallization speed is indeed

due to the large atomic mobility. Arrhenius fits define the temperature dependence of

Ukin, that we can now insert in Eq. 1.7 obtaining the crystal growth rate in the whole

temperature range (Tg-Tm). The result is shown in Fig. 6.12. The maximum of U(T ) is

shifted towards higher temperature for SL and OA GeTe with respect to what has been

observed for GST. This is due to the fact that GeTe has a melting temperature about 100

K higher than GST. These plots are less reliable for OA because of the uncertainties in

∆Hm for this phase. Actually ∆Hm should be higher for the amorphous-crystal transition

than for the liquid-crystal transition. The value of Ukin of OA higher than that of SL at

550 K in Fig. 6.11 is possibly due to the approximation of setting ∆Hm equal for the

amorphous and the liquid, which becomes less accurate by decreasing temperature.

A more detailed understanding of the crystallization mechanism in phase change mem-
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ory cells has to take into account heterogeneous crystallization at the boundary between

the amorphous phase and the surrounding crystalline matrix. Simulations of the crystal-

lization at the liquid/amorphous- crystal interfaces are ongoing.



126 Crystallization of Amorphous and Liquid GeTe



Conclusions

We developed an interatomic potential for the bulk phases of GeTe by means of a novel

approach based on Neural Networks algorithms, which allowed us to investigate several

properties of the phase change material GeTe that are currently beyond the reach of

DFT atomistic simulations. Starting from a huge dataset of DFT energies, we construct

an analytical interatomic potential that retains a quasi ab initio accuracy and allows us

to perform molecular dynamics simulations of thousands of atoms for several nanosec-

onds, overcoming the limitations of DFT molecular dynamics in terms of system size and

simulation timescale.

The NN potential has been validated by comparing the results on structural and

dynamical properties of the bulk phases of GeTe with previous data from DFT calcula-

tions. By means of NN simulations, we have been able to study the dependence of the

structural properties of a-GeTe on quenching time and system size. Actually, no sizable

changes are observed in the structural properties of the large 4096-atom cell by increasing

the quenching time from 100 to 300 ps from the melting temperature to 300 K. On the

other hand, we observed sizable fluctuations in structural properties among 10 indepen-

dent 216-atom models of a-GeTe all quenched in 100 ps both in NN and DFT simulations.

However, averaging over 10 models is enough to obtain results very close to those of the

large 4096-atom cell. The NN potential developed here for the GeTe stoichiometric com-

position can be used also for GexTe1+x alloys with small x. However, the potential is

not yet transferable to strongly off-stoichiometric composition such as the eutectic alloy

Ge0.15Te0.85 because it is unable to reproduce accurately the interaction between long

Te-Te chains as we explicitly checked by means of DFT simulations (no Te-Te chains but

few dimers are present in Ge0.5Te0.5). The transferability of the NN potential can, how-

ever, be systematically extended to the whole binary phase diagram of the GexTe1+x alloy

by including new DFT configurations with different compositions in the database. The

simulations with the NN potential are still sizably more expensive than simulations with

classical force fields but does provide a huge speed up with respect to DFT simulations.

The computational load is 1.5 min/ps on a 256 cores of Cray XT5 for the 4096-atom

cell, which is five to six orders of magnitude faster than a standard Born-Oppheneimer

DFT simulation with the CP2K code or at least four orders of magnitude faster than

simulations with wave-function extrapolations either with CP2K or with the plane-wave
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CPMD code. Thus, the development of a classical potential with close to DFT accuracy

represents a breakthrough in the simulation of phase change materials, as it will allow

addressing several key issues on the properties of this class of materials that are presently

beyond the reach of DFT simulations.

As a first application of our NNP, we investigated thermal transport in the amorphous

phase of the GeTe compound. We computed the thermal conductivity from equilibrium

molecular dynamics and the Green-Kubo formula. The resulting value κ= 0.27 ± 0.05

W/(mK) is within the range of values measured for several other GeSbTe phase change

materials. The calculation of phonon group velocity and phonon lifetimes reveals that

essentially all phonons have a short mean free path in the range 1-10Å. The contribution

to the thermal conductivity by propagating modes is thus negligible. The thermal conduc-

tivity is in fact mostly due to nonpropagating, delocalized modes (diffusons) which can

transport heat according to the theory developed by Allen and Feldman [40]. Our results

thus suggest that the bulk value of κ measured for instance in thin films can indeed be

used to model the thermal transport of GeTe also in nanoscale devices, as the contribu-

tion from propagating modes that may endure ballistic transport at the scale of 10-20

nm is negligible. Phase change ternary alloys GeSbTe have lattice thermal conductivity

very similar to that found here for GeTe. The phonon spectrum and the structure of

amorphous GeTe are also very similar to those of other GeSbTe compounds with coexis-

tence of tetrahedra and defective octahedra and the presence of nanovoids. It is therefore

conceivable that the absence of phonons with long mean free path and the dominance of

nonpropagating, delocalized modes in the thermal transport found here for GeTe might

be extended to other materials in the same class.

We then focused on the dynamical properties of the supercooled phase of GeTe in

the attempt to shed light onto the microscopic origin of its fast crystallization. We have

demonstrated by means of MD simulations that the supercooled liquid of GeTe shows

a high atomic mobility (D = 106 cm2/s) down to temperatures very close to the glass

transition temperature. Our calculated values of the viscosity as a function of temperature

are consistent with a high fragility (fragility index∼100) of the supercooled liquid. The

comparison between the calculated self-diffusion coefficient and the viscosity demonstrates

a breakdown of the Stokes-Einstein relation below a crossover temperature of 700 K. These

results support the experimental evidence of a breakdown of SER in the similar compound

GST inferred by Orava et al. from ultrafast DSC measurements [53]. We repeated the

same analysis for models of the amorphous phase overheated above Tg. Because of the

fast heating rate in our simulations and in PCM as well, hysteretic effects are found, the

overheated amorphous keeping a lower mobility than the supercooled liquid also above

Tg. Still, D ∼ 5 · 10−7 cm2/s also in the overheated amorphous phase at 500 K. This

feature is one of the keys to understand the origin of the high crystallization rate in

phase change memories, in which the amorphous phase is heated above Tg. Actually the

fast crystallization of GeTe and GeSbTe alloys has been ascribed to the similarity of the

bonding topology in the amorphous and crystalline phases, as the must abundant rings

in amorphous GeSbTe and GeTe are the four-membered ABAB rings (A=Ge/Sb and
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B=Te) which are also the building blocks of the cubic crystalline phase. The presence

of nanocavities in the amorphous phase has also been proposed as a structural feature

that aids the alignment of the four-membered rings during crystallization. Our results

suggest that in addition to the presence of these structural features in the amorphous

phase, the crystallization is promoted also by a high atomic mobility just above Tg where,

due to high supercooling, a large driving force (∆µ) boosts the crystallization speed. A

large atomic diffusivity coexists with a large viscosity due to the breakdown of SER.

Therefore the self-diffusion coefficient to be used in the modeling of the crystallization

process by classical nucleation theory can not be inferred from the expected viscosity and

the use of SER, nor the crystallization speed can be extrapolated from measurements

below Tg often reported in literature. Indeed the crystallization the amorphous phase at

low temperatures below Tg of interest for data retention might take place in a different

manner with respect to the crystallization of the of highly mobile overheated amorphous

phase and of the supercooled liquid above Tg . Large scale simulations based on the NN

potential hold the promise to shed light on the crystallization at low temperatures below

Tg as well in the near future.

Finally, we studied the homogeneous crystallization of both supercooled liquid and

overheated amorphous GeTe by means of direct molecular dynamics simulations. We ob-

served crystallization on the timescale of 1 ns in models 4096-atom large in the tempera-

ture range 550-700 K. We observed an increase of the critical nucleus size with temperature

as expected by classical nucleation theory with sizes that vary from 15 atoms at 500 K to

80 atoms at 700 K. We have estimated a speed of crystal growth in the range 0.5-4 m/s

for temperatures in the range 550-700 K, comparable with recent experimental results on

the similar GST compound by Orava et al. [53]. They observed speed of crystal growth is

consistent with classical nucleation theory once our theoretical values of the self-diffusion

coefficient and a difference in free energy between the liquid and the crystal are used.

These results suggest that the high atomic mobility at high supercooling is indeed the

origin of the fast crystallization in phase change materials.
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Appendixes

6.2 Structural and vibrational properties of a-GeTe:

fluctuations in small models

To assess the size of the fluctuations in the structural properties in a small cell, we

here report the properties of a-GeTe for ten independent 216-atom models generated

by quenching from the melt in DFT and NN simulations. The partial and total pair

correlation functions, angle distribution functions and distribution of the coordination

numbers are reported in Figs. 6.14,6.16,6.18 and 6.13,6.15,6.17 for NN and DFT models,

respectively. Comparison with previous DFT data from Ref. [26] is also shown in Fig.

6.13.
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Figure 6.13: (a) Total and partial pair correlation functions of amorphous GeTe from
ab initio molecular dynamics simulations at 300 K of ten independent 216-atom models.
(b) Partial pair correlation functions average over the ten 216-atom models compared
with previous DFT results with the same cell size and the same PBE functional from
Ref. [26].



132 APPENDIXES

0

1

0

1

0

1

0

1

 0  2  4  6  8  10

g(
r)

r (Å)

Total

TeTe

TeGe

GeGe

AVERAGE

Figure 6.14: Total and partial pair correlation functions of amorphous GeTe from
NN molecular dynamics simulations at 300 K of ten independent 216-atom models.
Average values are also reported.
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Figure 6.15: Distribution of coordination numbers of Ge and Te atoms of amorphous
GeTe from DFT molecular dynamics simulations at 300 K of ten independent 216-atom
models. Average values are also reported.
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Figure 6.16: Distribution of coordination numbers of Ge and Te atoms of amorphous
GeTe from NN molecular dynamics simulations at 300 K of ten independent 216-atom
models. Average values are also reported.
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Figure 6.17: Total and partial angle distribution functions of amorphous GeTe from
DFT molecular dynamics simulations at 300 K of ten independent 216-atom models.
Average values are also reported. Partial distributions refer to X-Ge-Y and X-Te-Y
triplets (X,Y= Ge or Te).
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Figure 6.18: Total and partial angle distribution functions of amorphous GeTe from
NN molecular dynamics simulations at 300 K of ten independent 216-atom models.
Average values are also reported. Partial distributions refer to X-Ge-Y and X-Te-Y
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6.3 Kolmogorov’s theorem

Kolmogorov’s theorem [160] states that any continuous real-valued function f(x1, x2, ..., xn)

defined on [0, 1]n , n ≥ 2, can be represented in the form

f(x1, x2, ..., xn) =
2n+1∑

j=1

gi(yi) (6.7)

with

yi =

n∑

j=1

φij(xi) (6.8)

where gi are properly chosen continuous functions of one variable, and the φij functions

are continuos monotonically increasing functions independent of f . In other words, every

continuos function of several variables (for a closed and bounded input domain) can be

written as the superposition of a certain number of functions of one variable. It is has been

shown [161] that Kolmogorov’s theorem has no practical relevance in actual NN because

gj are usually far from being smooth, and even if one could be able to write gj as the sum

of infinte smooth functions, the finite number of adjustable parameters in Eq.6.7 would

correspond to a finite number of degrees of freedom, while a generic continuos function has

effectively infinitely many degrees of freedom. However, the debate about Kolmogorov’s

theorem is still ongoing and in any case this remarkable theorem casts the basis for a

computational machinery that in principle -given an infinte numbers of parameters- is

able to approximate any real valued continuos function: the feed forward neural network,

which is the very core of many NN methods included the one we have chosen in order to

construct our NN interatomic potential for GeTe.
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