UNIVERSITA DEGLI STUDI DI MILANO-BIcocca

FACOLTA DI SCIENZE MATEMATICHE, FISICHE E NATURALI

DOTTORATO DI RICERCA IN INFORMATICA — CIicLO XXII

Combinatorial Problems in
Studies of Genetic Variations:
Haplotyping and Transcript Analysis

Tesi di Dottorato di
Yuri Pirola

Supervisore:

Prof. Paola Bonizzoni

ANNO AccADEMICO 2008-2009

ii

Contents

2.1

Introduction

Preliminaries

Computational Complexity and Approximation .

2.2 Vector Spaces and Matrices over the Finite Field Zo

2.3

Graph Theory

I Haplotype Inference Problems

3.1
3.2

3.3

4.1
4.2
4.3

4.4
4.5
4.6

5.1
5.2

Haplotype Inference Problems

Introduction,
Population-based Methods
3.2.1 Population-based Statistical Methods . .
3.2.2 Population-based Combinatorial Methods
Pedigree-based Methods
3.3.1 Terminology
3.3.2 Pedigree-based Statistical Methods
3.3.3 Pedigree-based Combinatorial Methods .

Pure Parsimony Xor Haplotyping

The Computational Problem
Basic Properties
Algorithms for Restricted Instances

4.3.1 A Polynomial Time Algorithm for PPXH(c0,2)

4.3.2 A Polynomial Time Algorithm for PPXH(2
Fixed-Parameter Tractability of PPXH
An Approximation Algorithm
Solving PPXH by a Heuristic Method
4.6.1 Experimental Results

Haplotype Inference on Pedigrees

Motivations o oL
The Computational Problem

J00) v

10

13

15
15
18
18
19
21
21
26
27

31
31
33
38
39
40
41
44
45
47

53
53
55

Contents

5.3 Computational Complexity
5.3.1 Dbinary-tree-MINMHC is APX-hard
5.3.2 2-locus-MINEHC and 2-locus-MINMHC are APX-hard

5.4 A Heuristic Algorithm for MINEHC
5.4.1 A System of Linear Equations for MINEHC
5.4.2 Reducing MINEHC to NCP
5.4.3 The Heuristic Algorithm

5.5 Experimental Results. 0oL
5.5.1 Solving MINEHC
5.5.2 Solving MINRHC

Alignment of Spliced Sequences

Spliced Alignments

6.1 Introduction.

6.2 The Maximal Embedding Problem

6.3 The Maximal Embedding Graph

6.4 Solving the Maximal Embedding Problem
6.4.1 The Compact Maximal Embedding Graph
6.4.2 Reconstruction of Embeddings from a Path
6.4.3 Efficient Reconstruction of the MEG from the CMEG . . .
6.4.4 Building the CMEG

6.5 From Embeddings to Spliced Alignments of ESTs

Agreement of Spliced Alignments

7.1 Imntroduction L

7.2 The Minimum Factorization Agreement Problem

7.3 An Algorithm for Solving the MFA Problem
7.3.1 A Naive Algorithm
7.3.2 A Refined Algorithm

7.4 FExperimental Analysis

Bibliography

vi

81

83
84
86
88
90
92
95

. 102

103
105

107
107
108
110
111
112
114

125

1 Introduction

Computer Science provides powerful tools to biologists to deeply investigate and un-
derstand the basic functioning of living organisms. Conversely, Biology challenges
computer scientists to design efficient algorithmic solutions to complex problems
where the size of the data to process is growing at exponential rates. In particular,
increasing attention is devoted to the study of genetic variations between individuals
of a population as they are a crucial medium to map different observable character-
istics (phenotypic traits) of the individuals to the underlying genes and biological
processes. This kind of studies benefits from the presence of a significant amount
of data, since associations between genetic differences and phenotypic traits can
be more accurately identified over large population data. Unfortunately, observing
and obtaining directly the genetic data of interest is a long and costly operation,
especially for large populations. Less informative sources of data, instead, are avail-
able at a fraction of cost. Computational methods are then called to recover the
original data of interest from their less informative observations.

The design of efficient combinatorial algorithms to infer relevant data for genetic
variation studies starting from less informative observations is the main aim of
the work of this thesis. We considered two different kinds of data, haplotypes and
transcripts, and in the two parts of the thesis we addressed the main computational
problems that arise from the need of extracting relevant genetic information from
each of them.

In the first part of the thesis, haplotypic data have been considered. In this case,
biologists are interested in obtaining the genetic sequences inherited from each par-
ent (haplotypes) for each member of a population. However, only the “conflation”
of the two haplotypes of each individual (called genotype) is routinely collected.
Haplotype Inference (HI) is the computational activity of recovering haplotypes
from the genotypes of a population according to a particular genetic model of evo-
lution and inheritance. Clearly, different genetic models and representations of the
genotypic data determine the formalization of different computational HI problems.

In this thesis we formalized and studied two new problems of HI: the pure par-
simony xor haplotyping (PPXH) problem and the minimum-event haplotype con-
figuration problem (MINEHC).

The PPXH problem is the problem of inferring haplotypes under the pure par-
simony criterion from a particular representation of genotypic data called xor-

1 Introduction

genotypes. Both the pure parsimony criterion and the xor genotype representation
are known concepts in the HI literature, but they have been studied separately and
under different assumptions (the pure parsimony principle has been applied on the
regular genotypic data, while the xor-genotypes have been previously studied on
the perfect phylogeny model). In this work, we introduced a graph representation
of the PPXH solutions from which we have been able to derive exact algorithms
for restricted instances and an approximation algorithm. The graph representation
has also inspired a heuristic solution strategy, whose validity has been experimen-
tally evaluated on synthetic and real datasets. This work has revealed important
connections between the PPXH problem and classic graph-theoretic problems: de-
signing new algorithmic solutions for the PPXH problem could effectively leverage
our ability to tackle other combinatorial problems.

The MINEHC problem is a HI problem where the family relationships between
population’s members are known and represented by a pedigree. Therefore, the
HI process must recover a haplotype configuration for the pedigree’s members that
is consistent with the genotypic data and laws of inheritance. However, genetic
variation events can alter the genetic data during the transmission from parent
to children and the computational problem asks for the haplotype configuration
consistent with the genotypic data that requires the minimum number of variation
events. In this work we studied the problem under the assumption that the two
most frequent kinds of variation events, recombinations and mutations, can occur,
thus extending previous works where only one of them (or none) was allowed. By
exploring the computational complexity of MINEHC (and related restriction) we
have been able to show that even simple instances are computationally hard to solve
or to approximate. In absence of variation events, the Haplotype Inference prob-
lem on pedigrees is a basic constraint satisfaction problem. In this work we further
explored such approach and we modelled variation events as “errors” that have to
be corrected in order to obtain the solution. The formalization of this idea led to a
combinatorial reduction to a coding theory problem, and a polynomial-time heuris-
tic algorithm for MINEHC. An experimental evaluation of the designed heuristic
under various simulated scenarios has revealed extremely good performances, both
in term of accuracy and running times. The heuristic we designed is able to grace-
fully include prior knowledge about the pedigree or the genotype structure: how
to fully exploit this ability is a relevant challenge. Accommodating missing data is
still an open issue, but we believe that our reduction, again, could play a crucial
role in achieving this important objective.

In the second part of the thesis, a computational problem involving transcripts
has been studied. Transcripts are sequences produced from the information con-
tained in a region of DNA and they are the basis in several key processes of the cell,
such as protein synthesis and gene expression. To fully understand how genetic vari-

ations impact on the expression of phenotypic traits, a better understanding of the
hidden structure of the genome is needed. Important insights of such structure can
be provided by the alignment of the transcripts, which represent the functional part
of the DNA, to the genomic sequence. As a consequence, the computational prob-
lem of aligning transcript sequences against a reference DNA sequence (transcript
alignment problem) naturally arises. Computational approaches for this problem
have to face the following hurdles: (i) transcripts are the concatenation of several
(spliced) portions of DNA and not a one-to-one copy of a long DNA region, (i)
several different transcripts are produced from the same DNA region, and (i)
only small transcript fragments (ESTs) are usually available, while the full-length
transcripts (the complete sequences) are hardly observable. Moreover, two other
characteristics of the data have to be considered: ESTs may contain several sequenc-
ing errors and the reference genomic sequence may present long repeated regions.
All those elements introduce ambiguity in the alignment of a transcript, and the
determination of an accurate solution for the problem is still a challenging task.
Traditional basic approaches try to compute high-quality transcript alignments in
order to predict the genomic structure. Clearly, errors in the transcript alignments
could heavily affect the prediction quality.

In this work, instead, we present a new formulation of the transcript alignment
problem that works in the opposite sense. The basic idea of our formulation is to
consider the transcript alignment problem as the problem of choosing a (simple)
genomic structure that can explain the alignments of a set of transcripts. In this for-
mulation, the inherent ambiguity of a single transcript alignment can be managed
by exploiting the high redundancy of currently available EST databases. In the
thesis, we formalized two main combinatorial problems and we proposed two algo-
rithmic solutions for them that combined together address the problem underlying
the above mentioned formulation. In the first problem that we formalized, called
maximal embedding problem, we exploited the interesting combinatorial property
that all maximal substrings of a pattern P and a text 1" can be detected in linear
time. The aim of the maximal embedding problem is finding representing particu-
lar sequences of maximal substrings of P and 1" that can correspond to transcript
alignments. The second combinatorial problem that we formalized has been called
minimum factorization agreement (MFA) problem. The instance of the MFA prob-
lem is an ordered set F' of factors and a set S of colored subsequences of F'. Then,
the MFA problem asks for the minimum cardinality subset F’ of F' such that, for
each color ¢, a sequence in S colored with ¢ is a subsequence of F”.

Our algorithm for the maximal embedding problem and the MFA problem, ap-
plied to EST and genomic data, provide:

- an efficient algorithm to compute all the possible (meaningful) alignments of
a given transcript against a reference genomic sequence;

1 Introduction

- an algorithm, that among a set of all possible alignments of a set of transcripts,
extract a single alignment for each transcript. The resulting alignments all
agree with the same genomic structure.

We also conducted an experimental evaluation of our strategy on a significant set of
genes, and promising preliminary results have emerged even in absence of specific
biological criteria.

The thesis is structured as follows. In Chapter 2 we review some basic notions of
computational complexity theory, approximation, graph theory and linear algebra
which the subsequent original results are based on.

The computational problems related to the first kind of data, haplotypes, are
studied starting from Chapter 3, where the principal existent approaches of HI
are presented along with the related terminology.

The problem of inferring haplotypes from xor-genotypes under the pure parsi-
mony principle is defined and investigated in Chapter 4. Part of the results of
this chapter have been presented in [16].

Chapter 5 presents the results concerning the problem of inferring haplotypes
on pedigrees with recombination and mutation events. In particular we provide
the computational complexity analysis of the problem and we illustrate an accu-
rate and efficient heuristic algorithm. A manuscript regarding these results is in
preparation [63].

The second part of the thesis starts from Chapter 6, where the problem of
computing all the possible alignments of a transcript against a genomic sequence is
addressed. We present an efficient algorithm for the problem based on the deter-
mination of maximal common substrings between the transcript sequence and the
genomic sequence. The results of this work have been submitted to an international
conference [17].

The last chapter, Chapter 7, studies the problem of choosing an “agreement”
genomic structure that can explain a transcript alignment for each transcript of a
set. A simple, but effective, heuristic algorithm is proposed and, together with the
previous algorithm, it represents a complete methodology for inferring the structure
of a genomic region given a set of transcripts. An experimental evaluation of the
method has been performed on a real dataset. The agreement problem and the
heuristic solution has been presented in [15].

2 Preliminaries

This chapter is devoted to the formal definition of several prerequisite notions that
will be used through the rest of the thesis. In particular, in the presentation of our
results we will use some basic concepts of three main areas: computational com-
plexity and approximation, linear algebra (on Z%), and graph theory. For a detailed
presentation of the three areas, we refer the interested readers to a monograph such
as [6, 33, 47, 87, 93].

2.1 Computational Complexity and Approximation

Computational Complexity Theory is the study and the classification of computa-
tional problems based on the computational resources needed to solve them. Here
we present few basic definitions and results used in the rest of the thesis.

The most basic “objects” in computational complexity theory are problems. A
problem is a (mathematical) relation P C Z x S between a set Z, called set of
problem instances, and a set S, called set of problem solutions. When the solution
set of a problem P is represented by the binary set {YES, NO}, we say that P is a
decision problem. In some cases, the solutions of a problem P are ranked according
to a quality measure ¢ : § — R. An optimization problem is a triplet (P, c,obj)
where P C 7 x § is a problem, ¢ : § — R is a quality measure of solutions,
and obj € {MIN, MAX} is the search criterion. Aim of the optimization problem
is to find, for each instance i € Z a solution s* € S (called optimal solution)
such that (i,s*) € P and c¢(s*) = minges{c(s) | (i,s) € P} if obj = MIN, or
c(s*) = maxges{c(s) | (i,s) € P} otherwise. An optimization problem is called
minimization problem if obj = MIN, or maximization problem otherwise. In the
context of optimization problems, we say that a solution s € S is a feasible solution
for the instance ¢ € Z iff (i, s) € P. The quality measure c(s) of a feasible solution is
often called cost of the solution, and the cost of an optimal solution for an instance
i is often called optimum (cost) of the instance i and it is generally denoted with
c*(i).

An algorithm A is a description of a procedure for solving a problem in a finite-
number of steps by a (simple) computational device. There are several parameters
to evaluate the efficiency of an algorithm. The most used parameter is the time
that the algorithm uses to solve the problem. Time is usually measured as number
of elementary steps required to compute the solution. Clearly, different instances

2 Preliminaries

require different times and a concise representation of all of them would be over-
whelming. To solve this issue, the worst-case time complexity of the algorithm is
usually evaluated. Given an algorithm A for the problem P C 7 x §, the worst-case
time complexity of A is a function f : N — R which specifies the maximum time
f(n) that A requires to solve an instance ¢ € Z of size at most n (under a reason-
able encoding scheme of the instances). The worst-case time complexity function
is almost always expressed in the big-O notation, which represents an asymptotic
upper-bound of the time complexity function when the size of the instance grows
to infinity. More formally O(f(n)) is the set of functions g(n) such that, for two
positive constants n, and ¢, g(n) < f(n) for all n > n,. For simplicity, since we
are always interested in the worst-case time complexity of an algorithm, we will
refer to it as the time complexity of the algorithm, omitting the specifier “worst-
case”. Moreover, we say that an algorithm is a polynomial-time algorithm if its time
complexity is a function f(n) € O(n*) for some constant k, and that is a linear-
time algorithm if its time complexity is bounded by a linear function of the size
(i.e. O(n)), and an exponential-time algorithm if its time complexity is a function
f(n) e O(a"}Cl -nk2) for some constants a, k1, and ;.

In some cases, we could be interested in relaxing the goal of an optimization
problem by looking for a feasible solution s “sufficiently close” to an optimal solution
s*, where the distance between the solutions are generally expressed in term of
performance ratio, Cc(gi) . An algorithm A for an optimization problem (P, ¢, obj)
is an approrimation al)gom'thm if and only if, for every instance i it computes a
feasible solution s. An approximation algorithm is a f(n)-approzimation algorithm
if and only if, for every instance 7 of size n, it computes a feasible solution s such
that Cc*(fi)) > f(n) if the problem is a maximization problem, or CC*((SZ.)) < f(n) if the
problem is a minimization problem.

A computational complexity class is a collection of problems that requires related
amounts of computational resources to solve them. In particular we are interested
in two classes of decision problems: P and NP. P is the class of decision problems
that are solved by a polynomial-time algorithm. NP is the class of decision problems
that can be verified by polynomial-time algorithm. A wverifier is an algorithm that
recognizes instances ¢ of P such that (i, YES) € P in polynomial-time based on an
addition input ¢(7) called certificate.

We are also interested in two classes of optimization problems: APX and PTAS.
APX is composed by optimization problems that have a k-approximation algorithm
where k is a constant. An optimization problem P is in PTAS if and only if there
exists a family of (1 4 €)-approximation polynomial-time algorithms for P for any
constant € > 0 if P is a minimization problem or any € < 0 if P is a maximization
problem. Such family of approximation algorithms is called approximation scheme.

2.1 Computational Complexity and Approximation

The time complexity lower bound of a problem is defined as the best (=lowest)
time complexity of an algorithm that solves the problem. Proving the time com-
plexity lower bound of a problem is a hard task, because it must consider all the
possible algorithms that solve the problem, known or not yet known. Therefore, in
computational complexity theory, the (time) complexity of a problem is compared
with the (time) complexity of other problems using the concept of reduction among
problems. Generally speaking, a reduction from a problem P; to a problem P,
provides a method to solve P; by using a solution of P;. As a consequence, if P; is
reducible to P, then P is at least as hard as P;. Different kinds of reductions exist,
but we are interested in two of them: Karp-reductions and L-reductions. The first
kind is defined between decision problems, while the second one is defined between
optimization problems.

Definition 2.1 (Karp-reduction [6]). A decision problem P is Karp-reducible to a
decision problem P if there exists an algorithm R that, given an instance i1 of P, it
computes an instance iy of P, such that (i, YES) € P if and only if (i2, YES) € P.
The reduction is said to be a polynomial-time reduction if R is a polynomial-time
algorithm.

Definition 2.2 (L-reduction [6]). A minimization (maximization) problem P; is L-
reducible to a minimization (maximization) problem P, it there exists two functions
f and g and two positive constants § and such that for any instance iy of P;:

f(i1) is an instance of P, that can be computed in polynomial-time;

- if 7; has a non-empty set of feasible solutions, then instance f(i1) has a non-
empty set of feasible solutions;

- for any feasible solution sy of f(i1), it is possible to compute in polynomial-
time a feasible solution g¢(i1, $2) of i1;

- ¢ (f(i) <B-e(in) 5
- for any feasible solution sz of f(i1), |¢*(i1)—c(g(i1, s2))| < v-|c*(f(i1))—c(s2)].

Based on the concept of Karp-reduction, we say that a problem P is NP-hard if
and only if any problem P’ € NP is Karp-reducible to P in polynomial-time. A
decision problem P is NP-complete if P € NP and P is NP-hard. If one polynomial-
time algorithm for a NP-hard problem exists, then P = NP. However, in many years,
nobody was able to design a polynomial-time algorithm for a NP-hard problem, thus
it is widely believed that the two classes P and NP are separated, i.e. there exists
a problem P € NP\ P.

A problem P is APX-hard if the existence of an approximation scheme for P
would imply the existence of an approximation scheme for every APX-complete

2 Preliminaries

problem P’ such that P’ € APX. It is possible to prove that if P # NP then a APX-
hard problem P does not belong to PTAS. Moreover, it is also possible to prove
that if a problem Pj is L-reducible to a problem P, then P, € APX (respectively,
P, € PTAS) implies P; € APX (respectively, P, € PTAS).

Finally, we are interested in a last class of decision problems called FPT (described
in [36]). A pair (P, k), where P is a decision problem and k is a parameter, belongs
to FPT if there exists a fized-parameter algorithm for the pair, i.e. an algorithm
that solves P in time O(f(k) - p(n)) where f is an arbitrary function of k, and
p is a polynomial function of the size of the instance n. The class FPT has been
introduced to characterize computationally hard problems which have an “efficient”
algorithm if the value of the parameter is small.

2.2 Vector Spaces and Matrices over the Finite Field Z,

Several results presented in this thesis are based on mathematical structures, called
vector spaces, defined over the two element set Zs. In this section, we formalize the
relevant concepts, we state the basic properties of such structures and we highlight
some connections with matrices.

In order to define the concept of vector space, we first have to define the concepts
of abelian group and field.

Definition 2.3 (Abelian group). Let G be a set and + a binary operation on G
(i.e. a function 4+ : G x G — G). Then (G, +) is an abelian (or commutative) group
if and only if:

- + is associative, Va,b,c € G,(a+b)+c=a+ (b+ c);
- + has an identity element, J0€ G :Vae G,a+0=04+a=0;

+ has the inverse element, Vae G IbecG:a+b=b+a=0;

- + is commutative, Va,b€ Ga+b=0b+ a.

Definition 2.4 (Field). Let F' be a set, and let + and - be two binary operations
on F. Then (F,+,-) is a field if and only if:

- (F,4+) is an abelian group;
- (F'\ {0},), where 0 is the identity element of +, is an abelian group;
- - is distributive over +, Va,b,c € F,a-(b+c¢)=a-b+a-c.

We can now define the concept of vector space.

2.2 Vector Spaces and Matrices over the Finite Field Zo

Definition 2.5. Let (F,+,) be a field with 0 the identity element for + on F' and
1 the identity element for - on F'\ {0}. Let(V,+) be an abelian group, and - a
function from F' x V to V (external operation). Then (V, F,) is a vector space over
the field F if and only if:

-Ya,be F,YveV,(a-b)-v=a-(b-v);
-YoeV,1-v=u;

-Yae F,Yu,veV,a-(u+v)=a-u+a-v;
-Va,be F,YveV, (a+b)-v=a-v+Db-v.

Given a vector space (V, F,-), we call vector any element of V' and scalar any
element of F'.

Let @ be the binary operation on Zy = {0,1} defined as0® 0 =1® 1 =0 and
0@p1=190=1, and let - be the binary operation on Zs defined as0-0=0-1=
1-0=0and 1-1=1. It is easy to see that (Zs,®,-) is a field.

Now let us consider the set Z; composed by all the ordered n-tuple over Zs. Let
v € Z5 and denote with v[i] the i-th element of the tuple v. Define the external
operation - : Zy x Z§ — Z% as the function that associates with (a,v) € Zg X Z%
the tuple u € Z% such that ufi] = a - v[i] for all i = 1...n. It is easy to see that
(Z5,Z2,-) is a vector space. We call vectors of such a vector space binary vectors.

From now on, we denote with V' the vector space (V, F,-) if the field F' and the
external operation - are clear from the context.

A vector space V over the field K is a subspace of a vector space U over K if V'
is defined over the same vector space operations of U and V C U.

Given a set of vectors B = {vy,...,vx} C V, a linear combination of B is an
expression aq - vy + ...+ g - v where aq, ..., ap are scalars. A subset B of vectors
is linearly dependent if there exists b € B such that b can be obtained as a linear
combination of B\ {b}. Otherwise we say that B is linearly independent. The set
of the linear combinations of a set of vectors B is a subspace of V' and is denoted
with V(B). A basis of the vector space V is a minimal-cardinality set B of vectors
such that V(B) = V. All the bases of a vector space V are linearly independent
and have the same cardinality (called dimension of V and denoted with dim V).

The following properties hold also for generic vector spaces, but, for simplicity,
let us focus on the vector space Zi. Denote with 0 a binary vector composed only
by zeroes. Let M be a n x m binary matrix (i.e. a matrix whose entries belong to
Z9) and let - be the usual matrix dot product. We denote with M|i, j] the entry at
row i and column j. The transpose of M is a m x n binary matrix M7 such that
M7i,j] = M[j,i], for all i = 1...m and j = 1...n. The matrix can be seen as a
collation of n row vectors of Z5" (its rows) or as a collation of m column vectors of Z%
(its columns). The rank of M (denoted with rank(M)) is the maximum number of

2 Preliminaries

linearly independent row vectors or, alternatively, the maximum number of linearly
independent column vectors.
Matrix M determines two vector spaces:

1. the column space (or image), defined as im(M) ={M -z |z € Z3'};
2. the kernel, defined as ker(M) ={y € Z5" | M - y = 0}.

The rank-nullity theorem states that rank(M) + dim ker(M) = m.

A matrix M is in row echelon form if (i) all rows that have at least a l-entry
(non-zero rows) are above any row that has only O-entries (all-zero row), and (i)
the first 1-entry in a row is strictly to the right of the first 1-entry of the row above
it. A matrix M is in reduced row echelon form if it is in row echelon form and the
first 1-entry of a row is the only 1-entry of its column. The first 1-entry of each row
in a matrix M in row echelon form is called pivot.

To each set B of vectors of Z we associate the n x | B | binary matrix Mp whose
column vectors are exactly the vectors in B. Almost all the basic problems on the
vector space Z4 can be solved using the Gauss elimination algorithm. In particular,
given a n X m binary matrix M, the Gauss elimination algorithm computes in time
O(min(n, m)nm) the row echelon form of M. A simple extension of the Gauss
elimination algorithm is the Gauss-Jordan elimination algorithm, which computes
the reduced row echelon form of M. In particular we will be interested in the
following applications of the Gauss elimination algorithm:

- computing the rank of a matrix M, that is equal to the number of non-zero
rows in the row echelon form of M;

- deciding if a set of vectors B C Z% is linearly dependent (by comparing the
rank of Mp with n, if it is smaller the set is linearly dependent);

finding a basis of ker M

finding the linear combination of a basis equal to a given vector of the space.

2.3 Graph Theory

Informally, graphs are structures that represent relationships between pairs of ob-
jects. More formally, a graph G is a pair (V, E) where V is the set of its vertices
(vertex set) and F is the set of its edges (edge set). An edge e of F is an unordered
pair of vertices (u,v), with u,v € V. Notice that, since the pair is unordered, (u,v)
and (v,u) are the same edge. Vertices are sometimes called nodes and edges are
sometimes called arcs. The vertex set of a graph G is denoted with V(G) and the

10

2.3 Graph Theory

edge set with E(G). Unless stated otherwise, we implicitly assume that the graph
is simple, i.e. (v,v) € E(G).

An edge e = (v,u) is incident to a vertex x if x = v or y = w. If there exists
an edge e = (u,v) we say that vertices u and v are adjacent, or that e is an edge
between u and v, or that v and v are the endpoints of e. The set of edges incident
to a vertex v is denoted with FE(v). The cardinality of E(v) is the degree of v. If
the degree of every vertex is k, then the graph is k-regular. A 3-regular graph is
called cubic graph. If the degree of a vertex is 0, then the vertex is isolated. The
minimum (maximum) degree of a graph is the minimum (maximum) degree of one
of its vertices.

A graph G' = (V' E’) is a subgraph of a graph G = (V. E) if V' C V and E' C E.
Given V' C V(@), the induced subgraph G(V”’) is the graph (V',{(u,v) € E(G) |
u,v € V'}).

A sequence P = (v1,v2,v3,...,V, Uk+1) iS a path of length k of a graph G =
(V,E) if (vi,vi11) € E for each i = 1...k. An edge (u,v) is contained in a path
P = (vy,...,v541) if u = v; and v = v;4 for some i = 1...k. We say that a path
connects v and w if v = v; and u = vi41. A path is simple if it does not contain
repeated vertices. A path of length at least 3 that connects v to v is a cycle. A
graph G is acyclic if no paths of G are cycles.

We say that a graph is connected if for each pair of vertices there exists a path that
connects them, otherwise we say that it is disconnected. A subgraph G' = (V', E’)
of G = (V,F) is a connected component of G if G’ is connected and no edges in
E\ E’ are incident to a vertex of V'. A connected acyclic graph is a tree, while a
disconnected acyclic graph is a forest. Given a graph G = (V, E) and aset V' C V|
the graph G'\ V' is the subgraph of G obtained by removing the vertices V' from V'
and every edge e € F incident to a vertex of V’. A separator of a connected graph
G is a subset V' of V(G) such that G \ V' is disconnected. A graph is k-connected
if there exists a separator of cardinality k£ but not a separator of cardinality k — 1.
A graph G is bipartite if there exists a bipartition {V;, Va} of V(G) such that each
edge of G has an endpoint in V; and an endpoint in V5. Given a graph G and a
bipartition {Vi,V2} of V(G), the set C of edges of G that have an endpoint in Vj
and an endpoint in V5 is called a cut of G. Given a cut C of GG, the edges in C are
called crossing edges and edges in E(G) \ C are called non-crossing edges.

A spanning tree T of a connected graph G is an acyclic connected subgraph of
G such that V(T) = V(G). A spanning forest F' of a (disconnected) graph G is
a subgraph of G such that, for each connected component C of GG, a connected
component 1" of F' is a spanning tree of C.

A graph G is vertex-labelled if there exists a function \, : V(G) — L, that
associates each vertex v with a label A\,(v). A graph G is edge-labelled if there
exists a function A\ : E(G) — L, that associates each edge e with a label A¢(e).

11

2 Preliminaries

A directed graph is a pair G = (V, E) where V is set of vertices, and E a set of
ordered pairs of vertices. In a directed graph G = (V, E), edge (u,v) is different
from (v, u) and loops are admitted, i.e. (u,u) may belong to E. An oriented graph
is a graph G = (V| E) together with a function d : E — V (called edge-direction
function) such that d(u,v) = u or d(u,v) = v. In other words, an oriented graph is
a (undirected) graph in which every edge is associated with a direction. A directed
path P of a directed graph G = (V, E) is a sequence of vertices (x1,...,zx1) such
that (z;,z;41) € E for each i = 1...k. An oriented path P of an oriented graph
G = (V, E) with edge-direction function ¢ is a sequence (x1,...,zr11) such that
(zi,xiy1) € E and c(x;, ¢iy1) = xi41 for each i = 1...k. A cycle C in a directed
(oriented, resp.) graph is a directed (oriented, resp.) path where the first vertex
is equal to the last vertex. The set of incoming edges in a vertex v* of a directed
graph G = (V, E) is the set Er(v*) = {(v*,u) € E}. Similarly, the set of incoming
edges in a vertex v* of an oriented graph G = (V| E) with edge-direction function
c is the set Er(v*) = {(v*,u) € E | ¢(v*,u) = u}. The set of outgoing edges of a
vertex v* in a directed (or oriented) graph is Ep = E(v*) \ Er(v*), where E(v*)
is the set of edges incident to v* defined as in the undirected case. The indegree
(outdegree, resp.) of a vertex v in a directed (or oriented) graph is the cardinality
of the set Er(v*) (Eo(v*), resp.).

12

Part |

Haplotype Inference Problems

13

3 Haplotype Inference Problems

The Haplotype Inference problem is the computational problem of distinguishing
(inferring) the genetic material that each individual in a population has inherited
from each parent (haplotype) starting from a less informative source of information
(genotype). The computational problem is mainly motivated by cost considerations:
Haplotype data have been proven useful for several genetic studies but obtaining
them directly from the individuals of a population is costly and time-consuming.
Obtaining genotypes, instead, is much cheaper and faster.

The inference process is guided by a model of genetic evolution and inheritance.
Unfortunately an “universal” model that can guide the inference process in every
situation and on every dataset is not known. Therefore several different models
have been proposed, and for each model a different computational problem arises.

This chapter introduces the concepts and terminology related to Haplotype In-
ference problems (Section 3.1) and reviews the most important approaches for HI
appeared in literature. In particular we classify such approaches with respect to
the information that are available about the population. Therefore we consider
and review approaches for populations of unrelated individuals (Section 3.2) and
approaches for populations in which family relationships between individuals are
present (Section 3.3).

3.1 Introduction

The genome of almost all organisms is organized in macromolecules of DNA called
chromosomes. Along each chromosome there are some positions, called loci, where
“particularly significant” features are located. The exact meaning of “particularly
significant” depends on the context of the problem we are dealing with. The state
of the feature in a given locus is called allele, and, based on the number of different
states a feature exhibits in a population, loci are classified as biallelic (if only two
different states are possible) or multi-allelic (if more than two different states may
appear). Since the set of different alleles of a given locus is known in advance, for
convenience each allele is encoded by a numeric identifier. For example, given a
biallelic locus I, the major allele (i.e. the allele that appears more frequently in the
population) is represented by the value 0, while the minor allele (i.e. the allele that
appears more rarely in the population) is represented by the value 1. The sequence

15

3 Haplotype Inference Problems

Chromosome pair Haplotypes Genotype

P EDTED — =010

g = <(Ov 1)7 (15 1)7 (070)7 (07 1))

Figure 3.1: Example of haplotypes and genotype of an individual.

of the alleles (or of their identifiers) that appear at a set of loci on a chromosome
of an individual is called haplotype of the individual.

The most evolved organisms have two copies of almost all chromosomes. One
copy is inherited from one parent, and one copy is inherited from the other parent.
The two copies, also defined as the two homologous chromosomes, determine the
same set of biological traits and are usually almost identical. Therefore, the same
locus is present in both the copies and each individual possesses two alleles for every
locus or, in other words, each individual has two (possibly distinct) haplotypes. The
sequence of unordered pairs of the alleles that an individual possesses at the loci of a
pair of homologous chromosomes is called genotype of the individual. The genotype
of an individual can be considered as the conflation of its haplotypes: For example
if the two haplotypes of an individual are h, = (0,1,0,1) and h,, = (1,1,0,0),
then its genotype is g = ((0,1),(1,1),(0,0),(0,1)). A locus I is homozygous in a
genotype g if the pair of alleles at locus [, denoted by g[l], is composed by equal
values, otherwise is heterozygous. In the previous example, illustrated in Figure 3.1,
the first and the fourth loci are heterozygous while the second and the third ones
are homozygous.

A set of features that is usually considered in genetic studies (such as linkage
analysis, gene mapping, and association studies) is mainly composed by Single
Nucleotide Polymorphisms (SNPs), i.e. loci where different bases appear among
the members of a population. Clearly, in this case, the allele at each SNP locus is
determined by the base that appears in that position. Moreover, since for almost
all SNPs only two bases are present in a population, SNP loci can be considered as
biallelic. When the set of loci that are considered is composed only by biallelic loci,
the genotype is usually represented by a sequence on the alphabet {0,1,2}, where
symbol 0 stands for the pair of alleles (0,0), symbol 1 stands for (1, 1), and symbol
2 stands for (0,1). This mapping is a widely-adopted convention and, thus, it will
be adopted in this thesis. However other alternatives exists: For example some

16

3.1 Introduction

authors replace the symbol 2 of our notation with the symbol ? (or x), while other
authors map the symbol 1 to the heterozygous pair (0,1) and the symbol 2 to the
homozygous pair (1,1). In particular, the last mapping is mainly adopted by works
that use ILP formulations because it simplifies the specification of constraints.

The determination of the haplotypes of each individual in a given population is a
time-consuming and costly operation, while determining their genotype is far more
quick and cheaper. Therefore, large-scale studies (i.e. studies that consider a vast
population and/or a large number of loci) usually prefer (due to cost considerations)
to determine the genotypes instead of haplotypes, even if haplotype data has been
shown to be more informative than genotypes.

Computational methods have been proposed to infer haplotypes starting from the
genotypes of a population. Their aim is to recover computationally the information
provided by the haplotypes without incurring in the increased costs of determin-
ing them by biological assays. While this problem, called haplotype inference or
haplotyping or phasing, is an easy task for homozygous loci, it becomes hard on
heterozygous loci. Indeed, the allele of the two haplotypes on a homozygous locus is
trivially equal to the only allele of the genotype on the same locus. Instead, without
any prior information or assumption, it is not possible to resolve the ambiguities
that heterozygous loci pose. In fact, if a genotype g is heterozygous at two biallelic
loci, then two distinct and equally-probable pairs of haplotypes may have generated
g: the first one is composed by the haplotypes (0,0) and (1, 1), while the other one
is composed by the haplotypes (0,1) and (1,0). We say that a pair of haplotypes
h1 and ho resolves a genotype g if g is the conflation of the two haplotypes. To
guide the choice of the “right” set of haplotypes, we need a genetic model which
specifies how the haplotypes have been evolved and how have been inherited by the
individuals.

At the most abstract level, the computational problem of inferring the haplotypes
of the individuals of a population starting from their genotypes can be defined as
follows.

Problem 1. HAPLOTYPE INFERENCE (HI).

Input: The set G = {g1,...,9n} of genotypes of the individuals of a population,
and a genetic model M.

Output: A set H = {hq,...,hy} of haplotypes that “satisfy” the genetic model M
and such that for each genotype g; there exists a pair of haplotypes h{ and h} of
H that resolves g.

Clearly the genetic model is an element that heavily influences the quality of the
results and deeply determines the characteristics of the computational problem.
Therefore the Haplotype Inference problem can be regarded as a family of closely-
related computational problems which have a unique aim: to infer the “best” set of

17

3 Haplotype Inference Problems

haplotypes which resolves a given set of genotypes according to the genetic model
that has been assumed in the specific HI problem.

In the literature no model can claim to be the most suitable for all instances and
datasets: often a quality improvement of the results achieved by a model implies a
consistent increase in the computational resources required and/or the presence of
additional assumptions. As a consequence, several models and several algorithmic
have been proposed to tackle the Haplotype Inference problem.

Several works, such as [14, 46, 56-58, 70, 79, 90], have extensively reviewed
the state-of-the-art in Haplotype Inference. Here we present an overview of the
principal models and approaches and we refer to one of the works above for a more
in-depth presentation.

The approaches toward the solution of the Haplotype Inference problem can be
classified in two different categories: statistical methods and combinatorial methods.
Moreover, a second orthogonal classification is based on the information that we
have about the population: population-based methods and pedigree-based methods.
In population-based methods, the individuals are assumed to be unrelated, i.e. no
family relationships are present, while pedigree-based methods receive as input data
also a description of the parental relationships among population members. In the
following we briefly describe the principal methods proposed in literature in each
of the resulting four categories.

3.2 Population-based Methods

Population-based methods deal with populations in which members do not have
kinship relationships or such relationships are not known. They heavily depend
on the reference genetic model: if the actual genotype data depart from such as-
sumptions, the accuracy and the overall quality of the results may substantially
decrease or, in some cases, especially on combinatorial methods, a solution cannot
be found at all. The following two sections describe the most important statistical
and combinatorial approaches for Haplotype Inference on unstructured populations.

3.2.1 Population-based Statistical Methods

Among statistical methods, one of the prominent approaches is represented by the
Mazimum Likelihood formulation [39]. In this case the solution of the problem is a
set of haplotypes composed by the haplotypes that maximize the likelihood of ob-
serving the given set of genotypes. The maximization of the likelihood is performed
by the Expectation Maximization (EM) algorithm [32] that computes the haplo-
type frequencies that maximize the likelihood of observing the genotypes. From
haplotype frequencies it is then possible to reconstruct a possible solution set of
haplotypes by picking, for each genotype, the pair of haplotypes with maximum

18

3.2 Population-based Methods

frequency that resolve the genotype. Since the EM algorithm does not guarantee
to reach a global optimum, the authors suggest to try several set of initial param-
eters (haplotype frequencies) and to pick the final solution which maximizes the
likelihood function. In the ML approach, the genetic model is implicitly stated
in the assumptions of the formulation. Indeed the ML approach assumes that the
population satisfies the Hardy-Weinberg principle and that random mating between
the individuals has occurred. Therefore, the reliability of the results is influenced
by deviations from Hardy-Weinberg equilibrium and from random mating (i.e. the
presence of assortative mating or inbreeding in animals).

A second remarkable exponent in the class of statistical approaches is PHASE [104,
105]. This method is based on a Bayesian approach which starts with an initial
guess of the haplotype set and iteratively updates the individuals’ haplotypes based
on the other haplotypes. The update step is performed using a Gibbs sampling
technique and the method is guaranteed of converging to the desired posteriori
distribution after a “sufficiently large” number of step. The genetic model un-
derlying this approach represents the key component from which the conditional
distribution used in the Gibbs sampler is calculated. In fact, the authors assume
that the genetic model is approximately coalescent (i.e. the evolution history of the
haplotypes has a “tree-like” structure).

A third notable statistical methods is called partition-ligation (PL) [89]. In this
case a Bayesian approach similar to PHASE is employed on small blocks that par-
tition the original genotypes instead of considering the whole genotypes. The re-
sults of each pair of contiguous blocks are then combined until a complete solution
is found. On such small block, whose boundaries are chose based on a measure
of Linkage Disequilibrium, the computation of the conditional distribution of the
Gibbs sampler is not coalescent-based as in PHASE. Nevertheless, also PL assumes
a particular genetic model: in fact, since it partitions genotypes in small contigu-
ous blocks, it assumes a “block-like” structure of haplotypes, assumption that has
received substantial empirical support.

3.2.2 Population-based Combinatorial Methods

Combinatorial methods try to overcome the main limitation against a broad appli-
cability of statistical approaches: the excessive amount of computational resources
they require. Statistical methods potentially investigate a number of haplotypes
that is exponential in the number of loci considered and/or in the size of the pop-
ulation. In combinatorial methods, instead, the genetic model is translated in
a combinatorial formulation and then (hopefully) efficient algorithms are devised
based on the properties of the formulation.

The first combinatorial method has been proposed by Clark [29]. This algo-
rithm was based on the iterative “resolution” of unsolved genotypes by combining

19

3 Haplotype Inference Problems

a previously-computed haplotype with a new one. Clark’s algorithm requires an
initial set of unambiguous genotypes (i.e. genotypes with at most one heterozygous
locus) from which the initial set of haplotypes is computed. In case every genotype
is ambiguous, the initial haplotype set cannot be computed and Clark’s method is
not applicable. The underlying genetic model of Clark’s algorithm (and a partial
justification of its soundness) is empirically based on the infinite-site model with
random mating. In the infinite-site model each locus is mutated at most once dur-
ing the haplotype evolution, and since random mating is assumed, the haplotypes of
the individuals that have been considered should be the most frequent of the whole
population. Therefore there should exist a subset of haplotypes which resolves most
of the genotypes and from which the other haplotypes can be recovered.

Two extensions of Clark’s algorithm have been proposed by Gusfield et al.:
namely mazimum resolution [53] and a consensus approach to reconcile the results
obtained by multiple runs of Clark’s algorithm [92].

The second important combinatorial formulation of the Haplotype Inference
problem is represented by the Perfect Phylogeny Haplotyping (PPH) problem [54].
In this case, the problem asks for a set of haplotypes which evolution history is
compatible with an explicit genetic model: the coalescent model combined with
the infinite-site assumption. We recall that in the coalescent model, the haplo-
type evolution can be represented by an oriented acyclic graph and that under the
infinite-site assumption each locus has mutated at most once. An important pos-
itive characteristic of such problem is that solutions can be efficiently computed:
indeed [13], [34], and [97] had proposed three linear-time algorithms for solving the
problem.

The Perfect Phylogeny model requires that no recombinations have occurred
during the evolution of haplotypes. A recombination is a variation event where a
new sequence is created by concatenating a prefix of an original sequence with the
remaining suffix of another original sequence. Requiring the absence of recombi-
nations had limited the direct applicability of the PPH method to long genotypes,
where some recombinations have likely occurred. Some other approaches [59, 103]
relax such strict requirement and are applicable when some recombination events
are plresent.1

The Perfect Phylogeny model has been also used on a different kind of geno-
type data called zor-genotypes. These genotypes are produced by the technique
known as Denaturing High-Performance Liquid Chromatography (DHPLC) [117]
which is able to distinguish between homozygous and heterozygous loci but it can-
not determine (“call”) the allele that is present in homozygous loci. The Xor

!The approach of Halperin and Eskin [59] is not entirely combinatorial: it uses a PPH method
to infer haplotypes for small blocks that are then combined in long range haplotypes via a ML
approach. Since a PPH method is its inner routine, we (arbitrarily) chose to list it in the combi-
natorial methods.

20

3.3 Pedigree-based Methods

Perfect Phylogeny Haplotyping (XPPH) problem has been proposed and solved by
Barzuza et al. [8, 9]. The basic idea of their almost linear-time solution algorithm
is the reduction of the XPPH problem to the Graph Realization (GR) problem. A
Graph Realization of a family of sets of labels is a labelled tree in which all the given
sets of labels induce a path. They show that the Graph Realization of the set of
xor-genotypes is precisely the evolution history of the individuals’ haplotypes and,
thus, they solve the problem via one of the existent algorithms for GR [11, 42, 108].
Despite the inherent loss of information due to the absence of the allele of homozy-
gous loci, they also show that adding the full genotypes of three (carefully selected)
individuals suffices to recover a unique set of haplotypes if the graph realization is
unique.

The last major approach for HI is based on the parsimony principle. In this case,
the HI problem is regarded as an optimization problem (called Haplotype Inference
by Pure Parsimony, HIPP) where one wants to minimize the number of distinct
haplotypes needed to solve the given genotypes. The genetic model is implicit: if
the rate of variation events is low and individuals come from a restricted number of
ancestors, the number of their distinct haplotypes should be small compared to the
number of possible haplotypes. Unfortunately, the HIPP problem is NP-hard (the
proof, along with the formulation conception, is attributed to Earl Hubbel in [57])
and APX-hard [71]. To tackle the computational intractability of the problem
several heuristic [61, 82], ILP-based [20, 55, 73], or approximation [71] algorithms
have been proposed. Moreover restricted cases of the problem with polynomial time
solutions have been studied [72, 109].

3.3 Pedigree-based Methods

Parental relationships (or, more in general, kinship) provide an invaluable source
of information in the Haplotype Inference problem. Indeed, assuming Mendelian
Inheritance law and in absence of genetic variation events, each offspring receives
one haplotype from the mother and one from the father. Therefore, the resolution
of the offspring haplotypes is constrained by the resolution of parent haplotypes,
and vice versa.

In the following we will present the related terminology, and we will briefly intro-
duce the most important statistical and combinatorial methods for HI on structured
populations.

3.3.1 Terminology

Parental relationships are represented by a structure called pedigree chart. An
example of pedigree chart is depicted in Figure 3.2(a). In such a representation,
each individual is represented either by a square (if it is male) or a circle (if it is

21

3 Haplotype Inference Problems

(¢) The simple pedigree graph

Figure 3.2: Example of representations of the same pedigree.

female), and an edge connects parents to their children. Conventionally, edges are
oriented from top to bottom. In the example, individuals a and b are the parents
of both d and e.

A pedigree chart provides a clear representation of the parental relationships but
when dealing with computational methods a more formal (equivalent) representa-
tion is used: the pedigree graph.

Definition 3.1 ([76]). A pedigree graph (or marriage node graph [23]) is a connected
oriented acyclic graph G = (V, E), where:

-V=MUFUN, M and F are the sets of male and female nodes, N is the
set of mating nodes;

- edges connect either an individual node to a mating node, or a mating node
to an individual node;

- the indegree of an individual node is at most one (edge coming from a mating
node);

22

3.3 Pedigree-based Methods

- the indegree of a mating node is 2 (one edge coming from a male node rep-
resenting the father and one coming from a female node representing the
mother);

- the outdegree of a mating node must be greater than zero.

Figure 3.2(b) represents the pedigree graph associated to the pedigree chart of
Figure 3.2(a). Mating nodes are represented by small black circles, while male and
female nodes are represented by square and circle vertices, respectively.

Sometimes the pedigree graph, although formal, is cumbersome. Therefore a
lighter representation has often been used. Unfortunately also such a representation
has been called pedigree graph in the literature (see, for example, [114]), and to
avoid potential confusion we refer to it as simple pedigree graph.

A simple pedigree graph can be obtained from a pedigree graph by removing
mating nodes and connecting directly parents to their children. An example of
simple pedigree graph is depicted in Figure 3.2(c).

The pedigree chart, the pedigree graph, and the simple pedigree graph are all rep-
resentations of the relationships among individuals. When we are interested in the
family relationships and not in the peculiar characteristics of each representation,
we will use the general term of pedigree.

The triplet composed by an individual and its parents is called trio, and it is
conventionally denoted by a triplet (f,c¢,m) where f is the father, ¢ is the child,
and m the mother. The set composed by parents and their children is a nuclear
family. If parents of an individual are not included in the pedigree, such individual
is called founder. In the example depicted in Figure 3.2, (a,d, b) is a trio, {a,b,d, e}
is a nuclear family, and {a, b, ¢, f, g, i} is the set of founders of the pedigree.

If an individual and one of its descendants are connected by two distinct oriented
paths in the pedigree graph (or in a simple pedigree graph), then the pedigree has
a mating loop [26, 78, 84, 114]. For example, the pedigree graph of Figure 3.3(a)
has one mating loop which involves individuals a and n connected by two paths
(a,e,j,m,n) and (a,d, h,l,n) (plus some mating nodes). We want to remark that
the presence of a cycle in a simple pedigree graph (if we ignore edge directions) does
not imply the presence of a mating loop. Indeed each nuclear family with more than
one offspring forms a cycle (if edge directions are ignored) in the simple pedigree
graph but not in the pedigree graph.

The definition of mating loop that we presented is the strictest possible: some
authors, instead, define a mating loop as a cycle in the pedigree graph if edge
directions are ignored [18, 27, 35]. The difference is subtle but nevertheless present:
Suppose to have the following four trios: (a,b,c), (e, d,c), (e, f,g), and (a,h,g).
If we depict the pedigree graph, we will found that founders and mating nodes
induce a cycle in the pedigree graph (if we ignore the edge direction). Thus, in the
second definition, such a cycle is a mating loop. However, there does not exist two

23

3 Haplotype Inference Problems

(a) A non-tree pedigree (b) A tree pedigree

Figure 3.3: Examples of non-tree and tree pedigrees. Oriented paths that compose
a (undirected) cycle have been highlighted.

distinct paths which connect the same pair of individuals, thus there are no mating
loops according to the first (stricter) definition. The previous example seems to
be a limit case that cannot be encountered in practice: however there exists other
plausible multi-generational pedigrees in which mating loops are present in the
broader definition but not in the stricter one (see, for example, Figure 3.3(b)).
The difference, although small, had lead to some ambiguities in the literature. For
example, the same algorithm is presented in [26] and [27]: in the first version
the broader definition is assumed, while in the second version the stricter one is
considered. However, adopting the stricter definition in the second version of the
work [27] seems invalidate the proof of their Lemma 10. We define tree pedigree a
pedigree which does not contains mating loops. A tree pedigree is a restricted-tree
pedigree if it does not contain mating loops according to the broader definition. For
example, the tree pedigree of Figure 3.3(a) is a tree pedigree but not a restricted-
tree pedigree.

Since we are interested in Haplotype Inference, a genotype is associated to each
individual of the pedigree, leading to the genotyped pedigree. Similarly, a haplotyped
pedigree is a pedigree in which every individual has associated a pair of haplotypes.
The genotype associated with an individual ¢ in a genotyped pedigree is denoted
with g¢;, while the two haplotypes associated to ¢ in a haplotyped pedigree are de-
noted with h% and h?. Given a haplotyped pedigree P, and a genotyped pedigree
P, of the same pedigree graph P, the haplotyped pedigree is said to be consistent
with the genotyped pedigree if for each individual ¢ the pair of haplotypes hz1 and
h? of Py, resolves the genotype g; of P,;. Given a locus of a genotype, the parental
source (PS) of the alleles at such locus is the indication of which parents the two
alleles come from. Clearly, the PS is meaningful only for heterozygous loci, since

24

3.3 Pedigree-based Methods

the two alleles at homozygous loci are indistinguishable. Conventionally the PS
information is 0 if the allele with the minimum identification number has been in-
herited from the father, 1 otherwise. Since also parents are diploid, an additional
information is sometimes useful, the grandparental source (GS), which specifies the
grandparent from which the allele has been inherited. A haplotype configuration is
the assignment of parental source to each allele of the individuals’ genotypes. Ob-
viously a haplotype configuration of a genotyped pedigree P, induces a haplotyped
pedigree P}, consistent with P, and vice versa.

A second level of consistency, Mendelian consistency, could be required. A hap-
lotype configuration of a trio (f,c,m) is said to be Mendelian consistent at locus I
if the pair of alleles (a, a”) = g.[l] is composed by one allele presents in the paternal
genotype at locus ! (gf[l]) and by one allele presents in the maternal genotype at
locus 1 (gm[l]).

During the inheritance of (half) genome from one parent to the child, genetic
variations may arise. In other words, the haplotype of the offspring can be dif-
ferent from both haplotypes of the parent. Two kinds of genetic variation events
are usually studied: recombinations and mutations. Let h be the haplotype of an
individual ¢ inherited from its parent p, and let i/ = h]l) and b = hlz) be the haplo-
types of p. A recombination (or crossover) at locus [between p and c is the event
in which haplotype h has been generated by concatenating a prefix h'[1..l — 1] of A/
with the remaining suffix h”[l..n] of the other haplotype h”. Locus [is called start-
ing position (or, simply, position) of the recombination. Multiple recombinations
are also possible: in this case h is the concatenation of alternating blocks of A’ and
h". For example, two recombinations in position /; and Iy, respectively, produce
the haplotype h := h/[1..l1 — 1]h"[l1..lo — 1]R/[l2..n]. A mutation is an event which
transforms an allele of parent haplotype to distinct allele in child haplotype. More
formally, suppose that ¢ inherits haplotype A’ from p. A mutation at locus | between
p and c is the event which replaces in h the allele o’ = h/[l] with a different allele
a = h[l]. Recombinations are believed to be one of the most common (although
quite rare) form of variation events in diploid organisms. Moreover, recombinations
events usually start at positions located in particular regions, called recombination
hotspots (see [88, 106, 107] for humans), thus a synthetic estimation of the recom-
bination rate would be meaningless. Instead, mutations are believed to be much
less frequent than recombinations. As a consequence, an accurate estimation of
the mutation rate has been an elusive aim: a recent study [121] had reported a
mutation rate of 3 - 10~8 mutations/nucleotide/generation.

The general haplotype inference problem on pedigree data asks for a haplotyped
pedigree (or, equivalently, a haplotype configuration) consistent with a given geno-
typed pedigree. Also in this case, the choice of the “best” haplotype configura-
tion among the various possibilities is guided by a genetic model underlying each

25

3 Haplotype Inference Problems

method. In the following we will overview the most important methods which have
appeared so far in the literature.

3.3.2 Pedigree-based Statistical Methods

The first breakthrough in HI over pedigree data is probably due to Lander and
Green [74] and later improved by Kruglyak et al. [69]. In their work, they proposed
a method to calculate the most likely haplotype configuration of a given genotyped
pedigree, based on a Expectation Maximization algorithm. The crucial aspect of
their approach is the use of Hidden Markov Chains, where the [-th hidden state is
the vector of the grandparental sources (called inheritance vector) of all individuals
at locus [, the transition between state [and [+ 1 is regulated by the recombination
frequency 60; between the two consecutive loci, and the observable state is the set of
genotypes (at locus [). The computational complexity of Lander-Green algorithm is
linear in the number of loci but exponential in the number of non-founder individ-
uals, thus it is only applicable for moderately long genotypes and small pedigrees.
Before the Lander-Green algorithm, the Maximum Likelihood estimation was per-
formed via the Elson-Stewart algorithm [38], which computes the probability of
all individuals’ haplotypes conditional on the parental haplotypes, the individual’s
genotype, and the descendants’ genotypes. Since all possible haplotypes are consid-
ered, the Elson-Stewart algorithm requires exponential time in the genotype length,
thus it is only applicable for moderately large pedigrees and short genotypes.

Most of the subsequent approaches were essentially aimed to the reduction of the
computational resources that are required by Lander-Green and Elson-Stewart algo-
rithms. For example, Allegro2 [50] is a tool developed by Gudbjartsson et al. which
employs multiterminal binary decision diagrams to compactly store probability dis-
tributions, in order to reduce both time and memory requirements. A second tool
that implements and improves the Lander-Green algorithm is Merlin [1] by Abeca-
sis et al.. This software achieves a performance gain by representing the inheritance
vectors (gene flow, in their notation) as sparse binary trees and avoiding unneces-
sary computations based on symmetry considerations. Time-complexity analysis of
both tools would be uninformative because the running time heavily depends on
pedigree structure and the presence/absence of the genotypes of some individuals.
A recent survey [46] reports that the original Lander-Green algorithm [69], Allegro2,
and Merlin are applicable on pedigrees of moderate size (up to 40 individuals), but
Allegro2 and Merlin can manage genotypes considerably longer (thousands of loci)
than the Lander-Green algorithm.

The spacing (on chromosomes) between genotype loci is getting smaller and
smaller with the rapid development of genotyping technologies and platforms.
For example, Phase II of one of the most important human genotyping project,
HapMap, has produced genotypes where consecutive loci (SNPs) are approximately

26

3.3 Pedigree-based Methods

separated by 1 kilobase [107]. On such data, the main assumption of Lander-Green-
based methods is not met. Indeed, such methods require that loci are in Linkage
Equilibrium (LE), or, in other words, that the frequencies of population haplo-
types are the product of the frequencies of the alleles that compose them. SNP
haplotypes (i.e. haplotypes whose loci are SNPs) are composed by consecutive
blocks of alleles with high Linkage Disequilibrium (LD) inside the block and with
Linkage Equilibrium between alleles of different blocks. The difference between the
assumption and the characteristics of SNP genotype data can lead to misleading
results as reported in [99]. Abecasis and Wigginton [2] have proposed an additional
improvement of Merlin that admits LD among loci. Basically, alleles with high LD
are considered as a single block-locus and the original algorithm is applied on the
block-loci instead of the single loci. Haplotype reconstruction within block-loci is
then performed separately.

To cope with large pedigrees, sampling-based or hybrid approaches have also
been proposed (such as SimWalk2 [101] and PhyloPed [67]).

For sake of completeness, we want to remark that some methods for unstructured
population presented in the previous section such as PHASE [104] and Halperin
and Eskin method [59], have been also adapted to handle populations composed by
unrelated trios.

3.3.3 Pedigree-based Combinatorial Methods

The advance of high-density SNP genotyping technologies had highlighted the limits
of pedigree-based statistical approaches. Indeed, as previously noted, the two most
basic algorithms, namely Lander-Green and Elson-Stewart, cannot directly handle
an inherent characteristic of SNP genotypes: Linkage Disequilibrium among loci.
Moreover, since genotyping costs are getting lower and lower, large-scale (on both
population size and genotype length) studies are becoming common. For example,
Kong et al. [68] conducted a study on approximately 30,000 individuals and 300,000
loci. Unfortunately the computational requirements of statistical-based methods on
such large instances are prohibitive and even a sampling-based approach such as
SimWalk2 does not appear suitable.

Recombination events inside blocks with high LD are much less frequent than
between blocks [88]. Therefore, if we consider SNP genotypes that span a limited
number of blocks with high LD, we expect that the real haplotype configuration
induces a small number of recombination events in the whole pedigree. This obser-
vation leads to a natural combinatorial formulation of the HI problem on pedigrees:
the Minimum-Recombinant Haplotype Configuration problem.

27

3 Haplotype Inference Problems

Problem 2. MINIMUM-RECOMBINANT HAPLOTYPE CONFIGURATION (MINRHC).
Input: A genotyped pedigree P.

Output: A haplotype configuration for P (if it exists) such that the number of
induced recombinations is minimum.

If genotypes are composed by allele pairs of tightly linked loci, we can assume that
no recombinations are present, thus an interesting MINRHC problem restriction
arises: the Zero-Recombinant Haplotype Configuration problem.

Problem 3. ZERO-RECOMBINANT HAPLOTYPE CONFIGURATION (ZRHC).
Input: A genotyped pedigree P.

Output: A haplotype configuration for P (if it exists) such that no recombinations
are present.

The ZERO-RECOMBINANT HAPLOTYPE CONFIGURATION problem was first for-
mulated by Wijsman [112] and solved by a 20-rule approach. O’Connell [91] pro-
posed an hybrid combinatorial-statistical two-step approach: a first “recoding” step
and, then, a EM step. Since recombination events are not admitted, each haplotype
of an individual can be considered as a complex single allele. In the first step multi-
locus genotypes are replaced with a multi-allelic single-locus genotypes. After that,
consistent haplotype configurations are enumerated and haplotype frequencies are
determined via a EM algorithm. A third approach [123] combines and extends the
ideas of the previous two methods and achieves a better efficiency. However, such
approaches may require exponential-time in the worst-case.

A first polynomial-time solution for ZRHC has been proposed by Li and
Jiang [76, 77]. Their work is based on the formulation of the problem as a
system of linear equations on the field Zy, and all solutions (i.e. all consistent
haplotype configurations) can be efficiently computed via the Gauss elimination
algorithm in O(m3n3) time, where m and n are the number of loci and the size of
the pedigree, respectively. An improvement of this algorithm has been proposed by
Xiao et al. [114, 115]. They exploit the sparsity of the system of linear equations
(each equation involves, at most, 3 variables) and the structure of the simple pedi-
gree graph, to reduce the system to an equivalent set of O(mn) equations over O(n)
variables, which are solved in O(mn?) time via Gaussian elimination. A further
improvement employs low-stretch spanning trees [37] on subgraphs of the simple
pedigree graph in order to achieve a final O(mn? 4+ n®log? nloglogn) running time
on general pedigrees.

Human pedigrees of moderate size are often tree pedigrees (i.e. they do not con-
tain mating loops). Therefore, a second kind of restriction has been considered:
the ZRHC problem on tree pedigrees. We note in passing that the previous algo-
rithm [114, 115] works in O(mn?+n?)-time on restricted-tree pedigrees. Previously,
an approach by Chan et al. [26, 27] achieved a better time bound of O(mn) for a

28

3.3 Pedigree-based Methods

single haplotype configuration (if it exists), while Xiao’s algorithm outputs all the
solutions. Since Chan’s algorithm cannot find all the consistent haplotype config-
urations, Liu and Jiang [85], and Li and Li [80] proposed a two algorithms to find
all the solutions in O(mn?) and O(a(n, m)nm) time, respectively. All the previous
approaches for ZRHC problem work assuming that the pedigree is a restricted-tree
pedigree (Chan et al. claim in [27] that their algorithm works also on “general” tree
pedigrees, but the correctness of this affirmation is debatable). Therefore, to the
best of our knowledge, designing an optimal algorithm for ZRHC on tree pedigrees
is still an open problem.

Real genotypes may have missing data, i.e. loci where the pair of alleles is not
known. Despite ZRHC is polynomial-time solvable, the ZRHC problem with miss-
ing data is NP-hard [83, 84].

The MINIMUM-RECOMBINANT HAPLOTYPE CONFIGURATION is a much more
realistic formulation since the no-recombinant assumption only holds for genotypes
over tightly linked loci. Unfortunately, Li and Jiang [76, 77], and Liu et al. [83,
84] have shown that the computational problem is also much harder that ZRHC.
In fact, they prove that (i) MINRHC is NP-hard and (i) MINRHC cannot be
approximated within any constant under the Unique Games Conjecture [65]. These
results hold also on very simple genotyped pedigrees, namely binary-tree pedigrees
(i.e. pedigrees where each individual has at most one mate and one offspring) or
2-locus pedigrees (i.e. pedigrees where genotypes are defined over two loci).

To cope the computational intractability of MINRHC, several algorithms have
been proposed. Qian and Beckmann [31] designed an exponential-time heuristic
that computes a haplotype configuration minimizing the number of recombinants
in each nuclear family. Li and Jiang [76, 77] proposed an efficient (polynomial-time)
heuristic that reconstructs long parts of haplotypes (called blocks) without induc-
ing recombinations and then fills the remaining gaps between blocks. It has been
reported as much more efficient than the previous method but slightly less accu-
rate [76]. In a subsequent work, Li and Jiang [78] formulated the MINRHC problem
as an Integer Linear Program. This ILP formulation can also accommodate miss-
ing data, it can take into account different likelihoods of recombinations between
different pairs of loci, and it can enumerate all the optimal solutions (i.e. those
with the fewest number of recombinants). Besides the ILP formulation, other exact
algorithms include two dynamic-programming approaches [35]: one is exponential
in the number of loci (and works only for tree pedigree) while the second one is ex-
ponential in the size of pedigree (and works also for general pedigrees). The ZRHC
algorithm described in [76] has been extended to deal with recombinations in two
other directions: bounding the maximum number of recombination events and find-
ing a partition of the genotype loci in maximal non-recombinants regions. In the
first case, if the number of recombination events is bounded by a small constant k,

there exists an algorithm [116] that finds a solution in O(mnlogh™!n) time with

29

3 Haplotype Inference Problems

high probability, 1 — O (kQ% + n—lz) In the second case, a O(n®m?) algorithm
that partitions the genotype in the minimum number of non-recombinant regions
has been proposed in [22].

Mutations are widely believed to be less frequent than recombinations. However,
as the pedigrees become larger and genotypes become denser, the incidence of muta-
tion events could become noticeable. Wang and Jiang [110] have recently proposed
a natural formulation of the HI problem that considers this kind of variation events
as a minimization problem: finding the haplotype configuration consistent with a
genotyped pedigree that requires the minimum number of mutations (MINIMUM-
MUTATIONS HAPLOTYPE CONFIGURATION, MINMHC). In this work, they propose
a solution based on a iterative refinement of an ILP program until a consistent hap-
lotype configuration is found. In particular, since the computational complexity of
a ILP program depends on the number of constraints, the algorithm starts with a
reduced set of constraints, and then new consistency constraints are added until
the ILP solver is able to find a haplotype configuration consistent with the input
pedigree.

30

4 Pure Parsimony Xor Haplotyping

Xor-genotypes have been recently introduced as a new (and low-cost) representa-
tion of genetic data for Haplotype Inference [8, 9]. In their work, Barzuza et al.
assume the perfect phylogeny model on populations of unrelated individuals. To
the best of our knowledge, the computational problem arising from the other com-
binatorial principle for HI on unstructured populations, pure parsimony, has never
been directly studied on this kind of genetic representation. In this chapter we
want to “fill the gap” and study this new computational problem of HI.

The chapter is structured as follows. Section 4.1 formulates the computational
problem and formalizes the principal concepts. Section 4.2 introduces the basic
combinatorial properties of two equivalent representations of the solutions. Based
on such properties, two polynomial-time algorithms for restricted cases and a fixed-
parameter algorithm for the general case are illustrated in Section 4.3 and Sec-
tion 4.4, respectively. Furthermore, in Section 4.5 we show that the problem has a
polynomial-time [-approximation, where [is the maximum number of heterozygous
loci in a xor-genotype. Finally, in Section 4.6 we propose a heuristic and we perform
an experimental analysis showing that it scales to real-world large instances taken
from the HapMap project.

4.1 The Computational Problem

In this section, we formulate the computational problem of Haplotype Inference
on xor-genotypes for unrelated individuals assuming the pure parsimony criterion.
The richest (and fast-growing) source of genotype variation data is represented by
SNPs, thus we assume that the set of genotype loci are all bi-allelic.

Since xor-genotypes are basically different from “regular” genotypes, some con-
cepts that have been informally presented in Section 3.1 assume a slightly different
meaning in the context of xor-genotypes. Therefore, before formulating the com-
putational problem, we will formally define the concepts we need.

Let ¥ be a set of m loci (also called characters or sites). Since xor-genotypes
distinguish heterozygous loci from homozygous loci without specifying the homozy-
gous allele, a zor-genotype (or simply a genotype) x; is the subset of ¥ composed
by loci that are heterozygous in individual i. We explicitly forbid the presence
of empty xor-genotypes (i.e. individuals that are homozygous at all loci). Since
the allele at homozygous loci is not specified by xor-genotypes, such individuals

31

4 Pure Parsimony Xor Haplotyping

are completely uninformative: every pair of identical haplotypes would resolve the
genotype. We represent a haplotype as a (possibly empty) subset of ¥ composed
by loci that have the minor allele. Given two distinct haplotypes hi, hs, then the
pair (hi, ha) resolves the xor-genotype x iff x = hy @ hg, where @ is defined as
the classical symmetric difference of hy and ho, i.e. the set of characters that are
present in exactly one of hy and hy. (The symmetric difference operator on sets is
closely related to the exclusive disjunction (ror) in logic, hence the name of xor-
genotypes.) A set H of haplotypes resolves a set X of xor-genotypes if for each
genotype x € X, there exists a pair of haplotypes in H that resolves x.

We are now able to formally introduce the problem that has been studied in this
chapter.

Problem 4. PURE PARSIMONY XOR HAPLOTYPING (PPXH).
Input: A set X of xor-genotypes of unrelated individuals over the set of loci X.
Output: A minimum-cardinality set H of haplotypes that resolves X.

As presented in Section 3.2.2, xor-genotypes have been studied under the perfect
phylogeny model [8, 9], while the HI problem under the pure parsimony principle
has been deeply investigated only on “regular” genotypes. To the best of our knowl-
edge, the PPXH problem has only been mentioned in a work by Brown and Har-
rower [20], which provides an ILP formulation for the problem. This formulation,
however, seems impractical because the linear-relaxation of the program (i.e. the
elimination of the integrality constraints) has a trivial solution (of cardinality 1)
equally distant from every other feasible solution. As a consequence, the resolu-
tion process essentially reduces to an enumeration of feasible solutions. In fact,
as explained in Section 4.6.1, using this formulation we were not able to solve the
problem even on the smallest instances that we considered in our experimentation.

The lack of efficient algorithms for PPXH motivates our work. We investigate
the PPXH problem mainly by devising exact solutions of the problem by either
considering fixed-parameter tractability or polynomial time algorithms for some
restricted instances of the problem. We introduce a new graph representation of
xor-genotypes and haplotypes, called zor-graph, that is crucial in the study of the
PPXH problem. Indeed most of the results that we will present rely on combina-
torial properties of xor-graphs.

Initially we will show that the PPXH problem is equivalent to the problem of
building a xor-graph with the fewest possible vertices. We then design two polyno-
mial time algorithms for restricted instances of the PPXH problem. Subsequently
we describe a fixed-parameter algorithm of O(mn + ok? km) time complexity, for k
the size of the optimum solution. Moreover we provide an [-approximation algo-
rithm, where [is the maximum number of occurrences of a character in the set of
input genotypes. Since the previous results are mainly of theoretical interest, we
finally propose an efficient and effective heuristic for the general problem and an

32

4.2 Basic Properties

experimental analysis on real and artificial datasets. The main goal of our experi-
mental analysis is to show that our heuristic is effective on a large class of instances
of various sizes where other methods, such as the ILP formulation proposed by
Brown and Harrower [20] or the adaption of the ILP formulation of Gusfield [55]
to the PPXH problem, are not applicable.

4.2 Basic Properties

A fundamental idea used in this work is a graph representation of a feasible solution.
More precisely, given a set X of xor-genotypes, the zor-graph associated with a set
H of haplotypes resolving X is the graph G = (H, E') where edges of G are labeled by
a bijective function A : E — X such that, for each edge e = (hi, hj), A(e) = h; & h;.
The labeling A is generalized to a set S by defining A\(S) = {A(s) | s € S}. We
call optimal zor-graph for X, a xor-graph associated with an optimal solution for
X (that is a xor-graph with the minimum number of vertices).

In this section we state some basic combinatorial properties of xor-graphs that
will be used to prove the other main results. Among all possible haplotypes, we
identify a distinguished haplotype, called null haplotype and denoted by hg, which
corresponds to the empty set. Since the operation & is associative and commutative,
by a slight abuse of language, given a family F' = {si,...,s,} of subsets of a set ¥
we denote by @(F') the expression s; @ s2 @ - -+ @ sp.

The cycles of a xor-graph satisfy the following property.

Lemma 4.1. Let X be a set of zor-genotypes, let G be a xor-graph associated with
a set of haplotypes resolving X, and let C' be the edge set of a cycle of G. Then
®(N(Q)) is equal to the empty set.

Proof. By definition of cycle, C' consists of a set {(h1, ha), (h2,h3), ..., (hn, hnt1)},
with hy = hyp41. By definition of xor-graph, @(A(C)) = &}, (hi ® hit+1). By the
associativity and commutativity of @&, &(A(C)) = (h1 & hpt1) B (ha B ho) & ... &
(hn @ hy). Since hy = hpy1 and h @ h = @ for all h, we obtain ®(A\(C)) =@. O

The above property of cycles of a xor-graph is sufficient to construct a set of
haplotypes resolving a set of genotypes from a xor-graph. Let X be an instance
of PPXH and let G = (V, F) be a graph whose edges are biunivocally labeled by a
function A : E — X such that &(A\(C)) = @ for each cycle C of the graph. Then
it is immediate to compute a feasible solution H from G where |H| < |V|. More
precisely, we associate a haplotype with each vertex of G as follows. Associate the
null haplotype hg with any vertex in each connected component of G. Perform
a depth-first visit of each connected component of G, starting from the vertex
associated with hg. When visiting a new vertex v of G there must exist an edge

33

4 Pure Parsimony Xor Haplotyping

e = (v,w) so that the haplotype wj, has been previously assigned to w. Then
associate the haplotype wy, @ A(e) with v.

It is not hard to verify that our construction guarantees that H is actually a
feasible solution of X, that is for each edge e = (v, w) of G, v, ® w;, = A(e), where
vy, and wy, are respectively the haplotypes associated with v and w. It is trivial
to notice that the property holds for all edges that are part of the spanning forest
computed by the depth-first search. Therefore we can restrict our attention to
edges e = (v,w) that are not in such spanning forest. Since v and w are in the
same connected component of G the spanning tree T' of the connected component
contains both v and w. Let x be the least common ancestor of v and w in T.
By construction the two paths of T, both starting from x and ending one in v
and the other in w are edge disjoint. Let us denote by P, and P, respectively
the edges of the paths ending in v and w, and let x;, be the haplotype associated
with . Now we want to prove that v, & wy, = A(e). It is immediate to verify that
v, = BNR,))Pxp and wy, = B(AN(Py)) @ xp. Since the edges in P,UP,U{e} form
a simple cycle of G, by Lemma 4.1 we can conclude A(e) = @(A(Py)) ® P(A(Py)),
completing the proof.

The following results justify our attention to connected xor-graphs and their cuts.

Lemma 4.2. Let X be a set of xor-genotypes and let G be a xor-graph associated
with a set H of haplotypes resolving X . Let a be any character of . Then the set
A of edges of G whose label contains o is a cut of G.

Proof. Let H, be the subset of H containing the character «, and let H, = H \ Hy,.
Let E’ be the edges of G with an endpoint in H, and one in H, (clearly E' is a cut
of G.) Notice that E’ is exactly the set of edges connecting a haplotype containing
a and a haplotype not containing «, therefore B/ = A.]

Lemma 4.3. Let X be a set of xor-genotypes, and let G = (H, E) be a disconnected
xor-graph for X. Then G is not an optimal xor-graph of X

Proof. Since G has at least two connected components C7 and C5, we denote with
a1, as two vertices from C; and Cy respectively. Construct the set H' from H by
replacing each haplotype h € C1 by h ® a1 and each haplotype h € Cy by h ® as.
Since C and Cy are not connected, the set of genotypes resolved by H' is equal to
that of H.

But both a; and as are replaced by the null haplotype in H’, therefore |H'| is
strictly smaller than |H|. O

Instances and solutions of the PPXH problem can be represented by binary ma-
trices. More precisely, we can have a genotype matriz associated with a set of
xor-genotypes and a haplotype matriz associated with a set of haplotypes. In both
matrices each column is uniquely identified by a character in ¥, while the rows

34

4.2 Basic Properties

a b ¢ d e a b ¢ d e
gg|1 1 0 0 O hiy /O 0 0O 0 O
g|1 1 1 0 0 ho /O 0 1 1 0
gg|0 1 1 0 O hs |1 1 1 1 O
go |0 0 1 1 1 hy |1 0 1 0 O
g |1 0 0 0 O hs |1 0 0 1 0
g |0 0 0 0 1 h¢ |0 0 0 1 O
gr |1 0 1 0 1 h 1O 0 0 0 1

Figure 4.1: Example of genotype (left) and haplotype (right) matrices.

d
.
abed cd
a o
ab cde
«00
ad

Figure 4.2: Xor-graph representing the set of haplotypes in Figure 4.1.

of a genotype matrix (respectively haplotype matrix) correspond to the genotypes
(resp. haplotypes).

For example let ¥ be the set {a,b,¢,d,e} and let X be the set of xor-genotypes
{{a,b},{a,b,c},{b,c},{c,d,e},{a},{e}, {a,c,e}}. A possible, albeit suboptimal,
set of haplotypes resolving X is {@,{c,d}, {a,b,c,d},{a,c},{a,d}, {d},{e}}. The
matricial representation of both sets is in Figure 4.1, while the associated xor-graph
is represented in Figure 4.2.

Given an ordering of the character set (that is ¥ = (o1,...,0)5|)), the entry in
the i-th row and j-th column of a genotype matrix (respectively, haplotype matrix)
is 1 if o; belongs to the i-th genotype (respectively, i-th haplotype) and is equal to
0 otherwise. In the following we identify rows of a genotype (or haplotype) matrix
with the corresponding genotypes (or haplotypes). Given a matrix M, we denote
by M-, A] (by M[B,], respectively) the submatrix of M induced by the set A of
columns (by the set B of rows, respectively).

35

4 Pure Parsimony Xor Haplotyping

Given a genotype or haplotype matrix M over ¥, we will say that a subset
Y1 of ¥ is a linearly dependent set of characters (or, simply, a dependent set of
characters) in matrix M if there exists a non-empty subset ¥y of ¥; such that, for
each row i, ®yex, M i, 0] = 0. Otherwise it is called linearly independent (or simply
independent).

The rationale for introducing the notion of linearly independent characters is
computational efficiency; in fact we have a very efficient algorithm for selecting a
maximal subset of linearly independent characters, and any solution on such subset
actually allows us to solve the original instance, as stated in the following lemma.

Lemma 4.4. Let X be a zor-genotype matriz and H be a haplotype matriz over the
same character set X. Let 31 be a maximal independent subset of ¥ in X. Then,
H resolves X if and only if H[-,¥1] resolves X |-, ¥1].

Proof. The only-if part is obviously true because H[-,%¥;] and X[, 3] are two
submatrices of H and X respectively. The if part can be proved by constructing
a feasible solution H for X from the smaller solution H|[-,¥;] for X[, %] (for
simplicity we will refer to the two submatrices respectively as H' and X'). For each
character a € ¥\ ¥4, since ¥ U {a} is dependent, there exists a non-empty subset
Yo of X7 such that, for each genotype z, X[z, a] = @yexn, X'[x,0]. Set the entry
H[z,a] to @gex, H'[2,0].

We claim that H resolves X. Since H' resolves X', it suffices to prove that for
each character o € ¥\ X1, H[h1, a|® H[h2, o] = X[z, a], for some pair of haplotypes
hi,ha. We already know that for each genotype 2’ of X', there is a pair (h], h})
of haplotypes in H' that resolves 2’. Notice that X|[z,a] = @,exn, X[z, 0] since
Y1 is a maximal subset of independent characters of X. Since H' resolves X',
Doexn, X'[2,0] = Bpex, (H'|h1,0] @ H'[ha,0]). Moreover, by the associativity of
D, Soes, (H'[h,0] & H'[h2,0]) = (Doex, H'[h1,0]) & (Boes, H'[h2,0]). Finally,
by our construction of the columns of H corresponding to characters in ¥\ 3,
(Boex, H'[h1,0]) & (Boex, H'[ho,0]) = H[h1,a] & H[hs, a], hence completing the
proof. O

Notice that, given a n x m xor-genotype matrix X, a maximal subset of indepen-
dent characters in X can be extracted by applying the Gauss elimination algorithm
on X in O(min(n, m)nm) time. Observe that the proof of Lemma 4.4 is constructive
and shows how to compute efficiently a solution H for X from a solution H[-, 3]
for X[, 4.

We can introduce another simplification of the instance which can be performed
efficiently. It affects the construction of the xor-graph and allows an efficient recon-
struction of an optimal xor-graph for the general instance, given a xor-graph for
the reduced or simplified instance.

36

4.2 Basic Properties

Lemma 4.5. Let X be an instance of PPXH, and let « be a character of X such
that there exists exactly one genotype x € X with a € x. Then there exists an
optimal zor-graph G for X such that there is a vertex v of G with exactly one edge
e incident on v and \(e) = x.

Proof. Let G be an optimal xor-graph G for X. Since « appears in only one genotype
in X, there is exactly one edge e of G such that a € A(e). By Lemma 4.2 removing
e from G results in a bipartition {H,, H,} where H, consists of the haplotypes
containing . Let v € H, and w € H, be the two endpoints of e, and let D be
the set of vertices of H, adjacent to v. Change each haplotype in h € H, \ {v} to
h @ v ® w, obtaining a new xor-graph G.

By construction, G; has set of edges £y = E\ {(v,d) |d € D}y U{(w,d) | d € D}.
Indeed, let e = (v,d) be any edge of G connecting v with a vertex d € D; in G;
there is an edge f = (w, d) such that A(e) = A(f). It is immediate to notice that G
and G; have the same number of vertices, therefore Gy is optimal and satisfies the
statement of the lemma. O

Also the proof of Lemma 4.5 is constructive and can be exploited directly in
an algorithm to simplify the instance of the problem. More precisely, the removal
of a genotype and a character as stated by Lemma 4.5 can be repeated until all
characters appear in at least two genotypes (or we obtain the special case of an
instance containing only one genotype; in such case the optimal solution is trivially
made by two haplotypes). Following the same idea, if the set of characters is linearly
dependent, we can extract a maximal subset of linearly independent characters.
Moreover the executions of the two reductions can be intertwined until none of
those reductions can be performed.

An instance X of PPXH is called reduced if (i) X consists of only one genotype,
or the two following conditions are satisfied: (i7 a) the set of characters of X are
independent and (7 b) each character appears in at least two genotypes. Lemma 4.4
and Lemma 4.5 justify the fact that we will assume in the rest of the chapter that all
instances are reduced, as the reduction process can be performed efficiently, and we
can easily compute a solution of the original instance given a solution of a reduced
instance (see Algorithm 1 for a formal description of the reduction process).

The reduction process leads us to an important lower bound on the size of the
optimum.

Lemma 4.6. Let X be a reduced genotype matrix having n rows and m columns.
Then any haplotype matriz H resolving X has at least m 4+ 1 rows.

Proof. Let G be a xor-graph for X. By Lemma 4.2, each character @ induces a
cut in graph G. Each cut can be represented as n-bit binary vector ¢, in which
each element c,[i] is equal to 1 if and only if the genotype x; belongs to the cut.

37

4 Pure Parsimony Xor Haplotyping

Algorithm 1: The reduction step

Data: a xor-genotype matrix X
Result: a reduced xor-genotype matrix associated with the input matrix X
1 repeat
2 C «+ subset of linearly independent columns of X obtained by the Gauss
elimination algorithm;
3 D — X\C;
4 A « set of symbols appearing in exactly one genotype in X;
5 Remove from X all columns in D and all rows in A;
6 until D and A are both empty ;
7 return X;

Clearly, such vector is precisely the column vector corresponding to character «
of matrix X. Thus, since the characters are independent, also the family of the
cuts (represented as binary vectors) induced by the set of characters is linearly
independent. By Theorem 1.9.6 of [33] all connected graphs with m independent
cuts have at least m + 1 vertices. O

As a consequence of Lemma 4.6, in a reduced xor-genotype matrix, the number
of rows is greater than or equal to the number of columns. In fact, in any matrix,
the number of linearly independent columns is equal to the number of linearly
independent rows and, clearly, is bounded by the minimum between the number of
columns and the number of rows.

The process of reducing a xor-genotype matrix by restricting ourselves to a maxi-
mal subset of independent characters is an application of the kernelization technique
for designing a fixed-parameter algorithm [36]. The technique consists of reducing
the original instance to a new instance whose size depends only on the parameter
(in our case the size of the optimal solution). The size of the reduced xor-genotype
matrix is clearly bounded by a polynomial function of the optimum k& since at most
O(k?) distinct genotypes can be generated by k distinct haplotypes and, by the
previous consideration, the number of columns is less than the number of rows. As
a result, the number of entries of a reduced xor-genotype matrix is bounded by

O(kY).

4.3 Algorithms for Restricted Instances

In this section we investigate two restrictions of the PPXH problem obtained by
bounding the number of characters that can appear in each genotype and the num-

38

4.3 Algorithms for Restricted Instances

ber of genotypes where a character can occur. Those restrictions are summarized
by the following formulation.

Problem 5. CONSTRAINED PURE PARSIMONY XOR HAPLOTYPING (PPXH(p,q)).
The instance consists of a set X of xor-genotypes, where each xor-genotype =z € X
contains at most p characters, and each character appears in at most ¢ xor-
genotypes. The goal is to compute a minimum cardinality set H of haplotypes that
resolves X. We use the symbol oo when one of parameters p or ¢ is unbounded.

More precisely we will present efficient algorithms for the case when each char-
acter is contained in at most two xor-genotypes (PPXH(oo,2)) and the case that
each genotype consists of at most two characters (PPXH(2, 00)).

4.3.1 A Polynomial Time Algorithm for PPXH(c0, 2)

The structure of the cycles in a xor-graph characterizes the solutions for the
PPXH(o0,2) problem as stated in the following Lemma.

Lemma 4.7. Let X be a reduced instance of PPXH(c0,2), let G be an optimal
zor-graph for X, and let e be an edge of G. Then e belongs to exactly one simple
cycle of G.

Proof. Assume to the contrary that an edge e belongs to two cycles C; and Cj.
Notice that the three sets Cy \ C2, Cy \ C1, C1 N Cy are pairwise disjoint and not
empty. Let d be any element of A\(C; N C2). By Lemma 4.1, &(A\(Cy \ C2)) =
®(A(Cs \ C1)) = ®(A(CyL N (C3)). Consequently there exist three distinct edges
e1 € C1\ Oy, eg € Co\ C, e3 € C1 N Cy such that A(ep), A(e2), A(e3) all contain d,
which contradicts the fact that there are only two genotypes containing d. By the
first part of the proof, we have now to prove that e belongs to at least a cycle of G.

Assume to the contrary that X is a smallest counterexample, that is no such
optimal xor-graph exists for X, while such a graph exists for all reduced instances
with fewer genotypes, and let G be any optimal xor-graph for X. Since there is an
edge that does not belong to any cycle of G, there is a character a such that both
edges e; and es containing a do not belong to any cycle. Notice that two such edges
must exist, since the instance is reduced. Let us denote by «, 8 and ~ respectively
the sets A(e1) N A(ez2), A(er) \ A(e2), A(e2) \ A(er).

Compute a new reduced instance X; from X by removing the xor-genotypes e;
and eg, and adding a new genotype z. = fU~y = e; ® ey. Clearly X; is a reduced
instance of PPXH(co,2) smaller than X, therefore X; admits an optimal graph
Gy where all edges are in some cycle. Let us consider the unique cycle C' of Gy
containing the edge e = (u,v), with A\(e) = x.. Now, compute a xor-graph Gy for
instance X, by replacing in G; the edge e with a path made of two edges €} = (u, w),
e, = (w,v), where w is a new vertex, A(e}) = e1, and A(e}) = ea. The graph Gs is a

39

4 Pure Parsimony Xor Haplotyping

xor-graph of X as x, = e; @eg. Clearly the newly obtained graph Gs is a xor-graph
for X satisfying the requirements of the lemma and G» contains one more vertex
than G.

We have to prove that Gs is optimal, therefore assume that Gs is not optimal and
let G, be an optimal xor-graph for X, that is G, has no more vertices than G;. It
is immediate to notice that contracting each of e; and ey into single vertices result
in a xor-graph that is a solution of X; with fewer vertices than G, hence violating
the optimality of G;. O

Since the optimal xor-graph is connected (Lemma 4.3) and consists of a set
of edge-disjoint cycles (Lemma 4.7), the size of the optimum solution is equal to
|X|+ 1 —|C|, for |X| the number of genotypes or edges of the graph and |C| the
number of simple cycles of the graph, since any set of |C| simple cycles on a graph
with at most |X| — |C| must share at least an edge.

Algorithm 2 solves the PPXH(oo, 2) problem by computing the set C of all simple
cycles of an optimal xor-graph. In fact Lemma 4.7 allows us to introduce a binary
relation R between genotypes, where two genotypes are related if and only if they
share a common character. By Lemma 4.7 any two genotypes (or edges of the xor-
graph) that are related must also belong to the same simple cycle. It is immediate
to notice that the partition of the edges of the xor-graph into simple cycles is equal
to the most refined partition of edges such that any two edges sharing a common
character belong to the same set of such partition. In fact Algorithm 2 computes
exactly the closure of R.

4.3.2 A Polynomial Time Algorithm for PPXH(2, o)

For simplicity’s sake we will assume that the instance of the problem is a genotype
matrix X and the desired output is a haplotype matrix H.

Since in both matrices the columns are indexed by characters, we will denote by
X[, 0] (respectively H|-,0]) the column of X (resp. H) indexed by the character
o. The algorithm is based on Lemma 4.4 and Lemma 4.6.

In fact we will first compute a largest set 1 of independent characters in X.
Moreover for each character a € ¥\ ¥; we determine the subset ¥, of ¥; such
that X[, a] = @®,exn,X],0]. Notice that this step can be carried out by a simple
application of the Gauss elimination algorithm.

Let X’ be the submatrix X[, ¥1]. An optimal solution of the instance X’ is
a matrix H' containing |Xi| + 1 rows. More precisely the i-th row of H', for
1 <i < |¥4], consists of all zeroes, except for the i-th column (where it contains
1). The last row contains only zeroes.

Clearly H' resolves X'. In fact it is immediate to notice that each row of X’
contains at most two 1s, as the same property holds for X, therefore for each row

40

4.4 Fixed-Parameter Tractability of PPXH

Algorithm 2: Algorithm for PPXH(o0, 2)
Data: a set X of reduced xor-genotypes
Result: an optimal solution H for X

1 C «— @

2 while X # @ do

3 x < any element of X;

4 C—{z}

5 repeat

6 D « the set of genotypes in X \ C sharing at least one element with
some genotypes in C}

7 C—CuD;

8 until D = o ;

Add C to C;

10 Remove all genotypes in C' from X;

11 end

12 foreach C € C do

13 Transform C into a cycle;

14 end

15 Build a graph H from C, so that all cycles in C share a common vertex;
16 return H

r of X’ there are two rows of H’ resolving r. The optimality of such solution is
a direct consequence of Lemma 4.6. Clearly H' is not a feasible solution of the
original instance X, but such a feasible solution H can be easily computed from H’
by adding, for each character a € ¥\ 31, a column equal to @yex, H'[, 0] (where
Y, satisfies X([x,a] = ®yexn, X[z, 0] for each genotype z). The matrix H is a
feasible solution as shown in the proof of Lemma 4.4.

4.4 Fixed-Parameter Tractability of PPXH

As observed at the end of Section 4.2, the reduction of an instance of the unrestricted
PPXH problem lead us to a fixed-parameter algorithm (where the parameter is the
optimum). Moreover we can observe that there exists another fixed-parameter
algorithm for the unrestricted PPXH problem without using the reduction of input
instance. Let H be a set of haplotypes and let X be a set of genotypes resolved
by H. (In the following we will denote | X | by n.) Since H can resolve at most
(' I; ‘) genotypes, n > | H| > V2n. In other words, if k is the size of the minimum-
cardinality set of haplotypes resolving X, n € O(k?).

41

4 Pure Parsimony Xor Haplotyping

The number of the possible graphs with at most n + 1 vertices and exactly n
edges is no more than 2271082 (n+1) — (n 4 1)?" which, by our previous observation,
is O(k4k2), i.e. a function dependent only on k. The time needed to check if one
of such graphs is a xor-graph for H is clearly polynomial in n and thus we can
immediately derive a fixed-parameter algorithm to find an optimal xor-graph for
X.

The time complexity of the algorithm is well beyond what is deemed acceptable
in practice, therefore we propose a more efficient algorithm that is based on the
matrix representation of genotypes and haplotypes.

In the following we will assume that the genotype matrix X is reduced, and that
X has n rows and m independent columns, and that we are looking for a haplotype
matrix H with at most k distinct rows that resolves X. The basic idea of our
algorithm is to enumerate all possible haplotype matrices.

In the naive approach, testing if a haplotype matrix resolves a given genotype
matrix requires O(k*nm) time because each pair of haplotypes has to be considered
and then each resulting genotype has to be searched in the genotype matrix. Our
strategy, instead, is to enumerate all the haplotype matrices by changing only one
haplotype each time, in such a way that only k£ — 1 new pairs of haplotypes must
be considered when testing if H resolves the set X.

We use Gray codes [98] to visit all the haplotype matrices in such a way that
each pair of consecutive matrices differs by a single bit and, thus, by a single
haplotype. More precisely, we enumerate all £ x m matrices by generating all km-
long bit vectors. Indeed, the bits from position (i — 1)m + 1 to position im in a
km-long vector give the i-th row of the matrix (for 1 < i < k). The fastest known
algorithm for computing the next vector of a Gray code requires constant time for
each invocation [10].

Observe that the naive algorithm requires O(nm) time to test if there is a geno-
type in matrix X resolved by a pair of haplotypes. By representing the set of the
row vectors of matrix X as a binary trie [41], the time required to get the index of
the row containing a m-long binary vector is reduced to O(m).

The details of the fixed-parameter algorithm are given in Algorithm 3, where
we also use some additional data structures: the array ResolvedByHowMany which
associates with each genotype the number of pairs of haplotypes resolving such
genotype, and ListResolvedGenotypes which associates with each haplotype h a list
of the relevant pairs of haplotypes in which h is involved. In fact, the elements of
the lists in ListResolvedGenotypes are triples (hi, he,x) where (h1,hy) is a pair of
haplotypes resolving x.

Notice that the outermost foreach loop (lines 7-26) iterates 2¥™ times (which, by
Lemma 4.6, is at most O(2+*)), while the for loop at lines 15-21 iterates k times.
Each iteration of the latter loop consists of a lookup in a trie (which can be done in
O(m) time) and updating in constant time some arrays and lists. Since each list can

42

4.4 Fixed-Parameter Tractability of PPXH

Algorithm 3: A fixed-parameter algorithm for PPXH

© 00 N O TR W N

10
11

12
13
14

15
16

17

18
19

20
21
22

23
24
25
26
27

Data: A genotype matrix X defined over a set of m independent characters, and an
integer k.
Result: A set H of at most k£ haplotypes resolving X if it exists, No otherwise.
if (’;) <n ork <m then return No;
if k> n then return H U{hg};
Build a trie T that stores the xor-genotypes contained in X;
Let ListResolvedGenotypes be an array of k initially empty lists;
ResolvedByHowMany — (0,0, ...,0);
TotalResolvedG «+ 0;
foreach binary matric H in Gray code do
if H is the matriz containing only zeros then continue to the next matrix;
ChangedRow «+ index of the row changed from the previous iteration;
/* Update state of xor-genotypes resolved by changed haplotype */
foreach entry (hi, ha,z) of ListResolvedGenotypes|ChangedRow] do
Remove (hq, he,x) from ListResolved Genotypes|hi] and
ListResolved Genotypes|hs];
ResolvedByHowMany|z] < Resolved ByHowMany[z] — 1;

if ResolvedByHowMany[x] = 0 then TotalResolvedG «— TotalResolvedG — 1;
end
/* Look for genotypes resolved by the new haplotype */

for r — 1 to k do
if I is the index returned by the lookup of the vector H[r, | ® H[ChangedRow,]
in T then
if ResolvedByHowMany[l] = 0 then
TotalResolvedG «— TotalResolvedG + 1;
Resolved ByHowMany|[l] < Resolved ByHowMany|l] + 1;
Add (r, ChangedRow,1) to ListResolvedGenotypes|r] and to
ListResolved Genotypes| ChangedRow];
end
end
if TotalResolvedG = n then
/* all genotypes are resolved */
Remove from H all duplicate rows;
return H;
end
end
return No;

43

4 Pure Parsimony Xor Haplotyping

Algorithm 4: The approximation algorithm

Data: A set X of xor-genotypes over a set of characters X.
Result: A set H of haplotypes which resolves X.
H — {ho};
while ¥ # @ do
« < any character in ¥;
foreach x € X s.t. a € x do
add to H the genotype x;
end
Remove from X all genotypes that contain the character «;
Remove « from ¥;

© 00 N O Ok W N

end

contain at most k elements, the time required for each iteration of the outermost
loop is O(km), resulting in an overall O(nm + ok? km) time complexity.

Finally, we point out that the time complexity is likely to make our fixed-
parameter algorithm infeasible for moderate values of k, therefore it is mainly of
theoretical interest.

4.5 An Approximation Algorithm

We present a simple approximation algorithm, detailed as Algorithm 4, which guar-
antees for a reduced instance X of PPXH an approximation factor [, where [is the
maximum number of xor-genotypes where each character appears.

Initially the set H of haplotypes computed by the algorithm contains only the
null haplotype. While the set of genotypes is not empty, pick a character « that
appears in at least a genotype, move to H all genotypes containing «, and remove
from X all genotypes that are solved by a pair of haplotypes in H. Clearly the final
set of haplotypes H solves the set of genotypes X.

The proposed algorithm returns a solution of size at most [times larger than the
optimum which, by Lemma 4.6, is at least | X | + 1. Our algorithm starts with a
partial solution H containing only the null haplotype, and at each iteration adds
at most [haplotypes to the solution H, as [is the maximum number of genotypes
containing any character. Since there can be at most | X | steps, | H | < 1| ¥ |+ 1.

Clearly the approximation ratio is at most ({|X| + 1)/(|X| + 1) < I, completing
the proof.

44

4.6 Solving PPXH by a Heuristic Method

4.6 Solving PPXH by a Heuristic Method

In this section we propose a heuristic algorithm to build a near optimal xor-graph
for an input matrix X of genotypes. Observe that an optimal xor-graph for X is a
graph having the minimum-cardinality vertex set and where each edge is uniquely
labeled by a genotype X. By Lemma 4.1, a cycle of the xor-graph consists of a
subset X' of the input genotypes such that X’ = @. Consequently we will call a
subset X’ with ®X’ = @ a candidate cycle.

The basic idea that guides our heuristic is first to select a subset of the candidate
cycles of X and then to build a labeled graph (a xor-graph) where the selected
candidate cycles are actual cycles. The procedure successively iterates over the
genotypes that are not yet successfully realized in the xor-graph.

A related problem is the one called Graph Realization (GR) [108], which con-
sists of building a graph given its fundamental cycles. We recall that the set C
of fundamental cycles of a graph G with respect to a fixed spanning tree 1" of G,
is defined as C = {the unique cycle of T U{e} | e € E(G) \ E(T)} (see e.g. [33],
pag. 26). More precisely, the Graph Realization problem can be formally stated
as follows [108]. Given two disjoint sets 7" and C, the input of the GR problem
is a family F' of subsets of T'U C such that (i) for each set F; of the family F,
F;NC = {¢;}, and (1) for each pair of subset F; and F; of F', ;N F;NC = &. The
GR problem consists of finding a labeled graph G = (V, E) (if such a graph exists)
which realizes F', that is there is a bijection between the set T" and a spanning tree
of G, and the elements of each set F; label exactly the edge set of a (simple) cycle
of G.

In the case that we have selected a set of candidate cycles which are fundamen-
tal cycles of a graph G, an immediate application of any algorithm solving the
GR problem (two almost linear time algorithms exist [11, 42]), gives a xor-graph
resolving all those candidate cycles.

A simple, albeit not practical, exponential-time algorithm to compute the op-
timal xor-graph G consists of guessing (i.e. trying all possibilities) the partition
{Wy,...,W;} of the genotypes corresponding to the biconnected components of G.
Then compute the GR on each W; to obtain a set of haplotypes Z;. All sets Z;
are finally merged together by picking any vertex of Z; and making such vertex the
unique articulation point of the xor-graph.

We have been inspired by the algorithms for GR [11, 42]) and by our previous
observations to develop our heuristic. We denote by G(F') a graph realization G of
a family of sets F'.

The heuristic procedure transforms a r X ¢ genotype matrix X into an instance of
GR as described in the following two main steps. In the first step, the set T is defined
as a maximal subset "= {xj,,...,z;.} of linearly independent input genotypes of
X. This means that any other input genotype x; can be expressed as a linear

45

4 Pure Parsimony Xor Haplotyping

Algorithm 5: The heuristic Heu(X)

Data: a xor-genotype reduced matrix X
Result: a haplotype matrix H that resolves X

1 7 « the number of rows of X;

2 ¢+ the number of columns of X;

3 if r = ¢ then

4 return the set consisting of hg and the canonical haplotypes of X;

5 end

6 R — output of Gaussian elimination on X7

7 T ={x1,...,2.} < the independent xor-genotypes labeling the first ¢ columns of R,
and C' = {x.11,...x,} < the set of the remaining genotypes;

8 I'+— o,

9 for z; € C do
10 Z(x;) « {z;} U{x; € T'| the element in row j and column ¢ of R is equal to 1};
11 if FU{Z(x;)} admits Graph Realization then

12 F— FU{Z(z)};
13 end
14 end

15 Let G(F) be the Graph Realization of F;

16 H « the set of vertices of G(F);

17 v « a random element of H;

18 Each h € H becomes h @ v ; // Now v is the null haplotype
19 Remove from X the genotypes that label any edge of G(F);

/* The instance X is reduced before the subroutine Heu is recursively
called, and the general solution is then obtained as described in
the proof of Lemma 4.4 */

20 return H U Heu(X);

combination a; 12, @ ... o cxj, of the genotypes in T'. Then C' = {c1,...c,—c} is
defined as consisting of the set of genotypes not in 7T'. In a second step, the family
of subsets of T'U C' giving an instance of the GR is built by building sets F; such
that F; = {¢;} U{zj, € T | ay; = 1}. Informally, F; consists of ¢; and the unique
set P; C T, such that ®P; = {¢;}. An immediate consequence of our definition is
that @ F; = @, therefore F; is, by definition, a candidate cycle.

Computing the set T from X is simply a matter of running the Gauss elimina-
tion algorithm on X7 (that is the transpose matrix of X). The family F can be
easily inferred by computing the coefficients a;1,. .., a; . for all ¢; € C, where the
unknowns ! ...al are the coefficients of the linear combination and the binary
matrix M is a matrix whose columns are the xor-genotypes in 1.

Clearly, the Gauss elimination procedure applied on the matrix X7 results in a
matrix R whose first 7 columns form the identity matrix while the other columns
are the vectors of the linear combination coefficients.

46

4.6 Solving PPXH by a Heuristic Method

We have a final hurdle, that is to handle the case where the GR does not exist for
the family F. Once the family F' is identified, the heuristics computes a maximal
subfamily F’ of F, so that there exists a GR from F’. Now, let us detail the
construction of the family F' giving an instance of GR. The heuristic starts defining
F’ as an empty family and iteratively adding to F’ a candidate cycle F; if and
only if the resulting family admits a Graph Realization. Clearly, this approach
ends with a maximal subset of candidate cycles that admits a Graph Realization.
The two steps of the heuristic procedure are then recursively iterated on the set of
xor-genotypes of X that do not label an edge of the computed Graph Realization.
The details of the procedure are presented in Algorithm 5.

Let n and m be, respectively, the number of xor-genotypes and sites. The time
complexity of the heuristic is determined by the time complexity of the Gauss
elimination algorithm, which requires O(nm?) time because it is called on matrix
XT (which we suppose being reduced), and of the Graph Realization algorithm,
whose best time complexity is O(a(n, m)nm), where « is the inverse Ackermann
function. Notice that the Graph Realization algorithm is repeated at most n times
in order to compute a maximal subfamily F’, hence subfamily F’ is computed in
O(a(n,m)n?m) time. Finally, there is at least one xor-genotype of X that labels
an edge of the Graph Realization, hence the total number of iterations is at most
n, that, combined with m < n because the matrix is reduced, leads to an overall
time complexity O(a(n, m)n3m).

4.6.1 Experimental Results

We have implemented our heuristic as a C program using the software GREAL [7] as
a routine to solve the Graph Realization problem. The GREAL program implements
the algorithm of Gavril and Tamari [49] even if its time complexity is O(nm?)
(opposed to the O(a(n, m)nm) time complexity of the best known algorithm), since
it is still effective for our purposes.

The experimental analysis of our heuristic is composed of two parts. In the
first part we have applied the algorithm on synthetic instances to evaluate the
quality of the results in terms of cardinality of the solutions and running time.
The main goal of this experimentation is to show the applicability of our heuristic
to large instances, much larger than the ones that could be previosly attacked (to
the best of our knowledge, the only known algorithms are based on Integer Linear
Programming [20], [55]).

In the second part we have assessed the applicability of the heuristic to some
real-world large instances.

47

4 Pure Parsimony Xor Haplotyping

Synthetic Data

Each synthetic instance has been created starting from a set of initial haplotypes
and then each xor-genotype has been generated as combination of two haplotypes
randomly selected from the initial set. Notice that such process does not guarantee
that every haplotype is selected to form a genotype.

We have used two different methods to generate the set of initial haplotypes: (a)
pure random generation, and (b) generation under the neutral model. The first
strategy, pure random generation, selects uniformly sets of h distinct haplotypes
from the set of all binary haplotypes of length m. The second strategy, generation
under the neutral model, uses the standard Hudson’s simulator ms [62] to generate
a sample of h haplotypes assuming the neutral model of genetic variation. In this
case, the sample of haplotypes can contain repeated elements. Using two different
methods to generate the set of initial haplotypes allows us to verify if the behavior
of the heuristic is influenced by the choice of the initial haplotypes.

The evaluation criteria, in both cases, were (a) the number of distinct haplotypes
computed by our method, and (b) its running time. In particular, we have con-
sidered as main indicator of the quality of the solutions the ratio (r) between the
number of distinct haplotypes of the computed solution and the number of distinct
initial haplotypes selected to generate a genotype of the instance. We notice that
r is only a proxy for the actual approximation ratio (that is the ratio between the
number of distinct computed haplotypes and the size of a optimal solution) achieved
by the algorithm, as the number of the selected haplotypes represents only an upper
bound of the optimum, thus the ratio » might be strictly less than 1.

Since the outcome of our heuristic can be influenced by the order of the input
genotypes, for each instance we have run the algorithms on ten random permu-
tations of the genotypes, and we have retained only the smallest set of computed
haplotypes. The running time refers to the total time required by the heuristic on
the 10 permutations of genotypes and has been measured on a standard PC with
1GB of memory with CentOS Linux 5.

The pure random generation strategy is characterized by three parameters,
namely the number of input genotypes (n), the number of haplotypes (h), and the
number of characters (m). We have considered 4 different values of the parameter
n (100, 200, 300, 400), and we have computed the values of h and m from n: in
fact those values are n/4, n/3, and 2n/3. The maximum size of the test instances
(400 genotypes and 233 characters) has been chosen in such a way that repeated
tests on several instances of the same size would be feasible on a normal computer.
In fact, as discussed below, on average the heuristic required roughly an hour on
the largest instances, therefore any further increase of the instance size would have
made the experimentation impractical.

48

4.6 Solving PPXH by a Heuristic Method

Table 4.1 reports the average size of the solutions computed by our heuristic, its
average running time, and the average ratio r on 10 random instances generated
for each choice of the parameters n, h, and m.

The second strategy, generation under the neutral model, is characterized by
the three parameters n, m, and p, where n is the number of genotypes, m is
the number of characters, and p is the crossover (or recombination) rate of the
Hudson’s program. The size of the initial sample of haplotypes has been set equal
to the number n of genotypes. Since the sample can contain several copies of the
same haplotype, the number of distinct haplotypes randomly selected to form a
genotype has been significantly lower than the number of genotypes for almost all
of the generated instances.

We considered 30 instances for each choice of the parameters (n,m, p) with n €
{50,75,100}, m € {50, 75,100}, and p € {0,8,16,24}. As for the previous dataset,
Table 4.2 reports the average size of the solution computed by our heuristic, its
average running time, and the average ratio r.

On both datasets the heuristic produces comparable results. In particular, the
average ratio is never larger than 1.57, while quite often it is close to 1. In other
words, it can often reconstruct a solution of size similar to the number of the hap-
lotypes used to generate the instance and, in the worst case, the computed solution
is at most 1.57 larger than the set of initial haplotypes. The ability of computing
a good approximation seems affected by two combined factors: the number of in-
dependent characters of the genotype matrix and the number of initial haplotypes.
Indeed in both tables we can observe that the smaller the number of independent
characters compared to the number of initial haplotypes, the worse is the com-
puted solution. Conversely good solutions are computed by the heuristic when the
number of independent characters is close to the number of initial haplotypes.

Lemma 4.6 offers a possible explanation to such regular behavior of our heuristic.
In fact, let H be the set of initial haplotypes of an instance X and suppose that
they are defined on a set ¥ of independent characters such that |H| = |X| +
1 (i.e. H is also a solution that meets the lower bound of Lemma 4.6). Then,
the set T' computed during step 7 of the heuristic algorithm contains exactly | X |
independent xor-genotypes. As a consequence, the set C' computed in the same step
admits a Graph Realization and, thus, the heuristic solves optimally the instance X .
Although this is not the general case, our intuition suggests that, when the number
of independent characters is close to the number of initial haplotypes, the selection
of the set T' is constrained and the Graph Realization of the maximal subset of C'
computed by the heuristic is similar to the xor-graph associated with the initial
haplotypes. Conversely, if the number of independent characters is significantly
lower than the number of initial haplotypes, there are a lot of degrees of freedom
in the choice of the set T', thus the output of the Graph Realization step can vary
greatly from the xor-graph of the initial haplotypes.

49

4 Pure Parsimony Xor Haplotyping

Table 4.1: Results on instances generated using the pure random strategy. For each choice of
the first three columns, 10 random instances were generated. The column average independent
characters reports the average number of independent character in the genotype matrix, while
column average initial haplotypes reports the average number of distinct haplotypes selected to
generate each instance. The last two columns report, respectively, the average size of the solution
computed by our heuristic and the average ratio r.

number of average average
num};er of generated n;llmbetr of indepen- initial average a\;gc?fe
genotypes haplotypes characters dent haplo- result size N
n h m characters types
100 25 25 23.70 25.00 25.90 1.04
33 24.00 25.00 25.00 1
66 24.00 25.00 25.00 1
33 25 25.00 32.90 51.60 1.57
33 31.50 32.80 33.20 1.01
66 32.00 33.00 33.00 1
66 25 25.00 63.00 87.30 1.39
33 33.00 63.30 87.20 1.38
66 62.70 63.90 63.80 1
200 50 50 48.70 50.00 50.90 1.02
66 49.00 50.00 50.00 1
133 49.00 50.00 50.00 1
66 50 50.00 65.80 96.20 1.46
66 64.50 65.90 66.20 1
133 64.80 65.80 65.80 1
133 50 50.00 126.90 185.80 1.46
66 66.00 126.20 186.10 1.47
133 126.60 128.10 127.70 1
300 75 75 73.70 75.00 75.80 1.01
100 74.00 75.00 75.00 1
200 73.90 74.90 74.90 1
100 75 75.00 99.80 149.80 1.50
100 98.60 99.90 100.00 1
200 98.80 99.80 99.80 1
200 75 75.00 190.80 285.90 1.50
100 100.00 191.10 284.60 1.49
200 188.20 190.30 189.20 0.99
400 100 100 98.50 100.00 100.90 1.01
133 98.90 99.90 99.90 1
266 98.90 99.90 99.90 1
133 100 100.00 132.80 194.90 1.47
133 131.40 132.80 133.00 1
266 131.80 132.80 132.80 1
266 100 100.00 254.70 385.30 1.51
133 133.00 253.60 384.40 1.52
266 251.90 253.50 252.90 1

50

4.6 Solving PPXH by a Heuristic Method

Table 4.2: Results on instances generated using the neutral model. For each choice of the first three
columns, 30 random instances were generated. The column average independent characters reports
the average number of independent character in the genotype matrix, while column average initial
haplotypes reports the average number of distinct haplotypes selected to generate each instance.
The last two columns report, respectively, the average size of the solution computed by our heuristic
and the average ratio r.

o average average
number of number of recombination indepen- initial average average
genotypes characters rate dent haplo- result size ratio

" m P characters types r
50 50 0 18.5 19.5 19.5 1
8 20.13 21.73 22.03 1.02
16 22.27 24.77 25.77 1.04
24 20.63 24.17 25.23 1.05
75 0 221 23.13 23.1 1
8 24.63 26 26.27 1.01
16 25.6 27.3 27.37 1.01
24 25.3 27.63 28.1 1.02
100 0 25.07 26.13 26.07 1
8 26.7 27.93 27.8 1
16 28.27 29.87 29.73 1
24 28.5 30.5 30.2 0.99
75 50 0 21.77 22.77 22.77 1
8 23.1 25.37 26.63 1.05
16 24.97 29.77 34.4 1.16
24 25.1 31.4 38.33 1.23
75 0 26.17 27.2 27.17 1
8 29.9 31.5 31.77 1.01
16 30.93 34.63 37.1 1.07
24 31.23 35.83 38.83 1.08
100 0 29.5 30.5 30.5 1
8 32.87 34.23 34.13 1
16 33.67 36.1 36.77 1.02
24 36.2 39.73 41.17 1.04
100 50 0 24.33 25.33 25.33 1
8 27 30.67 36.6 1.2
16 27.53 32.8 41.8 1.28
24 27.93 36.1 49 1.36
75 0 27.83 28.83 28.83 1
8 32.2 34.4 36.07 1.05
16 34.23 38.33 43 1.12
24 35.23 42.07 50.43 1.2
100 0 34.5 35.5 35.5 1
8 37.37 39.13 40 1.02
16 39.87 43.27 45.63 1.06
24 38.6 45.13 52.87 1.17

o1

4 Pure Parsimony Xor Haplotyping

The time required by the heuristic to compute a solution to the pure-random
synthetic instances varies between circa 25 seconds on instances with 100 geno-
types and 70 minutes on instances with 400 genotypes. All the instances generated
using the neutral model, instead, have been solved in less than 1 minute. We also
observe that instances where the heuristic fails to find a good solution have been
solved considerably faster than the ones where the heuristic computes a good ap-
proximation. However, a more careful analysis suggests that such fluctuations are
due to the different amount of I/O operations needed to communicate with the
GREAL software that we use to solve the Graph Realization problem.

Finally we tried to compare our heuristic method with the ILP formulation pro-
posed by Brown and Harrower [20]. In the paper, they formulate the PPXH problem
as a polynomial-size integer linear program and they introduce cuts and modifica-
tion of the objective function that should help finding the optimal solution. How-
ever, the GLPK solver [86], using the basic formulation as well as the augmented
formulations, was not able to find a feasible solution even for the smallest instances
of our experimentation (50 genotypes and 50 characters) within the maximum time
of 24 hours.

Also a comparison with the ILP formulation proposed by Gusfield [55] has turned
out to be infeasible. The approach proposed in [55] would require to compare all
“haplotype pairs” in order to trim the resulting ILP. Unfortunately, for our smaller
instance the number of such “haplotype pairs” is more than 8-10° (the same number
for our larger instance is more than 10'*) hence making de facto impossible to
compute this ILP formulation.

Real Data

To validate the feasibility of applying our heuristic on real data, we have produced
some instances from the Phase I dataset of the HapMap project [106] (release 2005-
06-16¢.1). A set of xor-genotypes were produced from the data for each population
in the dataset (discarding non biallelic sites and non autosomal chromosomes).
Those instances vary from 44 genotypes and 184604 sites to 90 genotypes and
91812 sites. On average, an instance contains 67 genotypes and 46906 sites. On all
those instances our heuristics has never required more than 2 seconds on the same
PC used in the experimental part over synthetic instances, clearly establishing that
the heuristic can be successfully used on real-world large instances.

52

5 Haplotype Inference on Pedigrees with
Recombinations and Mutations

Pedigrees have been shown as a valuable kind of data to improve the accuracy
of haplotype inference (HI) methods, since Mendelian inheritance restricts the set
of possible configurations and provides an effective tool to compute the likelihood
of the solutions. In order to overcome the limitations of classic statistical-based
haplotyping methods, a combinatorial formulation of the HI problem on pedigrees
has been proposed in the literature: the MINIMUM-RECOMBINANT HAPLOTYPE
CONFIGURATION (MINRHC) problem. In this formulation, a set of haplotypes is
inferred from a pedigree whose individuals are labelled by a set of genotypes, by
assuming that only one kind of genetic variation events has occurred, namely the
recombinations.

In this chapter we formulate a new problem, called MINIMUM-EVENT HAPLO-
TYPE CONFIGURATION (MINEHC), that extend the formulation of MINRHC in
order to accommodate also a second kind of variation events: mutations. In partic-
ular we study the computational hardness of MINEHC and of some closely related
problems and we propose an efficient heuristic algorithm for it. As a by-product,
the same heuristic can be also used to solve the original MINRHC problem. More-
over we show that our heuristic can easily integrate additional knowledge about
the input genotypes, such as the presence of recombination hotspots and a different
rate of recombinations and mutations. Finally we present an extensive experimental
evaluation of our approach under several simulated scenarios.

5.1 Motivations

The advance of high-throughput and high-density SNP genotyping technologies,
combined with a consistent reduction of genotyping costs had led to a great abun-
dance of genotypic data. Since haplotypes substantially increase the power of
genetic variation studies, accurate and efficient computational prediction of hap-
lotypes from genotypes is highly desirable. Mendelian inheritance laws, which
model the transmission of genetic material between parents and children, have
been effectively used to improve the accuracy of haplotyping methods. The in-
creasing density and length of SNP genotypes challenge classic statistical-based
methods (such as Lander-Green and Elson-Stewart methods) for two reasons: on

53

5 Haplotype Inference on Pedigrees

such data, statistical-based methods require an infeasible amount of computational
resources, and they do not take directly in account the presence of Linkage Disequi-
librium among loci. Combinatorial formulations have been proposed to overcome
such limitations. Among them, the most popular formulation is represented by
the MINIMUM-RECOMBINANT HAPLOTYPE CONFIGURATION (MINRHC) problem.
The aim of this formulation is the computation of a haplotype configuration which is
consistent with a input genotyped pedigree and which induces the minimum number
of recombination events. The formulation naturally arises since recombinations are
the most common form of variation events. However, with the progressive increase
of the size of genetic variation studies (both on genotype length and on pedigree
size), the incidence of the other kinds of variation events (such as mutations) will
inevitably become noticeable.

This observation motivates the work presented in this chapter, where the HI
problem on pedigrees with recombinations and mutations, called MINIMUM-EVENT
HAPLOTYPE CONFIGURATION (MINEHC), is studied.

The main contribution of this work is an efficient and effective heuristic algo-
rithm for MINEHC. Our algorithm is based on a L-reduction of MINEHC to a
central problem of coding theory: the NEAREST CODEWORD PROBLEM (NCP) [6,
probl. MS3]. Even if NCP is hard to approximate [5], there exists several heuristics
that approximate well NCP in practice. Our idea is to transform the instance of
MINEHC to an instance of NCP, to solve the instance of NCP with a custom-
tailored version of a standard heuristic for NCP, and, finally, to reconstruct a solu-
tion of the original instance of MINEHC from the solution of NCP. The L-reduction
guarantees that the transformation of the instance and the reconstruction of the
solution are performed in polynomial-time. Moreover, the reconstruction process
preserves the solution cost.

For sake of completeness, we also prove that MINEHC and some related problems
are computationally hard (namely, APX-hard), justifying our heuristic approach.

In the remaining, we implicitly assume that genotypes are biallelic to simplify
the exposition. Nonetheless all the results we present can be easily extended to the
multi-allelic case.

The chapter is structured as follows. In Section 5.2, we formalize the MINIMUM-
EVENTS HAPLOTYPE CONFIGURATION problem, and we define the related basic
terminology. In Section 5.3, we prove that MINEHC is APX-hard and that the
problem remains APX-hard even if we admit only mutation events. On the positive
side, in Section 5.4, we present the L-reduction from MINEHC to NCP and we
illustrate our heuristic algorithm for MINEHC. Finally, an experimental evaluation
of our algorithm is presented and discussed in Section 5.5.

o4

5.2 The Computational Problem

5.2 The Computational Problem

Haplotype Inference problems on structured populations have been introduced in
Section 3.3. In this section we recall the most important concepts and we formalize
the computational problems that will be studied in the rest of the chapter.

A simple pedigree graph is an oriented acyclic graph P = (V| E) such that (i)
vertices correspond to population members and are distinguished in male and fe-
male (i.e. V.= MUF, with M and F disjoint), and (4i) each vertex has indegree 0
or 2 and, in the latter case, one edge comes from a male node and one comes from
a female node. For each edge (p,c) € E, we say that p is a parent of ¢ and c is an
offspring (or child) of p. More precisely we say that p is the father (mother, resp.)
of ¢ if p is male (female, resp.). Since simple pedigree graphs are the only medium
that we use to represent family relationships in this chapter, for sake of simplicity
we will call them pedigree graphs, omitting the specifier “simple”.

A trio is a triplet (f,c,m) where f is the father and m is the mother of c.
Individual f and individual m are said to be mates. A nuclear family is a set
{f,m,c1,...,c;} such that (f,c¢;,m) is a trio for all ¢ = 1...k. Every pair of
individuals ¢; and ¢; that have the same parents are siblings. Given an oriented
path from an individual a to an individual d, we say that a is an ancestor of d and
d is descendant of a. A pedigree graph contains a mating loop if there exists two
nodes a and d such that they are connected by two distinct paths. (Notice that
this definition is completely equivalent to the strictest definition of mating loops
of Section 3.3.) A pedigree graph is a tree pedigree if it does not contain mating
loops. A pedigree graph is a binary tree pedigree if each individual has at most one
offspring. (This also implies that each individual has at most one mate and that
the pedigree graph is a tree pedigree.)

Let ¥ be an ordered set (li,...,ly) of m loci, and let ¢ be an individual of the
population P. Then, a haplotype h. of individual ¢ is an m-dimensional vector
over the set {0, 1}, where the i-th element (denoted with h.[¢]) is 0 if individual ¢
presents the major allele at locus I., and 1 otherwise. Instead, the genotype g. of
individual ¢ is an m-dimensional vector over the set {0, 1,2}, where the i-th element
(denoted with g.[i]) represents the pair of alleles that individual ¢ possesses at locus
l;. We follow the convention of encoding pair (0,0) with 0, (1,1) with 1, and (0, 1)
with 2.

A genotyped (haplotyped, respectively) pedigree is a pedigree such that every
individual has associated a genotype (an ordered pair of haplotypes, respectively).
We denote with g. the genotype associated with an individual ¢ of a genotyped
pedigree and we denote with (h?, hl) the haplotypes associated with an individual
c of a haplotyped pedigree. Moreover, we say that hQ is the paternal haplotype of ¢
and h! is the maternal haplotype of c. A genotyped pedigree is a m-locus pedigree if
its members are associated with a genotype defined on a set of m loci. A haplotyped

55

5 Haplotype Inference on Pedigrees

pedigree P}, is consistent with a genotyped pedigree P, of the same population if for
each individual ¢, the genotype g. is resolved by the pair of haplotypes (h, hl). The
grandparental source vector of a non-founder individual ¢ w.r.t. one of its parents
p, is a m-long binary vector s, . defined as follows. Let I; be a locus of ¥. If p is
the father (mother, respectively) of ¢, then s, .[i] = 0 if the allele of the paternal
(maternal, resp.) haplotype of ¢ at locus [; has been inherited from the paternal
haplotype of p, otherwise s, .[i] = 1 if the allele has been inherited from the maternal
haplotype of p. Given a population P, a (consistent) haplotype configuration of a
genotyped pedigree P, of P is a pair (P, S) where P, is a (consistent) haplotyped
pedigree of P and S is an assignment of two grandparental source vectors to each
individual of P.

In general terms, the Haplotype Inference problem on pedigrees asks for a hap-
lotype configuration consistent with a given genotyped pedigree. As explained in
Section 3.3, the choice of the “best” haplotype configuration is guided by a reference
genetic model. In this chapter we are interested in a parsimony-based approach.
In particular we want to minimize the number of genetic variation events that are
induced in the resulting haplotyped pedigree. Two kinds of variation events will
be considered, recombinations and mutations, defined as follows. Let (P, S) be a
consistent haplotype configuration of a genotyped pedigree F,;. The haplotype con-
figuration induces (or contains) a recombination at locus l; between an individual ¢
and one of its parents p if s, .[i] # sp.c[¢ + 1]. The haplotype configuration induces
(or contains) a mutation at locus I; between ¢ and its parent p if hi[i] # hy[i] where
s = spclt] and j =0 (j = 1, resp.) if p is the father (mother, resp.) of c.

We are now able to formally define the computational problem that we are in-
terested in.

Problem 6. MINIMUM-EVENT HAPLOTYPE CONFIGURATION (MINEHC).
Input: A genotyped pedigree Py, of a population P.

Output: A haplotype configuration (P, S) consistent with P, that induces the
minimum number of variation events.

The MINIMUM-EVENT HAPLOTYPE CONFIGURATION problem is a generalization
of two problems proposed in literature: the MINIMUM-RECOMBINANT HAPLOTYPE
CONFIGURATION (MINRHC) problem (see, for example, [76]), and the MINIMUM-
MUTATION HAPLOTYPE CONFIGURATION (MINMHC) problem [110].

Problem 7. MINIMUM-RECOMBINANT HAPLOTYPE CONFIGURATION (MINRHC).
Input: A genotyped pedigree Py, of a population P.

Output: A haplotype configuration (P, .S) consistent with P, that does not contain
mutations and that induces the minimum number of recombinations.

56

5.3 Computational Complexity

Problem 8. MINIMUM-MUTATION HAPLOTYPE CONFIGURATION (MINMHC).
Input: A genotyped pedigree Py of a population P.

Output: A haplotype configuration (P, S) consistent with P, that does not contain
recombinations and that induces the minimum number of mutations.

We want to remark that, differently from [110], we are not constraining the
number of mutations that can occur at the same locus (in different individuals).

Some restrictions of the MINEHC and MINMHC problem will be used in the
following. In particular we define binary-tree-MINEHC the MINEHC problem on
binary tree pedigrees, and 2-locus-MINEHC the MINEHC problem on genotyped
pedigree where the genotypes are defined on 2 loci. The restrictions binary-tree-
MINMHC and 2-locus-MINMHC are defined in the same way.

Notice that the MINEHC problem requires the explicit computation of both a
haplotyped pedigree and a family of grandparental source vectors. This is needed
since one of them is not sufficient for a not-ambiguous reconstruction of the vari-
ation events induced by the solution. If we allow some ambiguity, the grand-
parental source vectors are not strictly required, since it is possible to reconstruct in
polynomial-time a minimum-cardinality set of events from the haplotyped pedigree
alone.

5.3 Computational Complexity

The computational complexity and the approximation hardness of various cases of
the MINIMUM-RECOMBINANT HAPLOTYPE CONFIGURATION (MINRHC) problem
have been extensively studied by Liu et al. [83, 84]. They essentially present three
results: (1) MINRHC is NP-hard even for simple pedigrees (namely, for binary-
tree pedigrees), (#) MINRHC with missing data (i.e. loci where the genotype of a
individual is not known) cannot be approximated, and (iiz) MINRHC is APX-hard
even for simple instances (2-locus pedigrees and tree pedigrees).

In this section we extend the work of Liu et al. by studying the computational
complexity and the (in)approximability properties of the MINIMUM-MUTATION
HaPLOTYPE CONFIGURATION problem and the MINIMUM-EVENT HAPLOTYPE
CONFIGURATION problem. In particular we are interested in designing reductions
that use simple instances of MINEHC and MINMHC in order to highlight that the
problems are hard to solve (and approximate) even on tight restrictions. We succeed
in our aim: In fact we prove (Sect. 5.3.1) that MINMHC on binary-tree pedigrees
is APX-hard and, based on the work of Liu et al., we also show (Sect. 5.3.2) that
2-locus-MINMHC and 2-locus-MINEHC are APX-hard. These results obviously
imply the APX-hardness of MINEHC and MINMHC on general pedigrees.

The simple concepts of computational complexity that we use in the rest of the
chapter have been recalled in Section 2.1.

o7

5 Haplotype Inference on Pedigrees

5.3.1 binary-tree-MinMHC is APX-hard

Here we present an L-reduction from the MINIMUM EDGE-BIPARTIZATION problem
on cubic graphs (MIN EDGE-BIPARTIZATION-R3) to the MINMHC problem. As a
consequence we obtain that MINMHC is APX-hard.

Before describing the reduction, we define the MIN EDGE-BIPARTIZATION prob-
lem.

Problem 9 (optimization version of GT25 [47]). MIN EDGE-BIPARTIZATION.
Input: An unoriented graph G = (V) E).
Output: A minimum subset E’ of F such that G’ = (V, E'\ E’) is bipartite.

The MIN EDGE-BIPARTIZATION problem can be equivalently formulated as the
problem of finding a cut C of the graph which minimizes the number of non-crossing
edges. In fact G’ is bipartite if and only if £\ E’ is a cut of graph G and, clearly
| E'| is minimum if and only if £\ E’ is a maximum cardinality cut. In this case,
the problem is known as MINUNCUT.

MiN EDGE-BIPARTIZATION is NP-hard even if we restrict the input graph to be
cubic (a graph which the degree of each vertex is exactly 3) and triangle-free (a
graph which does not contain cycles of length 3) [122].

MiIN EDGE-BIPARTIZATION is closely related to another well-known NP-hard
problem: MaxCuT.

Problem 10 (ND14 [6]). MaximuM Cut (MAxCuT).

Input: An unoriented graph G = (V, E).

Output: A bipartition {Vi,Va} of V such that the cardinality of the cut (i.e. the
number of edges with one endpoint in V; and one endpoint in V5) is maximum.

MaxCurt is APX-hard even on cubic graphs (MAXCuT-R3) [3, 94], and, from
that, we also obtain the APX-hardness of MIN EDGE-BIPARTIZATION on cubic
graphs (MIN EDGE-BIPARTIZATION-R3). This result can be easily obtained by an
L-reduction from MAXCuT-R3 (as in [28]) or, directly, by observing that a PTAS
for MIN EDGE-BIPARTIZATION-R3 would imply a PTAS for MAXCUT-R3 which
is not possible under the assumption P # NP. We provide such proof for sake of
exposition completeness.

Lemma 5.1. MIN EDGE-BIPARTIZATION-R3 is APX-hard.

Proof. Denote with ¢(G) (and u(G), resp.) the size of a cut (the cardinality of a
MIN EDGE-BIPARTIZATION-R3 solution, resp.) of a cubic graph G with n vertices
and m edges. Denote with ¢*(G) and v*(G) the size of an optimal solution of the
two problems on graph GG. Moreover, notice that we can easily compute a cut C that
bipartizes the vertex set of G in {Vi, V2} such that at least % of the edges cross C.
In fact, if a vertex has two adjacent vertices in the same set of the partition, we can

58

5.3 Computational Complexity

move it in the other element of the partition and the number of edges which cross
the new cut is increased. With the same procedure we can easily derive a subset
of at most 77 edges whose removal bipartizes G. In other words we can compute
in polynomial-time a cut s.t. ¢(G) > 2m and a MIN EDGE-BIPARTIZATION-R3
solution s.t. u(G) < %m Now suppose to have a k-approximation algorithm for
MIN EDGE-BIPARTIZATION-R3, and thus u(G) < ku*(G). Using such algorithm we

can compute a solution for MAXCUT-R3 such that CC*((GG)) m;?é?). By combining
the previous inequalities we obtain:

Since MAXCuT-R3 is APX-hard, there exists a ¢ > 0 such that approximating
MaxCuT-R3 within 1 — € is NP-hard. Thus, assuming P # NP, we have:

3—k _ c(G)

2 c*(G)

<l-—¢

which implies £k > 1+ 2 - € or, in other words, that MIN EDGE-BIPARTIZATION-R3
is APX-hard. O

In the following we will start by describing the gadget used in the reduction from
MiN EDGE-BIPARTIZATION-R3 to MINMHC and then we will formally prove that
the reduction is an L-reduction.

Description of the gadget

Let G = (V,E) be a cubic graph, and let n and m be the cardinality of V' and
E, respectively. Define the set of loci as the set L := {v; | v; € V'}. First of all
we need a set Gg of gadgets to encode the edge set. An edge e;, = (v;,v;) of G is
represented by a trio ge, = (Fj, Ex, Mj) as depicted in Figure 5.1(a).

The genotype of individual F}, is set to 1 in locus v;, 0 in locus vj, and 2 in all the
other positions. The genotype of individual My, instead, is set to 0 in locus v;, 1 in
locus v;, and 2 in all the other positions. Finally, individual E}, is heterozygous in
every locus. For simplicity, in the remainder we say that a locus ¢ is 0-homozygous
(1-homozygous, respectively) in a given individual if the genotype of the individual
at locus i is 0 (1, respectively).

The edge-gadgets ge, are connected to a sort of “backbone” that represents the
entire graph. The “backbone” is composed by m+ 1 individuals I, with k =0...m
such that I;_; and Ej are the parents of I} for all 1 < k < m. (By convention we
assume that Ij are male nodes, while Ej, are female.) Finally we have to specify
the genotypes of individuals Ij. For all Kk = 0...m, individuals I} are heterozygous

59

5 Haplotype Inference on Pedigrees

Ge:
Iy (I)
Je
I 0]
gemfl
Fy, My, L ?
r . _|
1 Jem
Ek Imfl (I)
—---
1
¢ I
(a) The part ge, of the gadget that rep- (b) The complete gadget

resents an edge ey = (v;, v;)

Figure 5.1: The gadget used in the reduction.

at every locus. Figure 5.1(b) illustrates the complete gadget. Given a cubic graph
G, we indicate with Pg the complete gadget (i.e. the pedigree graph) that encodes
G.

The L-reduction

The reduction from MIN EDGE-BIPARTIZATION-R3 to MINMHC is composed by
the following two lemmas.

Lemma 5.2. Let G = (V, E) be a cubic graph and let E' C E be a solution of
MiIN EDGE-BIPARTIZATION-R3 on G. Then, a haplotype configuration H for Pg
with at most | E'| mutations can be computed in polynomial time.

Lemma 5.3. Let G = (V,E) be a cubic graph and let H be a haplotype con-
figuration for Pg that requires | mutations. Then, a solution E' of MIN EDGE-
BIPARTIZATION-R3 on G such that | E'| <1 can be computed in polynomial time.

Clearly the following corollary can be easily derived from the previous lemmas
and from the APX-hardness of MIN EDGE-BIPARTIZATION-R3.

Corollary 5.4. There exists an L-reduction with 6 =1 and~y = 1 from MIN EDGE-
BIPARTIZATION-R3 to MINMHC. In other words, MINMHC is APX-hard.

60

5.3 Computational Complexity

Lemma 5.2 can be easily proved by constructing a haplotype configuration with at
most | E' | mutations based on the given solution. The second lemma (Lemma 5.3),
instead, is a little bit trickier than the first one, and requires the transformation of
the given haplotype configuration to another haplotype configuration where the mu-
tations are located in specific haplotypes. After that, a MIN EDGE-BIPARTIZATION-
R3 solution of the given cardinality can be easily reconstructed. We start by proving
two key properties about the gadget.

Property 5.5. In a haplotype configuration of the whole pedigree, each trio ge, =
(F, Ex, M) does not contain mutations, or otherwise the haplotype configuration
can be transformed in a new one that contains no mutations in the trio.

Proof. Suppose that the gadget g, represents edge ex = (v;,v;). Notice that Fj,
and My, are founders of the pedigree and they are heterozygous at every locus but
v; and v;. Given a haplotype configuration that contains (at least) a mutation in
trio ge, , we can show that such a mutation can be avoided or “moved” in a different
place.

Two cases must be studied separately: either (1) the mutation does not involve
locus v; or vj, or (2) the mutation involves one of such loci.

In the first case, let v be the locus where the haplotype inherited from parent Py
has been mutated. Then change the phase of individual Py at locus v. Clearly this
change does not violate the genotype consistency of the individual and does not
violate the Mendelian inheritance since (i) Py is a founder (thus its haplotypes are
not inherited from other individuals), and (i7) it does not have other children apart
Ej; (thus its haplotypes are not transmitted to other individuals). This change can
be repeated until the haplotype configuration of the trio does not contain mutations
in any loci but v; or v;.

In the second case, suppose, without loss of generality, that v; is the locus where
the mutation has occurred. Clearly, since both parents of Ej are homozygous at
locus v;, we cannot proceed as in the previous case. Instead we show how the muta-
tion can be “pushed down” from individual E}, to individual I of the “backbone”
(or, in some case, it can be completely removed). By genotype consistency, notice
that if a mutation has occurred in locus v; between individual F} and Ej, then
a mutation in locus v; has occurred also between individual M}, and Ej and vice
versa. In fact, suppose that the mutation from Fj to Ej has transformed allele 0
to allele 1, then individual Ej has inherited allele 0 from Mj. By construction, if
locus v; is 0-homozygous in Fj, then the same locus is 1-homozygous in M}, which
implies the presence of a mutation in v; between My, and Ej. Now, we claim that if
a mutation has occurred in v; between E}, and its children Iy, then all three muta-
tions can be removed. Let a be the allele of the maternal haplotype of I at locus
v;. Since a mutation has occurred between E; and I, individual E; has allele 1 —a
at locus v;. As previously said, both haplotypes of E; have the allele at locus v;

61

5 Haplotype Inference on Pedigrees

mutated with respect to the parental haplotype. Thus the haplotype of Fj or My
that has been inherited by Ij has allele a at locus v;. Removing the three mutations
does not affect genotype consistency and, furthermore also Mendelian consistency
is preserved because [has no siblings and its haplotypes do not change. Finally
we have to prove that if locus v; has not been mutated between individual E; and
individual I, then the mutations between Ej and its parents can be replaced with
a single mutation between Ej and I. In this case, F} and I share the same allele
at locus v; (on the haplotype that Ij has inherited from Ej). However such allele
is not the same of the allele inherited from the grandparent of I because of the
mutations that have occurred between E} and its parents. Thus a single mutation
on locus v; between Ej and I does not change the haplotypes of I}, if the mutations
between Ej and its parents are removed. Also in this case, genotype and Mendelian
consistency are preserved since Iy is the only child of F.

In all cases, we were able to compute (in polynomial time) a new haplotype
configuration without adding new mutations and such that no mutations occur
between two individual of any trio (Fy, Ey, My). O

A haplotype configuration is basic if it does not induce mutations in any trio
(F, Ex, My). From the previous property we can easily derive the following state-
ment.

Property 5.6. In a basic haplotype configuration, for all individuals Ej of the
gadget which represents edge (vi,vj), the alleles at loci v; and v; differ.

Proof. The property is a direct consequence of Property 5.5 and the fact that Fj
and Mj, have different alleles at loci v; and v;.]

We are now ready to prove the first lemma that composes the reduction.

Proof of Lemma 5.2. First of all, we can assume that for each vertex v, the set
E’ contains at most one edge incident to v. Otherwise we can shrink the original
solution E’ by replacing the edges of E’ incident to v with the other edges (if they
exist) incident to v. Clearly this procedure can be performed in polynomial time
and it does not increment the cardinality of the solution E’.

Let {V1, Va} be a bipartition of V' induced by the removal of E’. Set the paternal
haplotype of every individual I such that every locus v has allele 0 if v € Vi,
otherwise set it to allele 1. Set the maternal haplotype as the bit-wise complement
of the paternal haplotype. Finally set the haplotypes of each trio (Fy, Ex, M) in
such a way that the haplotype configuration is basic (see Property 5.5).

We claim that the haplotype configuration constructed so far has exactly one
mutation for each edge e = (v;,v;) of the graph that belongs to E’. In fact, no
matter of which haplotypes individual Ej inherit from his parents, a single mutation

62

5.3 Computational Complexity

occurs in the transmission of a haplotype from Ej to I. By Property 5.6, the alleles
at loci v; and v; are different in individual Ej, while they are equal in individual Iy,
because e belongs to E’. Thus, exactly one mutation is contained in the haplotype
configuration for each edge e, € E’. Instead, the alleles of the loci that represent the
endpoints of an edge e, which does not belong to E’ are different, so no mutations
from Ejs to Iy occur, which concludes the proof.]

The basic idea which the proof of Lemma 5.3 relies on is that the haplotype of
individual Iy naturally encodes a bipartition of the vertex set. By removing the
edges that do not cross the bipartition, we then obtain a solution E’ for MIN EDGE-
BIPARTIZATION-R3. We claim that the haplotype configuration can be transformed
to another haplotype configuration which induces mutations only on the maternal
haplotype of individuals I, and that each mutation of this haplotype configuration
corresponds to an edge of E'.

Proof of Lemma 5.3. We can assume that the haplotype configuration H does not
contain mutations in a trio (F, Ex, M}), otherwise we can eliminate such mutations
as discussed in the proof of Property 5.5. Moreover, given an edge ej = (v;,v;), a
mutation of the maternal haplotype of individual I; must involve locus v; or locus
vj, otherwise we can remove it by changing the haplotypes of the trio g, because the
mother and the maternal grandparents of I are heterozygous at all loci but v; and
vj. Mutations of the paternal haplotype of I}, that do not involve locus v; or v; can
also be removed by changing the maternal haplotype and proceeding as previously
described. In addition, if both loci v; and v; are mutated in the maternal haplotype
of Ii, then such mutations can be avoided. We can also remove two mutations of
loci v; and v; in the paternal haplotype of I}, by changing the maternal haplotype
at such loci, and then applying the previous procedure. (Notice that mutations are
not always removed in a strict sense: the mutations that we “remove” at [have
been actually moved on Ijy1.) Repeat the previous mutation removal steps until
a case applies. Let H' be the resulting haplotype configuration and let I’ be the
number of mutations of H'. (Clearly I’ <1.)

Construct a bipartition {Vj, Va} of the vertex set V as follows: v; € Vj if the
locus v; of the paternal haplotype of Iy contains allele 0, otherwise v; € Va. Let us
show that bipartition {Vj, Va2} induces a MIN EDGE-BIPARTIZATION-R3 solution
E’ such that |E'| =1'.

A mutation can occur (7) in a paternal haplotype of Ix, or (ii) in a maternal
haplotype of Ij. (Suppose that e = (v;,v;).) By construction of H’, either v; or
vj has been mutated (suppose w.l.o.g. v;), and the other loci has been inherited
without mutations. In case (i), moreover, we can assume that there exists at least
an edge e; incident to v; with t < k (otherwise we can remove the mutation by
changing allele in the paternal haplotype of I, at locus v; and propagating). We

63

5 Haplotype Inference on Pedigrees

can also assume that the alleles at loci v; and v; are different in I, and equal in
Ij,_1, otherwise a mutation on locus v; of the maternal haplotype of I}, is required
and we can easily remove both of them. Let us first consider the case in which two
edges ey and ey incident to v; have index less than k (i.e. ' < k and ¢’ < k). In
this case, the mutation can be moved (but not removed) to the maternal haplotype
and we can change accordingly the haplotypes of every descendant of I without
creating new mutations. Indeed, no edge e; = (v;,v') with ¢ > k exists, so the
procedure described at the beginning of the proof can be applied (on locus v;) on
every descendant of . If the mutation occurs at individual I and there exists
two edges ey = (v;,v") and ey = (v;,v”) such that ¢/ < k < t”, then set the
paternal allele of locus v; in Iy equals to the paternal allele of same locus in I
and propagate such change to descendants and ancestors. Clearly, this operation
moves the mutation on the maternal haplotype of I and it does not create any
other mutations.

In case (ii) the alleles of the maternal (and thus of the paternal) haplotype of
I, at loci v; and v; coincide. Assuming that the paternal haplotype of Ij at loci v;
and v; is equal to (or is the complement of) the paternal haplotype of Iy, vertices
v; and v; belong to the same set of the bipartition {V, 2}, so edge e;, € E'.

In this proof we have shown how to move mutations in order to put them on
the maternal haplotypes of individuals I;. The analysis of case () has shown
that a mutation on a maternal haplotype is in correspondence with an edge of E’.
Moreover, it is easy to see that for each edge ex € E \ F’, individual I} does not
contain mutations. Since the procedure that moves and removes mutations does not
increase the number of them, we have | E' | = I’ <[that concludes the proof. [

Final remark

It is interesting to notice that, in case the input graph of MIN EDGE-BIPARTIZATION-
R3 is already bipartite, the optimum solution is the empty set. Then, there exists
a haplotype configuration of the genotyped pedigree that we use to encode the
graph that does not contain mutations. The problem to decide if a pedigree can
be haplotyped without mutations is polynomially solvable (crf. [114] and others).
This does not contrast with the complexity of the MIN EDGE-BIPARTIZATION-R3
problem: in fact also recognizing bipartite graphs can be performed in polynomial
time (by a simple visit of the graph).

5.3.2 2-locus-MinEHC and 2-locus-MinMHC are APX-hard

In this section we show that a previous result of Liu et al. [84] can be extended
to prove the APX-hardness of MINEHC on a 2-locus pedigree (i.e. a pedigree in
which the genotypes of the individuals have 2 loci). We also point out that the same

64

5.4 A Heuristic Algorithm for MINEHC

arguments can be used to show the APX-hardness of 2-locus-MINMHC, completing
the results presented in the previous section.

We achieve the APX-hardness of 2-locus-MINEHC by observing that the effects
of a recombination on a 2-locus pedigree cannot be distinguished from the effects
of a mutation on the same point.

Lemma 5.7. Let H be a haplotype configuration on a 2-locus pedigree P. If it is
present a recombination between individual I and individual J starting at locus I,
then the recombination can be replaced by a mutation between I and J on locus .

Proof. First notice that a recombination starting at the first locus is not interesting:
inheriting the other haplotype would have had the same effect. Thus we can assume
that all the recombinations start at the second locus. Moreover, individual I has
to be heterozygous at locus 2 because otherwise the recombination would not have
any effect. Let h; = (a1,a2) be the haplotype inherited by J from its parent I.
Since individual I is heterozygous at locus 2 and since there are only two possible
alleles (denoted 0 and 1), one haplotype of individual I is h; = (a1,1 —ag). Clearly
a mutation between I and J would replace allele 1 — as with ag, having the same
effect of the recombination. O

Lemma 5.7 permits to derive the following results.
Corollary 5.8. MINEHC on a 2-locus pedigree is APX-hard.
Corollary 5.9. MINMHC on a 2-locus pedigree is APX-hard.

Proof of Corollary 5.8 and Corollary 5.9. Liu et al. proved that there exists an L-
reduction from MIN EDGE-BIPARTIZATION (called MINUNcUT) to MINRHC on a
2-locus pedigree (Lemma 9 of [84]). They rely on a pedigree where each individual is
either a founder or a son of a founder. All founders are heterozygous at every locus,
thus also the converse of Lemma 5.7 holds. In fact it is possible to prove that a
mutation at locus [from an individual that is heterozygous at locus [can be replaced
by a recombination starting at . Therefore the same gadget used in [84] can be
applied to prove the existence of an L-reduction from MIN EDGE-BIPARTIZATION to
MINEHC or to MINMHC. As a consequence, by the APX-hardness of MIN EDGE-
BIPARTIZATION [48], we obtain the APX-hardness of MINEHC and of MINMHC
on 2-locus pedigrees. O

5.4 A Heuristic Algorithm for MinEHC

The presentation of the heuristic algorithm that we propose is divided in three
parts. First, we illustrate a system of linear equations over the field Z, that repre-
sents the set of haplotype configurations that are consistent with the input geno-
typed pedigree. This is an extension of the system of linear equations proposed

65

5 Haplotype Inference on Pedigrees

by Xiao et al. [114, 115] for the problem of computing a haplotype configuration
without recombinations and mutations (ZRHC). In the extended system that we
propose, recombinations and mutations are explicitly modeled as variables of the
equations, and the goal of the problem is to find a solution of the system that mini-
mizes the number of non-zero recombination and mutation variables. In the second
part, we prove an L-reduction from MINEHC to NEAREST CODEWORD PROBLEM
(NCP) by splitting the system in two parts: one part contains only variables needed
for the haplotype reconstruction while the other one contains only recombination
and mutation variables. The second part of the system is, directly, an instance of
NCP. Finally, we present a tailored version of a well-known heuristic algorithm for
NCP. Using this version, we can guarantee that a feasible solution for NCP (and
hence for MINEHC) is found. The experimental evaluation of the quality of the
solutions found by our heuristic approach is deferred to the next section.

5.4.1 A System of Linear Equations for MinEHC

In this part, we first illustrate the linear system over Zy proposed in [114, 115] for
the ZRHC problem, and then we describe how it can be extended to accommodate
recombinations and mutations events. We refer to Section 2.2 for a basic review
of the concepts related to vector spaces and matrices over Zo that will be used in
the rest of this section. We remark that, for improved clarity, we denoted with the
symbol + the addition over Zo instead of using ®.

A Linear System for ZRHC [115]

Notice that computing the paternal haplotypes of all individuals is sufficient to
fully describe the haplotyped pedigree because the maternal haplotype can be re-
constructed from the paternal haplotype and the genotype of the individual. There-
fore, we introduce a variable h;[l] for each individual ¢ and locus [which represents
the allele presents at locus [of the paternal haplotype of . Secondly, we need
to represent the grandparental source. Let ¢ be an individual and p one of its
parents. Since no recombinations were admitted in the original linear system, the
grandparental source is denoted by a single variable s, ;. Variable s,; is equal to
0 if 4 has inherited from p the paternal haplotype of p, or 1 otherwise. To express
concisely the linear equations we need two additional sets of constants: the w- and
the d-constants. For each locus | and each individual 4, constant w;[l] is equal to
0 if 4 is homozygous at locus [, and 1 otherwise. For each locus [and each pair of
individuals p and 4 such that p is a parent of i, constant dp,;[l] is equal to 0 if p
is the father of ¢ and it is equal to w;[l] is p is the mother of i. Finally, since the
paternal haplotype (and hence the maternal haplotype) is known at homozygous
loci, we set h;[l] = g;[l] for every individual 7 and locus [such that g;[l] # 2.

66

5.4 A Heuristic Algorithm for MINEHC

A case-by-case analysis shows that any solution of the following linear system over
Zo is a zero-recombinant haplotype configuration consistent with the genotyped
pedigree (and vice versa), as formalized by the following lemma.

Lemma 5.10 ([115]). Let P, be a genotyped pedigree. Then a solution of the
following linear system represents a haplotype configuration consistent with P, that
does not induce recombinations nor mutations. Moreover, a haplotype configuration
consistent with Py that does not induce recombinations nor mutations is represented
by a solution of the linear system.

The linear system is composed as follows.

For all loci | and individuals i:

hpll] + spi - wpll] = hill] + dpi[l] for each parent p of i

hill] = gill] if gill] # 2

will] =0 if gill] #2

will] =1 if gill] =2

dpill] =0 if p is the father of i
L dp,ill] = w;ll] if p is the mother of i

Notice that, if the pedigree has n members and the genotypes are defined over
a set of m loci, then we have nm h-variables, at most 2n s-variables, and at most
2nm equations.

A Linear System for MinEHC

We now show how the previous linear system can be modified for representing all
the haplotype configurations (admitting recombinations and mutations) consistent
with the genotyped pedigree. In other words, our aim is to characterize the solution
space of MINEHC as a linear subspace of Zzo(nm). In the following we denote with
1 a generic individual and with p one of its parents.

To accommodate recombinations we introduce a set of d-variables defined as
follows. For each locus [, variable 6, ;] is equal to 1 if a recombination has occurred
at locus [between p and i, 0 otherwise. The grandparental source vector of a
consistent haplotype configuration can be expressed as a (linear) function of a s-
variable and a subset of d-variables. In particular, by induction on [, it is easy
to prove that the grandparental source of i w.r.t. p at locus [, sp;[l], is equal to
Sp.i +Z§:1 dp,ilj]- (All operations are intended on the Zs field.) Denote with A, ;[I]
the sum Zé.:l dpilj]. By replacing s, ; with (sp;+Ap;[l]) in the first equation of the
system in Lemma 5.10, we obtain a linear system that represents all the haplotype
configurations consistent with the genotyped pedigree and that allow recombination
events. The correctness of this claim is a direct consequence of Lemma 5.10 and
the previous arguments.

67

5 Haplotype Inference on Pedigrees

Mutations are point events that replace the allele inherited from the parent with
the other allele. Therefore it suffices to add a term in the first equation of the
original system in order to model mutation events. We denote this term with /s, ; (]
and we set p,;[l] = 1 if a mutation at locus | between p and i has occurred, and
pp.i[l] = 0 otherwise.

From the previous observations, we derive the following lemma.

Lemma 5.11. Let P, be a genotyped pedigree. Then each solution of the system:

For all loci | and individuals i:

[hpll] + (5pi + Dpill]) - wpll] = hill] + dps[l] + ppilll for each parent p of i
hill] = gil] if gill] #2
will] =0 if gill] # 2
will] =1 if gill] = 2
dpill] =0 if p is the father of i
dpill] = w;l] if p is the mother of i

represents a haplotype configuration consistent with P, that admits recombination
and mutation events. Conversely, a haplotype configuration consistent with P, that
admits recombination and mutation events is represented by a solution of the linear
system.

By construction, a haplotype configuration that induces k variation events is
represented by a solution of the linear system in which exactly k 6- and p-variables
are non-zero.

5.4.2 Reducing MinEHC to NCP

In this second part we prove that there exists an L-reduction from MINEHC to
NCP. First we formally introduce the NEAREST CODEWORD PROBLEM, then we
describe the L-reduction.

The NEAREST CODEWORD PROBLEM arises in the field of coding theory and asks
for the codeword y of a binary linear code C that minimizes the Hamming distance
with the received message §j. More formally, the NEAREST CODEWORD PROBLEM
is defined as follows. (We are using a non-standard but completely equivalent
formulation that is more suitable for the following reduction.)

Problem 11 (equiv. to MS3 in [6]). NEAREST CODEWORD PROBLEM (NCP).
Input: A r X n matrix H over Zg, and a column vector q € Zj.

Output: A column vector e € Zj with the minimum number of non-zero entries
such that H - e = gq.

68

5.4 A Heuristic Algorithm for MINEHC

For decoding purposes, the input vector ¢ is computed from the received message
y € Z5 as g = H - §. The transmitted codeword y is then recovered by adding e to
j.

In the following we denote with M” the transpose of a matrix M and with ||z||
the number of non-zero entries of a vector x. The quantity ||z|| is called weight of
x.

Description of the gadget

The basic idea of our reduction is to split the linear system of Lemma 5.11 in
two linear systems: one containing only 0- and p-variables, and the other one
containing only h- and s-variables. Notice that all the equations of the linear
system but the first can be eliminated by a simple substitution process because,
given a genotyped pedigree, w;[l] and d,;[l] (and h;[l] for homozygous loci) assume
a constant (predetermined) value.

By simple algebraic manipulations, we can write the linear system as the following
matricial equation:

Ah,s " Xps A&H CX§ = b (5.1)

where:

xp,s is the column vector of the h- and s-variables;
- Zs,, is the column vector of the - and p-variables;

- Aps is the n x my matrix of the coefficients of the h- and s-variables;

As,, is the n x mg matrix of the coefficients of the - and p-variables;

b is a column vector composed by constant entries.

Denote with k the rank of the matrix Ay, 5, and suppose, w.l.o.g., that the first k
rows of Ay, ; are linearly independent. Now, build the instance of NCP associated
to an instance of MINEHC as follows. Let B := {v1,...,v, | v; € Zy} be a basis
of the vector space ker(Af’s) = {y € Z% | A;;S -y = 0}, where O denotes the
all-zero column vector. Collate vectors v; to form a r x n matrix V such that the
i-th row is equal to viT. Then, the instance I’ of NCP associated with an instance
I = (Apns, Asp, Ths, €5,,b) of MINEHC is the pair I' = (H,q) with H := VA;s,
and q := Vb. Clearly the transformation of I in I’ can be computed in polynomial-
time via Gaussian elimination (to compute V') and two matrix multiplications (to
compute H and q).

69

5 Haplotype Inference on Pedigrees

The L-reduction

We accomplish the proof that MINEHC reduces to NCP in the following two
lemmas: we first show (Lemma 5.12) how to reconstruct in polynomial-time a
solution of a MINEHC instance given a solution for the associated NCP instance,
and then we show how to compute (in polynomial-time) a solution for an instance I’
of NCP associated with an instance I of MINEHC given a solution for I. Both the
transformations preserve the solution’s costs, hence the reduction is an L-reduction
with parameters 8 =~ = 1.

Lemma 5.12. Let I = (A, As s Th,s, s, b) be an instance of MINEHC and
I' = (H,y) the NCP instance associated with I. Then, given a solution e of
NCP on I, it is possible to compute in polynomial-time a haplotype configuration
(Zn,s, Ts,u) of I that induces ||e|| variation events.

Proof. Let n be the number of rows of Ay, (or As), m1 be the number of columns
of Ap s, and mg be the number of columns of As,. We want to prove that x5, :=e
is a partial solution of the linear system Ay ;v s + As 25, = b, or, in other words,
that the linear system Aj sz = b+ Aj e is consistent (i.e. that admits at least
one solution). For concision, denote with M the matrix A, and with ¢ the vector
b+ Aspe. A well-known result in linear algebra (see, for example, Sect. 2.3 of [87])
states that the linear system Mz, = ¢ is consistent iff the rank of matrix M is
equal to the rank of the augmented matrix (M]|t) (i.e. the matrix obtained from
M by adding one new column equals to the vector). Since the rank of matrix M
is the maximum number of its independent rows, to achieve the consistency of the
system Mz, ; = t we have to prove that a subset of rows of M is linearly dependent
iff the same subset of rows of (M |t) is linearly dependent. In other words we have
to prove that, for each row vector d € Z% such that d - M = 07 we have that
d- (M|t) = 0T and vice versa.

(=-part) By construction, vector d" is precisely an element of the subspace
ker(A{ s)- Recall that the construction of the instance I’ uses a rxn matrix V whose
rows form a basis of ker(Ag; s)- Therefore there exists a row vector oy € Zj such

that ag-V = d. Since d- M = 07, we have ag- V- M = 07 Let us consider the row
vector z := d- (M|t). We want to show that z = 07. Since (M]|t) is the augmented
matrix of M, the first my elements of z are equal to d- M, and hence are zeros. The
last element, instead, is equal to d-t = d-(b+As-€) = aq-V-b+aq-V-As,,-e. Since
e is a solution of I’, we have that V- A5 ,-e = V-b, thus d-t = aq-V-b+aq-V-b =0,
and hence d - (M|t) = 0T completing this part of the proof.

(<=-part) If d-(M|t) = 07, we have to prove that d- M = 0. As noted before, the
first m1 elements of vector d-(M|t) are equal to vector d-M, and since d-(M|t) = 07,
we have d - M = 07, completing the proof.

70

5.4 A Heuristic Algorithm for MINEHC

As a consequence, the rank of M is equal to the rank of (M|t), implying that
there exists a vector Ty, s such that Ay sTp s + As e = b. In other words, the pair
of vectors (Zps,7s,) with Zs, = e is a consistent haplotype configuration, and
induces exactly |le|| variation events. O

Now we prove that a solution of the NCP instance I’ associated with a MINEHC
instance I can be computed in polynomial-time starting from a solution of I and
preserving the cost.

Lemma 5.13. Let S = (Zp4,%5,) be a solution of MINEHC on the instance
I = (Aps, Asp,h s, T5,,b) and let I' = (H,q) the NCP instance associated with
I. Then, vector e := T, is a solution of NCP on I'.

Proof. Since S is a solution for I, we have Ay, - Zp s + Asy - ©5, = b. Recall that
the construction of the instance I’ uses a matrix V' whose rows form a basis of
ker(Ai). Multiplying each side of the previous equation by V', we obtain V - Ay, -
Ths+ V- As, - 25, =V -b. By construction each row vl of V, is an element of
ker(Ais), thus Ag,s v = (vl Ahys)T = 0. Therefore V' - A, is a all-zero matrix
and, as a consequence, V - Ap s Tps+V - A5y - Ts, =V - A5y -Ts, =V - b Since
H :=VAs, and q := V - b, we can conclude that e := T, is a solution of NCP on
the instance I’. Clearly, the number of variation events induced by the haplotype
configuration S is equal to ||Zs [= |le||- O

The following corollary easily derives from Lemma 5.12 and Lemma 5.13.
Corollary 5.14. MINEHC is L-reducible to NCP with parameters § =~ = 1.

An immediate (positive) result is that MINEHC is O(l/log!)-approximable
(where [is the number of 0- and p-variables), since (i) there exists a polynomial-
time O(l/logl)-approximation algorithm for NCP [4], and (i) the L-reduction
preserves the solutions’ costs. This result, however, is mainly of theoretical interest
because the approximation bound is too much large. Indeed, on real data, only
a small number of genetic events are expected to occur, much smaller than the
number [of all possible events. Unfortunately, no (significantly) better approxima-
tion algorithms are known and, moreover, if P 2 NP the NCP problem cannot be
approximated within any constant factor (i.e. NCP ¢ APX) [5].

5.4.3 The Heuristic Algorithm

In this section, we present an efficient heuristic algorithm that solves the MINEHC
problem. In addition, this heuristic can be also used to solve the MINRHC and the
MINMHC problem by restricting the kind of variation events that are allowed.

71

5 Haplotype Inference on Pedigrees

The algorithm is based on the L-reduction from MINEHC to NCP that has
been presented in the previous section. As discussed above, there does not exist
algorithms that can guarantee a good (i.e. constant) approximation ratio unless
P = NP. Nevertheless, an effective and efficient heuristic is known since the work of
Gallager in 1963 [44]: the sum-product (SP) algorithm (independently proposed in
a different field as belief-propagation algorithm [95]). We will briefly and informally
explains how the SP algorithm is used as a decoder of a linear code. Suppose that a
source want to send a k-bit message x to a destination. To do that, it encodes x in
a codeword y computed as y = x - G for a suitable k x n matrix G. The destination
receives a different message 3 because the channel added some errors, thus § = y—+e.
The aim at the destination side is to recover the original codeword y (and hence
the original message x) from . From matrix G (called generator matrix), it is
possible to compute a check matrix H such that H -y = 0 iff y is a codeword of
the code (i.e. if there exists x such that y = x - G). Since y = § + e, it suffices to
reconstruct the error vector e to recover the original codeword y. The SP algorithm,
in this context, computes for each bit e[i] an approximation of the likelihood that
eli] is 1 based on the vector ¢ = H - § and on the matrix H. The check matrix H
represents a set of (parity) constraints, while vector ¢, called syndrome, represents
the constraints that are not satisfied by the received message 7.

Our idea is to consider the variation events (recombinations and mutations) as
the “errors” that we have to reconstruct and, once the “errors” (variation events)
have been determined, it is easy to reconstruct the haplotyped pedigree (by the
Gauss elimination algorithm). The L-reduction of Corollary 5.14 formalizes this
idea: the check matrix H and the syndrome ¢ are obtained from the genotyped
pedigree (represented by the matrices Aj s and As) as illustrated in the previous
section. The likelihoods computed by SP algorithm on this instance represents
the likelihoods that each J- or u-variable is equal to 1. In other words, for each
possible variation event, it computes the likelihood that the event has occurred on
the pedigree.

The heuristic approach that we propose iteratively adds the most likely variation
event (as computed by the SP algorithm) to a set E of imputed variation events
until a haplotype configuration that induces exactly the imputed events can be
found. Given a set of variation events FE, the reconstruction of the haplotype
configuration that induces F can be performed efficiently. Indeed it suffices to
solve the linear system of Lemma 5.11 with the §- and p-variables assigned to 1 if
the corresponding event (the mutation or the recombination they represent) belongs
to E, or 0 otherwise.

The details of the approach are given in Algorithm 6. In particular, lines 1-2,
compute the NCP instance I’ = (H, q) associated with the genotyped pedigree P.
Initially (line 3), no variation events are imputed, thus £ = @ and N contains
all the variables that represent a variation event (4- and p-variables). Since the

72

5.4 A Heuristic Algorithm for MINEHC

Algorithm 6: The heuristic algorithm for MINEHC
Data: A genotyped pedigree F,.
Result: A haplotype configuration consistent with P,.
1 Let I = (Ans, As i, Ths, s, b) be system of Lemma 5.11 (in the form of
Eq. 5.1) associated with Py;
2 Computes the NCP instance I’ = (H, q) associated with I;
3 Let N ={e| e is a d- or y-variable} and E = &;
/* Each column of H is associated with a variable of the set NN since
H=V-As, for some matrix V. */
4 while ¢ # 0 do
L < the likelihood of each variable in N computed by the SP algorithm on
H and ¢;

6 Let €* be a variable of N s.t. L[e*] is maximum;
7 foreach row r such that H[r,e*] =1 do
8 Change the value of ¢[r] to 1 — ¢[r];
9 end
10 Remove the column associated with e* from H;
11 Move e* from N to E;
12 end

13 Set x5, [e] =1if e € E, x5,[e] = 0 otherwise;
14 Solve the system Ay, ;- xp s = b+ As - 5, in the variables xj, g;
15 return (x4, 5,);

check matrix H is computed as H = V - As,, for some matrix V, matrix H has
the same number of columns as As, which, in turn, are associated to a J- or pu-
variable. Therefore, we associate each column i of H with the d- or y-variable that
is associated with the i-th column of As ;. By a small abuse of notation, we identify
each column ¢ of H with the associated variable.

The haplotype configuration is computed in two steps: first (lines 4-12) the set
of variation events E that permits to reconstruct the haplotype configuration is
computed, and then (lines 13-14), the haplotype configuration is recovered using
the imputed events F.

The first part iteratively computes the set of variation events. Using the SP
algorithm, it computes an event e* that most likely is induced in a haplotype
configuration consistent with the pedigree (lines 5-6). If more than one event
have the maximum likelihood, one of them is chosen at random. Once e* has
been determined, the corresponding §- or p-variable is set to 1, thus we need to
change the r-th element of the syndrome ¢ for each row r of H where e* appears
(i.e. H[r;,e*] = 1) (lines 7-9). Finally, since we update the syndrome ¢, the column

73

5 Haplotype Inference on Pedigrees

of H associated with the event e* can be removed, and the event can be moved
from the set of possible events N to the set of imputed events E. By construction,
the L-reduction guarantees that ||g|| (i.e. the weight of ¢) is equal to the number of
variation events needed to recover the haplotype configuration. As a consequence,
no more variation events are needed if ¢ = 0, and the cycle of the first part ends.

The second part (lines 13—14) reconstructs the haplotype configuration consistent
with the input genotyped pedigree by solving the linear system of Lemma 5.11 using,
as a partial solution, the set F of imputed events.

To improve clarity of the presentation we omitted to describe one step in Algo-
rithm 6. To guarantee that the algorithm finds a haplotype configuration consistent
with the genotyped pedigree, we have to check, at each iteration, if matrix H and
syndrome ¢ imply the presence or the absence of some variation events in the hap-
lotype configuration. We call such events determined events. Determined events
can be easily recognized by the Gauss elimination algorithm. Indeed, they corre-
sponds to the variables that do not depend to free variables in the solution of the
linear system H - x = s. (Recall that the NCP problem Therefore by applying
the Gauss elimination algorithm on (H|s) and removing the determined events at
the beginning of each iteration, we can guarantee that the algorithm finds a haplo-
type configuration consistent with the genotyped pedigree (if such a configuration
exists).

One important remark is in order. The sum-product algorithm (used in line 5)
receives as an additional input, for each variation event e, the prior probability that
e has occurred. Although we did not deeply investigate such possibility, this char-
acteristic could be extremely useful to model recombination hotspots (by increasing
the prior probability of recombination events in regions where recombinations oc-
curs more frequently), to differentiate the rate of recombinations and mutations
(i.e. by increasing the prior probability of a recombination event with respect to a
mutation event), and/or to model additional knowledge about the input genotypes.
This peculiar characteristic could mix the pure combinatorial formulation of the
problem presented here with some elements of pure statistical-based methods.

The time complexity of the heuristic is determined by several parameters. Let n
be the number of individuals in the genotyped pedigree and m the length of their
genotype. Matrix Ay, s has at most 2nm rows (one for each locus of each haplotype)
and at most nm + 2n columns (one for each locus of each paternal haplotype plus
2 s-variables for each individual). Similarly, matrix As, has at most 2nm rows
(actually the same number of rows of Ay, ;) and at most 4nm columns (one for each
possible variation events, 2nm for the mutations and 2nm for the recombinations).
The NCP instance I’ is calculated by the Gauss elimination algorithm on A;-LF’ s
(that requires O(n®*m?) time) and two matrix multiplications (that require O(n3m3)
time). The check-matrix H has O(nm) rows and at most 4nm columns (one for each

74

5.5 Experimental Results

variation event). Therefore the reduction from the pedigree to the NCP instance
is computed in O(n®m3) time. The time required by each iteration is bounded
by O(n3m3) since the check of the existence of predetermined events (by Gaussian
elimination) requires O(n3m3) time, the SP algorithm requires linear-time in the
number of one-entries of matrix H, and the other operations that update matrix H
and vector ¢ can be accomplished in O(n?m?) time. The resolution of the final linear
system can be performed in O(n3m?) time by the Gauss elimination algorithm. Let
k be the number of events that are imputed, then the overall time complexity of
the heuristic is O(kn3m?).

5.5 Experimental Results

Our approach has been experimentally analyzed under several simulated scenarios
to evaluate the quality of the results that produce and its running time. We mainly
judge the quality of the results in term of number of events that are induced in
the computed haplotype configuration, since our primary aim is the design of a
heuristic that solves the MINEHC problem. We chose to not compare our results
with the results obtained by statistical-based methods because they are based on
different genetic model thus, as pointed out in [45, 102], the ML solution may be
suboptimal in the MINEHC sense (i.e. it may induce a number of recombinants
greater than the minimum). Moreover, even the minimum size of an instance we
considered is not practical for many statistical-based methods.

The experimental analysis is divided in 2 parts. In the first part we applied our
heuristic to various randomly generated MINEHC instances and we evaluated per-
formances and accuracy (in term of number of events and number of haplotype loci
not correctly reconstructed). In the second part, we adapted our approach in order
to allow only recombination events and we compared it with PedPhase v2.1 [78]
(see also Section 3.3.3), an ILP-based combinatorial approach that solves exactly
the MINRHC problem. The primary aim of this part is to compare the number of
recombinant induced by a heuristic solution and the minimum number of recombi-
nant as computed by the exact method. Moreover we also compared the running
times required by the two methods.

In synthesis, the analysis has revealed that our approach is able to handle mod-
erately large instances (40 individuals and 100 loci) in at most few minutes on a
standard PC. Even if it cannot guarantee a worst-case approximation factor, our
heuristic was able to determine extremely good solutions in almost all cases. More-
over the preliminary comparison with PedPhase v2.1 has revealed that in 599 cases
over 600, our approach was able to recover an optimal solution 4-5 times faster
than PedPhase.

In the following sections we present the two parts of the experimental analysis.

75

5 Haplotype Inference on Pedigrees

5.5.1 Solving MinEHC

Our experimentation involved randomly generated instances (on both the structure
of the pedigree and the set of genotypes) under several choices of 4 parameters: pop-
ulation size (n), genotype length (m), recombination probability (6,), and mutation
probability (u,). For each choice of the parameters, 6 different random pedigree
graphs on n individuals have been generated, and for each pedigree graph 5 differ-
ent haplotype configurations over a set of m loci has been generated (a total of 30
haplotype configurations for each choice of the parameters). During the random
generation of the haplotypes, we applied a variation event at each locus with prob-
ability 6, for recombinations and p, for mutations. Then the genotypes has been
obtained as conflation of the generated haplotypes. Finally we removed from the
haplotype configuration all those events whose removal did not changed any geno-
type. We changed the generated haplotypes according with the removal of those
events. An example of such removed events is a mutation between a founder and
its only child in a locus where the founder is heterozygous: clearly in this case the
mutation cannot be distinguished from the case in which the alleles of the paternal
and the maternal haplotype are exchanged. (It is the same basic principle that we
employed in the L-reduction from MIN EDGE-BIPARTIZATION-R3 to MINMHC,
see, for example, Property 5.5.)

We generated two kinds of pedigrees: tree pedigrees and pedigrees with mating
loops. In both cases, we modeled the presence of nuclear families with several
children and the presence of some individuals with more than one mate.

For each instance, we ran our heuristic 10 times and we picked the solution with
the minimum number of induced events. At each execution we changed the prior
probability of the sum-product algorithm linearly in a range [ppin, Pmaz). We chose
(arbitrarily) ppin = 0.001 and pyqe,; = 0.125 for recombinations and p,i, = 0.00075
and pmgz = 0.100 for mutations. In this way, we empirically modelled an higher
recombination rate compared with the mutation rate, as observed in several studies
in humans [88, 106, 107, 121]. We considered as running time of the heuristic on
each instance the sum of the running time of all the 10 executions.

We evaluated the quality of the results with 3 measures: precision, phase error,
and approxrimation ratio. Precision is defined as the ratio between the number
of events that have been correctly predicted and the number of events that have
been predicted. An event is considered correctly predicted if it is contained in
the generated haplotype configuration and in the haplotype configuration that has
been reconstructed by our heuristic approach. Phase error is the ratio between
the number of heterozygous loci whose phase has not been correctly predicted
and the total number of heterozygous loci. The phase of locus [in individual ¢
is considered correctly predicted if the allele of the paternal haplotype at locus [
in the generated haplotype configuration coincides with the allele of the paternal

76

5.5 Experimental Results

Table 5.1: Summary of the results obtained increasing the size (n) of the population.
The other parameters are: m = 40, 6, = 0.02, pu, = 0.004.

Tree pedigrees General pedigrees
Population size n = 40 60 100 40 60 100 Mean
Avg. no. of heterozygous loci 813 1206 2001 796 1194 1988 1333

Avg. no. of generated events 22.0 30.4 55.2 25.5 35.8 63.6 38.7
Avg. no. of predicted events 21.3 29.5 53.2 24.5 34.9 61.8 37.5

Avg. precision 0.787 0.744 0.768 0.778 0.812 0.809 0.783
Avg. phase error 0.027 0.029 0.028 0.022 0.024 0.024 0.026
Avg. approximation ratio 0.968 0.975 0.965 0.963 0.975 0.972 0.970
Avg. time (s) 36 73 265 62 118 460 169

haplotype at locus [in the haplotype configuration that has been computed by
our heuristic. The approximation ratio, instead, is the ratio between the number
of events in our solution and the number of events in the generated haplotype
configuration. Approximation ratio can be less than 1.0 because the generated
haplotype configuration could be not-optimal. In these cases, our approach has
found a better (in term of number of variation events) haplotype configuration
than the generated one. Finally we also evaluated the total running time required
by the heuristic.

We chose a base set of values for the parameters n, m, 6,., and u, and we con-
ducted three series of tests. In each series, we modified the value of one of these
parameters: in the first we modified the population size n, in the second we modi-
fied the genotype length m, and in the third we modified the two event probabilities
0, and p,. The base values were: population size n = 40, genotype length m = 40,
recombination probability 6, = 0.02, and mutation probability u, = 0.004.

In the first series of tests, we varied the population size n and we analysed the
cases n = 40, n = 60, and n = 100 on both tree pedigrees and “general” pedigrees
(i.e. pedigree with mating loops). Table 5.1 summarizes the results. In particular,
each column contains the results of each case, with the last one presenting the
mean computed on all the case. In the first case, we report a characteristic of the
instance, the average number of heterozygous loci in the 30 instances that have been
considered. In the second row, we report the average number of events contained
in the generated haplotype configuration, while the third row reports the average
number of events that are contained in our solution. As for the first row (and
the subsequent ones), the average is computed on the 30 instances that have been
generated. The three rows that follow report the average precision, the average
phase error, and the average approximation ratio as defined above. Finally, we
reported the running time of the heuristic (in seconds). In all cases, we obtained an
average approximation ratio always smaller than 1.0. This means that the heuristic

7

5 Haplotype Inference on Pedigrees

Table 5.2: Summary of the results obtained increasing the length (m) of the geno-
types. The other parameters are: n = 40, 6, = 0.02, pu, = 0.004.

Tree pedigrees General pedigrees
Genotype length m = 40 60 100 40 60 100 Mean
Avg. no. of heterozygous loci 806 1207 2009 800 1196 2032 1342

Avg. no. of generated events 24.0 34.7 53.2 26.4 38.0 61.0 39.6
Avg. no. of predicted events 23.1 33.0 51.2 25.7 36.9 59.6 38.3

Avg. precision 0.732 0.683 0.750 0.797 0.819 0.804 0.764
Avg. phase error 0.035 0.057 0.042 0.026 0.026 0.044 0.039
Avg. approximation ratio 0.964 0.956 0.964 0.975 0.972 0.976 0.968
Avg. time (s) 41 95 247 76 148 485 182

has been able to find a haplotype configuration that induces less variation events
than the generated one. Clearly this fact does not imply that the heuristic was
able to find the optimal solution. However this result increases our confidence
in the soundness of the approach. The values of the quality measures (precision,
phase error and approximation ratio) appear to be similar in all cases, with a
small difference between tree pedigrees and general pedigrees in favor of the last
ones. We think that this fact can be easily explained since the presence of mating
loops increases the number of constraints that the haplotype configuration must
satisfy. Our criterion for considering correct an event was quite stringent since
sometimes is not possible to univocally determine the position of a given event
based on the genotype data. In fact, precision is roughly between 75% and 80%.
Instead, phase error is usually small (2%-3%). If we interpret these values together,
we can conclude that, since phase error is small, the incorrectly predicted events
were located “near” (in term of genotype position and kinship) to the generated
ones, otherwise the error rate would be higher. In all cases, the algorithm never
required more than 6 minutes. Notice that the running time for tree pedigrees is
considerably smaller than the running time for general pedigrees.

In the second series of test, we varied the genotype length m and we considered
the following cases: m = 40, m = 60, and m = 100. Table 5.2 summarizes the
results that we obtained using the same structure of the previous table. The results
are similar to the ones obtained in the previous series, confirming the considerations
that we made.

In the third series of tests, we varied the probability of recombinations and mu-
tations. The following pairs of values (6, 1) have been considered: (0.02,0.004),
(0.04,0.01), and (0.10,0.02). The results are summarized in Table 5.3. In this case,
the quality of the results decreases with the increase of the number of generated
events. The worst results are obtained when recombination and mutation probabil-
ities are maximum (6, = 0.1, u, = 0.02). However we have to make an important

78

5.5 Experimental Results

Table 5.3: Summary of the results obtained increasing the mutation and recombi-
nation rates (6, and pu,). The other parameters are: n = 40, m = 40.

Tree pedigrees General pedigrees
Recombination prob. 6, = 0.02 0.04 0.10 0.02 0.04 0.10
Mutation probability g, = 0.004 0.01 0.02 0.004 0.01 0.02 Mean
Avg. no. of heterozygous loci 798 807 799 804 804 796 801

Avg. no. of generated events 24.5 48.8 111.5 24.9 48.9 121.8 63.4
Avg. no. of predicted events 23.8 45.7 94.8 24.0 45.8 105.3 56.6

Avg. precision 0.756 0.707 0.556 0.784 0.746 0.555 0.684
Avg. phase error 0.035 0.061 0.114 0.020 0.053 0.099 0.064
Avg. approximation ratio 0.973 0.937 0.848 0.963 0.939 0.866 0.921
Avg. time (s) 45 74 164 63 86 248 113

observation: the heuristic reconstructed a solution with much less events than the
generated haplotype configuration. This fact implies that the “real” haplotype con-
figuration deviates significantly from the parsimony principle that is assumed in the
MINEHC formulation. Our heuristic tries to reconstruct a haplotype configuration
with the minimum number of events, and computes, in this case, a haplotype con-
figuration that better suits the assumptions. Moreover, we remark that this case
is a limit case, since such an high number of variation events should not occur in
the moderately small genotyped pedigree that we considered (40 individuals and
40 loci).

Finally, we point out that, even if the average approximation factor is always less
than 1.0, in 5 cases (over 540) the heuristic computed a solution which contains a
few more events than the generated haplotype configuration.

5.5.2 Solving MinRHC

In order to empirically assess the ability of computing the haplotype configuration
that induces the minimum number of events, we compared our approach with a pop-
ular combinatorial exact method: PedPhase v2.1 [78]. Since PedPhase solves the
MINRHC problem (with missing data) but not the MINEHC problem, we modified
our approach by removing the p-variables from the linear system of Lemma 5.11
and Eq. 5.1.

We considered 600 genotyped pedigrees with different genotype length and num-
ber of recombinations. In particular, the genotyped pedigrees have been randomly
generated from a real pedigree graph with 52 individuals [81, 110]. The first two
columns of Table 5.4 reports the values of the parameters that have been used in
this part of the experimental analysis. For each choice of parameters’ values (a
row in the table), 100 random genotyped pedigrees have been generated. Table 5.4

79

5 Haplotype Inference on Pedigrees

Table 5.4: Comparison with PedPhase.

Avg. no. of computed

Genotype Number of .. Avg. time (s)
length generated recombinations

recombinations PedPhase Heuristic PedPhase Heuristic

50 10 8.87 8.87 6.41 1.21

60 10 8.82 8.82 7.69 1.47

80 15 13.41 13.41 16.46 3.31

80 20 18.02 18.04 17.18 4.2

90 20 18.07 18.07 23.61 5.22

95 15 13.48 13.48 22.44 4.61
Mean 13.45 13.45 15.63 3.34

reports in the third and fourth column the average number of recombinations that
are induced by a PedPhase’s solution and by a solution computed by our approach.
The two columns coincides, but a more in-depth analysis has revealed that for one
instance (over 600), our approach computed a sub-optimal haplotype configuration
containing 2 m that induces 22 recombinations, while PedPhase computed a hap-
lotype configuration that induces 20 recombinations. The average running time of
the two methods on each instance is reported in the last two columns of the table.
Our approach appears considerably faster than PedPhase and, in particular, our
method has never required more than 8.83s while PedPhase in one case has required
151.49s to compute the solution (data not shown).

In conclusion, we have shown that our heuristic is both accurate and efficient. We
mainly evaluated accuracy by comparing the number of the predicted events with
the number of generated events or with the number of recombinations computed
by an exact method. In almost all cases, our approach has been able to reconstruct
a solution with fewer events than the generated haplotype configuration. The algo-
rithm is reasonably fast and seems appropriate even for moderately large pedigrees
(in some our tests it was able to handle a tree pedigree with 50 individuals on 1000
loci in approximately 2.5 hours of computation on a standard PC).

80

Part ||

Alignment of Spliced Sequences

81

6 Spliced Alignments

This second part of the thesis is devoted to the investigation of a fundamental
problem involving transcripts data which is the inference of the structure of a gene
and its variants as a consequence of the splicing mechanism. This mechanism, that
takes place during the synthesis of a protein, consists in the excision of the in-
tronic (non-coding) regions of the premature mRNA (pre-mRNA) while the exonic
regions are then reconnected to re-form a single continuous molecule, the mature
mRNA, also called transcript isoform or full transcript. A complex regulatory sys-
tem mediates the splicing process which, under different conditions, may produce
alternative transcript isoforms starting from a single pre-mRNA molecule. Due to
the unpredictable combination of exonic regions in the mature-mRNA, the recon-
struction of isoforms and the determination of the gene structure underlying the
various alternative transcript isoforms cannot be completely performed in vitro.
Even the simpler task of validating in vitro putative transcript isoforms implies
high experimental costs.

On the other side, in these last years, the amount of partial transcripts available in
public databases has grown exponentially, mainly due to the increasing availability
of EST (Expressed Sequence Tag) data. An EST is just a short fragment of cDNA
(i.e. complementary DNA), produced in vitro by making a mirror copy of a mature-
mRNA. Though transcripts derive from the gene structure, they do not provide
directly the information on it and hence computational methods must be used to
predict alternative splicing events from the analysis of such sequences.

These computational methods are based on the use of alignment tools either for
the comparison of multiple ESTs from the same gene or for the single comparison
of an EST sequence against the genomic sequence (or gene).

Despite the amount of software tools for transcript analysis available today, the
computational investigation of the gene structure from transcript data still lacks
of a complete understanding of the combinatorial data structures and underlying
problems that could lead to an efficient solution of the general problem.

Motivated by the above fact, the main aim of this work of the thesis is the
formalization of basic simple combinatorial problems underlying the task of gene
structure prediction from transcript data analysis.

More precisely we formulate two combinatorial problems whose solutions can
effectively provide a basic approach for the gene structure prediction problem. First
we consider the problem of finding the possible alignments of a transcript sequence

83

6 Spliced Alignments

against a reference genomic sequence. A typical alignment of an EST against
a genomic sequence consists in the alternation of perfect matching regions and
smaller regions where sequencing errors are located. Therefore we propose the
mazimal embedding problem, that asks for the set of particular sequences, called
maximal embeddings, of common substrings between the transcript sequence and
the genomic sequence. We achieve an efficient algorithmic solution for the problem
by providing a compact graph-representation of the solutions that can be easily
constructed from the two sequences and from which maximal embeddings can be
easily enumerated. The study of the maximal embedding problem, along with the
derivation of the algorithmic solution is the subject of the present chapter.

The second problem that we consider is the choice of a single alignment of a
transcript when several different alignments exist. Instead of relying on empirical
criteria or on manual curation, we formulate the minimum factorization agreement
(MFA) problem that asks for the simplest (minimal) gene structure that “agrees”
with at least one alignment for each transcript of a set of related transcripts. Even
though the problem is computationally hard, a simple but effective preprocessing
stage permits to greatly reduce the instance size on real data and, thereafter, an
exact solution of the problem becomes feasible.

The definition and the study of the minimum factorization problem is deferred
to the next chapter, where an experimental analysis of our approach on real data
is also presented.

For basic notions about sequence alignment and comparison the interested reader
can refer to [52].

6.1 Introduction

Alternative Splicing (AS), i.e. the production of alternative transcripts from the
same gene, is the main mechanism responsible for the expansion of the transcrip-
tome (the set of transcripts generated by the genome of one organism) in eukaryotes
and it is also involved in the onset of several diseases [21].

A great extent of work has been performed to solve two basic problems on AS:
characterizing the intron-exon structure of a gene and finding the set of different
transcript isoforms that are produced from the same gene. Computational ap-
proaches to these crucial problems have been proven both effective and economical,
while software tools implementing them are made available [25, 40, 60, 66, 75, 119].
The basic ingredients of most computational approaches are represented by the
alignments of several short fragments, called ESTs, of a given transcript against
the reference genomic sequence [19, 43, 51, 64, 118, 120]. Since ESTSs are fragments
of transcript isoforms, the alignment of such sequences on the genome must consider
the effects of the splicing process, which has removed the intronic regions and has

84

6.1 Introduction

joined the exonic parts. Thus, when considering ESTs, a particular kind of align-
ment arises: the spliced alignment. The spliced alignment problem requires to com-
pute, given a spliced sequence (such as a transcript) S and a reference sequence 7', a
set {f1,..., fx} of strings such that S = f--- fx and T = pfii1 foio - fr—1ik—1 kS
Clearly, in the biological context, the spliced sequence S is an EST or a mRNA
sequence, while the reference sequence T is the genomic sequence of the locus of
the gene where the EST comes from.

Unfortunately, perfect matching between factors of the EST and factors of the
genomic sequence can hardly be achieved on real data. In fact, EST data contain
mismatches (deletion and insertions) against the genome because of sequencing er-
rors and polymorphism. A more comprehensive formulation of the spliced alignment
problem is then needed. In this formulation, given a spliced sequence S and a refer-
ence sequence T', we want to find two sets Fs = {f1,..., fr} and Fr = {f{,..., f.}
of strings such that S = f1--- fx, T = pfii1---ix—1f}s, and for each i, the edit
distance between f; and f/ is at most a small constant e (or an appropriate error
function). The sequence of pairs (f;, f/) is called spliced alignment of S on T', each
factor f; is called spliced sequence factor (or EST factor), and each f! is called
genomic factor.

Such formulation, or a similar one, is commonly (and in some cases implicitly)
used by several combinatorial methods for the alignment of spliced sequences (such
as [111, 113]) since it captures the characteristics of the classical sequencing tech-
nologies and of the vast majority of biological sequences stored in public databases.

However, allowing an approximate alignment between factors makes the spliced
alignment problem computationally harder, mainly when EST data and the ge-
nomic sequence are large. Moreover, more than one spliced alignment can exist for
the same input data and thus integrating biological meaningfulness is a primary
goal.

On the other side, finding efficient solutions to the spliced alignment problem,
though crucial, is only a preliminary step of the two main problems on AS, that
is predicting the intron-exon structure of a gene and all its full length isoforms.
Indeed, the recent literature on the topic (see [12] for a survey) points out the
need of designing algorithmic methods that allow to combine spliced alignments
of multiple ESTs, as each EST sequence provides the information on a partial
region of the whole gene. In this work we give a contribution in this direction by
proposing a quite fast algorithmic approach to the spliced alignment problem that
produces several alternative spliced alignments. In the next chapter we will study
the subsequent problem of combining the alternative spliced alignments of a set of
transcripts in order to predict the gene structure.

To develop an efficient algorithm for the spliced alignment problem, we exploit
a fundamental property of its formulation: the edit distance between each pair of
corresponding factors is small. Thus, there should be some common substrings

85

6 Spliced Alignments

between the EST factors and the genomic factors whose total length is linear in the
length of the factors and the error rate. For example, a typical (complete) exon
is approximately 50bp long and a low-quality sequence has a typical error rate of
6%. On this case, in the worst scenario we can expect that the alignment of the
expressed and genomic factors breaks up each factor in four pairs of 12bp substrings
that match perfectly. Clearly, if the sequence of perfect matching pairs is known,
it is quite easy to reconstruct a possible alignment of the factors. Based of these
observations, we propose the problem of finding a particular common subsequence
of a generic pattern P and a generic text T', that we call embedding, consisting of
common substrings, or factors, between P and T from which a spliced alignment of
the sequence P on T is recovered. We show that more than one embedding of P in
T can be possible. A key result of this work is that we can compute efficiently each
embedding from a graph having vertex set V' consisting of all possible mazimal
pairings of P and T. A maximal pairing of P and T generalizes the notion of
maximal pair of a sequence [52] and it provides the occurrence on P and T of a
maximal common substring of P and T'. The vertex set V' can be computed in time
linear in the size of P, T' and the size k of the output, that is &k = |V|. Edges of
the graph are computed in time at most O(k?), leading to a very fast algorithm to
compute spliced alignments of P on T'.

The chapter is organized as follows. In Section 6.2 the problem of finding all the
embeddings of a pattern in a text is formalized. A graph representation of the solu-
tions (called Maximal Embedding Graph) is introduced in Section 6.3. The problem
of finding all the embeddings of a pattern in a text is solved in Section 6.4 via a
second representation of the solutions called Compact Maximal Embedding Graph
whose basic properties and relationships with the Maximal Embedding Graph are
presented in Section 6.4.1. The Compact Maximal Embedding Graph achieves a
two-fold objective: () it is possible to efficiently reconstruct the Maximal Embed-
ding Graph from it (as shown in Section 6.4.2 and 6.4.3), and (i7) it can be efficiently
constructed (as shown in Section 6.4.4). In Section 6.5 we discuss an efficient al-
gorithm that, given a Compact Maximal Embedding Graph, reconstructs a set of
possible spliced alignments of a expressed sequence against a genomic sequence.

The experimental analysis of the algorithm is deferred to the next chapter, where
the problem of determining a gene structure that agrees with a spliced alignment
of each EST sequence is addressed and solved.

6.2 The Maximal Embedding Problem

According to the traditional notations, given a string S = s1s2--- 54, we denote
with S[i, j] the substring s;s,41 - - - s; and with |S| its length.

86

6.2 The Maximal Embedding Problem

The fundamental concept of our approach is represented by the concept of pairing
(or common pair in [52]) of two strings. Given two strings, namely a pattern P and a
text T, a pairing of P and T is a triplet (p, t, 1) such that P[p, p+1—1] = T[t, t+1—1].
In other words, a pairing (p,t,[) represents a common substring z (or factor) of P
and T of length [occurring in position p and ¢t on P and T respectively. We call p
and t the starting position on P and T respectively, p+1 and t+1 the ending position
on P and T respectively, while [is the length of the pairing. On the remainder, for
brevity we will omit the specification of the two strings P and T which a pairing
refers to.

Let f be the common factor represented by a pairing v = (p,t,1). Since every
substring of f is a common factor too, for each §; and 2 such that 0 < §; <[and
01 < 09 <1 — 01, the triplet v' = (p+ d1,t + 1,1 — d2) is a pairing.

This fact leads to the order relation < among pairings. Let v1 = (p1,t1,01) and
vy = (p2, ta, l2) be two pairings, then v; < vy if and only if po < p; < p1+11 < P2+l
and p; — pg = t1 — to. Then we say that vy is a sub-pairing of ve, or vy contains
v1. Moreover, we say that vy is a prefiz-pairing (suffiz-pairing, resp.) of ve iff v; is
contained in ve and the starting positions (the ending positions, resp.) of v; and
v9 on P and T are equal.

Based on the order relation < we can define the concepts related to maximality
of pairings. A pairing v is left-maximal if and only if it is not a suffix-pairing of
a distinct pairing v’. On the other hand, a pairing v is right-mazimal if and only
if it is not a prefix-pairing of a distinct pairing v’. Finally, a pairing is maximal if
it is both left-maximal and right-maximal. Notice that an alternative definition of
left-maximality and right-maximality is possible. Indeed, a pairing (p,t,1) is left-
maximal (right-maximal) if the character at position p — 1 (p + [, resp.) on P is
different from the character at position t — 1 (¢t + [, resp.) on 7. In other words, a
left-maximal (right-maximal) pairing cannot be “extended” to the left (right) since
the character to the immediate left (right) of the occurrence of the common factor
on P is different from the character to the immediate left (right) of the occurrence
of the common factor on 7'

The following example clarifies some of the concepts defined so far.

Example 6.1. Consider the strings P = cbac and T = ccabbaabbacc. Then the
triplets v1 = (2,5,2) and vp = (2,9, 2) are two pairings that represent the common
factor ba. The first pairing, v1, is maximal, while the second one, v9, is not. In
fact, pairing v; cannot be extended to the left since P[1] = ¢ # T[4] = b, neither
to the right since P[4] = ¢ # T'[7] = a. Instead, pairing vy can be extended to the
right since P[4] = ¢ = T[11]. Thus, pairing v3 = (2,9, 3) contains vy and v is a
prefix-pairing of vs.

In this work we are interested in the computation of a sequence of pairings of P
and T that allows to decompose P into factors from which we can recover a spliced

87

6 Spliced Alignments

alignment of P on T". This is formalized by the notion of embedding of P in T" which
consists of a sequence of pairings ((p1,t1,01), - , (Pn, tn, ln)) such that p;+1; < pi11
and t; + 1; < tj4q for each 1 <1i < n. An embedding € is an (¢, g)-embedding if for
each i, [; > ¢ and p;y1 — (pi + ;) < g, for £, g positive integers. The parameter g
represents an upper bound on the number of consecutive mismatches that we admit
between the pattern P and the text T in a spliced alignment, while ¢ is a lower
bound on the number of consecutive matches.

Various notions of maximality have been used in Computational Biology to ad-
dress the issue of reporting (possibly) meaningful common (or repetitive) structures
of biological sequences without generating an excessive large output (see, i.e. , the
classical problem of maximal local alignment [100]). For the same reason, we extend
the order relation < between pairings to pairs of embeddings and, based on this, we
derive the notion of maximal embeddings. Given two embeddings ¢ = (vy,--- ,v,)
and ¢ = (v],---,vl,), then e is contained in &’ (in short ¢ C &) if and only if for
each v; in € there exists a pairing v} in ¢’ such that v; < v}. Given the set £ of the
embeddings of P in T, we say that ¢ € £ is mazimal iff there does not exist & € £
such that e C &',

Since an embedding could provide the information for reconstructing a spliced
alignment of a pattern P on a text T and since, as pointed out earlier, a notion of
maximality is a common tool to filter out (probably) meaningless results, we propose
the problem of finding all the maximal (¢, g)-embeddings of P in T, formalized as
follows.

Problem 12. MAXIMAL EMBEDDING PROBLEM.
Input: A pattern P, a text T, and two parameters ¢ and g.
Output: The set Epgy of the maximal (¢, g)-embeddings of P in T'.

For simplicity, in the following we refer to a maximal (¢, g)-embedding as a max-
imal embedding.

6.3 The Maximal Embedding Graph

A useful representation of the set of all maximal embeddings of a pattern P in a
text T is provided by the Maximal Embedding Graph (in short MEG) defined as
follows.

Definition 6.1 (MEG). Given a pattern P and a text T', the Maximal Embedding
Graph (MEG) of P and T is a directed graph G = (V, E) where V is the set of
pairings that appear in some maximal embedding of P in T, and F is the set of
arcs from v; to v; such that v; and v; are two consecutive pairings in some maximal
embedding.

88

6.3 The Maximal Embedding Graph

Property 6.1 highlights a first important connection between paths of the MEG
and embeddings. Such a connection will be further expanded in Corollary 6.5,
where a bijection between maximal embeddings and maximal paths will be proved.
We define maximal path a path that connects a source of the graph (i.e. a vertex
without incoming arcs) to a sink (i.e. a vertex without outgoing arcs).

Property 6.1. Let G be the MEG of a pattern P and a textT'. Then, the sequence
of vertices of a path P of G is the sequence of pairings of an embedding €(P) of P
and T. Moreover, the sequence of pairings of a maximal embedding € of P and T
is a maximal path P(e) of G.

Proof. The first part is a consequence of the definitions of embedding and MEG
(Def. 6.1). For the second part, notice that if v; or v; were not a source or a
sink respectively, then we could extend P(e) by adding some other vertices. Thus,
the extended path is a new embedding that strictly contains e, contradicting its
maximality. O

The previous property establishes one direction of the bijection we want to prove.
Before presenting the other direction (Lemma 6.4), we need to prove the following
intermediate results.

Lemma 6.2. Let v; = (p;,t;,l;) and v; = (pj,tj,1;) be two pairings connected by
an edge (v;,v;) of the MEG G = (V,E) of P and T. Then there does not exist a
pairing v s.t. v; 2 v and vj X v.

Proof. Assume to the contrary that there exists a vertex v s.t. v; < v and v; < v
and (v;,v;) € E. Clearly, the triplet v' = (p;, ti, p; + Ij — p;) is a sub-pairing of v.
Consider the sequence of pairings of an embedding £ containing consecutively vy
and vy, and replace these two pairings by v'. The resulting sequence &’ is trivially
an embedding because vy is a prefix-pairing of v/, and vy is a suffix-pairing of
v”. Moreover, the embedding ¢’ strictly contains the embedding €. Thus ¢ C &'
and therefore there does not exist a maximal embedding containing vy and wo,

contradicting the existence of (vq,v2) in the MEG. O

Lemma 6.3. Let P; and Po be two maximal paths. Then the sequence of vertices
of P1 does not form a subsequence of the vertices of Pa.

Proof. To the contrary, suppose that P; is a subsequence of P,. Since P; and Po
are maximal paths, then at least two consecutive vertices of P; are not consecutive
in Py. Let v; and v;41 be such vertices and let P’ be the sub-path of Py which
connects v; to v;41. By the definition of MEG, there exists a maximal embedding
¢ in which v; and v; 41 appear consecutively. Replacing v; and v; 11 in € with P/, we
obtain an embedding ¢’ that strictly contains ¢, contradicting its maximality. [

89

6 Spliced Alignments

We are now ready to prove the other direction of the bijection between maximal
paths and maximal embeddings.

Lemma 6.4. Every mazimal path P in the MEG is a mazimal embedding e(P).

Proof. By Property 6.1 the path P is an embedding (P). We will show by absurd
that € := ¢(P) is maximal. Assume that € is not maximal. Then there exists a path
P’ such that the embedding & := e(P’) strictly contains . First notice that, by
Lemma 6.3, P does not form a subsequence of P’. Therefore, there exists a pairing
v; = (piyti, ;) € € and a pairing o' = (p/,t/,1") € &’ s.t. v; < v'. The following cases
may arise.

-p =pi < pi+l; <p+1U'. By Lemma 6.2 we have p’ +1' < p;11 and
t'+1' < t;11. By construction of the MEG, there exists a maximal embedding
¢’ which contains v; and v; 1. By replacing v; with v" in €’, we obtain an
embedding that contains €”, contradicting its maximality.

-p <pi<pi+1l;=p +1. By Lemma 6.2 we have p;_1 +1;_1 < p' and t;_1 +
l;_1 < t'. By construction of the MEG, there exists a maximal embedding
¢’ which contains v;_1 and v;. By replacing v; with v" in €’, we obtain an
embedding that contains &”, contradicting its maximality.

-p < pi <pi+1; <p +1'. There exists a sub-pairing v" of v' having the
same starting position of v; on P and T. By replacing v’ with v”, the proof
continues as in the previous first case.

- If pairing v; is a sink (in the first case) or v; is a source (in the second case),
then there exists a maximal embedding ¢” which contains v;. By replacing v;
with v’ in €”, we obtain an embedding that strictly contains ”, contradicting
its maximality.

In every case we reach a contradiction, thus the embedding £(P) is maximal. [J

Clearly the bijection easily derives from the definition of MEG, from Property 6.1,
and from Lemma 6.4.

Corollary 6.5. Let G be the MEG of a pattern P and a text T. Then every
mazimal embedding € of P in T is a mazimal path P(e) of G and, conversely, every
maximal path P of G is a mazimal embedding e(P) of P in T.

6.4 Solving the Maximal Embedding Problem

The MEG is a representation of the solutions of the Maximal Embedding problem,
but an algorithm that efficiently constructs it from the pattern P and the text T

90

6.4 Solving the Maximal Embedding Problem

does not appear immediate. Therefore we propose the Compact Mazimal Embedding
Graph (CMEG): a graph that can be efficiently built from the two sequences, and
from which the whole MEG can be reconstructed.

In the first part of this section, we start from the definition of the CMEG and we
explore the theoretical relationships between the MEG and the associated CMEG.
In particular we will show a direct characterization of its edge set, characterization
that will be used in the construction of the CMEG itself. Unfortunately the CMEG
loses the simple bijection between maximal (¢, g)-embeddings and maximal paths of
the MEG that derives from Corollary 6.5. However we will show that we can identify
some particular paths of the CMEG that are related to maximal (¢, g)-embeddings.
These paths are called extended mazimal paths and connect two particular kinds of
vertices: extended sources and extended sinks. Lemma 6.8 and Lemma 6.9 prove
two properties that permit us to recognize such vertices and paths.

The second part of this section will clarify the relationship between a path of
the CMEG and a set of embeddings. Indeed, Algorithm 7 is a procedure for com-
puting a set of embeddings from a path of the CMEG. In particular we show that
such procedure computes a set of maximal embeddings if the input path is an ex-
tended maximal path. Moreover, if we restrict our attention to all bounded-length
extended maximal paths, Algorithm 7 provides a way to reconstruct all maximal
(¢, g)-embeddings. Such strategy, though theoretically correct, is inefficient. There-
fore, in the third part of this section we propose an algorithm that, given a CMEG
H = (V' E'), reconstructs the MEG G = (V, E) which H is associated to. Clearly,
by virtue of Corollary 6.5, from the MEG G we can then easily enumerate the
set (or a significant part) of all maximal embeddings. The time complexity of the
MEG reconstruction procedure is linear in the size | V |+ | E'| of the MEG plus the
additional time required by a data structure that stores the intermediate results of
the reconstruction. A careful choice of this data structure could achieve amortized
linear time in the size of V.

Besides of being able to efficiently enumerate all maximal embeddings, the use of
CMEG is also motivated by the fact that it can be efficiently constructed starting
from the pattern P and the text T. The fourth part of this section will delineate
the main ideas underlying an algorithm that builds the CMEG in linear time in
the total length of sequences P and T and in quadratic time in the total number of
maximal pairings V’. Since we are requiring that the length of a pairing is at least
£, the number of maximal pairings is expected to be low in practice and, thus, the
time complexity of this algorithm is acceptable.

Summarizing, the four parts of this section provide an efficient two-step algorithm
that solves the Maximal Embedding problem. Indeed, given the pattern P and the
text T, we can first build the CMEG H = (V',E’) of P and T in time O(| P |+
| T |+ |V'|?), and then we can use the CMEG to reconstruct the MEG G = (V, E)

91

6 Spliced Alignments

in amortized time O(|V |+ | E|). An optional third step could visit the MEG G to
explicitly enumerate all the maximal embeddings.

6.4.1 The Compact Maximal Embedding Graph

Before introducing the formal definition of a CMEG, we need to state the following
basic property of pairings:

Lemma 6.6. For each pairing v of a pattern P and a text T, there exists exactly
one mazimal pairing that contains v.

Proof. Let v be the pairing (p,t,l) and suppose, by absurd, that two non-
comparable maximal pairings, v1 = (p1,t1,01) and ve = (p2,ta,l2), contain v.
Since v = v; and v X vg, then p — p; =t —+¢; and p — po = ¢t — to. Thus, by
combining the previous two equalities, we obtain po — p; = to — t1. Without loss of
generality suppose that p; < ps. Since vy and vy are not comparable, the ending
positions of v1 on P and T are strictly smaller than the ending positions of v3 on P
and T respectively. Moreover, since v is a sub-pairing of both v; and vy, the ending
positions of v1 on P and T are strictly greater than the starting positions of v9 on P
and T'. Consider the first characters on P and T to the right of the common factor
represented by the pairing v;. Their positions on P and T are p; + /7 and t1 + I3
respectively. Since ps — p1 = to — t1 = J, the expressions p; + ;1 and t; + {1 can be
rewritten as po — d +1; and t3 — § +1;. The quantity —d + [is a positive constant
not greater than ly. Thus ps — d + 11 and t2 — § 4+ [; are internal positions of vo on
P and T, which implies that P[py + 1] = Plpo =0+ 1] = T[to — 0 + 1] = T[t1 + la].
In other words, v] = (p1,t1,01 + 1) is a pairing which contains vy, contradicting the
maximality of vy. O

The above property allows us to define a function ¢ from the set of vertices V'
of a MEG G = (V, E) to the set of maximal pairings V’ such that associates to
pairing v the maximal pairing ¢(v) which contains v. The CMEG is then obtained
by replacing each pairing v of the MEG with the maximal pairing ¢(v), and by
connecting two maximal pairings v} and v} if a sub-pairing of v} is connected to a
sub-pairing of v} in the MEG.

More formally we have the following definition.

Definition 6.2 (CMEG). The Compact Mazimal Embedding Graph (CMEG) as-
sociated to a MEG G = (V, E) is the graph H = (V’/, E’) such that V' = {¢(v) |
veV}and E' = {((¢(v1), p(v2)) | (v1,02) € E}.

Figure 6.1 depicts the MEG and the CMEG that represent the maximal (¢, g)-
embeddings (with £ = 2 and g = 1) of the string P = aabedddde in T' = aabbeddde.

92

6.4 Solving the Maximal Embedding Problem

(0,0,3) (0,0,3)

](2,3,2)\](2,3,4)\](2,3,5)\](2,3,3)\](3,4,3)\](3,4,2)\](3,4,4)\ (2,3,5)

(5,5,4) W (5.5,4)
(a) The MEG (b) The CMEG

Figure 6.1: An example of a MEG and the associated CMEG for strings P =
aabcdddde and T = aabbeddde.

A crucial step in the direct construction of the CMEG (without resorting to the
MEG) is the computation of its edge set starting from the set of maximal pairings.
The following property gives a characterization of the edges of the CMEG based
on the characteristics of the maximal pairings they connect.

Property 6.7. Let G = (V,E) be a MEG and let H = (V',E’) be the CMEG
associated to G. Then (v1,v2) is an edge of H if and only if:

-p1+20 <po+ly and t; + 20 <ty + s (¢-conditions)

-p2<p1+li+gand (p2 —p1) — (ta — t1) < g (g-conditions)
where v1 = (p1,t1,11) and vy = (p2,ta,la) are two mazximal pairings.

Proof. Recall that we are only interested in maximal (¢, g)-embeddings. First, note
that if (v1,v2) € E’ then there exists an edge (vs, v4) in G such that ¢(v3) = v1 and
¢(v4) = v2, and, hence, p1 < p3 < p3+13 <p1 +11 and pr < pg < ps+1ls < pa + 1o,
where vs = (ps, t3,l3) and vg = (pa, ta,ls).

By the definition of MEG (Def. 6.1) and the definition of (¢, g)-embedding, we
have p; < p3 <p3+ L < p3+13 < ps <psg+L€<py+1ly < p2+la, which proves the
first /-condition. Similar arguments on t; and I; for i = {1,2,3,4} show that also
the second ¢-condition holds.

The first g-condition is a direct consequence of the definition of MEG. It remains
to prove the second g-condition. Let §1 = p3 — p1 and dy = (p2 + l2) — (pa + 14).
In other words, §; and Jo are the differences between the starting positions of wvs
and v; and between the ending positions of vs and vy, respectively. Consider now
the sum I3 + l4. Clearly such sum cannot be greater than the minimum between
po+1ly —p1 — 01 — 62 and to + Iy — t1 — (51 + 52) By the definition of MEG, we
have that the difference ¢, between the starting position of v4 on P and the ending
position of v3 on P is not greater than g. But d, is equal to pa+ 1o —p1 — (61 +d2) —

93

6 Spliced Alignments

(I3 4+ 14). By applying the upper-bound of the sum I3 + l4 stated above, we obtain
(p2+lo—p1—(01+62) —(ta+lo—t1 — (61 +02)) = (p2—p1) — (t2a —t1) < 9y < g,
that proves the second g-condition.

Clearly, given two maximal pairings that meet the ¢- and g-conditions, it is easy to
derive two sub-pairings that form an embedding, proving the converse (this process
will be formalized by the concept of 2-pairing set later on). The proof uses the
same idea of the if-part and thus it is omitted. O

The strong relationship between maximal paths and maximal embeddings proved
for MEGs is not longer true in CMEGs. Despite that, the following lemmas show
that it is possible to characterize the subset of vertices of the CMEG that are images
(under the function ¢) of sources and sinks of the MEG. In the reconstruction of
maximal embeddings from the CMEG, these kinds of vertices will play the same
role of sources and sinks in MEGs.

Lemma 6.8. Let G be the MEG of a pattern P and a text T, and let H be the
CMEG associated to G. Then the pairing v = (p,t,1) is a sink in G if and only
if either (i) ' = (p/,t',1) :== p(v) is a sink in H, or (i) for each successor v =
(" ") of v in H, p" + 1" <p' +1U'+ L ort"+1" <t/ +1'+¢.

Proof. Clearly if v’ is a sink of H, then also v is a sink of G. Let us concentrate on
condition (i). Assume to the contrary that there exists a successor v” of v/ such
that p/ + ' + ¢ < p”" +1" and ' +1' + ¢ < t" +1”. We will show that, under this
assumption, there exists at least a sub-pairing u of v” such that (v,u) is an edge of
G, contradicting the hypothesis that v is a sink of G. First, notice that p+1 = p'+1’
and t +1 = t' + 1’ for the same arguments of the proof of Lemma 6.4. Moreover,
observe that p’ +1' > p” and ¢’ + 1’ > ¢, otherwise (v,v”) would be an edge of
G (by Property 6.7). Now consider the sub-pairing u = (py, ty, l,) of v" such that
pu=p"+9,t, =t"+6, and I, =1" — 6 where 6 = max(p' +1I' —p" . ¢’ +1' —t").
From the hypothesis, we can conclude that [, > ¢ and, by construction and by
Property 6.7, that p+1l=p' +1I' <p, <p'+l'+g=p+i+gand t+l=t'+1' <t,.
In other words, (v, u) is an edge of GG, which concludes the proof. O

From the previous lemma we can easily derive a similar property for the sources
of the MEG.

Lemma 6.9. Let G be the MEG of a pattern P and a text T, and let H be the
CMEG associated to G. Then the pairing v = (p,t,l) is a source in G if and only
if either (i) v/ = (p/,t',1) = p(v) is a source in H, or (ii) for each predecessor
=" ") of vV in Hy p" + 0> p ort" + 0>t

Proof. Let P = pp---p1 and T = t,---t; be the reverse of the strings P =
p1--pm and T = t1---1,, respectively. The lemma derives from Lemma 6.8 on
strings P’ and T". O

94

6.4 Solving the Maximal Embedding Problem

Given a CMEG, we say that a vertex is an extended source (extended sink, resp.)
if it is the image of a source (sink, resp.) of the underlying MEG. A path of a
CMEG is a extended mazximal path if it starts from an extended source and ends in
an extended sink.

The following section will show that from all the bounded-length extended max-
imal paths we can compute the set of all maximal embeddings.

6.4.2 Reconstruction of Embeddings from a Path

In this section we introduce a procedure that can be used for obtaining all maximal
(¢, g)-embeddings from the Compact Maximal Embedding Graph of a pattern P
and a text 7. The primary concern of this section is to prove the correctness
and the completeness of such procedure, and we defer to the following section the
design of an algorithm that, based on these ideas, can efficiently solve the Maximal
Embedding problem.

To this aim, we start by describing an algorithm (see Algorithm 7) for recon-
structing a set of (¢, g)-embeddings from a path of the CMEG and we prove its
correctness (Lemma 6.10). Moreover we will show that the same algorithm applied
on the set of all bounded-length extended maximal paths computes the set of all
maximal (¢, g)-embeddings (Lemma 6.12 and Lemma 6.13).

Before introducing Algorithm 7, we need to give the preliminary notion of 2-
pairing set. In the following, we say that two pairings v; = (p1,t1,01) and v =
(p2, ta,l2) are consecutive on P (on T, resp.) if p1 + 11 < pa (t1 + {1 < tg, resp.) or
that are overlapping otherwise.

Definition 6.3 (2-pairing-set). Given two pairings v; = (p1,t1,01) and vy =
(p2,ta,l2) such that p; < p2 + lo and t; < t2 + lo, the 2-pairing set of v; and
vy is the set @ of all the pairs (v, v”) of consecutive pairings on P and T such that:

- pairing v’ is a prefix-pairing of v; whose length is at least /;
- pairing v” is a suffix-pairing of vy whose length is at least /;
- the sum of the lengths of v" and v” is maximum.

Now we can describe the recursive algorithm BuildEmbeddings for reconstruct-
ing aset £ = {e1,...,em} of (£, g)-embeddings related to a path P = (vy,...,v,) in
the CMEG of a pattern P and a text T. Subsequently we will prove that, if P is an
extended maximal path, then the set £ is composed by mazimal (¢, g)-embeddings.

If the path P is composed by a single pairing v, then the procedure returns one
embedding ¢ = (v) (Lines 1-2). The embedding ¢ is clearly an (¢, g)-embedding.

If the path P is composed by more than one node, then the procedure is recur-
sively called on the subpath P’ = (va, ..., vy,) in order to obtain the set £ of all the

95

6 Spliced Alignments

Algorithm 7: BuildEmbeddings(G, P)
Data: A CMEG graph H and a path P = (v1,...,v,) of H.
if P = (v) then
return {(v)} ;
E— T
&' — BuildEmbeddings(H, (ve, ..., vm)) ;
foreach ¢/ = (v),... v),) € £ do
if vy is link-compatible with v, then
Q «— 2-pairing set of v} and v} ;
Add (v, 0" vk, ... vl) to € for each (v/,0") € Q
end

© 000 N O Ok W N -

end
Result: A set € of (¢, g)-embeddings related to P.

[y
o

(¢, g)-embeddings related to P’ (Line 4). Then, for each embedding &’ returned by
the recursive call, the if statement at Line 6 checks if the pairing v; of the path P is
link-compatible with the first pairing v/, of the embedding &’. We say that a pairing
uq is link-compatible with a pairing ug if and only if the pair (uj,ug) meets the ¢-
and g-conditions of Property 6.7. The notion of link-compatibility is closely related
to the notion of 2-pairing set. In fact, two pairings are link-compatible if and only
if their 2-pairing set is not empty. The procedure of computing the 2-pairing set of
two link-compatible pairings is straightforward and it is omitted.

For each embedding &’ returned by the recursive call, the if statement at Line 6
checks if the pairing v; of the path P is link-compatible with the first pairing v4 of
the embedding ¢’. Then for each pair (v/,v”) that belongs to the 2-pairing set Q,
the embedding ¢’ is extended by replacing the pairing v, with v” and adding v to
the front (Lines 7-8). Let ¢” be the resulting sequence of pairings.

We can prove by induction that €’ is an embedding. By hypothesis &’ is an

/

embedding and so is the sequence (v”,v5,...,v],) since v" is a suffix-pairing of v},

whose length is at least ¢ (by definition of 2-pairing set). Adding v to the front of

(V" vk, ..., vl) produces a sequence of pairings that satisfies the properties of an

rrm

(¢, g)-embedding. Let v' = (p/,t',1') and v" = (p”,t",1”). From the definition of
2-pairing set, we have I’ > ¢, p/ +1' < p”, and t' +1' < t”. We only have to prove
that p” < p’ +1I' + g or, equivalently, that p” — p’ — I’ < g. First notice that the
procedure BuildEmbeddings maintains the following invariant (see Lemma 6.11):
The starting positions on P and T of the first pairing of the path P are equal to
the starting positions on P and T of every embedding returned by the procedure.

Three different cases must be examined in order to conclude the proof of p” —

p/_llgg'

96

6.4 Solving the Maximal Embedding Problem

- Pairings v; and vj are consecutive both on P and 7. Then the 2-pairing
set is composed by only one pair (vi,v)) (since the pairs in the 2-pairing
set must have maximum length). But v; and v} are link-compatible, thus
P=ph<pith+g=p+U+g

- Pairings v; and vj overlaps on P or T, and t) + 1, —t1 < ph + 15 — p1.
Then the sum of the lengths of the pairings of a pair in the 2-pairing set Q is
V1" =ty+15—t; = t"+1"—t'. The difference 64 = p” —p’—1' can be rewritten
as p’'+1" —p' —1U'—1" that is equal to p,+15—p1 —th—l5+t1 = (ph—p1)—(th—1t1)
and, from the second g-condition of Property 6.7, is upper-bounded by g.

- Pairings v; and v} overlaps on P or T, and ph + 5 — p; <t + 1, —t;. Then
the sum of the lengths of the pairings of a pair in the 2-pairing set Q is
UV+1" =py+15—p1 =p" +1" —p'. The difference §; = p” — p’ — I/ can be
rewritten as p” +1" —p' — 1" — 1" that is equal to p” +1" —p' —p" —1"+p' =0
thus, clearly, not greater than g.

The following lemma derives from the previous arguments.

Lemma 6.10. Algorithm BuildEmbeddings correctly computes a set € of (¢, g)-
embeddings related to the input path P of a CMEG H in time O(|E| - |P]).

Proof. The correctness of the algorithm is a consequence of the considerations pre-
sented above.

The time complexity of the algorithm is proportional to the number of the em-
beddings in £ multiplied by the length m of the path P since every operation can
be performed in constant time.]

The following lemma proves some properties of the embeddings computed by
procedure BuildEmbeddings on a path P. To simplify the exposition, we denote
by E(P) the set of embeddings computed by BuildEmbeddings on the path P.

Lemma 6.11. Let e = (v},...,v),) be an embedding of P in T that belongs to the
set E(P) where P = (v1,...,0m). Then for each 1 < i < m, we have v, = v;.
Moreover v] and vy have the same starting positions on both P and T, and v), and

v have the same ending positions on both P and T.

Proof. The properties can be easily proven by induction on the length of the path.
First, let us consider the base case in which P is composed by one pairing v. The
procedure returns a single embedding composed only by v, and the properties are
trivially verified.

Now let us suppose that the lemma holds for a path of length n and let us prove
it for n + 1. If the path has length n + 1, the embeddings of set & computed
by the recursive call at line 4 have length n and, then, they satisfy the induction

97

6 Spliced Alignments

hypothesis. Line 8 updates each embedding of £ by replacing the first pairing v5
with one of its suffix-pairings v”. Since v} is a prefix-pairing of v, it follows that
v"” < va. Moreover if v) was also the last pairing of the embedding, since v” is a
suffix-pairing of v}, the replacement of v/, with v” preserves the ending positions of
the last pairing of the embedding on both P and 7. Then, at the same line, a new
pairing is added to the front of the embedding. Such pairing is, by construction, a
prefix-pairing of vy, thus it is contained in v; and has the same starting positions (on
both P and T') of v1. Since the other pairings of the embeddings are not changed
by the procedure, the proof is concluded.]

Our aim is to prove an even stronger result than Lemma 6.10. Indeed, we claim
(see Lemma 6.12 and Lemma 6.13) that an (¢, g)-embedding is maximal if and only
if it is computed by procedure BuildEmbeddings called on a extended maximal
path (i.e. a path that connects an extended source to an extended sink). The proof
of such claim is achieved by a series of intermediate results.

Lemma 6.12. A mazimal (¢, g)-embedding e = (v},...,v),) belongs to the set E(P)

where P = (p(v}),...,¢(v],)) is an extended mazimal path.

Lemma 6.13. An (¢, g)-embedding € is mazimal if belongs to a set E(P), where
P =(v1,...,0m) is an extended mazximal path.

First, we prove Lemma 6.12, then we claim that embeddings computed by
BuildEmbeddings on the same extended maximal path or on distinct extended
maximal paths are pairwise not comparable, from which Lemma 6.13 follows.

Proof of Lemma 6.12. From Corollary 6.5, embedding € = (v}, ..., v},) corresponds
to a maximal path P’ = (v],...,v],) of the EMEG. From Definition 6.2, the path P’
induces an extended maximal path P = (p(v}),...,¢(v),)). Since P’ is a maximal
path of the EMEG, by Lemmas 6.9 and 6.8, we have that P is an extended maximal
path of the CMEG.

We want to show that ¢ € £(P). For simplicity we denote with v; the i-th pairing
o(v}) of P. Let us proceed by induction on length of the embedding (which is equal
to the length of P’ and P). If £ has only one pairing v/, then the maximality of &
implies the maximality of v' and, thus, v = ¢(v') = v. The procedure returns the
embedding composed by the single pairing v (Line 2) which is equal to €. Now let
us assume that every maximal embedding of length n — 1 is computed by procedure
BuildEmbeddings. Suppose that ¢ has length n and consider the embedding

/

e’ = (vh, v, ..., v}). The embedding ¢’ is contained in a maximal embedding ¢’ =

/

(v, vk, ..., vl) which belongs to £((vs,...,vy,)) by induction hypothesis. Indeed,
since ¢ is maximal, the embeddings ¢’ and &’ are equal in every position but the
first. As v} is contained in both ve and vf, by Lemma 6.6, we have v§ < vy, and
from the maximality of ¢ we have that v/ is a prefix-pairing of vy and v} is a

98

6.4 Solving the Maximal Embedding Problem

suffix-pairing of v5. The equivalent set of (v1,v4) contains all the suffix-pairings
that can form an (¢, g)-embedding, thus ¢ belongs to £(P). O

We accomplish the proof of Lemma 6.13 via a series of claims. The first two claims
prove that if an extended maximal path P’ is a sub-path of a second extended
maximal path P, then an embedding computed from P’ is not contained in an
embedding computed from P. Claim 6.16 generalizes the previous results to any
pair of embeddings computed from two distinct extended maximal paths. Finally,
Claim 6.18 complete the results to any pair of embeddings computed from a single
path. Clearly it follows that the embeddings computed by BuildEmbeddings are
pairwise not-comparable (Corollary 6.19).

Claim 6.14. Let P = (vi,..., 04, ...,Up) be a path of a CMEG of P and T such
that an internal vertex v; is an extended source, and let P’ be the sub-path of P that
starts from v; and ends to v,,. Then each embedding e € E(P') is not contained in
an embedding € € E(P).

Proof. Consider the vertex v;_1 which precedes v; in P, and the set of embeddings
E = E((viy...,vm)) computed during the recursive call of BuildEmbeddings.
After £ has been computed, the procedure attempts to extend each embedding e
of £ by replacing the first pairing of ¢ with a pair of pairings of the equivalent set
of v;_1 and a prefix-pairing of v;. However, by Lemma 6.9, v; and a prefix-pairing
of v;—1 whose length is at least ¢ (as required by the equivalent set definition) are
overlapping (on P or T'). Thus every embedding ¢ of £(P) has a pairing v’ that
is contained in a strict suffix-pairing of v; (i.e. a suffix-pairing of v; that is not
equal to v;). Since the first pairing of an embedding &’ that belongs to £(P’) is a
prefix-pairing of v;, we obtain that ¢’ Z «. O

Claim 6.15. Let P = (v1,...,0i,...,Un) be a path of a CMEG of P and T such
that an internal vertex v; is an extended sink, and let P’ be the sub-path of P that

starts from v1 and ends to v;. Then each embedding €' € E(P’) is not contained in
an embedding € € E(P).

Proof. Tt is a consequence of Claim 6.14 on the CMEG of P’ and T’, where P’ is
the reverse of P and T” is the reverse of T'. O

Now we can prove that embeddings computed from distinct extended maximal
paths are not comparable.

Claim 6.16. Let P; = (v1,...,0y) and P2 = (u1, ..., u,) be two distinct extended
mazimal paths of @ CMEG. Then g1 € E(P1) and e € E(P2) are not comparable.

99

6 Spliced Alignments

Proof. Note that for each pairing v} of €1 we have v] < v;, and for each pairing
u; of €9 we have u; = uj. Now suppose, to the contrary, that ¢ C 2. By the
definition of C, for each v, € &1 there exists a pairing u; € e such that v] < u;
Since u} < uj, it follows that v} is contained in two maximal pairings, v; and u;.
From Lemma 6.6, we conclude that v; = u; and, thus, that P; is a proper sub-path
of Py. Therefore vy or v, are internal nodes of Py and, since v in an extended
source and vy, is an extended sink, at least one among Claim 6.14 or Claim 6.15

applies. It follows that &1 & €9, contradicting the hypothesis. O

Corollary 6.17. Let P; and Py be two distinct extended maximal paths of a CMEG.
Then 5(771) N 5(772) = J.

Two embeddings are incomparable even if they are computed from the same
path, as shown by the following claim.

Claim 6.18. Given a path P of a CMEG, for every pair of distinct embeddings
1,82 € E(P) we have e1 € e5.

Proof. Assume that P is at least 2 vertices long (otherwise the procedure returns
one embedding and the claim is trivially verified). Thus Line 7 is executed at least
once, say on pairings v; and v +1- The embeddings contained in the equivalent
set of v; and wv;,; are pairwise not comparable and, since the ending positions of
the prefix-pairings of v; and the starting positions of the suffix-pairings of v;,; do
not change during the subsequent execution, two embeddings added to the result
remain not comparable. O

From Claim 6.16 and Claim 6.18, it derives that two embeddings computed by
BuildEmbeddings are not comparable.

Corollary 6.19. Let G be a CMEG and £ = |Jp E(P) for all extended mazimal
paths P. Then 1,69 € £ are not comparable.

Finally we can prove, from Lemma 6.12 and Corollary 6.19, that procedure
BuildEmbeddings(P) computes only maximal embeddings if P is an extended
maximal path.

Proof of Lemma 6.13. From Lemma 6.12, procedure BuildEmbeddings com-
putes all the maximal embeddings. Since, by Corollary 6.19, the embeddings
computed are pairwise not comparable, they are all maximal.]

Lemmas 6.12 and 6.13 extend the bijection between maximal embeddings and
maximal paths of the MEG to the extended maximal paths of the CMEG. A first
strategy that can be used to reconstruct all the maximal embeddings from the
CMEG is to call procedure BuildEmbeddings on every extended maximal path

100

6.4 Solving the Maximal Embedding Problem

[0.2,10)] [(2,0,10)] [(0,2,9] [(2,0,9)]

](8,6,4)\ ’(6,8,4)‘

(a) The CMEG (b) The MEG

Figure 6.2: An example of a CMEG that contains a cycle and the MEG which it is
associated to. The strings P and T are P = aabbaabbaabb and T' = bbaabbaabbaa.

of the CMEG, as it has been done during the previous proofs. However it is clear
that, in general, there could exist several maximal paths that differ for only a small
sub-path. In this case, procedure BuildEmbeddings is not able to re-use partial
results that has been computed on the common part of such paths, and thus it
recomputes them independently for each extended maximal paths.

Moreover a second element must be carefully considered. A MEG is, clearly, a
directed acyclic graph but the associated CMEG could be cyclic. Consider the
following example.

Example 6.2. Let P = aabbaabbaabb and T' = bbaabbaabbaa. 1t is easy to see that
the set of maximal pairings of P and T is V' = {v1,v2} where v; = (0,2,10) and
ve = (2,0,10). If £ and g are equal to 4, then the CMEG has two arcs: the first
is from vy to vy and the second one is from vy to vy (see Figure 6.2(a)). Therefore
the CMEG contains one cycle. The MEG, depicted in Figure 6.2(b), does not have
any cycle.

Computing the set of extended maximal paths on a directed cyclic graph is not
an easy task. Clearly, since the MEG is acyclic, not every extended maximal path
of the CMEG has associated a non-empty set of maximal embeddings. It is trivial
to see that, for each cycle ¢, there exists a positive number m. such that for all
extended maximal paths P that repeat the cycle ¢ more than m, times, the set
of embeddings £(P.) is empty. Indeed during the construction of the embeddings
related to a path, for each vertex of the path one of its sub-pairings of length at
least ¢ is added to the result (if such a sub-pairing exists, otherwise the procedure
terminates). Thus the length of each maximal pairing of ¢ is an upper-bound of
the number m..

In the following section we propose an efficient algorithm that, based on the
same ideas of BuildEmbeddings, visits the CMEG H and reconstruct the MEG G
which H is associated to. To maintain efficiency, it explicitly deals with the presence
of directed cycles and avoids the recomputation of unnecessary intermediate results.

101

6 Spliced Alignments

6.4.3 Efficient Reconstruction of the MEG from the CMEG

Algorithm VisitCMEG reconstructs the MEG G = (V, E) starting from the
CMEG H = (V' E') by visiting H depth-first order and expanding each edge
(and vertex) of H to the set of edges (and vertices) of the original MEG G. Amor-
tized linear time complexity in the size |V | 4 | E'| of the output can be achieved
by exploiting a classic algorithmic technique called memoization [30].

Algorithm VisitCMEG recursively constructs, given a suffix-pairing v’ of a pair-
ing v of the CMEG, the subgraph of the MEG that is reachable, in the graph-
theoretic sense, from a prefix-pairing of v’ (i.e. a sub-pairing of v), and returns
the set of sources of such subgraph. Clearly the complete MEG (and thus all the
maximal embeddings) is obtained when the procedure is called on all the extended
sources of the CMEG.

The correctness of the algorithm derives from that of BuildEmbeddings since
it basically employs the same ideas, with the only important difference of dealing
with the presence of directed cycles.

Essentially the original procedure BuildEmbeddings works by trying to add
prefix pairings of the first vertex to the front of the embeddings recursively con-
structed on the tail of the path. Procedure VisitCMEG, instead, explicitly enu-
merates the prefix-pairings of the current suffix-pairing v’ that are link-compatible
with some suffix-pairing u’ of a successor u of the current vertex v, and continues
recursively by visiting the suffix-pairing v/ of u. In other words, the order of the
recursive call and the “extension” of the embedding (Lines 4 and Lines 6-8) of the
original procedure BuildEmbeddings is reversed in the procedure VisitCMEG
where the recursive call is performed only for a suffix-pairing of the successor. The
recursion always terminates because the starting positions of the suffix-pairings on
which the recursive calls are made form a strictly increasing sequence, bounded by
the length of the pattern P and the text T.

Since there could be several directed paths connecting a vertex v; to a vertex v;
in a CMEG, it is possible that the procedure is invocated more than once on the
same input data. To avoid to recompute the same subgraph, a lookup table is used
to store the results obtained by the procedure on a given suffix-pairing v’ of vertex
v. Subsequent invocations on v’ can be performed in constant time (provided an
adequate choice of the lookup table data structure).

The time complexity of the algorithm is linear in the size | V' |+| E | of the output
MEG G = (V, E) plus the time required by the creation of the lookup table and
the subsequent retrieval operations.

In the simplest case, the lookup table can be implemented with an array and
its creation requires linear time in the total length L = Z(pi,ti,li) l; of the maximal
pairings (p;,ti,l;) € V. However, since in most cases only a part of the array is
actually used, a different choice, such as a hash table, could be advisable. In fact

102

6.4 Solving the Maximal Embedding Problem

the number of results stored in the array is clearly upper-bounded by the number of
output pairings V. Therefore an hash table could improve the performance because
it can efficiently store a sparse collection while maintaining amortized constant-
time retrieval. In this case the final amortized time-complexity is linear in the size
|V'|+ | E| of the output MEG.

6.4.4 Building the CMEG

In the previous sections we have presented the Compact Maximal Embedding Graph
as a medium to implicitly represent the set of maximal (¢, g)-embeddings of a pat-
tern P in a text T. Algorithm VisitCMEG provides an efficient method to ex-
plicitly enumerate all the maximal embeddings from the CMEG. However, one of
the most important advantage of using a CMEG is that there exists an efficient
algorithm to construct it. This section is devoted to describe such algorithm.

The algorithm works in two phases. First it computes the set of maximal pairings
(i.e. the vertex set) of the CMEG G using the Generalized Suffix Tree (GST) of
the pattern P and the text 7' ([52] provides a good introduction to such index
structure). Then it creates the edge set by checking for every pair of vertices if the
f- and g-conditions of Property 6.7 are satisfied.

The first phase is the creation of the set of the maximal pairings of P and T
(i.e. the vertex set of the CMEG). The key observation, for this phase, is that
the generalized suffix tree of strings P and T easily provides the set of common
factors between P and T and their occurrences in linear time in the size of the
input | P |+ |T | plus the size of the output (the number of occurrences k). Clearly,
given a common factor f, the cartesian product of its occurrences on P and its
occurrences on 1 computes the set of pairings that represent f. However the
pairings so computed are not guaranteed to be maximal. Thus we propose an
efficient algorithm that visits the generalized suffix tree and produces directly the
set of maximal pairings in time O(| P |+ |T'| + |V |), where V is the final set of
maximal pairings.

Observe that the problem of computing all maximal pairings of P and T gen-
eralizes the problem discussed in [52] of computing the maximal pairs of a single
string S. In the following we discuss the basic steps of the algorithm we propose
for computing all maximal pairings.

Let P; denote the i-th suffix of P, that is the substring P[i,| P |] of P. Let us first
discuss the computation of the right-maximal pairings having ¢ as starting position
on P.

This step requires to calculate the longest common prefix PZ»1 of P; which is a factor
of T and it is achieved by finding the deepest node n} in the generalized suffix tree
whose label is equal to P!. (In fact a suffix tree is a tree that represents all suffixes
of a given string S as paths from the root to a leaf: each node, instead, can be

103

6 Spliced Alignments

considered as labelled by a prefix of a suffix of S.) Clearly, Pi1 is a common factor
between P and T and, by visiting the subtree rooted in n}, the set of occurrences
O} = {olfl, .o} of P! in T can be determined. Let V; be the set of pairings of
the form (4, 0;71, | PL]). Tt is easy to see that a pairing that belongs to V; is right-
maximal. The remaining right-maximal pairings starting at position ¢ on P are
computed by iteratively visiting the ancestors ni of n} in the generalized suffix tree
until the root has been reached. Let Pil be the prefix of P; such that Pil is the label
of n!. Then add to V; the pairings (i, o;fl, | P!|) where o;’l is an occurrence of P} in
T such that oj-’l =4 Oﬁ_l. Note that the set of occurrences oé’l can be obtained by

visiting the subtree of the generalized suffix tree rooted in ni that does not include
né_l. Since Oé._l N Oé = @, the characters that are located immediately to the
right of the new pairings on T" and P are different, thus also the new pairings are
right-maximal. Since we are interested in pairings whose length is at least ¢, we
stop the iterations when a node labelled by a prefix of P; whose length is less than
¢ has been reached.

Maximal pairings are obtained by ensuring that the pairings added to set V; are
also left-maximal, i.e. pairings that cannot be “extended” to the left. To this aim
we consider only the occurrences 03» of a prefix of P; on T that are preceded by a
character T'[o% — 1] different from P[i —1]. Indeed, since P[i — 1] # T[o} — 1], the
pairings (i, 0§-, [) (where [is the length of the common factor) cannot be extended
to the left and, thus, they are also left-maximal.

Iterating the above procedure on every suffix P; of P we obtain the set of maximal
pairings V = Ulgig\P\ V.

The construction of the vertex set achieves linear-time complexity O(| P |+|T |+
| V'|) by adopting two “tricks”: suffix-links and suffix-tree preprocessing. The suffix-
links permit to consider each symbol of P once, ensuring the linearity in | P |.
The preprocessing, instead, creates an appropriate set of lists of occurrences on T’
segregated by their preceding character and, thus, permits to avoid multiple visits
of the subtree of the generalized suffix tree rooted on a node that is labelled by a
common factor of P and T

The second phase of the algorithm consists in the creation of the edge set. Our
approach consider every pair of vertices and check if the two pairings satisfy the /¢-
and g-conditions. The resulting time complexity is O(|V|?) and, since the number
of vertices is usually quite small (indeed we only admit maximal pairings that are
at least ¢ characters long), it seems acceptable in practice.

The memory required by the algorithm is O(| P |+ |T'|+ |V |+ | E|), i.e. linear
in the input and output size. Although the hidden constant in the big-O notation
could be significant due to the use of the suffix tree of T, memory requirements are
not a real bottleneck. In fact, if the available memory is not sufficient to construct
the suffix tree of T, the vertex set can be computed separately on contiguous (small)

104

6.5 From Embeddings to Spliced Alignments of ESTs

segments of T', and then the various subsets are merged into the final vertex set V.
The second phase of the algorithm, edge set construction, can be finally performed
on the whole vertex set V since it only requires the memory needed to store the
CMEG and not the suffix tree or the strings 7" and P. Notice that the asymptotic
time complexity of the algorithm does not change even if the text T is partitioned
in segments. Moreover, computing the vertex set separately on segments of the text
T leads also to an efficient strategy for the parallelization of the algorithm.

6.5 From Embeddings to Spliced Alignments of ESTs

In this section the problem of reconstructing a set of spliced alignments, given
a maximal (/,g)-embedding, is described. Our goal is to reconstruct the spliced
alignments of P on T from the set of the maximal (¢, g)-embeddings obtained
from the CMEG graph. Maximal embeddings are expected to provide the spliced
alignments, among which the biologically meaningful ones can be extracted by
using a global agreement approach described in the next chapter. Before describing
the problem, we have to introduce some definitions. Given an embedding ¢ =
(v1,...,vy) of pairings v; = (pi,ti,l;), we call a superfactor of ¢ on P (on T,
respectively) a substring P([s,, dp] (T'[sp, dp], respectively), where s, < p; and d,, >
Pm + lm (st < t1 and dy > ty, + Iy, respectively). Given a fixed bound by, an
embedding € = (v1,...,v,,) of pairings v; = (p;,t;,1;) is a short pairing sequence
if the length of the gap separating v; and v;y; on T (i.e. the substring T'[t; + I; +
1,ti41 — 1]) is less than by, for each 1 < i < m.

A short pairing sequence provides an EST factor corresponding to a genomic
factor (or exon). Indeed the b; value is an upper bound for the length of gaps
representing consecutive mismatches between the EST and the genomic sequence
that are inside an exon (i.e. factor f]’- in the spliced alignment C). Therefore pairings
in a short pairing sequence must be composed into an exon on the text T

Moreover, we fix also a lower bound by > by for gaps in the pattern P corre-
sponding to gaps on the text 17" where the splice site corresponding to introns on
the genomic sequence must be located. When some gap on 7' has length between
b1 and by, then the embedding is not able to give a meaningful spliced alignment,
since that gap cannot reasonably classified as an intron nor as a part of an exon.

Given a maximal (¢, g)-embedding ¢ = (vy,...,vy), our goal is to partition e
into k short pairing sequences &; = (vg;_;41,---,0g;), With 1 <q1 < ... < g <m
according to the fixed bounds for the gaps. For each ¢;, we want to find a superfactor
fi on P and a superfactor f/ on T, s.t. P = pfi--- fis, T = p'flirfy - th—1fL5,
and the edit distance between f; and f/ is minimized as stated in the definition of
a spliced alignment.

105

6 Spliced Alignments

We implemented a simple procedure which, given a maximal embedding ¢ =
(v1,...,Vm), scans the sequence of pairings from left to right and merges two adja-
cent pairings v; and v;41 to form a single short pairing sequence if the gap between
the two common factors is smaller than b or creates a new short pairing sequence
starting with v;41 if such a gap is larger than bs. If the length of the gap between
v; and v;41 on T is included in the interval [by, bs], then the embedding does not
represent a reasonably meaningful spliced alignment of the EST on the genomic
sequence and, thus, it is discarded. Finally the superfactors are then computed
starting from the short pairing sequences by choosing the “best” alignment of the
gaps between short pairing sequences. In particular, given two adjacent pairings
v; = (pi, i, l;) and vi41 = (Pit1, ti+1,lir1) such that v; and v, 41 belong to different
short pairing sequences, a triplet (pj, ,t;,t; ;) is computed in such a way that the
sum d(P[p; + l;, pj 1 — 1], T[t; + 1, t3]) + d(P[pi 1, piv1 — 1], T[ti 1, tix1 — 1]), where
d(-,-) is the edit distance between two strings, is minimum. The output superfactor
that contains v; ends at pj,; —1 on P and at ¢; on T', while the output superfactor
that contains v; starts at p] 41 0n P and at t 41 on T Clearly, since the gap on P,
by definition of (¢, g)-embedding, is at most g-character long where g is a parameter
of the problem, the procedure of minimizing the sum of the edit distances can be
performed in O(1) time.

106

7 Agreement of Spliced Alignments

In the previous chapter we addressed the problem of finding a set of spliced align-
ments for a single transcript (EST) sequence against a reference genomic sequence.
In this chapter we formulate the MINIMUM FACTORIZATION AGREEMENT problem,
which determines a single spliced alignment for each transcript in a set of related
transcripts based on the global gene structure that they would induce. For this
problem, which, given in input a set of transcripts and their putative spliced align-
ments, determines a single splice alignment for each of them based on a common
gene structure induced by the input data, we provide an exact algorithm based on
a precomputation step that is specifically designed to greatly reduce the size of real
instances. An experimental analysis of the results produced by the algorithms pro-
posed in the second part of thesis, has revealed encouraging results that increased
our confidence in this approach.

7.1 Introduction

Producing spliced alignments of EST sequences is a fundamental task in the com-
putational problem of reconstructing splice and transcript variants, which are fun-
damental data for the alternative splicing investigation.

Unfortunately, given an EST sequence, there can be several spliced alignments
associated to it, since the original EST sequences may have different alignments
against wide genomic regions. In this chapter we address the problem that the pre-
vious observation had highlighted: Given a collection C' of different spliced align-
ments that are associated to an initial set S of EST sequences, how can we extract
a subset C’ of C such that each EST sequence in S has a “putative” spliced align-
ment in C’ and C’ agrees on a common alignment region to the genome or gene
structure?

We formalize this problem by defining the MINIMUM FACTORIZATION AGREE-
MENT (MFA) problem over an instance consisting of a set C' of factorized sequences,
called compositions, i.e. sequences that are the concatenation of factors of a finite
set F'. More precisely, the MFA problem over a set S of sequences asks for a mini-
mum subset F/ C F such that each sequence in S has associated a composition in
C using only factors in F”.

In this formalization an EST is a sequence s € S to which we associate a set of
compositions representing the possible spliced alignments of the EST. A composi-

107

7 Agreement of Spliced Alignments

tion is a sequence over a finite alphabet F' of genomic factors (that can be exons,
prefixes or suffixes of exons of the gene). Then, the MFA problem formalizes the
idea of computing a minimum cardinality set of genomic factors (exons) that can
explain at least one spliced alignment for each sequence s in S.

The MFA problem also allows to face the more general problem of reconciling a
set of EST sequence data with respect to different types of biological information.
Indeed, the alphabet F' by which a sequence is factorized could represent splice
sites or splice patterns instead of exons and thus the MFA problem would ask for
the minimum set of factors (common splice sites or significant patterns) on which
all input sequences agree.

The rest of the chapter is structured as follows. We first show that the MFA
problem is NP-hard even over simple instances. Successively we provide a two-step
algorithm for the MFA problem that, first, reduces the instance size and then it
solves exactly the problem on the reduced instance. Though the worst-case time
complexity of the algorithm is exponential in the number of factors, the algorithm
is efficient over practical instances, as the size-reduction step quickly and effectively
trims the set of possible factors. The combination of the algorithms presented in the
previous chapter for the maximal embedding problem with the algorithm that we
introduce for the MFA problem, forms an approach to tackle tasks related to gene
structure prediction. Therefore, we finally present an experimental evaluation of
this combined approach to solve a subtask of gene structure prediction. The results
we obtained from the experimental evaluation support the soundness of both the
new formulation and the algorithmic solutions we provide.

7.2 The Minimum Factorization Agreement Problem

In this section we formulate the MINIMUM FACTORIZATION AGREEMENT problem
for a set C of factorized sequences is proposed.

Let F' = {f1, f2,..., fir|} be an ordered finite set of factors, and let S be a set of
sequences. We can assume to have an explicit enumeration of the sequences in S,
ie. S ={s1,s92,..., S‘S‘}. A composition c is a sequence over an alphabet [’ where
each factor appears at most once in ¢ and ¢ respects the ordering of F'. Equivalently
¢ can be thought of as a subsequence of F. The factor set of a composition c is the
set of factors belonging to c.

Informally, each sequence in S represents an EST sequence while the composition,
as defined here, is a simplification of the concept of spliced alignment introduced in
the previous chapter. Indeed, previously, we were interested in the sequence of both
the genomic factors and the EST factors. Since in this chapter we are primarily
focused on the determination of a common structure over the genomic sequence,
we can safely ignore the EST factors and considering only the sequence of genomic

108

7.2 The Minimum Factorization Agreement Problem

factors. Determining the actual nucleotide sequence of each genomic factor is a
task performed by the previous step when compositions are reconstructed from
the embeddings. Therefore, instead of representing the nucleotide sequence that
composes each genomic factor, we consider the genomic factor as whole, and we
represent it with a single symbol of F'. Since each sequence s has associated a certain
number of spliced alignments, each composition is colored by some sequences in S,
that is for each composition we specify from which sequences the composition is
derived. Notice that the same composition can be derived from more than one
original EST sequence. In the following we will assume that each composition ¢
is actually colored by some sequences in S, and we denote by A(c) such set of
sequences. Conversely, given a sequence s € S, we denote by C(s) the set of
compositions that are colored by s. By a slight abuse of language, given a subset
S1 C S, we denote by C(S5') the set |J,cq C(s). Therefore C(S) consists of all
compositions.

Given the set C(S), a subset F' C F of factors is a factorization agreement set
for C(S) iff for each sequence s € S, there exists a composition ¢ € C(s) such that
the factor set of ¢ is entirely contained in F”.

Now we can formally define our main computational problem: MINIMUM FAC-
TORIZATION AGREEMENT problem.

Problem 13. MINIMUM FACTORIZATION AGREEMENT (MFA).

Input: A set F' of factors, a set S of sequences, and a set C(.S) of (colored) compo-
sitions.

Output: A minimum cardinality subset F’ of F such that F’ is a factorization
agreement set for C'(.5).

First we will prove, via an L-reduction, that MFA shares all known inapproxi-
mability results of MINIMUM SET COVER [6, 96], defined as follows.

Problem 14. MiniMmuMm SET COVER (MIN SET COVER).

Input: A universe set U and a collection C of subsets of U.

Output: A minimum cardinality subset C; of C such that the union of all sets in C;
is exactly U.

We provide an alternative formulation of the MFA problem based on binary
matrices. Given an instance (F, S, C(S)) of the MFA problem, we construct a binary
matrix M where the columns (rows, respectively) are in a one-to-one correspondence
with the factors in F' (with the compositions in C(S), resp.). In the following we
identify each column (row, resp.) with a factor (a composition, resp.). Moreover
each row is colored and the set of colors is the set S of input sequences. (Notice
that each row can be colored by more than one color.) The entry M|, f] (i.e. the
entry of the row identified by the factor f and the composition «) is equal to 1 if
and only if the composition « contains the factor f.

109

7 Agreement of Spliced Alignments

. Colors Factors A B C D
Sequence Compositions
1,2 A 1 0 0 O
; ﬁ’ g’ b 1,3 B 0 1 0 0
3 B, C 2,3 C 0 0 1 0
’ 1 D 0 0 0 1

Figure 7.1: Example of instance of MFA on factors F' = {A, B,C, D}

Given a composition «, we denote by 1(«) and 0(«) respectively the set of columns
of M containing 1 and 0 in row «. The MFA problem then asks for a minimum
cardinality subset F; C F such that, for each possible color ¢, there is a composition
a with 1(a) C F; and the row « of M is colored by c. (Notice that this row can
also be colored with different colors.)

The matrix formulation leads immediately to a reduction from MINIMUM SET
COVER. In fact let (U,C) be an instance of MIN SET COVER. (We recall that U is
the universe set and C is a collection of subsets of U.) Then let U be the color set,
while the factor set and the composition set are both equal to C. The entries of the
matrix M are equal to the entries of the identity matrix and the set of colors of a
row (identified by a subset C; € C) is C; itself. Notice that any agreement factor
set F' is also a set cover on (U,C). An illustrative example where the instance of
MiN SET COVER is over universe {1, 2,3} and C consists of four subsets A = {1, 2},
B ={1,3}, C ={2,3}, D = {1}, is represented in Figure 7.1.

It is immediate to notice that the covers of (U, C) are also factorizations agreement
sets of M and vice versa. Moreover the reduction produces instances of MFA
where all compositions consists of only one factor. Also, the sizes of approximate
and optimal solutions of the instances of MIN SET COVER and MFA are the same,
hence all known inapproximability results for MIN SET COVER (namely there exists
a constant ¢ > 0 such that no polynomial-time approximation algorithm can achieve
a guaranteed approximation ratio clogn, unless P = NP [96]) hold for such a
restriction.

7.3 An Algorithm for Solving the MFA Problem

In this section we study the matrix formulation of the MFA problem and we present
an algorithm that is of practical interest. The first step of the algorithm consists
of reducing the matrix, that is removing some rows and/or columns, while keeping
at least an optimal solution.

110

7.3 An Algorithm for Solving the MFA Problem

More precisely, we provide some rules that must be enforced, if possible, on the
matrix M. The reduction process is iterated until no such rule applies any more.
At the end we will obtain a reduced matrix M; together with a set Sg of factors
that must be added to any feasible solution of M; to obtain a solution of M. Let
us list the five rules.

1. If there exist two rows ry, o such that M|[rq,c] > M[ry,] for each column ¢
of M and A\(r1) N A(r2) # @, then remove all sequences in A\(r1) N A(r2) from
the colors of r1. If A(r;1) = @ then remove 71 from M. (Rationale: all feasible
solutions that include all factors in r; also include all factors in r3.)

2. If there exists a column ¢ containing only 1s, then add ¢ to Sg and remove c
from M. (Rationale: ¢ must necessarily belong to all solutions of M.)

3. If there exists a column ¢ and a color 7 such that all rows of M that are colored
i have value 1 in ¢, then add ¢ to Sp and remove ¢ from M. (Rationale:
since at least one of the compositions colored by i have to be factorized by
a solution, ¢ must necessarily belong to all solutions of M.) Notice that this
rule is more general than Rule 1, which is nonetheless explicitly stated since
it is computationally easier to enforce.

4. If there exists a row r containing only Os and r is colored C, then remove
from M all colors in A(r). Remove from M all rows r such that A(r) becomes
empty. (Rationale: Sp contains all factors of a composition of r, therefore
r can be removed from M without enlarging the size of a feasible solution.
Moreover, if A\(r) # @ and the row r has only zeroes for each color x € A(r),
then Sp contains all factors used in a composition colored by z.)

5. If there exists a column ¢ containing only 0s, then remove ¢ from M. (Ratio-
nale: no actual composition contains ¢, which therefore is not an interesting
factor any more.)

Consequently, in the following we can assume that our algorithms deal with
reduced matrices.

7.3.1 A Naive Algorithm

A simple approach for solving exactly the MFA problem consists of computing all
possible subsets F; C F' in non-decreasing order of cardinality of such subsets, and
checking if F} is a factorization agreement set. As we are interested in a minimum-
cardinality agreement set, the algorithm halts as soon as a factorization agreement
set is found.

The analysis of the time complexity is straightforward. In fact, given a sub-
set F7 of factors, deciding if F} is a factorization agreement set for S requires

111

7 Agreement of Spliced Alignments

time O(|F||C(S)]). Moreover, since the factor subsets are enumerated in non-
decreasing order of cardinality and denoting by opt the cardinality of a minimum
factorization agreement set, the algorithm stops after considering Zzpzt 1 (UZ |) sub-

sets. Thus, the overall time complexity is O(Zp:tl (('Z‘)\FHC(S)\)) which is

clearly O (2IF1|F||C(9))).

Even if the time is bounded only by an exponential function, two considera-
tions are in order. First of all, on real data the reduction process usually results
in a matrix much smaller than the original, therefore lessening the impact of the
exponential factor (which is relative to the reduced matrix). Moreover, the im-
plementation of such simple method actually exploits some features of real-world
architectures, such as bit-parallelism and data locality (in fact any reduced matrix
with at most 100 factors and 10° compositions resides in the cache memory of a
mainstream PC).

7.3.2 A Refined Algorithm

In this section we describe an algorithm which is more refined and somewhat more
complex than the one of the previous section. While we expect the refined algorithm
to outperform the naive one on hard and/or large instances, we have currently been
unable to find some real-world instances where those improvements have resulted
in appreciable decreases in the running times.

The algorithm is based on the idea of building a binary matrix F'M(-,-), where
each element FM (X, s) is equal to 1 if and only if the set of factors X C F' contains
a composition of the sequence s € S. The following Lemma leads immediately to a
recursive definition of FM(-,-).

Lemma 7.1. Let X be a subset of F' and let s be a sequence in S. Then FM (X, s) =
1 ¢ff X is a minimal factor set of a composition of s or there exists x € X with
FM(X —{z},s) = 1.

Proof. Assume initially that FM(X,s) = 1 and that X is not a minimal set that
is the factor set of a composition of s. Then, by definition of minimality, there
exists z € X such that X — {x} is composition of s. By definition of FM(-,-),
FM(X — {x},s) = 1. The other direction is trivial. O

If we have an algorithm for checking if a subset X C F' is a minimal factor set of
a composition of a sequence s € S, then we can describe a simple exponential time,
yet effective, algorithm for the MFA problem, whose correctness is an immediate
consequence of Lemma 7.1. Our algorithm, whose pseudocode is represented in
Algorithm 8, is called MFA2 and is bit-parallel. In fact, we will use the array
Fact(-) instead of the matrix F'M(-,-), where Fact is indexed by a subset X of F’
and each element of Fact is actually the vector corresponding to an entire row of

112

7.3 An Algorithm for Solving the MFA Problem

Algorithm 8: MFA2(F,S)
Data: An instance (F,S,C(S)) of MFA
1 Compute MinimalFA;
2 Fact(@) < 0;
3 foreach Fy| C F in non-decreasing order of cardinality, F' # @& do

4 Fact(Fy) < \ ep, Fact(Fy — {z}) \ MinimalFA(Fy);
5 if Fact(Fy) < 1 then

6 return F}

7 end

8 end

FM(-,-). Therefore, Fact(X) is the characteristic binary vector of the sequences
which have a composition whose factor set is contained in X.

We will also use another array MinimalFA(-), which is also indexed by a subset
X of F and each MinimalFA(X) is the characteristic binary vector of the sequences
which have a composition whose factor set is exactly X (it is immediate to notice
that it is equivalent to the fact that X is a minimal set such that there exists a
composition whose factor set is X, as the algorithm works on a reduced matrix.)
We recall that a sequence can color more than one composition.

It is paramount for the efficiency of the MFA2 algorithm that we are able
to compute and query efficiently MinimalFA(-). Since almost all the vectors in
MinimalFA(-) are equal to 0, it is more efficient to actually use a hash for storing
MinimalFA(+), assuming that an entry not found in the hash is equal to 0. It is
immediate to notice that the time required by Alg. 9 is O(|S||C(S)||F), assuming
that we have chosen an implementation of hash tables where each operation can
be performed in time logarithmic in the number of elements, and noticing that
|C(S)| < 27l

The analysis of Algorithm 8 is based on the simple observation that all bit-
level operations can be performed in O(]S|) time. Moreover, since the subsets
of F are generated by non-decreasing cardinality, at most O(|F|°P") such subsets
are considered, where opt is the size of the optimal solution. The overall time
complexity is therefore O(|S||F|°P!). The time for reducing the original matrix is
clearly polynomial in the size of the matrix, as enforcing each rule results in the
removal of at least a row or a column. The most trivial implementation of the
reduction rules has an O(|S||F|3|C(S)|?) overall time complexity.

113

7 Agreement of Spliced Alignments

Algorithm 9: Build MinimalFA

Data: An instance (F,S,C(S)) of MFA
1 MinimalFA < empty hash;
2 foreach c € C(s) do

3 foreach s € S do

4 if ¢ is a composition of s then

5 Pose to 1 the bit of MinimalFA(f) corresponding to sequence s;
6 end

7 end

8 end

9 return MinimalFA(-)

7.4 Experimental Analysis

The combination of the algorithm proposed in the previous chapter to solve the
maximal embedding problem (from which spliced alignments can be easily recov-
ered) with the algorithms that we proposed in this chapter to solve the MFA algo-
rithm, represents a new approach for the task of predicting the exon-intron structure
of a gene. Indeed, given a set of EST sequence and a genomic region, we can com-
pute a set of possible spliced alignments for each of them by using the algorithm for
the maximal embedding problem. Then, the resulting set represents a set of compo-
sitions from which the MFA problem extracts a minimum cardinality factorization
agreement set. Each factor of the factorization agreement set should correspond to
an exon or a part of exon. We designed an experiment to evaluate this hypothesis.
Clearly, if such hypothesis is true, then more refined algorithms can be applied on
this set of exons in order to predict, for example, full-length transcript isoforms.

We believe that the results we obtained support the soundness of our approach.
Especially the running times are encouraging, as the experiments show that our
approach is able to complete the analysis of several genes of a chromosome in only
few hours, using modest computational resources.

The experiment is structured as follows. We randomly selected 350 genes from
the human chromosome 22 and we retrieved the gene structure of each gene from
ASPicDB [24]. We eliminated single-exon genes and genes whose genomic sequence
retrieved from ASPicDB was significantly different from the sequence of the last
revision on the NCBI database. 337 genes remained. We considered, for each gene,
a genomic sequence of approximately 10% nucleotides centered in the position of
gene as described by the NCBI Gene database. For each gene, we considered the
associated clusters in the UniGene database as input transcripts. The genomic
sequence and the transcript sequences for each gene have been used to compute a

114

7.4 Experimental Analysis

set of spliced alignments as described in the previous chapter, by setting ¢ = 15 and
g = 31. Only a few basic biological criteria have been used to filter some incorrect
sliced alignment, such as introns must be of length less than a fixed value (that
is 100,000 bp in the experimentation described in the following), the coverage of
the alignment, with respect to the total transcript length, must be greater than
a fixed threshold and the transcript prefix/suffix discarded in a composition must
be of limited length (in the experimentation up to a 17% of the transcript length).
Then, the spliced alignments have been “translated” in a MFA instance. During
the “translation”, factors that overlapped significantly have been merged in a single
“macro”’-factor. Finally the reduction algorithm and the naive algorithm have been
used to solve the translated instance.

The total number of processed ESTs for the 337 input genes is 126,995, with
an average of 363 ESTs for each gene. We tested our software on a standard
PC running Linux. The total running time has been approximately 8 hours, with
average time of 83 seconds for each gene. In 7 cases the algorithm reported an
excessive amount of spliced alignments for a single EST sequence and it has been
terminated. A more stringent parameter setting would probably solve this problem,
but we preferred to maintain the same parameters for all genes and reporting the
issue. These genes have not been included in computation of the running time.

We compared our results on the 337 input genes of the chromosome 22 with
the gene structure data provided by ASPicDB in order to evaluate if the resulting
factors were compatible with the gene structure predicted by ASPicDB. For each
gene, let the benchmark set B and the test set F be the set of exons from ASPicDB
and the set of genomic factors predicted by our method respectively. We estimate
the similarity, between an exon e in B and a genomic factor f in F', by means of
three measures: (i) the number of genomic positions covered by e and f (or true
positive T'P(e, f)), (ii) the number of genomic positions covered by f but not by e
(or false positive F'P(e, f)), and (4ii) the number of genomic positions covered by e
but not by f (or false negative F'N (e, f)). We say that an exon e from B is present
in the test set, if there exists a genomic factor f in F' with the maximum value of
TP(e, f),st. FP(e, f)+ FN(e, f) is less than a fixed bound of 10bp. We estimate
the sensitivity of our method as the ratio between the number of benchmark exons
that are also present in the test set, and the total number of benchmark exons.
Sensitivity results are summarized in the first five columns of Table 7.1 at page 116
for the 337 genes that we have studied. For each gene the table reports the number
of exons in the benchmark set, the number of benchmark exons that are also present
in the test set, the value of sensitivity and the average value for (FP+ FN) on the
benchmark exons present in the test set. On the whole set of the 337 input genes
our method reaches a sensitivity of 76% (5,917 out of the 7,825 benchmark exons
are present in the test set). 324 input genes have a sensitivity greater than 50%
and, among these genes, 43 genes have a sensitivity of 100%.

115

7 Agreement of Spliced Alignments

At its current state, our method overpredicts the exons of a gene. The main
reason of the overprediction is that it does not merge different parts of the same
exons into the same class. Indeed the “macro”-factors described above have been
used only during the creation of the MFA instance, and not for this comparison,
where we considered all the original components of the “macro”-factor. At this
stage, we do not believe that the overprediction is a real issue, since the main aim
of the experimentation was to evaluate if the factors were compatible with the gene
structure provided by ASPicDB. For this reason, we say that a factor f in the
test set can predict an exon e in the benchmark set, if it is a meaningful part of
e and then, if the coverage of f w.r.t. e (provided by the value T'P(e, f)) is at
least 90% of its length. On this basis, we estimate the specificity of our method
as the ratio of the number of predicted factors having a coverage of at least 90%
w.r.t. the benchmark set, and the total number of predicted factors in the test set.
Specificity results are summarized in the last three columns of Table 7.1. For each
gene the table reports the total number of factors in the test set, the number of
factors having a coverage of at least 90% w.r.t. the benchmark set and the value of
specificity. On the whole set of the 337 input genes our method reaches a specificity
of 87% (56,416 out of the 64,802 predicted factors have a coverage of at least 90%
w.r.t. the benchmark set). 318 input genes have a specificity greater than 50% and,
among these genes, 17 genes have a specificity of 100%.

We would like to stress the fact that our implementation is only at a preliminary
stage, especially since a number of reasonable biological criteria have not been
incorporated yet. Still, our experimental analysis has shown the computational
efficiency of the implementation. At the same time, this preliminary analysis shows
that our method roughly confirms the gene structure data of ASPicDB [24] which
gives us high expectations on the quality of the results that can be obtained once
a more refined implementation can be produced and executed on an even large
genomic region.

Table 7.1: Sensitivity and Specificity results

Sensitivity Specificity
#exons
#exons ASPicDB Sensitivity =~ Average F#£exons #exons Specificity
Gene ASPicDB in Test (%) FP+FN in Test covered 90% (%)

A4GALT 13 13 100 1 123 117 95
ACO2 42 31 74 3 750 481 64
ACR 7 6 86 2 15 12 80
ADM2 7 4 57 2 50 50 100
ADORA2A 25 17 68 3 163 158 97
ADRBK2 37 27 73 1 255 250 98
ADSL 29 24 83 3 247 233 94
AIFM3 43 36 84 3 126 124 98

(continue)

116

7.4 Experimental Analysis

Table 7.1: Sensitivity and Specificity results (continued)

Sensitivity Specificity
F#£exons
#exons ASPicDB Sensitivity = Average #exons #exons Specificity
Gene ASPicDB in Test (%) FP+FN in Test covered 90% (%)

ALGI12 17 12 71 2 151 147 97
ANKRD54 20 14 70 3 157 155 99
AP1B1 36 29 81 3 163 156 96
APOBEC3A 10 9 90 2 49 36 73
APOBEC3B 12 11 92 1 59 45 76
APOBEC3C 16 10 63 4 221 152 69
APOBEC3D 13 7 54 4 42 33 79
APOBEC3F 15 12 80 3 104 79 76
APOBEC3G 26 19 73 3 291 248 85
APOBEC3H 10 10 100 2 35 35 100
APOL2 23 15 65 2 216 177 82
APOL3 29 19 66 2 227 184 81
APOL6 11 8 73 2 110 106 96
ARFGAP3 23 22 96 2 675 250 37
ARVCF 34 28 82 3 271 158 58
ASCC2 55 48 87 3 330 310 94
ASPHD2 4 4 100 3 95 93 98
ATF4 24 17 71 2 751 746 99
ATP6V1E1l 18 16 89 1 296 292 99
ATXN10 32 26 81 2 338 327 97
BATAP2L2 19 16 84 2 52 47 90
BCL2L13 34 29 85 2 379 365 96
BID 23 16 70 2 182 179 98
BIK 5 5 100 4 42 40 95
BPIL2 22 21 95 2 30 27 90
BRD1 29 23 79 3 186 165 89
C1QTNF6 21 17 81 2 139 132 95
C220rf42 13 12 92 2 37 37 100
C220rf43 15 12 80 3 32 26 81
CABIN1 56 49 88 2 288 275 95
CABP7 7 5 71 1 28 27 96
CACNA1I 38 38 100 3 66 63 95
CACNG2 4 2 50 4 12 7 58
CARD10 36 33 92 2 159 156 98
CBX6 13 8 62 3 210 201 96
CBX7 13 9 69 2 184 173 94
CBY1 19 18 95 2 182 159 87
CCDC116 8 7 88 2 32 28 88
CCDC117 8 7 88 1 196 191 97
CCDC134 9 9 100 2 52 41 79
CDC42EP1 9 9 100 3 188 182 97
CDC45L 32 26 81 2 138 130 94
CECRI1 26 23 88 2 235 229 97
CECRbH 27 22 81 2 284 269 95
CECR6 2 1 50 3 51 49 96
CELSRI1 48 44 92 2 154 148 96
CERK 21 19 90 2 275 254 92
CHCHD10 13 10 7 4 104 99 95
CHEK2 37 31 84 2 130 122 94
(continue)

117

7 Agreement of Spliced Alignments

Table 7.1: Sensitivity and Specificity results (continued)

Sensitivity Specificity
F#exons
#exons ASPicDB Sensitivity = Average #exons #exons Specificity
Gene ASPicDB in Test (%) FP+FN in Test covered 90% (%)
CLTCL1 51 40 78 3 141 126 89
CRELD2 24 18 75 2 159 154 97
CRKL 3 3 100 3 409 369 90
CRYBA4 7 6 86 1 83 82 99
CRYBBI1 8 8 100 2 95 91 96
CRYBB2 9 8 89 2 105 105 100
CRYBB3 9 9 100 3 25 24 96
CSDC2 7 6 86 1 94 92 98
CSF2RB 19 18 95 3 114 112 98
CSNKI1E 39 0 0 ND
CYP2D6 23 16 70 3 215 127 59
CYTH4 31 25 81 3 162 151 93
CYTSA 31 0 0 ND
DDT 10 9 90 2 92 73 79
DDTL 10 7 70 1 91 34 37
DEPDC5 70 60 86 2 188 169 90
DGCR14 24 22 92 2 192 186 97
DGCR2 30 28 93 2 708 657 93
DGCR6 16 9 56 3 120 108 90
DGCR6L 11 10 91 3 129 122 95
DGCRS 25 22 88 2 522 236 45
DMC1 21 19 90 1 40 38 95
DNAL4 13 12 92 3 161 155 96
DRG1 18 13 72 2 216 198 92
DUSP18 12 9 75 3 115 101 88
EFCAB6 51 48 94 2 118 112 95
EIF3D 42 39 93 3 385 375 97
EIF3L 48 0 0 ND
EIF4ENIF1 38 32 84 2 269 246 91
ELFN2 11 9 82 1 48 47 98
EMID1 24 18 75 3 94 88 94
ENTHD1 14 13 93 1 43 43 100
EP300 43 35 81 2 325 303 93
EWSR1 50 42 84 3 559 542 97
FAM109B 5 4 80 1 85 84 99
FAMI118A 33 26 79 2 218 191 88
FAMS83F 9 9 100 3 58 57 98
FBLN1 44 0 0 ND
FBXO7 25 20 80 2 360 331 92
FOXRED2 21 15 71 2 258 226 88
GAB4 14 12 86 2 20 20 100
GAL3ST1 22 16 73 3 103 99 96
GALR3 2 2 100 2 10 10 100
GAS2L1 23 17 74 1 203 200 99
GCAT 20 18 90 3 123 121 98
GGA1l 60 48 80 2 411 378 92
GGT1 31 26 84 2 142 109 77
GGT5 22 20 91 3 197 192 97
GNAZ 11 8 73 2 151 146 97
(continue)

118

7.4 Experimental Analysis

Table 7.1: Sensitivity and Specificity results (continued)

Sensitivity Specificity
F#£exons
#exons ASPicDB Sensitivity = Average #exons #exons Specificity
Gene ASPicDB in Test (%) FP+FN in Test covered 90% (%)

GP1BB 30 22 73 3 378 313 83
GRAMD4 30 22 73 3 123 121 98
GRAP2 32 29 91 2 126 117 93
GSC2 3 3 100 2 5 4 80
GSTT1 18 13 72 3 179 143 80
GSTT2 18 10 56 3 71 27 38
GSTT2B 5 4 80 4 62 48 7
GTPBP1 23 21 91 2 286 273 95
GTSE1 31 25 81 2 254 242 95
H1FO0 6 1 17 0 468 37 8
HDACI10 50 33 66 2 162 156 96
HIC2 8 8 100 4 149 147 99
HIRA 43 38 88 2 228 216 95
HMGXB4 22 18 82 2 203 200 99
HMOX1 9 8 89 2 194 191 98
HORMAD2 16 14 88 2 47 39 83
HPS4 36 28 78 2 383 342 89
HSCB 15 11 73 3 51 44 86
IGLL1 5 5 100 3 34 33 97
IGLL3 5 3 60 3 9 8 89
IL17TRA 19 13 68 2 144 82 57
IL17REL 15 4 27 3 7 6 86
IL2RB 24 19 79 2 149 146 98
ISX 4 4 100 2 21 19 90
JOSD1 13 9 69 3 276 260 94
KCNJ4 3 3 100 2 26 26 100
KCTD17 19 14 74 1 103 92 89
KDELR3 10 7 70 2 526 145 28
KIAA1644 5 5 100 1 71 70 99
KLHL22 28 20 71 2 282 263 93
L3MBTL2 32 25 78 2 201 189 94
LARGE 37 25 68 2 174 164 94
LDOCIL 2 2 100 2 235 228 97
LGALS1 17 13 76 3 155 126 81
LGALS2 4 4 100 1 24 15 63
LIF 7 5 71 3 67 67 100
LIMK2 47 33 70 3 446 408 91
LMF2 31 16 52 3 156 150 96
LZTRI1 44 37 84 3 299 282 94

MAFF 10 0 0 ND
MAP3K7IP1 30 24 80 2 279 236 85
MAPK1 24 15 63 2 812 798 98
MAPKI11 21 18 86 2 82 82 100
MAPKI12 26 21 81 2 172 164 95
MAPKS8IP2 20 18 90 3 117 114 97
MB 18 13 72 1 418 407 97
MCAT 11 9 82 2 108 108 100
MCHRI1 8 7 88 1 92 87 95
MED15 54 40 74 2 451 416 92
(continue)

119

7 Agreement of Spliced Alignments

Table 7.1: Sensitivity and Specificity results (continued)

Sensitivity Specificity
F#exons
#exons ASPicDB Sensitivity = Average #exons #exons Specificity
Gene ASPicDB in Test (%) FP+FN in Test covered 90% (%)

MEI1 56 51 91 2 126 112 89
MFNG 26 22 85 1 189 184 97
MICALL1 25 22 88 2 204 185 91
MIF 5 5 100 5 144 126 88
MIOX 22 18 82 2 75 70 93
MKL1 32 27 84 2 224 211 94
MLC1 42 36 86 2 388 386 99
MMP11 24 16 67 3 292 271 93
MN1 3 3 100 2 113 111 98
MORC2 33 31 94 2 151 137 91
MOV10L1 39 36 92 2 130 113 87
MRPLA40 10 8 80 1 137 130 95
MTMR3 34 28 82 2 377 349 93
MTP18 10 6 60 2 426 147 35
MYH9 76 64 84 2 1065 1026 96
MYO18B 57 54 95 3 122 113 93
NAGA 22 18 82 2 263 261 99
NCAPH2 44 34 7 3 178 177 99
NCF4 14 12 86 2 98 85 87
NDUFAG6 12 9 75 3 195 179 92
NEFH 11 5 45 2 215 214 100
NF2 31 28 90 2 255 253 99
NFAM1 11 9 82 2 60 60 100
NHP2L1 23 16 70 2 407 379 93
NIPSNAP1 25 19 76 3 347 340 98
NOL12 21 16 76 3 158 151 96
NUP50 31 24 7 2 335 326 97
ODF3B 17 12 71 3 80 62 78
OSBP2 37 23 62 3 180 169 94
OSM 4 4 100 3 32 30 94
P2RX6 22 17 7 3 53 46 87
PACSIN2 29 22 76 3 675 357 53
PANX2 9 7 78 1 51 49 96
PARVB 35 30 86 2 177 159 90
PARVG 37 30 81 2 154 144 94
PATZ1 14 11 79 2 236 230 97
PDGFB 11 10 91 2 82 7 94
PDXP 7 3 43 3 191 190 99
PES1 29 27 93 1 293 286 98
PEX26 14 12 86 2 141 76 54
PHF21B 23 23 100 2 84 80 95
PHF5A 8 5 63 1 121 116 96
PICK1 36 32 89 2 178 171 96
PIK3IP1 21 18 86 3 331 311 94
PIM3 14 7 50 3 162 151 93
PISD 44 33 75 2 313 277 88
PIWIL3 23 22 96 2 34 31 91
PLA2G3 7 7 100 2 15 14 93
PLA2G6 50 46 92 2 265 242 91
(continue)

120

7.4 Experimental Analysis

Table 7.1: Sensitivity and Specificity results (continued)

Sensitivity Specificity
F#£exons
#exons ASPicDB Sensitivity = Average #exons #exons Specificity
Gene ASPicDB in Test (%) FP+FN in Test covered 90% (%)

PLXNB2 57 51 89 2 410 403 98
PMM1 30 23 7 3 166 163 98
PNPLA3 17 11 65 3 75 64 85
PNPLAS5S 14 12 86 2 30 26 87
POLDIP3 31 28 90 2 492 462 94
POLR2F 20 16 80 2 148 104 70
POLR3H 23 16 70 3 380 365 96
PPARA 23 22 96 2 207 196 95

PPIL2 53 0 0 ND
PPMI1F 22 18 82 2 307 300 98
PPPDE2 18 8 44 1 129 102 79
PRAME 24 19 79 2 269 263 98
PRODH 31 20 65 2 117 108 92
PVALB 12 9 75 2 38 37 97
RAB36 14 11 79 2 70 68 97
RABL2B 29 17 59 3 119 109 92
RABLA4 25 14 56 2 147 135 92
RAC2 15 11 73 2 195 188 96
RANBP1 21 17 81 2 171 161 94
RANGAP1 43 36 84 2 413 400 97
RASD2 4 3 75 2 69 66 96
RASL10A 5 5 100 2 39 38 97
RBM9 51 34 67 2 610 590 97
RBX1 20 15 75 2 120 99 83
RFPL1 2 2 100 0 15 6 40
RFPL3 3 3 100 1 13 11 85
RGL4 22 20 91 2 62 50 81
RHBDD3 19 16 84 1 157 130 83
RIBC2 11 11 100 2 52 52 100
RNF215 13 12 92 3 37 34 92
RP3-402G11.5 26 21 81 3 155 139 90
RP3-474112.5 7 7 100 2 13 12 92
RPS19BP1 12 11 92 2 144 136 94
RRP7A 28 22 79 3 716 431 60
RTDRI1 16 14 88 1 63 59 94
RTN4R 11 9 82 2 115 113 98
SAPS2 58 0 0 ND 379 10 3
SCARF2 14 13 93 1 91 79 87
SCO2 4 4 100 1 80 75 94
SCUBE1 29 27 93 2 73 72 99
SDF2L1 5 5 100 2 108 99 92
SEC14L2 34 29 85 3 281 242 86
SEC14L3 21 17 81 3 51 44 86
SEC1414 17 8 47 2 18 18 100
SEPT3 24 20 83 2 297 286 96
SERHL 14 13 93 2 143 73 51
SERHL2 22 17 T 3 285 131 46
SERPIND1 11 8 73 3 134 127 95
SEZ6L 25 22 88 2 142 136 96
(continue)

121

7 Agreement of Spliced Alignments

Table 7.1: Sensitivity and Specificity results (continued)

Sensitivity Specificity
F#exons
#exons ASPicDB Sensitivity = Average #exons #exons Specificity
Gene ASPicDB in Test (%) FP+FN in Test covered 90% (%)

SF3A1 33 25 76 2 555 549 99
SFI1 63 53 84 2 248 213 86
SGSM1 33 28 85 2 95 90 95
SGSM3 54 38 70 3 331 308 93
SH3BP1 34 33 97 3 109 103 94
SHANK3 34 20 59 2 113 100 88
SLC16A8 7 7 100 1 21 21 100
SLC25A1 21 19 90 3 219 211 96
SLC25A18 25 16 64 2 113 105 93
SLC2A11 35 26 74 2 162 147 91
SLC35E4 8 7 88 2 92 90 98
SLC5A1 20 19 95 2 84 83 99
SLC5A4 15 14 93 2 19 17 89
SLCT7A4 12 8 67 3 43 41 95
SMARCBI1 19 16 84 3 255 236 93
SMC1B 25 24 96 2 58 51 88
SMCRT7L 27 22 81 2 372 363 98
SMTN 7 64 83 1 452 435 96
SNAP29 13 10 7 2 197 195 99
SNRPD3 19 14 74 2 180 157 87
SOX10 13 10 7 3 151 137 91
SREBF2 56 40 71 2 587 559 95
SRRD 11 9 82 2 84 74 88
SSTR3 4 3 75 1 20 18 90
ST13 24 19 79 3 424 415 98
SULT4A1 19 14 74 2 122 116 95
SUSD2 18 17 94 2 165 162 98
SYN3 23 17 74 2 76 59 78
SYNGR1 19 16 84 1 243 231 95
TBC1D10A 23 23 100 2 203 187 92
TBX1 15 15 100 2 33 32 97
TCF20 8 7 88 4 110 100 91
TCN2 19 15 79 2 163 152 93
TEF 13 12 92 2 237 232 98
TFIP11 35 31 89 2 319 297 93
THAPT7 23 12 52 2 272 261 96
THOC5H 45 40 89 2 247 233 94
TIMP3 16 9 56 2 985 971 99
TMEM184B 24 23 96 2 381 344 90
TMPRSS6 26 24 92 2 48 44 92
TNFRSF13C 3 3 100 0 9 9 100
TNRC6B 36 30 83 2 356 325 91
TOB2 4 4 100 0 232 229 99
TOMM22 7 6 86 2 137 134 98
TOP3B 52 46 88 3 253 236 93
TPST2 18 15 83 2 242 222 92
TRABD 34 25 74 2 220 210 95
TRIOBP 46 27 59 2 322 300 93
TRMT2A 35 27 7 3 320 267 83
(continue)

122

7.4 Experimental Analysis

Table 7.1: Sensitivity and Specificity results (continued)

Sensitivity Specificity
F#£exons
#exons ASPicDB Sensitivity = Average #exons #exons Specificity
Gene ASPicDB in Test (%) FP+FN in Test covered 90% (%)

TRMU 24 21 88 2 164 129 79
TSPO 12 9 75 2 159 154 97
TST 7 6 86 3 139 136 98
TTC38 32 19 59 3 70 69 99
TTLL1 22 18 82 2 109 98 90
TTLL12 23 20 87 3 275 274 100
TTLLS8 20 20 100 1 33 33 100
TUBAS 17 11 65 2 82 72 88
TUBGCP6 41 26 63 2 160 154 96
TXN2 14 11 79 2 240 232 97
TXNRD2 46 36 78 2 208 203 98
TYMP 36 23 64 3 255 238 93
UBE2L3 20 14 70 3 594 591 99
UFD1L 31 25 81 2 169 135 80
UNCB84B 44 38 86 2 470 450 96
UPB1 22 18 82 2 99 88 89
UPK3A 8 6 75 2 21 20 95
USP18 20 16 80 2 118 87 74
VPREB1 4 4 100 1 9 9 100
VPREB3 4 3 75 1 22 21 95
WBP2NL 21 20 95 2 65 48 74
XPNPEP3 32 24 75 3 227 122 54
XRCC6 43 35 81 2 616 595 97
YDJC 18 14 78 3 187 183 98
YPEL1 13 11 85 2 244 192 79
YWHAH 14 11 79 3 521 499 96
ZBED4 2 2 100 2 137 130 95
ZC3H7B 37 33 89 2 208 189 91
ZDHHCS 20 17 85 3 147 133 90
ZMAT5 17 17 100 3 89 88 99
ZNF280A 2 2 100 3 9 8 89
ZNF280B 10 6 60 2 102 100 98
ZNFT70 2 2 100 0 30 23 7
ZNF74 23 17 74 2 157 153 97
ZNRF3 18 11 61 1 139 120 86
Total 7825 5917 76 2 64802 56416 88

123

Bibliography

1]

G. R. Abecasis, S. S. Cherny, W. O. Cookson, and L. R. Cardon,
“Merlin—rapid analysis of dense genetic maps using sparse gene flow trees,”
Nature Genetics, vol. 30, no. 1, pp. 97-101, Jan. 2002. [Online]. Available:
http://dx.doi.org/10.1038 /ng786

G. R. Abecasis and J. E. Wigginton, “Handling marker-marker linkage
disequilibrium: pedigree analysis with clustered markers,” American
J. Human Genetics, vol. 77, no. 5, pp. 754-767, Nov. 2005. [Online].
Available: http://dx.doi.org/10.1086/497345

P. Alimonti and V. Kann, “Some APX-completeness results for cubic
graphs,” Theoretical Computer Science, vol. 237, no. 1-2, pp. 123-134, 2000.
[Online|. Available: http://dx.doi.org/10.1016/S0304-3975(98)00158-3

N. Alon, R. Panigrahy, and S. Yekhanin, “Deterministic approximation
algorithms for the nearest codeword problem,” in Proc. APPROX and
RANDOM 2009, ser. LNCS, I. Dinur, K. Jansen, J. Naor, and J. D. P.
Rolim, Eds., vol. 5687. Springer, 2009, pp. 339-351. [Online|. Available:
http://dx.doi.org/10.1007/978-3-642-03685-9_26

S. Arora, L. Babai, J. Stern, and Z. Sweedyk, “The hardness of approximate
optima in lattices, codes, and systems of linear equations,” J. Computer and
System Sciences, vol. 54, no. 2, pp. 317-331, 1997.

G. Ausiello, P. Crescenzi, V. Gambosi, G. Kann, A. Marchetti-Spaccamela,
and M. Protasi, Complexity and Approzimation: Combinatorial optimization
problems and their approrimability properties. Springer-Verlag, 1999.

T. Barzuza. GREAL - software for the graph realization problem. [Online].
Available: http://acgt.cs.tau.ac.il/greal/

T. Barzuza, J. S. Beckmann, R. Shamir, and I. Pe’er, “Computational
problems in perfect phylogeny haplotyping: Xor-genotypes and tag SNPs,”
in Proc. 15th Symp. on Combinatorial Pattern Matching (CPM), ser. LNCS,
vol. 3109. Springer, Jul. 5-7, 2004, pp. 14-31. [Online]. Available:
http://www.springerlink.com/content /1fv09pmjxbkcak3p

125

http://dx.doi.org/10.1038/ng786
http://dx.doi.org/10.1086/497345
http://dx.doi.org/10.1016/S0304-3975(98)00158-3
http://dx.doi.org/10.1007/978-3-642-03685-9_26
http://acgt.cs.tau.ac.il/greal/
http://www.springerlink.com/content/lfv09pmjxbkcak3p

Bibliography

[9]

[11]

[12]

[15]

126

T. Barzuza, J. S. Beckmann, R. Shamir, and I. Pe’er, “Computational
problems in perfect phylogeny haplotyping: Typing without calling the
allele,” IEEFE Transactions on Computational Biology and Bioinformatics,
vol. 5, no. 1, pp. 101-109, 2008. [Online|. Available: http://doi.acm.org/10.
1145/1343571.1343580

J. R. Bitner, G. Ehrlich, and E. M. Reingold, “Efficient generation of
the binary reflected Gray code and its applications,” Communications
of the ACM, vol. 19, mno. 9, pp. 517-521, 1976. [Online]. Available:
http://doi.acm.org/10.1145/360336.360343

R. E. Bixby and D. K. Wagner, “An almost linear-time algorithm for graph
realization,” Mathematics of Operations Research, vol. 13, pp. 99-123, 1988.

P. Bonizzoni, R. Rizzi, and G. Pesole, “Computational methods for alterna-
tive splicing prediction.” Briefings in Functional Genomics and Proteomics
Advance, vol. 5:1, pp. 46-51, 2006.

P. Bonizzoni, “A linear-time algorithm for the perfect phylogeny haplotype
problem,” Algorithmica, vol. 48, no. 3, pp. 267-285, 2007. [Online|. Available:
http://dx.doi.org/10.1007/s00453-007-0094-3

P. Bonizzoni, G. Della Vedova, R. Dondi, and J. Li, “The haplotyping
problem: An overview of computational models and solutions,” J. Computer
Science and Technology, vol. 18, no. 6, pp. 675—688, 2003. [Online]. Available:
http://dx.doi.org/10.1007/BF02945456

P. Bonizzoni, G. Della Vedova, R. Dondi, Y. Pirola, and R. Rizzi, “Minimum
factorization agreement of spliced ESTs,” in Proc. 9th Int. Workshop on
Algorithms in Bioinformatics (WABI), ser. LNCS, S. L. Salzberg and
T. Warnow, Eds., vol. 5724. Springer, 2009, pp. 1-12. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-04241-6_1

P. Bonizzoni, G. Della Vedova, R. Dondi, Y. Pirola, and R. Rizzi, “Pure
parsimony xor haplotyping,” in Proc. 5th Int. Symp. on Bioinformatics Re-
search and Applications (ISBRA), ser. LNCS, I. I. Mandoiu, G. Narasimhan,
and Y. Zhang, Eds., vol. 5542. Springer, 2009, pp. 186-197. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-01551-9_19

P. Bonizzoni, G. Della Vedova, Y. Pirola, and R. Rizzi, “Fast spliced align-
ment via maximal pairings of a pattern and a text,” 2009, submitted.

P. Bonizzoni, G. D. Vedova, R. Dondi, and J. Li, “The haplotyping problem:
An overview of computational models and solutions,” in Genome Sequencing

http://doi.acm.org/10.1145/1343571.1343580
http://doi.acm.org/10.1145/1343571.1343580
http://doi.acm.org/10.1145/360336.360343
http://dx.doi.org/10.1007/s00453-007-0094-3
http://dx.doi.org/10.1007/BF02945456
http://dx.doi.org/10.1007/978-3-642-04241-6_1
http://dx.doi.org/10.1007/978-3-642-01551-9_19

Bibliography

Technology and Algorithms, 1st ed., S. Kim, H. Tang, and E. R. Mardis, Eds.
Artech House, Inc., 2007, pp. 151-181.

D. Brett, J. Hanke, G. Lehmann, S. Haase, S. Delbruck, S. Krueger, J. Re-
ich, and P. Bork, “EST comparison indicates 38% of human mRNAs contain
possible alternative splice forms.” FEBS Letters, vol. 474(1), pp. 83-86, 2000.

D. G. Brown and I. M. Harrower, “Integer programming approaches to hap-
lotype inference by pure parsimony,” IEEE Transactions on Computational
Biology and Bioinformatics, vol. 3, no. 2, pp. 141-154, 2006.

J. Caceres and A. Kornblihtt, “Alternative splicing: multiple control mech-
anisms and involvement in human disease,” Trends Genet., vol. 18(4), pp.
186-193, 2002.

Z. Cai, H. Sabaa, Y. Wang, R. Goebel, Z. Wang, J. Xu, P. Stothard, and
G. Lin, “Most parsimonious haplotype allele sharing determination,” BMC
Bioinformatics, vol. 10, no. 1, pp. 115+, Apr. 2009. [Online]. Available:
http://dx.doi.org/10.1186/1471-2105-10-115

C. Cannings, E. A. Thompson, and M. H. Skolnick, “Probability functions
on complex pedigrees,” Ann. Appl. Prob., vol. 10, pp. 2661, 1978.

T. Castrignano, M. D’Antonio, A. Anselmo, D. Carrabino, A. D. D.
Meo, A. M. D’Erchia, F. Licciulli, M. Mangiulli, F. Mignone, G. Pavesi,
E. Picardi, A. Riva, R. Rizzi, P. Bonizzoni, and G. Pesole, “ASPicDB:
A database resource for alternative splicing analysis,” Bioinformatics,
vol. 24, mno. 10, pp. 1300-1304, 2008. [Online]. Available: http:
//dx.doi.org/10.1093 /bioinformatics/btn113

T. Castrignano, R. Rizzi, I. G. Talamo, P. D. D. Meo, A. Anselmo,
P. Bonizzoni, and G. Pesole, “ASPIC: a web resource for alternative splicing
prediction and transcript isoforms characterization,” Nucleic Acid Research,
vol. 34, no. Web-Server-Issue, pp. 440-443, 2006. [Online]. Available:
http://dx.doi.org/10.1093 /nar/gkl324

B. M.-Y. Chan, J. W.-T. Chan, F. Y. L. Chin, S. P. Y. Fung, and M.-Y. Kao,
“Linear-time haplotype inference on pedigrees without recombinations,”
in Proc. 6th Int. Workshop on Algorithms in Bioinformatics (WABI), ser.
LNCS, P. Bucher and B. M. E. Moret, Eds., vol. 4175. Springer, 2006, pp.
56-67. [Online]. Available: http://dx.doi.org/10.1007/11851561_6

M. Y. Chan, W.-T. Chan, F. Y. L. Chin, S. P. Y. Fung, and M.-Y. Kao,
“Linear-time haplotype inference on pedigrees without recombinations and

127

http://dx.doi.org/10.1186/1471-2105-10-115
http://dx.doi.org/10.1093/bioinformatics/btn113
http://dx.doi.org/10.1093/bioinformatics/btn113
http://dx.doi.org/10.1093/nar/gkl324
http://dx.doi.org/10.1007/11851561_6

Bibliography

28]

[30]

[31]

[32]

[33]

[34]

[35]

128

mating loops,” SIAM J. on Computing, vol. 38, no. 6, pp. 2179-2197, 2009.
[Online|. Available: http://dx.doi.org/10.1137,/080680990

R. Cilibrasi, L. van Iersel, S. Kelk, and J. Tromp, “The complexity of
the single individual SNP haplotyping problem,” Algorithmica, vol. 49,
no. 1, pp. 13-36, 2007. [Online]. Available: http://dx.doi.org/10.1007/
s00453-007-0029-z

A. Clark, “Inference of haplotypes from PCR-amplified samples of diploid
populations,” Molecular Biology and Fvolution, vol. 7, no. 2, pp. 111-122,
1990.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms, 2nd ed. MIT Press, 2001.

Q. D. and L. Beckmann, “Minimum-recombinant haplotyping in pedigrees,”
American J. Human Genetics, vol. 70, no. 6, pp. 1434-1445, 2002.

A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
from incomplete data via the em algorithm,” Journal of the Royal Statistical
Society. Series B (Methodological), vol. 39, no. 1, pp. 1-38, 1977. [Online].
Available: http://dx.doi.org/10.2307,/2984875

R. Diestel, Graph Theory, 3rd ed., ser. Graduate Texts in Mathematics.
Springer-Verlag, Heidelberg, 2005, vol. 173.

Z. Ding, V. Filkov, and D. Gusfield, “A linear-time algorithm for
the perfect phylogeny haplotyping (pph) problem,” J. Computational
Biology, wvol. 13, mo. 2, pp. 522-553, 2006. [Online]. Available:
http://dx.doi.org/10.1089/cmb.2006.13.522

K. Doi, J. Li, and T. Jiang, “Minimum recombinant haplotype
configuration on tree pedigrees,” in Proc. 3rd Int. Workshop on Algorithms
in Bioinformatics (WABI), ser. LNCS, G. Benson and R. D. M. Page,
Eds., wvol. 2812. Springer, 2003, pp. 339-353. [Online]. Available:
http://www.springerlink.com/content /ulnhtntqy14hjxg6

R. Downey and M. Fellows, Parameterized Complezity. Springer Verlag,
1999.

M. Elkin, Y. Emek, D. A. Spielman, and S.-H. Teng, “Lower-stretch
spanning trees,” SIAM J. on Computing, vol. 38, no. 2, pp. 608628, 2008.
[Online|. Available: http://link.aip.org/link/7SMJ/38/608/1

http://dx.doi.org/10.1137/080680990
http://dx.doi.org/10.1007/s00453-007-0029-z
http://dx.doi.org/10.1007/s00453-007-0029-z
http://dx.doi.org/10.2307/2984875
http://dx.doi.org/10.1089/cmb.2006.13.522
http://www.springerlink.com/content/ulnhtntqy14hjxg6
http://link.aip.org/link/?SMJ/38/608/1

Bibliography

[38]

[39]

R. C. Elson and J. Stewart, “A general model for the analysis of pedigree
data,” Human Heredity, vol. 21, pp. 523-542, 1971.

L. Excoffier and M. Slatkin, “Maximum-likelihood estimation of molecular
haplotype frequencies in a diploid population,” Molecular Biology and
FEvolution, vol. 12, mno. 5, pp. 921-927, 1995. [Online]. Available:
http://mbe.oxfordjournals.org/content/12/5/921.abstract

E. Eyras, M. Caccamo, V. Curwen, and M. Clamp, “ESTGenes: alternative
splicing from ESTs in Ensembl,” Genome Research, vol. 14, pp. 976-987,
2004.

E. Fredkin, “Trie memory,” Communications of the ACM, vol. 3, no. 9,
pp. 490-499, 1960. [Online]. Available: http://doi.acm.org/10.1145/367390.
367400

S. Fujishige, “An efficient PQ-graph algorithm for solving the graph realiza-
tion problem,” Journal of Computer and System Science, vol. 21, pp. 63—68,
1980.

P. Galante, N. Sakabe, N. Kirschbaum-Slager, and S. de Souza, “Detection
and evaluation of intron retention events in the human transcriptome,” RNA,
vol. 10(5), pp. 757-65, 2004.

R. G. Gallager, Low-Density Parity-Check Codes. M.L.T. Press, 1963.

G. Gao, 1. Hoeschele, P. Sorensen, and F. X. Du, “Conditional probability
methods for haplotyping in pedigrees,” Genetics, vol. 167, pp. 2055-2065,
2004.

G. Gao, D. B. Allison, and I. Hoeschele, “Haplotyping methods for
pedigrees,” Human heredity, vol. 67, no. 4, pp. 248-266, 2009. [Online].
Available: http://dx.doi.org/10.1159/000194978

M. Garey and D. Johnson, Computer and Intractability: A Guide to the
Theory of NP-completeness. W. H. Freeman, 1979.

N. Garg, V. V. Vazirani, and M. Yannakakis, “Approximate max-
flow min-(multi)cut theorems and their applications,” SIAM J. on
Computing, vol. 25, mno. 2, pp. 235-251, 1996. [Online]. Available:
http://link.aip.org/link/?SMJ/25/235/1

F. Gavril and R. Tamari, “An algorithm for constructing edge-trees from
hypergraphs,” Networks, vol. 13, no. 3, pp. 377-388, 1983. [Online].
Available: http://dx.doi.org/10.1002/net.3230130306

129

http://mbe.oxfordjournals.org/content/12/5/921.abstract
http://doi.acm.org/10.1145/367390.367400
http://doi.acm.org/10.1145/367390.367400
http://dx.doi.org/10.1159/000194978
http://link.aip.org/link/?SMJ/25/235/1
http://dx.doi.org/10.1002/net.3230130306

Bibliography

[50]

[51]

[59]

130

D. F. Gudbjartsson, T. Thorvaldsson, A. Kong, G. Gunnarsson, and
A. Ingolfsdottir, “Allegro version 2,” Nature Genetics, vol. 37, no. 10,
pp. 1015-1016, Oct. 2005. [Online]. Available: http://dx.doi.org/10.1038/
ngl005-1015

S. Gupta, D. Zink, B. Korn, M. Vingron, and S. Haas, “Genome wide identi-
fication and classification of alternative splicing based on EST data,” Bioin-
formatics, vol. 20(16), pp. 2579-2585, 2004.

D. Gusfield, Algorithms on Strings, Trees and Sequences: Computer Science
and Computational Biology. Cambridge: Cambridge University Press, 1997.

D. Gusfield, “Inference of haplotypes from samples of diploid populations:
Complexity and algorithms,” J. Computational Biology, vol. 8, no. 3, pp.
305323, 2001.

D. Gusfield, “Haplotyping as perfect phylogeny: Conceptual framework and
efficient solutions,” in Proc. 6th Ann. Conf. on Research in Computational
Molecular Biology (RECOMB), 2002, pp. 166-175.

D. Gusfield, “Haplotype inference by pure parsimony,” in Proc. 14th Symp. on
Combinatorial Pattern Matching (CPM), 2003, pp. 144-155.

D. Gusfield, “An overview of combinatorial methods for haplotype
inference,” in Computational Methods for SNPs and Haplotype Inference,
DIMACS/RECOMB 2002 Satellite Workshop, Revised Papers, ser. LNCS,
S. Istrail, M. S. Waterman, and A. G. Clark, Eds., vol. 2983. Springer,
2004, pp. 9-25. [Online]. Available: http://www.springerlink.com/content/
Oyry96gwq40y67ql

D. Gusfield and S. H. Orzack, “Haplotype inference,” in CRC' Handbook on
Bioinformatics, S. Aluru, Ed., 2006, pp. 18/1-18/25.

B. V. Halldérsson, V. Bafna, N. Edwards, R. Lippert, S. Yooseph, and
S. Istrail, “A survey of computational methods for determining haplo-
types,” in Computational Methods for SNPs and Haplotype Inference, DI-
MACS/RECOMB 2002 Satellite Workshop, Revised Papers, ser. LNCS, S. Is-
trail, M. S. Waterman, and A. G. Clark, Eds., vol. 2983. Springer, 2004, pp.
26-47.

E. Halperin and E. Eskin, “Haplotype reconstruction from genotype data
using imperfect phylogeny,” Bioinformatics, vol. 20, no. 12, pp. 1842-1849,
Aug. 2004. [Online]. Available: http://dx.doi.org/10.1093/bioinformatics/
bth149

http://dx.doi.org/10.1038/ng1005-1015
http://dx.doi.org/10.1038/ng1005-1015
http://www.springerlink.com/content/0yry96gwq40y67q1
http://www.springerlink.com/content/0yry96gwq40y67q1
http://dx.doi.org/10.1093/bioinformatics/bth149
http://dx.doi.org/10.1093/bioinformatics/bth149

Bibliography

[60]

[61]

[62]

[63]

[64]

[68]

S. Heber, M. A. Alekseyev, S.-H. Sze, H. Tang, and P. A. Pevzner, “Splicing
graphs and EST assembly problem,” in Proc. 10th Int. Conf. on Intelligent
Systems for Molecular Biology (ISMB) (Suppl. of Bioinformatics), vol. 18,
2002, pp. 181-188.

Y.-T. Huang, K.-M. Chao, and T. Chen, “An approximation algorithm
for haplotype inference by maximum parsimony,” J. Computational
Biology, vol. 12, mno. 10, pp. 1261-1274, 2005. [Online|. Available:
http://dx.doi.org/10.1089/cmb.2005.12.1261

R. R. Hudson, “Generating samples under a Wright-Fisher neutral model of
genetic variation,” Bioinformatics, vol. 18, no. 2, pp. 337-338, Feb. 2002.
[Online|. Available: http://dx.doi.org/10.1093/bioinformatics/18.2.337

T. Jiang and Y. Pirola, “Haplotype inference in pedigrees with recombinations
and mutations,” 2009, in preparation.

Z. Kan, E. C. Rouchka, W. R. Gish, and D. J. States, “Gene structure pre-
diction and alternative splicing analysis using genomically aligned ESTSs,”
Genome Research, vol. 11(5), pp. 889-900, 2001.

S. Khot, “On the power of unique 2-prover 1-round games,” in Proc. 34th
Symp. Theory of Computing (STOC), 2002, pp. 767-775. [Online]. Available:
http://doi.acm.org/10.1145/509907.510017

N. Kim, S. Shin, and LeeSanghyuk, “ECgene: genome-based EST clustering
and gene modeling for alternative splicing,” Genome Research, vol. 15, no. 4,
pp. 566-576, 2005.

B. Kirkpatrick, J. Rosa, E. Halperin, and R. M. Karp, “Haplotype
inference in complex pedigrees,” in Proc. 13th Ann. Conf. on Research in
Computational Molecular Biology (RECOMB), ser. LNCS, S. Batzoglou,
Ed., wvol. 5541. Springer, 2009, pp. 108-120. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-02008-7_8

A. Kong, G. Masson, M. L. Frigge, A. Gylfason, P. Zusmanovich,
G. Thorleifsson, P. I. Olason, A. Ingason, S. Steinberg, T. Rafnar,
P. Sulem, M. Mouy, F. Jonsson, U. Thorsteinsdottir, D. F. Gudbjartsson,
H. Stefansson, and K. Stefansson, “Detection of sharing by descent, long-
range phasing and haplotype imputation,” Nature Genetics, vol. 40, no. 9, pp.
1068-1075, Sep. 2008. [Online|. Available: http://dx.doi.org/10.1038/ng.216

L. Kruglyak, M. J. Daly, M. P. Reeve-Daly, and L. E., “Parametric and
nonparametric linkage analysis: a unified multipoint approach,” American
J. Human Genetics, vol. 58, no. 6, pp. 1346-1363, Jun. 1996.

131

http://dx.doi.org/10.1089/cmb.2005.12.1261
http://dx.doi.org/10.1093/bioinformatics/18.2.337
http://doi.acm.org/10.1145/509907.510017
http://dx.doi.org/10.1007/978-3-642-02008-7_8
http://dx.doi.org/10.1038/ng.216

Bibliography

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

78]

[79]

132

G. Lancia, “The phasing of heterozygous traits: Algorithms and complexity,”
Computers & Mathematics with Applications, vol. 55, no. 5, pp. 960-969, Mar.
2008. [Online|. Available: http://dx.doi.org/10.1016/j.camwa.2006.12.089

G. Lancia, M. C. Pinotti, and R. Rizzi, “Haplotyping populations by pure
parsimony: Complexity of exact and approximation algorithms,” INFORMS
Journal on Computing, vol. 16, no. 4, pp. 348-359, 2004.

G. Lancia and R. Rizzi, “A polynomial case of the parsimony haplotyping
problem,” Operations Research Letters, vol. 34, no. 3, pp. 289-295, 2006.

G. Lancia and P. Serafini, “A set-covering approach with column
generation for parsimony haplotyping,” INFORMS J. on Computing,
vol. 21, mno. 1, pp. 151-166, Jan. 2009. [Online]. Available: http:
//dx.doi.org/10.1287 /ijoc.1080.0285

E. Lander and P. Green, “Construction of multilocus genetic linkage maps in
human,” Proceedings of the National Academy of Sciences USA, vol. 84, pp.
2363-2367, 1987.

J. Leipzig, P. Pevzner, and S. Heber, “The Alternative Splicing Gallery
(ASG): bridging the gap between genome and transcriptome,” Nucleic
Acid Research, vol. 32, no. 13, pp. 3977-3983, 2004. [Online|. Available:
http://nar.oxfordjournals.org/cgi/reprint/32/13/3977.pdf

J. Li and T. Jiang, “Efficient inference of haplotypes from genotypes on a
pedigree,” J. Bioinformatics and Computational Biology, vol. 1, no. 1, pp.
41-69, Apr. 2003.

J. Li and T. Jiang, “Efficient rule-based haplotyping algorithms for
pedigree data,” in Proc. 7th Ann. Conf. on Research in Computational
Molecular Biology (RECOMB), 2003, pp. 197-206. [Online]. Available:
http://doi.acm.org/10.1145/640075.640101

J. Li and T. Jiang, “Computing the minimum recombinant haplotype
configuration from incomplete genotype data on a pedigree by integer linear
programming,” J. Computational Biology, vol. 12, no. 6, pp. 719-739, 2005.
[Online|. Available: http://dx.doi.org/10.1089/cmb.2005.12.719

J. Li and T. Jiang, “A survey on haplotyping algorithms for tightly linked
markers,” Journal of bioinformatics and computational biology, vol. 6, no. 1,
pp. 241-259, Feb. 2008. [Online]. Available: http://view.ncbi.nlm.nih.gov/
pubmed /18324755

http://dx.doi.org/10.1016/j.camwa.2006.12.089
http://dx.doi.org/10.1287/ijoc.1080.0285
http://dx.doi.org/10.1287/ijoc.1080.0285
http://nar.oxfordjournals.org/cgi/reprint/32/13/3977.pdf
http://doi.acm.org/10.1145/640075.640101
http://dx.doi.org/10.1089/cmb.2005.12.719
http://view.ncbi.nlm.nih.gov/pubmed/18324755
http://view.ncbi.nlm.nih.gov/pubmed/18324755

Bibliography

[80]

[81]

[82]

[83]

X. Li and J. Li, “An almost linear time algorithm for a general haplotype
solution on tree pedigrees with no recombination and its extensions.”
J. Bioinformatics and Computational Biology, vol. 7, no. 3, pp. 521-545, Jun.
2009. [Online|. Available: http://view.ncbi.nlm.nih.gov/pubmed/19507288

X. Li and J. Li, “Efficient haplotype inference from pedigrees with missing
data using linear systems with disjoint-set data structures.” Computational
Systems Bioinformatics Conference, vol. 7, pp. 297-308, 2008. [Online].
Available: http://view.ncbi.nlm.nih.gov/pubmed /19642289

Z.-P. Li, W. Zhou, X.-S. Zhang, and L. Chen, “A parsimonious tree-grow
method for haplotype inference,” Bioinformatics, vol. 21, no. 17, pp. 3475—
3481, 2005. [Online]. Available: http://dx.doi.org/10.1093/bioinformatics/
bti572

L. Liu, X. Chen, J. Xiao, and T. Jiang, “Complexity and approximation of
the minimum recombination haplotype configuration problem,” in Proc. 16th
Int. Symp. on Algorithms and Computation (ISAAC), 2005, pp. 370-379.
[Online|. Available: http://dx.doi.org/10.1007/11602613_38

L. Liu, X. Chen, J. Xiao, and T. Jiang, “Complexity and approximation
of the minimum recombinant haplotype configuration problem,” Theoretical
Computer Science, vol. 378, mno. 3, pp. 316-330, Jun. 2007. [Online].
Available: http://dx.doi.org/10.1016/j.tcs.2007.02.036

L. Liu and T. Jiang, “Linear-time reconstruction of zero-recombinant
mendelian inheritance on pedigrees without mating loops.” in Proc. 17th
Int. Conf. on Genome Informatics, vol. 19, 2007, pp. 95-106. [Online].
Available: http://view.ncbi.nlm.nih.gov/pubmed /18546508

A. Makhorin. GLPK - the GNU Linear Programming Kit. GNU Project.
[Online]. Available: http://www.gnu.org/software/glpk/

C. Meyer, Matrixz Analysis and Applied Linear Algebra. Philadelphia: SIAM,
2000.

S. Myers, L. Bottolo, C. Freeman, G. McVean, and P. Donnelly, “A fine-scale
map of recombination rates and hotspots across the human genome.”
Science, vol. 310, no. 5746, pp. 321-324, Oct. 2005. [Online]. Available:
http://dx.doi.org/10.1126 /science.1117196

T. Niu, Z. Qin, X. Xu, and J. Liu, “Bayesian haplotype inference for multiple
linked single-nucleotide polymorphisms,” American J. Human Genetics, vol.
710, pp. 157-169, 2002.

133

http://view.ncbi.nlm.nih.gov/pubmed/19507288
http://view.ncbi.nlm.nih.gov/pubmed/19642289
http://dx.doi.org/10.1093/bioinformatics/bti572
http://dx.doi.org/10.1093/bioinformatics/bti572
http://dx.doi.org/10.1007/11602613_38
http://dx.doi.org/10.1016/j.tcs.2007.02.036
http://view.ncbi.nlm.nih.gov/pubmed/18546508
http://www.gnu.org/software/glpk/
http://dx.doi.org/10.1126/science.1117196

Bibliography

[90]

[91]

[92]

[93]

[94]

[100]

134

T. Niu, “Algorithms for inferring haplotypes,” Genetic epidemiology,
vol. 27, mno. 4, pp. 334-347, Dec. 2004. [Online]. Available: http:
//dx.doi.org/10.1002/gepi.20024

J. R. O’Connell, “Zero-recombinant haplotyping: applications to fine map-
ping using SNPs,” Genetic Epidemiolgy, vol. 19, no. Suppl. 1, pp. S64-S70,
2000.

S. H. Orzack, D. Gusfield, J. Olson, S. Nesbitt, L. Subrahmanyan,
and V. P. Stanton, “Analysis and exploration of the wuse of rule-
based algorithms and consensus methods for the inferral of haplotypes,”
Genetics, vol. 165, no. 2, pp. 915-928, Oct. 2003. [Online]. Available:
http://www.genetics.org/content/165/2/915.abstract

C. H. Papadimitriou, Computational Complexity. Addison Wesley, 1993.

C. Papadimitriou and M. Yannakakis, “Optimization, approximation and
complexity classes,” J. Computer and System Sciences, vol. 43, pp. 425-440,
1991.

J. Pearl, “Reverend bayes on inference engines: A distributed hierarchical
approach,” in Proc. of the American Ass. of Artificial Intelligence National
Conference on Al Pittsburgh, PA, 1982, pp. 133-136.

R. Raz and S. Safra, “A sub-constant error-probability low-degree test, and
a sub-constant error-probability PCP characterization of NP,” in Proc. 29th
Symp. Theory of Computing (STOC), 1997, pp. 475-484. [Online]. Available:
http://doi.acm.org/10.1145/258533.258641

R. V. Satya and A. Mukherjee, “An optimal algorithm for perfect phylogeny
haplotyping,” J. Computational Biology, vol. 13, no. 4, pp. 897-928, 2006.
[Online|. Available: http://dx.doi.org/10.1089/cmb.2006.13.897

C. Savage, “A survey of combinatorial Gray codes,” SIAM Review, vol. 39,
no. 4, pp. 605-629, 1997. [Online|. Available: http://dx.doi.org/10.1137/
S0036144595295272

D. J. Schaid, S. K. McDonnell, L. Wang, J. M. Cunningham, and T. S. N.,
“Caution on pedigree haplotype inference with software that assumes linkage
equilibrium,” American J. Human Genetics, vol. 71, no. 4, pp. 992-995, Oct.
2002.

T. Smith and M. Waterman, “Identification of common molecular subse-
quences,” J. Molecular Biology, vol. 147, pp. 195-197, 1981.

http://dx.doi.org/10.1002/gepi.20024
http://dx.doi.org/10.1002/gepi.20024
http://www.genetics.org/content/165/2/915.abstract
http://doi.acm.org/10.1145/258533.258641
http://dx.doi.org/10.1089/cmb.2006.13.897
http://dx.doi.org/10.1137/S0036144595295272
http://dx.doi.org/10.1137/S0036144595295272

Bibliography

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

109

[110]

E. Sobel and K. Lange, “Descent graphs in pedigree analysis: applications
to haplotyping, location scores, and marker-sharing statistics.” American
J. Human Genetics, vol. 58, no. 6, pp. 1323-1337, Jun. 1996. [Online].
Available: http://view.ncbi.nlm.nih.gov/pubmed /8651310

E. Sobel, K. Lange, J. R. O’Connell, and D. E. Weeks, “Haplotyping al-
gorithms,” in Genetic mapping and DNA sequencing, ser. IMA Volumes in
Mathematics and its Applications, vol. 81, 1996, pp. 89-110.

Y. S. Song, Y. Wu, and D. Gusfield, “Algorithms for imperfect phylogeny
haplotyping (IPPH) with a single homoplasy or recombination event,”
in Proc. 5th Int. Workshop on Algorithms in Bioinformatics (WABI), ser.
LNCS, R. Casadio and G. Myers, Eds., vol. 3692. Springer, 2005, pp.
152-164. [Online]. Available: http://dx.doi.org/10.1007/11557067_13

M. Stephens and P. Donnelly, “A comparison of bayesian methods
for haplotype reconstruction from population genotype data,” American
J. Human Genetics, vol. 73, no. 5, pp. 1162-1169, Nov. 2003. [Online].
Available: http://dx.doi.org/10.1086/379378

M. Stephens, N. Smith, and P. Donnelly, “A new statistical method for hap-
lotype reconstruction from population data,” American J. Human Genetics,
vol. 68, pp. 978-989, 2001.

The International HapMap Consortium, “A haplotype map of the human
genome,” Nature, vol. 437, mno. 7063, pp. 1299-1320, 2005. [Online].
Available: http://dx.doi.org/10.1038 /nature04226

The International HapMap Consortium, “A second generation human
haplotype map of over 3.1 million SNPs,” Nature, vol. 449, no. 7164, pp. 851—
861, Oct. 2007. [Online]. Available: http://dx.doi.org/10.1038/nature06258

W. T. Tutte, “An algorithm for determining whether a given binary matroid
is graphic,” Proceedings of the American Mathematical Society, vol. 11, no. 6,
pp- 905-917, 1960.

L. van lersel, J. Keijsper, S. Kelk, and L. Stougie, “Shorelines of islands
of tractability: Algorithms for parsimony and minimum perfect phylogeny
haplotyping problems,” IEEE Transactions on Computational Biology and
Bioinformatics, vol. 5, no. 2, pp. 301-312, 2008. [Online]. Available:
http://doi.acm.org/10.1145/1371585.1371599

W.-B. Wang and T. Jiang, “Efficient inference of haplotypes from genotypes
on a pedigree with mutations and missing alleles (extented abstract),” in

135

http://view.ncbi.nlm.nih.gov/pubmed/8651310
http://dx.doi.org/10.1007/11557067_13
http://dx.doi.org/10.1086/379378
http://dx.doi.org/10.1038/nature04226
http://dx.doi.org/10.1038/nature06258
http://doi.acm.org/10.1145/1371585.1371599

Bibliography

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

136

Proc. 20th Symp. on Combinatorial Pattern Matching (CPM), ser. LNCS,
G. Kucherov and E. Ukkonen, Eds., vol. 5577. Springer, 2009, pp. 353-367.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-02441-2_31

S. Wheelan, D. Church, and J. Ostell, “Spidey: a tool for mRNA-to-genomic
alignments,” Genome Research, vol. 11(11), pp. 1952-1957, 2001.

E. M. Wijsman, “A deductive method of haplotype analysis in pedigrees.”
American J. Human Genetics, vol. 41, no. 3, pp. 356-373, Sep. 1987.
[Online]. Available: http://view.ncbi.nlm.nih.gov/pubmed/3115093

T. D. Wu and C. K. Watanabe, “GMAP: a genomic mapping and
alignment program for mRNA and EST sequence,” Bioinformatics,
vol. 21, mo. 9, pp. 1859-1875, 2005. [Online]. Available: http:
//dx.doi.org/10.1093 /bioinformatics/bti310

J. Xiao, L. Liu, L. Xia, and T. Jiang, “Fast elimination of redundant linear
equations and reconstruction of recombination-free mendelian inheritance
on a pedigree,” in Proc. 18th ACM/SIAM Symp. on Discrete Algorithms
(SODA), N. Bansal, K. Pruhs, and C. Stein, Eds. STAM, 2007, pp. 655—664.
[Online]. Available: http://doi.acm.org/10.1145/1283383.1283454

J. Xiao, L. Liu, L. Xia, and T. Jiang, “Efficient algorithms for reconstructing
zero-recombinant haplotypes on a pedigree based on fast elimination of
redundant linear equations,” SIAM J. on Computing, vol. 38, no. 6, pp.
2198-2219, 2009. [Online]. Available: http://dx.doi.org/10.1137/070687591

J. Xiao, T. Lou, and T. Jiang, “An efficient algorithm for haplotype inference
on pedigrees with a small number of recombinants (extended abstract),” in
Proc. 17th European Symp. on Algorithms (ESA), ser. LNCS, A. Fiat and
P. Sanders, Eds., vol. 5757. Springer, 2009, pp. 325-336. [Online|. Available:
http://dx.doi.org/10.1007/978-3-642-04128-0_30

W. Xiao and P. J. Oefner, “Denaturing high-performance liquid
chromatography: A review,” Human Mutation, vol. 17, no. 6, pp. 439-474,
2001. [Online]. Available: http://dx.doi.org/10.1002/humu.1130

H. Xie, W. Zhu, A. Wasserman, V. Grebinskiy, A. Olson, and L. Mintz,
“Computational analysis of alternative splicing using EST tissue informa-
tion,” Genomics, vol. 80(3), pp. 326-330, 2002.

Y. Xing, A. Resch, and C. Lee, “The multiassembly problem: reconstructing
multiple transcript isoforms from EST fragment mixtures,” Genome
Research, vol. 14, no. 3, pp. 426441, Mar. 2004. [Online]. Available:
http://dx.doi.org/10.1101/gr.1304504

http://dx.doi.org/10.1007/978-3-642-02441-2_31
http://view.ncbi.nlm.nih.gov/pubmed/3115093
http://dx.doi.org/10.1093/bioinformatics/bti310
http://dx.doi.org/10.1093/bioinformatics/bti310
http://doi.acm.org/10.1145/1283383.1283454
http://dx.doi.org/10.1137/070687591
http://dx.doi.org/10.1007/978-3-642-04128-0_30
http://dx.doi.org/10.1002/humu.1130
http://dx.doi.org/10.1101/gr.1304504

Bibliography

[120]

[121]

[122]

[123]

Q. Xu, B. Modrek, and C. Lee, “Genome-wide detection of tissue-specific
alternative splicing in the human transcriptome,” Nucleic Acid Research, vol.
30(17), pp. 3754-3766, 2002.

Y. Xue, Q. Wang, Q. Long, B. L. Ng, H. Swerdlow, J. Burton, C. Skuce,
R. Taylor, Z. Abdellah, Y. Zhao, D. G. MacArthur, M. A. Quail, N. P. Carter,
H. Yang, and C. Tyler-Smith, “Human Y chromosome base-substitution
mutation rate measured by direct sequencing in a deep-rooting pedigree,”
Current Biology, vol. 19, no. 17, pp. 1453-1457, Sep. 2009. [Online].
Available: http://dx.doi.org/10.1016/j.cub.2009.07.032

M. Yannakakis, “Node-and edge-deletion NP-complete problems,” in
Proc. 10th Symp. Theory of Computing (STOC). ACM, 1978, pp. 253-264.
[Online|. Available: http://dx.doi.org/10.1145/800133.804355

K. Zhang, F. Sun, and H. Zhao, “HAPLORE: a program for
haplotype reconstruction in general pedigrees without recombination,”
Bioinformatics, vol. 21, no. 1, pp. 90-103, Jan. 2005. [Online]. Available:
http://dx.doi.org/10.1093/bioinformatics/bth388

137

http://dx.doi.org/10.1016/j.cub.2009.07.032
http://dx.doi.org/10.1145/800133.804355
http://dx.doi.org/10.1093/bioinformatics/bth388

	Introduction
	Preliminaries
	Computational Complexity and Approximation
	Vector Spaces and Matrices over the Finite Field Z2
	Graph Theory

	Haplotype Inference Problems
	Haplotype Inference Problems
	Introduction
	Population-based Methods
	Population-based Statistical Methods
	Population-based Combinatorial Methods

	Pedigree-based Methods
	Terminology
	Pedigree-based Statistical Methods
	Pedigree-based Combinatorial Methods

	Pure Parsimony Xor Haplotyping
	The Computational Problem
	Basic Properties
	Algorithms for Restricted Instances
	A Polynomial Time Algorithm for PPXH(,2)
	A Polynomial Time Algorithm for PPXH(2,)

	Fixed-Parameter Tractability of PPXH
	An Approximation Algorithm
	Solving PPXH by a Heuristic Method
	Experimental Results

	Haplotype Inference on Pedigrees
	Motivations
	The Computational Problem
	Computational Complexity
	binary-tree-MinMHC is APX-hard
	2-locus-MinEHC and 2-locus-MinMHC are APX-hard

	A Heuristic Algorithm for MinEHC
	A System of Linear Equations for MinEHC
	Reducing MinEHC to NCP
	The Heuristic Algorithm

	Experimental Results
	Solving MinEHC
	Solving MinRHC

	Alignment of Spliced Sequences
	Spliced Alignments
	Introduction
	The Maximal Embedding Problem
	The Maximal Embedding Graph
	Solving the Maximal Embedding Problem
	The Compact Maximal Embedding Graph
	Reconstruction of Embeddings from a Path
	Efficient Reconstruction of the MEG from the CMEG
	Building the CMEG

	From Embeddings to Spliced Alignments of ESTs

	Agreement of Spliced Alignments
	Introduction
	The Minimum Factorization Agreement Problem
	An Algorithm for Solving the MFA Problem
	A Naïve Algorithm
	A Refined Algorithm

	Experimental Analysis

	Bibliography

