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1 Bose–Einstein Condensation

The idea behind Bose–Einstein condensation is that in some physically extreme circumstances,
the particles of a quantum gas (photons, atoms) start moving as a single one, in the sense that
the governing statistics is essentially obtained by restricting the physical Hilbert space to be the
symmetric tensor product of single particle state:

φ(x1, . . . , xN) =

N∏
i=1

ϕ(xi) .

Bose–Einstein condensation was predicted in the 20’s, but its first empirical evidence was only
obtained in 1995, in experiments performed by groups led by Cornell and Wieman at the University
of Colorado at Boulder and by Ketterle at MIT. A rigorous derivation of the model has not been

completely settled yet, not even for the plain Bose-Einstein condensation. Lieb, Yngvason, and
Seiringer considered a trapped Bose gas consisting of N three-dimensional particles described by the
Hamiltonian

HN =
∑

1≤j≤N

(∆j + Vext(xj)) +
∑

1≤i<j≤N

VN(xi − xj).

where e Vext is an external confining potential and VN(x) = N 2V (Nx) is a spherically symmetric
repulsive interaction potential.



Letting N →∞, they showed that the ground state energy E(N) converges to the ground state
energy of the Gross-Pitaevskii energy functional, after a suitable normalization,

EGP (u) =

∫
|∇u|2 +V (x)u2 +4πa0u

4 .

Lieb and Seiringer also proved that the ground state of the Hamiltonian exhibits complete Bose-
Einstein condensation into the minimizer of the Gross-Pitaevskii energy functional. The convergence
of the whole dynamics of Bose-Einstein Condensates has been recently derived rigorously in the
defocusing case by Adami, Golse and Teta (2007) in one space dimension and by Erdös, Schlein and
Yau (2008) in three dimensions. No proof exists in the fcousing case.

E. Lieb, R. Seiringer, J.P. Solovej and J. Yngvason The Mathematics of the Bose
Gas and its Condensation, vol. 34, Oberwolfach Seminars Series, Birkhaeuser (2005)

Bose–Einstein condensation has been experimentally observed also in double and triple hyperfine
spin states.

Ch. Rüegg et al.: Bose–Einstein condensation of the triple states in the magnetic insulator
tlcucl3. Nature 423, 62–65 (2003)



2 Condensation in multiple states

Then the model consists in a system of k Gross-Pitaevski equations:

 −ı∂t(φi) = ∆φi − Vi(x)φi + µi|φi|2φi −
∑
j 6=i

βij|φj|2φi, i = 1, . . . , k

φi ∈ H1(RN ;C), N = 1, 2, 3,

The complex valued functions φi’s are the wave functions of the i–th condensate, the functions
Vi’s represent the trapping potentials, and the positive constants µi’s and βij’s are the intraspecies
and the interspecies scattering lengths, respectively. The interactions between like particles can be
attractive (the focusing case) or repulsive (the defocusing case), while the interactions between the
unlike ones are repulsive.

We assume symmetry of the interspecific scattering lenghts, which gives the system a gradient
structure. Also, we will deal with repulsive interactions:

βij = βji and βij > 0.



3 Standing waves

To obtain standing waves we impose

φi(t, x) = e−ıλitui(x).

Now the real functions ui’s solve the elliptic system −∆ui + [Vi(x) + λi]ui = µiu
3
i −

∑
j 6=i

βiju
2
jui, i = 1, . . . , k

ui ∈ H1(RN).

(Sys)

We think Vi to be trapping potentials or we confine the motion in a bounded domain Ω.



4 Ground states

In the defocusing case, i.e. (µi < 0) we associate with the system the energy:

Eβ(u1, . . . , uk) =

k∑
i=1

[∫
RN

1

2
|∇ui|2 +

1

2
Vi(x)u2 − µi

4

∫
RN
u4
i dx

]
+
β

2

k∑
i,j=1
i6=j

∫
RN
u2
iu

2
j dx

It is a coercive functional. Ground states are minimizers of the energy under the mass constraint:∫
RN
u2
i = 1 i = 1, . . . , k.

We define

cβ = min{Eβ(u1, . . . , uk) :

∫
RN
u2
i = 1 i = 1, . . . , k} .

The functional associated with the focusing case (µi > 0) is:

Jβ(u1, . . . , uk) =

k∑
i=1

[∫
RN

1

2
|∇ui|2 +

1

2
Vi(x)u2 − µi

4

∫
RN
u4
i dx

]
+
β

2

k∑
i,j=1
i6=j

∫
RN
u2
iu

2
j dx

in this case, solutions having minimal solutions are saddle points or, equivalently, minimizers of the
functional on the Nehari’s manifold. Again, we define

cβ = min
(u1,...,uk)

max
ri>0

Jβ(r1u1, . . . , rkuk) .



5 Segregation for ground states

We are interested in the limit β →∞. The limiting functionals are obviously

E∞(u1, · · · , uk) =

{
E1(u1, · · · , uk), if ui(x)uj(x) ≡ 0 ,∀i 6= j

+∞ otherwise.

Ground states, in the defocusing case are minimizers of

c∞ = min∫
Ω u2

i=1 ,i,j=1,...,k

ui(x)uj(x)≡0 for i6=j

Eβ(u1, . . . , uk) . (LVP)

and in the focusing case

c∞ = min
(u1,...,uk)

ui(x)uj(x)≡0 for i6=j

max
ri>0

Jβ(r1u1, . . . , rkuk) . (LVP)

It is not difficult to prove that,

Theorem 1 As β → +∞, there holds

cβ ↗ c∞;

there is strong H1–convergence of the minimizers to a minimizer of (LVP).

For a fixed k, as the interspecific competition goes to infinity, the wave amplitudes ui’s segregate,
that is, their supports tend to be disjoint



This phenomenon, called phase separation, has been studied, in the case of µi > 0 (focusing),
starting from

M. Conti, S. Terracini, G. Verzini, An optimal partition problem related to non linear
eigenvalues, J. Funct. Anal. 198 (2003), no. 1, 160-196;

M. Conti, S. Terracini, G. Verzini, On a class of optimal partition problems related to
the Fuc̆́ık spectrum and to the monoticity formulae, Calc. Var. 22 (2005), 45-72.

and, in the case µi < 0, for least energy solutions in bounded domains:

S.M. Chang, C.S. Lin, T.C. Lin, and W.W. Lin: Segregated nodal domains of two-
dimensional multispecies Bose-Einstein condensates. Phys. D 196, 341–361 (2004)

M. Squassina, S. Zuccher,: Numerical computations for the spatial segregation limit of
some 2D competition-diffusion systems, Adv.Math. Sci. Appl. 18 (2008), 83104.



6 Optimal partition problems

In the limit, we find both a limiting profile, a minimizer of (LVP), and a partition of the original
domain, which is optimal with respect to the sum of the ground state energies of the subdomains.
Indeed, let us define

ϕi(ω) = min
u∈H1

0(ω)∫
u2=1

[∫
ω

1

2
|∇u|2 +

1

2
Vi(x)u2 − µi

4

∫
ω

u4 dx

]
or, in the focusing case,

ϕi(ω) = min
u∈H1

0(ω)
max
r>0

[∫
ω

r2

2
|∇u|2 +

r2

2
Vi(x)u2 − r4µi

4

∫
ω

u4 dx

]
Given such a ground state energy as a function of the domain, the unknown is the union of the
interfaces: in other words we are lead to solve the optimal partition problem:

inf
(ωi)∈P

k∑
i=1

ϕi(ωi) (OPP)

where

P :=

{
(ω1, . . . , ωk) :

k⋃
i=1

ωi = Ω, ωi ∩ ωj = ∅ if i 6= j

}
.

As the real unknown is the nodal set determined by the optimal partition. Hence, we can regard
the phase segregation as a free boundary problem.



Questions:

definition of a class of the admissible partitions;

regularity of the free boundary;

regularity of the limiting configuration;

qualitative properties of the subdomains and the free boundaries.

A remark on connectedness:

Obviously, the number of connected domains of segregation is at least the number of different
phases surviving in the limit. For the minimal solutions, the limiting states have connected supports
Indeed, in the case µi > 0, it is easy to prove that the supports of the limiting segregated states solve
an optimal partition problem, where the total cost is additive (and strictly positive) with respect
to the disjoint union; this penalizes non connected supports. On the other hand, when µi < 0, it
results from numerical evidence.

Optimal partitions problems for functions of the eigenvalues:
Bucur-Buttazzo-Henrot

Buttazzo-Timofte
Conti-T-Verzini
Caffarelli-Lin
Helffer-Hoffmann-Ostenhof-T
Bourdin-Bucur-Oudet.



7 Some extremality conditions for the limiting problem

Introduce the notation:
fi(x, u) = −λiui + µiu

3
i

ûi = ui −
∑
j 6=i

uj, f̂ (x, ûi) = fi(x, ui)−
∑
j 6=i

fj(x, uj).

Let us define the class S as

S =

U = (u1, . . . , uk) ∈ (H1
0(Ω))k :

ui ≥ 0, ui · uj = 0 if i 6= j, in Ω

−∆ui ≤ fi(x, ui(x)),

−∆ûi ≥ f̂i(x, ûi(x))

 .

In fact, we have

Theorem 2 Let Ū = (ū1, . . . , ūk) a minimizer of the minimization problem (LVP) then

(ū1, . . . , ūk) ∈ S.



8 Regularity in the class S

Thus the study of S provides the information on the segregated states induced by strong competition.
In particular:

the elements in the class S are Lipschitz continuous;

their nodal set has some regularity properties.

Conti M., Terracini S., Verzini G., A variational problem for the spatial segregation
of reaction–diffusion systems, Indiana Univ. Math. J. 54 (2005), no. 3, 779–815.

Kelei Wang and Zhitao Zhang,Some New Results in Competing Systems with Many
Species, preprint 2009

Further regularity for energy minimizing configurations:

L. Caffarelli, F.-H- Lin, Singularly perturbed elliptic systems and multi-valued harmonic
functions with free boundaries, J. Amer. Math. Soc. 21 (2008), 847-862;

L. A. Caffarelli, A. L. Karakhanyan, and F. Lin,The geometry of solutions to a
segregation problem for non-divergence systems, Journal of Fixed Point Theory and Applications
5 (1009), 319-351

the free boundary, up to a set of Hausdorff dimension at most, N − 2 consists of a
collection of C1,α N − 1–dimensional manifolds.



9 Sign changing solutions and the case of two competing densities

In the focusing case, let us assume λi = µi = 1. Then, the limiting profiles are associated with the
changing–sign solutions of the scalar equation

−∆w + w = w3. (SE)

Indeed, the system of inequalities in the definition of the class S read

−∆(ui − uj) ≥ −(ui − uj) + (ui − uj)3 , i, j = 1, 2 , i 6= j

and hence, as u1 and u2 have disjoint supports:

u1 = w+ u2 = w− .

Of course, as its nodal partition is optimal with respect to the (OOP), this solution minimizes the
energy among all sign–changing solutions and has exactly two nodal regions.

This particular type of sign changing solutions was first discovered in

Castro A., Cossio J. and Neuberger J. M., A sign-changing solution for a superlinear
Dirichlet problem. Rocky Mountain J. Math. 27 (1997), no. 4, 1041–1053

Convergence of the solution to the system and relation with the sign–changing solution is in

Conti M., Terracini S., Verzini G., Nehari method for PDE’s and competing species
systems,Ann. Inst. H. Poincaré Anal. Non Linéaire 19 (2002), no. 6, 871–888



10 Segregation for bound states

We see that there are two intertwined directions of investigation:

seek solutions of (Sys), for large β, emanating from a given sign-changing solution of (SE). This
analysis involves aspects of the behaviour of minimax under Γ–convergence and continuation of
solutions.

or

find excited states for (Sys) and then prove their convergence to some limiting profiles (possibly
in connections with (SE). This involves compctness and regularity issues in and also matching
conditions at the interfaces:

• do families of bounded solutions converge in spaces of Hölder continuous (or Lipschitz)
functions?

• what are the properties of their limiting profiles?

• of the nodal sets?

• are there natural matching conditions at the interface? For example,is it true that for any
limit (u∞, v∞) of solutions to thes system it happens that w = u∞ − v∞ solves the associated
single equation?



11 Phase separation in the radially symmetric case

According to Nehari, (see also Bartsch and Willem), for any h ∈ N equation (SE) possesses radial
solutions with exactly h−1 changes of sign, that is h nodal components (“bumps”), with a variational
characterization. Wei and Weth have shown that, in the case of k = 2 components, there are

solutions (u1, u2) such that the difference u1 − u2, for large values of β, approaches such a nodal
solution:



Can we construct similar solutions for systems of k ≥ 3 components?

In a joint paper with G. Verzini, we extend this result to the case of an arbitrary number of
components , proving the existence of solutions to (SE) with the property that, for β large, each
component ui is near the sum of some non–consecutive bumps of |W |.

Figure 1: The corresponding solution of a three component (Sys), according to T.–Verzini

Furthermore, we can prescribe the correspondence between such bumps of |W | and the index i
of the component ui. This, compared with the case k = 2, provides a much richer structure of the
solution set for (Sys). This goal will be achieved by a suitable construction inspired by to extended
Nehari’s method.

S. Terracini and G. Verzini, Multipulse phases in k–mixtures of Bose–Einstein con-
densates, to appear on Arch. Rational Mech. and Anal.



12 Bounds in Hölder spaces and Lipschitz regularity of the limiting profile

For the sake of simplicity we take only two densities and we assume Vi(x) ≡ 0, λi = µi = ±1 and
βij = β, for every i and j, and N = 2, 3, even though our method works also in more general cases
and for any number of components.

Let Ω ⊂ RN be a regular bounded domain. For every fixed β > 0, let us consider the system:


−∆uβ + λβuβ = µ1u

3
β − βuβv2

β in Ω

−∆vβ + µβvβ = µ2v
3
β − βu2

βvβ in Ω

uβ, vβ ∈ H1
0(Ω), uβ, vβ ≥ 0 in Ω

(Sys)

where λβ, µβ ∈ R is a bounded sequence, µ1, µ2 ∈ R are fixed constants.

First we prove uniform Hölder bounds:

Theorem 3 (Noris,Tavares,T,Verzini) Let uβ, vβ be solutions of (Sys) uniformly bounded
in L∞(Ω). Then for every α ∈ (0, 1) there exists C > 0 (independent of β) such that, for all
β > 0

max
x,y∈Ω

|uβ(x)− uβ(y)|
|x− y|α

, max
x,y∈Ω

|vβ(x)− vβ(y)|
|x− y|α

≤ C.



In addition we have:

Theorem 4 (NTTV) Let uβ, vβ be solutions of (Sys) uniformly bounded in L∞(Ω). Then
there exist limits (u, v) ∈ C0,α, ∀ α ∈ (0, 1), such that up to a subsequence there holds

(i) uβ → u, vβ → v in C0,α(Ω) ∩H1(Ω), ∀ α ∈ (0, α);

(ii) u · v ≡ 0 in Ω and

∫
Ω

βu2
βv

2
β → 0 as β → +∞;

(iii) the limiting functions u, v satisfy the following equations:

{
−∆u + λu = µ1u

3 in {u > 0},
−∆v + µv = µ2v

3 in {v > 0},

where λ := limβ→+∞ λβ, µ := limβ→+∞ µβ.

We can improve the regularity result for the limiting profile.

Theorem 5 (NTTV) The limiting profile (u, v) is Lipschitz continuous in the interior of Ω.

B. Noris, H. Tavares, Terracini S. and G. Verzini, Uniform Hölder bounds for
nonlinear Schrödinger systems with strong competition, CPAM, to appear

This result generalizes:

J.C. Wei and T. Weth Asymptotic behavior of solutions of planar systems with strong
competition. Nonlinearity 21, 305–317 (2008)



13 Ideas of the proof

The proof of the uniform Hölder estimates goes by contradiction.

Blow up
+

Liouville type theorem
(based on a perturbed Alt-Caffarelli-Friedman

monotonicity formula)
+

Almgren’s frequency formula
(gradient structure of the system)

Some similar argument were developed in:

M. Conti, S. Terracini, G. Verzini, Adv. Math. (2005)

Caffarelli, L. A.; Roquejoffre, J.-M. Arch. Ration. Mech. Anal. 183 (2007)

As no extremality condition nor differential inequalities (class S) are known for the excited states,
we need a new tool that allows to reach the contradiction.



14 More on the nodal set of the limiting profile

It works in any space dimension (but N = 2, 3if we want 4 to be subcritical) for general systems of
k equations.

Theorem 6 (Tavares,T) Let (u, v) the limiting profile as before and N its nodal set:

N = {x ∈ Ω : u(x) = v(x) = 0} .

Then,

N = Ns ∪Nr

where

Ns has Hausdorff dimension at most N − 2;

Nr is a union of C1,α codimension 1 surfaces.

for every x ∈ Nr the nodal set locally separates the domain in two parts. Rename u and
v the components supported in the two subdomain. Then,

|∇u(x)| = |∇v(x)|



15 Equations for the limiting profiles

We are dealing with locally lipschitz solutions of

−∆ui = fi(ui)− µi in D′(Ω), i = 1, . . . , h.

Where

fi : R+ → R are some C1 functions such that fi(s) = O(s) when s→ 0;

µi ∈M(Ω) = (C0(Ω))′ are some nonnegative (finite) regular Borel measures, each concentrated
on the nodal set ΓU = {x ∈ Ω : U(x) = 0},
Define for every x0 ∈ Ω and r ∈ (0, d(x0, ∂Ω)) the energy

E(r) = E(x0, U, r) =
1

rN−2

∫
Br(x0)

(
|∇U |2 − F (U) · U

)
Then E(x0, U, ·) is an absolutely continuous function on r and there holds

d

dr
E(x0, U, r) =

2

rN−2

∫
∂Br(x0)

(∂νU)2 dσ + R(x0, U, r),



The remainder

R(x0, U, r) =
1

rN−1

∫
Br(x0)

(
(N − 2)F (U) · U − 2N

∑
i

fi(ui)

)
+

+
1

rN−2

∫
∂Br(x0)

(
2
∑
i

fi(ui)− F (U) · U

)
.

acts a perturbation of the main term.

When

d

dr
E(x0, U, r) =

2

rN−2

∫
∂Br(x0)

(∂νU)2 dσ + R(x0, U, r),

holds, we say that u satisfies the Pohožaev identity.



16 Ideas of the proof

We follow the approach by Caffarelli and Lin.

Consider a ball Br(x0) ⊂ Ω. and define the Almgren quotient:

N(x0, r) :=
r
∫
Br(x0) |∇u|

2dx∫
∂Br(x0) u

2dσ(x)
.

Define

Ns = {x ∈ N : lim
r→0

N(x, r) > 1} Nr = {x ∈ N : lim
r→0

N(x, r) = 1}

First we wish to apply Federer’s reduction principle:

• Almgren monotonicity formula at nodal points

• bounds in Hölder spaces =⇒ convergence of blow-up sequences

• classification of conic solutions satisfying a Pohozaev–type identity

Next we analyze the non singular part of the free boundary:

• flatness of the boundary (Reifenberg condition is satisfied for any constant of flatness)

• clean–up lemma

• nondegeneracy of the associated harmonic boundary measure up to a nullset.

Reflection principle:

• Pohozaev identity =⇒ equality of the gradients on the two sides.



17 Blow up

We assume by contradiction that the Hölder norm of (uβ, vβ) is not uniformly bounded, for a certain
α ∈ (0, 1).

Lβ :=
|uβ(xβ)− uβ(yβ)|
|xβ − yβ|α

= max {‖uβ‖C0,α, ‖vβ‖C0,α} −→ +∞, as β → +∞.

We zoom in at xβ and normalize:

ūβ(x) =
1

Lβrαβ
uβ(xβ + rβx)

v̄β(x) =
1

Lβrαβ
vβ(xβ + rβx), x ∈ Ωβ =

Ω− xβ
rβ

Notice that Lβ → +∞, whereas rβ → 0, hence the behavior of the rescaled functions is not
known.

The rescaled functions are uniformly bounded in α–Hölder norm and

max
{

[ūβ]C0,α(Ωβ), [v̄β]C0,α(Ωβ)

}
= 1,

achieved by uβ.

In addition the rescaled functions satisfy the following system in Ωβ:




−∆ūβ + λβr

2
βūβ = µ1Mβū

3
β − βMβūβv̄

2
β

−∆v̄β + µβr
2
βv̄β = µ2Mβv̄

3
β − βMβū

2
βv̄β

ūβ, v̄β ∈ H1
0(Ωβ),

where
Mβ := L2

βr
2α+2
β .

While Mβ → 0, the actual behaviour of the solutions depends on the character of the sequence
βMβ := βL2

βr
2α+2
β .

If

lim inf
β→+∞

βMβ < +∞,

then the blow–up limits satisfy a differential system. Otherwise, if

lim inf
β→+∞

βMβ = +∞,

we can say that the two components segregate, each being harmonic on its support.



18 A first Liouville–type result

The following result is a consequence of the well-known monotonicity formula by Alt, Caffarelli,
Friedman for harmonic functions with disjoint supports.

Theorem 7 Let ui ∈ H1
loc(RN) ∩ C(RN) i = 1, . . . , k be nonnegative functions such that

ui · uj ≡ 0 when i 6= j. Assume moreover that

−∆ui ≤ 0, in RN ,∀i = 1, . . . , k

and

ui(x0) = 0 , ∀i = 1, . . . , k.

Assume moreover that for some α ∈ (0, 1) there holds

sup
x,y∈RN

|ui(x)− ui(y)|
|x− y|α

<∞ , ∀i = 1, . . . , k.

Then al ui but possibly one vanish identically.

♠ What happens to the last component?



This can be seen as an extension of the following form of the usual Liouville Theorem:

Remark 1 Let u be a harmonic function in RN such that for some α ∈ (0, 1) there holds

sup
x,y∈RN

|u(x)− u(y)|
|x− y|α

<∞.

Then u is constant.

Remark 2 This false for α = 1: just take u(x) = x1. Analogously, it is possible to see that
also system (S) below admits non trivial solutions which are globally bounded in Lipschitz
norm; these are the main reasons for which our strategy, as it is, can not apply to prove
uniform Lipschitz estimates.

In order to face the case
lim inf
β→+∞

βMβ < +∞,

we need a result similar to Proposition 7, for functions u, v which do not have disjoint supports,
but are positive solutions in H1

loc(RN) ∩ C(RN) of the system

{
−∆u = −uv2 in RN

−∆v = −u2v in RN .
(S)



19 A second Liouville–type result

As a consequence of a perturbed Alt-Caffarelli-Friedman monotonicity formula we have a second
Liouville–type result:

Theorem 8 (Conti,T,Verzini) Let k ≥ 2 and let U = (u1, . . . , uk) be a solution of

 −∆ui(x) = −ui(x)
∑
j 6=i

βiju
2
j(x) x ∈ RN

ui(x) ≥ 0 x ∈ RN

for every i. Let α ∈ (0, 1) such that

max
i=1,...,k

sup
x∈RN

|ui(x)|
1 + |x|α

<∞.

Then all components (but possibly one) vanish.

♠ Here the non vanishing component is necessarily constant.



20 The Almgren’s frequency formula

Let u be a function in Ω ⊂ RN and consider a ball Br(x0) ⊂ Ω. We define the following quantities

E(x0, r) =
1

rN−2

∫
Br(x0)

|∇u|2dx,

H(x0, r) =
1

rN−1

∫
∂Br(x0)

u2dσ(x),

N(x0, r) =
E(x0, r)

H(x0, r)
.

If u is harmonic in Ω then

(i) for every x0 ∈ Ω,
d

dr
N(x0, r) ≥ 0;

(ii)
d

dr
logH(x0, r) =

2

r
N(x0, r);

(iii) If N(x0, r) ≡ γ then u(x) = rγg(θ)
(polar coordinates around x0).



21 A refined Liouville–type Theorem

The Almgren’s frequency formula allows us to strenghten Theorem 7 into the following non existence
result

Theorem 9 (Noris,Tavares,T,Verzini) Let ui ∈ H1
loc(RN)∩C(RN) i = 1, . . . , k be nonneg-

ative functions such that ui · uj ≡ 0 when i 6= j. Assume moreover that

−∆ui = 0, where ui > 0 , ∀i = 1, . . . , k

and

ui(x0) = 0 , ∀i = 1, . . . , k.

Assume moreover that for some α ∈ (0, 1) there holds

sup
x,y∈RN

|ui(x)− ui(y)|
|x− y|α

<∞ , ∀i = 1, . . . , k.

Assume moreover that
∑

i ui satisfy (i) − (iii) at each x0 common zero of the ui’s, then all
component but one vanish identically and the last is constant.



22 Conic functions

A key point is to classify the homogoneous solutions of the system.

Theorem 10 (Helffer, Hoffmann-Ostenhof, T) Let u : R3 → R be continuous and such
that

u(rx) = rαu(x),

and

−∆u = 0 where u 6= 0 .

Assume moreover that u has at least three nodal regions on the sphere. Then α ≥ 3/2.

Theorem 11 (Tavares,T) Let u be as before and assume moreover that u satisfy the Pohožaev
identity. Then

either α ≥ 3

2
, or α = 1 and u is linear.


