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Structural complexity and dynamical
systems

Renzo L. Ricca
(School Director and CIME Lecturer)

Abstract With this paper we want to pay tribute to 150 years of work
on topological fluid mechanics. For this, we review Helmholtz's (1858) origi-
nal contribution on topological issues related to vortex motion. Some recent
results on aspects of structural complexity analysis of fluid flows are pre-
sented and discussed. as well as new results on topological bounds on the
energy of magnetic knots and links in ideal magnetohydrodynamics, and on
helicity-crossing number relations in dissipative fluids.

1 Introduction

The origin of topological fluid mechanics is probably rooted in the works on
vortex motion by Helmholtz (1858) and Lord Kelvin (1869). and much of
its modern developments are due to the formidable recent progress in knot
theory, vector field analysis, mathematical fluid dynamics and computational
visualization. With this paper we want to pay tribute to these 150 years of
work on topological fluid mechanics. §1 is dedicated to review Helmholtz’s
contribution in the light of modern developments in mathematical Huid dy-
namics: since much of Helmholtz's original emphasis on the relevance of topo-
logical issues in fluid mechanics has gradually disappeared from textbooks on
vortex dynamics, we simply re-examine his work. emphasizing the merits he
deserves for this. §2 overviews some of my recent work on aspects of struc-
tural complexity analvsis of fluid flows, including a brief summary of some
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current work on applications of critical point theory and topology-based vi-
siometrics. Finally, §3 presents some new results on topological bounds on
the energy of magnetic knots and links in ideal magnetohydrodynamics and
on helicity-crossing number relations in dissipative fluids.

2 Helmholtz’s Work on Vortex Motion: Birth of
Topological Fluid Mechanics

It is perhaps little known that the seminal work of Helmholtz (1858; here-
after referred to as H58) On integrals of the hydrodynamical equations, which
express vorter-motion (Tait’s translation) pioneers fundamental questions in
topological fluid mechanics. In many ways this is a truly remarkable paper.
In addressing and solving the problem of determining rotational motion of
fluid elements, for which a single-valued velocity potential cannot be defined,
Helmholtz demonstrates three conservation laws for vortex motion (see be-
low), that have become a cornerstone in the foundation of mathematical fluid
mechanics (see, for example, Saffman, 1991). The undisputed importance of
his main contributions, i.e. the discovery of the conservation laws of vor-
tex motion, has, however, gradually shadowed the strong topological flavour,
that permeates the whole paper from the very start. Helmholtz's investigation
moves indeed from Euler’s original observation of 1755, that even in absence
of a kinetic potential certain types of fluid motion are nevertheless possible.
In analyzing the conditions of motion, Helmholtz establishes the existence of
two classes of hydrodynamic integrals by identifying two separate domains
of definition, where either a single-, or a multiple-valued velocity potential
is defined, depending on the degree of connection of the fluid region. Condi-
tions for which a single-valued velocity potential exists and the relationship
with the multiplicity of connection of the ambient space are discussed in §1
of H58, where it is shown (p. 486) “that when there is a velocity-potential the
elements of the fluid have no rotation, but that there is at least a portion of
the fluid elements in rotation when there is no velocity-potential.”

2.1 Multi-Valued Potentials in Multiply Connected
Regions

Following Helmholtz's discussion, let us consider an ideal, incompressible fluid
in an unbounded, simply connected domain D of R*. Motion is governed
by the standard Euler's equations, supplemented by the incompressibility
condition, that is
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D
‘;=_\7p+f. u=0 as X — o0, (1)
with

V.u=0, (2)

where u = u(X.17) is the velocity of a fluid particle at position X and time ¢,
pis pressure, f denotes conservative forces, and fluid density is set to be equal
to 1 for convenience. All functions are assumed to be sufficiently smooth at all
times. In absence of rotation, we can define a velocity potential ¢ everywhere
in D, that is

Vxu=0 — u=Ve¢; (3)

incompressibility, then, yields the Laplace equation for ¢. i.e.
Viu=0 — V- (Vé)=V3%=0, (4)

with
p=cst. as X — o0, (5)

which determines a harmonic, single-valued potential function everywhere
in D. Thus, the corresponding integrals of motion are said to be integrals
of the first class (H58, p. 499). Note that the existence of a single-valued
velocity potential ¢ is due to the condition V x u = 0. everywhere in D.
In the language of differential forms this is summarized by the following
fundamental relations:

Theorem (Fundamental correspondence). Let D be simply connected.
Then, we have

Vxu=10 _ da=0
u irrotational a closed 1-form
g T
u=Vo — a=dj
$ )
u conservative o exact
- - —b ~ o
¢ single-valued potential 3 O-form

; ¢
Jou-dl. C-independent  «—  [.a, C-independent

¢ $
.4;(3" u-dl =10, VC[} inD. — 3%“ a=10. VC{] m?D.

Proof. (Sketch.) Considering first the Lh.s. column. proof of the first top
two relations is given by Helmholtz (H58. p. 488-490), while relations at the
bottom are consequences of the application of Stokes’ theorem. As regards
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the r.h.s. column, we can easily see that if a is a closed 1-form, then, by
definition, dav = 0 and since D is simply connected. then it is known the
de Rham cohomology group of every closed 1-form on D is exact (see, for
example, Bott & Tu, 1982): hence o = d3. On the other hand if « is exact,
then, by definition, &« = d 3 and da = d(d3) = 0, since every exact differential
form is closed. Then, let C be an oriented smooth 1-manifold in D: a is exact
on C if and only if [, a is path-independent on D. Moreover, if C = Cy is closed,
then, by corollary, fcu «v is path-independent if and only if for every closed
L-manifold in D, §, « = 0. For the one-to-one correspondences between the
two columns see, for example, Weintraub (1997, p. 27 and p. 117).

O

(a) (b)

Fig. 1 (a) Simply (top) and doubly connected region in E2. (b) A vortex ring, defined
on a toroidal domain W C D. embedded in an unbounded, irrotational fluid domain, is
a doubly-connected region in B?; note that the complement D/W, filled by irrotational
fluid, is also doubly-connected.

Ifw =V xu#0 in some region W C D (and V x u = 0 everywhere
else in D/W), Helmholtz shows (H58, p. 489-490) that the velocity field u
cannot be given by a single velocity potential ¢ defined in D/W through
V. The presence of a rotational region W, embedded in an unbounded
irrotational fluid, makes the irrotational region D/W (the complement to W
in R?) multiply connected. Here Helmholtz refers to the new concepts just
developed by Riemann (1857) on multiply connected surfaces. A surface in
R? is said to be n-ply connected, if there are at most n — 1 independent,
distinet simple circuits, i.e. simple closed paths. irreducible to a point and
to one another. The plane in R? is an example of simply connected surface
(top of Figure la), whereas a doubly connected surface has one hole in it
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(see bottom of Figure la), the latter representing, for example, a region of
rotation. Extension of these concepts to R? is straightforward (Figure 1b).

(a)

(b)

(c)

(d)

Fig. 2 (a) Every circuit drawn in a simply connected region is reducible to a point, hence
the circulation is zero. (b) In a doubly-connected region there is at most one irreducible
simple circuit, whose circulation has a finite value, say x. (¢) Example of a multiple circuit
(m = 2) in a doubly connected region: in this case the circulation is 2x. (d) A dou-
bly connected region is reduced to a simply connected one by cutting the region with a
“circulation-stopping” barrier, represented in figure by the black line.

In a simply connected region every closed path (circuit) is reducible to
a point, thus by Stokes” theorem the circulation is zero everywhere (Figure
2a). If the region is doubly connected, though, there is at most one simple,
irreducible circuit (Figure 2b), whose circulation has a finite value, say x,
which is the eyclic constant of the region. The circuit is not simple but
multiple, if it encircles the rotational region m times, as in Figure 2e; the
region’s cyclic constant is then m# and in the case of an n-ply connected
region the cyclosis of the region is given by 2;:11 mik;. An n-ply connected
region can be reduced to a simply connected one by inserting n— 1 cuts given
by n — 1 separatrix surfaces drawn across the region (see the case of Figure
2d), each cutting surface diminishing the degree of connectedness by one.
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These n — 1 separatrices act as “stopping barriers”™ (adopting Lord Kelvin's
terminology) to the circulation around the rotational regions, each insertion
contributing to the total bounding surface of D. For fluid motions in multiply
connected regions the velocity potential takes indeed more than one value.
Since the velocity is proportional to the differential coefficients of ¢, fluid flows
are given by ever increasing values of ¢. But for a fluid particle that moves on
a path encircling a rotational region W. as the particle returns to its original
position, the potential ¢ attains a second greater value. Hence (H58, p. 499),
“since this may occur indefinitely, there must be for every point of such a
complezly-connected space an infinite number of distinet values of ¢ differing
by equal quantities like those of tan™'(x/y), which is such a many-valued
function and satisfies the differential equation” given by the second of (4).
These observations, applied to fluid dynamics, will be investigated further,
and in great depth. by Lord Kelvin (1868, Art. 54 to end). and subsequently
elaborated by other authors, including Maxwell (1873, Preliminary, Art. 18-
22) and Lamb (1879, Chapter 3, Art. 47-55).

2.2 Green’s Theorem in Multiply Connected Regions

Helmholtz (H58, p. 488, footnote) makes another important remark regarding
the inapplicability of Green's (first) theorem in presence of rotational motion
and multi-valued functions. The standard theorem by Green states that

/' 6V28 + (V) - (V)] dV = / (6V4) - dS (6)
JV S

where ¢ and ¢ denote two velocity potentials, and integration is intended
over the volume of the fluid domain and its bounding surface, dS denoting
an outward-drawn vector element of the surface area. If rotational motion
is present in a sub-domain, the region is no longer simply connected and
the indeterminacy associated with velocity potentials (assuming that their
gradients are single-valued) invalidates the theorem. By taking account of
the separatrix surfaces inserted to make the region simply connected. Kelvin
(1869) amends the theorem as follows

[ [6V2¢ + (Vo) - (V4')] AV
Jv

n—1

= /(c-")Vq’)’) -dS + Z Mk / Vo' -dX; (7)
JS JE;

(=]

where integration in the r.h.s. of eq. (7) is now augmented by the sum of the
integrals extended to the n — 1 separatrices of area X (i = 1,...,n — 1),
each r; denoting the jump in ¢ (hence in circulation) across Y. Kelvin's
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extension of Green's theorem to multiply connected domains may find useful
applications in current theoretical physics: from topological quantum field
theory to cosmological models, in presence of black-holes and topological
defects.

2.3 Conservation Laws

By considering rotation confined to a tubular-like region (that is a vorter
filament) embedded in an irrotational fluid, Helmholtz proceeds to prove
three laws of conservation for vortex motion. In his own words (H58. §2). he
states that:

Theorem (Helmholtz’s conservation laws).

1. Elements of the fluid which at any instant have no rotation. remain during
the whole motion without rotation.

2. Fach vortex line remains continually composed of the same elements of
fluid.

3. The product of the section and the angular velocity. in a portion of a vorter
filament containing the same element of fluid, remains constant during the
motion of that element.

Note the topological character of the first two statements, that can be seen
as complement to one another. In modern terms we simply say that a region
of vorticity W. embedded in an unbounded, irrotational fluid D/W., is frozen
in the fluid and is isotoped to the new region (W) by diffeomorphisms of
the flow map . by preserving its rotational character at any time: similarly
so for the irrotational fluid in the complement region.

3 Measures of Structural Complexity

In recent years the demand for advanced diagnostic tools for computational
vortex dynamics, turbulent flows and magnetohydrodynamics has grown con-
siderably (see, for example. Weickert & Hagen. 2006). Detailed analysis of
space localization and time evolution of coherent structures. defined by sta-
tistical coherence of physically relevant quantities — be these passive scalars,
vector or tensor fields — requires new tools to quantify structural complex-
ity present in the fluid (Ricca, 2000; 2001; 2005). Mathematical concepts
borrowed from differential geometry. knot theory, graph theory, dynamical
systems theory and other branches of modern mathematics can be usefully
employed in numerical analysis of direct mumerical simulations of fluid flows
to quantify, estimate or infer production, transfer and depletion of physical
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quantities such as energy and momentum. Current research is mainly oriented
in the following directions:

Theoretical goals:
i) to describe and classify complex morphologies:
ii)  to study relationships between complexity and energy:
iii)  to understand and predict energy localization and transfer.

Applications:
i) to implement new visiometric tools and diagnostics;
ii)  to develop real-time energy analysis of dynamical processes:
iii) to compare estimated values with expected values of standard models.

3.1 Dynamical Systems and Vector Field Analysis

A lot of work has been done in this direction, and most notably on the imple-
mentation of structural classification of vector fields, on structural stability
analysis and on visualization and processing of tensor fields. A very brief
summary and a few references are given here for convenience.

Structural classification of vector fields

Structural classification of three-dimensional vector fields v(X) relies mainly
on the eigenvalue/eigenvector analysis of the Jacobian matrix J,(X) =
Vv(X) (see, for example, Chong et al., 1990). A first-order critical point
Xy, given by the condition v(Xg) = 0, can be classified according to the
order and value of the real parts of the eigenvalues of Jy(Xy), provided
det(Jv(Xp)) # 0. Let Re(A1) < Re(A2) < Re(A3) be the ordered real parts
of the eigenvalues; critical points can be classified according to the following
scheme:

(i) source : 0 < Re(Ar) < Re(A2) < Re(As)
(ii) repelling saddle : Re(A) < 0 < Re(N2) < Re(As)
(iii) attracting saddle : Re(A)) < Re(A2) < 0 < Re(As)
(iv) sink : Re(A1) < Re(Aa) < Re(A3) < 0

where outflow/inflow direction is given by the sign of Re();): a negative
real part implies inflow (attracting direction) and positive real part implies
outflow (repelling direction). Each critical point can be further classified in
two families:

(a) focus : Jm(A;)) =0 and Sm(A;) = —Sm(A\) #0

(b) node : JIm(Ai) = SIm(A;) = Sm(Ax) =0
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where Im(:) = denotes imaginary part and i # j # k. {i.j. k} € {1.2,3},
the imaginary part implying circulation. Figure 3 shows an early example of
structural classification of streamlines in a three-dimensional separation flow.

Structural stability of dynamical systems

Structural stability issues of dynamical systems rely greatly on the results
by Morse, Smale and Peixoto and there is now a wealth of information on
divergence-free fields on two-dimensional compact manifolds, motivated by
applications to geophysical fluid dynamics. The interested reader may refer
to the book by Ma & Wang (2005) for latest results and some generalization
to three dimensions.

Visualization and processing of tensor fields

From the early 1990s geometry and topology-driven visualizations have been
steadily developed from progress made on structural complexity analysis and
critical point theory. These methods are of increasing importance in the anal-
ysis and visualization of data-sets from a wide variety of scientific domains.
Current challenges include the management of time-dependent data, feature
extraction and representation of large and complex data-sets, multi-scale
adaptive visualization. The interested reader may consult the collection of
papers edited by Hauser et al. (2007).

3.2 Measures of Tangle Complexity

Computational fluid dynamics (CFD) produces data-sets of numerical simu-
lations, from which we can extract mumerical sub-domains, representing for
example vortical or turbulent regions, magnetic field or passive scalar distri-
butions, to analyze. Preliminary steps to any study include: (i) identifving a
prescribed sub-domain of physical interest (defined as the tropicity domain)
and the corresponding characteristic scales, (ii) determining the characteris-
tic dimensions of the chosen region, (iii) assigning a reference system. The
physical problem and numerical threshold associated with the CFD code will
give information on step (i), while step (ii) and (iii) serve to perform analysis
on structural complexity.

Tropicity dimensions and tropicity directions

Let T=U,x:i i=1,..., n) be the n-component tangle given by the set of
vector fields (such as streamlines, vortex lines or magnetic fields) or solution
trajectories (e.g. pressure or temperature distributions) to be analyzed. For
each tangle component y; we can determine the maximal tropicity dimen-
sions. given by



188 Renzo L. Ricca

Fig. 3 Study of a three-dimensional separation flow by analysis of the surface streamline
pattern (on the = — y plane) and of the solution trajectories (on the plane of symmetry
y — z). Note that there are 3 major critical points: point 1 is a no-slip saddle, point 2 is a
no-slip node in the & — y plane, and point 3 is a {ree-slip focus in the y — 2 plane (from

Chong et al.. 1990).

Fig. 4 Tropicity dimensions and reference basis determined by the tangle component ;.

DEJ) = 1an] = ]IIE\X{J-‘]\.} d(P_, Pj.} "
DY) = OP; = max, d(P;, ((Py. P)) . (8)

Dg" = QP = max; d(P;, n(Py, P1, P»)) ,

where the points P;, Py are sampled over y;: hence, the principal tropicity
unit vectors are given by
i) (i)
T, =(P. - PR)/Dy’ .
T3 = (P, - 0)/D )
i) i) (i)
Ty =T5"% Ty .
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{T{,"). Tg') ; T;[;)} define the reference system on y;. (see Figure 4). By averag-
ing this information over n components. we obtain the tropicity dimensions
and the reference system of the tangle, that is

)
Dy=(DJy, Ta= (1N, (10)
) 3

Note that the tangle tropicity vectors, are determined by the global geometry
of the tangle, and in general do not coincide with the eigenvectors of the
Jacobian matrix of the velocity gradients.

Tangle analysis by indented projections

Tropicity directions find applications in tangle analysis. The latter is based
on the concept of projected diagrams. Let us consider first a single component
x (for simplicity we shall drop the suffix) and its “indented” projection x,.
obtained by the orthogonal projection p on the plane of projection [T, (see
Figure 5): by allowing small indentations at crossing sites of the projected
curve, the indented projection retains the information associated with over-
and under-passes of the original curve viewed along the projection direction.
Evidently x, depends on the direction of projection. and any change in the
latter is obviously reflected in the shape of x,. Topological information can
be recovered by implementing the three Reidemeister moves computationally.
to reduce x,, to its minimal form, i.e. with minimal number of crossings. By
assigning the value ¢, = &1 to each apparent crossing of x,. according to
the sign convention shown in Figure 5, we can compute three important
quantities. The first is the writhing number Wr, given by

Wri=Wr(a)=()_ &), Wr=Wr(T)=() &), (11)

TEX: reT

where here brackets denote averaging over all directions of projection. This
quantity gives geometric information on average chirality and associated de-
gree of three-dimensional average coiling in the tangle.

A second important quantity is the total linking number Lk, given by

Dy = T )= % Y e, Lhe=3ILkyl,  (12)
reEXiNx; i
i#j
where M denotes disjoint union on the apparent intersections of curve strands,
omitting self-crossings. This quantity provides topological information on
tangle complexity and changes with the recombination of tangle components.
A third quantity, of algebraic character, that provides a good measure of
structural complexity is given by the average crossing number C, defined by
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Fig. 5 Indented projection of the tangle component y under p. The signs at each crossing
site of the indented diagram are assigned according to the convention rule shown on the
right-hand-side.

the sum of all un-signed crossings, averaged over all projections. We have

Cii=Clxixs)=( ), lel), CT=) 0Ty, (13)

rEXi#EX reT

where # denotes now disjoint union on all apparent intersections of curve
strands, including self-crossings.

The average over all directions of projection is either computationally ex-
pensive or, in some cases, simply impossible: a more practical approach is
to resort to estimated values based, for example, on projections along the
tropicity directions {T,,TQ.T;;}. The estimated writhing number and the
estimated average crossing number are thus given by

Wry = Zf_r __ CL= Z|E,_| _ (14)

reT 1 red s

where L denotes the algebraic mean over the three principal projections.
Additional information comes also from classical geometric and topological
analysis on tangle components (see, for instance, Ricca, 2000).

Comparative analysis on a test case: superfluid vortex tangle

Comparative analysis on the above measures has been conducted by direct
numerical simulations of vortex tangles (Barenghi ef al., 2001: 2002), pro-
duced by perturbations due to a background flow field, or by a decaying
turbulent field. Here we report the test case of a superfluid vortex tangle,
produced by a background ABC-type of flow. Complexity measures are ex-
tracted from the data-sets as the tangle grows in time (see Figure 6) and
analysis of growth rates is performed when the tangle is fully developed (be-
tween ¢ = 0.06 and t = 0.09). Physical quantities such as kinetic helicity /1,
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Fig. 6 Comparative analvsis of complexity measures for superfluid vortex t_angle simulﬁ-
tion: tangle mature growth is shown in inset at ¢ = 0.087. (a) log |H|; (b) log C 1 ; (¢) log C;
(d) log W (e) log Lkeor: (F) log(E/Ey); (g) log(L/Lg) (from Barenghi et al., 2001).

normalized kinetic energy F/FE; and normalized total length L/Lj are also
shown for comparison and check.

The mature stage is characterized by two distinct growth rates: en-
ergy/length growth rate ~ O(83s™1); complexity measures and helicity
growth rate = O(165s~ ). It is remarkable that essentially all the measures
tested have similar growth rate. In any case the average crossing number
seems to be the most appropriate candidate measure of structural complexity.
Comparison between the theoretical value €, obtained by implementing the
analytical definition by Freedman & He (1991) and its estimated value G,
shows that the estimated value — much more convenient computationally
approximates very well the theoretical value. Note also that the discontinu-
ous behaviour of Ll is given by topological changes associated with vortex
reconnection, but its mean growth rate does not differ significantly from that
of other measures.

Tangle analysis by signed area information

If we consider standard projection, instead of indented projection, the pro-
jected diagram is a planar nodal curve. In case of thin vortex filaments, as in
superfluids. signed area information extracted from the planar graph may be
used to estimate linear and angular momentum associated with the vortex
tangle. This is based on the interpretation of momenta in terms of projected
area and on the application of a geometric method to calculate the signed area
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of complex graphs (for details, see Ricca, 2008b). Here we want to illustrate
briefly this method.

The oriented graph diagram of a tangle of vortex lines is an oriented nodal
curve in JR?, and this often attains considerable complexity, particularly as
regards the localization of its self-intersections. A necessary first step is to
reduce nodal curves of any complexity to good nodal curves, that have (at
most) double points. Nodal points are classified according to their degree
of multiplicity p(P) given by the number of arcs incident at the point of
intersection P. If P is a double point, then p(P) = 2. If P is a point of
multiplicity p(P) = n (n > 2), we can always reduce its multiplicity by
“shaking” the graph diagram (actually its pre-image) near P to get m =
%(nz —n) double points, by virtual perturbations of the incident arcs from
their location. Thus, if 2" is the total number of points of multiplicity n,
by applying this shaking technique we can always replace these h{™) points
with h(n) = mh' (m > 3) double points. We say that a graph diagram is
a good projection, when it has at most double points. Hence. by the shaking
technique, we can always reduce highly complex graph diagrams to good
nodal curves.

Let C denote one of such good nodal curves on I, and let A(C) be the
corresponding total area. In order to caleulate this area. first we need to
define the index Zp(C) of C associated with any internal point P. Let P ¢ C,
t the tangent to C and p the radiant vector with foot at P, that intersects C
transversally. At each intersection point X € p N C assign the algebraic sign
e(X) = +£1, according to the standard convention given by the right-hand
rule, that is €(X) = +1 when the frame {p,t} is positive (see Figure 7a).
If X is a double point, then the intersection is computed with one of the
neighbouring pairs of the incident, equi-oriented arcs.

Definition. The index Tp(C) of C at P is the algebraic intersection number
given by
Ip(C) = > e(X). (15)

XepnC

Let us now consider the Z sub-domains {R;};=1, ...z determined by C /1
and bounded by C, and let A(R;) > 0 denote their standard area. Since every
point P € R; has the same Zp(C), we shall call Z; the index associated with
any point P € R; and assign this value to each sub-domain R; of C N 11
(see Figure 7h). The signed area of an oriented graph, a coneept that can be
traced back to Gauss, is thus given by the following rule.

Rule (Signed area). The signed area A(C) of an oriented, planar nodal
curve C, is given by
z
A(C) =) T;A(R;) (16)
i=1

where A(R ;) > 0 is the standard area of R ;.
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(a) (b)

Fig. 7 (a) The number in the dashed region is the value of the index Tp(C) according
to the right-hand rule convention and the algebraic intersection number calculated by eq.
(15). (b) The oriented nodal curve, resulting, for example, from the standard projection of

a figure-8 knot, has 5 bounded regions. Note that one of the interior regions has index 0,
due to the opposite orientation of the strands crossed by p.

By the signed area rule we can calculate the projected area of any nodal
curve, be it the graph of a single vortex line, or that of a complex tangle of
vortices, If the vortices have different circulations, a weighting factor defined
in terms of contributions from each arc of 9R; must be assigned to A(R;).
One of the simplest correction comes from an algebraic weighting ~; of the
circulations associated with OR ;. Thus, for thin vortices evolving under the
so-called localized induction approximation (LIA, for short), we can prove
(Ricca., 2008b) the following result:

Theorem (Signed area interpretation). Let T be a vortex tangle evolving
under LIA. Then, the linear momentum P = P(T) has components

z
1D.r‘_f; — ZT_]I_;'A-J'H(RJ)- Pr;z =iweey PZJ.‘ =iy (J-T}
j=1
and the angular momentum M = M(T) has components

z
My =0, %ZjAwn(Ri), Myz=..., Moz =..., (18)

J=1

where Ayy(Rj). ..., ete. denotes standard area of R; and d. distance of the
center of mass from the rotational axis.

This method provides a potentially useful tool for predictive and postdic-
tive diagnostics. By analyzing projected areas, it can be applied to implement
tests of accuracy of numerical methods simulating vortex tangles. In superflu-
ids, in particular, by analyzing the area distribution of the vortex projection
one can judge about the scale distribution of linear and angular momentum,
and compare this with the expected values of the spectrum of turbulence



194 Renzo L. Ricca

(given. for example. by the Kolmogorov’'s two-thirds law). Moreover, since
LIA preserves an infinity of invariants of motion and all of these admit a ge-
ometric interpretation in terms of global curvature, torsion and higher order
gradients, these can be implemented to supply further information on dy-
namical properties (for instance, kinetic energy and helicity). Other features
associated with the analysis of projected graphs and surface information can
be related to dynamical issues: for instance, the Euler characteristic x(G) of
a graph G associated with a vortex knot or link type. This, being given by
X(G) = v — e+ r, where v are the vertices, ¢ the edges and r the regions
of (G, is a topological invariant related also to the genus g(F) of the Seifert
surface I associated with any presentation of the knot or link. by the relation
1—-2¢(F) = x(F) = sp — €in. where sq denotes the number of Seifert circles
and ey, the topological crossing number of the knot or link. Study of Seifert
surfaces of physical systems may reveal interesting properties associated with
minimum energy aspects of the system.

4 Topological Bounds on Energy and Helicity-Crossing
Number Relations for Magnetic Knots and Links

We restrict our attention to magnetic knots and links: by construction (see,
for example, Ricca, 1998) these are tubular embeddings of the magnetic field
B in nested tori 7, (i =1..... n) centred on smooth, oriented loops y; that are
knotted and linked in the fluid domain (see Figure 8). We therefore identify
an n-component magnetic link £,, with the standard embedding of a disjoint
union of n magnetic solid tori in IR>:

LTy — L, = supp(B) . (19)

Let V =V/(L,) be the total volume of the magnetic link.

We take B - v = 0 on each tubular boundary 97; of unit normal v; the
flux @; of the magnetic field through each cross-sectional area of T} is given
by: _

D, = / B-vd?X. (20)
JT
Consider the evolution of £, under the action of the group of volume- and
flux-preserving diffeomorphisms ¢ : £,, — £,, .. Two fundamental physical
quantities of the system are the magnetic energy and the magnetic helicity,
respectively defined by:

M(r)::] IBI2d*X,  H(t):= A-BAX, (21)
V(L) JN(Ly)
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Fig. 8 (a) The 2-component link '—lf with 4 minimum number of crossings is here repre-
sented (a) by a disjoint union of 2 oriented loops and (b) by the corresponding centred,
tubular neighbourhoods.

where A is the vector potential associated with B = Vx A. We take V-A = 0
in R®.

4.1 Topology Bounds Energy in Ideal Fluid

More specifically, let us consider the class of magnetic fields B = B(X. t) that
are solenoidal, frozen and of finite energy in an incompressible and perfectly
conducting fluid, that is

Be{V-B=0. B=V x(uxB), Ly-norm} . (22)

For frozen fields helicity is a conserved quantity (Woltjer, 1958), thus H(f) =
H = constant. It is known that helicity admits topological interpretation in
terms of linking numbers (Moffatt, 1969; Berger & Field, 1984: Moffatt &
Ricca, 1992):

Theorem. Let L, be an essential magnetic link in an ideal fluid. Then

H=> Lk®;+2) Lk ®:®; . (23)
1 i7]

where Lk; denotes the Calugareanu- White linking number of \; with respect
to the framing induced by the embedding of B in T;, and Lk;; denotes the
Gauss linking number of x; with x;.

The Gauss linking number Lk;; is a topological invariant of link types
and, admitting interpretation in terms of signed crossings (see first of 12 and
Figure 9), it can also be written as

Lkij = ] duwi j :% Y e (24)
;4

rexiMy;
i#]
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(a) (b)

Fig. 9 (a) The 2-component oriented link -'-I"l2 has 4 minimum number of crossings and
Gauss linking number Lkj2 = 2. This, being a topological invariant, does not depend
on specific projections: the same link type is shown in (a) its minimal projection, with
the 4 crossings denoted by the + sign, and in (b) with redundant crossings. Note that
the algebraic sum of signed crossings (omitting self-crossings) remains unchanged: the
two crossings in (b}, denoted by dashed circles, do not contribute to the linking number
calculation of eq. (24) because in each case the crossing strands belong to the same link
component.

where dw;j is the classical Gauss integrand form associated with the two
curves y;, x; and ' denotes apparent intersections of curve strands, omitting
self-crossings. The Calugareanu-White linking number LE; is a topological
invariant of each link component and admits a geometric decomposition in
terms of writhing number Wr; and twist munber T'w;, according to the well-
known formula (Calugareanu. 1961; White, 1969):

Lk; = Wr; 4+ Tw; . (25)

The writhing number measures the average distortion of y; in space, while
the total twist measures the total winding of the field lines within 77.

Assuming for simplicity that all link components have equal flux @ and be
zero-framed, that is Lk, =0 foralli=1,..., n, lower bounds on energy are
given by the following results (for detailed proof see Ricea, 2008a, based on
previous works done by Arnold, Freedman & He, and Moffatt):

Theorem. Let L, be an essential magnetic link in an ideal fluid. Then

_ 16\'* |H ) 16\ " %
o mo2 (L) EL @ M= () T e

m m™

where iy 18 the topological crossing number of L.

The theorem above establishes two important results: (26-1) states that
magnetic energy is bounded from below by the absolute value of the helicity
(given by the total linking number of the system). scaled by the average size
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Fig. 10 Three distinet link types with n = 2 and ¢y,;,, = 6. By assuming zero-framing in
all link components, same volume V' and flux @, the three links must have same groundstate
energy Mpyin. Thus, different framing should be prescribed if we want to identify uniquely
each knot/link type with its specific groundstate energy.

of the system: hence, high helicity concentrations imply greater bounds on
energy values. Equality (26-ii) states that the energy minima are actually
given by the topological crossing number of the system scaled by the system
average size. Note, however, that a classification of knots and links based on
energy contents is still incomplete. without prescribing individual framing.
By direct inspection of link tabulation, it is indeed immediately evident that
there are countably many topologically distinct links with equal number n of
(zero-framed) components and same ¢,,;, (see Figure 10). This means that a
complete classification of magnetic systems by topology is only possible by
specifying the individual framing of each component.

4.2 Helicity-Crossing Number Relations in Dissipative
Fluad

Suppose now that the fluid is no longer perfectly conducting, but resistive,
assuming that the typical dissipation (or reconnection) time scale is higher
than the typical evolution time scale so as to preserve magnetic flux. The
topology of £,, may now change due to the effects of dissipation. that make
reconnections of the magnetic field lines possible. Under these conditions
magnetic helicity may also change, hence H = H(t). Let us define 2 :=
N, {i,j1 dwij: the change in magnetic helicity can be measured in terms of
change in algebraic complexity of the magnetic link according to the following
result (for proof see Ricca, 2008a).

Theorem. Let £, be a zero-framed, essential magnetic link, embedded in a
resistive, incompressible fluid. Then, we have:

(i) [H(t)| <20*C(t); (i) d[H(t)] < sign(H )sign(2)24° dZit‘) .

dt (2%
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Direct numerical tests on tangle complexity (cf. results shown in Fig-
ure 6; see Barenghi et al., 2001) confirm these results: from the data
analysis of the tangle mature growth stage (@ in appropriate units), we
have [2C(0.09) — [H(0.09)(]/|H(0.09)| ~ 19.3% and sign(H)sign(2) = +,
[2AC(t)— A|H (t)|| A|H (t)| = 27.6% for t € [0.08,0.09]. Since these results are
independent of specific viscous or resistive time scales, physical time ought to
be interpreted in terms of the reconnection time scale involved in the change
of topology.
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