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Introduction

Predictions for processes that will be studied accurately at present and future colliders

(namely at the Tevatron and the LHC) are mainly based on Next-to-Leading-Order cal-

culations. Total cross sections and more exclusive kinematical observables, such as trans-

verse momentum or rapidity distributions, are often calculated with this level of accuracy.

In particular, phase space regions where transverse momenta are large are described prop-

erly, since real corrections are fully included. However, despite of their accuracy, from a

pratical point of view these calculations are not the best tool to perform simulations at

the detector level, both because they rely on a non-trivial cancellation between divergent

virtual and real contributions and because their outputs are a set of outgoing partonic

momenta, instead of hadronic ones.

For these reasons, experimentalists often use Monte Carlo event generators to perform

simulations. In addiction to produce events at the detector level, these tools are based

on the Parton Shower formalism, that permits to achieve a good description of high-

multiplicty final states in the collinear enhanced regions. Nevertheless, high transverse-

momentum regions are poorly described, since the shower algorithm is based on the

collinear approximation. Furthermore, inclusive observables (such as the total cross sec-

tion) are accurate only at the leading order.

It is then clear that a method to include Next-to-Leading-Order QCD corrections to

event generators is needed, especially in view of the beginning of running of the LHC. In

this way a large amount of the acquired knowledge on QCD corrections would be made

directly available to the experimentalists in a flexible form, that they could easily use for

simulations.

In recent years, efforts have been done in this direction, yielding more than one pro-

posal. At present, however, complete results have been obtained only within the Monte

Carlo at Next-to-Leading-Order (MC@NLO) and the POsitive Weight Hardest Emission

Generator (POWHEG) frameworks.

In this thesis, we describe the implementations of single vector boson and single top

s- and t-channel hadroproduction in the POWHEG framework.
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2 Introduction

The thesis is organized as follows.

In chapter 1, we give an introduction to some basic aspects of perturbative QCD,

relevant for this thesis. In particular, we describe how fixed order calculations are usually

performed and how Monte Carlo event generators work.

In chapter 2, we point out the main differences of the two approaches, highlighting the

benefits and drawbacks of both. The core of the chapter is devoted to the description of

the POWHEG method, that permits to build an event generator that retains benefits both

of NLO calculations and of Shower Monte Carlo programs.

In chapter 3 and 4 we describe the POWHEG implementation of single vector boson and

single-top hadroproduction, respectivley. Corresponding results are presented, together

with detailed comparisons with analogous results obtained with MC@NLO and with other

Monte Carlo programs (PYTHIA). For the single vector boson case, comparisons with

available Tevatron data are also shown.

Finally, we summarize our work and give our conclusions.

The introductive part of chapter 1 is based on textbooks and review articles, while

sec. 1.2, 1.3 and chapter 2 are mainly based on refs. [1–3].

The content of chapter 3 and 4 is based on the following published papers, in collab-

oration with S. Alioli, P. Nason and C. Oleari:

• S. Alioli, P. Nason, C. Oleari and E. Re

NLO vector-boson production matched with shower in POWHEG.

Published in JHEP 0807:060,2008.

e-Print: arXiv:0805.4802 [hep-ph]

• S. Alioli, P. Nason, C. Oleari and E. Re

NLO single-top production matched with shower in POWHEG: s- and t-channel

contributions.

Published in JHEP 0909:111,2009.

e-Print: arXiv:0907.4076 [hep-ph]



Chapter 1

QCD applications to collider Physics

In this chapter we give a brief introduction to the basics of perturbative Quantum Chro-

modynamics (QCD) and describe how the theory can be used to produce results relevant

to collider Physics. The aim of this chapter is to illustrate how fixed order calculations

and Shower Monte Carlo event generators work. This is needed to introduce the basic

concepts that we use throughout the thesis.

The chapter is organized as follows.

In section 1.1 we give the Lagrangian of the theory and the Feynman rules that follow

from it. We also describe briefly the concept of running coupling constant and its physical

consequence, in particular the ones concerning the definition of the perturbative domain

of the theory. A quick overview on the structure of squared amplitudes in the soft and

collinear limits is also given.

In section 1.2 we give an introduction to fixed order perturbative calculations, and

describe how these are practically performed, at the Next-to-Leading-Order, in the so-

called subtraction methods. A description of the two methods that we used for the work

presented in this thesis is also given.

Finally, in section 1.3 we describe how the factorization properties of QCD amplitudes

allow to resum dominant contributions to a given cross section. From this feature, we

describe the Parton Shower formalism and its role within event generators.

1.1 Basic aspects of QCD

The content of this introductory section is based on Quantum Field Theory and QCD

textbooks [4–7] and on reviews [8, 9].

3



4 Chapter 1. QCD applications to collider Physics

1.1.1 Lagrangian and Feynman rules

Quantum Chromodynamics is the quantum field theory that describes the interactions of

quarks and gluons. It is a nonabelian gauge theory, with local SU(Nc) symmetry, with

Nc = 3. The elementary fields of the theory are the quark and the gluon fields, which

will be denoted, respectively, ψi and Aa
µ. At the classical level, the Lagrangian density is

given by

Lclassical = −1

4
F a

µνF
a;µν +

nf∑

f=1

[
ψ̄

(f)
i

(
iD/ ij −m(f)δij

)
ψ

(f)
j

]
, (1.1)

where the index f runs over all the quark flavours (f = u, d, c, s, t, b) and the field strength

and the covariant derivative are given by

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gSf

abcAb
µA

c
ν , (1.2)

Dµ
ij = ∂µδij − igSt

a
ijA

a;µ . (1.3)

Quark (and antiquark) spinorial fields carry a color index i that runs from 1 to Nc.

Gluon vector fields, instead, are labelled by the index a, that runs from 1 to N2
c −1. With

gS we denote the coupling strength between colored quanta. We also introduce here the

strong coupling constant αS,

αS =
g2

S

4π
, (1.4)

since perturbative results are often expressed in terms of this quantity instead of gS.

The matrices ta are the generators of the fundamental representation and they satisfy

the commutation rules of the SU(Nc) algebra:

[ta, tb] = ifabctc , (1.5)

where fabc are the group structure constants, that define implicitly the group algebra.

These constants can always be chosen real and antisymmetric, and they obey the Jacoby

identity

fadef bcd + f bdef cad + f cdefabd = 0 . (1.6)

Usually, the generators of the fundamental representation are written in terms of the eight

Gell-Mann matrices as follows:

taij =
λa

ij

2
. (1.7)

An explicit expression for the matrices λa can be found for example in [5]. With this



1.1. Basic aspects of QCD 5

choice, the following normalization condition holds:

Tr[tatb] ≡ taijt
b
ji = TF δ

ab , TF =
1

2
. (1.8)

Other useful identities are:

N2
c −1∑

a=1

taijt
a
jk = CF δik , CF =

N2
c − 1

2Nc
, (1.9)

N2
c −1∑

a, b=1

fabcfabd = CA δ
cd , CA = Nc . (1.10)

The Lagrangian density Lclassical includes all the interactions among the fundamental fields

of the theory, and it is invariant under a local SU(Nc) transformation, which transforms

the quark and the gluon fields as follows:

ψ(x) → U(x) ψ(x) , (1.11)
[
taAa

µ(x)
]

→ U(x)

[
taAa

µ(x) − i

gS

U−1(x)∂µU(x)

]
U−1(x) . (1.12)

The U matrices belong to the group SU(Nc) and depend functionally on x, since the

SU(Nc) symmetry has been gauged. They can be obtained by exponentiating the gener-

ators of the fundamental representation:

U(x) = exp {i θa(x) ta} , (1.13)

where θa(x) are real arbitrary functions, parameterizing a given local transformation.

To quantize the theory consistently, two other terms have to be added to the classical

Lagrangian density. A first problem arises because Lclassical is invariant when the gluon

field change by a total derivative. When the theory is canonically quantized, this gauge

freedom makes the timelike component of the gluon field conjugate momentum identically

null, spoiling therefore the canonical commutation rules. This feature arises also in abelian

theories and, to prevent this to happen, one has to introduce a term that brokes explicitly

the full gauge invariance of the Lagrangian: for this reason, this term is usually called

gauge-fixing term. There are several types of gauge-fixing terms, but, to keep the theory

manifestly covariant, one needs to impose on the gluon fields a covariant constrain, such
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as the Lorentz condition ∂µAa
µ = 0. The corresponding gauge-fixing term reads then

Lgauge−fixing = − 1

2ξ
(∂µAa

µ)
2 , (1.14)

where ξ is a free parameter (several choices are possible), that does not enter in physical

observables. The Lorentz gauge-fixing term lowers of one unity the number of degrees of

freedom of the gauge boson fields. In abelian theories, as in QED, no other terms are

needed, because the remaining nonphysical degrees of freedom of the photons cancels out

in the calculation of physical quantities. In non abelian gauge theories with a covariant

gauge fixing, instead, we need to cancel these nonphysical degrees of freedom explicitly.

This is achieved by introducing a set of (nonphysical) complex scalar anticommuting

fields, called ghosts, that interact with gluons. We have

Lghosts = ∂µηa∗Dab
µ η

b , (1.15)

where Dab
µ = δab∂µ − gSf

abcAc
µ.

It is worthwhile to recall that ghosts are not needed if one works in an axial gauge,

since in that case the number of degrees of freedom is already lowered of two units by the

axial gauge-fixing term, which however is not covariant a constrain.

The full Lagrangian density is then given by

LQCD = Lclassical + Lgauge−fixing + Lghosts . (1.16)

From eq. (1.16), one can derive the QCD Feynman rules, that we reported in Appendix A.

1.1.2 Running of the coupling constant

In Quantum Field Theories, it is well known that results obtained including quantum

corrections (loops) contain ultraviolet (UV) and infrared (IR) divergences. In the fol-

lowing of this thesis, we will see how one handles with the presence of IR divergences.

UV divergences, instead, are removed by means of the renormalization procedure: after

renormalization, amplitudes are free of UV poles, but the coupling constant becomes run-

ning. This means that the renormalized coupling constant depends on the energy scale

at which the theory itself is probed. Since this feature has important phenomenological

consequences, in this section we give a brief explanation of how this mechanism works,

without entering into the technical details of the renormalization procedure.1

1In particular, here we follow [9].
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The (one-loop) renormalization procedure consists basically in a redefinition of the

fields and the parameters present in the original (bare) Lagrangian density, by means

of renormalization constants. Renormalized amplitudes are free of UV poles, but a new,

arbitrary, mass scale is introduced in the theory, the renormalization scale, that we denote

here as µ.

For the purpose of this section, we just need the relation between the bare (α
(b)
S ) and

the renormalized (αS) coupling constant, that, when dimensional regularization is used,

reads

α
(b)
S = Z2

g µ
2ǫ αS , (1.17)

and the expression for the one-loop charge renormalization constant Zg. One has:

Zg = 1 − αS

ǫ

b0
2
, (1.18)

where

b0 =
11CA − 4nfTF

12π
. (1.19)

The scale µ in (1.17) is an arbitrary energy scale, needed to keep the renormalized

coupling gS dimensionless, after having defined the theory in d = 4−2ǫ dimensions. Since

the initial Lagrangian does not depend upon this scale, then the bare coupling has to be

scale independent too. From this simple consideration, it follows that the (logarithmic)

derivative of α
(b)
S with respect to µ has to vanish, so that αS has to be scale dependent:

0 = 2ZgαS µ
2dZg

dµ2
+ Z2

gαS ǫ+ Z2
g µ

2dαS

dµ2

= β(αS)

(
2ZgαS

dZg

dαS

+ Z2
g

)
+ Z2

gαS ǫ , (1.20)

where we have introduced the beta–function, defined as usual as

β(αS) = µ2 dαS

dµ2
. (1.21)

From eq. (1.18) and (1.20), we obtain

β(αS) = −b0 α2
S
. (1.22)

The differential equation in (1.22) drives the running of the coupling constant. In fact,
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one has:

−b0
∫ µ2

µ2
0

dµ̄2

µ̄2
=

∫ αS(µ2)

αS(µ2
0)

dαS

α2
S

, (1.23)

which implies

αS

(
µ2
)

=
αS (µ2

0)

1 + αS (µ2
0) b0 log

(
µ2

µ2
0

) . (1.24)

We are now in the position to comment the result. The fields content of QCD is such

that the inequality nf <
11
2
Nc holds, so that b0 > 0 and the beta–function is negative. We

have then obtained that QCD exhibits the remarkable property of asymptotic freedom:

this means that the renormalized coupling constant αS becomes smaller as the scale at

which it is evaluated grows (eq. (1.24)).

Eq. (1.24) tells us how the coupling constant changes when the reference scale varies,

but does not fix an absolute value for αS. This has to be extracted from experimental

data, by fitting them with the more accurate available calculations. If one measure the

value of αS at a given reference scale µ̄, then it is possible to express the (one-loop) running

of αS in a simple way:

αS(µ
2) =

1

b0 log(µ2/Λ2
QCD

)
, (1.25)

where ΛQCD is fixed by the condition

αS(µ̄
2) =

1

b0 log(µ̄2/Λ2
QCD

)
. (1.26)

For consistency, to perform a calculation where other experimental inputs rather then

αS are needed, it is important to use the same values of αS used to fit these inputs

from data. Typically, this happens when dealing with hadronic processes, where one

uses Parton Distribution Functions (PDF’s) that are fitted from other data. For this

reason, in this thesis we have used as a reference value for αS the value associated to the

corresponding PDF set. In all the result presented, we used the CTEQ6M [10] set, where

a two loop evolution for αS is assumed. We report here the relevant formulae.

The two loop expression for the beta function reads:

β(αS) = −b0 α2
S
− b1 α

3
S
, (1.27)

where b1 is given by

b1 =
153 − 19nf

24 π2
. (1.28)
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The corresponding two loop evolution used for αS reads 2

αS(µ
2) =

1

b0 log(µ2/Λ2
MS

)

[
1 − b1

b20

log[log(µ2/Λ2
MS

)]

log(µ2/Λ2
MS

)

]
, (1.29)

where the reference value associated with the CTEQ6M set is

αS(M
2
Z) = 0.1189 (Λ

(5)
MS

= 0.2262 GeV) . (1.30)

We use the symbol ΛMS to remind that the beta–function has been calculated in the MS

scheme. Furthermore, the numerical value reported above corresponds to a calculation

done with nf = 5, that is the correct choice as long as all quarks, apart from the top,

are lighter than the scale µ. When the scale µ crosses a quark mass threshold, then

the corresponding quark flavour decouples, and a more correct running equation can be

obtained changing nf accordingly, and matching the values of αS at the mass threshold.

It is worthwhile to remark that the values of ΛQCD are always of the same order

of magnitude, even if they change slightly when the order of the perturbative calcula-

tion (or the renormalization scheme) changes. Numerically, the values are in the range

100 − 400 MeV. This means that results obtained within perturbative QCD are reliable

when the relevant mass scale is (much) larger then ΛQCD, the coupling constant being

(much) smaller than 1. Finally, we notice that ΛQCD gives also an estimate of the scale

at which QCD becomes strongly coupled. Therefore, ΛQCD gives also an estimate of the

hadronization scale, i.e. the energy scale at which quarks and gluons bind together to

form hadrons.

1.1.3 Infrared divergences and factorization of QCD amplitudes

Before describing the general formalism of NLO computations and Parton Showers, we

give a description of the factorization properties of QCD amplitudes in the infrared region.

Indeed, a lot of general and technical issues that are present both in fixed order Monte

Carlo programs and in event generators based on Parton Showers, are related to the

behavior of QCD squared amplitudes in this kinematic region. For this reason, we find

useful to introduce this point before describing the two approaches separately.

For a general amplitude involving massless colored particles, there are two (overlap-

ping) regions of the outgoing particles phase space, where the squared amplitude diverges:

the collinear and the soft region.3

2Eq. (1.29) has to be interpreted as an expansion in inverse power of log(µ2/Λ2
MS

).
3We recall that we use the word infrared when referring generically to both the two limits, without
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As a guiding example, we consider a generic process with n + 1 on-shell final state

particles, where a quark of momentum k and a gluon of momentum l become collinear

(i.e. their relative angle goes to zero). If the two particles come from the splitting of an

internal quark line into a qg pair, then the corresponding squared amplitude is divergent,

the internal propagator going on its mass shell. However, it can be shown that, in this

singular region, the squared amplitude exactly factorizes, in terms of an n-body squared

amplitude multiplied for a splitting function. In fig. 1.1 this factorization property is

reported schematically.

Figure 1.1: Pictorial representation of the factorization of a QCD squared amplitude.

When translated in equations, the meaning of fig. 1.1 corresponds to:

|Mn+1(k⊕, k⊖; . . . , k, . . . , l, . . .)|2dΦn+1 → |Mn(k⊕, k⊖; . . . , k + l, . . .)|2dΦn

× αS

2π

dt

t
Pqq(z) dz

dφ

2π
, (1.31)

where Mn+1 and Mn are respectively the amplitudes for the full (n + 1)-body and the

(underlying) n-body processes, which is represented as a blob in fig. 1.1, Pqq(z) is the

Altarelli-Parisi splitting function

Pqq(z) = CF

1 + z2

1 − z
, (1.32)

and dΦn is the usual phase space integration, defined as

dΦn = (2π)4δ4

(
n∑

i=1

ki − q

)
n∏

i=1

d3ki

2k0
i (2π)3

, (1.33)

where q = k⊕ + k⊖ is the total incoming momentum and ki are the outgoing particles

momenta. The parameters t, z and φ describe the kinematics of the splitting process: t

is a variable with the dimension of a squared mass, vanishing in the collinear limit (for

distinguish them.
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definiteness, we can think t = (k + l)2), z a variable that, in the exact collinear limit,

yields the momentum fraction of the outgoing quark relative to the momentum of the

parent quark that has split

k → z (k + l) for t→ 0, (1.34)

and φ is the azimuth of the plane where ~k and ~l lie, around to the
−−→
k + l direction.

To obtain (1.31), one uses the fact that, in the collinear limit, in addiction to the

factorization properties of the squared amplitudes, also the full (n+ 1)-body phase space

can be factorized in terms of the underlying n-body phase space and of an emission phase

space:

dΦn+1 → dΦn × 1

4(2π)2
dt dz

dφ

2π
. (1.35)

Formulae similar to eq. (1.31) hold for the other possible splitting processes: q → gq,

g → gg and g → qq̄. They can be obtained from eq. (1.31) by replacing Pqq with the

appropriate splitting kernels:

Pqg(z) = CF

1 + (1 − z)2

z
,

Pgg(z) = 2CA

[
z

1 − z
+

1 − z

z
+ z(1 − z)

]
,

Pgq(z) = TF

[
z2 + (1 − z)2

]
. (1.36)

We point out that the (unregularized) Altarelli-Parisi splitting kernel suited for the

splitting i→ j, k is denoted by Pij . By convention, the variable z (argument of the kernels)

denotes the momentum fraction retained by the parton labelled with j, as implicitly

defined in eq. (1.34). As a consequence, we distinguish between Pqq and Pqg.
4

We also recall that, for the splittings g → gg and g → qq̄, a completely factorized

formula, as eq. (1.31), holds only if the average over the polarization of the splitting gluon

is taken. In fact, for these splittings, the factorization formula is more involved, since, at

fixed helicities of the final state gg or qq̄ partons, the parent gluon can have two helicities,

and they can interfere. Exact formulae, expressed in terms of spin-dependent splitting

kernels, can be found for example in sec. 4 of [11].

Another relevant effect is the correlation between the plane where the daughter partons

lie and the polarization vector of the splitting gluon. This dependence, due again to spin

effects, can be explicitly calculated and yields splitting kernels that depend upon an

4For the same reason, the Pgg kernel contains a factor 2, that will be omitted when no tagging of the
outgoing partons will be assumed, as in sec. 1.3.
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azimuthal angle. As in the previous case, this dependence cancels out when the integral

over the azimuth is taken. A more careful discussion can be found in [5].5

In addiction to collinear regions, QCD amplitudes are singular when a final state gluon

has a vanishing momentum. Hence, these divergences are called soft. Soft divergences are

not necessarily related to collinear regions: in fact, the soft limit can be approached also

when the gluon is emitted at large angle with respect to its parent parton. However, when

an outgoing gluon is both collinear and soft, we expect to trace the soft divergences in the

formulae we already presented. Indeed, the splitting kernels involving a final state gluon

(Pqq, Pqg and Pgg) are singular in the limit z → 1 (or z → 0, for Pqg), that corresponds to

the soft region.

In general, in the soft limit, squared amplitudes factorize in terms of color-correlated

amplitudes, which we will introduce later, in sec. 1.2.3, when describing the FKS subtrac-

tion method.6 A full factorization, in terms of the full n-body squared matrix element,

holds only when in the n-body process there are no more than three color-connected

particles.

As a conclusion of this quick review, we want to stress that both the soft and the

collinear behaviors of QCD squared amplitudes are universal, since these limits are de-

scribed by (quasi-) factorized formulae. This property is heavily used, both in performing

NLO calculations and in defining the parton shower algorithm:

• In NLO calculations (see section 1.2), the universal structure of singular limits is

used to regularize numerically the divergences of real squared amplitudes in d = 4

dimensions, as long as to subtract the infrared poles of the virtual contribution.

• In event generators, factorization is used to define a Markovian, recursive algorithm

(the Parton Shower), to consistently describe processes with a large number of

final state particles. We will see in section 1.3 that these dominant contributions

are logarithmic enhanced, logarithms arising exactly from the collinear and soft

behavior of squared amplitudes.

5We remind that this azimuthal correlation between the gluon polarization vector and the branching
plane is present also in splittings initiated by a quark.

6General formulae for the soft limit of QCD squared amplitudes can be found, for example, in [11],
and, for processes involving massive colored partons, in [12].
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1.2 Fixed order calculations

In this section we describe the general features of NLO calculations for hadronic collision

processes, fix the notation that we will be used throughout this thesis and describe how

subtraction methods work.7

The content of this section is based on [2].

1.2.1 General formalism for NLO computation

We begin by considering 2 → n processes at the leading order, i.e. at the lowest order at

which the given process can take place. The momentum conservation reads

x⊕K⊕ + x⊖K⊖ = k1 + . . .+ kn , (1.37)

where x© are the momentum fractions of the incoming partons with respect to the four-

momenta of the incoming hadrons, that we label as K©. Sometimes it is useful to denote

the momenta of initial state partons with k©, so that we have:

k⊕ = x⊕K⊕ , k⊖ = x⊖K⊖ . (1.38)

For ease of notation, the set of variables needed to define a unique n-body kinematic is

denoted by Φn, and obviously it includes the final-state particles on-shell momenta and

the two incoming momentum fractions:

Φn = {x⊕, x⊖, k1, . . . , kn} . (1.39)

We indicate with B the Born term, i.e. the squared matrix elements relevant to the

Leading-Order (LO) contributions to our process.8 At this order, the total cross section

is then given by

σLO =

∫
dΦn L B(Φn) , (1.40)

where L is the product of the incoming parton distribution functions

L = L(x⊕, x⊖) = f⊕(x⊕) f⊖(x⊖) , (1.41)

7To make the notation easier, in this section we omit the parton flavours indexes and the scale
dependences of the various contributions to the total NLO cross section.

8For simplicity, we restrict ourselves to processes where the Born contribution B is finite over the
whole phase space Φn. Further details concerning this point can be found in [2].
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and

dΦn = dx⊕ dx⊖ dΦn (k⊕ + k⊖; k1, . . . , kn) (1.42)

indicates the integration over the Born phase space Φn and the momentum fractions of

incoming partons. As usual, the n-body phase space is defined as

dΦn (q; k1, . . . , kn) = (2π)4 δ4

(
q −

n∑

i=1

ki

)
n∏

i=1

d3ki

(2π)3 2k0
i

. (1.43)

At the NLO, we have to include real and virtual corrections, and factorization coun-

terterms.

Real corrections are obtained integrating the tree-level squared amplitudes for the

2 → n+1 parton process, which we denote by R, multiplied by the appropriate luminosity.

The integral is done over the corresponding (n + 1)-body phase space and the incoming

partons momentum fractions. As for the n-body contribution, we denote with Φn+1 the

whole set of variables that parameterize this space:

Φn+1 = {x⊕, x⊖, k1, . . . , kn+1} . (1.44)

Real contributions are finite in the whole phase space dΦn+1, except for the regions that

correspond to soft and collinear emissions. There, the divergences are analytically inte-

grable only in d = 4 − 2ǫ dimensions, and yield 1/ǫ2 and 1/ǫ poles.

Virtual corrections are given by the interference of the one-loop amplitudes with the

LO ones. In general, these contributions contain both infrared and ultraviolet divergences.

As we already mentioned in sec. 1.1.2, the renormalization procedure allows to remove

systematically all the ultraviolet divergences, leaving UV- finite virtual contributions, that

we denote by Vb. These terms are needed to be computed and expressed in d = 4 − 2ǫ

dimensions, to explicitly expose the remaining IR divergences as 1/ǫ2 and 1/ǫ poles.

The subscript b (for “bare”) reminds us of the presence of infrared divergences in the

amplitude.

The QCD infrared-divergences cancellation theorem, often referred to as Kinoshita-

Lee-Nauenberg (KLN) theorem [13, 14], ensure that when the virtual contributions are

summed up with the real ones (integrated over the radiation variables), then the poles

coming from the integration over regions where an outgoing parton is soft or two outgoing

partons are collinear cancel out, leaving an expression that contains only poles coming

from configurations where an outgoing parton is collinear to the beam. The cancellation

can not be completely achieved because when the outgoing parton is emitted from an

incoming leg, then the momentum flowing inside the hard scattering process is different
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from the one flowing inside the corresponding virtual contribution.

The full cancellation of these remaining singularities is achieved by adding two other

counterterms (G⊕,b and G⊖,b), one for each of the incoming partons (⊕, ⊖), to the dif-

ferential cross section. These factorizations counterterms are infrared divergent in four

dimensions. Therefore, they are computed in d = 4− 2ǫ dimensions, and the divergences

appear as 1/ǫ poles. To remind this fact, also in this case a subscript b has been included

in the notation.

With all the above terms, we are now in the position of writing the total NLO cross

section as

σNLO =

∫
dΦn L

[
B(Φn) + Vb(Φn)

]
+

∫
dΦn+1 L R(Φn+1)

+

∫
dΦn,⊕ L G⊕,b(Φn,⊕) +

∫
dΦn,⊖ L G⊖,b(Φn,⊖) , (1.45)

where

dΦn+1 = dx⊕ dx⊖ dΦn+1 (k⊕ + k⊖; k1, . . . , kn+1) . (1.46)

The factorization counterterms are integrated over the regions of the (n+ 1)-body phase

space where the emitted parton is exactly collinear to one of the two incoming particles.

These regions are labelled as Φn,©, and we can write

Φn,⊕ = {x⊕, x⊖, z, k1, . . . , kn} , z x⊕K⊕ + x⊖K⊖ =
n∑

i=1

ki , (1.47)

Φn,⊖ = {x⊕, x⊖, z, k1, . . . , kn} , x⊕K⊕ + z x⊖K⊖ =

n∑

i=1

ki , (1.48)

where z is the fraction of momentum of the incoming parton after radiation, with respect

to k©, the momentum of the parton extracted from the hadron. The integrals are defined

as

dΦn,⊕ = dx⊕ dx⊖ dz dΦn (z k⊕ + k⊖; k1, . . . , kn) , (1.49)

dΦn,⊖ = dx⊕ dx⊖ dz dΦn (k⊕ + z k⊖; k1, . . . , kn) . (1.50)

Therefore, integrals are effectively performed over the n-body Born phase space and a

further variable, that parameterizes the energy of the outgoing parton that is collinear to

the beam. We can then associate with the phase-space configuration Φn,© an underlying

n-body configuration, obtained by replacing the momenta of the incoming parton (k©)

and of the outgoing collinear parton, with an incoming momentum having momentum
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fraction zx©. Once this replacement has been done, from the momentum conservation

constraints in (1.47) and (1.48) it follows that the variable x̄© = zx© does not depend

on z anymore. The resulting underlying n-body phase space can be then fully identified

with the Born phase-space Φn. However, we label this phase space with Φ̄n, to remind

that it is a n-body configuration obtained after the aforementioned manipulation:

Φ̄n = {x̄⊕, x̄⊖, k1, . . . kn} , x̄© = zx© , x̄© = x© , (1.51)

where, for future reference, we leave explicitly indicated the relation between x̄© and the

integration variables x© and z.

Although at this point all the terms needed to perform a NLO calculation have been

formally described, a couple of points need a more careful attention:

• We already noticed that the r.h.s. of eq. (1.45) contains factors that are separately

IR divergent, but whose sum is finite. However, we have to describe how this

cancellation is achieved in practice.

• We want to calculate expectation values for observables that are more exclusive

than the total cross section, but such that the cancellation of IR divergences still

holds.9

In the following we address the latter issue, while the former will be dealt with in sec. 1.2.2,

when we describe subtraction methods.

The expectation value of an observable O is obtained multiplying each integrand in

eq. (1.45) for the value assumed by O in the corresponding phase space point:

〈O〉 =

∫
dΦn L On(Φn)

[
B(Φn) + Vb(Φn)

]

+

∫
dΦn+1 L On+1(Φn+1) R(Φn+1)

+

∫
dΦn,⊕ L On+1(Φn,⊕) G⊕,b(Φn,⊕) +

∫
dΦn,⊖ L On+1(Φn,⊖) G⊖,b(Φn,⊖) ,

(1.52)

where On and On+1 are the value assumed by the observable O in terms of n and (n+ 1)

final-state particle momenta. Eq. (1.52) is made of terms that are separately divergent.

The cancellation of divergences is guaranteed if we restrict to perform predictions for

observables that are infrared-safe. Such observables are required to be insensitive to soft

(S), final state collinear (FSC) and initial state collinear (ISC) emissions.

9In this context, an observable is defined as a function of the final state momenta.
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Formally, these requirements correspond to the following properties:

(S) When kj → 0, then

On+1 (k1, . . . , kj, . . . , kn+1) → On (k1, . . . , ·, . . . , kn+1) , (1.53)

where with the notation in the r.h.s. we denote the value assumed by the observable

O when it is calculated removing the momentum kj. Momentum conservation still

holds because we are in the soft limit.

(FSC) When ~ki ‖ ~kj, then

On+1 (k1, . . . , ki, . . . , kj, . . . , kn+1) → On (k1, . . . , k, . . . , kn+1) , (1.54)

where k = ki + kj .

(ISC) When ~kj ‖ ~k©, then

On+1 (k1, . . . , kj, . . . , kn+1) → On(k1, . . . , kn) . (1.55)

Observe that, from eq. (1.55), the argument of O in the last two terms on the right hand

side of eq. (1.52) can be set exactly equal to Φ̄n rather than Φn,©. The final formula for

the NLO expectation value of O becomes then:

〈O〉 =

∫
dΦn L On(Φn)

[
B(Φn) + Vb(Φn)

]

+

∫
dΦn+1 L On+1(Φn+1) R(Φn+1)

+

∫
dΦn,⊕ L On

(
Φ̄n

)
G⊕,b(Φn,⊕) +

∫
dΦn,⊖ L On

(
Φ̄n

)
G⊖,b(Φn,⊖) . (1.56)

The integrals in eq. (1.56) are usually too difficult to be performed analytically (be-

cause of the involved functional form of O) and, being divergent, they are also not suited

for numerical computations. Different strategies have been proposed to handle this prob-

lem. The common underlying idea is to rewrite the above formula (or eq. (1.45)) in such

a way that the cancellation of divergences is manifest for each term. In the following, we

describe the subtraction formalism, first introduced in ref. [15] for e+e− annhilation.
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1.2.2 Subtraction formalism

The subtraction formalism is based on the idea that one can cancel numerically the

divergences arising in the integration of the real contributions R, by subtracting from

them quantities, called real counterterms, that diverge as R when a singular region is

approached. In this way, the integration of real terms is no longer divergent. Furthermore,

by adding to Vb the analytic expression of the integral of these counterterms over the full

radiation phase space, the cancellation on IR poles is achieved, and the final result remains

finite.

Before describing the technicalities, we remind that this formalism is very general and

powerful. In fact, owing to the factorization properties of QCD amplitudes, the whole

procedure is universal, in the sense that it does not depend on the detail of the process

at hand. For this reason, once the building blocks are known, then they can be used for

several processes.

As anticipated above, the subtraction formalism requires the definition of a set of

functions C(α), called real counterterms. The index α labels a particular singular region,

i.e. a (n+1)-body kinematics where either a final-state parton has vanishing momentum, or

a final-state massless parton has momentum proportional to an initial-state or to another

final-state massless parton. Furthermore, for each α, a mapping M(α) of an (n+ 1)-body

configuration into a singular one is needed:

Φ̃
(α)
n+1 = M(α) (Φn+1) , Φ̃

(α)
n+1 =

{
x̃(α)

⊕
, x̃(α)

⊖
, k̃

(α)
1 , . . . , k̃

(α)
n+1 .

}
(1.57)

Since each singular region α is characterized by a different mapping, we use the superscript

α on the tilded variables, .

As already pointed out, we want the mapping and the counterterms to let the quantity

R(Φn+1)On+1(Φn+1) −
∑

α

C(α)(Φn+1)On+1

(
M(α) (Φn+1)

)
(1.58)

with singularities at most integrable in the Φn+1 space. Hence, the mapping (1.57) must

be smooth near the singular region, and it must become the identity there. For example,

if α is associated with the FSC region where the particles i and j become collinear, we

must have Φ̃
(α)
n+1 = Φn+1 for ~ki ‖ ~kj.

As in the case of the ISC configurations (eqs. (1.47) and (1.48)), we associate with each

Φ̃
(α)
n+1 configuration an n-body configuration Φ̄

(α)
n , that we will call again the underlying

n-body configuration

Φ̄(α)
n =

[{
x̄⊕, x̄⊖, k̄1, . . . , k̄n

}]
α
, (1.59)
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which is obtained as follows:

• If α ∈ S (i.e. it is a soft region), Φ̄
(α)
n is obtained by deleting the soft parton.

• If α ∈ FSC (i.e. it is a final-state collinear region), Φ̄
(α)
n is obtained by replacing the

momenta of the two collinear partons with their sum.

• If α ∈ ISC (i.e. it is an initial state collinear region), Φ̄
(α)
n is obtained with the same

procedure that leads to eq. (1.51): the collinear parton is deleted, and the momen-

tum fraction of the initial-state radiating parton is replaced with its momentum

fraction after radiation.

In all the above cases, the final-state momenta are relabelled with an index that takes

values in the range 1, . . . , n, and, for ease of notation, we have introduced the context

convention: if an expression is enclosed in the subscripted squared brackets

[
. . .
]
α
, (1.60)

we mean that all variables appearing inside have, when applicable, the superscripts cor-

responding to the subscript of the bracket.

As a consequence of this mapping procedure, the variables in Φ̄
(α)
n are constrained by

momentum conservation

x̄⊕K⊕ + x̄⊖K⊖ =
n∑

j=1

k̄j . (1.61)

Furthermore, for S or FSC regions, we have

x̄© = x̃© , (1.62)

whereas for ISC regions, we have

x̄⊕ < x̃⊕ , x̄⊖ = x̃⊖ , (1.63)

for the ⊕ direction, and the analogous one for the case of ISC in the ⊖ direction.

In the subtraction method one rewrites the contribution to any observable O coming

from real radiation in the following way

∫
dΦn+1 LOn+1(Φn+1) R(Φn+1) =

∑

α

∫
dΦn+1

[
L̃On

(
Φ̄n

)
C(Φn+1)

]

α
+

∫
dΦn+1

{
LOn+1(Φn+1) R(Φn+1) −

∑

α

[
L̃On

(
Φ̄n

)
C(Φn+1)

]

α

}
, (1.64)
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where L̃ = L(x̃⊕, x̃⊖). In this way, under the assumptions we have made about the

counterterms, and the assumption thatO is an infrared-safe observable (eq. (1.53)- (1.55)),

the second term on the r.h.s. of eq. (1.64) is integrable in d = 4 dimensions.

The first term on the r.h.s. of eq. (1.64) contains instead the divergences that have to

cancel against the poles in Vb and G©,b. The choice of the counterterms in eq. (1.58) and

of the mapping (1.57) is crucial, because it should be such that the integrals in the first

term of the r.h.s of eq. (1.64) are easily performed analytically in d dimensions, yielding

a set of terms where divergences appear as poles in ǫ.

For this purpose, by means of the mapping M(α), for each α we parameterize the

(n + 1)-phase space in terms of an n-body phase space (obtained as described earlier),

plus (three) more variables that describe the radiation process:

dΦn+1 = dΦ̄(α)
n dΦ

(α)
rad . (1.65)

The range of the radiation variables in Φ
(α)
rad may depend upon Φ̄

(α)
n . Furthermore,

eq. (1.65) implicitly defines a Jacobian, possibly dependent upon Φ̄
(α)
n , that is supposed

to be included into dΦ
(α)
rad.

To deal with the luminosity in the first term of eq. (1.64), we need to distinguish two

cases: the FSC+S case and the ISC one. In the former case we have

L̃ = L(x̃⊕, x̃⊖) = L(x̄⊕, x̄⊖) . (1.66)

Defining [
C̄
(
Φ̄n

)
=

∫
dΦrad C(Φn+1)

]

α∈{FSC,S}
, (1.67)

we can write the generic term in the first sum on the r.h.s. of eq. (1.64) as follows

[∫
dΦn+1 L̃On

(
Φ̄n

)
C(Φn+1) =

∫
dΦ̄n L̃On

(
Φ̄n

)
C̄
(
Φ̄n

)]

α∈{FSC,S}
. (1.68)

In the ISC case, we cannot factor out the luminosity, since x̃© 6= x̄©. Therefore, we define

[
C̄
(
Φ̄n, z

)
=

∫
dΦrad C(Φn+1) z δ (z − x̄©/x̃©)

]

α∈{ISC©}
, (1.69)

which formally introduces the momentum fraction z, and write

[∫
dΦn+1 L̃On

(
Φ̄n

)
C(Φn+1) =

∫
dΦ̄n

dz

z
L̃On

(
Φ̄n

)
C̄
(
Φ̄n, z

)]

α∈{ISC}
. (1.70)
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Notice that, owing to the delta function in eq. (1.69) we have

L̃ = L(x̃⊕, x̃⊖) =

{ L(x̄⊕/z, x̄⊖) for α ∈ ISC⊕

L(x̄⊕, x̄⊖/z) for α ∈ ISC⊖

. (1.71)

Now we can observe that the variables
{
x̃⊕, x̃⊖, z, k̄1, . . . , k̄n

}
in the ISC regions can

be naturally identified with the Φn,© variables in eqs. (1.47) and (1.48). In fact, the k̄i’s

are integration variables, and can be identified with the ki’s in eqs. (1.47) and (1.48).

Furthermore, the x̃© variables have to coincide with x© in eqs. (1.47) and (1.48), since x©

refers to a singular ISC region and the mapping in eq. (1.57) becomes the identity there.

Therefore, the z variables of eqs. (1.51) and (1.69) are identical, and from eqs. (1.49) and

(1.50), we obtain

dΦn,© = dΦ̄n
dz

z
, (1.72)

where we have performed the change of variables x̄© → x̃©.

We now write eq. (1.56) as

〈O〉 =

∫
dΦn LOn(Φn)

[
B(Φn) + Vb(Φn)

]

+

∫
dΦn+1

{
LOn+1(Φn+1) R(Φn+1) −

∑

α

[
L̃On

(
Φ̄n

)
C(Φn+1)

]

α

}

+
∑

α∈{FSC,S}

[∫
dΦ̄n L̃On

(
Φ̄n

)
C̄
(
Φ̄n

)]

α

+
∑

α∈{ISC©}

[∫
dΦn,© L̃On

(
Φ̄n

)
C̄ (Φn,©)

]

α

+

∫
dΦn,⊕ L̃On

(
Φ̄n

)
G⊕,b(Φn,⊕) +

∫
dΦn,⊖ L̃On

(
Φ̄n

)
G⊖,b(Φn,⊖) . (1.73)

For uniformity of notation, in the last line we have substituted L → L̃, since in the phase

space Φn,© we have x© = x̃©.

It turns out that it is always possible to write

G©,b(Φn,©) +
∑

α∈{ISC©}
C̄(α)(Φn,©) = G©(Φn,©) + δ(1 − z)Gdiv

©

(
Φ̄n

)
, (1.74)

where G©(Φn,©) is finite in d = 4 dimensions.10 The collinear poles coming from ISC

regions cancel in the sum between G©,b and the C̄(α)’s. The only remaining poles in ǫ

are included in the last term of eq. (1.74), and have soft origin. They are the poles

10We point out that G©, although finite, may contain distributions associated with the soft region
z → 1.
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associated to soft divergences in the ISC regions, and they cancel out together with the

other integrated counterterms and the Vb contribution, so that in the quantity

V(Φn) = Vb(Φn) +




∑

α∈{FSC,S}
C̄(α)

(
Φ̄n

)
+ Gdiv

⊕

(
Φ̄n

)
+ Gdiv

⊖

(
Φ̄n

)



Φ̄n=Φn

, (1.75)

all poles in ǫ cancel. With the notation

[
. . .
]Φ̄n=Φn

, (1.76)

we mean that the argument between the brackets is evaluated for values of the phase-space

variables Φ̄n equal to Φn.

Defining now the following abbreviations

R = LR, C(α) = L̃(α) C(α), G© = L̃ G©, B = LB, V = LV , (1.77)

equation (1.73) becomes

〈O〉 =

∫
dΦn On(Φn)

[
B(Φn) + V (Φn)

]

+

∫
dΦn+1

{
On+1(Φn+1) R(Φn+1) −

∑

α

[
On

(
Φ̄n

)
C(Φn+1)

]
α

}

+

∫
dΦn,⊕ On

(
Φ̄n

)
G⊕(Φn,⊕) +

∫
dΦn,⊖ On

(
Φ̄n

)
G⊖(Φn,⊖) , (1.78)

and it is now suited to be integrated numerically, since all the integrals that appear in it

are separately finite and can be evaluated in 4 dimensions.

Results presented in this thesis have been obtained using two popular subtraction

methods: the one by Frixione, Kunszt and Signer, proposed in refs. [16, 17], and the one

by Catani and Seymour, first appeared in ref. [11]. In the following, we describe how

the two methods work, leaving the technical details to the original papers or to their

description given in ref. [2].

1.2.3 Frixione, Kunszt and Signer subtraction

In the approach by Frixione, Kunszt and Signer (FKS), the cross section for the real-

emission is expressed as a sum of terms, each one having at most one collinear and one soft

singularity associated with one parton (called the FKS parton). Furthermore, each of the
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resulting terms is integrated over the full radiation phase space, with a parameterization

suited to handle numerically and analytically the now-isolated singulariti(es).

Isolation of singular regions

The terms are classified as follows, according to the collinear behavior of the FKS parton:

• The singular region associated with the final-state parton i becoming collinear to

the beam axis (ki · k© → 0) or soft (ki → 0) is labeled by i.

• Regions associated with final-state parton i becoming collinear to a final-state parton

j (ki · kj → 0) or soft (ki → 0) are labeled by the pair ij.

The separation of the real emission terms R is achieved by multiplying R with non-

negative functions S of the (n+ 1)-body phase space such that11

∑

i

Si +
∑

ij

Sij = 1 . (1.79)

The S functions are requested to have the following properties:

lim
k0

m→0

(
Si +

∑

j

Sij

)
= δim , (1.80)

lim
~km‖~k©

Si = δim , (1.81)

lim
~km‖~kl

(Sij + Sji) = δimδjl + δilδjm , (1.82)

lim
~km‖~k©

Sij = 0 , (1.83)

which are all consistent with the constrain in eq. (1.79). By a careful analysis of eqs. (1.80)-

(1.83), it turns out that in a given soft region, i.e. if parton m is soft, all Si and Sij with

i 6= m vanish. Instead, for ISC regions, i.e. when parton m becomes collinear to an initial

state parton, the only non-vanishing S function is Sm, that equals one, while for a given

FSC region, i.e. when partons i and j are collinear, only Sij and Sji can differ from zero,

and their sum is one.

11Two options are allowed for the range of the indices in the sums in eq. (1.79). We can let them range
from 1 to (n + 1) (excluding only the i = j possibility in the second sum), or we can assume that the
Si and Sij vanish if the corresponding regions are not singular. In this last case, they are excluded from
the sum. For example, if i is a gluon and j is a quark, we may set to zero Sji, since there is no soft
singularity associated to j becoming soft. Notice that if i and j are both gluons, both terms Sij and Sji

appear in the sum, since both gluons can become soft.
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We now write

R =
∑

i

Ri +
∑

ij

Rij , (1.84)

where

Ri = SiR , Rij = SijR . (1.85)

The Ri terms diverge only in the regions in which parton i is soft and/or collinear to

one of the initial-state partons, since in these regions Rij vanish. Hence, Ri terms need

real counterterms only for these regions. Conversely, the Rij terms are divergent only in

the regions in which parton i is soft and/or collinear to final-state parton j.12

After the (n+1)-body cross section is decomposed as in eq. (1.84), in the FKS method

one chooses a different parameterization of the (n + 1)-body phase space for each term,

in such a way that the singular limits are easily identified:

• In the parameterization associated with Si, the key variables are the energy of parton

i (directly related to soft singularities), and the angle between parton i and one of

the initial-state partons (directly related to initial-state collinear singularities).

• In the parameterization associated with Sij, the important variables are the energy

of parton i and the angle between parton i and j (related to a final-state collinear

singularity).

Obviously, in both cases, a further azimuthal variable is needed.

In the FKS method, the ⊕ and ⊖ collinear regions are both singled out by the Si func-

tions. If one needs to treat the two collinear regions separately,13 the FKS decomposition

can then be refined easily, by replacing Si with two functions S⊕

i and S⊖

i

Si = S⊕

i + S⊖

i , (1.86)

with the properties

lim
~km‖~k©

S©

i = δim , lim
~km‖~k©

S©

i = 0 , (1.87)

that refine eq. (1.81). Eqs. (1.84) and (1.85) are modified accordingly.

12Have we chosen the option of keeping all the possible S functions different from zero, then the Ri

and Rij functions corresponding to non-singular regions would be non-zero, but finite.
13In particular, sometimes in POWHEG one needs to distinguish between the ⊕ and the ⊖ regions. Fur-

thermore, in the single-top implementation described in chapter 4, we have distinguished the two regions.
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S functions

In the original formulation of the FKS subtraction, each real contribution was integrated

by partitioning the phase space into non-overlapping regions. This was obtained by choos-

ing for S sets of θ functions. More recently (see ref. [18]), the method has been applied

using instead smooth S functions. In the following, we outline how to build S functions

systematically.

We first introduce the functions di and dij, where i, j = 1, . . . , n+1, with the following

properties

di = 0 if and only if Ei = 0 or ~ki ‖ ~k⊕ or ~ki ‖ ~k⊖ ,

dij = 0 if and only if Ei = 0 or Ej = 0 or ~ki ‖ ~kj ,
(1.88)

where energies and spatial-momenta are computed in the center-of-mass frame of the

incoming partons. We now introduce the quantity

D =
∑

k

1

dk

+
∑

kl

1

dkl

, (1.89)

and define

Si =
1

D di
, (1.90)

Sij =
1

D dij
h

(
Ei

Ei + Ej

)
, (1.91)

where h is a function such that

lim
z→0

h(z) = 1 , lim
z→1

h(z) = 0 , h(z) + h(1 − z) = 1 . (1.92)

Notice that the h factor is necessary only if one considers both functions Sij and Sji

(which is strictly necessary only if both i and j are gluons). The functions defined in

eqs. (1.90) and (1.91) satisfy by construction the property (1.79) and have the requested

properties (1.80)-(1.83) in the singular limits, due to the vanishing requirements of di’s

and dij’s.

If the separation among the ⊕ and ⊖ collinear regions is needed, we simply need to

introduce the two terms d©

i , with the properties

d©

i = 0 if and only if Ei = 0 or ~ki ‖ ~k© . (1.93)
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In this case, instead of using di’s, the definition of D in eq. (1.89) becomes

D =
∑

k

(
1

d⊕

k

+
1

d⊖

k

)
+
∑

kl

1

dkl

, (1.94)

and S©

i are obtained as follows:

S©

i =
1

D d©

i

. (1.95)

In ref. [2] explicit choices for all the d terms are given. We will specify our choices in

chapter 4, where the POWHEG implementation of single-top production will be described.

NLO differential cross section

The FKS final formula for the expectation value of O is:

〈O〉 =

∫
dΦn On(Φn)

[
B(Φn) + V (Φn)

]

+

∫
dΦn+1On+1(Φn+1) R̂(Φn+1)

+

∫
dΦn,⊕ On

(
Φ̄n

)
G⊕(Φn,⊕) +

∫
dΦn,⊖ On

(
Φ̄n

)
G⊖(Φn,⊖) . (1.96)

In the following we give just the final expressions for the above terms. More details on

their derivation can be found in [2]. For a complete description, we refer to the original

papers [16, 17], although the notation used there is quite different from the present one.

The second term of the r.h.s. of eq. (1.96) is defined as R̂ = L R̂. As explained in the

following, with the notation R̂ we indicate the real contribution R, together with all its

counterterms. For a generic real process R, it has the structure

R̂ =
∑

i

R̂i +
∑

ij

R̂ij , (1.97)

where14

R̂i =
1

ξi

{
1

2

(
1

ξi

)

+

[(
1

1 − yi

)

+

+

(
1

1 + yi

)

+

] [(
1 − y2

i

)
ξ2
i Ri

]}
(1.98)

14In the description of the FKS method reported here, we assume for the parameters ξc and δI,O the
values 1 and 2.
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for terms associated with ISC regions, and

R̂ij =
1

ξi

{(
1

ξi

)

+

(
1

1 − yij

)

+

[
(1 − yij) ξ

2
i Rij

]}
(1.99)

for terms having FSC singularities. If we need to separate the ⊕ and ⊖ collinear regions,

as discussed at the end of sec. 1.2.3, we have

R̂ =
∑

i

(
R̂⊕

i + R̂⊖

i

)
+
∑

ij

R̂ij , (1.100)

R̂©

i =
1

ξi

{(
1

ξi

)

+

(
1

1 ∓ yi

)

+

[
(1 ∓ yi) ξ

2
i R©

i

]}
. (1.101)

The variables ξi, yi in eqs. (1.98) and (1.101) and ξi, yij in eq. (1.99) are variables suited

to parameterize the radiation kinematics of the FKS parton i, in case of initial or final

state singularities respectively. Their exact definition is

ξi =
2k0

i√
s
, yi = cos θi , yij = cos θij , (1.102)

where θi is the angle of parton i with the incoming parton ⊕, and θij is the angle of parton

i with parton j.15 The singular limits are then approached when ξi → 0 (soft region),

yi → ±1 (ISC region) and yij → 1 (FSC region).

For sake of completeness, we report the expression for the (n + 1)-body phase space,

that, in both the ISC and FSC regions, can be written as

dΦn+1 = (2π)d δd

(
k⊕ + k⊖ −

n+1∑

i=1

ki

)[
∏

l 6=i

dd−1kl

(2π)d−1 2k0
l

]

× s1−ǫ

(4π)d−1
ξ1−2ǫ
i

(
1 − y2

)−ǫ
dξi dy dΩ

d−2 ,

(1.103)

where y,Ω stands for either yi, Ωi or yij, Ωij . The transverse angular variables dΩd−2
i are

relative to the collision axis, while dΩd−2
ij are relative to the direction of parton j.

The fundamental observation is that now the terms [(1 − y2
i ) ξ

2
i Ri] and [(1 − yij) ξ

2
i Rij ]

are finite in the ISC and FSC regions labelled by their subscripts. Hence, the action of

15We remind that all variables are computed in the center-of-mass frame of the incoming partons.
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the plus distributions in eqs. (1.98) and (1.99), defined as

∫ 1

0

dξ f(ξ)

(
1

ξ

)

+

=

∫ 1

0

dξ
f(ξ) − f(0)

ξ
, (1.104)

∫ 1

−1

dy f(y)

(
1

1 ∓ y

)

+

=

∫ 1

−1

dy
f(y) − f(±1)

1 ∓ y
, (1.105)

is well behaved.

Moreover, we also notice that each of the terms outlined above is also finite in the

whole phase space, since each S has to vanish exactly in correspondence of all the other

singular regions.

The final expression in eq. (1.97) (or eq. (1.100)) involves only non-divergent terms,

so it can be safely integrated over the full radiation phase space.16 The important point

is that each real contribution has to be integrated using the phase space parameterization

suited for its singular structure, so that divergences are subtracted by plus distributions.

In the FKS method, therefore, we can say that real counterterms are automatically gen-

erated by the action of the plus distributions contained in R̂.

To write the final expression for the soft-virtual term V (Φn) in eq. (1.96), we need to

fix the notation and the convention for the divergent term Vb. The virtual contribution

Vb of eq. (1.73) can be expressed as

Vb = N αS

2π

[
−
∑

i∈I

(
1

ǫ2
Cfi

+
1

ǫ
γfi

)
B +

1

ǫ

∑

i,j∈I

i6=j

log
2ki ·kj

Q2
Bij + Vfin

]
, (1.106)

where

N =
(4π)ǫ

Γ(1 − ǫ)

(
µ2

Q2

)ǫ

. (1.107)

With I we label the n + 2-parton involved in an n-body process:

I = {⊕,⊖, 1, . . . , n} . (1.108)

16Before proceeding, we remark that the integration can be performed over the d = 4 version of the
phase space in eq. (1.103), as suggested in the original FKS papers. This is however not necessary. Any
parameterization of the phase space that allows a simple handling of the distributions is acceptable. This
freedom has been exploited in [2], in order to simplify the formulation of the POWHEG method in the case
of the Rij contributions, where the choice of the azimuthal variable is different from that of eq. (1.103).
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The quantities Bij are the so-called color-correlated Born amplitudes, defined as

Bij = − 1

2s

1

NsymD⊕D⊖ S⊕ S⊖

∑

spins
colors

M{ck}

(
M†

{ck}

)
ci→c′i
cj→c′j

T a
ci,c′i

T a
cj ,c′j

. (1.109)

Here M{ck} is the Born amplitude, with the color indexes of all the involved particles I left

exposed, and collectively indicated as {ck}. The suffix on the parentheses that enclose

M†
{ck} indicates that the color indices of partons i, j ∈ I are substituted with primed

indices in M†
{ck}. Furthermore, Nsym is the symmetry factor for identical particles in the

final state, D© are the dimension of the color representations of the incoming partons (3

for quarks and 8 for gluons), and S© are the number of spin states. The factor 1/(2s) is

the flux factor. We assume summation over repeated color indexes (ck for k ∈ I, c′i, c
′
j

and a) and spin indices. For gluons T a
cb = ifcab, where fabc are the structure constants of

the SU(3) algebra. For incoming quarks T a
αβ = taαβ , where t are the color matrices in the

fundamental representation, normalized as in eq. (1.8). For antiquarks T a
αβ = −taβα. It is

easy to see that, from color conservation, Bij satisfies

∑

i∈I,i6=j

Bij = Cfj
B . (1.110)

The symbol fi denotes the flavour of parton i, i.e. g for a gluon, q for a quark and q̄

for an antiquark. We define

Cg = CA , Cq = Cq̄ = CF , (1.111)

γg =
11CA − 4TF nf

6
, γq = γq̄ =

3

2
CF , (1.112)

γ′g =

(
67

9
− 2π2

3

)
CA − 23

9
TF nf , γ′q = γ′q̄ =

(
13

2
− 2π2

3

)
CF . (1.113)

In case i is a colorless particle all the above quantities are zero.

Notice that, in the second sum on the r.h.s. of eq. (1.106), we sum over i 6= j, and

thus, since Bij is symmetric, each term appears twice in the sum. The definition of the

finite part Vfin depends upon the definition of the normalization factor N , for which we

have adopted the common choice of eq. (1.107), and from the regularization scheme, that

we assume to be the standard conventional dimensional regularization (CDR).17 Finally,

in eq. (1.106), µ2 is the renormalization scale, and Q2 is an (arbitrary) physical scale

17When the dimensional reduction (DR) scheme is used, we have Vfin = VDR
fin

− αS/(2π)B∑i∈I γ̃(fi),
where γ̃(g) = Nc/6 and γ̃(q) = (N2

c − 1)/(4Nc).
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that is factored out from the virtual amplitude, in order to make the normalization N
dimensionless (thus Vfin depends upon µ2 and Q2).

The soft-virtual term in eq. (1.96), according to the FKS method, is given by

V = LV , V =
αS

2π

(
QB +

∑

i,j∈I

i6=j

Iij Bij + Vfin

)
. (1.114)

The quantities Q and Iij depend on the flavours and momenta of the incoming and

outgoing partons. If the couple ij refers to massless colored particles, then they are

defined as follows:

Q =
n∑

i=1

[
γ′fi

− log
s

Q2

(
γfi

− 2Cfi
log

2Ei√
s

)
+ 2Cfi

(
log2 2Ei√

s

)
− 2γfi

log
2Ei√
s

]

− log
µ2

F

Q2

[
γf⊕ + γf⊖

]
, (1.115)

Iij =
1

2
log2 s

Q2
+ log

s

Q2
log

kj ·ki

2EjEi

− Li2

(
kj ·ki

2EjEi

)

+
1

2
log2 kj ·ki

2EjEi

− log

(
1 − kj ·ki

2EjEi

)
log

kj ·ki

2EjEi

, (1.116)

where s = (k⊕+k⊖)2 and Ei is the energy of parton i in the partonic center-of-mass frame.

We finally report the expressions for the initial-state collinear remnants that appear

in eq. (1.96). For each real process that has ISC singularities, we have a term G⊕ = L̃ G⊕

(and a corresponding term G⊖ = L̃ G⊖ for the ⊖ collinear region), where

Gf⊕f⊖
⊕

(z) =
αS

2π

∑

f ′
⊕

{
(1 − z)P f⊕f ′

⊕(z, 0)

[(
1

1 − z

)

+

log
s

µ2
F

+ 2

(
log(1 − z)

1 − z

)

+

]

−
[
∂P f⊕f ′

⊕(z, ǫ)

∂ǫ

]

ǫ=0

−Kf⊕f ′
⊕(z)

}
Bf ′

⊕f⊖(z) , (1.117)

for a process in which an incoming parton ⊕ of flavour f⊕ splits into a parton f ′
⊕

(with

fraction z of the incoming momentum) that enters the Born process B. The superscripts

on B denote the flavours of the incoming parton, and the z dependence is to remind that

the incoming ⊕ momentum is rescaled. The distributions are defined as in eq. (1.104),

with ξ = 1 − z. The functions P (z, ǫ) are the leading-order Altarelli-Parisi splitting
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functions in d = 4 − 2ǫ dimensions, given by

P qq(z, ǫ) = CF

[
1 + z2

1 − z
− ǫ(1 − z)

]
, (1.118)

P qg(z, ǫ) = CF

[
1 + (1 − z)2

z
− ǫz

]
, (1.119)

P gq(z, ǫ) = TF

[
1 − 2z(1 − z)

1 − ǫ

]
, (1.120)

P gg(z, ǫ) = 2CA

[
z

1 − z
+

1 − z

z
+ z(1 − z)

]
. (1.121)

The distributions Kff ′

control the change of scheme in the evolution of parton distribution

functions. They are defined in ref. [16], and equivalently, with the notation Kff ′

F.S. in

ref. [11]. They are identically zero in MS.

1.2.4 Catani and Seymour subtraction

In the subtraction method proposed by Catani and Seymour, the subtraction of real

divergences is performed by adding to each real squared amplitude a set of counterterms,

called dipoles. At variance with the FKS approach, in the Catani-Seymour (CS) formalism

there is no need to separate a real contribution R into terms that have at most one

collinear and one soft singularity. This is due to the fact that the set of dipoles, integrated

together with the real term, contains all the counterterms needed to handle, numerically,

with all the possible singular regions. In the following, we give a description of the

method, focusing only on the aspects relevant for its application in the context of single

vector-boson hadroproduction, which will be described in chapter 3. For a fully general

description of the method, we refer to [11].

Dipoles and singular regions

A dipole is a function of the (n + 1)-body phase space Φn+1, labelled by the indexes of

three partons: the emitted, the emitter and the spectator parton (the last two forming the

dipole). In the dipole formulation, each singular region (S, ISC or FSC) can be basically

identified by the couple emitter-emitted. Hence, a singular region receives, in general,

contributions by several dipoles, differing among each other by the spectator parton. The

real counterterms C(α) introduced in sec. 1.2.2 are then more naturally associated with

dipoles, rather than singular regions. Unfortunately, this feature makes the CS subtraction

method less natural than the FKS one for POWHEG applications, for reasons that we will
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briefly explain in sec. 2.3.5.

The maps M(α) of eq. (1.57) in the dipole formulation are constructed in such a

way that, in most cases, they affect only the momenta of the dipole partons, and all other

momenta remain unchanged, the only exception being when the emitter and the spectator

are the two incoming partons.

For the purpose of this thesis, we need just to use dipoles associated to initial state

singularities, with an initial state spectator. The relevant expressions for these dipoles and

the corresponding phase space parameterizations are given in chapter 3, while a complete

treatment of all the other possibilities can be found in [2]. Here we just mention that,

in the CS approach, initial state singularities associated with emissions from the ⊕ and

the ⊖ leg have to be treated separately, since two distinct phase space parameterizations

are needed, the mappings being different. Other subtleties related to the use of the CS

subtraction in the POWHEG framework will be described in the following (see chapter 2

and 3).

NLO differential cross section

The CS final formula for the expectation value of O is then formally identical to the one

given in eq. (1.78), where C(α) are the relevant dipoles for the real subprocess at hand,

and the index α runs over all the relevant dipoles, instead that over the singular regions.

A concrete example of this will be given when describing the POWHEG implementation of

the single vector-boson hadroproduction (see eq. (3.34)).

In the following, we give the relevant formulae for the soft-virtual term V, and the

collinear remnants G©.

For the soft-virtual contribution, the relevant formulae can be found in eqs. (C.27)

and (C.28) of the original paper [11]. When translated in the notation used throughout

this thesis, for V we obtain the following expression:

V =
αS

2π

{

Vfin −
∑

i,j∈I

i6=j

[
1

2
log2 Q2

2ki · kj
+
γfi

Cfi

log
Q2

2ki · kj

]
Bij +

∑

i∈I

[
−π

2

3
Cfi

+ γfi
+Kfi

]
B
}

,

(1.122)

where the conventions for the virtual term Vfin are the same of those described in the FKS

case (see eq. (1.106)).

The collinear remnant for the ⊕ region, for incoming partons of flavours f⊕, f⊖, is given
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by (see eq. (10.30) of ref. [11])

Gf⊕f⊖
⊕

(z) =
αS

2π

∑

f ′
⊕

{[
K

f⊕f ′
⊕(z) −K

f⊕f ′
⊕

F.S. (z)
]
Bf ′

⊕f⊖(z)

− δf⊕f ′
⊕

n∑

i=1

γfi

Cfi

[(
1

1 − z

)

+

+ δ(1 − z)

]
Bf ′

⊕f⊖
i⊕ (z) +

1

Cf ′
⊕

K̃f⊕f ′
⊕(z)Bf ′

⊕f⊖
⊖⊕ (z)

− P f⊕f ′
⊕(z)

1

Cf ′
⊕

∑

i∈I

i6=⊕

Bf ′
⊕f⊖

i⊕ (z) log
µ2

F

2 z k⊕ · ki

}
, (1.123)

where the superscripts in B (and Bij) single out a given flavour combination for the

incoming partons in the Born amplitude and in its color-correlated components.

An analogous expression holds for G⊖. The definition of the functions K, K̃ and

KF.S. is given in appendix C of ref. [11], whereas P f⊕f ′
⊕(z) is the usual, four-dimensional

Altarelli-Parisi splitting kernel.
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1.3 Parton Showers and Monte Carlo event genera-

tors

In the previous section, we described the formalism used to perform fixed-order calcu-

lations. In particular, we have seen how the full inclusion of NLO corrections can be

achieved, both for the total cross section and for more exclusive observables.

This section is instead devoted to the description of Monte Carlo event generators

based on Parton Showers (PS). Often, we will refer to them also as Shower Monte Carlo

programs (SMC). A discussion about the differences among the two approaches in de-

scribing high-energy processes at hadron colliders is postponed to the next chapter. The

content of this section is based mainly on [3].

1.3.1 Generalities

Shower Monte Carlo programs are computer programs aimed to give a realistic descrip-

tion of hadronic collisions.18 They work by describing, sequentially, the stages between

the collision of the incoming hadrons and the hadronization of outgoing partons. The

underlying idea is that each stage is assumed to be weakly dependent from the others,

since each stage takes place at its own energy scale, which differs from the others’ ones.19

We can summarize the various steps as follows, starting from the one that involves

higher energy scales:

1. Hard scattering generation

A Standard Model (or Beyond Standard Model) process is simulated by generating

the momenta of the incoming and outgoing particles, according to low-multiplicity,

tree-level, matrix elements.

2. Parton Shower algorithm

After the generation of a partonic event, the dominant perturbative QCD effects

are simulated by means of a Markovian algorithm, called shower algorithm. In

this stage, multiple radiation off colored particles is generated, giving an accurate

description of the radiation pattern in the logarithmic-enhanced regions.

18In this thesis, our perspective will be focused on collider Physics, although SMC programs are largely
used also in the context of e+e− annhilation.

19The exact definition of this separation is to some extent arbitrary, since it does not come from first
principles. Nevertheless, experience shows that the idea of describing processes with different typical
scales separately is adequate also in this case.
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3. Hadronization model

The many-partons final state (generated according to the steps 1 and 2) is converted

into a set of outgoing hadrons, according to a phenomenological model, tuned on

real data.

4. Underlying event generation - Unstable hadrons decay

An underlying event is superimposed onto the generated event, according to some

reasonable principle. If at the end unstable hadron have been generated, then they

are decayed, taking into account their branching ratios.

In the following, we focus mainly on the shower stage: we give a theoretical formulation

of it, and we explain how the algorithm is pratically implemented. For this purpose, we

begin by describing multiple emissions in the leading-logarithmic collinear approximation.

This allows to find a recipe to associate a weight for each given final state, generated by

dressing an elementary hard scattering process with further emissions.

1.3.2 Leading-Logarithm calculation of multiparticle production

Ideally, in order to describe exclusive, high-multiplicity final states, one has to sum the

perturbative expansion to all orders in αS. In practice, this is possible if we limit our-

selves to the most singular terms of the perturbative expansion, that are related to the

logarithmic enhancement due to collinear and soft singularities. The shower algorithm

is basically a method for the computation of this potentially infinite set of logarithmic

enhanced Feynman graphs

Multiple emissions

In section 1.1.3 we showed how QCD amplitudes factorize in the collinear limit. By mul-

tiplying both sides of eq. (1.31) for the same flux factor (and for symmetry factors, in case

of indistinguishable final state particles), it is straightforward to derive the corresponding

relation for the (n+ 1)-body partonic cross section:

dσn+1 = dσn
αS

2π

dt

t
Pi→jk(z) dz

dφ

2π
, (1.124)

where dσn denotes the partonic differential cross section for a n-body final state. We have

also introduced the exclusive, unregularized Altarelli-Parisi splitting kernels Pi→jk. They

are defined, in terms of the standard Altarelli-Parisi splitting functions given in eq. (1.36),
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as

Pq,qg(z) = Pqq(z) = Pqg(1 − z) ,

Pg,qq̄(z) = Pgq(z) ,

Pg,gg(z) =
1

2
Pgg(z) . (1.125)

The factorization of eq. (1.124) holds as long as the angle (or, more generally, the

t variable) between the collinear partons is the smallest in the whole amplitude. Thus,

it follows that the factorization formula (1.124) can be applied recursively, if a strong

ordering between the hardness variables holds. This is shown pictorially, for two q → qg

splittings, in figure 1.2, where we assume that the two angles become small, maintaining

the ordering relation, θ′ ≫ θ → 0.

Figure 1.2: Strongly ordered multiple emissions.

For two collinear splittings, the n + 1 cross section can then be written as

dσn+1 → dσn−1

(
αs

2π

dt′

t′
Pi′→j′k′(z′)dz′

dφ′

2π

)(
αs

2π

dt

t
Pi→jk(z)dz

dφ

2π

)
Θ(t′ − t) , (1.126)

where we have assumed two generic splittings i → jk and i′ → j′k′. At this point, it

is easy to show that contributions coming from high-multiplicity QCD amplitudes, when

integrated over the strong ordered region, are of the same order of magnitude of the

(underlying) hard process they originated from (the blob in fig. 1.2), even if formally they

are subleading by powers of the coupling constant αS. In fact, by extending eq. (1.126)

to n emissions and integrating the corresponding expression over a strong ordered region,

we find that the cross section for emitting n extra partons goes as

σn ≈ σ0α
n
S

∫
dt1
t1

dt2
t2
. . .

dtn
tn

× θ(Q2 > t1 > t2 > . . . > tn > t0) = σ0
1

n!
αn

S logn Q
2

t0
,

(1.127)



1.3. Parton Showers and Monte Carlo event generators 37

where σ0 denotes the cross section for the hard scattering, Q is an upper limit for the

virtualities in the splitting processes and t0 is an infrared cutoff. In hadronic collisions,

Q is of the same order of the typical energy scale of the hard process, while the natural

choice for
√
t0 is to use a scale of the order of the hadronization scale, which means of the

same order of ΛQCD (see sec. 1.1.2). The θ function here is defined to be equal to 1 if its

argument is true, zero otherwise.

Before commenting on the above result, it is worthwile to recall the approximations

that we made in deriving eq. (1.127):

• We have used as upper bound for the integration over t the scale Q. At this energy

scale, however, the collinear approximation is no longer reliable.

• We have just kept track of logarithms coming from collinear splittings, neglecting

all the other factors of order one, as long as spin correlations between different

splittings.

• We have not discussed possible effects coming from the use of a running coupling

constant evaluated at different energy scales for each splitting.

• We have also neglected the presence of soft divergences, which are however present

in the splitting kernels. For the purpose of this section, we can assume that they

are regularized by a tiny parameter δ, i.e. by the substitutions:

1

1 − z
→ 1

1 − z + δ
,

1

z
→ 1

z + δ
. (1.128)

We will deal with all the above issues in the following. However, neither of them affects the

leading-logarithm accuracy of the result. Hence, the above argument shows that σn ≈ σ0,

since at the end of the calculation the natural choice for the renormalization scale is Q,

and therefore αS(Q
2) log(Q2/t0) ≃ 1. This means that all the contributions corresponding

to strong ordered emissions have to be treated on the same ground, irrespectively of the

number of emissions: the Parton Shower algorithms are the pratical way to achieve this

purpose.

We notice that this collinear approximation is sometimes called Leading-Log (LL)

collinear approximation, since it yields contributions which go as (αS log(Q2/t0))
n, as we

derived in eq. (1.127).

We also notice that, from eq. (1.124), it is straightforward to interpret the quantity

αS(t)

2π

dt

t
Pi→jk(z) dz

dφ

2π
(1.129)
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as the differential probability for the splitting i→ j, k to take place, with the emission of

a particle of type j into the phase space volume dt dz dφ. The use of a strong coupling

evaluated at the scale t is reasonable, since this is the typical scale of the splitting process

itself. More details on this point will be given in the following.

Counting logs

The leading-logarithmic approximation requires some more explanation, that can be easily

understood by looking at the simplified factorization formula

dσ1 ≈ dσ0
dt

t
, (1.130)

that holds when t≪ Q2, Q being the typical scale of σ0. We have

∫
dσ1 = σ0

∫
dt

t
θ(Q2 > t > t0) + O(1) = σ0 log

Q2

t0
+ O(1) , (1.131)

which follows from the fact that in the difference
∫
dσ1 − σ0

∫
dt

t
(1.132)

the singularity for small t cancels, and the difference must be of order 1. Therefore, even

if we have said that the factorization formula holds for t ≪ Q2, we can integrate it for

t up to Q2, if we are interested in the leading-logarithm result. This is the reason why

the first two approximations we listed above do not affect the validity of eq. (1.127).

Furthermore, concerning the third approximation, it is easy to see that different choices

for the argument of αS would produce terms that are subleading with respect to the LL

accuracy. In fact, one can always use eq. (1.24) to perform the expansion

αS(Q
′2) = αS(Q

2)

(
1 − b0αS(Q

2) log
Q′2

Q2
+ O(α2

S
)

)
. (1.133)

Hence, using different scales would produce terms ∼ α2
S
log, which are subleading with

respect to the collinear LL ones, that go as ∼ αS log.

Splitting kinematics

From eq. (1.124), we see that the definition of t and z is to some extent arbitrary. In fact

dt/t is invariant if we change t by some (possibly z dependent) scale factor, and for z the
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only requirement is that eq. (1.34) is satisfied in the collinear limit. For the z variable we

can define, for example,

z =
k0

k0 + l0
, (1.134)

or, more generally,

z =
k · n̂

k · n̂+ l · n̂ , (1.135)

that reduces to the definition (1.134) for n̂ = (1,~0), and is perfectly acceptable as long as

n̂ does not coincide with the collinear direction. Instead, for t the following three choices

are all valid:

virtuality : t = (k + l)2 ≈ E2θ2z(1 − z), (1.136)

transverse momentum : t = k2
⊥ = l2⊥ ≈ E2θ2z2(1 − z)2, (1.137)

angular variable : t = E2θ2 , (1.138)

where E ≈ (k + l)0, θ is the angle between ~k and ~l and the ≈ relations hold for small θ.

The corresponding kinematics is illustrated in fig. 1.3.

Figure 1.3: Kinematic variables for a splitting process.

Alternative choices in the definition of t and z make a difference in subleading terms

in eq. (1.124), because these terms are non-singular when t → 0. Therefore, the leading-

log structure of collinear emissions is independent from this choice. However, when soft

divergences are fully considered, i.e. when the cutoff δ in eq. (1.128) approaches zero, then

the choice of t and z affects the double-log structure of multiple emissions. We discuss

this issue in sec. 1.3.7.

The shower recipe

In what we discussed so far, we have not mentioned virtual contributions. However, in

sec. 1.2, we showed that, in fixed order calculations, they are responsible for the cancel-

lation of divergences coming from real contributions. Hence, order by order, they yield

terms comparable with the corresponding radiative counterpart. For consistency, we need
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to include also them in the description of multiparticle radiation, at least with the same

accuracy of the real contributions.

In the following, we give the recipe for the calculation of multiparticle cross section,

with the inclusion of virtual corrections, at the leading-log level. This brings to the

definition of the Parton Shower algorithm.

We begin by specifying how to construct all possible event structures, for a given hard

process (the Born process):

i. We choose a Born kinematics.

ii. For each colored parton produced in the hard interaction, we build all possible tree-

level graphs that can arise from it. These are obtained by letting each quark to split

into a qg pair and each gluon to split into a gg or qq̄ pair.

iii. We associate to each splitting vertex in the graph the corresponding t, z, and φ values.

iv. We impose that the t variables are ordered: the t for splittings near the hard process

must be less than the hard process scale Q2, and all subsequent t’s are in decreasing

order as we go toward the branches of the tree-graph.

v. Given the initial hard parton momenta, and the t, z and φ variables at each splitting

vertex, all the momenta in the tree graph are reconstructed.

We now specify the weight to be assigned to the given configuration:

a) The hard process has weight equal to its differential (Born level) cross section.

b) Each vertex has the weight

θ(t− t0)
αS(t)

2π

dt

t
Pi,jk(z) dz

dφ

2π
, (1.139)

where the one-loop evolution (1.25) for the strong coupling is assumed.20 In order not

to reach unphysical values of the running coupling constant, we inserted a θ function in

eq. (1.139), where the infrared cutoff t0 is assumed to be larger than Λ2
QCD

. We already

mentioned the physical meaning of this cutoff: it is associated with the hadronization

scale, i.e. the scale at which the perturbative approach fails, and some hadronization

model is needed. The upper bound is determined by the t ordering of point (iv).

20More details on this point will be given later.
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c) Each line in the graph has weight ∆i(t
′, t′′), where t′ is the t value associated with the

upstream vertex, t′′ with the downstream vertex, and

∆i(t
′, t′′) = exp



−
∑

(jl)

∫ t′

t′′

dt

t

∫ 1

0

dz
αS(t)

2π
Pi,jl(z)



 . (1.140)

In case the line is a final one, t′′ is replaced by the infrared cutoff t0. The weights

∆i(t
′, t′′) are called Sudakov form factors. They represent all the dominant (leading-

log) virtual corrections to the tree graph.

Before going on, we find useful to make here a couple of comments:

• At the end of this procedure, some hadronization model will be invoked, in order

to convert the showered final state partons into hadrons. For the purpose of this

section, we can neglect the hadronization stage, which we will discuss briefly in

sec. 1.3.9. Therefore, here we consider initial and final states as made of partons.

• The final momentum assignemnt of step (v) is ambiguous, since a parton line ac-

quires a positive virtuality larger than its mass, if it is followed by a splitting. Hence,

to enforce energy and momentum conservation at each splitting, the momenta of the

splitting parton has to be slightly changed. The common procedure implemented in

SMC programs to take these effects into account is commonly known as momentum

reshuffling, and it does not affect the leading-logarithmic structure of the result.

We stated that Sudakov form factors are needed to include virtual corrections in the

shower algorithm. This is better understood when one interprets them in a probabilistic

way: as we will see later, ∆i(t
′, t′′) corresponds to the probability that no emissions off

the particle i takes place, between the two scales t′ and t′′ (see eq. (1.153)). Here, we

limit ourselves to notice that kinematic configurations containing lines with very large

differences between upstream and downstream hardness variables are suppressed. In fact,

using eq. (1.25), we can estimate

∆i(t
′, t′′) ≈ exp

[
−C

∫ t′

t′′

dt

t

1

log t
Λ2

QCD

]
=




log t′′

Λ2

QCD

log t′

Λ2

QCD




C

, (1.141)

which becomes very small if t′ ≫ t′′. Hence, Sudakov form factors suppress configurations

that have no radiation down to very small scales. The typical behaviour of ∆(t′, t′′) as a

function of t′′ is reported in fig. 1.4.
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Figure 1.4: Typical behaviour of the Sudakov form factor ∆(t′, t′′). Here the independent
variable is t′′, while t′ is to be considered fixed.

1.3.3 Formal representation of a shower

In this section we give a theoretical formulation of the Parton Shower algorithm and derive

some of the fundamental properties that Parton Showers have.

For ease of notation, we introduce the symbol

Si(t, E) = , (1.142)

to represent the ensemble of all possible showers originating from parton i at a scale t.

We can think of Si(t, E) as a function defined on the set F of all final states (by final

state we mean here a set of partons with specific momentum assignments), yielding the

weight of the shower for that particular final state. The notation S inc
i (t, E) is a shortcut

to indicate the total weight of the shower attached to parton i, that means

S inc
i (t, E) =

∑

F
Si(t, E), (1.143)

wher we mean sum over all possible final states F that can be originated from the parton

i. Of course, F is not a discrete set, so, rather than a sum we should have a sum over the

number and type of final state particles and an integral over their momenta. Alternatively

we may imagine to divide the phase space into small cells, so that F can be thought as a

discrete set, and the sum notation is appropriate.
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Shower equation

The rules given in items (i-v) imply a recursive equation, that is illustrated in the following

graphical equation

. (1.144)

The meaning is quite intuitive: the set of all possible shower histories is obtained by adding

the case in which no branching takes place to the case where one branching occurs, followed

recursively by two showers starting at smaller energies and scales. Sudakov form factors

are represented by the small blobs along the lines, while the blob connecting the i, j, l

partons is the splitting probability. Notice that the phase spaces of the two independent

showers, after the splitting, do not overlap in our collinear approximation, because of the

strong ordering among subsequent t variables.

The mathematical translation of eq. (1.144) is given by the equation

Si(t, E) = ∆i(t, t0)Si(t0, E)+

∑

(jl)

∫ t

t0

dt′

t′

∫ 1

0

dz

∫ 2π

0

dφ

2π

αS(t′)

2π
Pi,jl(z) ∆i(t, t

′)Sj(t
′, zE)Sl(t

′, (1 − z)E) , (1.145)

where the two terms correspond to the terms in the figure: no branching, plus one branch-

ing followed by two showers. Hence, Si(t0, E) represents a final state made by the incoming

particle i alone, since no branching is possible below t0.

By deriving eq. (1.145), we can easily see that S satisfies the differential equation

t
∂Si(t, E)

∂t
=

∑

(jl)

∫ 1

0

dz

∫ 2π

0

dφ

2π

αS(t)

2π
Pi,jl(z) Sj(t, zE)Sl(t, (1 − z)E)

+



−
∑

(jl)

∫ 1

0

dz
αS(t)

2π
Pi,jl(z)



Si(t, E) . (1.146)

Eq. (1.146) has the following meaning: if we raise the scale of the process by an infinites-

imal amount, the shower has a larger probability to split into two subshowers (the first
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term on the right hand side), and a smaller probability to remain the same (the second

term). By summing eq. (1.146) over all possible final state, we see that S inc
i (t, E) obeys

the equation

t
∂S inc

i (t, E)

∂t
=

∑

(jl)

∫ 1

0

dz
αS(t)

2π
Pi,jl(z)S

inc
j (t, zE)S inc

l (t, (1 − z)E)

+



−
∑

(jl)

∫ 1

0

dz
αS(t)

2π
Pi,jl(z)



S inc
i (t, E). (1.147)

We immediately see that S inc
i (t, E) = 1 satisfies the above equation, and is also consistent

with the obvious initial condition S inc
i (t0, E) = 1. We thus state the shower unitarity

property:

S inc
i (t, E) = 1. (1.148)

This property is at the basis of the formulation of Shower Monte Carlo algorithms. It

implies that the total cross section computed at the Born level is equal to the total multi-

particle cross section. Of course, this statement holds in the approximation we are working

with, and is obviously non-true in general: for example, in fixed-order calculations, the

Born cross section is not equal to the full NLO cross section, which contains also the real

term, where the contribution of one extra emission is fully included. Here, instead, we are

only considering collinear-enhanced corrections, so we should state more precisely that

the net effect of collinear-enhanced processes is one, when we sum over all processes. It

is also instructive to check unitarity by expanding the shower order by order in αS. For

example, at the first order in αS, we may have at most a single splitting. When we sum

over all final states reached by parton i, we should thus consider only final states with

one or two partons. For the one parton final state, the shower weight is given by the first

order Taylor expansion of the Sudakov form factor:

∆i(Q, t0) = 1 −
∑

(jl)

∫ Q

t0

dt

t

∫ 1

0

dz
αS

2π
Pi,jl(z) + O(α2

S) . (1.149)
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The total weight for a two parton final state is instead given by

∫ Q

t0

dt

t
∆i(Q, t)




∑

(jl)

∫ 2π

0

dφ

2π

∫ 1

0

dz
αS

2π
Pi,jl(z)



∆j(t, t0)∆l(t, t0)

=

∫ Q

t0

dt

t

∑

(jl)

∫ 1

0

dz
αS

2π
Pi,jl(z) + O(α2

S) , (1.150)

and the sum of the two weights yields 1, as expected. From the above argument, one

can see that the exact form for the integrand in the Sudakov form factor is dictated by

the fact that collinear singularities, according to the KLN theorem, must cancel order by

order.

From the shower unitarity property, it follows that the sequence of branching processes

can be implemented with a Markovian algorithm, since the total weight of two subshowers

initiated after a given splitting is one. Hence, each of the two showers evolves indepen-

dently from the other one, and without affecting the branching process it originated from,

which is clearly the basic requirement needed to build a Markovian algorithm.

1.3.4 Shower algorithm for final state radiation

It is apparent now that the development of the shower can be computed numerically using

a simple probabilistic algorithm. We already interpreted the expression

αS(t′)

2π

dt′

t′
Pi,jl(z) dz

dφ

2π
(1.151)

as the elementary probability for the branching i→ jl. Thus,

dPemiss
i (t′) =

αS(t′)

2π

dt′

t′

∑

(jl)

∫
dzPi,jl(z) (1.152)

is the probability for the parton i to undergo a branching in the dt′ interval.

The expression for the Sudakov form factor can be easily recovered by calculating the

probability of having no emissions at all between two scales t and t′. In fact, dividing

the [t, t′] interval into N small subintervals of width δt, and calling tk the center of each
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subinterval, we have

Pno emiss
i (t→ t′) ≃

N∏

k=1

(
1 − dPemiss

i (tk)
)

=
N∏

k=1



1 − αS(tk)

2π

δt

tk

∑

(jl)

∫
Pi,jl(z) dz

dφ

2π



 ,

(1.153)

that reduces to the Sudakov form factor ∆i(t, t
′) in the continuum limit N → +∞. Indeed,

we can state that, in Parton Showers, virtual corrections are included in a probabilistic

way: a Sudakov form factor corresponds to the probability of having non-resolvable emis-

sions in a given [t, t′] interval.

As a obvious consequence of the probabilistic interpretation, the probability that,

starting at the scale t, the first branching from the parton i is in the phase space element

dt′ dz dφ, is then

dP1st

i (t→ t′) = ∆i(t, t
′)
∑

(jl)

αS(t′)

2π

dt′

t′
Pi,jl(z) dz

dφ

2π
, (1.154)

i.e. it is the product of the no-branching probability from the scale t down to t′ times the

branching probability in the interval dt′ dz dφ. This is precisely equivalent to our shower

recipe, if we remember that, because of unitarity, the total weight associated to further

branchings of partons j and l is 1.

At this point, it is fundamental to notice that the r.h.s. of eq. (1.154), when integrated

over z and φ, can be expressed as the exact differential of the Sudakov form factor, where

the differential is assumed to be taken with respect to t′:

dP1st

i (t→ t′) = d∆i(t, t
′) . (1.155)

Hence, for a given leg of flavour i and virtuality t, one can obtain the value t′ at which the

next splitting happens by simply pick a random number, equal it to the Sudakov factor

∆i(t, t
′) and solve the equation for t′. Indeed, the general algorithm for process generation

goes as follows:

a) Generate a hard process configuration, with a probability that is proportional to its

parton-level Born cross section. In this case, the scale Q has to be the typical scale of

the hard process at hand.

b) For each final state colored parton, generate a shower in the following way:

i. Set t = Q.



1.3. Parton Showers and Monte Carlo event generators 47

ii. Generate a random number 0 < r < 1 and solve the equation r = ∆i(t, t
′) for t′.

In this way, t′ is the value at which the following splitting has to take place.

iii. If t′ < t0, then no further branching is generated, the shower stops and the

hadronization algorithm can be applied.

iv. If t′ > t0, then a splitting has to be generated: jl and z have to be generated with

a distribution proportional to Pi,jl(z), and the azimuth φ can be cast uniformly

in the interval [0, 2π]. Energies of partons j and l are assigned as Ej = zEi and

El = (1 − z)Ei. The angle between j and l momenta is fixed by the value of t′.

Given the angle, the azimuth φ and the spatial momentum lenght, the directions

of j and l are fully reconstructed.

v. For each of the branched partons j and l, set t = t′ and go back to step (b-ii).

1.3.5 Initial state radiation in parton showers

In our description of Parton Showers, so far we have considered in detail only final state

collinear emissions. However, in the context of fixed-order calculations, we discussed also

how to deal with the presence of divergences associated to ISC configurations. Similarly

to FSC emissions, these kinematic configurations are logarithmic enhanced, and give rise

to initial state showers, that we describe in the following.

The kinematic configuration for an emission off an incoming leg is depicted in fig. 1.5.

In this case, after the parton with momentum fraction (1− z) is emitted off the incoming

Figure 1.5: Emission off an incoming leg.

leg, then the initial state, that enters in the hard scattering blob with momentum fraction

z, acquires a spacelike virtuality, limited in magnitude by the scale of the hard process.

In this case, factorization holds as long as the virtuality of the parton entering the hard

scattering is negligible with respect to all the other scales entering the hard scattering

amplitude. Hence, in analogy with the previous case, the correct recipe to order the hard-

ness variables is to generate multiple initial-state radiation with internal legs’ virtuality
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ordered from small (absolute) values (near the initial state parton) to large values (near

the hard scattering). For the last splitting before the hard scatttering, the virtuality is

limited by the hardness of the scattering process itself, that we labelled as Q.

Once an initial state emission is generated, then a further final state parton (the

radiated one) is present in the event. This parton can obviously split again, giving rise to

a final state shower. The resulting picture of this chain of emissions has then the structure

reported in fig. 1.6, where the intermediate lines between t1 and t2 and between t2 and

the hard scattering are spacelike, whereas all other intermediate lines are timelike. The

ordering is such that t1 < t2 < Q, and t1 > t′, t2 > t′′ > t′′′. In the following, for ease of

notation, we always label the ordering variables as if they were positive, although this is

not the case when virtuality is used as ordering variable. In that case, an absolute value

is understood for negative virtualities.

Figure 1.6: Schematical description of a shower involving initial state emissions.

In the following, we formally describe initial state showers and then give the shower

recipe for processes involving initial state hadrons. We recall that the splitting functions

and the Sudakov form factors needed to implement spacelike showers are the same ones

used for final state radiation process, since differences arise only at the Next-to-Leading

level.

Formal representation of initial state showers

An initial state shower is labelled as Si(m, x, t, E) and the corresponding graphical rep-

resentation is reported in the following:

Si(m, x, t, E) = . (1.156)
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Si(m, x, t, E) is a function on all possible states having a spacelike parton of type m with

energy between xE and (x+ δx)E, and scale t, originating from a parton i. Thus, it gives

the weight of the shower for such states.

The initial state shower equation can be represented with the following graphical

equation

,

(1.157)

where the blobs marked with S represent spacelike showers, while the solid blob represents

the timelike showers discussed previously. Solving eq. (1.157) corresponds to the so called

forward evolution, since the recursive procedure would start from the low scale t0. This

technique was found to be inefficient from a pratical point of view, since most of the time

one would end up with the two partons entering the hard scattering having an invariant

mass not close to the correct one, that corresponds to Q, i.e. the relevant scale for the

partonic cross section of the process at hand.21 Hence, in modern Monte Carlo programs,

it is preferred to solve the evolution equation in the opposite direction, according to the

backward evolution method [19,20]. In this way, the algorithm starts from the high-scale

Q, so that a good efficency is guaranteed. The backward evolution is obtained by rewriting

the shower equation as follows:

, (1.158)

where the recursive procedure starts now at the high scale t instead of the low scale

t0. In this case, the red blob marked with I at the splitting vertex stands for the inclu-

sive splitting kernel Pjm, instead of the exclusive one Pj,ml. The procedures depicted in

the graphical equations (1.157) and (1.158) represent the same object, with a different

21For example, for a Drell-Yan process, this scale would be the mass of the produced vector boson.



50 Chapter 1. QCD applications to collider Physics

recursion rule.

To obtain the probability for the first branching to take place, we have to sum over all

final states in the graphical equation (1.158). As we discussed before, this sums yields 1

for timelike blobs, since they are associated with final state showers . For spacelike blobs,

instead, one has ∑

F
Si(m, x, t, E) = f (i)

m (x, t), (1.159)

where f
(i)
m is the (scale dependent) parton density function.22 When the sum over all final

states is taken, the graphical equation (1.158) yields

f (i)
m (x, t) = δmiδ(1 − x)∆m(t, t0) +

∫ t

t0

dt′

t′

∫ 1

x

dz

z

∑

j

f
(i)
j (z, t′)

αS(t′)

2π
Pjm (x/z) ∆m(t, t′),

(1.160)

and, by taking the derivative of both sides with respect to t, one has

t
∂f

(i)
m (x, t)

∂t
=

αS(t)

2π

∑

j

∫ 1

x

dz

z
Pjm(x/z) f

(i)
j (z, t)

+



−
∑

(jl)

∫ 1

0

dz
αS(t)

2π
Pm,jl(z)



 f (i)
m (x, t) . (1.161)

The previous equation is the ordinary Altarelli-Parisi [21–24] equation for the parton

densities

t
∂f

(i)
m (x, t)

∂t
=
αS(t)

2π

∑

j

∫ 1

x

dz

z
P̂jm(x/z) f

(i)
j (z, t) , (1.162)

where P̂jm are the regularized inclusive splitting kernels. They are given by

P̂qq(z) = CF

[
1 + z2

(1 − z)+

+
3

2
δ(1 − z)

]
,

P̂qg(z) = Pqg(z),

P̂gq(z) = Pgq(z),

P̂gg(z) = 2CA

[
z

(1 − z)+

+
1 − z

z
+ z(1 − z) +

(
11

12
− nfTf

3CA

)
δ(1 − z)

]
.(1.163)

22At this level, we are not considering hadrons yet. Therefore the parton density f
(i)
m represents the

probability to find a parton of type m in a parton of type i.
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The probability distribution for the first backward branching of the parton m can be

obtained from eq. (1.158) and (1.159). It reads

dP1st

m (t′) =
∑

j

f
(i)
j (z, t′)

αS(t′)

2π
Pjm(x/z)∆m(t, t′)

dt′

t′
dz

z

dφ

2π
. (1.164)

In order to generate the first branching, we must express eq. (1.164) as a differential in

t′. Using the Altarelli-Parisi equation, we get

dP1st

m (t′)

dt′
=

∂f
(i)
m (t′, x)

∂t
∆m(t, t′) +



1

t′

∑

(jl)

∫ 1

0

dz
αS(t′)

2π
Pm,jl(z)



 f (i)
m (t′, x)∆m(t, t′)

=
d

dt′
[
f (i)

m (t′, x)∆m(t, t′)
]
. (1.165)

We have obtained that the probability distribution for the first branching is uniform in

f
(i)
m (t′, x)∆m(t, t′). Hence, to find t′, we just need to generate a random number 0 < r < 1,

and then solve the equation

r =
f

(i)
m (t′, x)∆m(t, t′)

f
(i)
m (t, x)

(1.166)

for t′. The factor f
(i)
m (t, x) in the denominator is introduced to normalize the right hand

side to 1 when t′ = t. Since the Sudakov form factor ∆m(t, t′) becomes very small when

t′ become small, then the right hand side of eq. (1.166) reaches its smallest value when

t′ = t0. If the generated random number r is below the smallest possible value, then no

branching takes place.

For reference, we also notice that sometimes the equivalent formula

f
(i)
m (t′, x)∆m(t, t′)

f
(i)
m (t, x)

= exp

[

−
∑

j

∫ t

t′

dt′′

t′′
αS(t′′)

2π

∫ 1

x

dz

z
Pjm(z)

f
(i)
j (t′′, x/z)

f
(i)
m (t′′, x)

]

(1.167)

is used, that is the formula appearing in the original paper where backward evolution was

introduced [19].

1.3.6 Shower algorithm for processes with incoming hadrons

We can now formulate the full recipe for the generation of a process where incoming

hadrons are present. The algorithm is:

a) Generate a hard process configuration with a probability proportional to its parton
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level cross section. This cross section includes also the parton density functions, eval-

uated at the typical scale Q of the process.

b) For each final state colored parton, generate a shower in the following way:

i. Set t = Q.

ii. Generate a random number 0 < r < 1 and solve the equation r = ∆i(t, t
′) for t′.

iii. If t′ < t0 then no further branching is generated, and the shower stops.

iv. If t′ > t0 then generate jl and z with a distribution proportional to Pi,jl(z), and

a value for the azimuth φ, with uniform probability in the interval [0, 2π]. Assign

energies Ej = zEi and El = (1− z)Ei to partons j and l. The angle between their

momenta is fixed by the value of t′. Given the angle and the azimuth φ (together

with the fact that the sum of their momenta must equal to the momentum of i)

the directions of j and l are fully reconstructed.

v. For each of the branched partons j and l, set t = t′ and go back to step bii.

c) For each initial state colored parton, generate an initial shower in the following way:

i. Set t = Q.

ii. Generate a random number 0 < r < 1.

iii. Solve for t′ the equation

r =
f

(h)
i (t′, x)∆i(t, t

′)

f
(h)
i (t, x)

,

where f (h) is the parton density for the hadron where parton i is found, and

x = Ei/Eh is the momentum fraction of the parton.

iv. If t′ < t0 then no further branching is generated, and the shower stops.

v. If t′ > t0 then generate j and z with a distribution proportional to Pij(z), and a

value for the azimuth φ, with uniform probability in the interval [0, 2π]. Call l the

radiated parton, and assign energies Ej = zEi and El = (1−z)Ei to partons j and

l. The angle between their momenta is fixed by the value of t′. Given the angle

and the azimuth φ (together with the fact that the sum of their momenta must

equal to the momentum of i) the directions of j and l are fully reconstructed.

vi. For parton j, set t = t′ and go back to step (c-ii). For parton l, set t = t′ and go

back to step (b-ii).
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1.3.7 Soft divergences

In all the previous discussion, we have only considered collinear singularities. In particular,

we did not discuss the fact that the z → 1 and z → 0 limits are special, since (some of) the

splitting kernels have soft divergences in these limits, and we supposed to have regularized

them with a small cutoff (eq. (1.128)). Furthermore, we have still to discuss what is the

best ordering variable to use. We will see that this is related to the treatment of soft

divergences, which we describe in this section.

As a starting point, let us assume that the t variable is the virtuality, and let us focus

upon a splitting at a scale t, with a given value of z, assumed to be defined as energy

fraction with respect to the energy E of the splitting parton (eq. (1.134)). Under these

assumptions, the two splitting partons have energies zE and (1 − z)E, so they form a

system with virtuality given by

2z(1 − z)E2(1 − cos θ), (1.168)

where θ is the angle between the two partons. Thus, we must have

z(1 − z)E2 ≥ t/4, (1.169)

in order for the splitting to be kinematically possible, the inequality being saturated when

θ → π. Hence, the z integration is limited by

t

4E2
≤ z ≤ 1 − t

4E2
. (1.170)

If no soft singularities were present, effects coming from these nested integration limits

could be neglected, because t≪ E2 at any stage of the branching. In fact, at the beginning

of the shower E ≈ √
Q, and after each branching E is reduced by a factor of order 1,

since z is typically a number of order 1, if soft singularities were not present. Instead,
√
t

is reduced by a factor of order αS at each branching.

However, in presence of soft singularities, the above argument is no longer applicable:

for example, splittings with large (or small) values of z are enhanced, and one can no

longer conclude that the energy of the partons is reduced by a factor of order 1 for

each branching. It turns out that these regions of subleading logarithmic size can give

contributions of order 1, in the same way we described for the colllinear case (sec. 1.3.2).

Hence, to achieve logarithmic accuracy, soft divergences should be accounted for in a

proper way. In particular, we want to describe accurately the soft emission pattern in the

double logarithmic region, i.e. in the regions where emissions are both soft and collinear.
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Double logarithmic structure

In the following, we want to show that the choice of the hardness parameter t affects the

treatment of soft divergences. This is best seen by looking at the differences appearing in

the exponent of the Sudakov form factor before integrating in t, when the three definitions

of the ordering parameter given in eqs. (1.136), (1.137) and eq. (1.138) are used. In all

the following approximations, we will neglect multiplicative factors of order 1 in front of

each term, and we will neglect the exact form of the splitting kernel, retaining just the

logarithmic-divergent structure dz/(1 − z). Inequalities are obtained by assuming θ < 1

as a reliable range of validity for the collinear approximation to hold.

1. If t is assumed to be the virtuality of the incoming line, then we have t . E2z(1−z)
(see eq. (1.136)). This yields a double logarithmic integral of the form

∫
dt

t

∫ 1−t/E2

t/E2

dz

1 − z
≈ 1

2
log2 t

E2
. (1.171)

2. If instead t is interpreted as the squared transverse momentum, then t . E2z2(1 −
z)2, and we get ∫

dt

t

∫ 1−
√

t/E

√
t/E

dz

1 − z
≈ 1

4
log2 t

E2
. (1.172)

3. If t is interpreted as the squared angle, the result is

∫
dt

t

∫ 1

0

dz

1 − z
≈ log

t

t0
log

E

Λ
. (1.173)

It is worthwhile to observe that, if the ordering variable is proportional to the square

of the angle, the value of z is not constrained by it. Then we have to impose a cutoff

on z, in such a way that the energy of the final state particles cannot become smaller

than some typical hadronic scale, which we call here Λ, and which is of the same

order of ΛQCD.

Angular ordering

We have seen that the three choices for the ordering variables yield different results for the

Sudakov form factors, in particular in the double logarithmic region. It has been shown

that this region is treated correctly if one uses as ordering parameter the angular variable

θ. More precisely, angular ordering is necessary to take into account QCD coherence

effects in a Markovian algorithm, such as the Parton Shower [25–31]. An argument to
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explain this resut can be found for example in [5]. Here we limit ourselves to give just an

explanation, that is based on known coherence effects.

We start by supposing that we order the emissions in decreasing virtuality. Since soft

emissions always yield small virtualities, at the end of the shower one has a large number

of soft gluons, unrestricted in angle if no angular ordering is imposed. But soft gluons

emitted at large angles from final state partons add up coherently. This means that a soft

gluon emitted from a bunch of partons sees all the emitting partons as a single entity,

i.e. it sees the total color charge of the bunch, if its emission angle is larger than the

angular separation of the bunch (see fig. 1.7). One can reinterpret this by saying that

Figure 1.7: Soft emissions at large angle add coherently, i.e. they behave as if the emitter was
the parton that originates the rest of the shower.

large-angle soft gluons are emitted before than small-angle ones, since the latters see the

charge of each emitter while the formers just feel the total charge. It is then clear that

angular ordering is the pratical way to obtain this result in a probabilistic algorithm.

Argument of the running coupling constant

Before concluding this section, focused on the treatment of soft singularities, we need

to briefly describe a couple of subtleties concerning the choice of the scale at which αS

is evaluated in the Sudakov form factors, since this choice is related to the inclusion of

higher-order logarithmic effects in the soft-collinear enhanced regions. In the following

we simply limit ourselves to report the relevant results. More comments and references

to the original papers can be found in [32].

In sec. 1.3.2 we already argued that the exact choice of the argument of αS does not

affect the leading-log collinear accuracy of the Parton Shower. However, it can be shown

that, by choosing the argument of αS equal to the maximum virtuality available for the

outgoing gluon in the splitting at hand, one recovers almost exactly the soft behaviour

of the two loop splitting kernel, yielding an improvement of the shower accuracy in these

regions. More precisely, by using the one loop splitting kernels and expanding the one-

loop αS expression evaluated at the aforementioned scale, one generates the soft-enhanced
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logarithmic terms (∼ α2
S
log(1 − z)/(1 − z)) present in the two-loop splitting kernels, as

if their couplings were evaluated at a scale equal to the virtuality of the splitting parton,

which we denote here as q̃2. In particular, this corresponds to use the scale (1 − z)q̃2

for a splitting q → gq, or z(1 − z)q̃2 for a splitting g → gg.23 In the collinear limit, the

expression z(1− z)q̃2 equals the transverse momentum of the emitted gluon with respect

to the splitting parton (see eq. (1.136)- (1.138)). Hence, by choosing kT as the argument

of αS, these logarithms are authomatically reproduced by the expansion of αS.

With this choice, one still misses a term relevant when the z → 1 limit of the two-loop

splitting kernels Pqq and Pgg is taken, which goes as ∼ α2
S
/(1− z) (cfr. eq. (4.123) of [5]).

This term can be taken into account by simply changing the value of ΛQCD used to run

the αS coupling constant present in the Sudakov form factors [33]. This new scale is

traditionally called ΛMC and its value is equal to

ΛMC = ΛMS exp

(
Kg

4πb0

)
, (1.174)

where

Kg = CA

(
67

18
− π2

6

)
− TFnf

10

9
. (1.175)

Its numerical value, for nf = 5, is

ΛMC = 1.569 Λ
(5)
MS
. (1.176)

So, by adopting ΛMC as the strong scale and using the transverse momentum as the

argument of the running coupling αS, we improve the leading-log accuracy, by including

also next-to-leading logarithms, except those coming from wide-angle soft emissions, that

can not be properly included in the quasi-collinear approximation we are working with.

1.3.8 HERWIG and PYTHIA

At present, the three more used SMC event generators are HERWIG [34], PYTHIA [35] and

SHERPA [36,37]. The formers, originally written in Fortran, have been used since the late

80’s and are now being rewritten and upgraded in C++. The latter, instead, is more

recent and it has been coded from the beginning in C++. Since the work presented in

this thesis has been carried out with the use of the Fortran version of PYTHIA and HERWIG,

in the following we report quickly the main features of them.

23Technically, the scale choice for a splitting g → gg should be Min {z, 1 − z} q̃2, but for simplicity the
symmetrized choice is often used.
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The HERWIG shower is angular ordered [30,38], the ordering variable being defined such

that it reduces to t = E2θ2/2 in the collinear limit, where E is the energy of the incoming

parton and θ is the angle between the two branched partons, carrying energies zE and

(1 − z)E. The Sudakov form factor is defined as

∆i(t
′, t′′) = exp



−
∑

(jl)

∫ t′

t′′

dt

t

∫ 1

0

dz θ(tz2(1 − z)2 − t0)
αS (tz2(1 − z)2)

2π
Pi,jl(z) dz



 .

(1.177)

From the above equation, we see that, for the running of αS, HERWIG uses a renormalization

scale of the order of the the transverse momentum, and the ΛQCD scale is chosen to be

equal to ΛMC. Therefore, the HERWIG Sudakov form factor is correct at the NLL, as

explained at the end of the previous section. The infrared cutoff, needed for the infrared

divergent integration over z, is expressed by means of the θ function, that also acts as a

lower cutoff for the argument of αS. As usual, t0 is a scale of the order of ΛQCD. After

a splitting characterized by a given value for z, one is left with two partons of energies

zE and (1 − z)E. Angular ordering is achieved by choosing as the initial condition for

subsequent branchings the scales tz2 and t(1 − z)2.

The traditional PYTHIA shower is based on virtuality ordering. Apparently this choice

is more natural, since in a chain of consecutive splittings, virtuality ordering follows from

considerations based on kinematics. However, in this way, coherence effects can not be

taken into full account, and historically this yielded an unphysical increase in the number

of soft partons, so that in PYTHIA the particle multiplicity in e+e− annihilation processes

did not have the correct growth with energy. Furthermore, sizeable effects due to the lack

of a consistent inclusion of coherence were also observed in hadronic collisions [39]. In the

Fortran version of PYTHIA, the remedy was to introduce a procedure to veto branchings

that violate angular ordering. This scheme (virtuality ordering with angular ordering

imposed by veto) yields results in good agreement with observed data, both in e+e− and

in hadronic collisions.

Recently, new showering schemes have become available in PYTHIA and HERWIG. In

HERWIG++ [32], new showering variables have been introduced, to improve the boost

invariance properties of the shower. Recent versions of PYTHIA also offer an alternative

showering scheme, ordered in transverse momentum [40], that implements a variant of the

so called dipole shower approach, first implemented in the ARIADNE [41] Monte Carlo. In

this thesis, comparisons of POWHEG results with PYTHIA have been carried out using this

pT–ordered shower.
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1.3.9 Flavour, color, hadronization and underlying event

In this final section we quickly describe how hadronization models work, without entering

into technical details. Before discussing hadronization, we need to discuss how flavour

and color flows are treated at each splitting.

Flavour and color flows

At each splitting, in the collinear approximation we are working with, the flavour flow

is well defined. Hence, at the end of the shower, we find quarks and antiquarks with a

given flavour, together with gluons. Thus, the flavour content of the generated hadrons

will depend on how the hadronization model treats the flavour content of these outgoing

partons.

The color flow is not followed exactly in the collinear approximation, since the factor-

ization formula is valid for color averaged squared amplitudes. However, we know that

final state hadrons are color singlets, and hadronization models implemented in modern

SMC comply with this by looking at the color structure of the outgoing partons at the

end of the shower. Hence, we need a recipe to handle in a deterministic way the color flow

at each splitting. In parton showers based on collinear factorization, this is achieved by

working in the planar limit (also known as large Nc limit). The rules for the color assign-

ment at each splitting are given in fig. 1.8. The only ambiguity is in the color assignment

Figure 1.8: Planar rules for the assignment of color flow at each splitting.

for the slitting g → gg. In this case, one chooses one of the two assignments with a 50%

probability. In this way, at the end of the shower, one is left with a set of partons whose

color connections are fully known.

Cluster and string based fragmentation models

The cluster and string fragmentation models are both based upon the assignments of color

connections illustrated above. The former is the model implemented in HERWIG, whilst

the latter is included in PYTHIA.



1.3. Parton Showers and Monte Carlo event generators 59

In the cluster model, final state gluons are forced to split into quark-antiquark pairs.

Then each pair of color connected quark-antiquark is treated independently. If the invari-

ant mass of the color connected pair is low enough, one matches mass and flavour with a

corresponding hadronic two-body system (or with a resonance) with the same flavour. In

this way, hadronization is carried out. We also notice that, in angular ordered showers,

at the end of the shower color connected pairs are naturally close, i.e. configurations with

large invariant-mass color-connected pairs are Sudakov suppressed (an effect known as

preconfinement).

In the string fragmentation model, color connected partons are collected in a system

consisting of a quark, several intermediate gluons, and an antiquark. One then imagines

that a color flux tube, called string , is stretched from the quark to the antiquark of the

color connected system, going through each intermediate gluon.

In the simplest case, the string is stretched between a quark and an antiquark, and

the hadronic system is generated by pair creation by quantum tunneling inside the string.

In practice, starting from each string end, one has a fragmentation function to describe

the probability to generate a hadron carrying away a given fraction of the longitudinal

momentum of the string. For example, if a string end has flavour f , then a hadron will be

generated with flavour ff ′, and the left over string will have a flavour f ′ at his end. In this

way, color and flavours are treated consistently. In the general case, with intermediate

gluons in the color connected system, a similar procedure is adopted, with some care for

the treatment of the kinks in the string associated to the intermediate gluons.

As a final remark, we recall that fragmentation models are one of the most complex

aspects of Shower Monte Carlo, even if, at this level, the underlying theory (which is

always QCD, but in the strong regime) is only used as a reasonable source of hints on

certain features that the models should have. Nevertheless, models have unavoidably a

large number of parameters, that are needed in order to represent faithfully the many

final state features that are observed in strong interactions.

Underlying event

We have seen that the hadronization model deals with final state partons, turning them

into hadrons. Initial state partons require some treatment too, in order to give a realistic

description of the physics of the hadronic remnants.

First we need to discuss briefly how partons are extracted from incoming hadrons in

SMC programs. In our shower description, we have introduced the parton densities to

find a parton in a parton (eq. (1.159)). These objects should now be interpreted as the

probabilities to find a parton in the incoming hadron. In the forward evolution scheme,
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this would require to introduce an initial parton density at the scale t0. In the backward

evolution scheme, instead, this is not needed: one computes the cross section with the

full PDF at the scale of the process (Q). However, when the backward shower stops, one

is left with the problem of treating the structure of the remaining part of the incoming

hadron. There are different models to handle this. Here we do not want to enter into

details, and hence we refer to the original manuals of the codes for a deeper description.

Finally, it is worthwhile to notice that in SMC programs underlying event models are

also implemented, by letting the remnants of the incoming hadrons to undergo relatively

hard collisions. Also for these aspects, we refer to manuals for further details.



Chapter 2

Matching Next-to-Leading-Order

calculations with Parton Showers

In this chapter we focus our attention in describing how to merge Next-to-Leading-Order

calculations with Parton Showers, in order to build an event generator that aims to keep

the good features of both the two approaches together.

From the description of NLO calculations and Parton Showers that we gave in the

previous chapter, it is apparent that the main problem we need to deal with is essentially

the possible overcounting of emissions, that can happen because SMC programs already

implement NLO corrections, in the collinear (or soft) approximation.

Among many other proposals appeared in literature to achieve this goal, both for e+e−

and hadron collisions,1 two of them have been exploited to fully implement processes

relevant for the Tevatron and the LHC experiments: the MC@NLO [42] and the POWHEG [1]

methods. In this chapter we describe the latter approach, which is the method used to

obtain the original results contained in this thesis.

The chapter is organized as follows.

Since we find useful to collect all the advantages and drawbacks of (leading-order2)

Parton Showers and NLO calculations, we devote section 2.1 to this purpose. A quick

description of the methods to merge Matrix Elements generators and Parton Showers is

also given.

In section 2.2 we describe the main problems occurring when NLO contributions are

included in SMC programs. In particular, we discuss in detail how the problem of double-

counting arises. We also explain briefly how these issues are addressed in the MC@NLO

1See references contained in [2].
2Here we mean SMC programs where the matrix element for the hard process is accurate only at the

tree level.
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framework, since some of the results that will be presented are basically comparisons

with analogous results obtained with that approach.

Section 2.3 will be devoted to an accurate description of the POWHEG method.

2.1 Next-to-Leading-Order calculations vs. Parton

Showers

In this section we want to compare various aspects of NLO computations and SMC event

generators, in order to summarize the advantages and the drawbacks of both. To highlight

some of these differences, we find useful to compare the HERWIG and PYTHIA predictions

for the transverse momentum spectrum and the rapidity of a W boson, together with

the same curves calculated with NLO accuracy. In particular, we consider the Drell-Yan

process pp→ W−(→ e−ν̄e) as the leading-order process.

1. In fig. 2.1 we show predictions for the W -boson transverse momentum.

Figure 2.1: Transverse momentum of a W− boson produced at the LHC. In the left
panel, a zoom of the low-pT region is reported. No K-factors have been
included.

In the low transverse-momentum region, the NLO result exhibits a very pronounced

enhancement. This is due to the fact that, in the low-pT region, real corrections are

approaching the collinear divergence, and the cancellation with virtual corrections

affects only the first bin of the plot. Hence, at fixed order, there is nothing to prevent
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theW -boson transverse-momentum to be arbitrarily small, theW -boson momentum

being exactly balanced with the emitted parton that is becoming collinear to the

beam axis. In SMC results, instead, low-pT configurations are disfavored. In fact, as

we have seen in chapter 1, the probability that no emission takes place between two

very different scales is strongly suppressed, as we showed in eq. (1.141). In this case,

the hard scale of the process is M2
W , whereas the scale associated with no-emission

is of the same order of the lower cut-off t0. Hence, we have two very different scales,

and a suppression is expected. This suppression is often called Sudakov suppression,

and real data exhibit it, as we will see in chapter 3. Therefore, we want to preserve

this feature when including NLO corrections in SMC generators.

2. In the right panel of fig. 2.1, it is visible that the high-pT shape of the HERWIG result

is damped when Matrix Element (ME) corrections are turned off. In this case, a

more detailed explanation is needed.

In general, one does not expect that SMC’s describe high transverse-momentum

regions with good accuracy, since emissions are performed in the collinear approxi-

mation. Despite of this, for processes simple enough, modern SMC event generators

implement methods that permit to describe high-pT tails with good accuracy. These

techniques are commonly called Matrix Element corrections, and basically work by

re-weighting the SMC hardest emission with the exact real matrix element for the

process at hand. Moreover, a phase space region that would not be filled by the

shower first emission variables (a dead-zone, in the PS jargon) can be populated

according to the (n + 1)-body exact matrix element.3 More details can be found

for example in the HERWIG [34,43] or PYTHIA [44] manuals, or in the original papers

where these methods have been first introduced and discussed [45,46]. Here, we just

want to recall that ME corrections are implemented for 2 → 1 processes, such as

pp→ {W,Z} or pp→ H . Predictions for more complicated processes may then ex-

hibit a lack of high-pT events, such as in the purple curve in fig. 2.1, which has been

obtained by explicitly turn off ME corrections in HERWIG. In fact, such an effect has

been observed in the context of single-top hadroproduction, and it will be discussed

in more detail in the Results section of chapter 4. From the above description, it

is then apparent that we aim to merge NLO calculations and SMC in such a way

that the full real matrix-element accuracy is exactly retained.4 In this way, high-kT

3In the language adopted in HERWIG, these two corrections are called soft and hard ME corrections,
respectively.

4Technically, we want that the O(αS) expansion of the matched approach coincides with the fixed-
order one. Only differences that are subleading with respect to the NLO are admitted, i.e. they have to
be NNLO effects.
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emissions will be described without the need of ME corrections.

3. Another important difference between NLO and SMC results is the accuracy of

inclusive observables. Here, we call “inclusive” the quantities that are affected both

by real and virtual corrections. Apart from the total cross section, other more

exclusive quantities have this property: a typical example is the W -boson rapidity

yW in Drell-Yan processes. In fig. 2.2 we show the NLO and SMC results for yW ,

Figure 2.2: Rapidity of a W− boson produced at the LHC. In the right panel, results
obtained with Shower Monte Carlo event generators have been rescaled to
the full NLO cross section.

with and without the inclusion of a K-factor: SMC results are in good agreement

with the full NLO ones only when the K-factor is included. Hence, in a merged

approach, we want to generate events with the correct overall normalization from the

very beginning, so that K-factors are not needed anymore. Moreover, the obtained

result will also be typically closer in shape to the NLO one, as it can be noticed by

comparing fig. 2.2 with the POWHEG plot in fig. 3.28.

4. Next-to-Leading-Order results are more stable than LO ones, having a reduced

dependence from the value used for the renormalization and factorization scales. In

fact, the scale dependence of virtual and collinear remnant contributions compensate

for terms that are generated by a change of µR and µF in the expression of the strong

coupling and in the evaluation of partonic densities. In a merged approach, this

feature would be inherited from the inclusion of these NLO terms.
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5. It is also worthwhile to notice that, in SMC generators, high-multiplicity events are

generated, although within the collinear approximation. Hence, some phase space

regions that, for kinematic reasons, can not be filled with fixed order calculations,

are instead described, at least with LL accuracy, when SMC’s are used. An example

of this effect will be discussed in chapter 4 (see fig. 4.2-panel (h), and the associated

comment in the text).

6. Unlike NLO programs, SMC event generators produce unweighted events, i.e. events

having all the same weight and distributed according to their relative differential

cross section. Hence, it is straightforward to obtain a prediction for a generic ob-

servable, also when this is not infrared-safe. When matching the two approaches,

we want to preserve this feature of SMC programs.

7. Finally, we want to recall that SMC programs generate events at the hadron level,

so that simulations where detector effects are taken into account can be performed

easily. In fact, SMC event generators are often used as “black-boxes”. This means

that the user can run the program and perform a simulation without knowing all

the details of the program, but just implementing his own analysis procedure.

From the above list, it should be clear that both NLO calculations and SMC programs

have desirable properties, that we want to preserve when merging the two approaches.

The formulation of the MC@NLO and POWHEG methods is such that all the above features are

obtained. The rest of this chapter will be dedicated to a description of the main problems

to face in order to include NLO corrections in Parton Showers and obtaining all the above

benefits. A description of the two methods cited above will be given, with particular

attention on POWHEG, since it was the method used to obtain the results presented in this

thesis.

2.1.1 Matching Matrix Elements and Parton Showers

For sake of completeness, before going on we want to recall that, besides to the MC@NLO and

the POWHEG methods, there are algorithms to merge consistently tree-level Matrix Element

generators (ME) and Parton Showers: the CKKW [47,48] and the MLM [49–51] approach.

The main goal of these approaches, that we will denote as ME+PS, is to simulate processes

with an arbitrary large number of extra emissions, by producing (with the ME generator)

samples of weighted events with different multiplicities, and showering them, in order to

include soft/collinear corrections and hadronization. Since ME generators can produce

partonic events with high final-state multiplicity according to their exact tree level cross
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section, by merging ME and PS’s one gains good accuracy for the shape of multijet

distributions and Sudakov suppression in the infrared region, thanks to the PS algorithm.

Therefore, with these methods, multiple hard radiation is included more accurately than

in MC@NLO and POWHEG, because, as we shall see, the latters include only the exact ME

for the hardest emission (the real term in the NLO language). On the other hand, NLO

accuracy for inclusive observables will not be achieved with the CKKW-MLM approaches,

since virtual corrections are not included. Thus, we can say that NLO+SMC approaches

(as MC@NLO and POWHEG) and ME+PS methods are two complementary tools, the formers

being adequate to include all the NLO corrections exactly, as we shall show, while the

latters being more reliable in describing multijet events.

2.2 Including NLO corrections into Shower Monte

Carlo programs

In this section we will describe (some of) the technical problems occurring when merging

NLO calculations and SMC programs. From the content of the previous section (in

particular from items 1, 2 and 3 of the list therein), it is clear that we want a merging

procedure with the following properties:

• The hardest generated emission has the correct NLO distribution also far from the

collinear directions.

• The NLO accuracy for inclusive observables is retained. Hence, quantities integrated

around the soft and collinear directions have NLO accuracy.

• At least the leading-logarithmic accuracy of the shower approach is maintained.

In this section we will proceed by first concentrating on the first requirement.

We also stress here that we call hardest emission the one having the highest transverse

momentum. In particular, for radiation off incoming legs, the transverse momentum is

assumed to be taken with respect to the beam axis. For final state radiation, instead,

the definition of the transverse momentum is to some extent ambiguous. We will assume

to use the transverse component of the momentum of the emitted parton with respect to

the splitting direction, as measured in the partonic center-of-mass frame.

2.2.1 The double-counting problem

The main problem to face when merging NLO calculations with parton shower simula-

tions is basically that of avoiding overcounting of emissions. This can happen because
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SMC programs implement NLO corrections in an approximate way, through the shower

algorithm. More precisely, according to [42], we say that a merging method is affected by

double-counting if, after expanding all the contributions to the first order in the coupling

constant αS, it produces expectation values which are not equal to the exact NLO results.

In the following, we show this by calculating the SMC expectation value for an ex-

clusive observable, expanding it at order αS and comparing it to the exact NLO result.

We will proceed through a simplified example, similar to the ’toy model’ of the original

MC@NLO paper [42]. In particular, for this subsection (2.2.1):

• We assume a pT-ordered SMC. From this, it follows that the first emission generated

by the SMC corresponds to the hardest one.

• We suppose that an n-body event is an event without radiation.5

Further complications, such as the presence of many singular regions and the role of

collinear remnants, will be dealt with only in the description of the POWHEG method

(sec. 2.3).

We begin by calculating the SMC cross section for the hardest emission, that according

to our assumptions corresponds to the one generated first. Following the recipes given in

sec. 1.3, we have

dσhardest

SMC = B(Φn) dΦn∆MC(tmax, t)
αs

2π

1

t
P (z)dΦMC

rad , (2.1)

where B is the Born differential cross section,

∆MC(tmax, t) = exp

{
−
∫ tmax

t

dt′

t′

∫
dz′

αs

2π
P (z′)

}
(2.2)

is the SMC Sudakov form factor, tmax is the maximum allowed transverse momentum for

the first emission,6 and dΦMC

rad = dt dz dφ/(2π). The presence of the Sudakov form factor

in eq. (2.1) is responsible for the suppression of low-pT radiation. In this section, we label

the ordinary Sudakov form factor with the superscript MC, since in the following we will

need to introduce another form factor, the POWHEG’s one.

In NLO calculations, when the subtraction method is used, the NLO differential cross

section can be written as

dσNLO = dΦn

{
B(Φn) + V (Φn) + [R(Φn+1) − C(Φn+1)] dΦrad

}
, (2.3)

5For example, we can think to a leading-order Drell-Yan process.
6We have assumed a pT-ordered shower.
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which is the analogous of eq. (1.78), without specifying the expectation values for O

and after a choice of the parameterization of the (n + 1)-body phase space such that

dΦn+1 = dΦn dΦrad. The notation has already been introduced in sec. 1.2, and we do not

report here further details. We just recall that V is finite, and contains one more power

of αS with respect to B.

Now we calculate the expectation value for an exclusive observable. In particular, we

assume to calculate the distribution of the transverse momentum of the hardest radiation.

According to our assumptions, each point of this distribution (away from the zero value)

is calculated by taking the expectation value of an observable that is nonvanishing only

if the final state has more than n outgoing particles (i.e. we need at least one QCD

emission). We denote this observable Õ, and we calculate its expectation value, according

to the SMC and to the NLO cross section for the hardest emission:

〈Õ〉SMC =

∫
dΦn∆MC(tmax, t)B(Φn)

αs

2π

1

t
P (z) dΦMC

radÕ(Φn+1)

=

∫
dΦnB(Φn)

αs

2π

1

t
P (z) dΦMC

radÕ(Φn+1) + O(α2
S
) , (2.4)

〈Õ〉NLO =

∫
dΦn+1R(Φn+1) Õ(Φn+1) . (2.5)

The double-counting problem arises when one tries to naively shower n and (n + 1)-

body partonic events generated after a reorganization of eq. (2.3). We write symbolically

this naive procedure as follows:

dσnaive = dΦn

[
B(Φn) + V (Φn) −

∫
dΦradC(Φn+1)

]
FSMC (Φn)

+ dΦn+1R(Φn+1)FSMC (Φn+1) . (2.6)

With the symbol FSMC (Φn) we denote the SMC generating functional for a shower origi-

nated from an n-body configuration: it corresponds to the sum of all the possible kinematic

configurations in which the shower originated from Φn can end, each one weighted with

its own probability, as obtained according to the recipes given in sec. 1.3. In practice,

when an expectation value is taken, this functional returns the sum of the values assumed

by the observable O in each of the aforementioned kinematic regions, each one weighted

by the corresponding shower probability. For the following argument, we need just to

assume that the shower generated by FSMC (Φn) works in the standard way, since the

event to be showered is Born-like.

Double-counting is immediately manifest when calculating, at order αS, and using (2.6),
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the expectation value for Õ. In fact we have7

〈Õ〉 =

∫
dΦnB(Φn)

αs

2π

1

t
P (z) dΦMC

radÕ(Φn+1)
︸ ︷︷ ︸

SMC 1st emission

+

∫
dΦn+1R(Φn+1) Õ(Φn+1)

︸ ︷︷ ︸
exact NLO

+O(α2
S
) .

(2.7)

The obtained value does not coincide, at order αS, with the exact NLO result, and there-

fore this naive procedure is affected by double-counting. In particular, events generated

according to eq. (2.6) will contain an excess of low-pT radiation. In fact, in the collinear

limit t→ 0 we have

R(Φn+1) dΦrad → B(Φn)

(
αs

2π

1

t
P (z)

)
dΦMC

rad , (2.8)

and we are generating events in the same kinematic region twice.

At this point, another important comment is due . In addiction to produce double-

counting, it would also be dificult to generate unweighted events using eq. (2.6). In fact,

even if the total integral is finite, the two terms are separately divergent. Hence, also by

using a small cutoff to avoid the exact singularity, the unweightening efficency to produce

n and (n+ 1)-body kinematics would be very low.

In the following we describe how the double-counting problem is solved within the

MC@NLO method.

2.2.2 The MC@NLO method

The MC@NLO proposal [42] was the first one to give an acceptable solution to the overcount-

ing problem. The generality of the method has been explicitly proven by its application to

processes of increasing complexity, such as heavy-flavour-pair [52] and single-top [18, 53]

production. Here, we just want to give a simplified description of the way the method

works, trying to use a notation similar to the one introduced previously. The exact for-

mulation can be found in the original papers, together with the technical details.

The basic idea of MC@NLO is that of avoiding the overcounting by subtracting from the

exact NLO cross section its approximation, as implemented in the SMC program to which

7Eq. (2.7) is the analogous of eq. (3.30) of [42]. Here we are neglecting the subtleties of eq. (3.28)
and (3.29) of that paper, since we are interested only to keep the order αS contributions. However, in
this pT-ordered toy model, the natural initial value of the ordering variable t for the shower generated by
FSMC (Φn+1) would correspond to the transverse momentum associated to the (n + 1)-body kinematics.
If that value is used, (n+1)-body events showered with F(Φn+1) contribute to the hardest radiation with
weight exactly equal to real matrix element, since harder radiation would be prevented by the shower
ordering.
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the NLO computation is matched. Such approximated cross section has to be computed

analytically, and it is obviously SMC dependent. On the other hand, these subtraction

terms are process-independent, and thus for a given SMC they can be computed once and

for all. In the current version of the MC@NLO code, the MC subtraction terms have been

computed for the Fortran version of HERWIG [34]. Some MC@NLO implementations have also

been coded within HERWIG++ [54,55].

The aforementioned subtraction is essentially introduced by adding and subtracting

to eq. (2.3) the O(αS) expansion of the result that one would obtain by running the SMC.

This procedure can be expressed by means of the MC@NLO generating functional:

FMC@NLO =

∫
dΦn+1

{
FSMC(Φn+1)

[
R(Φn+1) −RMC(Φn+1)

]

+FSMC(Φn)
[B(Φn) + V (Φn)

In
+RMC(Φn+1) − C(Φn+1)

]}
, (2.9)

where RMC corresponds to the (O(αS)-expanded) weight assigned by the shower to an

emission with kinematics given by Φn+1, whereas FSMC are the generating functionals of

the SMC used. The factor In is defined as

In =

∫
dΦn+1∫
dΦn

, (2.10)

and it guarantees that the Born and soft-virtual terms are correctly normalized when the

integration over Φn+1 is performed.

In equation (2.9), a mismatch between the coefficient that multiplies the −RMC and

+RMC terms is introduced, the latter being multiplied by the generating functional FSMC(Φn)

instead of FSMC(Φn+1). Nevertheless, the difference between these two generating func-

tionals is of order αS, and each of the two multiplies RMC, which is of order αS too. There-

fore NLO accuracy for both inclusive and exclusive observables is retained, since this

mismatch manifests at order α2
S
. This proves the fact that double-counting is avoided.

To calculate the subtraction term RMC, and to evaluate the n-body contributions in

the second term of the r.h.s. of eq. (2.9), one needs a mapping Φn+1 → Φn, whose exact

properties are dictated by the shower details. Moreover, the shower has to treat both

the collinear and the soft limits consistently, since the RMC(Φn+1) term itself acts as a

local counterterm in the integration of the full real matrix element R, as it can be seen
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in the first line of eq. (2.9).8 If this last property is satisfied, then both the two terms

in the square brackets of the r.h.s. of (2.9) have a finite integral, and the generation of

unweighted events can be performed.

In practice, the MC@NLO algorithm works in two steps:

1. Generate a set of H and S events, obtained by integrating separately the two terms

∫
dΦn+1 [R(Φn+1) − RMC(Φn+1)] (2.11)

and ∫
dΦn+1

[
B(Φn) + V (Φn)

In
+RMC(Φn+1) − C(Φn+1)

]
, (2.12)

and generating unweighted events accordingly. Events generated according to eq. (2.11)

are called Hard (H) events, and have (n + 1)-body kinematics. Instead, kinematic

configurations generated using eq. (2.12) are projected onto n-body ones, accord-

ing to the mapping discussed above. In the MC@NLO jargon, these events are called

Standard (S) events.

2. Apply the shower algorithm to the generated partonic events.

In the above discussion we have just outlined how the MC@NLO method works, focusing

only on some points. In the following we summarize the main benefits of the method,

that are discussed with great accuracy in the original papers:

• Both inclusive and exclusive infrared-safe observables have NLO accuracy.

• Collinear emissions are resummed at the leading-logarithmic level.

• The double-logarithmic region is treated correctly if the SMC code used for show-

ering has this capability.

Since MC@NLO uses the HERWIG shower, this last requirement is satisfied, owing to the

fact that this shower is based upon angular-ordered branchings. Hence, in eq. (2.9), the

generating functionals are the HERWIG ones.

As already stated, the MC@NLO method has been largely tested with success in a se-

quence of increasingly complicated processes. However, the method has some drawbacks,

that we list in the following:

8Therefore, in the collinear limit, for example, the subtraction term has the property

RMC(Φn+1) dΦrad ≃ B(Φn)
αS

2π

1

t
P (z) dΦMC

rad .
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• The differential cross sections for H and S events (eq. (2.11) and (2.12)) are not

strictly positive. Therefore, MC@NLO can generate negative-weighted events. For

the processes implemented so far, negative-weighted events are about 10–15% of

the total. Their presence does not imply a negative cross section, since at the end

physical distributions turn out to be positive. However, this requires, in general,

a number of events higher than those required for an ordinary SMC to produce

smooth distributions.

• The method is obviously SMC dependent, due to the presence of the shower sub-

traction term.

Furthermore, there are other minor issues. For example, in MC@NLO, medium-high-pT

emissions do not come entirely from H events, but sometimes also from S events, when

the shower generates an hard emission. Although this is a subleading effect, it can turn

out to be numerically relevant. In fact, we attribute the presence of dips in some MC@NLO

distributions exactly to this feature. More details will be given in chapter 3 and 4.

2.3 The POWHEG method

In this section, we describe in detail the POWHEG method, first introduced in [1]. The

method can be seen as an alternative to MC@NLO. In fact, while keeping the same features

listed above, it overcomes the problem of negative-weighted events and, moreover, it is

not SMC specific.

The basic idea of the method is to generate the hardest radiation of each event with

NLO accuracy, by using always the exact NLO matrix elements, in a framework that does

not depend upon the shower algorithm. For this reason, the method is fully independent

from the SMC: the shower is only requested to implement vetoed emissions, which is a

standard requirement for modern SMC generators. This corresponds to impose that all the

following emissions have lower transverse momenta, and thus the accuracy of infrared-safe

observables is possibly affected only by terms that are of Next-to-Next-to-Leading-Order

(NNLO). In this way, the matching problem is considerably simplified, since a detailed

examination of the shower properties used in the SMC is no longer needed. Furthermore,

at variance with MC@NLO, POWHEG generates only positive-weighted events, as the acronym

suggests.

In the following we give a detailed description of the method, which parallels the one

given in [2]. We will concentrate only on the aspects relevant for the implementations

described in this thesis. More advanced issues can be found in the aforementioned paper

and in ref. [1].
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2.3.1 The POWHEG master formula

In this first subsection, we give a simple illustration of the method, ignoring, for the

moment, the complications due to the presence of several singular regions and of collinear

remnants terms in the NLO cross section. This will allow to understand easily what are

the main differences of this approach with respect to the MC@NLO one.

We begin by defining the B̄ function, that is the inclusive cross section at fixed un-

derlying Born variables. It is defined as follows:

B̄(Φn) = B(Φn) + V (Φn) +

[∫
dΦrad [R(Φn+1) − C(Φn+1)]

]Φ̄n=Φn

, (2.13)

where we have assumed that dΦn+1 = dΦ̄ndΦrad, which is admissible as long as adequate

variables are chosen to parametrize the Φn+1 phase space. We notice that, to calculate

this function, one needs to integrate the (subtracted) real term by keeping the underlying

n-body kinematics Φ̄n fixed and equal to the Born one (Φn). This procedure is exactly

the opposite of the one adopted to build real counterterms from (n+1)-body kinematics,

when performing NLO calculations in the subtraction scheme, according to the mapping

procedure of eq. (1.59). For this reason, in the POWHEG language, this procedure is often

called inverse construction.

Next we introduce the (POWHEG) Sudakov form factor9

∆ (Φn, pT) = exp

{

−
∫ [

dΦradR(Φn+1) θ(kT (Φn+1) − pT)
]Φ̄n=Φn

B(Φn)

}

. (2.14)

The function kT (Φn+1) should be equal, near the singular limit, to the transverse mo-

mentum of the emitted parton relative to the emitting one. Further details on the exact

properties of the function kT (Φn+1) will be discussed later. The POWHEG cross section for

the generation of the hardest event is then

dσ = B̄(Φn) dΦn

{

∆
(
Φn, p

min
T

)
+ ∆ (Φn, kT (Φn+1))

R (Φn+1)

B(Φn)
dΦrad

}

Φ̄n=Φn

, (2.15)

where it is assumed that values of kT (Φn+1) < pmin
T

are not allowed. Equation (2.15) is

9We recall that a similar Sudakov form factor is also used in PYTHIA for weak vector-bosons and for
Higgs via gluon fusion production, in order to implement a matrix-element matching for the first emission
in the shower [45,56]. This is the reason why, in single vector-boson production, the high-pT tail of PYTHIA
result is in good agreement with the POWHEG one (see sec. 3.3).
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the reference equation of the POWHEG method, and, together with the recipes to shower

a partonic configuration accordingly generated (which will be described later), it can be

considered the analogous of the MC@NLO formula given in eq. (2.9). From the above cross

section, we can trace the main properties of the method:

• At large kT, the cross section in eq. (2.15) coincides with the NLO one, up to NNLO

terms.

• Infrared-safe observables are correctly described at the NLO. In fact, also the integral

of eq. (2.15) around the small kT region has the requested NLO accuracy.

• At small kT, formula (2.15) behaves no worse than standard SMC generators. Hence,

the leading-logarithm accuracy of the shower will be kept when events generated

according to eq. (2.15) are fed to a pT-vetoed shower.

The basic requirements listed at the beginning of section 2.2, for the inclusion of NLO

corrections in a SMC, are then fulfilled. Explicit proofs of the first two properties will be

given later, in sec. 2.3.4. Concerning the last point, more details are given in the following

subsection.

Before going on, from eq. (2.13) and (2.15) we can also easily understand the reason

why the POWHEG method generates only positive-weighted events. Each event generated

according to (2.15) has a weight given by the value assumed by the B̄ function in the

n-body kinematic point Φn, since the term in the curly bracket of eq. (2.15) does not

change this weight, being just a sum of emission probabilities. Therefore, events are

positive-weighted if the B̄ function is non-negative, which is a condition that has to hold:

a negative value would mean that the O(αS) terms are negative, and larger than the

Born term in magnitude, which is clearly something that can not happen in a meaningful

perturbative series.

2.3.2 Showering the POWHEG events

The POWHEG formula (2.15) can be used to generate n or (n + 1)-body partonic events.

Then, these events have to be showered by a SMC program, in such a way that all the

subsequent emissions are softer with respect to the one generated with POWHEG.

For a pT-ordered shower, we simply require that the shower is started with an upper

limit on the evolution variable equal to the transverse momentum of the POWHEG event.

For showers ordered differently, we have to explicitly suppress emissions harder than the

POWHEG one. This can be easily obtained by imposing a pT-veto on the shower, which is

a feature implemented in modern SMC generators. In this way, for non angular-ordered
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showers, the accuracy of the final result in the soft and collinear regions corresponds to the

shower’s one. Thus, when POWHEG is interfaced to shower programs that use transverse-

momentum ordering, results have double-log accuracy if the SMC is double-log accurate.10

Instead, when interfacing POWHEG to angular-ordered SMC programs, such as HERWIG,

the double-log accuracy of the SMC is not sufficient to guarantee the double-log accuracy

of the whole result, because some extra soft radiation must also be included. In fact,

angular ordered SMC programs may generate soft radiation before generating the radi-

ation with the largest pT, while POWHEG works by generating it first. To recover the full

double-log accuracy, one should add back this soft, wide-angle radiation by implementing

a vetoed-truncated shower, whose properties have been described in ref. [1].

At present, the effect of the inclusion of vetoed-truncated showers has been studied

only in the POWHEG implementations included in the HERWIG++ code. Although some

improvements of the results have been observed for e+e− collisions, at present there is no

evidence that the effect of not-including vetoed-truncated showers may have a significant

impact on final results. Results reported in this thesis have been obtained without using

truncated showers, in case of POWHEG interfaced with HERWIG.

In the following, we will give the exact formulation of the POWHEG method.

2.3.3 Detailed description of the POWHEG method

Flavours and singular regions separation

In order to implement the POWHEG method, the separation of the real terms into singular

regions and the kinematics that associates a given (n + 1)-body singular region with an

n-body one have to be specified.

Furthermore, flavours should be carefully tracked, since in SMC programs different

flavour structures always give rise to different events. We thus distinguish the contribu-

tions to the cross section also by their flavour structures, which are determined by the

flavours of the incoming and outgoing partons. The index fb labels the flavour structure

of the n-body processes: hence we write Bfb and V fb to distinguish among the various

Born and soft-virtual contributions.

Contributions to the real cross section have to be distinguished both for the flavour

structure and for the singular region on which they are projected. We use the index αr

to label both these properties: hence a given value of αr labels a particular contribution

to the real cross section that diverges in only one singular region of integration and has a

10For example, for the new showering formalism implemented in PYTHIA 6.4 [35], accurate soft resum-
mation should be achieved at least in the large Nc limit.
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specific flavour structure. We then write

R =
∑

αr

Rαr . (2.16)

A similar separation also holds for the counterterms, so that they are labelled by an index

αr, too.

In the FKS case, for example, the αr contributions are obtained by first separating the

real contribution R into the sum of all its flavour components. For each flavour component,

one constructs the S functions, according to the procedure outlined in section 1.2.3, and

then multiplies it by the factors Si or Sij.

In the CS case, for each flavour component of the real contribution, one can define

Sαr
=

Dαr∑
αr

′ Dαr
′

, (2.17)

where αr identifies one of the dipoles needed to integrate the given real contribution, once

that a flavour structure has been fixed. The sum runs over all the dipoles needed for that

“flavor-projected” real term. Notice that, by doing so, one can have more than one term

associated to the same kinematic singular region, since dipoles are labelled also by the

spectator index, as we already noticed in 1.2.4.11

At this point, there is only one underlying n-body process, with a specific flavour

structure, in correspondence to each real contribution labelled by αr. In fact, if the

singular region is collinear, the index fb is found by merging together the two collinear

particles, by conserving the flavour. If the singular region is soft, fb is found by removing

the soft gluon.12 A flavour structure has to be defined for collinear remnants too, which

we label by the index α©. The underlying n-body flavour structure is given in this case by

the structure of the n-body matrix element that enters in the collinear remnant itself, as

can be easily noticed by looking to eqs. (1.117) and (1.123). In the following, we denote

{αr|fb} and {α©|fb} the set of all values of the indices αr and α© that have the flavour

structure of the underlying n-body-configuration equal to fb.

When the full flavour structure is taken in consideration, according to the notation

11We note here that, despite of the simplicity of eq. (2.17), when the CS subtraction scheme is used
in POWHEG for processes whose Born cross section can diverge, such as Z + 1 jet, the isolation of singular
regions can require a more careful treatment with respect to this quick example. Further details will be
given in sec. 2.3.5.

12It is worthwhile to observe that, for non singular limits, the flavour structure of the underlying n-body
process is undefined.
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just introduced, eq. (1.78) can be written as

〈O〉 =
∑

fb



〈O〉fb

B +
∑

αr∈{αr|fb}
〈O〉αr

R +
∑

α⊕∈{α⊕|fb}
〈O〉α⊕

G⊕
+

∑

α⊖∈{α⊖|fb}
〈O〉α⊖

G⊖



 ,(2.18)

〈O〉fb

B =

∫
dΦnOn(Φn)

[
B (Φn) + V (Φn)

]

fb

, (2.19)

〈O〉α©

G©
=

∫
dΦn,©On

(
Φ̄n

)
G

α©

© (Φn,©) , (2.20)

〈O〉αr

R =

∫
dΦn+1

[
On+1(Φn+1)R(Φn+1) −On

(
Φ̄n

)
C(Φn+1)

]

αr

. (2.21)

where we used a straightforward extension of the context square brackets (eq. (1.60)).

According to ref. [1], we now perform the following manipulation

〈O〉αr

R = 〈O〉αr

R,n + 〈O〉αr

R,n+1 , (2.22)

〈O〉αr

R,n =

[∫
dΦn+1 On

(
Φ̄n

) {
R (Φn+1) − C (Φn+1)

}]

αr

, (2.23)

〈O〉αr

R,n+1 =

[∫
dΦn+1R (Φn+1)

{
On+1(Φn+1) − On

(
Φ̄n

)}]

αr

. (2.24)

All the term that have n-body kinematics should be treated together, by putting them

into an n-body kinematics term, that is called B̄. We already introduced this function in

eq. (2.13). Here, we just carefully distinguish the contributions to B̄ according to their

flavour structure. We start by rewriting eqs. (2.20), (2.23) and (2.24) as

〈O〉α©

G©
=

∫
dΦ̄nOn

(
Φ̄n

) dz
z
G

α©

© (Φn,©) , (2.25)

〈O〉αr

R,n =

[∫
dΦ̄nOn

(
Φ̄n

)
dΦrad {R (Φn+1) − C (Φn+1)}

]

αr

, (2.26)

〈O〉αr

R,n+1 =

[∫
dΦ̄n dΦradR (Φn+1)

{
On+1 (Φn+1) − On

(
Φ̄n

)}]

αr

. (2.27)
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Then, we write the B̄ functions, one for each flavour configuration, as

B̄fb(Φn) = [B (Φn) + V (Φn)]fb
+

∑

αr∈{αr|fb}

∫ [
dΦrad {R (Φn+1) − C (Φn+1)}

]Φ̄αr
n =Φn

αr

+
∑

α⊕∈{α⊕|fb}

∫
dz

z
Gα⊕

⊕
(Φn,⊕) +

∑

α⊖∈{α⊖|fb}

∫
dz

z
Gα⊖

⊖
(Φn,⊖) , (2.28)

so that
∫
dΦnOn(Φn) B̄fb(Φn) = 〈O〉fb

B +
∑

αr∈{αr|fb}
〈O〉αr

R,n +
∑

α⊕∈{α⊕|fb}
〈O〉α⊕

G⊕
+
∑

α⊖∈{α⊖|fb}
〈O〉α⊖

G⊖
. (2.29)

The exact NLO expression for the expectation value of O reads then

〈O〉 =
∑

fb

∫
dΦnOn(Φn) B̄fb(Φn)

+
∑

αr

[∫
dΦ̄n dΦradR (Φn+1)

{
On+1 (Φn+1) − On

(
Φ̄n

)}]

αr

. (2.30)

In sec. 2.3.4 we will show that the O(αS) expansion of the full POWHEG formula that we

introduce in the following gives the same expression of eq. (2.30) for a generic infrared-safe

observable.

POWHEG formula

The POWHEG Sudakov form factors have to be labelled with the underlying Born flavour

index fb:

∆fb(Φn, pT) = exp





−

∑

αr∈{αr|fb}

∫
[
dΦradR (Φn+1) θ (kT(Φn+1) − pT)

]Φ̄αr
n =Φn

αr

Bfb (Φn)





.

(2.31)

Notice that the identification Φ̄αr

n = Φn is a sensible one only if the underlying n-body-

process flavour structure of αr is equal to fb. In eq. (2.31), kαr

T
is a function of the

kinematics variables that depends upon the particular singular region we are considering:

• For ISC singularities, kT has to be proportional to the transverse momentum of the

emitted parton with respect to the beam axis in the collinear limit, and coincide
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with it in the soft and collinear limit.

• For FSC singularities, if the partons that are becoming collinear have momenta ki

and kj, a proper choice for kT is the (spatial) component of ki (or equivalently kj)

orthogonal to the sum ~ki+~kj. Other choices are possible, the important requirement

being always that the soft and collinear limit has to be approached exactly by the

function chosen for kT. We will come back on this point later, in sec. 2.3.4. For

these FSC regions, it is also important that the transverse momentum is computed

in the CM frame of the colliding partons, so that unnaturally small or big values,

possibly generated by longitudinal boosts, are avoided.

The final formula for the full POWHEG cross section is

dσ =
∑

fb

B̄fb(Φn) dΦn

{
∆fb
(
Φn, p

min
T

)

+
∑

αr∈{αr|fb}

[
dΦrad θ

(
kT (Φn+1) − pmin

T

)
∆fb(Φn, kT) R (Φn+1)

]Φ̄αr
n =Φn

αr

Bfb(Φn)

}
. (2.32)

The pmin
T

value introduced here is a lower cut-off on the transverse momentum, that is

needed in order to avoid to reach unphysical values of the strong coupling constant and

of the parton-density functions.

The POWHEG cross section (eq. (2.32)) looks very complex. Nevertheless, to handle

with it numerically, one needs to use few well-known Monte Carlo techniques. We devote

the last section of this chapter (sec. 2.3.6) to describe in some detail these techniques.

Interfacing to Parton Showers

The POWHEG algorithm generates the kinematics and flavour configuration of the hardest-

emission event. The event should be fed into a SMC using the Les Houches Interface for

User Processes [57] (LHIUP from now on), which specifies how to pass these informations

to the SMC. As already discussed, one asks also that no events harder than the one

generated by POWHEG are generated by the SMC. This is achieved by setting the variable

SCALUP of the LHIUP equal to the kT of the POWHEG event.

The LHIUP also requires that the color connections of the hard event (in the large Nc

limit) should be specified. As it stands, POWHEG formula does not generate these large-Nc

color structures, which are however really needed only to reach large-Nc NLL accuracy for
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processes with more than three color connected partons at the Born level.13 For processes

with a simpler leading order color structure, the generation of the color configuration can

be performed after the POWHEG event has been generated. A possible approach goes as

follows:

• Generate the POWHEG event in the standard way.

• Compute the different (planar) color contributions to the Born cross section, at the

kinematics of the generated underlying Born configuration.

• Pick an underlying Born color configuration, with a probability proportional to its

weight with respect to all the other configurations.

• If no radiation has been generated, this is the color structure of the event.

• If radiation has been generated, POWHEG has also generated an αr index, specifying a

singular region. In this case, we always assume that the emitted parton is (planar)

color-connected to the emitter. This fully specifies the planar color structure of the

generated event.

We notice that this method only requires the calculation of the planar color-structures of

the Born term. For the implementations presented in this thesis, this was even not needed,

since the Born terms were exactly planar, due to their electroweak nature. Therefore, color

connections have been assigned just according to the generated index αr.

Another method (which is usually implemented in MC@NLO) works by computing all

the planar color contributions to R, and choosing one of them in proportion to its relative

weight. If a Born-like event is generated, the same procedure has to be carried out for B.

2.3.4 Accuracy of the POWHEG method

This subsection is dedicated to comment the accuracy of the POWHEG method. We first

give the explicit, general proof of the NLO accuracy of the POWHEG formula, that is valid

both for inclusive and exclusive observables. Some remarks on the logarithmic accuracy

achievable in the soft/collinear regions will be given later.

13In [2] a modification of the POWHEG Sudakov form factor has been also formulated, in order to generate
these structures consistently.
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NLO accuracy of the POWHEG formula

In the following, we want to prove that formula (2.32), when used to compute an infrared-

safe observable, yields the correct NLO accuracy. For ease of notation, we omit the

θ
(
kT − pmin

T

)
factor, always assuming that this factor is present when real radiation is

generated.

If we apply formula (2.32) to an infrared-safe observable O, we have

〈O〉 =
∑

fb

∫
dΦn B̄

fb(Φn)

{
∆fb
(
Φn, p

min
T

)
On(Φn)

+
∑

αr∈{αr|fb}

[∫
dΦrad ∆fb(Φn, kT) R (Φn+1)On+1(Φn+1)

]Φ̄αr
n =Φn

αr

Bfb(Φn)

}

=
∑

fb

∫
dΦnB̄

fb(Φn)

×








∆fb
(
Φn, p

min
T

)
+

∑

αr∈{αr|fb}

[∫
dΦrad ∆fb(Φn, kT) R (Φn+1)

]Φ̄αr
n =Φn

αr

Bfb(Φn)



On(Φn)

+
∑

αr∈{αr|fb}

[∫
dΦrad ∆fb(Φn, kT) R (Φn+1) (On+1(Φn+1) −On(Φn))

]Φ̄αr
n =Φn

αr

Bfb(Φn)





, (2.33)

where, in the second equality, we have simply added and subtracted the same term pro-

portional to R (Φn+1)On(Φn). We now show that the term in the large squared bracket

in the third member of eq. (2.33) is equal to 1. In fact

∑

αr∈{αr|fb}

[∫
dΦrad ∆fb(Φn, kT) R (Φn+1)

]Φ̄αr
n =Φn

αr

Bfb(Φn)

=

∫ ∞

pmin

T

dpT

∑

αr∈{αr|fb}

[∫
dΦrad δ(kT − pT) ∆fb(Φn, pT) R (Φn+1)

]Φ̄αr
n =Φn

αr

Bfb(Φn)

= −
∫ ∞

pmin

T

dpT ∆fb(Φn, pT)
d

dpT

∑

αr∈{αr|fb}

[∫
dΦrad θ(kT − pT) R (Φn+1)

]Φ̄αr
n =Φn

αr

Bfb(Φn)

=

∫ ∞

pmin

T

dpT

d

dpT

∆fb(Φn, pT) = 1 − ∆fb
(
Φn, p

min
T

)
, (2.34)

where we have used the fact that ∆fb(Φn,∞) = 1. Furthermore, in the last term in the



82
Chapter 2. Matching Next-to-Leading-Order calculations with Parton

Showers

large curly bracket of eq. (2.33), small kT values in the integral are suppressed by the

On+1(Φn+1) − On(Φn) factor, and therefore we can replace ∆fb → 1 and B → B̄ up to

higher orders in αS. Equation (2.33) thus reduces to

〈O〉 =
∑

fb

∫
dΦn

{
B̄fb(Φn) On(Φn)

+
∑

αr∈{αr|fb}

[∫
dΦrad R (Φn+1) (On+1(Φn+1) −On(Φn))

]Φ̄αr
n =Φn

αr

}
, (2.35)

up to NNLO corrections. The restriction θ(kT −pmin
T

) can now be dropped from the dΦrad

integration, its effect being suppressed by powers of pmin
T

, and eq. (2.35) is immediately

found to agree with eq. (2.30), thus concluding our proof.

We notice that the above argument shows also that the POWHEG method is not affected

by double-counting, because at order αS the expectation value of an observable calculated

according to the POWHEG formula is equal to the NLO value.

Scale choices and POWHEG logarithmic accuracy

The POWHEG method deals only with the generation of the hardest emission. Subsequent

radiation is generated by the SMC to which POWHEG is interfaced, and therefore, in general,

only LL accuracy will be achieved. However, for exclusive observables that are sensitive

to the hardest radiation, an improvement of the accuracy of the POWHEG Sudakov form

factor can produce benefits. In the following we describe how this can be obtained.

The factorization (µF) and renormalization (µR) scales adopted in the definition of

B̄, eq. (2.28), and in the definition of the Sudakov form factors, eq. (2.31), are different.

In the choice of the scales entering in B̄, there is the usual freedom, typical of NLO

calculations: scales have to be of the same order of the typical momentum scale of the

process. In the Sudakov exponents, instead, one must adopt a scale of the order of the

radiation transverse-momentum kT. In fact, in [2, 58] it has been shown that, with this

choice, the POWHEG Sudakov form factor in eq. (2.31) is equal to the DDT [59] Sudakov

form factor, at least to the leading-logarithmic level.

Furthermore, if the number of colored particle in the Born term is less or equal than

three, then, with the same prescription described in sec. 1.3.7 for the running of the αS

coupling in the Sudakov form factor (eq. (1.174)), one can reach NLL accuracy, provided

that the functional form of kT is such that it reduces to the exact value of the transverse

momentum in the soft and collinear limit.

Finally, if the number of color-connected legs in the Born term is more than three,
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then, with the above rules, NLL accuracy can be reached only in the large Nc limit, by

generalizing the POWHEG Sudakov form factor given in eq. (2.31), following the recipes

given in sec. 4.4 of [2].

2.3.5 The POWHEG method in the FKS and the CS subtraction

methods

In this section, we summarize the recipes to build a POWHEG implementation of a process

calculated in the FKS or in the CS subtraction scheme. More details will be given in the

following chapters, since both these two subtraction approaches have been used.

POWHEG and the FKS subtraction scheme

Despite the technical complication introduced by the presence of plus distributions, the

use of the FKS subtraction scheme in POWHEG is quite natural, since, at variance with the

CS approach, each collinear region is singled out by one (and only one) S function.

The inverse construction, i.e. the procedure to build the emission variables starting

from a point in the Born phase space (Φn → Φn+1), is described in sec. 5.1-5.2 of [2]. Since

we used it for the single-top implementation, we summarize it in sec. 4.1.2. Here we just

remark that the FKS method allows also to use the same phase space parameterization,

and hence the same inverse construction procedure, for both the ⊕ and the ⊖ regions.

Moreover, for each singular region, the subtraction terms generated by the action of

plus distributions do contain only Born squared amplitude to be evaluated in the same

kinematic point of the Born term. Stated otherwise, when POWHEG is used with the FKS

approach, there is no need to use underlying-Born kinematics different from the Born one.

POWHEG and the CS subtraction scheme

The use of the CS subtraction method within the POWHEG framework requires more atten-

tion. Basically, this is due to the fact that a singular region is not entirely characterized

by one single dipole. This immediately leads to separate singular regions by using dipoles,

as we did in eq. (2.17). A Rαr contribution would be defined as

Rαr =
Dαr∑
α′

r
Dα′

r

R . (2.36)

For complicated processes, this leads to a combinatorics that is much heavier than the

one requested in the FKS approach.
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Furthermore, since dipoles are not guaranteed to be positive, then it may happen

that the sum in the denominator of eq. (2.36) vanishes. This can be solved by using the

expression

Rαr =
D2

αr∑
α′

r
D2

α′
r

R , (2.37)

instead of (2.36) .

Moreover, (some of) the dipoles present in the sum in the denominator contain Born

amplitudes to be evaluated in (n-body) kinematic points different from the Born config-

uration we have started with. In principle this is not a problem. However, for processes

which are divergent at the Born level (such as Z + 1-jet), it can happen that some of the

n-body configurations used to evaluate the dipoles contained in the sum collaps onto a

n-body singular configuration, even if the original phase space point Φn was far from that

region.

In standard NLO calculation, an infrared-safe observable O, that vanishes when two

singular regions are approached at the same time, would suppress the singular regions of

the underlying Born process in the counterterm. In POWHEG instead, this can be solved by

writing

Rαr =
H
(
Φ̄

(αr)
n

)
Dαr

∑
α′

r
H
(
Φ̄

(α′
r)

n

)
Dα′

r

R , (2.38)

where H is a positive function that vanishes when its argument approaches an n-body

singular configuration. In this way, we have again

∑

αr

Rαr = R , (2.39)

and now Rαr is singular only in the αr region.

From the above discussion, despite the fact that the first problems arising with the

CS approach can be easily solved, it emerges that the use of the FKS approach seems at

least easier than the CS one to implement NLO calculations in the POWHEG scheme.

2.3.6 Generation of the Born and the hardest radiation variables

in POWHEG

As anticipated, we conclude this chapter by giving a description of the pratical way to

generate partonic events according to the POWHEG master formula given in eq. (2.32).
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Generation of the Born variables

As a first step, we need to generate Born-like configurations (points in the Φn space) and

values for the index fb, distributed according to B̄fb(Φn) dΦn. To obtain this, normally

one would use the hit-and-miss procedure, which is a standard Monte Carlo technique.

In practice, one finds an upper bound to the cross section, generates randomly the phase-

space point, and accepts it with a probability equal to the ratio of the value of the cross

section at the given point over the upper bound value, by comparing this ratio with a

random number. In the POWHEG case, however, this is not possible, since each evaluation

of the B̄ function would require to integrate over the radiation variables, keeping the point

in Φn fixed.

Therefore, we use a slightly different technique: for each singular region, we parametrize

the radiation variables Φrad in terms of a set of three variables in the unit cube, that we

call Xrad =
{
X

(1)
rad, X

(2)
rad, X

(3)
rad

}
. The collinear remnants phase space has an extra variable

too (z, in our notation), which we parametrize in terms of one of these three variables,

say X
(1)
rad. We then introduce the B̃fb function, defined as

B̃fb(Φn, Xrad) = [B (Φn) + V (Φn)]fb

+
∑

αr∈{αr|fb}

[∣∣∣∣
∂Φrad

∂Xrad

∣∣∣∣ {R (Φn+1) − C (Φn+1)}
]Φ̄αr

n =Φn

αr

+
∑

α⊕∈{α⊕|fb}

1

z

∣∣∣∣∣
∂z

∂X
(1)
rad

∣∣∣∣∣ G
α⊕
⊕

(Φn,⊕) +
∑

α⊖∈{α⊖|fb}

1

z

∣∣∣∣∣
∂z

∂X
(1)
rad

∣∣∣∣∣ G
α⊖
⊖

(Φn,⊖) .

(2.40)

The integral of the B̃fb function over the unitary cube corresponds then to B̄fb :

B̄fb(Φn) =

∫ 1

0

dX
(1)
rad

∫ 1

0

dX
(2)
rad

∫ 1

0

dX
(3)
rad B̃

fb(Φn, Xrad) . (2.41)

We also define

B̃(Φn, Xrad) =
∑

fb

B̃fb(Φn, Xrad) . (2.42)

The bottleneck is now the generation of (Φn, Xrad) points distributed as B̃(Φn, Xrad).

In fact, to generate according to B̄fb(Φn), one first integrates the B̃(Φn, Xrad) function in

the full (Φn, Xrad) space, and then generates (Φn, Xrad) points distributed as B̃(Φn, Xrad).

Then, for each generated phase-space point, one chooses an fb value with a probability
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equal to B̃fb(Φn, Xrad)/B̃(Φn, Xrad). At this point, the Xrad values are discarded, and

one has generated the (Φn, fb) values with probability proportional to B̄fb(Φn). In this

way, by doing a single (n + 1)-body phase-space integration, one is able to generate the

Born configuration with reasonable efficiency.14

The generation of points in (Φn, Xrad), distributed according to the integrand function

B̃(Φn, Xrad), can be performed by using computer programs that, after performing a

single integration of a given function (typically with an adaptive method), can efficiently

generate according to the function itself, i.e. generate unweighted events, in our language.

One such popular program is the BASES/SPRING package [60]. More recently, another

package, called MINT [61], has become available, and this is the package that we use in

our POWHEG implementations.

Generation of the hardest-radiation variables

Given the Born kinematics (Φn, fb), we must now generate the hardest-radiation config-

uration, characterized by (αr, Φαr

rad), with αr ∈ {αr|fb}, with probability

[
R (Φn+1)

Bfb(Φn)
∆fb(Φn, kT (Φn+1))

]Φ̄αr
n =Φn

αr

dΦαr

rad . (2.43)

The Sudakov form factor can be written as

∆fb(Φn, pT) =
∏

αr∈{αr|fb}
∆fb

αr
(Φn, pT) , (2.44)

where

∆fb
αr

(Φn, pT) = exp

{
−
[∫

dΦrad
R (Φn+1)

Bfb (Φn)
θ (kT(Φn+1) − pT)

]Φ̄αr
n =Φn

αr

}
. (2.45)

The problem of generating the radiation variables according to eq. (2.43) can be reduced

to the problem of generating them with probabilities

[
Rαr (Φn+1)

Bfb(Φn)
∆fb

αr
(Φn, kT (Φn+1))

]Φ̄αr
n =Φn

dΦαr

rad , (2.46)

14In this way, by “sampling” the (n + 1)-body integrand in one point only for each point in Φn, it
can happen that the B̃ value is negative. If this happens too frequently, one can perform a “folded”
integration, i.e. one samples the (n + 1)-body integrand in more than one point and takes the average
value. In this way, it is very likely that the resulting B̃ value is positive, being the probability of picking
more than one critical point in a multiple sampling very small.
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by using the highest-bid method, which is illustrated in appendix B of [2]. We are thus left

with the problem of generating radiation variables according to eq. (2.46) for a fixed value

of αr. This problem can be dealt with using the veto technique, explained in appendix A

of [2]. To use this technique, we need a sufficiently simple upper bounding function

[
Rαr (Φn+1)

Bfb(Φn)

]Φ̄αr
n =Φn

≤ F (Φαr

rad,Φn). (2.47)

This F function can be found by looking to the singular limit of the left hand side of

eq. (2.47), that has, in general, a form suggested by the factorization theorem, and by

elementary properties of the parton densities in the case of initial-state singular regions.

Once the functional form of F is guessed, its normalization is found by scanning the Φn+1

phase space. We will give more details when describing the single vector-boson and the

single-top implementations.
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Chapter 3

NLO vector-boson production

matched with shower in POWHEG

Although W± and Z vector bosons were discovered more than twenty years ago, weak

vector-boson production in hadronic collisions is still one of the more studied process

at present and future hadron colliders. For example, on the theoretical side, an accurate

measurement of theW mass is important to check the internal consistency of the Standard

Model. Moreover, owing to their large production rates, W and Z signals will be used at

the LHC as “standard candles” to measure the collider luminosity, as well as to constrain

inputs used for other predictions, such as parton distribution functions.

In this chapter we present an implementation of the W and Z hadroproduction cross

section in the POWHEG framework, using the Catani-Seymour (CS) subtraction formalism.

At present, this is the only full POWHEG implementation of a process in the CS approach.

In ref. [2] an outline of the implementation of the Drell-Yan production cross section in

POWHEG in the CS scheme was given. In the present chapter, we depart slightly from that

approach. In particular, we use a more appropriate form of the hardness variable used for

the generation of radiation. As a further point, for the case of W production, if angular

correlations in decay products are correctly taken into account, a new problem arises. In

fact, the Born-level W cross section vanishes when the fermion decay products are exactly

in the opposite direction of the incoming quark-antiquark pair, which causes a problem in

the generation of radiation within the POWHEG method. We show that this problem has a

simple solution, that can be easily generalized to all cases in which the Born cross section

vanishes.

The chapter is organized as follows.

In sec. 3.1 we describe how we performed the calculation for the NLO W and Z cross

section.

89
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In sec. 3.2 we discuss the POWHEG implementation and how to deal with vanishing Born

cross sections.

In sec. 3.3 we show our results for several kinematic variables and compare them with

MC@NLO [42] and PYTHIA 6.4 [35]. Sec. 3.3.3 is dedicated to a more careful analysis of the

presence of rapidity dips in some MC@NLO distributions.

Finally, in sec. 3.4, we give our conclusions.

The content of this chapter is mainly based on the work published in [62]. Part of the

content of sec. 3.3.3 is based on [63].

3.1 Description of the calculation

3.1.1 Kinematics

Born kinematics

We begin by considering the Born process for the annihilation of a quark and an antiquark

into a lepton-antilepton pair1 q + q̄ → l + l. As in sec. 1.2.1, we denote by k⊕ and k⊖ the

incoming quark momenta, and by k1 and k2 the outgoing fermion momenta. We call K⊕

and K⊖ the incoming hadron momenta and define the momentum fractions x© as

k© = x©K© . (3.1)

We choose our reference frame with the z axis along the k⊕ direction. We introduce the

following variables

M2 = (k1 + k2)
2, Y =

1

2
log

(k1 + k2)
0 + (k1 + k2)

3

(k1 + k2)0 − (k1 + k2)3
, (3.2)

that characterize the invariant mass and rapidity of the virtual vector boson.2 We also

introduce the angle θl that represents the angle between the outgoing lepton and the k⊕

momentum, in the centre-of-mass frame of the lepton pair. The azimuthal orientation

of the decay products is irrelevant here, since the cross sections do not depend upon it.

We thus fix it to zero. At the end of the generation of the event, we perform a uniform,

random azimuthal rotation of the whole event, in order to cover all final-state phase space.

The set of variables M2, Y and θl fully parametrize our Born kinematics. From them we

1In case of W production the quark-antiquark and lepton-antilepton pairs have different flavour. We
focus here for simplicity on leptonic decays of the vector bosons. Hadronic decays are treated similarly.

2The virtuality of the lepton pair M2 will be distributed according to a Breit-Wigner formula around
the squared mass of the vector boson M2

V (where V stands for either the W± or the Z).
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can reconstruct

x⊕ =

√
M2

S
eY , x⊖ =

√
M2

S
e−Y , (3.3)

where S = (K⊕ +K⊖)2. The leptons’ momenta are first reconstructed in the longitudinal

rest frame of the lepton pair, where each lepton has energy equal to M/2 and where the

lepton momentum forms an angle θl with the ⊕ direction and has zero azimuth (i.e. it lies

in the z, x plane and has positive x component). The leptons’ momenta are then boosted

with boost angle Y .

The Born phase space in terms of these variables is written as

dΦ2 = dx⊕ dx⊖(2π)4δ4(k⊕ + k⊖ − k1 − k2)
d3k1

(2π)32k0
1

d3k2

(2π)32k0
2

=
1

S

1

16π
dM2 dY d cos θl

dφl

2π
.

(3.4)

Real-emission kinematics

The real emission process is described by the final-state momenta k1, k2 and k3, where k1

and k2 have the same meaning as before, and k3 is the momentum of the radiated light

parton. In the POWHEG framework, applied in the context of the CS subtraction method,

one introduces a different real phase-space parametrization for each CS dipole. In the

present case, we have two CS dipoles, with the two incoming partons playing the role of

the emitter and the spectator. We consider the case of the ⊕ collinear direction. Thus,

the emitter is the incoming parton with momentum k⊕. We introduce the variable

x = 1 − (k⊕ + k⊖) · k3

k⊕ · k⊖

, (3.5)

and the momenta

K = k1 + k2 = k⊕ + k⊖ − k3 (3.6)

K̄ = x k⊕ + k⊖ . (3.7)

Observe that K2 = K̄2, which is the condition that fixes the value of x. When k3 is

collinear to k⊕ we have

xk⊕ = k⊕ − k3, (3.8)

and K = K̄. Following ref. [64], we introduce the boost tensor

Λµ
ν(K, K̄) = gµ

ν −
2(K + K̄)µ(K + K̄)ν

(K + K̄)2
+

2K̄µKν

K2
, (3.9)
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the barred momenta

k̄µ
r = Λµ

ν(K, K̄) kν
r r = 1, 2, (3.10)

the barred-momentum fractions

x̄⊕ = xx⊕, x̄⊖ = x⊖ , (3.11)

and the barred incoming momenta

k̄⊕ = xk⊕ = x̄⊕K⊕, k̄⊖ = k⊖ = x̄⊖K⊖ . (3.12)

The barred momenta characterize the underlying-Born kinematics. We define then

M̄2 = (k̄1 + k̄2)
2 = (k1 + k2)

2, Ȳ⊕ =
1

2
log

(k̄1 + k̄2)
0 + (k̄1 + k̄2)

3

(k̄1 + k̄2)0 − (k̄1 + k̄2)3
, (3.13)

and the angle θ̄l is defined as in the Born case, but in term of the momenta k̄⊕, k̄⊖, k̄1

and k̄2.

The radiation variables are given by

x, v =
k⊕ · k3

k⊕ · k⊖

, φ, (3.14)

where φ is the azimuth of k3 around the z direction.

From the set of variables M̄2, Ȳ⊕, x, v and φ we can reconstruct the full production

kinematics for the real-emission cross section. We summarize the reconstruction procedure

from ref. [2]. From M̄2 and Ȳ we reconstruct the barred momenta, as for the Born

kinematics case. Then we reconstruct immediately

k⊕ =
k̄⊕

x
, k⊖ = k̄⊖, (3.15)

and then

k3 = vk⊖ + (1 − x− v)k⊕ + kT , (3.16)

where kT has only transverse components. Its magnitude is determined by the on shell

condition k2
3 = 0, which yields

k2
T = 2k⊕ · k⊖(1 − x− v)v (3.17)
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and its azimuth is φ. We then construct the vectors

K = k⊕ + k⊖ − k3, K̄ = xk⊕ + k⊖, (3.18)

and the inverse boost

Λ−1
µν (K, K̄) = gµν −

2(K + K̄)µ(K + K̄)ν

(K + K̄)2
+

2KµK̄ν

K2
, (3.19)

from which we can compute the leptons’ momenta

kr = Λ−1(K, K̄) k̄r, r = 1, 2. (3.20)

The real-emission phase space can be expressed in a factorized form in terms of the

underlying Born kinematics phase space and of the radiation variables

dΦ3 = dΦ̄2 dΦrad, (3.21)

with

dΦrad =
M̄2

16π2

dφ

2π
dv

dx

x2
θ(v) θ

(
1 − v

1 − x

)
θ(x(1 − x)) θ(x− x̄⊕) (3.22)

and

dΦ̄2 =
1

S

1

16π
dM̄2 dȲ d cos θ̄l . (3.23)

The kinematic variables corresponding to the ⊖ collinear direction are reconstructed in full

analogy. Observe that the underlying-Born variables and the radiation variables depend

in general upon the collinear region that we are considering.

In the present case, while M̄ , x and φ are obviously independent of the region we are

considering, Ȳ , θ̄l and v do depend upon it. In order to avoid a too heavy notation, we have

refrained from appending ⊕ or ⊖ indices to the underlying Born and radiation variables.

When necessary, we will put a [ ]© “context” bracket around a formula, meaning that

the underlying Born and radiation variables inside it should refer to the © direction.

3.1.2 Cross sections

We have used the helicity amplitude method of refs. [65,66] in order to compute the cross

sections including the vector-boson decay products. For the W -boson propagator we have

taken
−gµν + qµqν/M

2
W

q2 −M2
W + iΓWMW

(3.24)
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and for the Z/γ-boson propagators, multiplied by the corresponding couplings,

gl gq
−gµν + qµqν/M

2
Z

q2 −M2
Z + iΓZMZ

+ el eq
−gµν

q2
, (3.25)

where gl, gq are the lepton and quark couplings to the Z (for given helicities), and el, eq

are their electric charges.

As explained in sec. 2.3, we introduce the Born Bqq̄ and the real-emission cross sec-

tions Rqq̄,g, Rgq̄,q and Rqg,q̄, that represent the contributions for quark-antiquark, gluon-

antiquark and quark-gluon initiating processes. Notice that the flavour of the outgoing

particle in the subscript of R is also taken to be incoming. In the case of Z production,

q and q̄ are conjugate in flavour. For W± production, because of flavour mixing, q and q̄

may refer to different flavour species. We thus assume that, in general, q and q̄ may both

represent any flavour, but, in general, if q is a quark, q̄ is an antiquark, and viceversa.

B and R are obtained by taking the absolute value squared of the corresponding helicity

amplitude, summing over the helicities and colors of the outgoing particles, averaging over

the helicities and colors of the initial partons, and multiplying by the flux factor 1/(2s)

(see eq. (3.27)). The soft-virtual term in the CS approach is given by (see eq. (2.107) in

ref. [2])

Vqq̄ =
αS

π
CFBqq̄ . (3.26)

Defining

s = (k⊕ + k⊖)2, u = (k⊕ − k3)
2 = −s v, t = (k⊖ − k3)

2 = −(1 − x− v) s, (3.27)

the CS subtraction terms are given by

C⊕

qq̄,g =

[
−1

u
2 g2

s CF

{
2

1 − x
− (1 + x)

}
Bqq̄(M̄, Ȳ , θ̄l)

]

⊕

, (3.28)

for gluon radiation from a qq̄ initial-state, and

Cgq̄,q =

[
−1

u
2 g2

s TF {1 − 2 x (1 − x)}Bqq̄(M̄, Ȳ , θ̄l)

]

⊕

, (3.29)

for the gq̄. Analogous formulae apply for the qq̄ and the qg counterterms in the ⊖ collinear

direction.
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The collinear remnants are given by

Gqq̄,g
⊕

(Φ2,⊕) =
αS

2π
CF

[(
2

1 − z
log

(1 − z)2

z

)

+

− (1 + z) log
(1 − z)2

z
+ (1 − z)

+

(
2

3
π2 − 5

)
δ(1 − z) +

(
1 + z2

1 − z

)

+

log
M2

µ2
F

] [
Bqq̄(M̄, Ȳ , θ̄l)

]
⊕
, (3.30)

Ggq̄,q
⊕

(Φ2,⊕) =
αS

2π
TF

{[
z2 + (1 − z)2

][
log

(1 − z)2

z
+ log

M2

µ2
F

]
+ 2z(1 − z)

}[
Bqq̄(M̄, Ȳ , θ̄l)

]
⊕
.

(3.31)

The Φ2,⊕ notation, according to ref. [2], represents the set of variables

Φ2,⊕ = {x⊕, x⊖, z, k1, k2}, z x⊕K⊕ + x⊖K⊖ = k1 + k2 . (3.32)

We also associate an underlying Born configuration Φ̄2 to the Φ2,⊕ kinematics, defined by

k̄⊕ = z x⊕K⊕, k̄⊖ = x⊖K⊖, k̄1 = k1, k̄2 = k2 . (3.33)

The other two collinear remnants, Gqq̄,g
⊖

(Φ2,⊖) and Gqg,q̄
⊖

(Φ2,⊖), are equal to Gqq̄,g
⊕

(Φ2,⊕)

and Ggq̄,q
⊕

(Φ2,⊕) respectively, with
[
Bqq̄(M̄, Ȳ , θ̄l)

]
⊕

replaced by
[
Bqq̄(M̄, Ȳ , θ̄l)

]
⊖
. We then

introduce the notation B, V , R, C, G, to stand for B, V, R, C, G, each multiplied by its

appropriate parton densities. The differential cross section, multiplied by some infrared

safe observable O, can then be written as

〈O〉 =
∑

qq̄

{∫
dΦ2 [Bqq̄(Φ2) + Vqq̄(Φ2)]O(Φ2)

+

∫
dΦ3

{
Rqq̄,g(Φ3)O(Φ3) − C⊕

qq̄,g(Φ3)
[
O(Φ̄2)

]
⊕
− C⊖

qq̄,g(Φ3)
[
O(Φ̄2)

]
⊖

}

+

∫
dΦ3

{
Rgq̄,q(Φ3)O(Φ3) − Cgq̄,q(Φ3)

[
O(Φ̄2)

]
⊕

}

+

∫
dΦ3

{
Rqg,q̄(Φ3)O(Φ3) − Cqg,q̄(Φ3)

[
O(Φ̄2)

]
⊖

}

+

∫
dΦ2,⊕

[
Gqq̄,g

⊕
(Φ2,⊕) +Ggq̄,q

⊕
(Φ2,⊕)

]
O(Φ2,⊕)

+

∫
dΦ2,⊖

[
Gqq̄,g

⊖
(Φ2,⊖) +Gqg,q̄

⊖
(Φ2,⊖)

]
O(Φ2,⊖)

}
. (3.34)
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3.2 POWHEG implementation

The starting point of a POWHEG implementation is the inclusive cross section at fixed

underlying-Born flavour and kinematics. For the soft-virtual and Born contributions the

underlying Born kinematics is obviously given by the Born kinematics itself. For the

collinear remnant, for example, in the ⊕ direction (see eq. 3.32) the underlying Born

kinematics is given by

Φ̄2 = {zx⊕, x⊖, k1, k2} . (3.35)

For the CS counterterms, the underlying Born kinematics is given by the corresponding

Φ̄2 variables defined in eqs. (3.11) and (3.12). In order to assign an underlying Born

kinematics to the real term, one has to decompose it into contributions that are singular in

only one kinematic region. Since Rgq̄,q and Rqg,q̄ are only singular in the ⊕ and ⊖ direction

respectively, we assign their underlying Born to be the same of the corresponding CS

subtraction term. For Rqq̄,g, on the other hand, we separate:

Rqq̄,g = R⊕

qq̄,g +R⊖

qq̄,g, R©

qq̄,g = Rqq̄,g

C©

qq̄,g

C⊕

qq̄,g + C⊖

qq̄,g

, (3.36)

and assign to R©

qq̄,g the same underlying Born kinematics of the corresponding CS coun-

terterm C©

qq̄,g. The underlying Born flavour, on the other hand, is always qq̄ in the notation

we have adopted.

3.2.1 Generation of the Born variables

The primary ingredient for a POWHEG implementation is the B̄ function, that is the inclusive

cross section at fixed underlying Born variables. In our case, it is given by

B̄ =
∑

qq̄

B̄qq̄, (3.37)

B̄qq̄ = Bqq̄(Φ2) + Vqq̄(Φ2) +
∑

©

∫ [
dΦrad

{
R©

qq̄,g(Φ3) − C©

qq̄,g(Φ3)
}]Φ̄2=Φ2

©

+

∫
[dΦrad {Rgq̄,q(Φ3) − Cgq̄,q(Φ3)}]Φ̄2=Φ2

⊕
+

∫
[dΦrad {Rqg,q̄(Φ3) − Cqg,q̄(Φ3)}]Φ̄2=Φ2

⊖

+

∫ 1

x̄⊕

dz

z

[
Gqq̄,g

⊕
(Φ2,⊕) +Ggq̄,q

⊕
(Φ2,⊕)

]Φ̄2=Φ2 +

∫ 1

x̄⊖

dz

z

[
Gqq̄,g

⊖
(Φ2,⊖) +Gqg,q̄

⊖
(Φ2,⊖)

]Φ̄2=Φ2

(3.38)

It is worthwhile to observe that, when integrating the R©

qq̄,g(Φ3) terms, only the dipole
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corresponding to the region at hand will be evaluated with kinematics equal to the Born’s

one. Hence, when we integrate R⊕

qq̄,g(Φ3) over [dΦrad]⊕, the term C⊖

qq̄,g in the denominator

of eq. (3.36) is evaluated in a kinematical configuration which is not equal to the argument

of B̄, i.e. Φ2. In this implementation, this does not cause any problem, since no dangerous

kinematical configurations can be generated in this way. However, as outlined in sec. 2.3.5,

in more complicated processes this may require special attention.

The radiation variables Φrad are parametrized in terms of three variables that span

the unit cube, Xrad = {X(1)
rad, X

(2)
rad, X

(3)
rad}, while the z variable is parametrized in term of

a single variable X
(1)
rad that ranges between 0 and 1. We then define the B̃ function

B̃qq̄ = Bqq̄(Φ2) + Vqq̄(Φ2) +
∑

©

[∣∣∣∣
∂Φrad

∂Xrad

∣∣∣∣
{
R©

qq̄,g(Φ3) − C©

qq̄,g(Φ3)
}]Φ̄2=Φ2

©

+

[∣∣∣∣
∂Φrad

∂Xrad

∣∣∣∣{Rgq̄,q(Φ3) − Cgq̄,q(Φ3)}
]Φ̄2=Φ2

⊕

+

[∣∣∣∣
∂Φrad

∂Xrad

∣∣∣∣{Rqg,q̄(Φ3) − Cqg,q̄(Φ3)}
]Φ̄2=Φ2

⊖

+

[
1

z

∂z

∂X
(1)
rad

{
Gqq̄,g

⊕
(Φ2,⊕) +Ggq̄,q

⊕
(Φ2,⊕)

}
]Φ̄2=Φ2

⊕

+

[
1

z

∂z

∂X
(1)
rad

{
Gqq̄,g

⊖
(Φ2,⊖) +Gqg,q̄

⊖
(Φ2,⊖)

}
]Φ̄2=Φ2

⊖

, (3.39)

so that defining B̃ =
∑

qq̄ B̃qq̄, we have

B̄ =

∫
d3Xrad B̃ . (3.40)

In practice, the B̃ function is integrated numerically over all Φ2, Xrad integration variables,

using an integration program that can generate the set of kinematic variables Φ2, Xrad,

with a probability proportional to dΦ2 d
3Xrad B̃ in the dΦ2 d

3Xrad kinematic cell (see, for

example, refs. [60, 61]). Once the Φ2, Xrad point is generated, the flavour qq̄ is chosen

with a probability proportional to the value of B̃qq̄ at that specific Φ2, Xrad point. At

this stage, the radiation variables are disregarded, and only the underlying Born ones are

kept. This corresponds to integrate over the radiation variables, as explained in sec. 2.3.6.
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3.2.2 Generation of the radiation variables

Radiation kinematics is instead generated using the POWHEG Sudakov form factor

∆qq̄(Φ2, pT) =
∏

©

∆qq̄
©
, (3.41)

where

∆qq̄
⊕

(Φ2, pT) = exp

{

−
[∫

dΦrad

R⊕

qq̄,g(Φ3) +Rgq̄,q(Φ3)

Bqq̄(Φ2)
θ (kT(Φ3) − pT)

]Φ̄2=Φ2

⊕

}

(3.42)

∆qq̄
⊖

(Φ2, pT) = exp

{

−
[∫

dΦrad

R⊖

qq̄,g(Φ3) +Rqg,q̄(Φ3)

Bqq̄(Φ2)
θ (kT(Φ3) − pT)

]Φ̄2=Φ2

⊖

}

(3.43)

The function kT (Φ3) measures the hardness of radiation in the real event. It is required

to be of the order of the transverse momentum of the radiation in the collinear limit, and

to become equal to it in the soft-collinear limit. In principle, the choice of kT (Φ3) can

differ in the two singular regions (⊕ and ⊖) that we are considering. The choice adopted

in the Examples section of ref. [2] had in fact this feature. We have found, however, that

for practical reasons3 it is better to adopt a different choice, namely to take kT (Φ3) to

coincide with that of eqs. (3.16) and (3.17).

The generation of radiation is performed individually for ∆qq̄
⊕

and ∆qq̄
⊖

, and the highest

generated kT is retained. The upper bounding function for the application of the veto

method is chosen to be4

R⊕

qq̄,g +Rgq̄,q

Bqq̄
≤ 16π2

M2
N⊕

qq̄

αs(k
2
T )

2v

x2

1 − x− v
, (3.44)

and the analogous one for the ⊖ direction. The procedure used to generate radiation

events according to this upper bounding function is described in Appendix B.

After the radiation generation, events are then passed to the Shower Monte Carlo

program, using the LHIUP interface. No ambiguities can arise for color connections,

since there are at most three colored particles, and hence there is only one possible way to

3The choice discussed in [2] is k2
T = M2(1−x)v, and is such that k2

T is always bound to be smaller than
M2. Since the factorization and renormalization scales are taken equal to kT , for vector-boson production
at transverse momenta much larger than the vector-boson mass the coupling does not properly decrease.

4This upper bounding function differs from the ones of eqs. (7.163)–(7.166) in ref. [2], but is in fact
equivalent to the bound of eq. (7.234) in the same reference, once the change of variables ξ = 1 − x,
y = (1 − 2v − x)/(1 − x) is performed, and the different definitions of dΦrad are properly taken into
account.
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color-connect them. For Born-like events, there is only one line connecting the incoming

quark-antiquark pair. For real-like events, instead, each of the two gluon lines is connected

properly to one of the two quarks.

3.2.3 Born zeros

In case the Born cross section vanishes in particular kinematics points, a problem arises

in the POWHEG expression for the Sudakov form factor (3.42) and (3.43). It happens, in

fact, that although B vanishes, B̄ may differ from zero. Born kinematics configurations

with a vanishing Born cross section may thus be generated and, at the stage of radiation

generation, one would find very large ratios of the real-emission cross section over the

Born cross section. It would thus prove difficult to find a reasonable upper bound for this

ratio. If one tries to neglect the problem, radiation events with a vanishing underlying

Born configuration would never be generated. We observe that, in the limit of small

hardness parameter, the real cross also exhibit the same vanishing behaviour of the Born

cross section. Loosely speaking, the problem arises when the distance of the underlying

Born configuration from the zero configuration is smaller than the distance of the real

emission cross section from the singular (i.e. zero hardness) configuration. In order to

solve this problem, in a completely general way, we further decompose the real cross

section contribution as

Rαr = Rαr ,s +Rαr ,r, (3.45)

where

Rαr ,s = Rαr
Z

Z +H
, Rαr ,r = Rαr

H

Z +H
. (3.46)

The suffixes s and r stand for “singular” and “regular” respectively, and Z is a function

of the kinematics that vanishes like the Born cross section, evaluated at the underlying

Born kinematics of the given term. H is the hardness of radiation and it must vanish for

vanishing transverse momentum of the radiation. The simplest possible choice would be

Z = B k2
T,max

Bmax
, H = k2

T , (3.47)

where kT is some definition of the transverse momentum of the radiation. Notice now

that Rαr ,s vanishes as fast as the Born term when its underlying Born kinematics ap-

proaches the Born zero. It can thus be used in the expression for the Sudakov form factor

(eqs. (3.42) and (3.43)) without problems. The Rαr ,r is instead non-vanishing, but, on

the other hand, it does not have collinear or soft singularities because of the H factor,

and thus it can be computed directly, without any Sudakov form factor. In the case of
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W production, the Born zero is associated to θ̄l = 0 if q is an antiquark, and θ̄l = π if it

is a quark. We choose then

Z = M2
(
1 + sq cos θ̄l

)2
, H = k2

T , (3.48)

with k2
T given by formula (3.17) and the factor sq equals 1 for quark, and −1 for antiquark.

The angle θ̄l is chosen according to the ⊕ parametrization (forR⊕) or the ⊖ parametrization

(for R⊖) of the real-emission phase space.

In addition, all the Rαr terms in eq. (3.37) are replaced by the corresponding Rαr ,s

and the Rαr ,r terms are generated in a way similar to what was done for eq. (3.39). In

other words one defines

B̃r =
∑

qq̄

B̃r
qq̄ =

∑

qq̄

{[∣∣∣∣
∂Φrad

∂Xrad

∣∣∣∣R
⊕,r
qq̄,g(Φ3)

]Φ̄2=Φ2

⊕

+

[∣∣∣∣
∂Φrad

∂Xrad

∣∣∣∣R
⊖,r
qq̄,g(Φ3)

]Φ̄2=Φ2

⊖

+

[∣∣∣∣
∂Φrad

∂Xrad

∣∣∣∣R
r
gq̄,q(Φ3)

]Φ̄2=Φ2

⊕

+

[∣∣∣∣
∂Φrad

∂Xrad

∣∣∣∣R
r
qg,q̄(Φ3)

]Φ̄2=Φ2

⊖

}

,(3.49)

and integrates over the whole Φ2, Xrad phase space with the same method used for B̃. In

order to generate an event, one chooses B̃ or B̃r, with a probability proportional to their

respective total integral. In case B̃r is chosen, one generates a kinematic configuration

according to it. This kinematic configuration is a full 3-body configuration. The flavour qq̄

is chosen with a probability proportional the the value of B̃r
qq̄ for the particular kinematic

point that has been generated, and the event is sent to the output. In case B̃ is chosen,

a kinematic configuration and an underlying Born flavour is chosen in the same way.

3.3 Results

The MC@NLO program provides an implementation of vector-boson production at the NLO

level in a shower Monte Carlo framework. It should therefore be comparable to our

calculation, and we thus begin by comparing MC@NLO and POWHEG distributions. In this

comparison, the POWHEG code is interfaced to HERWIG [34, 43], in order to minimize dif-

ferences due to the subsequent shower in the two approaches. We choose as our default

parton-density functions the CTEQ6M [10] package, and the corresponding value of ΛQCD.

The factorization and renormalization scales are taken equal to M2
V + (pV

T )2 in the cal-

culation of the B̄ function, where V = W or Z. In the generation of radiation, the

factorization and renormalization scales are taken equal to the transverse momentum of

the vector boson V . We also account properly for the heavy-flavour thresholds, when
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the transverse momentum of the vector boson approaches the bottom and charm quark

threshold. That is to say, when the renormalization scale crosses a heavy-flavour mass

threshold, the QCD evolution of the running coupling is accordingly changed to the new

number of active flavours. The other relevant parameters for our calculation are

Mz (GeV) ΓZ (GeV) MW (GeV) ΓW (GeV) sin2 θeff
W α−1

em(MZ)

91.188 2.49 80.419 2.124 0.23113 127.934
.

The above values of masses and widths are used in eqs. (3.24) and (3.25). The W and Z

couplings are given by

g =
e

sin θeff
W

, gl/q =
e

sin θeff
W cos θeff

W

[
T

(l/q)
3 − ql/q sin2 θeff

W

]
, e =

√
4παem(MZ) , (3.50)

where l/q denotes the given left or right component of a lepton or a quark. For W

production we used the following absolute values for the CKM matrix elements

ud us ub cd cs cb td ts tb

0.9748 0.2225 0.0036 0.2225 0.9740 0.041 0.009 0.0405 0.9992
.

In all figures shown in the following we do not impose any acceptance cut.

3.3.1 Z production at the Tevatron

In fig. 3.1 we show a comparison of the lepton transverse momentum and rapidity, and

of the transverse momentum of the reconstructed lepton-antilepton pair at the Tevatron.

We notice a larger cross section in POWHEG, when the Z transverse momentum becomes

large. This is not unexpected, since for large momenta the POWHEG result is larger than

the standard NLO result by a factor B̄/B (this feature has also some impact upon the

transverse-momentum distribution of the lepton). Once this fact is accounted for, the

transverse-momentum distribution of the Z is in fair agreement, although we find observ-

able shape differences at low transverse momenta. We also notice a peak at pT = 0 in the

MC@NLO distribution, that is not present in the POWHEG result. We expect this distribution

to be affected by low transverse-momentum power-suppressed effects. In fact, the peak

at zero transverse momentum in MC@NLO disappears if the primordial transverse momen-

tum of the partons (the PTRMS variable in HERWIG) is set to a non-zero value. In fig. 3.2

we compare the rapidity distribution of the reconstructed Z, its invariant mass, the az-

imuthal distance of the e+e− pair coming from Z decays, and the transverse momentum

of the radiated jet at the Tevatron. The jet is defined using the SISCONE algorithm [67] as

implemented in the FASTJET package [68], using R = 0.7. We find again fair agreement.
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Figure 3.1: Comparison between POWHEG and MC@NLO results for the transverse momentum
and rapidity of the lepton coming from the decay of the Z boson, and for the
transverse momentum of the Z, as reconstructed from its decay products. The
lepton-rapidity asymmetry is also shown. Plots done for the Tevatron pp̄ collider.

In ref. [69], a discrepancy was found in the rapidity distribution of the hardest radiated

jet as computed in MC@NLO and ALPGEN, for the case of top pair production at the Tevatron.

The MC@NLO calculation shows there a dip at zero rapidity, not present in ALPGEN. In fact,

the POWHEG calculation of this quantity does not display any dip. We thus examine the

transverse momentum of the radiated jet in this case. Furthermore, we also plot the

rapidity difference between the Z and the hardest radiated jet. The results are displayed

in fig. 3.3. We have chosen different cuts for the minimum transverse momentum of the

radiated jet, i.e. 10, 20, 40, 60 and 80 GeV. We observe noticeable differences in the

rapidity distribution of the hardest jet in the two approaches. The MC@NLO result displays

a dip at zero yjet − yZ . We will come back on this feature in sec. 3.3.3.
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Figure 3.2: Comparison between POWHEG and MC@NLO for the reconstructed Z rapidity, its
invariant mass, the lepton-pair azimuthal distance and the transverse momentum
of the reconstructed jet, above a 10 GeV minimum value.

3.3.2 Z production at the LHC

Similar results are reported for the LHC in fig. 3.4 through 3.6. We notice less pronounced

differences (with respect to the Tevatron case) in the pT spectrum of the Z boson. The

discrepancy in the yjet distribution is still evident, although the dip is barely noticeable

in this case.

The same set of plots are also shown for a PYTHIA-POWHEG comparison in fig. 3.7

through 3.10. In this case the POWHEG code was interfaced with PYTHIA. Photon radiation

from final-state leptons was switched off (MSTJ(41)=3), in order to simplify the analysis.

Furthermore, the new transverse-momentum ordered shower was used (i.e. the PYEVNW

routine), since transverse-momentum ordering should be more appropriate in conjunc-

tion with POWHEG. In the plots, the PYTHIA output is normalized to the POWHEG total
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Figure 3.3: Rapidity distribution of the hardest jet with different transverse-momentum cuts,
and the rapidity distance between the hardest jet and the reconstructed Z boson.

cross section. From fig. 3.7 through 3.8, we can see a remarkable agreement between

the two calculations for the Tevatron results, the only visible discrepancy being given

by the transverse-momentum distribution of the Z boson at small transverse momenta.

We also notice that, unlike the case of the MC@NLO-POWHEG comparison, the transverse-

momentum distribution of the Z is slightly harder in PYTHIA than in POWHEG. The rapidity

distributions of the hardest jet are also in remarkable agreement.

In fig. 3.10 through 3.11, we carry out the same comparison in the LHC case. We

notice here few important differences in the rapidity distribution of the Z boson, and,

probably related to that, of the electron, the PYTHIA distribution being flatter in the

central region. Both MC@NLO and POWHEG do not show this feature. As already pointed

out in dec. 2.3.1, the generation of vector bosons in PYTHIA is not very different from the

POWHEG generation. Radiation is generated with a very similar method [45, 56]. There

are however differences. In PYTHIA the Born inclusive cross section is used rather than

our B̄ function. Furthermore, our choice of scales is constrained by the requirement of

next-to-leading logarithmic accuracy in the Sudakov form factor. The discrepancy in the

transverse-momentum distribution of the Z may be due to different requirements for the

choice of the scale in the generation of radiation in the two algorithms. In particular, one

possible explanation for the low-pT difference is the fact that PYTHIA does not use the

scale ΛMC in the evaluation of the coupling constant present in the Sudakov form factor.5

The discrepancy in the rapidity distribution may be due to the lack of NLO corrections

in PYTHIA, i.e. to the use of the Born cross section (rather than the B̄ function) and LO

5In fact, this option was included only from version 6.4.19, while results presented here were obtained
with version 6.4.16.
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Figure 3.4: Same as fig. 3.1 for the LHC at 14 TeV.

parton densities. In fact, in fig. 3 of ref. [70], a comparison in the rapidity distribution of

the Z at LO, NLO and NNLO, is shown for the LHC. One can notice from that figure

that there is a difference in the LO and NLO shape of the distribution, the former being

flatter. In order to elucidate this point, we show in fig. 3.13 the rapidity distribution of

the Z boson computed at fixed order in QCD, at LO and NLO. With the LO calculation,

we also show the result obtained using the same LO parton-distribution function (pdf)

set used in PYTHIA, that is CTEQ5L. The figure leads to the conclusion that the use of

the LO parton-density set CTEQ5L is the primary cause of this shape difference. We

find, in fact, no difference in shape between the LO and NLO result if the same pdf set is

used instead. We thus conclude that also the effect observed in fig. 3 of ref. [70] is due to

the use of a LO parton-density set together with the LO result.

The predictions for the transverse-momentum distribution of the Z boson are sum-

marized in fig. 3.14, in comparison with data from ref. [71], at
√
S = 1960 GeV and from
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Figure 3.5: Same as fig. 3.2 for the LHC at 14 TeV.

refs. [72–74] at
√
S = 1800 GeV. The POWHEG+HERWIG and the MC@NLO output are ob-

tained with an intrinsic transverse momentum of the incoming partons equal to 2.5 GeV

(HERWIG’s PTRMS parameter). Both data and predictions are normalized to 1. The dif-

ference in the shape of the distributions at 1960 and 1800 GeV are only minimal. We

see that POWHEG with PYTHIA is in remarkable agreement with the MC@NLO result. On

the other hand, standalone PYTHIA is closer to the output of POWHEG with HERWIG. In all

cases, the agreement with data is fair, but not optimal. It is thus clear that this distri-

butions is sensitive to long distance effects like hadronization and transverse-momentum

smearing, and good agreement with data may only achieved by suitable tuning of the

non-perturbative parameters of the shower Monte Carlo.
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Figure 3.6: Same as fig. 3.3 at the LHC at 14 TeV.

Figure 3.7: Same as fig. 3.1 for a PYTHIA and POWHEG comparison at the Tevatron.
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Figure 3.8: Same as fig. 3.2 for a PYTHIA and POWHEG comparison at the Tevatron.

Figure 3.9: Same as fig. 3.3 for a PYTHIA and POWHEG comparison at the Tevatron.
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Figure 3.10: Same as fig. 3.1 for a PYTHIA and POWHEG comparison at the LHC.
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Figure 3.11: Same as fig. 3.2 for a PYTHIA and POWHEG comparison at the LHC.

Figure 3.12: Same as fig. 3.3 for a PYTHIA and POWHEG comparison at the LHC.
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Figure 3.13: Rapidity distribution for the Z boson, computed at fixed order at LO and NLO.
For the LO result, both the CTEQ6M and the CTEQ5L parton-density set were
used. The plots are normalized to the NLO total cross section.

Figure 3.14: Comparison of transverse-momentum distributions of the Z bosons with data
from the Tevatron.
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3.3.3 Hardest-jet rapidity distribution and dips

The discrepancy of POWHEG and MC@NLO in the rapidity distribution of the hardest jet

deserves further discussion. A first study of these features was performed in ref. [69], for

tt̄ production. It was shown there that the HERWIG Monte Carlo displays an even stronger

dip than MC@NLO. The MC@NLO generator provides more events that partially fill the dip,

thus correcting the NLO inaccuracies of the Shower Monte Carlo.

In the present case we found no dip in the rapidity distribution of the hardest jet in

V production (see fig. 3.3). We found instead a dip in the distribution in the rapidity

difference between the jet and the vector boson.6

Since both MC@NLO and POWHEG are accurate at the NLO, in order to understand the

origin of this discrepancy it is natural to look for possible mismatching between the two

methods at the NNLO. Moreover, since the POWHEG program, as well as matrix-element

generators, generate themselves the full NLO result, and since stronger dips were found

by running HERWIG alone, one can guess that, in the NNLO mismatch, something related

to the HERWIG shower has to be found. In the following we illustrate a more quantitative

explanation, which leads exactly to what we expect qualitatively.7

In sec. 2.2.2, eq. (2.9), we introduced the MC@NLO generating functional. The generating

functional FSMC is the HERWIG one, so that, as it stands, eq. (2.9) can not be easily used

to estimate the hardest emission cross section of MC@NLO, because the HERWIG shower

is ordered in angle: initial emissions do not necessairly coincide with the harder ones.

Nevertheless, we can schematically represent the MC@NLO cross section for the hardest

emission with the following formula, where we use a notation similar to the one used for

POWHEG:

dσ = B̄MC(Φ̄n) dΦ̄n︸ ︷︷ ︸
S event

[
∆veto(Φ̄n, t0) + ∆veto(Φ̄n, t)

RMC(Φn+1)

B(Φ̄n)
dΦMC

rad

]

︸ ︷︷ ︸
MC shower

+
[
R(Φn+1) −RMC(Φn+1)

]
dΦ̄n dΦrad

︸ ︷︷ ︸
H event

. (3.51)

The terminology “S” and “H events” has been already introduced, and we do not repeat

6The distribution in the pseudorapidity difference of the hardest jet with respect to the vector boson
was considered in ref. [75], in the context of a comparison of several matrix-element programs. Although
noticeable differences are found among the generators considered there, none of them exhibit a dip at
zero pseudorapidity.

7This possible explanation of the presence of dips in the MC@NLO results has been first proposed in
the talks [76–78]. In ref. [79], in the framework of Higgs production, this problem and its Shower Monte
Carlo origin was accurately studied too.
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it here. We have

B̄MC(Φ̄n) = B(Φ̄n) + V (Φ̄n) +

∫
dΦrad [RMC(Φn+1) − C(Φn+1)] , (3.52)

RMC(Φn+1) = B(Φ̄n)
αS(t)

2π

1

t
P (z) , (3.53)

∆veto(Φ̄n, t) = exp

{
−
∫
dΦMC

rad

αS(t)

2π

1

t
P (z) θ (kT(Φn+1) − t)

}
, (3.54)

where P (z) are the Altarelli-Parisi splitting kernels and dΦrad = dΦMC

rad ≡ dz dt dφ/(2π).

The “MC shower” factor in eq. (3.51) shows that, for S events, the hardest emission is

produced by running the HERWIG shower Monte Carlo, starting with the event kinematics

Φ̄n. Despite the fact that an angular-ordered Monte Carlo may not generate the hardest

radiation as its first emission, thanks to the presence of pT-vetoed Sudakov form factors

formula (3.51) does correctly represent the hardest emission probability up to subleading

effects, that we here assume to be irrelevant for our argument.8

In the production of a high-pT parton, formula (3.51) yields

dσ ≈ B̄MC(Φ̄n)
RMC(Φn+1)

B(Φ̄n)
dΦ̄n dΦ

MC

rad +
[
R(Φn+1) − RMC(Φn+1)

]
dΦ̄n dΦrad

≈ R(Φn+1) dΦ̄n dΦrad +

(
B̄MC(Φ̄n)

B(Φ̄n)
− 1

)

︸ ︷︷ ︸
O(αS)

RMC(Φn+1) dΦ̄n dΦ
MC

rad , (3.55)

where we have used the fact that ∆veto(Φ̄n, t) ≈ 1 in this limit. The first term correctly

describes the hard radiation in the whole phase space. The second term is responsible

for the dip. In fact, according to our approximation, the dip present in HERWIG comes

from the term RMC(Φn+1) dΦ̄n dΦ
MC

rad, that propagates here with a weight proportional

to (B̄MC/B − 1). Although formally subleading in αS, this term can be significant for

processes with large K factors.

According to this argument, the observed mismatch is expected in the present case,

since NLO corrections are found to be non negligible for single vector-boson production.

We also reconsider Z pair production and tt̄ production at the Tevatron, and compare

POWHEG and MC@NLO results for the rapidity distribution of the hardest jet, and for the

distribution in the rapidity difference.9 The results are shown in figs. 3.15 and 3.16.

8More details can be found in ref. [1], where it was shown how to reorganize an angular-ordered shower
to generate the hardest emission as the first one.

9In fact, it is reasonable to assume that a dip in the rapidity distribution of the jet may be inherited
from the dip in the rapidity difference, if the kinematics production regime is forced to be central, like in
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Figure 3.15: Rapidity distribution of the hardest jet and of the rapidity difference between
the hardest jet and the tt̄ system at Tevatron energies.

From fig. 3.15 we see that the dip present in the yjet−ytt̄ distribution is even deeper than

the dip observed in the yjet distribution. Furthermore, in fig. 3.16, we see no particular

features in the yjet distribution. The yjet − yZZ distribution displays instead a tiny tower

and a dip, depending upon the transverse-momentum cut on the jet.

Finally, for reference, we report also one figure taken from [80], where NLO corrections

to the process gg → H were matched with shower in the POWHEG scheme. In that case,

the K factor was very big, and dips effects were more pronounced, as it can be seen in

fig. 3.17. From this plot, one can also notice that HERWIG shower is responsible for dips,

and that MC@NLO partially fills them.

Finally, we notice that a similar mechanism (i.e. via a large B̄/B factor) for generating

large NNLO terms operates also in POWHEG, and has been discussed in ref. [80] in the

framework of Higgs production, as being responsible for a hard Higgs boson pT spectrum.

In POWHEG, however, this mechanism cannot generate any dip, since here HERWIG has no

role in the generation of the hardest radiation.

In chapter 4, we will come back on rapidity dips in sec. 4.3.4. We will see that for

processes with small K factors, such as single-top production, dips are less pronounced,

or even absent, as the above argument suggests.

the case of top-pair production at the Tevatron.
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Figure 3.16: Rapidity distribution of the hardest jet and of the rapidity difference between
the hardest jet and the ZZ system at Tevatron energies.

Figure 3.17: Comparison of POWHEG, MC@NLO and HERWIG (without matrix-element correc-
tions), for the rapidity of the leading jet and the rapidity difference of the Higgs
boson and the leading jet, defined according to the SISCONE algorithm, with
different jet cuts.
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3.3.4 W production at the Tevatron and LHC

All results presented so far are relative to Z boson production. In the case ofW production

we find similar features and the comparison between MC@NLO and PYTHIA presents very

similar characteristics. For the sake of completeness, we present in fig. 3.18 through 3.35

plots of observables for W− production at the Tevatron, and W− and W+ production

at the LHC, comparing again the POWHEG output with MC@NLO and PYTHIA, and the ob-

servables for W+ production at the LHC. We find again that MC@NLO displays dips in

the rapidity distribution of the hardest jet at Tevatron energy. The comparison of the

transverse-momentum distribution of the W shows the same differences found in the Z

case. Furthermore, the rapidity distribution of the W± at the LHC differs in PYTHIA,

showing a very marked difference in the W+ case (see fig. 3.34), probably (as in the Z

case) a consequence of the different pdf set.

Figure 3.18: Comparison of POWHEG and MC@NLO results for the transverse momentum and ra-
pidity of the lepton coming from the decay of the W− boson and for the transverse
momentum of the W−, as reconstructed from its decay product.



3.3. Results 117

Figure 3.19: Comparison of POWHEG and MC@NLO for the reconstructed W− rapidity, its in-
variant mass, the lepton-pair azimuthal distance and the transverse momentum
of the reconstructed jet, above a 10 GeV minimum value.

Figure 3.20: Rapidity distribution of the hardest jet with different transverse-momentum
cuts, and the rapidity distance between the hardest jet and the reconstructed
W− boson for POWHEG and MC@NLO at the Tevatron.
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Figure 3.21: Same as fig. 3.18 for the LHC at 14 TeV.

Figure 3.22: Same as fig. 3.19 for the LHC at 14 TeV.
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Figure 3.23: Same as fig. 3.20 at the LHC at 14 TeV.

Figure 3.24: Same as fig. 3.18 for a PYTHIA and POWHEG comparison at the Tevatron.
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Figure 3.25: Same as fig. 3.19 for a PYTHIA and POWHEG comparison at the Tevatron.

Figure 3.26: Same as fig. 3.20 for a PYTHIA and POWHEG comparison at the Tevatron.
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Figure 3.27: Same as fig. 3.18 for a PYTHIA and POWHEG comparison at the LHC.

Figure 3.28: Same as fig. 3.19 for a PYTHIA and POWHEG comparison at the LHC.
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Figure 3.29: Same as fig. 3.20 for a PYTHIA and POWHEG comparison at the LHC.

Figure 3.30: Same as fig. 3.21 for W+ production at the LHC.
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Figure 3.31: Same as fig. 3.22 for W+ production at the LHC.
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Figure 3.32: Same as fig. 3.23 for W+ production at the LHC.

Figure 3.33: Same as fig. 3.27 for W+ production at the LHC.
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Figure 3.34: Same as fig. 3.28 for W+ production at the LHC.

Figure 3.35: Same as fig. 3.29 for W+ production at the LHC.
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3.4 Conclusions

In this chapter we have described a complete implementation of vector-boson production

at NLO in the POWHEG framework. The calculation was performed using the Catani-

Seymour [64] dipole approach, and thus this is the first POWHEG implementation within the

Catani-Seymour framework at a hadronic collider. We have found that, at variance with

what was proposed in sec. 7.3 of ref. [2], it is better to define the transverse momentum

as the true transverse momentum for the initial-state singular region. Furthermore, we

have shown how to perform a POWHEG implementation when the Born term vanishes.

The results of our work have been compare extensively with MC@NLO and PYTHIA.

The PYTHIA result, rescaled to the full NLO cross section, is in good agreement with

POWHEG, except for differences in the rapidity distribution of the vector boson, that may

be ascribed to the use of a LO parton density in PYTHIA. The MC@NLO result is in fair

agreement with POWHEG, except for the distribution of the hardest jet in the process, the

MC@NLO distribution being generally wider. We carefully examined also the distributions

in the difference of the hardest jet and the vector-boson rapidity. We have found that the

MC@NLO distributions exhibit dips at zero rapidity, that seem to be a general feature of

the MC@NLO approach.

We also gave an explanation for these dips by using an approximate formula for the

hardest radiation generated by MC@NLO. We found that these effects are formally sublead-

ing, but that, in general, possible dips are more and more pronounced as long as the

K factor increases. This explanation seems to be confirmed by analogous distributions

obtained with MC@NLO for other processes.
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NLO single-top production matched

with shower in POWHEG: s- and t-

channel subprocesses

Top-quark production in hadronic collisions has been one of the most studied signal in

the last twenty years. Up to recent times, tt̄ pair production has been the only observed

top-quark source at the Tevatron collider, due to its large, QCD-dominated, cross section.

Processes where only one top quark appears in the final state are known in literature as

single-top processes. Their cross sections are smaller than the tt̄ pair one, due to their

weak nature. This fact, together with the presence of large W + jet and tt̄ backgrounds,

makes the single-top observation very challenging, so that this signal has been observed

only recently by the CDF [81] and D0 [82] collaborations.

In spite of its relative small cross section, single-top production is an important sig-

nal for several reasons (see also refs. [83, 84] and references therein). Within the Stan-

dard Model, the single-top signal allows a direct measurement of the Cabibbo-Kobayashi-

Maskawa (CKM) matrix element Vtb [85] and of the b parton density. Furthermore, the

V-A structure of weak interactions can be directly probed in these processes, since the top

quark decays before hadronizing, and its polarization can be directly observed in the an-

gular correlations of its decay products [86,87]. Finally, single-top processes are expected

to be sensitive to several kinds of new physics effects and, in some cases, are the best

channels to observe them [88–90]. For all the above reasons, single-top is an important

Standard Model processes to be studied at the LHC, where the statistics limitation due

to the small cross section is less severe and differential distributions can also be studied.

In order to include a reliable description of both short- and long-distance effects into

the simulation of hadronic processes, it is important to consistently match fixed order

127
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results with parton showers. Radiative corrections for single-top production have been

known for years [84, 91–98], while the implementation of these results into a next-to-

leading-order Shower Monte Carlo (SMC), namely MC@NLO [42,52], is more recent [18,53].

In this chapter, we present a next-to-leading-order (NLO) calculation of s- and t-

channel single-top production, interfaced to Shower Monte Carlo programs, according to

the POWHEG method. Due to the structure of the Born subprocesses, this is the first POWHEG

implementation of a process that has both initial and final state singularities.

This chapter is organized as follows.

In sec. 4.1 we collect the next-to-leading-order cross section formulae and describe the

kinematics and the structure of the singularities.

In sec. 4.2 we discuss the POWHEG implementation and how we have included the

generation of top-decay products.

In sec. 4.3 we show our results for several kinematic variables. Most of this phenomeno-

logical section is devoted to study the comparison of our results with those of MC@NLO. We

find fair agreement for almost all the distributions and give some explanations about the

differences we found. Some comparisons are carried out also with respect to PYTHIA 6.4,

showing that some distributions are strongly affected by the inclusion of NLO effects.

Top-decay effects are also discussed. We also studied the problem of rapidity dips in this

case. The obtained results, although more difficult to be interpreted with respect to the

single vector-boson case, are in agreement with the explanation of their origin that we

gave in the previous chapter.

Finally, in sec. 4.4, we give our conclusions.

The content of this chapter is mainly based on the work published in [63].1

4.1 Description of the calculation

In this section we present some technical details of the calculation, including the kinematic

notation we are going to use throughout the chapter, the relevant differential cross sections

up to next-to-leading-order in the strong coupling αS and the subtraction formalism we

have used to regularize initial- and final-state singularities. In this chapter, we always

refer to top-quark production, since anti-top production is obtained simply by charge

conjugation.

1A mismatch between the text and the plots relevant for angular correlations in top decay has been
found in [63]. In particular, plots presented in [63] were obtained without acceptance cuts. Here we
correct that mismatch and we include an updated plot with cuts corresponding to those described in the
text.
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Single-top production processes are usually divided into three classes, depending on

the virtuality of the W boson involved at the leading order:

1. Quark-antiquark annihilation processes, such as

u+ d̄→ t+ b̄ , (4.1)

are called s-channel processes since the W -boson virtuality is timelike.

2. Processes where the top quark is produced with an exchange of a spacelike W boson,

such as

b+ u → t+ d , (4.2)

are called t-channel processes.

3. Processes in which the top quark is produced in association with a real W boson,

such as

b+ g → t+W . (4.3)

These Wt processes have a negligible cross section at the Tevatron, while at the LHC

their impact is phenomenologically relevant. The calculation of NLO corrections

to Wt processes is also interesting from the theoretical point of view, since the

definition of real corrections is not unambiguous [53].

The implementation described in this chapter includes only s- and t-channel processes.

In these cases, the POWHEG implementation needs to deal with both initial- and final-

state singularities, and is thus more involved than in processes previously considered. In

this respect, the associated Wt production has only initial-state singularities and is thus

analogous to previous POWHEG implementations.

In the calculation, all quark masses have been set to zero (except, of course, the top-

quark mass) and the full Cabibbo-Kobayashi-Maskawa (CKM) matrix has been taken into

account. However, for sake of illustration, we set the CKM matrix equal to the identity

in this section.

We refer to chapter 2 (and to ref. [2]) for the notation and for a deeper description of

the POWHEG method. Here we just recall that with B, V, R and G we indicate the Born,

virtual, real and collinear contributions respectively, divided by the corresponding flux

factor. The same letters, capitalized, are used for quantities multiplied by the luminosity

factor. The explicit formulae for these quantities are collected in sec. 4.1.3.
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4.1.1 Contributing subprocesses

In the following, we organize and label all the Born and real subprocesses, keeping the

distinction between the s- and t-channel contributions. This distinction holds also when

real corrections are considered, since, due to color flow, interferences do not arise between

real corrections to s- and t-channel Born processes.

1) In the s-channel case, there are only Born processes of the type qq′ → tb̄ , where q and

q′ run over all possible different quark and antiquark flavours compatible with the final

state. We denote with Bqq′ the (summed and averaged) squared amplitude, divided

by the flux factor. The corresponding real correction contributions include processes

with an outgoing or an incoming gluon, i.e. processes of type qq′ → tb̄g, gq → tb̄q′ and

qg → tb̄q′. We denote these contributions with Rqq′ , Rgq,(s) and Rqg,(s). Summarizing,

we have

process notation contributing subprocesses

qq′ → tb̄ Bqq′ ud̄→ tb̄, d̄u→ tb̄

qq′ → tb̄g Rqq′ ud̄→ tb̄g, d̄u→ tb̄g

gq → tb̄q′ Rgq,(s) gu→ tb̄d, gd̄→ tb̄ū

qg → tb̄q′ Rqg,(s) ug → tb̄d, d̄g → tb̄ū

where u and d stand for a generic up- or down-type light quark.

2) In the t-channel case, there are only Born processes of the type qb→ tq′ (and bq → tq′),

where q and q′ run over all possible flavours and anti-flavours. Their contributions are

denoted Bqb (Bbq). We use this notation since we want to keep track of the down-type

quark connected to the top quark. The structure of real corrections is more complex

in this case. Contributions obtained from the previous processes by simply adding an

outgoing gluon, qb → tq′g, will be denoted as Rqb. The subprocesses generated by an

initial-state gluon splitting into a quark-antiquark pair are designated by Rqg,(t) for

qg → tq′b̄
(
Rgq,(t) for gq → tq′b̄

)
and Rgb for gb → tq̄q′

(
Rbg for bg → tq̄q′

)
. In the

former case q and q′ are connected via a Wqq′ vertex, while the gluon splits into a bb̄

pair, so the top quark is color connected with the incoming gluon. In the latter case

the situation is opposite, since the gluon splits into a qq̄ pair, while the incoming b is

directly CKM-connected to the top quark. This gives rise to a different singularities

structure, which we take into account in dealing with the qg → tq′b̄ (gq → tq′b̄) and

gb→ tq̄q′ (bg → tq̄q′) processes separately. Summarizing
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process notation contributing subprocesses

bq → tq′ Bbq bu → td, bd̄→ tū

qb→ tq′ Bqb ub→ td, d̄b → tū

bq → tq′g Rbq bu → tdg, bd̄→ tūg

qb→ tq′g Rqb ub→ tdg, d̄b → tūg

gq → tq′b̄ Rgq,(t) gu→ tdb̄, gd̄→ tūb̄

qg → tq′b̄ Rqg,(t) ug → tdb̄, d̄g → tūb̄

gb→ tq̄q′ Rgb gb→ tūd

bg → tq̄q′ Rbg bg → tūd

where u and d stand for a generic up- or down-type light quark.

In order to distinguish s- and t-channel real processes with the same flavour structure,

we have used the subscript (s) and (t) on the Rgq and Rqg contributions. As already

stated, these contributions do not interfere owing to different color structures, so we can

keep them distinct. We have drawn a sample of Feynman diagrams for s- and t-channel

gu→ tdb̄ scattering in fig. 4.1.
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Figure 4.1: Graphs corresponding to s- and t-channel contributions to the real scattering gu →
tdb̄.

4.1.2 Kinematics and singularities structure

Born kinematics

At variance with the notation used in chapter 2 and 3, for sake of simplicity, in this chapter

we will not distinguish between Born and underlying-Born kinematics. Hence, Born

variables will be indicated with barred symbols from the beginning, and the identification

with the underlying-Born variables will be total.
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We denote with k̄⊕ and k̄⊖ the incoming quark momenta, aligned along the plus and

minus direction of the z axis, by k̄1 the outgoing top-quark momentum and by k̄2 the other

outgoing light-parton momentum. The final-state top-quark virtuality will be denoted by

M2, so that k̄2
1 = M2. The top quark on-shell condition is M2 = m2

t , where mt is the

top-quark mass. If K⊕ and K⊖ are the momenta of the incoming hadrons, then we have

k̄© = x̄©K© , (4.4)

where x̄© are the momentum fractions, and momentum conservation reads

k̄⊕ + k̄⊖ = k̄1 + k̄2 . (4.5)

We introduce the variables

s̄ = (k̄⊕ + k̄⊖)2, Ȳ =
1

2
log

(k̄⊕ + k̄⊖)0 + (k̄⊕ + k̄⊖)3

(k̄⊕ + k̄⊖)0 − (k̄⊕ + k̄⊖)3
, (4.6)

and θ̄1, the angle between the outgoing top quark and the k̄⊕ momentum, in the partonic

center-of-mass (CM) frame. We denote with φ̄1 the azimuthal angle of the outgoing top

quark in the same reference frame. Since the differential cross sections do not depend

on the overall azimuthal orientation of the outgoing partons, we set this angle to zero.

At the end of the generation of an event, we perform a uniform, random azimuthal

rotation of the whole event, in order to cover the whole final-state phase space. The set

of variables Φ̄2 ≡
{
s̄, Ȳ , θ̄1, φ̄1

}
fully parametrizes the Born kinematics. From them, we

can reconstruct the momentum fractions

x̄⊕ =

√
s̄

S
eȲ , x̄⊖ =

√
s̄

S
e−Ȳ , (4.7)

where S = (K⊕ +K⊖)2 is the squared CM energy of the hadronic collider. The outgoing

momenta are first reconstructed in their longitudinal rest frame, where Ȳ = 0. In this

frame, their energies are

k̄0
1|Ȳ =0 =

√(
s̄−M2

2
√
s̄

)2

+M2 and k̄0
2|Ȳ =0 =

s̄−M2

2
√
s̄
. (4.8)

The two spatial momenta are obviously opposite and both have modulus equal to k̄0
2|Ȳ =0.

We fix the top-quark momentum to form an angle θ̄1 with the ⊕ direction and to have

zero azimuth (i.e. it lies in the xz plane and has positive x component). Both k̄1 and k̄2
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are then boosted back in the laboratory frame, with boost rapidity Ȳ . The Born phase

space, in terms of these variables, can be written as

dΦ̄2 = dx̄⊕ dx̄⊖(2π)4δ4
(
k̄⊕ + k̄⊖ − k̄1 − k̄2

) d3k̄1

(2π)32k̄0
1

d3k̄2

(2π)32k̄0
2

=
1

S

β

16π
ds̄ dȲ d cos θ̄1

dφ̄1

2π
, (4.9)

where

β = 1 − M2

s̄
. (4.10)

We generate the top quark with virtuality M2 and decay it with a method analogous to

the one adopted in ref. [99], that will be described in sec. 4.2.3. We take into account the

top finite width by first introducing a trivial integration
∫
dM2 δ(M2 −m2

t ) in eq. (4.9)

and then by performing the replacement

δ
(
M2 −m2

t

)
→ 1

π

mt Γt

(M2 −m2
t )

2
+ (m2

t Γ2
t )
. (4.11)

With this substitution, the final expression for the Born phase space reads

dΦ̄2 =
1

S

β

16π2

mt Γt

(M2 −m2
t )

2
+m2

t Γ2
t

dM2 ds̄ dȲ d cos θ̄1
dφ̄1

2π
. (4.12)

Real-emission kinematics

Real-emission processes have an additional final-state parton that can be emitted from

an incoming leg only (Rgq,(s), Rqg,(s), Rgq,(t), Rqg,(t), Rgb, Rbg) or from both an initial-

and final-state leg (Rqq′ , Rbq, Rqb). We need then to use two different parametrizations

of the real phase space, one to deal with initial-state singularities and one for final-state

ones. We treat the radiation kinematics according to the variant of the Frixione, Kunszt

and Signer (FKS) subtraction scheme [16, 17] illustrated in ref. [2]. Before giving all the

technical details, we summarize briefly how the procedure works:

- We split each real squared amplitude into contributions that have at most one

collinear (and/or one soft) singularity.

- We build the collinear (and soft) subtraction terms needed to deal with that singu-

larity.
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- We choose the emission phase-space parametrization suited for the singularity we

integrate on.

In the FKS method, the singular regions associated with the ⊕ and ⊖ legs are treated

with the same kinematics. Nevertheless, we have decided to split these two different

contributions in order to gain a clear subtraction structure.

We now describe the procedure used to split real squared amplitudes and the corre-

sponding phase-space parametrizations. Subtraction terms will then be given in sec. 4.1.3.

We proceed as follows:

1. We start by considering real processes that have both initial- and final-state emis-

sions, namely the Rqq′ , Rbq and Rqb contributions. In this case, the FKS parton is

the outgoing gluon and we choose it to be the last particle. We denote its momentum

by k3, so that momentum conservation reads

k⊕ + k⊖ = k1 + k2 + k3, (4.13)

where k⊕, k⊖, k1 and k2 label the same particles of the underlying Born process. The

FKS parton can become collinear to one of the incoming legs or to the other massless

final-state leg, so we need to introduce a set of functions to project out these different

singular regions. The general properties these functions have to satisfy were given

in sec. 1.2.3. In this POWHEG implementation, we use2

S3,⊕ = D−1 1

d3,⊕
, S3,⊖ = D−1 1

d3,⊖
, S3,2 = D−1 1

d3,2
, (4.14)

where

D =
1

d3,⊕

+
1

d3,⊖

+
1

d3,2

and di,j = ki · kj . (4.15)

For any given kinematic configuration, these functions satisfy

S3,⊕ + S3,⊖ + S3,2 = 1. (4.16)

The separation among different singular regions is performed multiplying each real

contribution with the corresponding S function. For example, for the s-channel Rqq′

2Note that our choice corresponds to the one described in sec. 2.4 of ref. [2], with the choice a = b = 1.
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case, we have

R3,⊕
qq′ = Rqq′ S3,⊕,

R3,⊖
qq′ = Rqq′ S3,⊖,

R3,2
qq′ = Rqq′ S3,2. (4.17)

These contributions are now singular only when the FKS parton becomes collinear

to k⊕, k⊖ and k2 respectively, or soft. Analogous relations hold for Rbq and Rqb.

2. Next we consider the real process gb → tq̄q′. It is singular when q̄ or q′ become

collinear to the incoming gluon, so that the FKS parton can be respectively q̄ or q′

and we need again a set of functions to project out the different singular regions.

Recalling the labeling of the momenta

g (k⊕) b (k⊖) → t (k1) q̄ (k2) q
′ (k3) ,

we introduce the projecting functions

S2,⊕ =

(
1

d2,⊕

+
1

d3,⊕

)−1
1

d2,⊕

,

S3,⊕ =

(
1

d2,⊕
+

1

d3,⊕

)−1
1

d3,⊕
, (4.18)

to isolate the region where k2 · k⊕ → 0 or k3 · k⊕ → 0. We have then the two

contributions

R3,⊕
gb = Rgb S3,⊕ ,

R2,⊕
gb = Rgb S2,⊕ , (4.19)

coming from Rgb. For bg → tq̄q′, analogous contributions can be obtained from

eqs. (4.18) and (4.19) with the substitutions Rgb → Rbg and ⊕ → ⊖.

3. To deal with the remaining real contributions we do not need to introduce any other

S function, since each of them is singular in one region only (the ⊕ one for Rgq,(s)

and Rgq,(t), the ⊖ one for Rqg,(s) and Rqg,(t)).

Having split all real contributions in such a way that each term has at most one singularity,

we can associate with each of them a particular phase-space parametrization, suitable

to handle that singularity structure. In the following we summarize the reconstruction
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procedure (or inverse construction) needed to build the real-emission kinematics, given

the underlying Born one, and a set of three radiation variables. For all the details, we

refer to sec. 5 of ref. [2].

Parametrization of the initial-state radiation (ISR) phase space

The FKS method uses the same phase-space parametrization for describing both the ⊕

and ⊖ singular regions. The set of radiation variables

ΦISR

rad = {ξ, y, φ} , (4.20)

together with the Born ones, completely reconstruct the real-event kinematics: Φ3 ≡{
s̄, Ȳ , θ̄1, ξ, y, φ

}
. Using eq. (4.7), we can compute the underlying Born momentum frac-

tions x̄© and, from them, we obtain

x⊕ =
x̄⊕√
1 − ξ

√
2 − ξ(1 − y)

2 − ξ(1 + y)
, x⊖ =

x̄⊖√
1 − ξ

√
2 − ξ(1 + y)

2 − ξ(1 − y)
, (4.21)

with the kinematics constraints

0 ≤ ξ ≤ ξM(y) , (4.22)

where

ξM(y) = 1 − max

{
2(1 + y) x̄2

⊕√
(1 + x̄2

⊕
)2(1 − y)2 + 16 y x̄2

⊕
+ (1 − y)(1 − x̄2

⊕
)
,

2(1 − y) x̄2
⊖√

(1 + x̄2
⊖
)2(1 + y)2 − 16 y x̄2

⊖
+ (1 + y)(1 − x̄2

⊖
)

}

. (4.23)

In the laboratory frame, the incoming momenta are given by

k© = x©K© . (4.24)

In the partonic center-of-mass frame, we define the FKS parton to have momentum

k′3 = k′ 03 (1, sin θ sinφ, sin θ cosφ, cos θ), (4.25)

where

k′ 03 =

√
s

2
ξ, cos θ = y , (4.26)
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and

s = (k⊕ + k⊖)2 =
s̄

1 − ξ
. (4.27)

From eqs. (4.25) and (4.26), we see that the soft limit is approached when ξ → 0, while

the collinear limits are characterized by y → 1 (k3 parallel to the ⊕ direction) or y → −1

(k3 parallel to the ⊖ direction).

Boosting k′3 back in the laboratory frame with longitudinal velocity (x⊕−x⊖)/(x⊕+x⊖)

we obtain k3. Having computed k3 and k©, we can construct ktot = k⊕+k⊖−k3, while from

the underlying Born momenta we have k̄tot = k̄1 + k̄2. We construct then the longitudinal

boost BL, with boost velocity ~βL = (0, 0, βL), where

βL = − x̄⊕ − x̄⊖

x̄⊕ + x̄⊖

, (4.28)

so that the boosted momentum k′′tot = BLktot has zero longitudinal component. In addition

we define

~βT = −
~k′′tot
k′′ 0tot

(4.29)

and the corresponding (transverse) boost BT , so that BTk
′′
tot has zero transverse momen-

tum. The final-state momenta k1 and k2 in the laboratory frame are obtained with the

following boost sequence

ki = B
−1
L B

−1
T BL k̄i , i = 1, 2 . (4.30)

Finally, the three-body phase space can be written, in a factorized form, in terms of the

Born and radiation phase space

dΦ3 = dx⊕ dx⊖(2π)4δ4(k⊕ + k⊖ − k1 − k2 − k3)
d3k1

(2π)32k0
1

d3k2

(2π)32k0
2

d3k3

(2π)32k0
3

= dΦ̄2 dΦ
ISR

rad ,

(4.31)

where

dΦISR

rad =
s

(4π)3

ξ

1 − ξ
dξ dy dφ ≡ J ISR

rad

(
Φ̄2,Φ

ISR

rad

)
dξ dy dφ , (4.32)

that defines the Jacobian J ISR

rad of the change of variables.
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Parametrization of the final-state radiation (FSR) phase space

For the FSR phase-space parametrization ΦFSR

rad , we use the same notation as for the

initial-state case ΦISR

rad (see eq. (4.20)). We define, in the partonic center-of-mass frame,

ξ =
2k0

3

q0
, y =

~k3 · ~k2

k3 k2

, φ = φ
(
~η × ~k, ~k3 × ~k

)
, (4.33)

where

q = k⊕ + k⊖ , k = k2 + k3 , (4.34)

and the notation p stands for |~p|. We denote with ~η an arbitrary direction that serves as

origin for the azimuthal angle of ~k3 around ~k, while “×” is the cross vector product. The

notation φ(~v1, ~v2) indicates the angle between ~v1 and ~v2, so that φ is the azimuth of the

vector ~k3 around the direction ~k.3

From eq. (4.33) we see that the soft limit is approached when ξ → 0, while the collinear

limit is characterized by y → 1 (k3 parallel to k2).

Given the set of variables Φ3 ≡
{
s̄, Ȳ , θ̄1, ξ, y, φ

}
we can reconstruct the full real-event

kinematics. The momentum fractions x© are the same as the underlying Born ones, since

the emission from a final-state leg does not affect them, so that

x⊕ = x̄⊕ , x⊖ = x̄⊖ and s = s̄ . (4.35)

Inverting the first identity in eq. (4.33), we immediately have

k0
3 = k3 = ξ

q0

2
, (4.36)

where ξ is limited by

0 ≤ ξ ≤ ξM ≡ q2 −M2
rec

q2
, (4.37)

with

M2
rec = (q − k̄2)

2 = k2
1 . (4.38)

The energy (and the modulus) of the other light outgoing parton, always in the partonic

center-of-mass frame, is given by

k0
2 = k2 =

q2 −M2
rec − 2q0k3

2 [q0 − k3 (1 − y)]
. (4.39)

3The FKS variant that we use (see ref. [2]) has a slightly different definition of φ than the one
introduced in the original FKS papers.
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Given k2 and k3 we construct the corresponding vectors ~k2 and ~k3 such that their vector

sum ~k is parallel to ~̄k2 and the azimuth of ~k3 relative to ~k (the given reference direction)

is φ. Having fully defined k2 and k3, we can reconstruct the vector k of eq. (4.34) and

find krec = q − k. Finally, k1 can be obtained boosting k̄1 along the krec direction with

boost velocity

~β = −
(
q2 − (k0

rec + krec)
2

q2 + (k0
rec + krec)

2

) ~krec

krec

, (4.40)

or, alternatively, exploiting momentum conservation of eq. (4.13). To obtain the momenta

in the laboratory frame we need to boost back all the outgoing momenta computed in the

center-of-mass frame.

In this case too, the three-body phase space can be written in a factorized form in

terms of the Born and radiation phase space

dΦ3 = dx⊕ dx⊖(2π)4δ4(k⊕ + k⊖ − k1 − k2 − k3)
d3k1

(2π)32k0
1

d3k2

(2π)32k0
2

d3k3

(2π)32k0
3

= dΦ̄2 dΦ
FSR

rad ,

(4.41)

where

dΦFSR

rad =
q2 ξ

(4π)3

k2
2

k̄2

(
k2 −

k2

2q0

)−1

dξ dy dφ

=
s

(4π)3

4 ξ

[2 − ξ (1 − y)]2

(
1 − s ξ

s−M2
rec

)
dξ dy dφ ≡ JFSR

rad

(
Φ̄2,Φ

FSR

rad

)
dξ dy dφ .

(4.42)

4.1.3 Squared amplitudes

In order to apply the POWHEG method, we need the Born, real and soft-virtual contributions

to the differential cross section, i.e. the squared amplitudes, summed (averaged) over colors

and helicities of the outgoing (incoming) partons, and multiplied by the appropriate flux

factor. We have taken the Born, real and soft-virtual contributions from the MC@NLO code,

testing, where possible, our implementation against MadGraph subroutines [100]. All the

matrix elements have been evaluated in the zero-width approximation, i.e. Γt and ΓW are

set equal to zero in all the propagators. As already mentioned, to recover finite-width

effects in top-decay, the top massM is generated according to a Breit-Wigner distribution,

centered in mt and with width Γt (see eq. (4.11)).

In the following, we give explicit expressions for the Born and collinear remnant con-

tributions. Real and soft-virtual matrix elements are more complicated, and we do not

report them explicitly. Nevertheless, we give the soft and collinear limits of the real
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amplitude, since these expressions are needed in the FKS subtraction formalism.

Born and virtual contributions

We denote the s-channel squared matrix element for the lowest-order contribution, aver-

aged over color and helicities of the incoming particles, and multiplied by the flux factor

1/(2s̄), as Bqq′ . For example, for the ud̄→ tb̄ subprocess, we have

Bud̄ =
1

2s̄

g4

4
ū(ū−M2)

∣∣∣∣
1

s̄−m2
W

∣∣∣∣
2

|Vud|2|Vtb|2, (4.43)

where ū = (k̄⊕ − k̄2)
2 is the usual Mandelstam variable, g is the weak coupling (e =

g sin θeff
W ) and Vij’s are the CKM matrix elements. Crossing eq. (4.43) we have, for the d̄u

initiated process,

Bd̄u =
1

2s̄

g4

4
t̄(t̄−M2)

∣∣∣∣
1

s̄−m2
W

∣∣∣∣
2

|Vud|2|Vtb|2, (4.44)

and for the t-channel contributions (Bbq and Bqb) of the bu → td and ub→ td subprocesses

Bbu =
1

2s̄

g4

4
s̄(s̄−M2)

∣∣∣∣
1

t̄−m2
W

∣∣∣∣
2

|Vud|2|Vtb|2,

Bub =
1

2s̄

g4

4
s̄(s̄−M2)

∣∣∣∣
1

ū−m2
W

∣∣∣∣
2

|Vud|2|Vtb|2, (4.45)

where t̄ = (k̄⊕ − k̄1)
2. The corresponding expressions for bd̄ → tū and d̄b → tū can be

obtained from the latter again by crossing. They are given by

Bbd̄ =
1

2s̄

g4

4
ū(ū−M2)

∣∣∣∣
1

t̄−m2
W

∣∣∣∣
2

|Vud|2|Vtb|2,

Bd̄b =
1

2s̄

g4

4
t̄(t̄−M2)

∣∣∣∣
1

ū−m2
W

∣∣∣∣
2

|Vud|2|Vtb|2. (4.46)

The finite soft-virtual contributions, obtained according to the FKS method, have been

taken from the MC@NLO code. We included them in our NLO calculation and tested

the correct behaviour of our program by comparing our NLO results with the MCFM

code [101], both for the full NLO cross section and for typical differential distributions.

Some comparisons have also been carried out with the program ZTOP [102].
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Collinear remnants

The collinear remnants can be obtained by using the formula reported in sec. 1.2.3,

eq. (1.117). Here we limit ourselves to list all the contributions, giving only a couple

of explicit examples to clarify the notation.

For the s-channel processes, the collinear remnants are

Gqq′

©
(Φ2,©) , Ggq

⊕
(Φ2,⊕) and Gqg

⊖
(Φ2,⊖) , (4.47)

where the Φ2,⊕ notation represents the set of variables

Φ2,⊕ = {x⊕, x⊖, z, k1, k2}, with z x⊕K⊕ + x⊖K⊖ = k1 + k2 . (4.48)

The underlying Born configuration Φ̄2, associated with the Φ2,⊕ kinematics, is defined by

k̄⊕ = z x⊕K⊕, k̄⊖ = x⊖K⊖, k̄1 = k1, k̄2 = k2 . (4.49)

Similar formulae hold for Φ2,⊖. Among the contributions listed in (4.47), only the real

process qq′ → tb̄g is singular in both the ⊕ and the ⊖ region. It thus needs the two collinear

remnants

Gqq′

©
(Φ2,©) =

αS

2π
CF

{
(1 + z2)

[(
1

1 − z

)

+

log
s̄

zµ2
F

+ 2

(
log(1 − z)

1 − z

)

+

]

+ (1 − z)

}
Bqq′(s̄, Ȳ , θ̄1) . (4.50)

For the t-channel processes, the collinear remnants are

Gbq
©

(Φ2,©) , Gqb
©

(Φ2,©) , Ggq
⊕

(Φ2,⊕) , Gqg
⊖

(Φ2,⊖) , Ggb
⊕

(Φ2,⊕) and Gbg
⊖

(Φ2,⊖) .

(4.51)

In this case, Ggb
⊕

(Φ2,⊕) contains two terms, since in the scattering gb→ tq̄q′ both the two

outgoing massless partons q̄ and q′ can become collinear to the incoming gluon. We have

Ggb
⊕

(Φ2,⊕) =
αS

2π
TF

{
(1 − z)

(
1 − 2z + 2z2

) [( 1

1 − z

)

+

log
s̄

zµ2
F

+ 2

(
log(1 − z)

1 − z

)

+

]

+ 2z (1 − z)

}
[
Bq̄′b(s̄, Ȳ , θ̄1) + Bqb(s̄, Ȳ , θ̄1)

]
, (4.52)
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where Bq̄′b and Bqb are the corresponding underlying Born processes. All the other con-

tributions can be obtained in a similar way.

Soft and collinear limits of the real contributions

In the FKS formalism, phase-space singular regions are approached when the radiation

variables ξ → 0 and/or y → ±1. The corresponding singularities are subtracted from the

real cross section using the plus distributions, as we discussed in sec. 1.2.3. One needs to

express the singular limits in terms of suitable radiation variables and of the corresponding

underlying Born contributions. In this section we compute these limits and give explicitly

their expressions.

We start by considering the singular limits of the processes that have both ISR and

FSR singularities, namely Rqq′ , Rbq and Rqb. These processes are the most subtle, being

both soft and collinear divergent for initial- and final-state radiation. As an example, we

study the limits for the s-channel scattering qq′ → tb̄g. We can deal with ISR and FSR

separately, having defined the contributions R3,⊕
qq′ , R3,⊖

qq′ and R3,2
qq′ .

For ISR singularities, we use the set ΦISR

rad to parametrize the kinematics. When y →
±1, the momentum k3 is aligned along the © direction and k3 = ξ k©, in the CM frame.

The real squared amplitude factorizes and we have

[
R3,©

qq′

]
y→±1

=
4παS

k© · k3

P qq(z)Bqq′ = CF

1

ξ2(1 ∓ y)

16παS

s

(
1 + z2

)
Bqq′ , (4.53)

where z = (1 − ξ), P qq(z) is the usual Altarelli-Parisi (AP) splitting kernel and we have

included the real flux factor 1/(2s) and a 1/z factor into the B term, as its definition

requires. In the FKS approach, one needs the finite quantity ξ2(1 ∓ y)R3,©
qq′ to perform

the subtraction of the singularities. In the collinear limit, we have

[
ξ2(1 ∓ y)R3,©

qq′

]
y=±1

= CF

16παS

s

(
1 + z2

)
Bqq′ . (4.54)

In the FSR case, the collinear limit is reached when y → 1. The outgoing momenta

k3 and k2 become parallel and aligned along their sum, denoted by k. Momentum con-

servation reads

k = k2 + k3 , (4.55)

and, in the partonic CM frame, one has

k2 = z k (4.56)
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where z = 1 − ξs/(s−M2
rec). A factorized expression holds in this case too

[
R3,2

qq′

]
y→1

=
4παS

k2 · k3

P qq(z)Bqq′ = CF

1

ξ2(1 − y)

16παS

zs

(
1 + z2

)
Bqq′ . (4.57)

The finite quantity needed in the application of the subtraction method is now ξ2(1 − y)R3,2
qq′,

that is given by
[
ξ2(1 − y)R3,2

qq′

]
y=1

= CF

16παS

zs

(
1 + z2

)
Bqq′ . (4.58)

The contribution Rqq′ is also singular when the outgoing gluon becomes soft, i.e. when

k3 → 0. In both the two phase-space parametrizations (ΦISR

rad and ΦFSR

rad ), this limit is

approached when ξ → 0. The Born process has more than 3 colored particles, so that,

in general, one may expect that soft singularities factorize in terms of the color ordered

Born amplitudes [2]. However, in this case, the color algebra simplifies, because of the

exchange of an intermediate colorless particle, and we have complete factorization on the

Born squared amplitude. The Rqq′ contribution in the soft limit (eikonal approximation)

is given by

[Rqq′ ]ξ→0 = 8παSCF

{
k⊕ · k⊖

(k⊕ · k3)(k⊖ · k3)
+

k1 · k2

(k1 · k3)(k2 · k3)
− M2

2(k1 · k3)2

}
Bqq′ . (4.59)

The radiation variable y assumes different meaning in the case of ISR or FSR (see

sec. 4.1.2). In the ISR case, we have the finite contributions

[
ξ2(1 ∓ y)R3,©

qq′

]
ξ=0

= 4παSCF

{
16

s(1 ± y)
+

(s−M2)(1 ∓ y)

(k1 · k̂3)(k2 · k̂3)
− M2(1 ∓ y)

(k1 · k̂3)2

}
S3,© Bqq′ ,

(4.60)

where k̂3 = k3/ξ identifies the direction of the soft gluon. In the FSR case we have instead

[
ξ2(1 − y)R3,2

qq′

]
ξ=0

= 4παSCF

{
s(1 − y)

(k⊕ · k̂3)(k⊖ · k̂3)
+

4(s−M2)

(k1 · k̂3)sξ2
− M2(1 − y)

(k1 · k̂3)2

}
S3,2 Bqq′ ,

(4.61)

with ξ2 = 2k0
2/
√
s, defined in the partonic CM frame.

The t-channel processes Rbq and Rqb are dealt in an analogous way, either for the

collinear and the soft limits.

All the other processes have only ISR collinear singularities: the corresponding limits

can be obtained from eq. (4.53), substituting the appropriate AP splitting kernel and the

Born term.



144
Chapter 4. NLO single-top production matched with shower in POWHEG:

s- and t- channel subprocesses

4.2 POWHEG implementation

4.2.1 Generation of the Born variables

In the POWHEG method, we first generate the Born kinematics according to the B̄ function,

which is the integral of the full NLO cross section at a given value of the underlying Born

kinematics. It is defined as follows:

B̄ = B̄(s) + B̄(t) , (4.62)

where

B̄(s) =
∑

qq′

B̄qq′ , (4.63)

with

B̄qq′
(
Φ̄2

)
= Bqq′

(
Φ̄2

)
+ Vqq′

(
Φ̄2

)
+

∫
dΦFSR

rad R̂3,2
qq′

(
Φ̄2,Φ

FSR

rad

)

+

∫
dΦISR

rad

[
∑

©

R̂3,©
qq′

(
Φ̄2,Φ

ISR

rad

)
+ R̂gq,(s)

(
Φ̄2,Φ

ISR

rad

)
+ R̂qg,(s)

(
Φ̄2,Φ

ISR

rad

)
]

+

∫ 1

x̄⊕

dz

z

[
Gqq′

⊕
(Φ2,⊕) +Ggq

⊕
(Φ2,⊕)

]
+

∫ 1

x̄⊖

dz

z

[
Gqq′

⊖
(Φ2,⊖) +Gqg

⊖
(Φ2,⊖)

]
,

(4.64)

and where

B̄(t) =
∑

q

[
B̄qb + B̄bq

]
, (4.65)

with

B̄qb

(
Φ̄2

)
= Bqb

(
Φ̄2

)
+ Vqb

(
Φ̄2

)
+

∫
dΦFSR

rad R̂3,2
qb

(
Φ̄2,Φ

FSR

rad

)

+

∫
dΦISR

rad

[
∑

©

R̂3,©
qb

(
Φ̄2,Φ

ISR

rad

)
+ R̂qg,(t)

(
Φ̄2,Φ

ISR

rad

)

+ R̂3,⊕
gb

(
Φ̄2,Φ

ISR

rad

)
+ R̂2,⊕

gb

(
Φ̄2,Φ

ISR

rad

)
]

+

∫ 1

x̄⊕

dz

z

[
Gqb

⊕
(Φ2,⊕) +Ggb

⊕
(Φ2,⊕)

]
+

∫ 1

x̄⊖

dz

z

[
Gqb

⊖
(Φ2,⊖) +Gqg

⊖
(Φ2,⊖)

]
.(4.66)
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The B̄bq contribution can be obtained from eq. (4.66) by simply exchanging all flavour

indexes and substituting ⊕ ↔ ⊖. Note that, in the previous formula, in the collinear con-

tribution Ggb
⊕

, only the term with underlying-Born that matches the B̄ labels is included.

In this way, when summing all the B̄qb contributions,4 both the two terms in eq. (4.52)

are correctly included, each one ending in the appropriate B̄ function.

According to the POWHEG notation, in eqs. (4.64) and (4.66) we have traded the B, V, R
and G quantities with the corresponding capital letters, obtained by multiplying them with

the appropriate luminosity L, defined in terms of the parton distribution functions (PDF)

f©

f (x©, µ
2
F
) as

Lff ′(x⊕, x⊖) = f⊕

f (x⊕, µ
2
F
) f⊖

f ′(x⊖, µ
2
F
) . (4.67)

All the integrals appearing in the above equations are now finite. In fact, following the

FKS subtraction scheme, the hatted functions

R̂©

ij =
1

ξ

{(
1

ξ

)

+

(
1

1 ∓ y

)

+

}[
(1 ∓ y) ξ2 R©

ij

]
(4.68)

and

R̂FSR

ij =
1

ξ

{(
1

ξ

)

+

(
1

1 − y

)

+

}[
(1 − y) ξ2 RFSR

ij

]
(4.69)

have only integrable divergences when integrated over ΦISR

rad and ΦFSR

rad respectively.5 Some

care should still be taken when dealing with the plus distributions. In Appendix C more

details on this point are given.

Following sec. 2.3.6, we introduce the B̃ function, defined such that its integral over

the radiation variables, mapped onto a unit cube
(
{ξ, y, φ} →

{
X

(1)
rad, X

(2)
rad, X

(3)
rad

})
, gives

B̄ =

∫ 1

0

d3Xrad B̃ . (4.70)

The generation of the Born variables Φ̄2 is performed by using the integrator-unweighter

4We recall that, in the sum of eq. (4.65), the index q runs both on quark and antiquark admitted
flavours.

5In our case, for both the s- and t-channels,

R̂⊕

ij =
{
R̂3,⊕

qq′ , R̂gq,(s), R̂
3,⊕
qb , R̂3,⊕

gb , R̂2,⊕
gb , R̂3,⊕

bq , R̂gq,(t)

}
,

R̂⊖

ij =
{
R̂3,⊖

qq′ , R̂qg,(s), R̂
3,⊖
qb , R̂3,⊖

bg , R̂2,⊖
bg , R̂3,⊖

bq , R̂qg,(t)

}
,

R̂FSR

ij =
{
R̂3,2

qq′ , R̂
3,2
qb , R̂3,2

bq

}
.
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program MINT [61] that, after a single integration of the function B̃ over the Born and

radiation variables, can generate random values for the variables {Φ̄2, Xrad}, distributed

according to the weight B̃
(
Φ̄2, Xrad

)
. We then keep the Φ̄2 generated values only, and

neglect all the others, which corresponds to integrate over them. At this stage, we also

need to choose a Born flavour structure (a value for fb in the notation introduced in

sec. 2.3.3) with a probability proportional to its relative weight in the B̄ function (see

eqs. (4.63) and (4.65)). The event is then further processed, to generate the radiation

variables, as illustrated in the following section.

4.2.2 Generation of the hardest-radiation variables

Radiation kinematics is generated using the POWHEG Sudakov form factor. For a given

underlying Born kinematics (Φ̄2) and flavour structure (fb), the Sudakov form factor can

be expressed as

∆fb(Φ̄2, pT) =
∏

αr∈{αr|fb}
∆fb

αr
(Φ̄2, pT) , (4.71)

where one needs to include in the product all the projected real contributions that have,

as singular limit, the generated underlying Born. In our case, for the s-channel, we can

write

∆qq′(Φ̄2, pT) = ∆qq′

ISR
(Φ̄2, pT) ∆qq′

FSR
(Φ̄2, pT) , (4.72)

where

∆qq′

ISR
(Φ̄2, pT) = exp

{
−
∫
dΦISR

rad

∑
©
R3,©

qq′ (Φ3) +Rgq′,(s) (Φ3) +Rqg,(s) (Φ3)

Bqq′(Φ̄2)

× θ(kT,ISR(Φ3) − pT)

}
(4.73)

and

∆qq′

FSR
(Φ̄2, pT) = exp

{
−
∫
dΦFSR

rad

R3,2
qq′ (Φ3)

Bqq′(Φ̄2)
θ(kT,FSR(Φ3) − pT)

}
. (4.74)

For clarity, here we indicate with Rgq′,(s) the real contribution of gq type that corresponds

to the underlying Born qq′. The functions kT,ISR(Φ3) and kT,FSR(Φ3) measure the hardness

of the radiation in the real event. In case of ISR singular processes, we chose as hardness

variable the exact transverse momentum of the emitted parton with respect to the beam
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axis. In terms of ΦISR

rad, this is given by

k2
T,ISR

=
s

4
ξ2
(
1 − y2

)
=

s̄

4(1 − ξ)
ξ2
(
1 − y2

)
. (4.75)

For the FSR singular processes, instead, we use as hardness variable the exact transverse

momentum of the FKS parton with respect to the other light outgoing parton, evaluated

in the center-of-mass frame. In terms of ΦFSR

rad , this is given by6

k2
T,FSR

=
s̄

4
ξ2 (1 − y2) . (4.77)

The generation of the hardest radiation is performed individually for ∆qq̄
ISR and ∆qq̄

FSR, and

the highest generated kT is retained. This corresponds to generate according to eq. (4.72),

as shown in Appendix B of ref. [2]. If kT is below a given cut, pmin
T

, no radiation is

generated, and a Born event is returned.

As explained in sec. 2.3.6, to generate radiation according to the POWHEG Sudakov form

factors (4.73)-(4.74), we need to use a veto technique. The upper bounding functions for

the application of the veto method have been chosen in the following way:

∑
©
R3,©

qq′ (Φ3) +Rgq′,(s) (Φ3) +Rqg,(s) (Φ3)

Bqq′(Φ̄2)
J ISR

rad(Φ̄2,Φ
ISR

rad) ≤ N ISR

qq′
αS(k

2
T,ISR

)

ξ (1 − y2)
(4.78)

for ISR, and
R3,2

qq′ (Φ3)

Bqq′(Φ̄2)
JFSR

rad (Φ̄2,Φ
FSR

rad ) ≤ NFSR

qq′
αS(k

2
T,FSR

)

ξ (1 − y2)
(4.79)

for FSR.

The same procedures holds also for the t-channel case, with appropriate modifications

in formulae (4.72)–(4.79).

The method used to generate radiation events according to these upper bounding

functions is analogous to the one described in Appendix D of ref. [103], and we do not

repeat it here. Some details can also be found in the Examples section of ref. [2].

After the generation of the hardest radiation, only the kinematics is fixed. In case

of FSR, only one flavor choice is possible. For ISR, instead, the flavour structure is

6Since for y → −1 no singularities arise in the FSR case, another possible choice for kT,FSR would be

k2
T,FSR

=
s̄

2
ξ2(1 − y) , (4.76)

that has the same behaviour of eq. (4.77) in the collinear limit but has a simpler functional form. We
have checked that no sizable differences arise if one uses eq. (4.76) instead of eq. (4.77).
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chosen according to the relative weight of the real contributions in the Sudakov exponent

of eq. (4.73). At this stage, events are passed to a SMC program, after assigning a

planar color structure for each of them. In the single-top case, if a Born-like event is

generated, the planar color structure is trivial, since there are always two independent

quark currents, connected by a W exchange. Hence, only one choice is possible. For real

processes with a gluon in the initial state, the choice for color connections is again forced:

the quark line which is not color connected to the gluon will keep its own color flow,

while the other outgoing quark-antiquark pair is color connected to the incoming gluon.

The only case where a choice is really needed is for processes with an outgoing gluon:

in this case, we used the procedure outlined in sec. 2.3.3. In particular, the FKS parton

has been connected to the emitter, that is fully specified by αr, the label of the singular

region. For example, for s-channel processes, the outgoing gluon is linked to the outgoing

heavy current in case of FSR, and to the incoming quark-antiquark line for ISR. In the

t-channel case, instead, the situation is slightly different. Taking the scattering qb→ tq′g

as reference, the gluon is connected to the incoming b-quark for emission in the ⊖ region,

whereas for FSR, and for ISR in the ⊕ region, g is linked to the light-quark line, i.e. the

line that does not contain the top quark.

As a final remark, we also point out that single-top s- and t-channel Born cross sections

vanish at some points in the Born phase space, as one can argue by looking at eqs. (4.43)–

(4.46). For this reason, special care has to be taken during the radiation generation

procedure. In this case, the problem has been handled with the same method described

in sec. 3.2.3.

4.2.3 Top-quark decay

The calculation we have described so far leads to the generation of events with an un-

decayed top quark. We include the decay kinematics effects in an approximate way, by

requiring that the decay products are distributed with a probability proportional to the

tree-level cross section for the full production and decay process. This procedure was first

suggested in ref. [99]. In the following we describe our implementation, focusing upon the

decay t→ bW+ → bℓ̄ν.

We first generate a Born-like or real-like event according to the POWHEG method. In

both cases we denote the set of variables that parametrize the undecayed momenta as

ΦPOW and the corresponding flavour structure as f . As described at the end of sec. 4.1.2,

at this stage the top virtuality M2 is distributed according to a Breit-Wigner function.
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We write the tree-level cross section for production and decay in the following form

dσf
dec =

1

2s
L |Mf

dec(ΦPOW,Φt→bℓ̄ν)|2 dΦdec , (4.80)

where L is the luminosity factor and |Mf
dec|2 is the squared amplitude corresponding to

the full decayed process that originates from the undecayed process f .7 For consistency,

the squared amplitude |Mf
dec|2 must include only resonant graphs (i.e. graphs where the

top momentum equals the sum of the b, ℓ̄ and ν momenta). We write the full phase space,

including the decay, in the factorized form

dΦdec = dΦPOW dΦt→bℓ̄ν , (4.81)

where ΦPOW is the undecayed (POWHEG) phase space and Φt→bℓ̄ν is defined implicitly by this

equation. We notice that

|Mf
undec|2 × BR(t→ bℓ̄ν) =

∫
|Mf

dec|2 dΦt→bℓ̄ν , (4.82)

where Mf
undec is the undecayed amplitude, i.e. the Born or real amplitude that we used

throughout the computation. Thus, the differential probability dP (Φt→bℓ̄ν|ΦPOW) for the

generation of Φt→bℓ̄ν from a given undecayed kinematics ΦPOW is

dP (Φt→bℓ̄ν|ΦPOW) =
1

BR(t→ bℓ̄ν)

|Mf
dec(ΦPOW,Φt→bℓ̄ν)|2
|Mf

undec(ΦPOW)|2
dΦt→bℓ̄ν . (4.83)

To generate efficiently Φt→bℓ̄ν distributed according to (4.83) we use the hit-and-miss tech-

nique and so we need to find an upper bounding function for dP . This bound can be

guessed from the structure of the top decay. In our case, we use as upper bound for the

ratio |Mf
dec(ΦPOW,Φt→bℓ̄ν)|2/|Mf

undec(ΦPOW)|2, the expression

Udec(M
2,Φt→bℓ̄ν) = Ndec

|Mt→bW (M2,M2
ℓ̄ν

)|2
(M2 −m2

t )
2 +m2

t Γ2
t

|MW→ℓ̄ν(M
2
ℓ̄ν

)|2
(M2

ℓ̄ν
−m2

W )2 +m2
W Γ2

W

, (4.84)

where M2
ℓ̄ν

= (kℓ̄ +kν)
2 and Mt→bW and MW→ℓ̄ν are the decay amplitudes corresponding

to the subprocesses in their subscripts. In the previous formula, as well as in Mf
dec, finite-

width effects have been fully taken into account. One can predict the appropriate value

for the normalization factor Ndec as explained in ref. [99] or compute it by sampling the

7The full tree-level squared amplitudes |Mf
dec|2 have been obtained using MadGraph.



150
Chapter 4. NLO single-top production matched with shower in POWHEG:

s- and t- channel subprocesses

decay phase space Φt→bℓ̄ν and comparing Udec with the exact expression, in such a way

that the inequality

|Mf
dec(ΦPOW,Φt→bℓ̄ν)|2 ≤ |Mf

undec(ΦPOW)|2 Udec(M
2,Φt→bℓ̄ν) (4.85)

holds. In this work, we used this last procedure. The veto algorithm is then applied:

1. First one generates a point in the phase space Φt→bℓ̄ν.

2. Then a random number r in the range [0, Udec(M
2,Φt→bℓ̄ν)] is generated.

3. If r < |Mf
dec(ΦPOW,Φt→bℓ̄ν)|2/|Mf

undec(ΦPOW)|2, keep the decay kinematics and gen-

erate the event. Otherwise go back to step 1.

4.3 Results

In this section we present our results and comparisons with the fixed order (next-to-

leading) calculation and with the MC@NLO 3.3 and PYTHIA 6.4.21 Shower Monte Carlo (SMC)

programs.8 We have used the CTEQ6M [10] set for the parton distribution functions and

the associated value of Λ
(5)
MS

= 0.226 GeV. Furthermore, as discussed in refs. [2, 103], we

use a rescaled value ΛMC = 1.569 Λ
(5)
MS

in the expression for αS appearing in the Sudakov

form factors, in order to achieve next-to-leading logarithmic accuracy.

Although the matrix-element calculation has been performed in the massless-quark

limit (except, of course, for the top quark), the lower cutoff in the generation of the

radiation has been fixed according to the mass of the emitting quark. The lower bound

on the transverse momentum for the emission off a massless emitter (u, d, s) has been

set to the value pmin
T

=
√

5 ΛMC. We instead choose pmin
T

equal to mc or mb when the

gluon is emitted by a charm or a bottom quark, respectively. We set mc = 1.55 GeV and

mb = 4.95 GeV.

The renormalization and factorization scales have been taken equal to the radiated

transverse momentum during the generation of radiation (see eqs. (4.75) and (4.77)), as

the POWHEG method requires. We have also taken into account properly the heavy-flavour

thresholds in the running of αS and in the PDF’s, by changing the number of active

flavours when the renormalization or factorization scales cross a mass threshold. In the

B̄ calculation, instead, µR and µF have been chosen equal to the top-quark mass, whose

value has been fixed to mt = 175 GeV. In all the comparisons, we have kept the top-quark

8This newest update of PYTHIA yields more consistent results when multiple interactions are turned
on in user-initiated processes (see the release notes in http://projects.hepforge.org/pythia6/).
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virtuality M2 fixed to m2
t , so that matrix elements have been evaluated assuming Γt = 0.

We have also set ΓW = 0 in all the propagators. The other relevant parameters are

MW = 80.4 GeV , sin2 θeff
W = 0.23113 , α−1

em(mt) = 127.011989 . (4.86)

From the above values, the weak coupling has been computed as g =
√

4παem/ sin θeff
W . In

addition, for sake of comparison,9 we fixed the CKM matrix elements equal to

VCKM =

d s b

u

c

t




0.9740 0.2225 0.0000

0.2225 0.9740 0.0000

0.0000 0.0000 1.0000



 .
(4.87)

In order to minimize effects due to differences in the shower and hadronization algorithms,

we have interfaced POWHEG with the HERWIG angular-ordered shower when comparing with

MC@NLO and with the pT-ordered PYTHIA shower when comparisons with PYTHIA have been

carried out.

All the following results have been obtained assuming that the top decays semilep-

tonically (t→ b ℓ̄ ν), as explained in sec. 4.2.3, but removing the branching ratio, so that

plots are normalized to the total cross section.

We present a few distributions, done mainly for comparison with MC@NLO and with

the NLO calculation. Some of them are “unphysical”, i.e., for example, when talking

of the top-quark momentum pt, we refer to the exact pt taken directly from the MC

shower history, right before the top decay. For sake of simplicity, we also force the lightest

b-flavoured hadrons to be stable after the hadronization stage of SMC programs.

Jets have been defined according to the kT algorithm [104], as implemented in the

FASTJET package [68], setting R = 1 and imposing a lower 10 GeV cut on jet transverse

momenta. We call “top jet” the jet that contains the hardest b-flavoured hadron,10 which

will, most of the time, come from the top-quark decay. The other reconstructed jets will

come from the shower of massless partons, and we call them “light jets”.11 In this way,

the momentum pt of the top quark and the momentum of the top jet are different, since

the last may or may not include all the particles from the top decay and shower.

9In particular, intermediate comparisons with MCFM required this choice, since in MCFM Vtb = 1.
10Here we mean precisely b-flavoured, i.e. not b̄-flavoured, that arises in the production process.
11In the fixed-order calculation, instead, the top quark is not decayed, and the top jet corresponds to

the jet that contains the top quark.
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4.3.1 Tevatron results

We start comparing various kinematical variables for single-top s-channel production at

the Tevatron pp̄ collider. In fig. 4.2 we have collected the following distributions:

• In panels (a) and (b) we show the transverse momentum p t
T

and the pseudorapidity

η t of the top quark and in panel (c) we show the hardest jet transverse momentum

p j1
T . The agreement with the fixed-order calculation and with the MC@NLO results is

very good. Only the top transverse-momentum distribution shows a tiny mismatch,

our result being slightly softer than the NLO and the MC@NLO ones. When interfacing

POWHEG with PYTHIA, we instead find full overlapping with the NLO result. It is thus

likely that this small feature may be attributed to shower effects.

• In panel (d), we plot prel,j1
T , the relative transverse momentum of all the particles

clustered inside the hardest jet. This is defined as follows:

– We perform a longitudinal boost to a frame where the hardest-jet rapidity is

zero.

– In this frame, we compute the quantity

prel,j1
T

=
∑

i∈j1

|~ki × ~p j1|
|~p j1| , (4.88)

where ki’s are the momenta of the particles that belong to the hardest jet that,

in this frame, has momentum p j1.

This quantity is thus the sum of the absolute values of the transverse momenta,

taken with respect to the jet axis, of the particles inside the hardest jet, in the

frame specified above. The plot shows a marked disagreement between fixed order

calculation and showered results. This disagreement is well understood, since the

observable we are considering is a measure of the spreading of the hardest jet. Thus,

its shape is strongly affected by the Sudakov form factor and it is well described

by SMC programs. The NLO calculation cannot give, instead, a reliable estimate,

since when prel,j1
T → 0 the differential cross section diverges.

• In plots (e) and (f ), the next-to-hardest jet transverse momentum p j2
T , and the

transverse momentum of the system made by the top quark and the hardest jet,

p
(tj1)
T , are shown. We see a remarkable good agreement between our program and

MC@NLO, while sensible differences with respect to the NLO results are present. At
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the NLO parton level, p j2
T and p

(tj1)
T balance against each other, so that the two

distributions coincide down to the minimum pT cut present in the first plot.

In plot (e), we see an enhancement of the showered results at intermediate values

of pT, while in plot (f ) we see a low-pT suppression and an enhancement at inter-

mediate and high pT.12 The low-pT suppression is clearly a Sudakov effect. The

high-pT enhancement comes instead from events in which the hardest parton is well

balanced against the top quark, but where many hadrons, coming from the hardest

parton, end up in the top jet, and are thus removed, or they end up out of the jet

cluster. This creates an artificial imbalance, and thus an effective pT for the (tj1)

system. These effects are so pronounced because the cross section for a balanced

top-quark–hardest-jet system is much higher, since it does not require the produc-

tion of an additional hard parton. We have verified this hypothesis by analyzing

POWHEG outputs before the showering stage, either clustering or not the b quark

coming from the top decay. In the case where the b quark is included in the analysis

(and the jet containing the b is removed from the jet sample), we see a marked rise

of the pT tail. A further rise is observed when the shower is turned on, and may

be attributed to energy lost out of the hardest jet cluster due to showering. We see

no such effect for the next-to-hardest jet spectrum in plot (e). There, the raise at

medium pT may be attributed to the shower pT smearing.

• Finally, in plots (g) and (h), the pseudorapidity η(tj1) of the top-quark–hardest-jet

system and the azimuthal difference ∆φt-j1 = |φt − φj1| are shown. The pseudo-

rapidity of the (tj1) system shows an expected discrepancy between the showered

results and the fixed order one: radiation near the beam axis is suppressed by the

Sudakov form factor but not in the NLO result, giving rise to the higher tails at

large |η(tj1)|. In plot (h), MC@NLO and POWHEG differ instead from the fixed order

result for a kinematical reason: at the parton level, having at most three particles,

there is no phase space for the next-to-hardest jet to recoil against the (tj1) system

when ∆φt-j1 < π/2.

12We note that a similar result has been shown in the MC@NLO reference paper for single-top production,
ref. [18]
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Figure 4.2: Comparisons between POWHEG, MC@NLO and NLO results for s-channel top produc-
tion at the Tevatron pp̄ collider.
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Figure 4.3: Comparisons between POWHEG, MC@NLO and NLO results for t-channel top produc-
tion at the Tevatron pp̄ collider.
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Figure 4.4: Comparisons between POWHEG and PYTHIA results for t-channel top production at
the Tevatron pp̄ collider.
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A similar set of comparisons is presented in fig. 4.3 for the t-channel production mech-

anism, always at the Tevatron. The agreement between POWHEG and MC@NLO is as good as

before for inclusive quantities, or even better. In particular, the slight mismatch in the

top transverse-momentum distribution completely disappears, as one can see in plot (a).

For all the other plots, considerations similar to the s-channel case remain valid.

In fig. 4.4 the same set of plots are shown, comparing POWHEG and PYTHIA. We have

good agreement for most distributions, after applying an appropriate K factor to the

PYTHIA results. Only minor differences are present in the high-pT tail of distributions in

panels (e) and (f ).

As a final comparison, in the left panel of fig. 4.5, we show pB̄
T
, the transverse-

momentum spectrum of the hardest b̄-flavoured hadron, after imposing the rapidity cut

|yB̄| < 3. In the t-channel, this hadron will come most probably from an initial-state

gluon undergoing a bb̄ splitting. The b quark is then turned into a t while the b̄ quark

is showered and hadronized. We see that, while POWHEG and MC@NLO are in a fair agree-

ment in the medium- and high-pT range, sizable differences are present at low pT. These

discrepancies are most probably due to the disagreement that one can notice in the yB̄

distribution (right panel of fig. 4.5), and to a smaller extent to a different implementation

of the inclusion of b-mass effects by both programs (just before the showering stage).

Figure 4.5: Comparisons between POWHEG and MC@NLO results for the hardest b̄-flavoured
hadron transverse momentum (left) and rapidity (right), for t-channel top pro-
duction at the Tevatron pp̄ collider. Rapidity cuts are highlighted.

We also plot in fig. 4.6 the same quantities comparing POWHEG interfaced to PYTHIA

with respect to PYTHIA alone. A large mismatch in the high-pB̄
T

spectrum is clearly visible

in the left panel. This observable is particularly sensitive to real matrix-element effects,

not present in PYTHIA. Concerning the low-pB̄
T

behaviour, we see that here the difference
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is much less pronounced than in fig. 4.5. Furthermore, the aforementioned mismatch in

the yB̄ distribution is no longer present, as one can see in the right panel.

Figure 4.6: Comparisons between POWHEG and PYTHIA results for the hardest b̄-flavoured
hadron transverse momentum (left) and rapidity (right), for t-channel top pro-
duction at the Tevatron pp̄ collider. Rapidity cuts are highlighted.

By comparing figs. 4.5 and 4.6, one immediately notices the different behaviours of

the two Monte Carlo programs that we are interfacing to. We observe that the HERWIG

shower and hadronization create an enhancement at large values of |yB̄|, which is not

present in PYTHIA. This feature is known to the HERWIG authors,13 and is traced back to

a mismatch of the scale at which backward evolution is switched off, with the scale at

which the b-quark density is turned on in the pdf’s. The effect is more pronounced in

MC@NLO, probably due to the fact that POWHEG does not rely on HERWIG for the generation

of the hardest splitting.

4.3.2 LHC results

In figs. 4.7 and 4.8 similar results are reported for the LHC pp collider. Only plots for the

t-channel production are shown, the s-channel process having a negligible impact at the

LHC.

Figure 4.7 contains comparisons between POWHEG, MC@NLO and NLO results. No sig-

nificant differences with respect to what we observed at the Tevatron arise in any plot, so

that we refer to the previous section for comments.

In the PYTHIA and POWHEG comparisons shown in fig. 4.8, we immediately notice that

the POWHEG enhancement of high-pT tails in panels (e) and (f ) is here more marked, even if

13See for example M. Seymour’s talk in http://bwhcphysics.lbl.gov/vplusjets.html.
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still small. This may again be related to the lack of matrix-element corrections in PYTHIA,

resulting in larger discrepancies at the LHC with respect to the Tevatron case.

In panels (c) and (e), one can also notice different low-pT shapes with respect to the

same plots showing the POWHEG+HERWIG results of fig. 4.7. We have verified that these

differences are due to the inclusion of multiple interactions (MI) in the default PYTHIA.14

If we limit ourselves to the results without MI (i.e. setting MSTP(81)=0 in PYTHIA), the

agreement is much better.

14These account for events where more than one parton pair in the same incoming hadrons give rise to
hard interactions.
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Figure 4.7: Comparisons between POWHEG, MC@NLO and NLO results for t-channel top produc-
tion at the LHC pp collider.
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Figure 4.8: Comparisons between POWHEG and PYTHIA results for t-channel top production at
the LHC pp collider.
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4.3.3 Top-quark decay

As explained in sec. 4.2.3, in our calculation we have implemented spin correlations in top

decay. Sizable effects are thus visible when comparing our results with SMC programs

that do not implement them. MC@NLO accounts for these effects with approximately the

same method that we use. Hence, we expect to have good agreement with MC@NLO and

visible discrepancies when comparing with PYTHIA.

Due to the V-A structure of the weak current, the best observables to highlight even-

tual discrepancies are those involving the angle between the charged lepton ℓ̄ coming from

top decay and the direction of the down-type quark entering the W vertex involved in

top production, as shown in fig. 4.9.

u

d (2)

b

l (1)

b

ν

t

W

(a) s-channel

b

u

b

l (1)

d (2)

ν

t

W

(b) t-channel

Figure 4.9: Lepton (1) and down-type quark (2) used to study spin correlations in top decay.

At the Born level, the down-type quark direction is possibly identified with the beam

axis for s-channel production, while, for t-channel production, it often corresponds to the

hardest jet axis (see ref. [105] for further details).

For sake of comparison, we have set the top virtuality M2 = m2
t and we have taken

the values Γt = 1.7 GeV and ΓW = 2.141 GeV in the evaluation of upper bounds of the

decay amplitudes in eq. (4.84) and in the decayed matrix element Mf
dec.

In fig. 4.10 we show comparisons for the Tevatron pp̄ collider. On the left panel, we

plot the s-channel differential cross section as a function of cosχ, where χ is the angle

between the hardest charged lepton ℓ̄, which we assume coming from top decay, and the

direction of the incoming parton with negative rapidity (the ⊖ direction of the z axis), as

seen in the top rest frame. Such angle is sensitive to the spin correlation between ℓ̄ and

the incoming d̄ quark, which, at the Tevatron, is pulled out mostly from the antiproton

traveling in the negative direction. On the right panel, we plot the t-channel differential

cross section as a function of cos θ, where θ is the angle between ℓ̄ and the hardest jet,
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Figure 4.10: Comparisons between POWHEG, MC@NLO and PYTHIA angular correlations for s-
(left) and t-channel (right) top production at the Tevatron pp̄ collider.

always evaluated in the top rest frame. In both plots, we observe a remarkable good

agreement with MC@NLO and the expected discrepancy with PYTHIA, that only performs a

spin-averaged top decay.

Figure 4.11: Comparisons between POWHEG, MC@NLO and PYTHIA transverse momentum and
pseudorapidity of the lepton coming from the top decay, for s-channel top pro-
duction at the Tevatron pp̄ collider.

In fig. 4.11 we plot the transverse momentum and pseudorapidity of the hardest

charged lepton, for s-channel production at Tevatron. The difference between PYTHIA

and POWHEG (or MC@NLO) can be shown to arise because of spin-correlation effects. To test

this, we run POWHEG with an undecayed top in the final state, leaving PYTHIA to perform

the decay: after rescaling the plots with the appropriate K factor, we obtain the same

behaviour as PYTHIA standalone.
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In fig. 4.12, the same distributions of fig. 4.10 are shown for the LHC collider. The

same considerations done for the Tevatron apply for the LHC results.

Figure 4.12: Comparisons between POWHEG, MC@NLO and PYTHIA angular correlations for s-
(left) and t-channel (right) top production at the LHC pp collider.

We also tried to apply cuts similar to those used in ref. [99], namely

pB
T
≥ 20 GeV , |ηB| ≤ 2 , (4.89)

pℓ̄
T
≥ 10 GeV , |ηℓ̄| ≤ 2.5 , (4.90)

pν
T
≥ 20 GeV . (4.91)

We denote with the superscript B the top jet, i.e. the jet that contains the hardest

b-flavoured hadron (not the b̄). In single-top processes, this comes almost exclusively

from the bottom quark emerging from top decay. In t-channel production, in order to

isolate a central hardest light jet, we apply the further cuts

p j1
T

≥ 20 GeV , |η j1 | ≤ 2.5 . (4.92)

Results for the Tevatron collider are reported in fig. 4.13.
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Figure 4.13: Comparisons between POWHEG, MC@NLO and PYTHIA angular correlations for s-
(left) and t-channel (right) top production at the Tevatron pp̄ collider. Results
are obtained with the cuts described in the text.

4.3.4 Dips in the rapidity distributions

In the previous chapter, we extensively discussed the problem of rapidity dips. In partic-

ular, we have seen that the presence of sizable mismatches between POWHEG and MC@NLO

results in the rapidity difference between the hardest jet and the heavy system recoil-

ing against it can be reasonably explained by expanding an approximate estimate of the

MC@NLO hardest emission formula. In particular, we found that for processes where the K

factor is small, that mismatch is expected to be reduced.

In single-top production, the suitable quantity where to observe this mismatch is the

rapidity difference between the top-quark–hardest-jet system and the next-to-hardest jet.

As one can see in fig. 4.14, in this case a dip in the central rapidity region is already

present at the next-to-leading-order. This feature may mask an eventual dip in MC@NLO.

However, the two showered results are fairly similar, with the dip being slightly more

pronounced in MC@NLO.

This result agrees with the explanation that we gave in the previous chapter. In fact,

for t-channel single-top production, the K factor is close to one. Therefore, in eq. (3.55)

one has B̄MC/B ≈ 1, and no effects coming from the term RMC(Φn+1) dΦ̄n dΦ
MC

rad are then

expected. This, together with the fact that the fixed NLO result already presents a central

dip for y(t j1) − yj2, results in the small discrepancies between MC@NLO and POWHEG that

can be seen in fig. 4.14.
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Figure 4.14: Comparison between POWHEG, MC@NLO and NLO results for the rapidity difference
between the rapidity of the top-quark–hardest-jet system and the rapidity of the
next-to-hardest jet, for t-channel top production at the LHC pp collider. Plots
are normalized to the total cross section.

4.4 Conclusions

In this chapter, we have described a complete implementation of s- and t-channel single-

top production at next-to-leading-order in QCD, in the POWHEG framework. This is the

first POWHEG implementation of a process where both initial- and final-state radiation is

present. The calculation for top production has been performed within the Frixione-

Kunszt-Signer subtraction approach [16,17], modified according to ref. [2]. We accounted

for spin-correlation effects in top-quark decay with a method analogous to the one pro-

posed in ref. [99]. The results of our work have been extensively compared with the MC@NLO

and PYTHIA Shower Monte Carlo programs, together with the fixed next-to-leading-order

calculation, both for the Tevatron and for the LHC.

The MC@NLO results are in good agreement with POWHEG, also for quantities sensitive

to angular correlations in top decay.

The PYTHIA results, normalized to the total NLO cross section, show fair agreement

with ours for inclusive quantities that do not involve the top-decay products. As expected,

we have found sizable mismatches with PYTHIA when considering distributions involving

top-decay products, such as angular-correlation measurements and charged-lepton trans-
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verse momentum and pseudorapidity. We have also found differences between our results

and the MC@NLO and PYTHIA ones in the hardest b̄-flavoured hadron transverse momentum

and rapidity. The high-pT mismatch with PYTHIA may be a consequence of the lack of

matrix-element corrections in the latter, while we attribute the low-pT disagreement with

MC@NLO to the sizable difference that we observe in the rapidity distribution.

We also tried to study the problem of rapidity dips for this process. Despite the fact

that in this case the variable suited to study these effects is not obvious, we find results

that are in qualitative agreement with the explanation that we gave in sec. 3.3.3.
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Conclusions

In recent years, the merging of NLO QCD calculations with parton showers has been one

of the main research topic in the development of available event generators. The main

reason to go in this direction is that high-precision QCD calculations are important as

well as Shower Monte Carlo event generators for the phenomenology of collider physics.

Therefore, by merging the benefits of the two approaches, the experimental community

would have the possibility to easily perform simulations with event generators more ac-

curate than the traditional ones, improving in this way the reliability of the results.

From a theoretical point of view, the inclusion of NLO corrections in shower Monte

Carlo programs is a non-trivial task, because a parton shower already includes approx-

imate NLO corrections. Therefore the main problem is to avoid the double-counting of

emissions from the NLO calculation with emissions due to the parton shower.

In this thesis we described in detail how this problem is solved with the POWHEG

method, and we then showed results for single vector boson production and single-top (s-

and t-channel) production in hadronic collisions.

In chapter 1 we started by describing how fixed order calculations are performed and

by summarizing the relevant results for the Catani-Seymour and the Frixione-Kunszt-

Signer subtraction methods. We also gave a review on SMC programs, mainly focused on

the description of the parton shower algorithm.

Next, in chapter 2 we illustrated the drawbacks and benefits of NLO calculations and

parton showers, highlighting the features that a matching procedure has to preserve. We

also showed how the problem of double-counting typically arises. After a brief description

of MC@NLO, we then described in detail the POWHEG method, which was used to produce

the results of this thesis, presented in chapter 3 and 4.

Single vector boson production has been implemented by taking in full account finite

width effects, Z/γ interference and angular correlations of decay products. A generaliza-

tion of the original formulation of the POWHEG method has been introduced, in order to

correctly generate events whose leading-order cross section vanishes in some phase-space

regions. Furthermore, to implement single vector-boson production, the Catani-Seymour

169
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subtraction scheme was used for the first time in the POWHEG framework.

Results have been extensively compared with those obtained with other Monte Carlo

generators. In particular, good agreement has been observed with the MC@NLO results and

with the available Tevatron data. Differences have been discussed, and their origin traced

back.

Single-top hadroproduction has been implemented for the s- and t-channel production

mechanisms. In this case, the subtraction scheme used to deal with infrared divergences

has been the one by Frixione, Kunszt and Signer. Matrix elements for on-shell, undecayed

top quarks have been used for the NLO calculation. In order to produce events where

angular correlations are retained, spin correlation effects have been included by generating

top-decay products with tree-level accuracy, according to a method already present in

literature.

We presented results for various observables, both for the Tevatron and the LHC, for s

and t-channel production. We find fair agreement with MC@NLO for almost all the distribu-

tions and give some explanations about the differences we found. Some comparisons are

carried out also with respect to PYTHIA, showing that some distributions are affected by

the inclusion of NLO effects, which are not included in PYTHIA. For observables sensitive to

spin correlation effects, we found agreement with MC@NLO, and the expected disagreement

with PYTHIA, where these effects are not taken into account.

In summary, the good agreement between POWHEG and MC@NLO results, already observed

for other processes, confirms that the former method can be considered a valid alternative

to the latter.

Concerning the processes discussed in this thesis, deeper phenomenological studies

can be performed with the use of the POWHEG method. In particular, as an example, the

matching of a parton shower with the (recently appeared) calculation of NLO single-top

t-channel production with the exact dependence on the b-quark mass can yield improve-

ments in the accuracy of the predictions for this process, which will be studied extensively

at the LHC.



Appendix A

QCD Feynman rules

In the following, we report the Feynman rules that follow from the QCD Lagrangian

density given in eq. (1.16). Quarks, gluons and ghosts are indicated as usual, with solid,

wrapped and dashed lines.

Propagators

i kp
= δik i

p/ −m+ iǫ
a,α b,βp

= δab i

p2 + iǫ

(
−gαβ + (1 − ξ)

pαpβ

p2

)

a bp
= δab i

p2 + iǫ

Vertexes

a,α

ij

= −igγαtaij
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a,α

b,βc,γ

= −gfabc
[
gαβ (pa − pb)

γ + gβγ (pb − pc)
α + gγα (pc − pa)

β
]

a,α b,β

c,γ d,δ

= −ig2
[
f eacf ebd

(
gαβgγδ − gαδgγβ

)
+ f eadf ebc

(
gαβgγδ − gαγgβδ

)

+f eabf ecd
(
gαγgβδ − gαδgβγ

)]

a,α

cb

= gfabcpα
c



Appendix B

Upper bounding functions

In this Appendix, we report the derivation of the upper bounding function used to generate

the hardest radiation according to the veto technique.

Here we describe the case relevant for the single-vector boson implementation, where

the Catani-Seymour radiation variables have been used. Therefore, we refer to the equa-

tions in chapter 3.

We call ∆U(p2
T ) the Sudakov form factor obtained with the upper bounding function

of eq. (3.44). Using the definitions of eqs. (3.22) and (3.17)

dΦrad =
M2

16π2

dφ

2π
dv

dx

x2
θ(v) θ

(
1 − v

1 − x

)
θ(x(1 − x)) θ(x− x̄⊕) (B.1)

k2
T =

M2

x
(1 − x− v) v , (B.2)

we write

log ∆U(p2
T )

−N =

∫ 1

x̄

dx

x2

∫ 1−x

0

dv
αs(k

2
T )

2v

x2

1 − x− v
θ
(
k2

T − p2
T

)

=

∫ 1

x̄

dx

x

∫ 1−x

0

dv
αs(k

2
T )

2

M2

k2
T

θ
(
k2

T − p2
T

)

=

∫ ∞

p2

T

dk2
T

k2
T

αs(k
2
T )

2

∫ 1

0

dv

∫ 1

x̄

dx

x
θ(1 − x− v)M2 δ

(
M2

x
(1 − x− v)v − k2

T

)
,

where, for ease of notation, we have dropped the © and qq̄ labels on N and x̄. We perform

the x integration using the δ function

∫
dx

x
M2 δ

(
M2

x
(1 − x− v)v − k2

T

)
=

1

k2
T/M

2 + v
, x =

M2v(1 − v)

k2
T +M2v

. (B.3)
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Notice that x < 1, and

θ

(
1 − v − M2v(1 − v)

k2
T +M2v

)
= θ

(
1 − v

k2
T +M2

k2
T +M2v

)
= 1. (B.4)

The only remaining condition on x is x > x̄. We thus get

log ∆U (p2
T )

−N =

∫ ∞

p2

T

dk2
T

k2
T

αs(k
2
T )

2

∫ 1

0

dv

k2
T/M

2 + v
θ

(
M2v(1 − v)

k2
T +M2v

− x̄

)
. (B.5)

We must find the conditions implied by the theta function upon v. For

k2
T < k2

T max =
M2(1 − x̄)2

4x̄
, (B.6)

the θ function is satisfied if v− < v < v+, where

v± =
1 − x̄±

√
(1 − x̄)2 − 4 x̄

k2

T

M2

2
. (B.7)

We thus have
log ∆U(p2

T )

−N =

∫ k2

T max

p2

T

dk2
T

k2
T

αs(k
2
T )

2
log

k2

T

M2 + v+

k2

T

M2 + v−
. (B.8)

The k2
T integral is still too complex to be performed analytically. We thus resort another

time to the veto method, by finding an upper bound to the integrand. We have

k2

T

M2 + v+

k2

T

M2 + v−
6

k2

T

M2 + 1
k2

T

M2

=
M2

k2
T

+ 1 6
M2

k2
T

+
k2

T max

k2
T

=
M2(1 + x̄)2

4 x̄ k2
T

. (B.9)

We thus define

q2 =
M2(1 + x̄)2

4 x̄ k2
T

, (B.10)

and introduce a new Sudakov form factor

log ∆̃U(p2
T )

−N =

∫ k2

T max

p2

T

dk2
T

k2
T

αU(k2
T )

2
log

q2

k2
T

, (B.11)
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where αU(k2
T ) has the form of the one-loop running coupling constant

αU(k2
T ) =

1

b log
k2

T

Λ2

U

, (B.12)

and is required to satisfy the bound αU(k2
T ) > αs(k

2
T ) in the allowed range for k2

T . The

integral in eq. (B.11) is now easily performed, and we get

∆̃U (p2
T ) = exp




−N
2b



log
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T
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− log
k2
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T


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The generation of the radiation variables is then performed starting with ∆̃U (p2
T ), using

the veto procedure to obtain the ∆U(p2
T ) distribution. Further vetoing is then used to

obtain the correct R/B generated distribution.
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Appendix C

Integration of FKS plus distributions

In this Appendix we describe how the integration of the real terms present in the single-

top cross section has been performed. Since the subtraction scheme used is the FKS one,

divergences are subtracted with plus distributions. In particular, here we explicitly show

how to deal with the action of two plus distributions in presence of integration variables

which are not independent.

In the following, we describe the manipulations needed to integrate over the ISR phase

space, which, from this point of view, is more complicated with respect to the FSR one.

In fact, we can notice that, in the FSR case, the ξ variable does not span the whole range

[0, 1], but its maximum value does not depend on the value of y.1 Therefore, in this case

the action of plus distributions is simpler with respect to ISR, and we do not report it

here. Moreover, plus distributions are present also in the collinear remnants. With the

change of variable z = 1 − ξ, and with manipulations similar to those described in the

following, one can obtain explicit results also in that case.

We now describe the integration over the ISR phase space.

From eq. (4.23), we can see that the FKS parameterization of the real phase space

for ISR is such that the maximum value for ξ is a function of y. Therefore, after having

separated real terms on different singular regions by means of the S functions, we are left

with integrals of the form2

I(Φ̄2) =

∫ 2π

0

dφ

∫ 1

−1

dy

∫ ξM(y)

0

dξ

(
1

1 − y

)

+

(
1

ξ

)

+

f(Φ̄2, ξ, y, φ) , (C.1)

1In our case, the maximum value for ξ is a function of the mass of the recoiling system (eq. (4.37)),
which is equal to the top-quark virtuality.

2Here we are assuming to look to terms projected onto the ⊕ region. Therefore we write the 1/(1−y)+
distribution. For the ⊖ region, manipulations are similar, with obvious modifications.
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where

f(Φ̄2, ξ, y, φ) =
[
(1 − y) ξ2R(Φ̄2, ξ, y, φ)

] J ISR

rad

(
Φ̄2, ξ, y, φ

)

ξ
. (C.2)

With R, we denote, generically, a real squared amplitude, divided by the flux factor,

multiplied for the corresponding luminosity function and, if needed, for the proper S
function. Observe that all the terms integrated over the ΦISR

rad phase space in eq. (4.64)

and (4.66) have this form.

First of all, we rescale ξ, by performing the change of variable

ξ = ξM(y) ξ̃ . (C.3)

Now, in the integration over ξ, we make use of the following identity

∫ ξM(y)

0

dξ

(
1

ξ

)

+

F (ξ, y) =

∫ 1

0

dξ̃

[(
1

ξ̃

)

+

+ log ξM(y) δ(ξ̃)

]
F (ξM(y)ξ̃, y) , (C.4)

where F denotes a generic function of ξ and y.

Using the previous identity in eq. (C.1), we get:

I(Φ̄2) =

∫ 2π

0

dφ

∫ 1

−1

dy
1

(1 − y)+

∫ 1

0

dξ̃

[
f(ξ̃ξM(y), y, φ)− f(0, y, φ)

ξ̃
+ log ξM(y)f(0, y, φ)

]

=

∫ 2π

0

dφ

∫ 1

−1

dy

∫ 1

0

dξ̃
1

(1 − y)

[
f(ξ̃ξM(y), y, φ)− f(0, y, φ)

ξ̃

−f(ξ̃ξM(1), 1, φ)− f(0, 1, φ)

ξ̃
+
(

log ξM(y)f(0, y, φ)− log ξM(1)f(0, 1, φ)
)]

,

(C.5)

where, for ease of notation, we have omitted the dependence of f on the Φ̄2 phase space.

Now ξ̃ lives in the range [0, 1]. Therefore, by mapping the variables y and φ onto a

unit cube, and inserting the proper jacobians, we obtain an expression suited to define

the contribution of a generic (ISR-projected) real subprocess, that we named here R, to

the function B̃ (see eq. (4.70)).

Since the f function is evaluated in ξ = 0 and/or y = 1, it is apparent that we

need to calculate expressions for the soft and collinear limits in terms of the FKS vari-

ables. More precisely, we need to evaluate analytically the limits of the expression[
(1 − y) ξ2R(Φ̄2, ξ, y, φ)

]
, as we did in sec. (4.1.3).

As already stated, an analogous manipulation is used to handle the plus distributions
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needed to subtract FSR singularities and the soft singularities of collinear remnants.
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Talk given at the Università degli Studi di Firenze, Florence, Italy, 2009.



BIBLIOGRAPHY 187

[77] P. Nason, MC at NLO tools,

http://indico.cern.ch/getFile.py/access?contribId=2&resId=0&materialId=

slides&confId=49675.

Talk given at MC4LHC Meeting, CERN, Switzerland, 2009.

[78] P. Nason, POWHEG,

http://agenda.hep.wisc.edu/materialDisplay.py?contribId=13&materialId=

slides&confId=189.

Talk given at LoopFest Symposium, Madison, WI, USA, 2009.

[79] K. Hamilton, P. Richardson, and J. Tully, A Positive-Weight Next-to-Leading

Order Monte Carlo Simulation for Higgs Boson Production, JHEP 04 (2009) 116,

[arXiv:0903.4345].

[80] S. Alioli, P. Nason, C. Oleari, and E. Re, NLO Higgs boson production via gluon

fusion matched with shower in POWHEG, JHEP 04 (2009) 002,

[arXiv:0812.0578].

[81] CDF Collaboration, T. Aaltonen et al., First Observation of Electroweak Single

Top Quark Production, arXiv:0903.0885.

[82] D0 Collaboration, V. M. Abazov et al., Observation of Single Top Quark

Production, arXiv:0903.0850.

[83] M. Beneke et al., Top quark physics, hep-ph/0003033.

[84] B. W. Harris, E. Laenen, L. Phaf, Z. Sullivan, and S. Weinzierl, The Fully

differential single top quark cross-section in next to leading order QCD, Phys. Rev.

D66 (2002) 054024, [hep-ph/0207055].

[85] J. Alwall et al., Is Vtb = 1?, Eur. Phys. J. C49 (2007) 791–801, [hep-ph/0607115].

[86] G. Mahlon and S. J. Parke, Improved spin basis for angular correlation studies in

single top quark production at the Tevatron, Phys. Rev. D55 (1997) 7249–7254,

[hep-ph/9611367].

[87] G. Mahlon and S. J. Parke, Single top quark production at the LHC:

Understanding spin, Phys. Lett. B476 (2000) 323–330, [hep-ph/9912458].

[88] T. M. P. Tait and C. P. Yuan, Single top quark production as a window to physics

beyond the standard model, Phys. Rev. D63 (2001) 014018, [hep-ph/0007298].



188 BIBLIOGRAPHY

[89] Q.-H. Cao, J. Wudka, and C. P. Yuan, Search for New Physics via Single Top

Production at the LHC, Phys. Lett. B658 (2007) 50–56, [arXiv:0704.2809].

[90] T. Plehn, M. Rauch, and M. Spannowsky, Understanding Single Tops using Jets,

arXiv:0906.1803.

[91] G. Bordes and B. van Eijk, Calculating QCD corrections to single top production

in hadronic interactions, Nucl. Phys. B435 (1995) 23–58.

[92] T. Stelzer, Z. Sullivan, and S. Willenbrock, Single top quark production via

W -gluon fusion at next-to-leading order, Phys. Rev. D56 (1997) 5919–5927,

[hep-ph/9705398].

[93] Z. Sullivan, Understanding single-top-quark production and jets at hadron

colliders, Phys. Rev. D70 (2004) 114012, [hep-ph/0408049].

[94] J. M. Campbell, R. K. Ellis, and F. Tramontano, Single top production and decay

at next-to-leading order, Phys. Rev. D70 (2004) 094012, [hep-ph/0408158].

[95] J. M. Campbell and F. Tramontano, Next-to-leading order corrections to Wt

production and decay, Nucl. Phys. B726 (2005) 109–130, [hep-ph/0506289].

[96] Q.-H. Cao, R. Schwienhorst, and C. P. Yuan, Next-to-leading order corrections to

single top quark production and decay at Tevatron. 1. s-channel process, Phys.

Rev. D71 (2005) 054023, [hep-ph/0409040].

[97] Q.-H. Cao, R. Schwienhorst, J. A. Benitez, R. Brock, and C. P. Yuan,

Next-to-leading order corrections to single top quark production and decay at the

Tevatron: 2. t-channel process, Phys. Rev. D72 (2005) 094027, [hep-ph/0504230].

[98] J. M. Campbell, R. Frederix, F. Maltoni, and F. Tramontano, t-channel single-top

production at hadron colliders, arXiv:0903.0005.

[99] S. Frixione, E. Laenen, P. Motylinski, and B. R. Webber, Angular correlations of

lepton pairs from vector boson and top quark decays in Monte Carlo simulations,

JHEP 04 (2007) 081, [hep-ph/0702198].

[100] J. Alwall et al., MadGraph/MadEvent v4: The New Web Generation, JHEP 09

(2007) 028, [arXiv:0706.2334].

[101] http://mcfm.fnal.gov.



BIBLIOGRAPHY 189

[102] http://home.fnal.gov/∼zack/ZTOP/ZTOP.html.

[103] P. Nason and G. Ridolfi, A positive-weight next-to-leading-order Monte Carlo for

Z pair hadroproduction, JHEP 08 (2006) 077, [hep-ph/0606275].

[104] S. Catani, Y. L. Dokshitzer, M. H. Seymour, and B. R. Webber, Longitudinally

invariant kT clustering algorithms for hadron-hadron collisions, Nucl. Phys. B406

(1993) 187–224.

[105] Z. Sullivan, Angular correlations in single-top-quark and Wjj production at

next-to-leading order, Phys. Rev. D72 (2005) 094034, [hep-ph/0510224].


