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Introduction

Nowadays, the model which describes the fundamental interactions, in the particle physics,
is the Standard Model. It is a quantum field theory, where the local gauge symmetry
generates the gauge fields. These fields are the physical candidates to mediate the strong
and electroweak interactions between the elementary particles. In the first case the local
gauge symmetry is exact, while in the second one it is broken by the Higgs mechanism.
The original Standard Model has to face the problem of the quadratic divergences of QFT
which are at the origin of the so called hierarchy problem. Furthermore it seems natural
to try to unify the above theories with gravity but it seems very difficult to combine
QFT with general relativity, and the most promising attempt to overcome this problem is
string theory. Now both the hierarchy issue as well as string theory require an additional
global symmetry which ties bosons and fermions together, called supersymmetry. One
can construct QFT with such a symmetry. It turns out that the vacuum state of such
theories must have zero energy. From the phenomenological point of view supersymmetry
has to be broken at low energy and can be restored at very high energy.

Another important aspect of supersymmetry is its relation with confining gauge theo-
ries. In many cases strongly coupled models admit a weakly coupled dual version. The use
of duality has often helped the comprehension of physical phenomena. In supersymmetric
gauge theories there exists a natural electric/magnetic type duality. The first historical
example was the Montonen-Olive duality in N = 4. Many extensions have been studied in
the following years. In this thesis we concentrate on the N = 1 case, namely the Seiberg
duality [1]. This is an electric/magnetic duality relating the correlation functions of the
the long distance physics of two different theories. The dual description is usually weakly
coupled at low energy if the electric theory were free in the UV. Non perturbative prop-
erties of the electric theory at low energy are perturbatively calculated in the magnetic
theory. Many test of validity of Seiberg duality have been performed. For example the
global symmetries are the same in the dual theories, while the gauge symmetries, which
are unphysical are not the same. Moreover the number of supersymmetric vacua, Witten
index and superconformal indexes coincide for dual theories. Also the a-maximization
has checked the consistence of duality.
Although the original duality matched two SQCD models, each one having a gauge group,
Seiberg duality can be extended to theories with many gauge groups. These are the quiver
gauge theories, which are associated, by the gauge/gravity correspondence, to the gauge
theories living on D3 branes wrapped on Calabi-Yau (CY) singularity. In these cases all
the groups are gauge groups and the matter fields are two index tensors charged under
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the adjoint or the bifundamental representations of the gauge groups. The rules of duality
are the same as in the SQCD case, but the number of equivalent theories is enlarged.
Recently new applications of Seiberg duality have received a large attention. Here we dis-
cuss some of them like the ISS model of metastable supersymmetry breaking, the exotic
contribution of a class of stringy instanton and the AdS4/CFT3 correspondence.

The first application that we discuss is the existence of ISS [2] metastable vacua in
SQCD. The phenomenological application of many models of supersymmetry breaking
have been excluded by the constraints on the soft masses. Some of these models are re-
covered by requiring an hidden sector of supersymmetry breaking. In the past the study
of the properties of the supersymmetry breaking hidden sectors has been problematic be-
cause many models were strongly coupled in the IR. This complication made the analysis
only qualitative, and the spectra were often uncalculable. As we explained above duality
is helpful in the analysis of the strongly coupled sectors.
Indeed the ISS model uses Seiberg duality to build a hidden sector of supersymmetry
breaking. This is a SQCD model with NF massive flavour of quarks. The choice of the
values of NF and NC makes the electric theory free in the UV regime and the dual the-
ory free in the IR. This theory has supersymmetric vacua and does not seems a viable
candidate for an hidden sector. Nevertheless in the dual version of the theory some new
vacua appear. These are supersymmetry breaking metastable vacua, emerging at weak
coupling in the gauge theory. Seiberg duality guarantees that these vacua are also vacua
of the electric theory, but the strong couplings made them too difficult to find there.
Metastability can be regarded as a problem for these vacuum states. However, as long as
they have long lifetime, they are phenomenologically acceptable vacua.
Metastable vacua are rather generic when the supersymmetry breaking sector is coupled
with the MSSM. Supersymmetric vacua usually arise from this coupling and the super-
symmetry breaking vacuum becomes metastable, if tachyons are not generated. This
implies that the only difference with the ISS model is that metastability here already
is accepted in the hidden sector. In this way many calculable and natural examples of
supersymmetry breaking are found.

The ISS model leaves many phenomenological problems opened. It cannot be used for
gauge mediating supersymmetry breaking, because R-symmetry is not broken. Here an
approximate R-symmetry is preserved around the supersymmetry breaking vacuum. This
symmetry forbids a gaugino mass term in the perturbative expansion of the Lagrangian,
also at higher loops.
For this reason it is important to find phenomenologically appealing deformations of the
ISS model. One can try to add explicit R-symmetry deformations. This usually restores
supersymmetry [3] but as we will show later it is not always the case. Another possibility
is that the R-symmetry is broken at loop level by the scalar potential, as in [4].
Another interesting question is the relation of the ISS model with the gauge/gravity
duality. Some progress has been made by studying the interactions among systems of
intersecting branes. Here Seiberg duality is the statement that the moduli space of two
system of branes, obtained after an exchanging of two NS branes, coincide. Many models
of metastable vacua have been worked out from system of branes [5, 6, 7, 8, 9]. Another
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promising possibility comes from theories of fractional branes wrapped on CY3 singu-
larities. Usually the geometric deformations of the singularity add new terms to the
superpotential of the underlying quiver gauge theories. Metastable vacua are ubiquitous
in these models [10, 11, 12, 13].

A second application of duality that we discuss is the relation with non-perturbative
exotic contribution that arise from stringy instantons.
Usually instantons provide non perturbative contributions to the gauge theories. In super-
symmetry only the action for the instantonic zero modes is non vanishing. It is obtained
from the ADHM construction [14]. The non perturbative contribution due to the instan-
tons is calculated by integrating the action over the bosonic and fermionic zero modes.
This field theory construction has a natural interpretation in string theory, especially in
theories of branes at a singularity [15]. The dimensional reduction from ten dimensional
supergravity, in a flat background, of a system of D3 branes and D(−1) branes, recovers
the ADHM construction of the instantonic action of N = 4 SYM. By orbifolding and
higgsing the N = 4. This is a dynamical phenomenon due to the cascading behaviour.
Indeed the addiction of fractional branes usually breaks the conformal invariance and
the theory flows to lower energy through many steps of Seiberg dualities. This flow can
lead to N = 0 or N = 1 rank for some of the gauge groups of the quiver. It happens
when there are zero or one fractional branes, wrapping a singularity. Non perturbative
instantonic effects in these theories are associate with D(−1) branes on the D3. These
branes are instantons for the corresponding gauge group. If a D(−1) is put on a stack
of N D3 branes one has a gauge instanton, and the usual non perturbative contribution
to the action is recovered, for example the Affleck Dine Seiberg (ADS) superpotential.
However there can be one D(−1) brane on trivial nodes (where no brane or only one brane
is wrapped). This is a stringy instanton, whose contribution to the superpotential, if not
vanishing, is exotic. The field theory interpretation of this phenomenon is not immediate,
and it resides in the cascading nature of the gauge theory. Indeed the non perturbative
contribution is explained by going one step back in the cascade. This is possible because
of the involutive nature of duality. The non perturbative contribution from the stringy
instanton is equivalent to the classical constraint on the moduli space that has to be added
to the superpotential of the dual theory.

The last application of Seiberg duality arises in the recently found AdS4/CFT3 corre-
spondence, where the CFT3 theory is a CS matter theory. The basic example is the ABJM
model that describes the motion of M2 branes in the S7/Zk background. We restrict our
interest to the dynamics of M2 branes at toric CY4 singularities. The dual field theory
is conjectured to be an N = 2 CS matter theory. The brane picture shows that there are
more equivalent phases of these theories.
The rules of duality for the superpotential are the same of that in four dimensions. Nev-
ertheless, there is a difference in the transformation of the gauge groups, which depends
on the CS levels [19], the CS levels are changed by duality. The brane picture is applied
only to non-chiral theories, where every edge of the quiver have both an ingoing and
an outgoing arrow. As in four dimensions the classical moduli space of these theories is
associated to their toric diagrams. The theories obtained by displacing the branes have
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the same toric diagrams. This relation is called toric duality in four dimensions, where
it coincides with Seiberg duality. It seems natural to call this three dimensional duality
Seiberg duality. Moreover the toric diagrams can be used also to guess some rules for
the chiral case. This duality relates only a subset of three dimensional theories. This
is not the end of the story because in three dimensions equivalent theories could arise
from theories with different number of groups, from mirror symmetry, but we will not
investigate these models.
Since this duality is a strong/weak duality, one can study metastable supersymmetry
breaking in three dimensions. It was firstly done in [20]. The presence of relevant defor-
mations is rather generic, and the perturbative analysis requires non trivial constraints
on the couplings and the scales of the theory. Marginal couplings can in principle smooth
these constraints. An important role is played by the R-symmetry. In all the cases where
the perturbative approximation holds this symmetry is broken, explicitly or perturba-
tively.

The thesis is organized as follows.
In chapter 1 we give an overview of the ideas of duality that are necessary through the
whole analysis. We focus on duality in the magnetic free windows, where the electric
theory is UV free and the dual magnetic one is IR free. We see the mapping of the field
theory deformations between the dual theories. Extensions of Seiberg duality to SQCD
with adjoint matter, the KSS [21, 22, 23] duality, is also discussed. In the rest of the
section we show the action of Seiberg duality in systems of intersecting branes and branes
wrapped on CY singularity. In particular we see the action of the duality on a quiver and
on the brane tilings.
In chapter 2 we study the connection of Seiberg duality and supersymmetry breaking.
We first review the fundamental aspects of spontaneous supersymmetry breaking. Then
we discuss the ISS models concentrating on the question of its embedding in the gauge
mediation scenario. In the rest of the chapter we explain some extensions of the ISS
models that solve some of these problems. We see that theories with adjoint matter, if
deformed by some superpotential terms, lead to R-symmetry breaking metastable vacua.
Also An quiver gauge theories have good properties for gauge mediation. We then present
a systematic study of the geometric deformation that leads to metastable vacua and super-
symmetry restoration in quiver gauge theory. We conclude the chapter with an analysis
of spontaneous R-symmetry breaking at two loops.
In chapter 3 we analyze the connection of Seiberg duality and the exotic contribution to
the superpotential from the stringy instantons. We first review the brane construction
of the ADHM action for N = 4 SYM and the extension to lower supersymmetry. Than
we compute the contribution of a stringy instanton on a node of the quiver with SU(1),
SP (0) and SO(3) “gauge” groups. The gauge theories are trivial in these cases, and no
contribution is expected. The fact that the contribution is non vanishing seems a pure
stringy effect. We show that a connection with field theory exists, and it can be under-
stood as a consequence of Seiberg duality.
In chapter 4 we explore duality among N = 2 CS matter theories representing the motion
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of N M2 branes on a toric CY4 singularity. First we describe the N = 6 ABJM theory,
representing M2 on S7/Zk and we concentrate on Sasaki Einstein manifolds with toric CY
singularities. These cases have lower supersymmetry and we study the N = 2 situation.
The rules of duality are worked out as in [19] by using the motion of the corresponding
systems of branes. We find some general rules for the case of non-chiral theories, and we
verify their validity with the techniques of toric geometry. We give also some examples
of duality in chiral theories. We have not found general rules, but we show that in many
cases, setting some of the CS levels to zero, the rules of the non chiral case still hold. We
conclude the chapter with an analysis of supersymmetry breaking in three dimensions,
useful to connect the duality just found with metastable vacua as in four dimensions. We
conclude the discussion by proposing new applications and further developments.
After the conclusions we add some useful appendices.
In appendix A we discuss the fundamental aspects of quiver gauge theories, for ADE and
for toric CY singularities. Then we explain the geometric generation of the deformation
necessary for the ISS mechanism in these quivers. Details on the hierarchy among the
scales of the gauge groups for the stability of the metastable vacuum are given. Moreover
we show how to set some nodes of the quiver to zero, selecting the branch of the moduli
space in which metastable vacua are placed. We conclude the appendix by reviewing
the techniques of the quantum analysis and the calculation of the bounce action for the
estimation of the lifetime of the metastable state.
In appendix B we first review the representation of spinors in 4, 6 and 10 dimensions
necessary to work out the instantonic action. We illustrate the generic form of the instan-
tonic contribution for an instanton on a SU(1) gauge node. The constant contribution
obtained by integrating over the bosonic zero modes is discussed. Finally we discuss the
relation of our results and the ones already studied in the stringy instanton literature.
The last appendix C regards three dimensional gauge theories. We first explain the parity
anomaly matching, an analog of the four dimensional t ’Hooft anomaly matching, but for
a discrete parity symmetry. We evaluate the bounce action for a three dimensional poten-
tial barrier, in order to estimate the lifetime of a metastable vacuum in three dimensions.
We end the appendix with a formula that calculates the Coleman Weinberg one loop
potential in every dimensions.
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Chapter 1

Seiberg duality

In this chapter we review the basic aspects of N = 1 UV/IR duality. The basic example
is referred to as Seiberg duality [1], where an SU(Nc) “electric” gauge theory with Nf

flavours of quarks possesses a dual description in terms ofNf “magnetic” flavours of quarks
charged under a new SU(Nf − Nc) gauge group. In the dual theory the gauge singlets,
the elementary degrees of freedom, interacts with the flavours throughout superpotential
term.
Duality means that the two theories describe the same physics at low momentum or at
long distances, i.e. in the far infrared. Indeed, after matching the same gauge invariant
operators, the Green functions become identical in the limit of zero external momenta.
Usually this duality relates the infrared physics of a strongly coupled theory with the
physics of a weakly coupled theory. As a matter of fact it is not always the case, since
sometimes both the electric and the magnetic theory can be strongly coupled.

In our work Seiberg duality plays a crucial role. In the case of metastable vacua the
duality gives us a magnetic model weakly coupled in the infrared. In this way the model
becomes calculable, and many aspects of supersymmetry breaking can be studied without
the problems of strong couplings.
In the case of stringy instantons we show that the mapping of non-perturbative terms
of Seiberg duality can be interpreted as an instantonic contribution also in the case of
NF = NC + 1 where the dual theory does not possesses a dual gauge group.
Many aspects of 4D duality are present in 3D CFT. In 3D the duality group is larger
than in 4D. Nevertheless, under some restrictions and by using some rules from the brane
engineering of the gauge theory, we show that a subgroup of duality inherited from 4D
Seiberg duality still exists.

Firstly we give an introduction of Seiberg duality. We explain the details of the IR
magnetic free window, we analyze the matchings of the scales, the renormalization group
flow and the supersymmetric vacua. We discuss the behaviour of the non-renormalizable
interactions in the dual phases, since they are common in the quiver gauge theories that
play a central role in the subsequent chapters. Duality with adjoint matter (KSS duality
[23]) is reviewed for its role in the study of metastable vacua. We conclude the chapter
by giving the rules of Seiberg duality in systems of intersecting branes, in quiver gauge

8



theories and in brane tilings.

1.1 Generalities of Seiberg duality

Duality is an exact symmetry, acting on the scale invariant holomorphic coupling τ in
N = 4 and in certain conformal N = 2 supersymmetric gauge theories.

In asymptotically free theories the coupling constant τ runs as

e2πiτ(E) = e
− 8π2

g(E)2
+iθ

=

(
Λ

E

)b0
(1.1)

and is replaced by the dynamically generated Λ. The same duality cannot act in these
models. However in the abelian coulomb phase of N = 2 theories duality on the τeff has
been shown in [24].
In N = 1 gauge theories one can demonstrate [1] that an electric-magnetic duality exists
in N = 1 supersymmetric non-Abelian gauge theories. The archetypal theory is SQCD
with SU(NC) gauge groups and NF flavours. The anomaly free global symmetry is

SU(NF ) × SU(NF ) × U(1)B × U(1)R (1.2)

where the quarks Q and Q̃ transform as

SU(NF ) SU(NF ) U(1)B U(1)R
Q NF 1 1 NF−NC

NF

Q̃ 1 N̄F −1 NF−NC

NF

(1.3)

This theory has different behaviors for different values of NC and NF . In the case
NF < NC an ADS superpotential is generated and the theory does not have a ground
state.
The case NF ≥ Nc has a more rich dynamics. The quantum theory has a moduli space of
inequivalent vacua. In the case NF = NC the moduli space of vacua is found only after
adding quantum effects, while for NF = NC + 1 the classical and the quantum moduli
space coincide. This last property of the moduli space still holds in the case NF ≥ NC .
Seiberg duality conjectures that the theory at the origin of the moduli space of mesons and
baryons is in a non-Abelian Coulomb phase. This is clear for the NF ≥ 3NC theory, which
is not asymptotic free in the UV. Indeed this theory is an IR free theory of interacting
gluons and quarks, with a Landau pole in the UV.
The other windows in which Seiberg duality exists are 3/2NC ≤ NF ≤ 3Nc and Nc + 2 ≤
NF ≤ 3/2NC .

In the first case it has been argued that the theory at the origin of the moduli space
is an interacting conformal field theory of quarks and gluons, and this theory has two
dual descriptions. When one of them is in a weakly coupled Higgs phase its dual is in a
strongly coupled confining phase. This window is referred to as the “conformal window”.
In the NF ≥ 3NC phase the original theory is IR free and strongly coupled in the UV.

9



The dual magnetic theory is then strongly coupled in the IR. This phase is referred as the
“electric free window” The last possibility is Nc + 2 ≤ NF ≤ 3/2NC , where the electric
theory is free in the UV and the magnetic phase is weakly coupled in the IR. This window
is referred as the “magnetic free window”.

In all the cases the magnetic gauge group is SU(NF −NC), and the global symmetries
are the same. These last ones are indeed observables, and cannot change in the two
descriptions. The gauge symmetries are redundancies more than symmetries. The two
equivalent descriptions have a different number of gluons since duality make sense only in
interacting scale invariant theories, where the particle interpretation is not well defined
and different sets of massless interacting particle can describe the same physics.

Following the historical developments we start now by describing the rules and checks
of duality in the conformal window and then we explain the behaviour in the magnetic
free window.

The conformal window

The beta function must have a non-trivial zero, since the low energy theory must be scale
invariant. In SQCD the NSVZ beta function is exact [25] and reads

β(g) = − g3

16π2

3NC −NF (1 − γ(g2))

1 −NC
g2

8π2

(1.4)

where γ(g2) is the anomalous dimension of the mass and it is

γ(g2) = − g2

8π2

N2
C − 1

NC
+ O(g4) (1.5)

The Banks-Zaks fixed point exists for large Nc and 3 − NF

NC
� 1, and it is conjectured in

all the conformal window.
The existence of a fixed point in a supersymmetric gauge theory guarantees the use of

the superconformal algebra and specially the superconformal R-symmetry. The dimen-
sions of the operators satisfy

D ≥ 3

2
|R| (1.6)

and the equation is saturated for chiral and anti-chiral operators, i.e. chiral operators
form a ring. Moreover the R-symmetry is not anomalous and commute with the flavour
symmetry SU(NF ) × SU(NF ). The gauge mesonic invariant operators have

D(M) =
3

2
R(QQ̃) = 3

3NF −NC

NF
(1.7)

and the baryonic ones have

D(B) = D(B̃) =
3NC(NF −NC)

2NF
(1.8)

10



The gauge invariant operators must be in unitary representation; for example spinless
operators have D ≥ 1, except the identity operators which has D = 0, and D = 1 for the
free fields. Indeed for D < 1 (D 6= 0) a highest weight representation has negative norm
states, which are not unitary, and (1.7) is inconsistent if NF < 3/2NC

One concludes by aostulating that in the whole conformal window the theory at the
origin of the moduli space is in a non Abelian Coulomb phase.

Duality

In the conformal window, by fixing NC and lowering NF one notes that the interactions
become more strongly coupled. If there is a strongly coupled massless theory the spectrum
of massless particle does not make sense. indeed the same theory has an equivalent
description in terms of some new “dual” degrees of freedom. This dual theory becomes
more weakly coupled as NF decreases in the conformal window. This idea still holds in
the magnetic free window, where only the dual theory make sense in the IR as a unitary
theory (D ≥ 1).

The dual theory is built as follows. In the region NF ≤ NC +1 the moduli space is not
quantum corrected, and there is a vacuum at the origin of the moduli space of the gauge
invariant operators, where the global symmetry is unbroken. The theory has here Nf

flavors. A SU(NC) gauge group cannot preserve the unitarity of the theory, since D ≥ 1
does not hold for all the spinless operators (except the identity). A possibility is that the
dual description has the same global symmetry but a SU(Ñc) = SU(NF − NC) gauge
symmetry. In this case both the conformal and the magnetic windows are consistent as
unitary theories. The theory in the conformal window has an IR fixed point that becomes
free in the magnetic window.

The gauge invariant operators in the dual description coincide with the ones of the
original theory. The quarks q and q̃ of the dual theory are elementary. They are new fields
that transform respectively under the fundamental and the anti-fundamental representa-
tion of the dual gauge group. The baryons are determined by the relations B ∼ qNF−NF

and B̃ ∼ q̃Nf−NC and the dual elementary quarks transform under the global symmetries
as

SU(NF ) SU(NF ) U(1)B U(1)R
q N̄F 1 NC

NF−NC

NC

NF

q̃ 1 NF − NC

NF−NC

NC

NF

The meson M ∼ QQ̃ cannot be constructed in the dual theory, and it appears as an
elementary field. It is charged under the global symmetries as

M in (NF , N̄F , 0, 2

(
NF −NC

NF

)
(1.9)

A superpotential term is compatible with the symmetries of the theory, and it is required
by duality

W =
1

Λ̂
Mqq̃ (1.10)
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where the trace over the color and flavor indexes is understood. The dual theory has a
new meson, N ∼ qq̃ that should make the duality inconsistent. It is not the case since it
is a redundant operator, that can be absorbed in a shift of M in (1.10).

The intermediate scale Λ̂ in necessary, indeed the meson in the electric theory has
mass dimension two at the UV fixed point. It acquires an anomalous dimension at the
IR fixed point. In the magnetic theory the meson (say Mm) is and elementary field with
mass dimension one at the UV fixed point, but it flows to the same IR fixed point of the
electric case. It is then necessary to relate M and Mn, and this is done by introducing
the scale Λ̂, via the equation M = MnΛ̂. The gauge strong coupling scale of the magnetic
theory Λ̃ is related to the electric Λ scale by the relation

Λ3NC−NF Λ̃3(NF −NC)−NF = (−1)NF−NC Λ̂NF (1.11)

This scale matching relation shows that if the electric theory is strongly coupled than
the magnetic theory is weakly coupled. Another important consequence of this relation is
that this duality is an involution, and that the dual of the magnetic theory is the electric
theory itself.

This duality is of the electric/magnetic type since, as NF decreases, the electric theory
becomes more strongly coupled and the magnetic theory becomes more weakly coupled.
In the conformal window, where the theory at the origin is in an interacting non-Abelian
Coulomb phase, the electric theory is more weakly coupled for NF > 2Nc while the
magnetic picture is more natural for NF < 2NC .

’t Hooft anomaly matchings

Strongly coupled quantum field theories are usually described in terms of their composite
fields. A non trivial check of consistency is the matching of the anomalies between the
constituent degrees of freedom and the composite fields: this is also a non-trivial check
of consistency for Seiberg duality. Here we review the idea of four dimensional ’t Hooft
anomaly matching. In the three dimensional case no anomalies are present for the con-
tinuous symmetry, but similar checks for the discrete parity symmetry exist. We discuss
it in the appendix C.2. A gauge theorie with Weyl fermions present triangular anomalies.
If G is the gauge group and the fermions are in the R representation of G, the triangular
Feynman graph in figure 1.1 gives the anomalous contribution

dR(T a, T b, T c) = TrR
(
T a{T b, T c}

)
(1.12)

In the case of ’t Hooft anomaly matchings the global symmetries (that coincide between
the dual theories) are slightly gauged. This gauging couples the fermions with new gauge
bosons, and triangular anomalies arise.

In this case the global symmetry is SU(NF ) × SU(NF ) × U(1)R × U(1)B. This new
gauge theory is not anomaly free and we add to add new fermions charged under a R′

representation such that the whole theory becomes anomaly free, i. e. dR(T a, T b, T c) +
dR′(T a, T b, T c) = 0. The dual description describe the same low energy physics, but it has
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A
λ or (     )ψ

A

A

Figure 1.1: Anomalous triangular Feynman graph

a different matter content and the fermions are in a new representation R̃. Nevertheless
the global symmetry are the same as before. Gauging the global symmetry in the magnetic
theory we have to add the same new fermions R′ to cancel the triangular anomalies. This
implies that

dR(T a, T b, T c) + dR̃(T a, T b, T c) = 0 (1.13)

and this is the ’t Hooft anomaly matching. In SQCD the triangular anomalies in the
electric and in the magnetic case match as follow

SU(NF )3 Nc

U(1)BSU(NF )2 NC

2

U(1)RSU(NF )2 − N2

2NF

U(1)3
B 0

U(1)2
BU(1)R −2N2

C

U(1)BU(1)2
R 0

U(1)3
R −2N4

C

N2
F

+N2
c − 1

U(1)R −N2
C − 1

U(1)B 0

(1.14)

The magnetic free window

Also in the window NC + 2 ≤ NF ≤ 3/2NC the magnetic theory can be described as
above. However the dual theory is in a different phase. Indeed the b0 factor of the beta
function is negative

b0 = 3Ñc −NF = 3(NF −NC) −NF = 2NF − 3NC < 0 (1.15)
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and the theory is not asymptotically free (the added superpotential (1.10) becomes ir-
relevant in the IR). There are massless magnetically charged fields, and the theory is in
a non-Abelian free magnetic phase. Since this dual theory is free there cannot be two
different descriptions, and only the magnetic description does make sense. Indeed in the
electric phase is D < 1 is allowed, while here D(M) = 1, as in every free field theory.

Mass deformation

A gauge invariant term that is often added to the SQCD is a mass term for some of
quarks. We here discuss the case where only one quark is massive. A general discussion
(where all the quarks remains massless) follows directly. Let’s take the deformation

∆Wele = mQQNF
Q̃NF (1.16)

where the sum over the gauge indexes is understood.
This mass term reduces of one units the number of light quarks in the IR, and the

electric theory is sent to a more strongly coupled fixed point at low energies. The new
scale of the theory is ΛL, related to the original scale Λ by the relation

Λ
3Nc−(Nf−1)
L = mΛ3Nc−NF (1.17)

In the magnetic theory this mass is mapped into a linear deformation on the meson M ,
and the superpotential is modified by the term

∆Wmagn = mMNF
NF

(1.18)

The gauge group is higgsed to SU(NF − NC − 1) with NF − 1 light quarks, and at low
energy the superpotential is

W = M i
ī q̃iq

ī i, ī = 1, . . . , NF − 1 (1.19)

The scale of the magnetic theory is modified from Λ̃ to Λ̃L by the relation

Λ̃
3(NF−NC−1)−(NF −1)
L = −Λ̃3(NF −NC)−NF

〈qNF
q̃NF 〉 (1.20)

where 〈qNF
q̃NF 〉 = −µm from the equation of motion. The magnetic theory is the dual

of the massive electric theory and it is at weaker coupling at low energy. One concludes
that duality is preserved by the addition of a mass term, and it relates a more strongly
coupled theory to a more weakly coupled one.

The case with NF massive flavours does not change qualitatively, and the same con-
clusions hold. The only difference is that the scale matching among the UV theories and
their low energy limit changes.
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The case NF = Nc + 2

This case is slightly different because a mass term for the quarks completely higgses the
magnetic gauge group.

The meson of the low energy theory is M ′j
ĩ
, where the apex refers to the flavor indexes

i, j = 1, . . . , NC + 1. Similarly the quarks of the low energy theory are q ′ and q̃′, which
are the the flavor that remains massless. Since at low energy NF = NC + 1 the magnetic
quarks are the baryons of the low energy electric theory. The superpotential at low energy
is

Weff =
1

Λ2Nc−1
L

M ′q′q̃′ (1.21)

where ΛL represents the scale of the low energy effective theory, which has only the light
fields. The magnetic SU(2) theory is completely higgsed, and the instanton contribution
should be included, as in the Nf = NC − 1 case. The superpotential has an additional
contribution1

Winst = − detM ′

Λ2NC−1
L

(1.22)

This is the superpotential for the electric theory in the NF = Nc + 1 case. In that case it
was due to the strong coupling effects. This derivation is in terms of instanton calculation
in the weakly coupled theory. We will show that it has also an interpretation in term of
stringy instanton.

Quartic deformations

Another common deformation in the electric theory is a non renormalizable term of the
form

∆Wquartic = hTr(QQ̃QQ̃) (1.23)

The coupling h has mass dimension −1 and the operator is classically irrelevant. This
non-renormalizable superpotential can be thought as arising from a renormalizable three-
linear interaction of the quarks with a flavour singlet massive field.

In the magnetic window the dual theory has superpotential

Wmagn. = h′mM2 + h′Mqq̃ (1.24)

where h′ is marginal and m is a mass term for the meson M . This implies that integrating
out this mass term we have the same superpotential as in the electric case

W =
h′

2m
qq̃qq̃ (1.25)

In the case Nf = 2Nc duality is not dynamical, the theory is self dual. For different values
of Nf and Nc self duality is a only a property of the superpotential.

1This contribution can be also calculate from the gluino condensation.
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1.2 KSS duality

One of the first extensions of Seiberg duality was studied in [21, 22, 23]. The SU(Nc)
SQCD with Nf flavors of quarks is deformed by a superpotential polynomial in a field X,
in the adjoint representation of the gauge group.

We here review some aspects of this duality which will be necessary for the study of
metastable vacua. The simplest superpotential is

W =
s0

k + 1
TrXk+1 (1.26)

We shall discuss only the case of renormalizable polynomial superpotential in the adjoint
field, and limit to the case of k = 3. The higher order polynomial terms seem irrelevant
for the long distance physics in the infrared. On the contrary they strongly change the
IR dynamics: they are dangerously irrelevant operators.

One can also consider a generic superpotential

W =
k∑

i=1

si
k + 1

TrXk+1−i (1.27)

The SU(Nc) and the U(Nc) cases are slightly different. The linear monomial term TrX is
possible in the U(Nc) case but it has to be added as a Lagrange multiplier in the SU(Nc)
case to force the tracelessness condition on X.

Using the transformation of the complexified gauge group one can diagonalize the
matrix X. For generic {si} one has

W ′(x) =
k−1∑

i=0

six
k−i + λ ≡ s0

k∏

i=1

(x− ci) (1.28)

where the ci are different from each other. In the IR the theory splits into different
decoupled sets of SQCD theories, whose ground states are labeled by a sequence of integer
ri such that r1 ≤ r2 ≤ · · · ≤ rk, where ri represents the number of eigenvalues in the l-th
minimum of the scalar potential. If λ is a Lagrange multiplicator, the traceless condition
reads

k∑

i=1

ciri = 0 (1.29)

Integrating out the massive X in each vacuum the SU(Nc)
2 gauge symmetry is broken

to
k∏

i=1

SU(ri) × U(1)k−1 (1.30)

2in the U(Nc) case there is an additional U(1) factor.

16



Note that turning on small si and using the fact that the theory has vacua only if and
only if all ri ≤ Nf one deduce that the theory has vacua if and only if

Nf ≥
Nc

k
(1.31)

The magnetic theory has gauge group SU(kNF − NC) and the matter content is con-
stituted by the magnetic quarks, q and q̃, the magnetic adjoint field Y , and the mesonic
gauge singlets. In this case the mesons take the form

(Mj)
i
ĩ = Q̃ĩX

j−1Qi i, ĩ = 1, . . . , NF j = 1, . . . , k (1.32)

The superpotential for the case (1.26) is

Wmagn =
s̄0

k + 1
TrY k+1 +

s0

Λ̂2

k∑

j=1

Mj q̃Y
k−jq (1.33)

The auxiliary scale Λ̂ is related to the scales of the electric and magnetic theories by the
relation

Λ2Nc−NF Λ̃2(kNF−NC)−NF = s−2NF
0 Λ̂2NF (1.34)

Note that in this case (with only one term in the electric superpotential) the s̄0 in (1.33)
can be choose s̄0 = −s0. In the general cases it will not be always possible. Indeed if we
take the dual theory of (1.27) to be

W =

k∑

i=0

s̄i
k + 1 − i

TrXk+1 + α(s) (1.35)

the s̄i = s̄i(s) are the magnetic coupling constant and α(s) is a constant. The problem
of KSS duality is to find the expression of si and α in terms of the original magnetic
variables.

The classical vacua for this magnetic theory are parameterized by some integer r̄l
corresponding to the eigenvalues of Y with the value c̄l. As in the electric case the
relation ∑

l

r̄l = Ñc = kNF −NC (1.36)

holds. The gauge group is broken to
∏
SU(rl)×U(1)k−1. The magnetic multiplicities are

related to the electric ones by the relation

r̄i = NF − ri (1.37)

and it is a 1− 1 map between the electric and magnetic vacua 3. The coincidence on the
number of critical points ci and c̄i is a constraint on the dual coupling s̄i(s). A possible
solution is

s̄i = csi (1.38)

3In the case of degeneracy the relation is ni the relation is modified by r̄i = niNF − ri

17



with c constant. The convention of KSS is s̄0 = −s0. This sets c = −1 and from equation
(1.38) it would imply c̄i = ci, that automatically satisfies the constraint on the degener-
ation of the singularities. In the general case the mapping (1.37) of the multiplicities is
non trivial. Indeed in this case the traceless of X implies

k∑

l=1

clrl = 0 (1.39)

and assuming (1.37) the traceless of Y should imply

k∑

l=1

cl(NF − rl) = 0 (1.40)

which is compatible with (1.39) only if s1 = 0. If it is not the case the mapping is non
trivial. This mapping is constructed by considering the couplings si and s̄i as background
fields. The free energy of the model results

e−
R
d4xd2θF (si)+cc ≡ 〈e−

R
d4xd2W (X,si)F (si)+cc〉 (1.41)

The correlation functions of the operator TrX j are given by the derivative of the free
energy with respects to si, and they are

1

k + 1 − i
〈TrXk+1−i〉 =

∂F

∂si
(1.42)

In the magnetic theory these correlation function are

1

k + 1 − i
〈TrY k+1−i〉 =

∂F̄

∂s̄i
(1.43)

where F̄ is defined analogously as F , and from duality we must have F̄ (s̄i(s)) = F (si).
This implies a set of equations for TrX j and TrY j that read

1

k + 1 − i
TrXk+1−i =

∑

j

∂s̄j
∂sj

1

k + 1 − j
TrY k+1−j +

∂α

∂si
(1.44)

Solving these equations one find the mapping between s̄i and si.
After mapping the polynomial superpotential terms for the adjoint matter, one has to

built another part of the magnetic superpotential. This is the same term that appears in
the pure SQCD case. The strategy is to split the magnetic theory in a decoupled set of
SQCD theories, by solving the equation of motion for the adjoint fields. One than operate
a Seiberg duality in each decoupled sector. The new term in Wmagn is found such that
the different SQCD sectors are not coupled. The solution to this requirement is

∆Wmagn =
1

Λ̂2

k−1∑

l=0

k−l∑

j=1

Mj q̃Y
k−j−lq (1.45)
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We now skip the details of the general derivation and concentrate on the case of
interest.

This is the case where k = 2 and the electric superpotential is

Wele =
s0

3
TrX3 +

s1

2
TrX2 (1.46)

The superpotential in this case has two critical points, c1 and c2. The gauge group is
broken to

SU(r1) × SU(r2) × U(1) (1.47)

The ci are found by differentiating the superpotential and by imposing the traceless con-
dition. One finds

c1 =
s1

s0

r2
r1 − r2

c1 =
s1

s0

r1
r2 − r1

(1.48)

The expectation value of TrX2 is

〈TrX2〉 = r1c
2
1 + r2c

2
2 = Nc

(
s1

2s0

)2(
N2
c

(r1 − r2)2
− 1

)
(1.49)

The magnetic theory gives analogous results by exchanging (si, ci, ri, X,Nc) with the set
(s̄i, c̄i, r̄i, X, Ñc). The relation among the si and s̄i are

s0 = −s̄0 s̄1Ñc = s1Nc (1.50)

A last important remark for KSS duality regards the deformation of the theory by gauge
invariant mesonic operators. A deformation of the form

Wele = Q̃īm(X)īiQ
i (1.51)

where m(z)iī =
∑

j(mj)
i
īz
j−1 with j = 1, . . . , l + 1, is mapped to the magnetic theory by

the term

Wmagn =
l+1∑

j=1

mjPj (1.52)

where Pj is the j-th meson of the electric theory.

1.3 Seiberg duality from intersecting brane

A system of intersecting branes in type IIA string theory provides a natural description of
Seiberg duality. In the simplest case the electric theory is a SU(NC) SYM gauge theory,
coupled with Nf > Nc massless chiral quarks. The brane realization of this theory is
given in figure 1.2. There are 2 NS5 branes, NF D6 branes and NF +NC D4 branes.

19
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v
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NS’

NF D6
NS

NC D4

NF D4

Figure 1.2: Brane realization for the electric massless SQCD in IIA

The N = 1 SQCD gauge theory is realized by choosing the positions of the branes as
follows. All the branes are stretched in the (0123) directions. One of the NS5 brane is
stretched also in the (78) directions and it is located at v, x6 = x9 = 0, where v = x4 + ix5.
The other NS5 is stretched in the (45) directions and it is located at x6 =L> 0 and
w = x9 = 0, where w = x7 + ix8. We distinguish these two branes calling them NS
and NS’ respectively. The NF D6 branes are stretched in the (789) directions and they
are locate at v = 0 (if v is not zero it corresponds to a mass term for the quarks) and
x6 = L′ > L. NC D4 branes connect the two NS branes along the x6 axis and are located
at v = w = x9 = 0. The other NF D4 branes are displaced along the x6 axis from the NS’
brane and x6 = L′. They are located at v = w = x9 = 0. The s-rule is respected since
there is no more then one D4 brane connecting the NS5 and the D6 branes.

In field theory this configuration of intersecting branes is interpreted as massless SQCD
in the (0123) directions common to all the branes. The massless open string sector among
the Nc D4 branes compose the U(Nc) vector multiplet. The massless Nf flavours are
associated to opens string among the NC D4 and the NF D4. The opens strings on the
D6 decouples because the volume of D6 is infinite in the (789) directions. The U(1)
symmetry associated to a phase rotation in (78) is identified with R-symmetry. Moreover
in the massless case there is a U(1)45 rotation symmetry and a U(NF )2 flavour symmetry.

x6

v
w

NS’

NF D6
NS

NC D4
(NF−NC) D4

Figure 1.3: Connection of the NC D4 branes that leaves the NS’ brane
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The magnetic theory is built by exchanging the NS and the NS’ branes in the plane (6, 9)
as in figure 1.4. This brane exchange is a dynamical process, and the two branes can pass
each other without meeting in this space. Indeed a FI term can be switched on in the
world volume gauge theory and it corresponds to displacing the NS to respect of the NS’.
After that the branes cross each other the FI is switched off.

Figure 1.3 shows what happens to the D4 branes. In the electric picture NC among
the NF D4 extended between the NS’ and NC D6 branes can be connected to the NC

branes between the NS’ and the NS. These branes leaves the NS’ brane. When the NS’
crosses the NS only NF −Nc D4 branes are dragged out. For this reason in the magnetic
theory there are NF −NC D4 branes connecting the NS and NS’ branes.

x6

v
w

NF D6
NS’

NS

(NF−NC) D4

NF D4

Figure 1.4: Brane realization for the magnetic SQCD in IIA

The magnetic configuration has NS’ at w = x6 = x9 = 0 and NS at v = 0, x9 = 0 and
0 < x6 = L′′ < L′. The NF D6 branes are at x6 = 0 and x6 = L. NF − Nc D4 branes
connect the NS and the NS’ along x6 and the remaining NF D4 extend between the NS
and the D6 branes. The field theory is the U(NF − NC) SQCD with NF flavours, dual
to the electric theory. In this case the NS and the D6 branes are parallel and we are free
to move the NF D4 branes along w. This freedom is associated to the meson, which is a
new degrees of freedom of the magnetic theory. This meson M gives the superpotential
W = Mqq̃ of the magnetic theory.

1.4 Seiberg duality on a quiver

In quiver gauge theories (see Appendix A.1 for review) Seiberg duality has a geometrical
interpretation. In the conformal case, without fractional branes, the duality transforma-
tion is a map among equivalent phases. If fractional branes are added duality usually
decreases the ranks of the groups and the theory displays a cascading behaviour. First
we study the conformal case, then we discuss the differences in the non conformal case.

A duality transformation can be engineered only on a node of a quiver without adjoint
matter. In that case indeed one should consider other examples of duality, for example
SW duality in the case of N = 2 theories or KSS duality if there is a polynomial N = 1
superpotential for the adjoint field. We consider only nodes without adjoint matter.
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The last constraint on the node that is dualized is that its flavour is Nf = 2Nc. This
assumption is crucial in the case of toric theories. Indeed in this case duality is a map
among different toric phases of the same theory of branes at singularity. With all these
assumptions we can study duality on a node in a chiral on non chiral quiver.

The rules for duality follows from the example of SQCD. The dual gauge group is
SU(Nf −Nc), and since Nf = 2Nc the dual group is still SU(Nc). The magnetic quarks
are generated by inverting the arrows of the fields connected with the gauge group that
undergoes duality. The other fields are unchanged by duality. The other important
property of duality is that the mesons of the electric theory becomes elementary degrees
of freedom in the dual magnetic theory . This means that new adjoint matter is expected
in the dual phase. In the case of quiver gauge theory a node is often connected with more
than one flavour groups. The mesons are not only adjoint fields but also bifundamental
fields. These adjoint and bifundamental fields both appear in the dual phase. In the
simplest case of SQCD duality transforms a superpotential W = 0 into a superpotential
W = Mqq̃.

These rules are geometric. However duality changes also the superpotential. If the
node that undergoes duality is the i-th node all the operators that contain fields charged
under this node in the electric superpotential will involve a meson in the magnetic phase.
For example if there is a term

XjiXikOk,...,j (1.53)

in the electric theory, where Ok,...,j is a product of fields of the quiver with free indexes j
and k and contracted over the other indexes (different from i) we have that this term is
written in the dual as

MjkOk,...,j (1.54)

From equation (1.53) we note that if the operator Oj,...,k is made of only one field, than
the dual meson is massive. Another possibility of having a dual massive meson is that
the electric theory has a quartic term like

XjiXikXkiXij →MjkMkj (1.55)

In a toric theory one usually integrate out the massive mesons and obtain the dual toric
phase.

The same rules that holds in the conformal case holds also in the non conformal case.
The only difference is that if fractional branes are added duality is a dynamical process
that lowers the degrees of freedom of the theory. In this case one has to operate a choice
on the groups to be dualized: usually it is the group with the highest value of the beta
function. This UV free group is usually the first to become strongly coupled in the RG
flow. Duality makes it IR free and perturbatively accessible at low energy. After that
other groups can become UV free and strongly coupled in the IR and another duality
is needed. The theories have a cascading behaviour that can end with N = 1 SYM
(with a decoupled set of Goldstone bosons) or with more complicated supersymmetric or
supersymmetry breaking theories.

22



1.5 Seiberg duality on the brane tiling

The study of Seiberg duality in the case of toric gauge theories is better done by the use of
brane tiling (see Appendix A.1 for review). Indeed the tiling encodes all the informations
necessary for duality, the structure of the gauge groups and the superpotential. As in the
case of the quiver, Seiberg duality is a local transformation on the dimer, and it involves
only the i-th node that undergoes duality and the next nodes.

The condition that guarantees that the theory remains in the toric phase is that only
the faces with four edges can be dualized. Indeed having a conformal theory it means
that only regular brane are considered. This implies that all the edge carry a contribution
ofNF/2 to the whole flavor, and four edges give the condition NF = 2Nc

Consider a face with four edges in a tiling, and draw in the internal of this face another
face whose edges are parallel to the external ones. Connect then each internal vertex with
one external vertex, and draw a black or with node one each new internal vertex, such
that the bipartite structure of the tilings maintained. After that, cancel the external
edges. The new tiling represents the Seiberg dual phase of the toric theory.

Note that for some nodes in the tiling there can be only two edges. Since a node is
a superpotential term and an edge is a matter field, this implies that these nodes are
identified with mass term in the superpotential. These terms have to be integrated out
in the field theory. In the dimer this procedure is implemented by a cancellation of the
two edges and of the internal nodes, and by the identification of the other two nodes
connecting the other extrema of the edges that have been canceled out. This procedure
maintains the bipartite structure and is the analog of supersymmetric integration out of
the massive field in gauge theory. The four edges that compose the new internal face are
the dual quarks, and the correctness of their representation under the gauge groups is
guaranteed by the bipartite structure. Moreover the mesons are associated to the edges
that connect the old vertexes and the new ones. As an example we show the behaviour of
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24

34
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1 3
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Figure 1.5: Quiver gauge theory and brane tiling for the double conifold.

Seiberg duality on the tiling of the simplest orbifold projection of the conifold, the double
conifold. The superpotential of this theory is

W = X12X23X32X21 −X23X34X43X32 +X34X41X14X43 −X41X12X21X14 (1.56)

The quiver and the tiling are shown in figure 1.5. Duality on node two gives a new
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superpotential

W = X41X11X14 −X21X11X12 +X12X23X32X21 −X33X32X23

+ X43X33X34 +X34X41X14X43 (1.57)

The new quiver and tiling for this dual phase are shown in figure 1.6.
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Figure 1.6: Quiver gauge theory and brane tiling for the double conifold in the dual phase.
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Chapter 2

Metastable Vacua

In this section we review the basic aspects of supersymmetry breaking. Supersymmetry
is broken if the scalar potential does not vanish in the ground state. This is an immediate
consequence of the supersymmetry algebra, since the ground state is invariant under a
supersymmetry transformation if and only if it has zero energy.

One can define a topological index, the Witten index, that signals if supersymmetry
can be broken or not, under smooth variations of the parameters of the theory. Models
with non zero Witten index cannot definitively break supersymmetry. Otherwise, models
with a zero index, have been for a long time the only candidates for supersymmetry
breaking.

In this classification two basic examples, the O’Raifeartaigh and the Fayet-Iliopoulos
models, represent the simplest and basic mechanisms of supersymmetry breaking. In
the first model supersymmetry breaking is based on the F -terms, and it depends on the
interactions in the superpotential. In the second case supersymmetry breaking is due to
the abelian factors of the gauge interactions.

The constraints imposed on the spectrum of a supersymmetry breaking theory by the
supertrace impose that the mass of some superpartner is too low. These constraints can be
evaded if supersymmetry is broken dynamically, for example because of non perturbative
effects. This approach offers a large class of models. The problem is that the analysis
of the quantum stability of the non supersymmetric states, which are often metastable,
is rather complicate. This is caused by the presence of strongly coupled corrections.
However N = 1 Seiberg duality furnishes a many supersymmetric gauge theories with
calculable false vacua.

2.1 Spontaneous supersymmetry breaking

In quantum field theory the minimization of the euclidean action is equivalent to the
minimization of the scalar potential. Indeed a vacuum state of the scalar potential is
identified with a minimum of the action, a stable configuration in the language of func-
tional integral. Such a vacuum state must be invariant under the space-time Lorentz
symmetry, and this implies that only the scalar can be non vanishing.
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In a supersymmetric theory the scalar potential is written in term of the auxiliary
fields and it is

V = K−1
ij FjF

†
i +

1

2
DaDa (2.1)

where

K−1
ij =

(
∂2K

∂φi∂φj

)−1

F †
i =

∂W (φ)

∂φi
(2.2)

Da = −ga(φ†
i(T

a)ijφ
j + ξa) (2.3)

The indexes i, j runs over the chiral field of the theory, the index a is over the gauge
group. The term ξa is related to the possible U(1) gauge factors.

The (2.1) scalar potential is non-negative, and if one can set contemporary to zero
both the F and D terms in (2.1) then V = 0 is a global minimum. Otherwise there can
be local mimima or only runaway directions.

The value of the vacuum energy is connected with supersymmetry. Indeed, by using
the supersymmetry algebra, one can connect the Hamiltonian operator with the super-
symmetry generators. One has

H =
1

4
({Q1, Q

†
1} + {Q2, Q

†
2}) (2.4)

The requirement of unbroken supersymmetry in the vacuum state |0〉 implies that X|0〉 =
0. As a consequence a positive energy vacuum is a signal of supersymmetry breaking.
From the discussion above in quantum field theory 〈0|H|0〉 = 〈0|V |0〉. This concludes
that supersymmetry is unbroken in and only if there exists a solution to the F and D
term equations, i.e. the scalar potential in the vacuum state is zero.

One immediate consequence of supersymmetry breaking is the existence of a massless
neutral Weyl fermion, the Goldstino. This particle is a fermionic degrees of freedom
composite of fermions ψi and gaugino λa. In this basis the fermion mass matrix takes the
form (A.40) (

〈W ji〉 iga〈φ†
l 〉(T a)

l
i

igb〈φ†
l 〉(T a)li 0

)
(2.5)

If this matrix acts on the vector v =

(
〈F j〉
〈Da〉

)
one has

Mv = 0 (2.6)

The first line in (2.6) follows from ∂V
∂φj

= 0, to be satisfied by a local minimum. The

second line in (2.6) is satisfied by the requirement of gauge invariance. From equation
(2.6) the fermionic mass matrix has at least one zero eigenvalues, there is a massless
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fermionic state. The presence in the spectrum of a massless fermionic particle is poten-
tially a phenomenological problem for model building. This problem is solved by local
supersymmetry. There the Goldstino is eaten by the graviton superpartner, the Gravitino.
In this case the longitudinal component of the Gravitino is light, but no massless, and it
is one of the more common LSP candidate.

After the discussion of the fundamentals of spontaneous supersymmetry breaking we
show two examples. These are the O’Raifeartaigh model and the Fayet-Iliopoulos model.
The first one is based on the impossibility of solving all the F terms in a theory of pure
chiral fields. The second is based on a U(1) gauge theory where the conditions for solving
F and D terms turn out to be incompatible.

The O’Raifeartaigh model

This is a model of three pure chiral fields, with superpotential

W = fX +Xφ2
1 +mφ1φ2 (2.7)

and canonical Kahler potential K = XX†+φ1φ
†
1+φ2φ

†
2. The model has a U(1)R symmetry

under which φ1 is uncharged and φ2 and X has R-charge two. The F terms equations for
the fields X, φ1 and φ2 cannot be solved together and supersymmetry is spontaneously
broken at tree level. The equations of motion are

FX† = f + φ2
1

Fφ†1
= 2Xφ1 +mφ2 (2.8)

Fφ†2
= mφ1

The equation for X and φ2 are incompatible, the equation for φ1 fixes 〈φ2〉 = −〈2Xφ1

m
〉.

The classical scalar potential has a moduli space of vacua with arbitrary X. One can
define a parameter

y =

∣∣∣∣
2f

m2

∣∣∣∣ (2.9)

that control the position of the minimum in the φi directions. If y ≤ 1 the minimum is at
φ1 = φ2 = 0, and Vmin = |f |2. In the other case, where y > 1 the origin becomes a saddle
point and the minimum is splitted at φ1 = ±i

√
2f(1 − 1/y) and φ2 = −2Xφ1/m.

The case for interest for future application is |y| ≤ 1, and we will concentrate only on
that one.

The classical scalar potential has a flat direction, the X field. One has to ensure
that this flat direction does not have a tachyonic behaviour at quantum level. The one
loop analysis can be performed by the study of the Coleman-Weinberg (A.46 ) scalar
potential. The X field is considered as a background field and one studies the masses of
the fluctuation for generic X. The scalar and the fermionic components of the superfield
X are massless classically. While the former can acquire quantum corrections the second
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one is the Goldstino field, associated to supersymmetry breaking. The fermionic spectrum
gives

m1/2 = |m|2 + 2|X|2 ± 2|X|
√
|m|2 + |X|2 (2.10)

The bosonic spectrum gives

m0 = η|f | + |m|2 + 2|X|2 ±
√

|F |2 + 4|X|2(−η|f | + |m|2 + |X|2) (2.11)

where η = ±1.
Once we know the mass spectrum we can use the CW formula for the computation

of the effective potential for the X field. Since the model is R-symmetric and no field
has charge different from zero or two, a general result [4] states that the pseudomodulus
acquires a positive squared mass at the origin. By explicitly computation one finds that
the mass term is

mX =
m2

4π2y
(−2y − (y − 1)2 log(1 − y) + (1 + y) log(1 + y)) (2.12)

This expression is positive in the whole interval 0 < y ≤ 1, as expected.
Alternatively the computation of the mass of the pseudomodulus can be performed by
using the one-loop Feynman diagrams. Since we have to calculate the mass of a classical
massless field we can help us with a trick. If the scale of supersymmetry breaking is tuned
to f = 0 the model has a supersymmetric vacuum at the origin, and the X field is not
quantum corrected. Since it is massless it remains massless at every order in perturbation
theory.

We have two models, the one with f = 0 and the one with f 6= 0 with the same
interactions, the same field content, but a different spectrum. Since the mass of the field
X is corrected only in the non supersymmetric case, the difference between the mass in
the non supersymmetric case and the mass in the supersymmetric case coincide with the
mass in the non supersymmetric case. Trivially we can write the equation

mX = mNon-Susy
X −mSusy

X (2.13)

This trivial equation tell us that we can reduce the number of diagrams that contribute
to the one loop computation for the X mass. We now proceed by calculating mX with
(2.13). We already know from [4] that the minimum is at X = 0. The masses of the fields
are

m2
1/2 = 0, m2, m2

m2
0 = 0, 0, m2 − 2f,m2, m2, m2 + 2f

The only diagrams contributing involve only scalars (the diagram involving the fermions
are the same in the non supersymmetric and in the supersymmetric case). The first
diagram is

I(m1, m2) =

∫ Λ

0

d4p
1

(p2 +m2
1)(p

2 +m2
2)

= − m2
2

16π2

(
log

Λ2

m2
2

− m2
1

m2
1 −m2

2

log
m2

1

m2
2

)
(2.14)
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while the second is

J(m1) =

∫ Λ

0

d4p
1

p2 +m12
=

1

16π2

(
Λ2 − 2m2

1 log
Λ2

m2
1

)
(2.15)

In this case the mass term in the Lagrangian is of the form

L ∼ 1

2
m2
X |X|2 (2.16)

and in this case, using (2.13) we have

1

2
m2
X =

1

2
+ (I(m+, m) + I(m−, m) − 2I(m,m)) +

1

2
(J(m+) + J(m−) − 2J(m)) (2.17)

where m± =
√
m2 ± 2f . Inserting (2.14) and (2.15) in (2.17) one find exactly (2.12).

This procedure is more involved in this case than the CW formula. Nevertheless it
represents and useful strategy to compute the mass of the pseudomoduli in cases where
it is not simple to find the eigenvalues of the mass matrices with the background field X
switched on. Moreover this strategy will play a crucial role in the two loop calculations.

The Fayet-Iliopoulos Model

Another mechanism for supersymmetry breaking is the FI model. In that case a U(1)
gauge group is included in the theory, and the linear term is switched on. In the simplest
case there are two chiral multiplet φ1 and φ2 with charges respectively +1 and −1 under
the U(1). The superpotential is W = mφ1φ2, and the Kahler potential is canonical. The
scalar potential is

V = |m|2(|φ1|2 + |φ2|2) +
1

2

(
ξ + |φ1|2 − |φ2|2

)
(2.18)

If m 6= 0 and ξ 6= 0 the scalar potential cannot vanish and supersymmetry is broken. The
minimum always occurs for non zero D. If |mi|2 > gξ the minimum is placed at φ1 = 0.
The Gaugino remain massless, and it is indeed the Goldstino.

Dynamical supersymmetry breaking

One of the most important motivation for supersymmetry is that it solves the hierarchy
problem. It is true if the scale of supersymmetry breaking is well below the GUT scale,
preferably of the order of EWSB, or not too much higher. This requires the scale of
supersymmetry breaking to be small enough. In the spontaneous supersymmetry breaking
models studied above a small scale of supersymmetry breaking is imposed at hand.

There is no explanation of the origin of the hierarchy.
A natural possibility is that the scale of supersymmetry breaking is determined by

the strong dynamics. The dynamics of the model can naturally set this low scale. This
possibility is named dynamical supersymmetry breaking.
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In the past an important constraint on dynamical supersymmetry breaking was the
Witten index. This is a topological index that is given by the difference between the
bosonic and fermionic states in the vacuum of a supersymmetric theory

Tr(−1)F = n0
B − n0

F (2.19)

If this index is non vanishing the zero energy vacuum is a state of the theory, and su-
persymmetry is unbroken. On the contrary theories with zero index can break super-
symmetry. The index can be used as a guideline in the search of models with dynamical
supersymmetry breaking, in virtue of its topological property. Indeed dynamical super-
symmetry breaking is often related to strong dynamics effects, uncalculable in perturba-
tion theory. Nevertheless one can compute the index in the weakly coupled regime and
this should rule out some models, like SYM and many non-chiral theories.

The general strategy in the search of dynamical supersymmetry breaking is based on
looking for models with no flat tree level directions. One choose models with zero energy
at the origin and an increasing potential. Non-perturbative corrections usually generate
a runaway potential, that is not zero at the origin. In these cases supersymmetry is
broken by the competition of tree level and non perturbative effects. This argument is
not rigorous, since many counterexamples are possible. For example the ITIY model has
tree level, but it breaks supersymmetry dynamically. A general problem, common to most
of these models, is that their spectra are often uncalculable, due to the strong dynamics.

Another characteristic of many of these models is that, when they are coupled with
the MSSM supersymmetry is restored somewhere in the moduli space. The non super-
symmetric vacua can be only metastable. At this point of the discussion one can ask what
happens by requiring metastability from the beginning, i.e. in the supersymmetry break-
ing sector. The idea of metastable vacua already appeared in supersymmetric calculable
models [26, 27], but it raised a great interest only after the ISS model. This model evades
one important constraint of supersymmetry breaking: it has non zero Witten index. This
is an attractive property since many non-chiral models, that where ruled out, come back
as possible candidates of hidden supersymmetry breaking sectors.

In this section we discuss the ISS model of metastable vacua in N = 1 SQCD. The
model is the SU(Nc) SQCD, with Nf flavours, and with a mass term for the quarks. This
theory does not break supersymmetry, since the Witten index is Nc. Nevertheless, in the
magnetic window, the dual description of this theory, does not possess zero energy ground
states only. Indeed there are also non supersymmetric metastable vacua. Seiberg duality
turns out to be fundamental for this mechanism and for its extensions in the rest of this
chapter.

Differently from known models of dynamical supersymmetry breaking, here the per-
turbative theory is under control. The non perturbative effects from strong coupling are
important in a region of the potential very far from the metastable state, and they drive
the supersymmetry restoration. This large separation among the supersymmetric and the
non supersymmetric sectors implies the long lifetime of the metastable state.

We know review the basic physical and technical aspect of the computation of [2].

30



The model

Consider SU(Nc) SQCD with Nf quarks charged under a SU(Nf ) × SU(NF ) flavour
symmetry. This flavour symmetry is explicitly broken to the diagonal subgroup by the
superpotential term

W = mQTrQQ̃ (2.20)

The global symmetry is
SU(NF ) × U(1)B × U(1)R (2.21)

where the R-symmetry is non-anomalous. The baryonic symmetry can be gauged, in this
case one has to consider the U(NC) gauge symmetry

The charges of the fields under the global and local symmetries are

SU(Nc) SU(NF ) U(1)B U(1)R
Q Ñc NF 1 1 − NF

NC

Q̃ Nc ÑF −1 1 − NF

NC

(2.22)

In the magnetic free window Nc + 1 ≤ Nf ≤ 3
2
Nc the theory is UV free and the infrared

theory is strongly coupled. These strong coupling effects drive the supersymmetric vacua
at large vev. Indeed if one parameterizes the moduli space with the meson M = Q · Q̃
the supersymmetric vacua are placed at

〈M〉 =
(
Λ3NC−NF detmQ

) 1
NC

1

mQ

(2.23)

The mass matrix m can be diagonalized with positive eigenvalues. They are considered
of the same magnitude and constrained by

mQi
� Λ (2.24)

where Λ is the dynamical scale of the theory. In the limit of mi → 0 the supersymmetric
vacua approach the origin of the field space. In this case one can use the Seiberg dual
description.

Seiberg duality in this theory gives a magnetic theory which is IR free and perturba-
tively accessible at low energy. The gauge symmetry becomes SU(ÑC) ≡ SU(NF −NC),
while the global symmetry is unchanged.

The dual superpotential becomes

Wmagn =
1

Λ̂
TrMqq̃ +mTrM (2.25)

where the q and q̃ fields are the magnetic quarks, and M is the electric meson. The Kahler
potential around the origin is canonical, and higher correction are suppressed by the fact
that the theory is IR free.

Kmagn =
1

β
Tr(qq† + q̃q̃†) +

1

α|Λ|2 TrMM † (2.26)
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The magnetic theory is characterized by two scales, Λ̂ and a Landau pole Λ̃. They are not
independent, but they are related to the dynamical electric scale Λ by the scale matching
condition (1.11). By rescaling q̃ and q one can impose β = 1, but this cannot compute
both Λ̃ and Λ̂ in terms of the magnetic variables. The coefficient α cannot be imposed to
be α = 1 because there is no freedom on rescaling M .

As in [2] one can define new fields and couplings, such that all the fields have mass
dimension 1 and no coefficient appears in the Kahler potential. These definition are

Φ =
M√
αΛ

h =

√
αΛ

Λ̂
µ2 = −mΛ̂ (2.27)

With these definitions the superpotential is

W = hTrqΦq̃ − hµ2TrM (2.28)

Supersymmetry breaking

The equation of motion arising from superpotential (2.28) are

FΦ = qαi q
j
α − µ2δji = 0

Fφ = qiαM
j
i = 0 (2.29)

Fφ̃ = M j
i q

α
j = 0

The first equation cannot be completely solved, since there is a rank condition. The
second matrix has rank NF , while the first matrix has rank ÑC = NF − Nc. There are
Nc equations that cannot be solved, and supersymmetry is broken at the tree level.

The non-supersymmetric vacuum is

qq̃ =

(
µ21Ñc

0
0 0

)
M =

(
0 0
0 X

)
(2.30)

The D-term condition gives

q =

(
µeiθ

0

)
q̃T =

(
µe−iθ

0

)
(2.31)

This is a moduli space of non supersymmetric classical vacua parameterized by X. This
is not a Goldstone flat direction, since it is not associated to the breakdown of the global
symmetry. Indeed it is a pseudomodulus that can acquire a mass term at quantum level.
The quantum analysis is necessary to decide if the tree level supersymmetry breaking
minimum is a true minimum of the quantum theory.

The first step toward the analysis of the stability of the non-supersymmetric vacuum
consists of calculating the squared mass matrices and look for potential tree level tachyons.
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This is done by expanding the fields around the non-supersymmetric minimum. In terms
of the fluctuations the common parameterization is

Φ =

(
δY δZT

δZ̃ X

)
q =

(
µ+ 1√

2
(δχ+ + δχ−)

1√
2
(δρ+ + δρ−)

)
q̃T =

(
µ+ 1√

2
(δχ+ − δχ−)

1√
2
(δρ+ − δρ−)

)

(2.32)
The combination of these fluctuations gives some massless scalars as

µ∗

|µ|δχ− − h.c., Re

(
µ∗

|µ|δρ+

)
, Im

(
µ∗

|µ|δρ−
)

(2.33)

that are Goldstone bosons of the broken global symmetries.

The traceless part of Im
(
µ∗

|µ|δχ−
)

is associated to the breakdown of the gauge symmetry,

and the Higgs mechanism is at work in this case. These Goldstone boson is eaten by the
gauge fields, that acquire mass gµ2.

Moreover there are some massless fluctuations that are not associated to any Goldstone
flat direction. They are

X,
µ∗

|µ|δχ− + h.c. (2.34)

The traceless part of the latter get a tree level mass from the D-term potential, of order

gµ. The classical pseudomoduli that remains are X and Tr
(
µ∗

|µ|δχ− + h.c.
)
. This last is

identified with (θ + θ∗) in the parameterization of the vacuum (2.31)
Since there are no tachyonic direction one can calculate the one loop corrections for

the pseudomoduli. For simplicity we study the case with gauged baryonic symmetry, In
this case only X remains as a pseudomodulus, since (θ + θ∗) get a tree level mass from
the D-term of U(1)B.

The CW potential for X is calculated by expanding around the vacuum with θ = θ∗ =
0 the fields as

q =

(
µ+ σ1

φ1

)
q̃T =

(
µ+ σ2

φ2

)
M =

(
σ1 φ3

φ4 X

)
(2.35)

This parameterization divides the chiral fields in two sectors. The σi fields are “super-
symmetric” fluctuations, which means that they do not enter in the one loop vacuum
diagrams with the field X, and hence they are not necessary to the CW potential. On
the contrary the fields φi participate to he one loop CW potential for X.

Note that with this distinction one can look at the mass matrices and see that only
the matrices (A.44) and (A.45) contributes to the CW potential, and we can use (A.46).
The O’Raifeartaigh models that contributes to the potential are NC copies of

W = hXφ1φ2 + hµ(φ1φ4 + φ2φ3) − hµ2X (2.36)

One finds that the X field is stabilized at the origin with mass

m2
|X| = |h4µ2|NC(log 4 − 1)

8π2
(2.37)
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The irrelevance of the marginal coupling h in this IR free theory ensures that higher loop
corrections are suppressed. This is true in the case of masses of the same order, as here.
If there are masses of different order it can happens that the pseudomoduli associated to
the lower masses can become negative at the origin because of the contribution at the
origin of the two loop potential, as in [28].

Supersymmetry restoration and lifetime

The non-supersymmetric minimum is stable at the origin, but in the large field region the
non perturbative effects restore supersymmetry, as expected from Seiberg duality. One
has to ensure that this restoration does not destabilizes the non-supersymmetric state at
all, making its lifetime too short. For this reason it is necessary to know the position of
the supersymmetric state and then calculate the bounce action between the two vacua.
Once this action is known it is possible to calculate the lifetime of the vacuum.

The supersymmetric state has been given in the electric theory as a function of m
and Λ in (2.23). In this magnetic theory one can map the variables. For future aims we
calculate it in the dual theory. If the field Φ acquires a non zero vacuum expectation
value, it massifies the flavours q and q̃. They have mass 〈hΦ〉. Below this mass scale the
flavours can be integrated out, at zero vev. The scale matching relation among the Λ̃
scale and the Λ̃L scale, at which the fields are integrated out, is

Λ̃3Ñc
L = hNF det ΦΛ̃3ÑC−NF (2.38)

The gauge theory is SU(ÑC) SYM, and gaugino condensation occurs. This implies that
a dynamical superpotential Wdyn = ÑcΛ̃

3
L is generated. Using the scale matching relation

the final superpotential is

Weff = Ñ
(
hNf Λ̃3N−NF det Φ

)1/N

− hµ2TrΦ (2.39)

This superpotential sets the supersymmetric vacua at

〈hΦ〉 = Λ̃ε
2N

NF −N =
µ

ε
NF −3N

NF −N

(2.40)

where ε = µ
Λ
. The position of the minimum in the field space depends on the parameter

ε. If |ε| � 1 then
|µ| � |〈hΦ〉| � |Λ̃| (2.41)

These bounds are fundamental for the stability of the metastable state. Indeed The
relation |〈hΦ〉| � |Λ̃| ensures that the non perturbative contribution does not ruin the
perturbative analysis near the origin of the moduli space. Moreover, higher corrections to
the Kahler potential are of order 1/|Λ̃|2. They do not invalidate neither the perturbative
results neither the non perturbative ones.

The lifetime of the vacuum is calculated after the choice of the bounce action. This
action has to connect the supersymmetric and the non supersymmetric vacua. The peak
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of the potential is at Φ = q = q̃ = 0, where the potential is Vmax = NF |hµ2|2. From the
non supersymmetric state to the supersymmetric one the motion takes place along the q
and q̃ directions. After the maximum is reached the motion of the Φ field drives the theory
to the supersymmetric minimum. This choice of the bounce action is well approximated
by a triangular barrier. Indeed the two vacua are far in the field space and the gradient
is nearly constant. Using the approximation of a triangular barrier, as discussed in the
appendix A.7 one finds

SB ∼ ∆Φ4

V+
∼ 1

ε4(NF−3Ñ)/(NF −Ñ)
(2.42)

The decay rate of the vacuum is Γ ∼ e−SB and more SB is large more the lifetime is long,
i.e. the vacuum is stable to decay. The action is parametrically large and we can act on
the scale and modify the parameter ε such that it is |ε| � 1. This is important since the
validity of the perturbative and non-perturbative analysis and the requirement of long
lifetime fix the same bounds on the scales of the theory.

Validity of the computation

The ISS vacuum is a calculable model of supersymmetry breaking. The perturbative
calculations have been performed without taking into account the dependence of the
scale Λ̃, that is not under control. The validity of the approximation is guaranteed by
the smallness of the parameter ε = µ/Λ̃. This choice is important for neglecting loop
effects and non perturbative from the high energy theory. The former corrections are
summarized in the correction of the Kahler potential. At quartic order it takes the form

δK =
c

|Λ̃|2
XX† + . . . (2.43)

If this correction to the Kahler potential is considered there is a correction of order c|εµ|2
to the mass of the pseudomodulus. This correction is negligible and the perturbative
computation in not affected by the heavy modes. The dimensionless number c, whose
sign is undetermined, can stabilize or destabilize the vacuum, but with the approximation
ε � 1 it is irrelevant. This discussion applies also on the non-perturbative irrelevant
operator, which is suppressed by powers of Λ̃, and does not change the perturbative
results for the non-supersymmetric vacuum.

In the calculation of the supersymmetric vacuum we can neglect the correction to the
Kahler potential but we need to consider the non perturbative dynamical superpotential.
Both are suppressed by the scale Λ̃, but in the first case this is an effect of the theory above
the Landau pole, while in the second case the dynamical superpotential is generated by
the dynamics of the gauge group at low energy. Indeed the expectation value of the field
X is well below the scale Λ̃, and this guarantees the correctness of the approximation.
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Gauging the flavour symmetry

In the main text we will look for ISS like vacua in quiver gauge theories. The main
difference between SQCD and these theories is that in the latter the symmetries are all
gauged, and hence the flavour groups are gauged as well. In the analysis of the moduli
spaces the gauge contributions of these groups may become relevant.

Such groups may develops a strong dynamics that ruins the conclusions about the
lifetime of the metastable vacua, since new supersymmetric vacua arise.

Another problem is that some fields charged under these groups could take non zero
vev in the meta-stable vacua. This makes the one loop computation difficult, since we
should take into account the D-term corrections to the effective potential. In fact the
mass matrices which appear in the Coleman Weinberg potential are built using the F -
terms of the superpotential, and the D-terms arising from the gauge groups. The D-term
contributions to the mass matrix are irrelevant with respect to the F -term ones only if
the corresponding gauge group is very weakly coupled.

The problems associated with the gauging of the flavour symmetries has already been
handled in [10, 29, 30, 31] with different solutions. Basically one needs a scheme where
the gauge contributions of such groups can be ignored. If these groups are IR free in the
Seiberg dual description, the way out consists of tuning their Landau pole to be much
higher than the Landau pole Λm of the dualized gauge group. In the opposite case, the
gauged flavour groups are UV free. In this case we have to choose the opposite tuning,
i.e. their strong coupling scale must be much lower than Λm and also lower than the
supersymmetry breaking scale. Such tunings make the gauge contributions of the flavour
groups negligible, and the problems mentioned above are avoided.

R-symmetry plays a crucial role in many aspects of supersymmetry breaking models.
Indeed, under some hypothesis, the presence of this symmetry is a necessary condition
for supersymmetry breaking. Moreover if it is spontaneously broken it is also a sufficient
condition for supersymmetry to be broken.

Some general argument shows that spontaneous R-symmetry breaking is usually con-
nected with the assignation of the R-charges in a specific model. This charge assignation
prevents the pseudomodulus to acquire a vacuum expectation value, at one loop, in ISS
model and in many generalizations.

Also phenomenology of supersymmetry breaking is constrained if R-symmetry is pre-
served, i.e. the absence of explicit or spontaneous R-symmetry breaking. Indeed if super-
symmetry breaking is mediated to the MSSM through gauge interactions, the gauginos
can only acquire a Dirac mass if R symmetry is a symmetry of the quantum theory. On
the contrary, if R symmetry is broken, Majorana masses are allowed.

The assignation of R-charges is also important for the behaviour of the theory at
large vev. It has been shown that the runaway behaviour of an O’Raifeartaigh model is
connected with R-charges of the F -terms.
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R-symmetry and supersymmetry breaking

The Nelson-Seiberg argument [3] connects R-symmetry and supersymmetry breaking.
This results holds for models which are calculable, i.e. where the scale of supersymmetry
breaking is much lower than the scale at which the gauge theory is strongly coupled. The
superpotential has to be generic, all the terms admitted by the symmetries have to be
present and the coefficients are not fine tuned. Finally the Kahler potential is finite and
non-singular. In models in which these hypothesis hold, supersymmetry is unbroken if

∂Weff

∂φi
(2.44)

where the φi are gauge invariant functions of the parameters describing the D-flat direc-
tions.
In this class of models two result hold

1 Having an R-symmetry is a necessary condition for spontaneously supersymmetry
breaking.

2 A spontaneously broken R-symmetry is a sufficient condition for spontaneous su-
persymmetry breaking

The first claim is proved in two steps. First one consider the case in which there are
no global symmetries. In that case there are n F -term equations for n unknowns, and
supersymmetry is unbroken (counterexamples are in the class of non generic models).
The second possibility is that there are continuous global symmetries which commute
with supersymmetry, which is not the case for R-symmetry. In this case the fact that
supersymmetry is unbroken follows from the holomorphy of the superpotential. Indeed
if there are l generators of global symmetry, than the superpotential is a function of
n − l variables. Weff is independent of l variables but l equations are satisfied. In this
case there are n − l variables for n − l unknowns, and supersymmetry is unbroken for
generic models. This shows that the absence of R symmetry is a sufficient condition for
the absence of supersymmetry breaking. In other words, R symmetry is necessary for
supersymmetry breaking.

For the proof of the second claim one need a field φn whose R-charge is not vanishing.
If this field has finite, but not zero, vev, then one can define a new class of variables for
the fields φi (i = 1, . . . , n− 1)

Xi =
φi

φ
qi/qn
n

(2.45)

If R[W ] = 2, the superpotential written in the new Xi, φn variables become

Weff = φ2/qn
n f(Xi) (2.46)

where f is an holomorphic function of the n− 1 variables Xi. The F terms are

∂Weff

∂φn
=

2

qn
φ

2−qn
qn f(Xi) ∼ f(Xi)

∂Weff

∂Xi
∼ f(Xi)

∂Xi
(2.47)
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We have n equations for n − 1 unknowns, and generically there is no supersymmetric
solution. This shows the second claim.

Although massive SQCD breaks R-symmetry to Z2, the ISS model is not in conflict
with these results on R-symmetry. Indeed around the origin of the moduli space of
the magnetic theory the theory is described by an R-symmetric superpotential (2.36),
and R symmetry breaking effects are negligible. These non-perturbative effects break R
symmetry in the large field region, where supersymmetry is restored.

In many application the hypothesis of genericity is evaded. In this case one can write
some models with no R-symmetry and with broken supersymmetry. For example the
superpotential

W = fX +Xφ1φ2 + µ(φ1φ3 + φ2φ4) +m(φ1φ5 + φ2φ6) + εφ3φ4 (2.48)

is not R-symmetric and it breaks supersymmetry at the classical level if φi = 0 and X
is arbitrary. We will discuss this model in detail in the case of metastable vacua with
adjoint matter.

Spontaneous R symmetry breaking

The hypothesis of genericity constraints the landscape of models of supersymmetry break-
ing. Models that preserve R-symmetry at tree level are not phenomenologically appealing
if R-symmetry is not broken in the quantum moduli space. This raised the interest on
spontaneous R-symmetry breaking. Direct inspection is not promising, since the analysis
can be involved, and general results are more attractive.

In the last two years some general result has been found in WZ models at one loop
[4] and at tree level [32, 33]. They are based on the assignation of R-charges in an
R-symmetric model.

Tree level spontaneous R symmetry breaking

R-symmetry is unbroken at tree level in a renormalizable WZ model, with canonical
Kahler potential and superpotential

W0 =
∑

i

Xifi(φJ) where f(x) = a0 + a1x + a2x
2 (2.49)

if the field X has R-charge two and if the other φJ fields have vanishing R-charge. This
result was proved in ([32]). In another paper [33] the author modified the superpotential
(2.49) by adding a term

W0 →W = W0 + g(φJ , φ̃K) (2.50)

The model with g = 0 has to break supersymmetry at tree level and it has to respects
an ordinary U(1)nonR symmetry. Moreover the superpotential (2.50) with g = 0 has to
stabilize the φJ fields out of the origin, spontaneously breaking the U(1)nonR. One then
adds g such that it explicitly breaks the original R symmetry. The U(1)R and U(1)nonR
are both broken, but a non trivial U(1)R′ combination still remains. As long as Fφ̃ = 0,
R′ symmetry is broken at tree level, in fact 〈φJ〉 6= 0 and R′[φJ ] 6= 0.
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One loop spontaneous R symmetry breaking

Tree level spontaneous R-symmetry breaking is usually discarded in favor of one loop
R-symmetry breaking for phenomenological reasons. At one loop an useful formula for
the calculation of the first order mass term acquired from a classical flat direction was
calculated in [4]. The superpotential studied in [4] is

W = fX +
1

2

(
M ij +XN ij

)
(2.51)

and the equation of motion fix φi = 0 and X arbitrary. The mass matrices are defined as

m2
B = (M̂ +XN̂)2 + fN̂ m2

F = (M̂ +XN̂)2 (2.52)

where

M̂ =

(
0 M †

M 0

)
N̂ =

(
0 N †

N 0

)
(2.53)

In [4] it has been shown that the mass term for the pseudomodulus is

m2
X =

1

16π2f 2

∫ ∞

0

dvv3Tr

(
F4(v)

1 − F2(v)
v2 − 2

F2(v)

1 − F2(v)M̂

)
≡M2

1 −M2
2 (2.54)

where F(v) = (v2 + M̂2)−1fN̂ . Both M2
1 and M2

2 are positive, but M 2
2 is zero if all the

fields in the theory have R-charges zero or two. R-symmetry is spontaneously broken at
one loop only if some field with R-charge different from zero or two is present.

Some of the results of this section do not hold at two or higher loop. The behaviour
of the pseudomoduli in the large field region has been studied in [34]. Although the ana-
log of the CW potential does not exists at higher loop, the behaviour of a large class of
models at the origin of the moduli space can be studied by explicit calculation. In section
2.5 we will give some example.

R symmetry and runaway directions

The assignment of R-charges is also related to the classical behaviour of the potential
at large fields. The symmetry group cannot determine by itself the manifold of classical
solution of the F -terms. The complexified of the symmetry group must be used. If there
are fields with R charges higher than two and lower then two, than the theory usually has
a runaway behaviour. This is runaway takes place if one is able to solve the equations
Fi = 0 for all the fields with R ≤ 2 or R ≥ 2. In this case one can act on the solutions
with a complexified transformation of the symmetry group and take the parameter to
±∞. In such a way a runaway direction is found. This runaway can be avoided if not all
the F terms can be satisfied. There is a whole branch of the moduli space that breaks
R-symmetry, but with no runaway. For an explicit realization of this mechanism see [35].
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Since supersymmetry necessitate to be a broken symmetry, the MSSM requires to
be completed by a supersymmetry breaking sector. One can ask if the supersymmetry
breaking scale can directly belong to the MSSM but the answer is negative. Indeed a FI
term for U(1)Y does not lead to an acceptable spectrum, and there are no gauge singlets
with non zero F -terms.
This require a new sector that communicates the breakdown of supersymmetry to the
MSSM partners. The STr formula [36] does not allow a tree level coupling between the
supersymmetry breaking sector and the MSSM. Indeed some of the superpartners are too
light and they should have been already detected at the colliders.
Another possibility is that the supersymmetry breaking sector is hidden, and couples to
the MSSM through flavor blind gauge interactions. The MSSM soft masses, for Gaugino
and sfermions raise up radiatively. This requirement evades the constraints of the STr
theorem and the gauged group can be the SM gauge group or some GUT extension.

Minimal gauge mediation

This mechanism is based on the coupling of the MSSM sector and the Hidden super-
symmetry breaking sector through new chiral fields, called messengers. These field feel
supersymmetry breaking and are charged under the MSSM gauge group. They couple
with the gauge bosons and Gaugino of the MSSM gauge group.
The superpotential for these messenger fields is

Wmess =
∑

i

hiXfif̃i (2.55)

where X is a field with non zero vev and F -term, X = M + θ2F . This can be the field
pseudomodulus of an O’Raifeartaigh sector, or it can belong to a dynamical supersym-
metry breaking sector.
The Gauginos of the MSSM acquire a one loop mass, while the sfermion mass is obtained
at two loop. The gauge bosons and the fermions do not acquire masses because of the
gauge invariance of the MSSM. The masses are calculated once the classical spectrum of
the messengers is known. One has

mψfiψf̃i
= |hiM | m2

fi,f̃i
= |hiM |2 ± |hiF | (2.56)

The Gaugino and sfermion masses are [37, 38]

Ma =
αa
4π

F

M

∑

i

na(i)g(xi) (2.57)

M̃ = 2

∣∣∣∣
F

M

∣∣∣∣
2∑

a

(αa
4π

)2

Ca
∑

i

na(i)f(xi)

where xi = |F/(hiM)|,na(i) is the Dinkin Index of the pair fi + f̃i (the fundamental-
antifundamental pair is normalized by na = 1) and Ca is the Quadratic Casimir invariant.
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The functions g(x) and f(x) are

f(x) =
1

x2
((1 + x) log(1 + x)) + (x↔ −x) (2.58)

g(x) =
1 + x

x2

(
log(1 + x) − 2 Li2

x

1 + x
+ +

1

2
Li2

2x

1 + x

)
+ (x↔ −x)

Direct Mediation

There is another mechanism of gauge mediation, in which the messenger sector disappears.
A (sub)-group of the flavour group of the hidden sector is gauged, and it often coincides
with the MSSM gauge group. The main problem is that the new gauge group usually
implies a supersymmetric vacuum in the hidden sector.

One must add some interaction that lift this zero energy state, or alternatively one has
to require that the non supersymmetric state is long lifetime. (Direct) gauge mediation
requires metastability.

We now remark that many supersymmetry breaking models studied in the past where
chiral models, since non chiral models have non zero Witten index. If we now accept
metastability, we can consider hidden vector like sector with metastable vacua. The
simplest example is the ISS model.

Direct mediation in ISS

Even if R-symmetry protects the Gaugino to be massive at every order in perturbation
theory, we here gauge (a part of) the global symmetry of ISS and see explicitly what
happens.

The global symmetry unbroken by the metastable ISS vacuum is SU(Nf − Ñc) ×
SU(Ñc). Gauging a subgroup SU(3) × SU(2) × U(1) the gauginos of this subgroup
interact with the fields φi and X of the superpotential (2.36).

This last can be written as

W = h
(
φ1 φ3

)( X µ
µ 0

)(
φ2

φ4

)
− hµ2X = h

(
φ1 φ3

)
M
(
φ2

φ4

)
− hµ2X (2.59)

The mass of the gaugino at the lowest order in the supersymmetry breaking scale FX
1 is

given by the formula

mλ =
α

4π
N |FX |

∂ log detM
∂X

(2.60)

In this case the determinant of M is independent on X and the gaugino is massless.
In [39] it was shown that the addition of a R-symmetry breaking deformation mφ3φ4,

changes the mass matrix and M and the gaugino acquires a mass

mλ =
α

4π
N
|FX |
m

(2.61)

1This formula gives the correct order for the gaugino mass also if µ2 ∼ FX .
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Indeed in this case the R symmetry cannot protect the gaugino to be massless anymore.
In many cases the formula (2.60) cannot be used since the gaugino receives a leading

order contribution at higher orders in the supersymmetry breaking scale |FX |. This will
be the case for the the metastable vacua with adjoint matter.

The Landau pole problem

The identification of a gauged global symmetry with the gauge symmetry of the MSSM
presents a phenomenological problem, named the Landau pole problem. Indeed there
are many particles that are charged under the GUT or SU(3)C × SU(2)L × U(1)Y gauge
symmetry. They contribute to the beta function of the gauge group, and this can lead the
Landau pole under the unification scale. This constraints the choice of the mass scale, of
the dynamical scale and of the flavor symmetry that needs to be gauged in the hidden
sector,

2.2 SQCD with adjoint matter

In this section we propose a generalization of the ISS mechanism to SQCD with adjoint
matter. We study models with adjoint chiral fields with cubic superpotential à la KSS
[21, 22, 23]. Such superpotentials generate a further meson in the dual magnetic theory:
this might produce several pseudogoldstone excitations and jeopardize the 1-loop stability
of the non supersymmetric vacua. There must be enough F and/or D equations to give
tree level masses.

We consider a theory with one gauge group SU(Nc) and two massive electric adjoint
fields, where the most massive one gets integrated out. This amounts to add a massive
mesonic deformation in the dual theory. This avoids dangerous extra flat directions which
cannot be stabilized at 1-loop. A discussion of the possible interpretation via D-brane
configurations can be found in [40, 41].

In the study of the magnetic dual theory we find a tree-level non supersymmetric
vacuum which is stabilized by quantum corrections; we show that this is a metastable state
that decays to a supersymmetric one after a parametrically long time. A landscape of non
supersymmetric metastable vacua, present at classical level, disappears at quantum level.
Differently from [2, 42, 43] in our model there is no U(1)R symmetry and our minimum
will not be at the origin of the field space, making our computation much involved. We
present most of our results graphically, giving analytic expressions in some sensible limits.

The explicit breaking of the R-symmetry is a starting point for phenomenological ap-
plications of the ISS mechanism. Indeed the ISS model and its generalizations can have
phenomenological applications in connection with gauge mediation of dynamical super-
symmetry breaking to the standard model sector [44]. R-symmetry plays here a relevant
role since a U(1) R-symmetry, even broken to Zn, forbids a gaugino mass generation.
To obtain a gaugino mass, deformations can be added to the superpotential making the
R-symmetry trivial, and this might require a further careful analysis of its stability.
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Metastable models have been analyzed in this direction [39, 45, 74, 46, 47]. In most
cases extra terms, breaking R-symmetry, have been added to known models of dynamical
supersymmetry breaking, leading to gaugino mass at 1 loop at the first or at the third
order in the breaking scale. Our model which has meta-stable vacua, is rather non generic
(in the sense of [3]), it has no R-symmetry and it is suitable for direct gauge mediation.

We first recall some basic elements of the KSS duality for the model that we consider.
Then we solve the the D and F equations finding a local minimum where supersymmetry
is broken by the rank condition. After that we compute the 1-loop effective potential
around this vacuum and find that it is stabilized by the quantum corrections. Later we
restore supersymmetry by non perturbative gauge dynamics and recover supersymmetric
vacua. By using this result, we estimate the lifetime of the metastable state. Finally we
conclude this section by showing that a gaugino mass gets generated at 1 loop at third
order in the breaking parameter.

N = 1 SQCD with adjoint matter

We consider N = 1 supersymmetric SU(Nc) Yang Mills theory coupled to Nf massive
flavours (Qi

α, Q̃
jβ) in the fundamental and antifundamental representations of the gauge

group (α, β = 1, . . .Nc) and in the antifundamental and fundamental representations of
the flavour group (i, j = 1, . . . Nf ), respectively. We also consider a charged chiral massive
adjoint superfield Xα

β with superpotential2

Wel =
gX
3

TrX3 +
mX

2
TrX2 + λXTrX (2.62)

where λX is a Lagrange multiplier enforcing the tracelessness condition TrX = 0. The
Kahler potential for all the fields is taken to be canonical. This theory is asymptotically
free in the range Nf < 2Nc and it admits stable vacua for Nf >

Nc

2
[22].

The dual theory [21, 22, 23] is SU(2Nf − Nc ≡ Ñ) with Nf magnetic flavours (q, q̃),
a magnetic adjoint field Y and two gauge singlets build from electric mesons (M1 = QQ̃,
M2 = QXQ̃), with magnetic superpotential

Wmagn =
g̃Y
3

TrY 3+
m̃Y

2
TrY 2+λ̃Y TrY− 1

µ2
tr

(
m̃Y

2
M1qq̃ + g̃YM2qq̃ + g̃YM1qY q̃

)
(2.63)

where the relations between the magnetic couplings and the electric ones are

g̃Y = −gX , Ñm̃Y = NcmX . (2.64)

The intermediate scale µ takes into account the mass dimension of the mesons in the dual
description. The matching between the microscopic scale (Λ) and the macroscopic scale
(Λ̃) is

Λ2Nc−Nf Λ̃2Ñ−Nf =

(
µ

gX

)2Nf

. (2.65)

2(Tr) means tracing on the color indices, while (tr ) on the flavour ones.
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We look for a magnetic infrared free regime in order to rely on perturbative computations
at low energy. The b coefficient of the beta function is b = (3Ñ −Nf ) − Ñ , negative for
Nf <

2
3
Nc and so we will consider the window for the number of flavours

Nc

2
< Nf <

2

3
Nc ⇒ 0 < 2Ñ < Nf (2.66)

where the magnetic theory is IR free and it admits stable vacua.

Adding mesonic deformations

We now add to the electric potential (2.62) the gauge singlet deformations

Wel → Wel + ∆Wel ∆Wel = λQ tr QXQ̃+mQ tr QQ̃ + h tr (QQ̃)2 (2.67)

The first two terms are standard deformations of the electric superpotential that don’t
spoil the duality relations (e.g. the scale matching condition (2.65)) [23]. The last term
of (2.67) can be thought as originating from a second largely massive adjoint field Z in
the electric theory with superpotential

WZ = mZTrZ2 + TrZQQ̃ (2.68)

and which has been integrated out [40, 41, 48]. The mass mZ has to be considered larger
than Λ2A, the strong scale of the electric theory with two adjoint fields. This procedure
leads to the scale matching relation

Λ
Nc−Nf

2A = Λ
2Nc−Nf

1A m−Nc
Z (2.69)

where Λ2A and Λ1A are the strong coupling scales before and after having integrated out
the adjoint field Z, i.e. with two or one adjoint fields respectively.

The other masses in this theory have to be considered much smaller than the strong
scale Λ2A � mQ, mX . This forces, via (2.69), the scale Λ1A and the masses to satisfy the
relations

mQmZ

Λ2
1A

� 1
mXmZ

Λ2
1A

� 1 (2.70)

We will work in this range of parameters in the whole paper, translating these inequalities
in the dual (magnetic) context.

We also observe that in (2.69) the coefficient b of the beta function for the starting
electric theory with two adjoint fields is b = Nc − Nf and the theory is asymptotically
free for Nf < Nc. This range is still consistent with our magnetic IR free window (2.66).
The dimensional coupling h in our effective theory (2.67) results h = 1

mZ
so it must be

thought as a small deformation. In analogy with [48]3 we can suppose that when h is
small the duality relations are still valid and obtain the full magnetic superpotential

Wmagn =
g̃Y
3

TrY 3 +
m̃Y

2
TrY 2 + λ̃Y TrY − 1

µ2
tr

(
m̃Y

2
M1qq̃ + g̃YM2qq̃ + g̃YM1qY q̃

)

+λQ tr M2 +mQ tr M1 + h tr (M1)
2 (2.71)

3Where it was done in the context of Seiberg duality.
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For this dual theory the scale matching relation is the same as (2.65) with Λ ≡ Λ1A

defined in (2.69).
We consider the free magnetic range (2.66), where the metric on the moduli space is
smooth around the origin. The Kahler potential is thus regular and has the canonical
form

K =
1

α2
1Λ

2
tr M †

1M1 +
1

α2
2Λ

4
tr M †

2M2 +
1

β2
TrY †Y +

1

γ2
(tr q†q + tr q̃†q̃) (2.72)

where (αi, β, γ) are unknown positive numerical coefficients.

Non supersymmetric metastable vacua

We solve the equations of motion for the chiral fields of the macroscopic description (2.71).
We will find a non supersymmetric vacuum in the region of small fields where the SU(Ñ)
gauge dynamics is decoupled. The gauge dynamics becomes relevant in the large field
region where it restores supersymmetry via non perturbative effects (see sec.5).

We rescale the magnetic fields appearing in (2.71) in order to work with elementary
fields with mass dimension one. We then have a N = 1 supersymmetric SU(Ñ) gauge
theory with Nf magnetic flavours (q, q̃), an adjoint field Y , and two gauge singlet mesons
M1,M2, with canonical Kahler potential. The superpotential, with rescaled couplings,
reads

Wmagn =
gY
3

TrY 3 +
mY

2
TrY 2 + λYTrY + tr (h1M1qq̃ + h2M2qq̃ + h3M1qY q̃)

−h1m
2
1 tr M1 − h2m

2
2 tr M2 +m3 tr M2

1 (2.73)

where the rescaled couplings in (2.73) are mapped to the original ones in (2.71) via

h1 = −m̃Y

2µ2
(α1Λ) γ2 h2 = − g̃Y

µ2

(
α2Λ

2
)
γ2 h3 = − g̃Y

µ2
(α1Λ) γ2β

h1m
2
1 = −mQ α1 Λ h2m

2
2 = −λQ α2 Λ2 m3 = h(α1Λ)2 (2.74)

We can choose the magnetic quarks q, q̃T (which are Nf × Ñ matrices) to solve the D
equations as

q =

(
k
0

)
q̃T =

(
k̃
0

)
(2.75)

where k, k̃ are Ñ × Ñ diagonal matrices such that the diagonal entries satisfy |ki| = |k̃i|.
We impose the F equations of motion for the superpotential (2.73)

FλY
= TrY = 0

FY = gY Y
2 +mY Y + λY + h3M1qq̃ = 0

Fq = h2M2q̃ + h1M1q̃ + h3M1Y q̃ = 0

Fq̃ = h2M2q + h1M1q + h3M1qY = 0 (2.76)

FM1 = h1qq̃ + h3qY q̃ − h1m
2
1δij + 2m3M1 = 0 i, j = 1, . . . Nf

FM2 = h2qq̃ − h2m
2
2δij = 0 i, j = 1, . . .Nf (2.77)
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Since we are in the range (2.66) where Nf > Ñ the equation (2.77) is the rank condition
of [2]: supersymmetry is spontaneously broken at tree-level by these non trivial F -terms.

We can solve the first Ñ equations of (2.77) by fixing the product kk̃ to be kk̃ = m2
21Ñ .

We then parametrize the quarks vevs in the vacuum (2.75) with complex θ

q =

(
m2e

θ 1Ñ
0

)
q̃T =

(
m2e

−θ 1Ñ
0

)
. (2.78)

The other Nf − Ñ equations of (2.77) cannot be solved and so the corresponding F -terms
don’t vanish (FM2 6= 0). However we can find a vacuum configuration which satisfies all
the other F -equations (2.76) and the D-ones. We solve the equations (2.76) for M1, Y
and λY and we choose Y to be diagonal, finding

λY =
h3h1m

2
2

2m3

(
m2

2 −m2
1

)
− m2

Y

gY

(
1 − h2

3m
4
2

2m3mY

)2
n1n2

(n1 − n2)2
(2.79)

where the integers (n1, n2) count the eigenvalues degeneracy along the Y diagonal, with
(n1 + n2 = Ñ)

〈Y 〉 =

(
y11n1 0

0 y21n2

)
y1 = −

mY − h2
3m

4
2

2m3

gY

n2

n1 − n2
y2 =

mY − h2
3m

4
2

2m3

gY

n1

n1 − n2

We choose the vacuum in which the magnetic gauge group is not broken by the adjoint
field choosing n1 = 0, so y2 vanishes and 〈Y 〉 = 0. We observe that other choices for 〈Y 〉
with n1 6= 0 6= n2 wouldn’t change the tree-level potential energy of the vacua which is
given only by the non vanishing FM2. This classical landscape of equivalent vacua will be
wiped out by 1-loop quantum corrections4. In our case (n1 = 0) we have

〈M1〉 =

(
h1

2m3
(m2

1 −m2
2) 1Ñ 0

0
h1m2

1

2m3
1Nf−Ñ

)
=

(
pA1 0
0 pB1

)
(2.80)

The two non trivial blocks are respectively Ñ and Nf − Ñ diagonal squared matrices.
The (q, q̃) F equations fix the vev of the M2 meson to be

〈M2〉 =

(
− h2

1

2h2m3
(m2

1 −m2
2) 1Ñ 0

0 X

)
=

(
pA2 0
0 X

)
(2.81)

where the blocks have the same dimensions of M1, with X undetermined at the classical
level.

Since supersymmetry is broken at tree level by the rank condition (2.77) the minimum
of the scalar potential is

VMIN = |FM2|2 = (Nf − Ñ)|h2m
2
2|2 = (Nf − Ñ)α2

2 |λQΛ2|2 (2.82)

4This agrees with an observation in [43].
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It depends on parameters that we can’t compute from the electric theory (e.g. α2); in
any case we are only interested in the qualitative behaviour of the non supersymmetric
state. The potential energy of the vacuum (2.82) doesn’t depend on θ and X ; they are
massless fields at tree level, not protected by any symmetry and hence are pseudomoduli.
Their fate will be decided by the quantum corrections.

We don’t expect the value of X in the quantum minimum to vanish because there
isn’t any U(1)R symmetry. Indeed, computing the 1-loop corrections, we will find that
in the quantum minimum the value of θ is zero while X will get a nonzero vev. This
makes our metastable minimum different from the one discovered in [2, 42, 43] where
the quantum corrections didn’t give the pseudomoduli a nonzero vev. Notice also that
although we have many vevs different from zero in the non supersymmetric vacuum they
are all smaller than the natural breaking mass scale |FM2|

1
2 = |h2m

2
2|

1
2 .

1-Loop effective potential

In this subsection we study the 1-loop quantum corrections to the effective potential
for the fluctuations around the non supersymmetric vacuum selected in the previous
subsection with 〈Y 〉 = 0. The aim is to establish the sign of the mass corrections for the
pseudomoduli X , θ. The 1-loop corrections to the tree level potential energy depend on
the choice of the adjoint vev 〈Y 〉: as a matter of fact they are minimized by the choice
〈Y 〉 = 0.

The 1-loop contributions of the vector multiplet to the effective potential vanish since
the D equations are satisfied by our non supersymmetric vacuum configuration.

The 1-loop corrections will be computed using the supertrace of the bosonic and
fermionic squared mass matrices built up from the superpotential for the fluctuations of
the fields around the vacuum. The standard expression of the 1-loop effective potential is

V1−loop =
1

64π2
STrM4 log

M2

Λ2
=

1

64π2

∑(
m4
B log

m2
B

Λ2
−m4

F log
m2
F

Λ2

)
(2.83)

where the F contributions to the mass matrices are read from the superpotential W

m2
B =

(
W †acWcb W †abcWc

WabcW
†c WacW

†cb

)
m2
f =

(
W †acWcb 0

0 WacW
†cb

)
(2.84)

We parametrize the fluctuations around the tree level vacuum as

q =

(
keθ + ξ1
φ1

)
q̃T =

(
ke−θ + ξ2

φ2

)
Y = δY (2.85)

M1 =

(
pA1 + ξ3 φ3

φ4 pB1 + ξ4

)
M2 =

(
pA2 + ξ5 φ5

φ6 X

)
(2.86)

We expand the classical superpotential (2.73) up to three linear order in the fluctuations
φi, ξi, δY . Most of these fields acquire tree level masses, but there are also massless fields.
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Some of them are Goldstone bosons of the global symmetries considering SU(Ñ) global,
the others are pseudogoldstone.
In this set up, ξ1 and ξ2 combine to give the same Goldstone and pseudogoldstone bosons
as in [2]. Gauging the SU(Ñ) symmetry these goldstones are eaten by the vector fields,
and the other massless fields, except θ+θ?, acquire positive masses from D-term potential
as in [2]. Combinations of the φi fields give the Goldstone bosons related to the breaking
of the flavour symmetry SU(Nf ) → SU(Ñ) × SU(Nf − Ñ) × U(1). The off diagonal
elements of the classically massless field X are Goldstone bosons of the SU(Nf − Ñ)
flavour symmetry as in [42]. We then end up with the pseudogoldstones θ + θ? and the
diagonal X .

We now look for the fluctuations which give contributions to the mass matrices (2.84).
They are only the φi fields, while the ξi and δY represent a decoupled supersymmetric
sector. Indeed ξi and δY do not appear in bilinear terms coupled to the φi sector, so
they do not contribute to the fermionic mass matrix (2.84). Even if they appear in three
linear terms coupled to the φi, they do not have the corresponding linear term5: they do
not contribute to the bosonic mass matrix (2.84). Since (ξ1, ξ2, δY ) do not couple to the
breaking sector at this order, also their D-term contributions to the mass matrices vanish
and all of them can be neglected. We can then restrict ourselves to the chiral φi fields for
computing the 1-loop quantum corrections to the effective scalar potential using (2.84).
Without loss of generality we can set the pseudomoduli X proportional to the identity
matrix.

The resulting superpotential for the sector affected by the supersymmetry breaking
(the φi fields) is a sum of Ñ × (Nf − Ñ) decoupled copies of a model of chiral fields which
breaks supersymmetry at tree-level

W = h2

(
Xφ1φ2 −m2

2X
)

+ h2m2

(
eθφ2φ5 + e−θφ1φ6

)
+

+h1m2

(
eθφ2φ3 + e−θφ1φ4

)
+ 2m3φ3φ4 +

h2
1m

2
1

2m3

φ1φ2 (2.87)

This superpotential doesn’t have any U(1)R symmetry, differently from the ones studied
in [2, 42, 43]. This may be read as an example of a non generic superpotential which
breaks supersymmetry [3], without exact R symmetry.

The expressions for the eigenvalues, and then for the 1-loop scalar potential, are too
complicated to be written here. We can plot our results numerically to give a pictorial
representation.

The computation is carried out in this way: we first compute the eigenvalues of the
bosonic and fermionic mass matrices (2.84) using the superpotential (2.87); we evaluate
them where all the fluctuations φi are set to zero; finally we compute the 1-loop scalar
potential using (2.83) as a function of the pseudomoduli X , θ + θ?. The corrections will
always be powers of θ + θ? ≡ θ̃ so from now on we will treat only the θ̃ dependence. We
give graphical plots of the 1-loop effective potential treating fields and couplings as real.
We have checked that our qualitative conclusions about the stability of the vacuum are
not affected by using complex variables.

5The possible linear terms in ξi and δY factorize the F -equations (2.76) and so they all vanish.
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We redefine the couplings in order to have the mass matrices as functions of three
dimensionless parameters (ρ, η, ζ)

ρ =
h1

h2
η =

2m3

h2m2
ζ =

h2
1m

2
1

2h2m2m3
, ζ < ρ < η (2.88)

and we rescale the superpotential with an overall scale h2m2 which becomes the funda-
mental unit of our plots. The inequality in (2.88) is a consequence of the range (2.70) and
the redefinitions (2.74). We notice also that (ρ, η, ζ) have absolute values smaller than
one.

In figure 2.1 we plot the 1-loop scalar potential as a function of X , θ̃ and for fixed
values of the parameters ρ, η, ζ. We can see that there is a minimum, so the moduli space
is lifted by the quantum corrections, the pseudomoduli get positive masses, and there is a
stable non supersymmetric vacuum. Making a careful analysis we find that the quantum
minimum in the 1-loop scalar potential is reached when 〈θ̃〉 = 0 but 〈X 〉 6= 0 and its vev
in the minimum depends on the parameters (ρ, η, ζ). This agrees with what we observed
in the previous subsection. It can be better seen in the second picture of figure 2.1 where
we take a section of the first plot for θ̃ = 0.
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Figure 2.1: Scalar potential V 1−loop for (η = 0.5, ρ = 0.1, ζ = 0.05,X = −0.5 . . . 0.5, θ̃ =
−0.8 . . . 0.8), and its section for θ̃ = 0; X is in unit of m2, while V is in unit of |h2

2m
2
2|2.

In figure 2.2 we plot the 1-loop scalar potential for θ̃ = 0 as a function of X and of the
parameter ρ, fixing η and ζ. For each value of ρ the curvature around the minimum gives
a qualitative estimation of the generated mass for the pseudomoduli X . We note that for
large ρ the scalar potential become asymptotically flat, and so the 1-loop generated mass
goes to zero, but this is outside our allowed range.

As already observed, there is a minimum for 〈X 〉 slightly different from zero due to
quantum corrections, and we have found that it goes to zero in the limit (ζ → 0, ρ→ 0).

49



-1
-0.5

0
0.5

1

X0.2

0.4

0.6

0.8

1

rho

6

7

8

9

10

V

-1
-0.5

0
0.5

1

X

Figure 2.2: Scalar potential V 1−loop for (X = −1 . . . 1, ρ = 0.05 . . . 1, η = 0.5, ζ = 0.05, θ̃ =
0); X is in unit of m2, while V is in unit of |h2

2m
2
2|2.

We can give analytic results in this limit6. We found at zero order in ρ and ζ, with
arbitrary η, that the 1-loop generated masses for the pseudomoduli are

m2
X =

Ñ(Nf − Ñ)

8π2
|h2

2m2|2(log[4] − 1) + o(ρ) + o(ζ) (2.89)

m2
θ̃

=
Ñ(Nf − Ñ)

16π2
|h2

2m
2
2|2(log[4] − 1) + o(ρ) + o(ζ)

so in the limit of small ρ (and small ζ) quantum corrections don’t depend on η. We can
write the 1-loop scalar potential setting η to zero obtaining (for small ζ)

V (1) =
Ñ(Nf − Ñ)

64π2
|h2

2m2|2
{
|m2|2

(
log
( |h2m2|2

Λ2

)
+ 2ρ4 log[ρ2] − 4(1 + ρ2)2 log[1 + ρ2] +

+ 2(2 + ρ2)2 log[2 + ρ2]

)
+

(
4(2 + ρ2)2 log[2 + ρ2] − 4ρ4 log[ρ2] + (2.90)

− 8(1 + ρ2)(1 + 2 log[1 + ρ2])

)
|X +m2ζ|2 + |m2|2

(
2(1 + ρ2)

[
(2 + ρ2)2 log[2 + ρ2] +

− ρ4 log[ρ2] − 2(1 + ρ2)(1 + 2 log[1 + ρ2])

]
+ 4(log[4] − 5

3
)ζ2

)
(θ + θ?)2

}
(1 + o(ζ))

where this expression is valid only in the regime of small ρ. In these approximations the
vev for 〈X 〉 in the minimum is shifted linearly with ζ; however, in general, the complete
behaviour for 〈X 〉 is more complicated and depends non trivially on η. We observe that,
being ζ a simple shift for the vev of X , it doesn’t affect its mass, while it modifies θ̃ mass.

6Considering η, ρ, ζ real.
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From (2.90) we can read directly the masses expanding for small ρ

m2
X =

Ñ(Nf − Ñ)

8π2
|h2m2|2

(
|h2|2(log[4] − 1) + |h1|2(log[4] − 2)

)
(2.91)

m2
θ̃

=
Ñ(Nf − Ñ)

16π2
|h2m

2
2|2
(
|h2|2(log[4] − 1) +

∣∣∣∣
h2

1m
2
1

2m2m3

∣∣∣∣
2

(log[4] − 5

3
) +

+|h1|2(2 log[4] − 3)

)
. (2.92)

These expressions are valid up to cubic order in ρ, ζ. The first term in (2.91,2.92), being
independent of the deformations (ρ, η, ζ), agrees with [2]. The second term in (2.91) is
the same as in [43].

Supersymmetric vacuum

Supersymmetry is restored via non perturbative effects [49], away from the metastable
vacuum in the field space, when the SU(Ñ) symmetry is gauged [2]. The non super-
symmetric vacuum is a metastable state of the theory which decays to a supersymmetric
one. We are interested in evaluating the lifetime of the metastable vacuum. We need an
estimation of the vevs of the elementary magnetic fields in the supersymmetric state.

We first integrate out the massive fields in the superpotential (2.73) using their equa-
tions of motion. In (2.73) there are two massive fields (M1, Y ). We integrate out the meson
M1 and the adjoint field Y tuning λY in such a way that the gauge group SU(Ñ) is not
broken by the adjoint7, as in the metastable state, so 〈Y 〉 = 0. Using this last condition
the equation of motion for the meson M1 gives the simple relation M1 = h1

2m3
(m2

1 − qq̃).
Integrating out the charged field Y the scale matching condition reads

Λ̃2Ñ−Nf = Λ̃
3Ñ−Nf

int m̂−Ñ
Y (2.93)

where we have indicated with m̂Y the resulting mass for Y which is a combination of its

tree-level mass mY and a term proportional to
h2
3

m3
(qq̃)2 which will be shown to be zero in

the supersymmetric vacuum.
We obtain a superpotential for the meson M2 and the flavours (q, q̃)

Wint = tr

(
h2

1

4m3

(
2m2

1qq̃ − (qq̃)2
)

+ h2M2qq̃ − h2m
2
2M2

)
(2.94)

We expect that the supersymmetric vacua lie in the large field region, where the SU(Ñ)
gauge dynamics becomes relevant [2]. We then consider large expectation value for the
meson M2. We can take as mass term for the flavours (q, q̃) only the vev h2〈M2〉 neglecting
the other contribution in (2.94) coming from the couplings of the magnetic theory.

7We are not interested in finding all the supersymmetric vacua.
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We then integrate out the flavours (q, q̃) using their equations of motion (q = 0, q̃ = 0).
The corresponding scale matching condition is

Λ3Ñ
L = Λ̃

3Ñ−Nf

int det (h2M2) = Λ̃2Ñ−Nf det (h2M2)m
Ñ
Y . (2.95)

The low energy effective SU(Ñ) superpotential gets a non-perturbative contribution
from the gauge dynamics related to the gaugino condensation proportional to the low
energy scale ΛL

W = ÑΛ3
L (2.96)

that can be written in terms of the macroscopical scale Λ̃ using (2.95). This contribution
should be added to the M2 linear term that survives in (2.94) after having integrated out
the magnetic flavours (q, q̃). Via the scale matching relation (2.95) we can then express
the low energy effective superpotential as a function of only the M2 meson

WLow = Ñ
(
Λ̃2Ñ−Nf det(h2M2)

) 1
Ñ
mY −m2

2h2 tr M2 (2.97)

Using this dynamically generated superpotential we can obtain the vev of the meson
M2 in the supersymmetric vacuum. Considering M2 proportional to the identity 1NF

we
minimize (2.97) and obtain

h2〈M2〉 = Λ̃ε
Ñ

Nf−Ñ ξ
Ñ

Nf−Ñ 1Nf
= m2

(
1

ε

)Nf−2Ñ

Nf−Ñ

ξ
Ñ

Nf−Ñ 1Nf
(2.98)

where
ε =

m2

Λ̃
ξ =

m2

mY

. (2.99)

ε is a dimensionless parameter which can be made parametrically small sending the Lan-
dau pole Λ̃ to infinity. ξ is a dimensionless finite parameter which doesn’t spoil our
estimation of the supersymmetric vacuum in the sensible range ε < 1

ξ
. All the exponents

appearing in (2.98) are positive in our window (2.66).
We observe that in the small ε limit the vev h2〈M2〉 is larger than the typically mass

scale m2 of the magnetic theory but much smaller than the scale Λ̃

m2 � h2〈M2〉 � Λ̃. (2.100)

This fact justifies our approximation in integrating out the massive flavours (q, q̃) ne-
glecting the mass term in (2.94) except h2〈M2〉. It also shows that the evaluation of the
supersymmetric vacuum is reliable because the scale of h2〈M2〉 is well below the Landau
pole.

Lifetime of the metastable vacuum

We make a qualitative evaluation of the decay rate of the metastable vacuum. At semi
classical level the decay probability is proportional to e−SB where SB is the bounce action
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from the non supersymmetric vacuum to a supersymmetric one. We have to find a tra-
jectory in the field space such that the potential energy barrier is minimized. We remind
the non supersymmetric vacuum configuration (2.78,2.80,2.81) and the supersymmetric
one

q = 0 q̃ = 0 Y = 0 〈M1〉 =
h1m

2
1

2m3
1Nf

〈M2〉 6= 0 (2.101)

where 〈M2〉 can be read from (2.98).
By inspection of the F -term contributions (2.76) to the potential energy it turns out

that the most efficient path is to climb from the local non supersymmetric minimum to
the local maximum where all the fields are set to zero but for M1 which has the value

M1 =
h1m2

1

2m3
1Nf

as in the supersymmetric vacuum, and M2, which is as in (2.81). This
local maximum has potential energy

VMAX = Nf |h2m
2
2|2 (2.102)

We can move from the local maximum to the supersymmetric minimum (2.101) along
the M2 meson direction. The two minima are not of the same order and so the thin wall
approximation of [50] can’t be used. We can approximate the potential barrier with a
triangular one using the formula of [51]

S ' (∆Φ)4

VMAX − VMIN
(2.103)

We neglect the difference in the field space between all the vevs at the non supersymmetric
vacuum and at the local maximum. We take as ∆Φ the difference between the vevs of
M2 at the local maximum and at the supersymmetric vacuum. Disregarding the M2 vev
at the local maximum we can approximate ∆Φ as (2.98). We then obtain as the decay
rate

S ∼



(

1

ε

)Nf−2Ñ

Nf−Ñ

ξ
Ñ

Nf−Ñ




4

∼
(

1

ε

)4
Nf−2Ñ

Nf−Ñ

(2.104)

This rate can be made parametrically large sending to zero the dimensionless ratio ε (i.e.

sending Λ̃ → ∞) since the exponent
(
4

2Ñ−Nf

Ñ−Nf

)
is always positive in our window (2.66).

R-symmetry and gauge mediation

We are interested in direct gauge mediated supersymmetry breaking. In this framework
the gauge group of the SM has to be embedded into a flavour group of the dynamical
sector. The gauge sector of the SM directly couples to the supersymmetry breaking
dynamics and a natural question for model building is whether the gauginos of the MSSM
acquire masses.

We can embed the SM gauge group into the subgroups of the flavour symmetry
SU(2Nf − Nc) or SU(Nc − Nf) provide (2Nf − Nc > 5) or (Nc − Nf > 5), respectively.
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As in [39] we can compute the beta function coefficient bSU(3) at different renormalization
scales and we conclude that in order to avoid Landau pole problems the embedding should
be done in SU(2Nf −Nc).

The full model has no R-symmetry, and, unlike [2, 43], no accidental R-symmetry
arises at the non-supersymmetric meta-stable vacuum, and hence a gaugino mass gen-
eration is not forbidden [2]. Moreover the absence of R-symmetry implies that the non
supersymmetric minimum is not at the origin of the moduli space, i.e. 〈X 〉 6= 0.

The R-breaking terms are the quadratic massive terms φ1φ2 and φ3φ4 in (2.87). The
first one can be eliminated shifting the field X . The second one cannot be eliminated
rearranging the fields. If the mass m3 is larger than the supersymmetry breaking scale, φ3

and φ4 could be integrated out, supersymmetrically, recovering an accidental R-symmetry:
this, however, is not our range of parameters.

We analyze the dynamics at the meta-stable vacuum where the breaking of supersym-
metry generates a gaugino mass proportional to the breaking scale FX . Contribution to
this mass comes from the superpotential8 of the messengers φi

W ⊃ h2 (Xφ1φ2) + h2m2 (φ2φ5 + φ1φ6) + h1m2 (φ2φ3 + φ1φ4) + 2m3φ3φ4 +
h2

1m
2
1

2m3
φ1φ2

(2.105)
which, in a matrix notation, reads

(
φ1 φ3 φ5

)
M




φ2

φ4

φ6


 (2.106)

where M is a mass matrix for the messenger fields

M =




h2〈X 〉 +
h2
1m

2
1

2m3
h1m2 h2m2

h1m2 2m3 0
h2m2 0 0


 ≡ h2m2




〈X 〉
m2

+ ζ ρ 1

ρ η 0
1 0 0


 (2.107)

This matrix does not generate a gaugino mass at one loop at first order in FX as in [52].
However at the third order in FX , the gaugino mass arises as in [46, 52]. This contribution
is not negligible when FX

h2
2m

2
2
∼ 1, which is admitted in our range of parameters.

Diagonalization of (2.107) and use of the general formula in [37] for the computation
of the 1 loop diagrams contributing to the gaugino mass mλ lead to

mλ ∼
F 3
X

(h2m2)5

[
1

4

(〈X 〉
m2

+ ζ

)
+ ρ2η

]
(2.108)

The coefficient of F 3
X in (2.108) is evaluated at the third order in the adimensional small

parameters (ρ, η, ζ): indeed by direct inspection we find that also the term
(

〈X 〉
m2

+ ζ
)

gives at least third order contributions in (η, ρ, ζ).

8For simplicity we consider only one copy of the chiral superpotentials.
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In conclusion we have found that the SU(Nc) SQCD with two adjoint chiral fields and
mesonic deformations admits a metastable non supersymmetric vacuum with parametri-
cally long life. It seems that particular care is needed in building models with adjoint mat-
ter exhibiting such vacua. The same can be said about the string geometrical construction
realizing the gauge model we have studied [40, 41]. Furthermore we have embedded this
model with adjoint matter in a scenario of direct mediation of supersymmetry breaking.

2.3 An gauge theories

Another interesting set of theories in which to study metastability à la ISS [2] is the
ADE class of quiver gauge theories [48, 53, 54, 55]. These theories can be derived in type
IIB string theory from D5-branes partially wrapping 2-cycles of non compact Calabi-
Yau threefolds. These manifolds are ADE-fold geometries fibered over a plane, and the
2-cycles are blown up S2

i in one to one correspondence with the simple roots of ADE (see
appendix 2.5 for further details).

In this section we investigate metastability in An N = 2 (non affine) quiver gauge
theories deformed to N = 1 by superpotential terms in the adjoint fields. In the presence
of many gauge groups we have, in principle, a large number of dualization choices.

In [39, 43, 56] A2, A3, A4 quivers have been studied dualizing only one node in the
quiver, where dynamical supersymmetry breaking occurs.

Here we consider An theories with arbitrary n, where several Seiberg dualities take
place. In particular we will explore theories obtained by dualizing alternate nodes. This
leads to a low energy description in terms of only magnetic fields.

In the duality process the dualized groups are treated as genuine gauge groups whereas
the other ones have to be weakly coupled at low energy, so that they act as flavour groups
i.e. global symmetries. The procedure depends on the interplay of the RG flows of the
dualized and of the non dualized gauge groups and is governed by the associated beta-
functions. This translates into inequalities among the ranks of the gauge groups and in
hierarchies among the strong coupling scales.

We first describe the N = 2 quiver gauge theories, explicitly broken to N = 1 by
superpotential terms. After the integration of the massive adjoint fields, we give the
general form of the superpotential. Than we investigate Seiberg duality on the alternate
nodes of the quiver. The general theory obtained with this procedure on an An is ex-
pressed in terms of only magnetic fields. After that we consider the simplest case, i.e.
A3 quiver, showing that it possesses long living metastable vacua à la ISS. The analysis
is done neglecting the gauge contributions of the odd nodes, which are treated as flavour
symmetries. This last approximation is justified with an analysis of the running of the
gauge coupling constants of the various groups. We conclude this section with some com-
ments on the possible ways of enforcing gauge mediation of supersymmetry breaking in
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An quivers.

An quiver gauge theories with massive adjoint fields

We consider a N = 2 (non affine) An quiver gauge theory, deformed to N = 1 by
superpotential terms in the adjoint fields. The theory is associated with a Dynkin diagram
where each node is a U(Ni) gauge group.

X X X X X

Q(1,2)

Q(n,n−1)

U(N )nU(N   )n−1U(N )U(N )U(N )1 2 3

1 2 3 n−1 n

Q(2,3) Q(n−1,n)

Q(3,2)Q(2,1)

The arrows connecting two nodes represent fields Qi,i+1, Qi+1,i in the fundamental of the
incoming node and anti fundamental of the out-coming node. The adjoint fields Xi refer
to the i-th gauge group.

The gauge group of the whole theory is the product
∏n

i=1 U(Ni). We call Λi the strong
coupling scale of each gauge group.

The N = 1 superpotential is

W =
n∑

i=1

Wi(Xi) +
∑

i,j

si,j(Qi,j)
β
α(Xj)

γ
β(Qj,i)

α
γ (2.109)

where si,j is an antisymmetric matrix, with |si,j| = 1. The Latin labels run on the different
nodes of the An quivers, the Greek labels runs on the ranks of the groups of each site. In
the case of An theories the only non zero terms are si,i+1 and si,i−1. The superpotentials
for the adjoint fields Wi(Xi) break supersymmetry to N = 1.

We choose these superpotentials to be

Wi(Xi) = λiTrXi +
mi

2
TrX2

i (2.110)

As a consequence the adjoint fields are all massive. We consider the limit where the
adjoint fields are so heavy that they can be integrated out, and we study the theory
below the scale of their masses.

Integrating out these fields we obtain the effective superpotential describing the An

theory (traces on the gauge groups are always implied).

W =

n−1∑

i=1

((
λi+1

mi+1
− λi
mi

)
Qi,i+1Qi+1,i −

1

2

(
1

mi
+

1

mi+1

)
(Qi,i+1Qi+1,i)

2

)

+

n−1∑

i=2

1

mi
Qi−1,iQi,i+1Qi+1,iQi,i−1 (2.111)
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A final important remark is that for the An theories the D-term equations of motion
can be decoupled and simultaneously diagonalized [46].

Seiberg duality on the even nodes

We investigate the low energy dynamics of the gauge groups of the Dynkin diagram,
governed by the ranks and by the hierarchy between the strong coupling scales of each
node. We work in the regime where the even nodes develop strong dynamics and have to
be Seiberg dualized.

We set all the strong coupling scales of the even nodes to be equal Λ2i ≡ ΛG and we
require the odd nodes to be less coupled at this scale. We impose the following window
for the ranks of the nodes

N2i + 1 ≤ N2i−1 +N2i+1 <
3

2
N2i i = 1, . . . ,

n− 1

2
(2.112)

We take n odd, the even case can be included setting to zero one of the ranks of the
extremal nodes.

Along the flow toward the IR, we have to change the description at the scale ΛG

performing Seiberg duality on the even nodes. The even nodes are treated as gauge
groups, whereas the odd nodes are treated as flavours. We will discuss the consistency of
this description in section 2.3.

It is convenient to list the elementary fields of the dualized theory, i.e. the electric
gauge singlets and the new magnetic quarks.

U(N2i−1) U(Ñ2i) U(N2i+1)
M2i+1,2i−1 N2i−1 1 N̄2i+1

M2i+1,2i+1 1 1 Bifund.
M2i−1,2i−1 Bifund. 1 1
M2i−1,2i+1 N̄2i−1 1 N2i+1

q2i−1,2i N2i−1 Ñ2i
1

q2i,2i−1 N̄2i−1 Ñ2i 1

q2i,2i+1 1 Ñ2i N̄2i+1

q2i+1,2i 1 Ñ2i
N2i+1

The mesons are proportional to the original electric variables: M2i+k,2i+j ∼ Q2i+k,2iQ2i,2i+j .

The even magnetic groups have ranks Ñ2i = N2i+1 +N2i−1 −N2i. The superpotential in
the new magnetic variables results

W = hM
(2i)
2i+k,2i+jq2i+j,2iq2i,2i+k + hµ2

2i+k,(2i)M
(2i)
2i+k,2i+k + (2.113)

+ hmM
(2i)
2i+1,2i+1M

(2i+2)
2i+1,2i+1 + hm

(
M

(2i)
2i+k,2i+k

)2

+ hmM
(2i)
2i−1,2i+1M

(2i)
2i+1,2i−1

where the index i runs from 1 to n−1
2

, and k and j are +1 or −1. The upper index (2i) of
the mesons indicates which site the meson refers to: it is necessary because some mesons
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have the same flavor indexes, but they are summed on different gauge groups, so they
have to be labeled differently. We denote with hmi the meson masses, related to the
quartic terms in the electric superpotential, and with hµ2

i the coefficients of the linear
deformations, corresponding to the masses of the quarks in the electric description. In
(2.113) we wrote a single coupling hm, for all the different mesons, considering all their
masses of the same order.

The b coefficients of the beta functions before dualization are

bi = 3Ni −Ni−1 −Ni+1 i = 1, . . . , n (2.114)

where N0 = Nr+1 = 0. After the dualization the coefficients b̃ for the beta functions in
the internal nodes result

b̃2k = 2N2k+1 + 2N2k−1 − 3N2k (2.115)

b̃2k+1 = N2k +N2k+2 −N2k+1 − 2N2k−1 − 2N2k+3 (2.116)

where k runs from 1 to n−1
2

, and Nn+1 = Nn+2 = 0. For the external nodes we have

b̃1 = N1 +N2 − 2N3 b̃n = Nn +Nn−1 − 2Nn−2 (2.117)

To visualize the resulting magnetic theory (2.113) we exhibit below the content of the
magnetic dual theory for an A5 quiver, which encodes the relevant features.
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The superpotential is

W = h
(
M11q12q21 +M13q32q21 +M31q12q23 +M

(2)
33 q32q23

)
+

+ h
(
M

(4)
33 q34q43 +M35q54q43 +M53q34q45 +M55q54q45

)
+

+ hm
(
M2

11 +M13M31 +M
(2)
33

2
+M

(2)
33 M

(4)
33 +M

(4)
33

2
+M35M53 +M2

55

)
+

+ h
(
µ2

1M11 + µ2
3,(2)M

(2)
33 + µ2

3,(4)M
(4)
33 + µ2

5M55

)
(2.118)
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Metastable vacua in A3 quivers

We start studying the existence and the slow decay of non supersymmetric meta-stable
vacua in A3 quiver gauge theory, the simplest example of an An theory. The A3 gauge
group is U(N1) × U(N2) × U(N3). As already mentioned in section 2.3 for a An theory,
we integrate out the adjoint fields and we perform Seiberg duality on the central node
under the constraint

N2 + 1 ≤ N1 +N3 <
3

2
N2 (2.119)

The superpotential reads

W = h (M1,1q1,2q2,1 +M1,3q3,2q2,1 +M3,1q1,2q2,3 +M3,3q3,2q2,3) +

+ hµ2
1M1,1 + hµ2

3M3,3 (2.120)

where all the mass terms for the mesons have been neglected. Turning on these terms
does not ruin the metastability analysis at least for very small masses compared to the
supersymmetry breaking scale. Such deformations slightly shift the value of the pseu-
domoduli in the non supersymmetric minimum, breaking R-symmetry [45]. We neglect
them in the following.

The central node yields the magnetic gauge group U(N1+N3−N2) whereas the groups
at the two external nodes are considered as flavour groups, much less coupled. We discuss
in section 2.3 the consistency of this assumption. Since the gauge group is IR free in
the low energy description, and the flavours are less coupled, we are allowed to neglect
Kahler corrections and take it as canonical [2]. Moreover the D-term corrections to the
one loop effective potential due to the flavour nodes are negligible with respect to the
F -term corrections.

Now, there are two different choices of ranks for the A3 theories, which can give meta-
stable vacua: the first possibility is that N1 < N2 ≤ N3, the second one is N1 < N2 > N3.
We study separately the two cases which show meta-stable vacua in a similar manner.

N1 < N2 ≤ N3

We analyze here the case N1 < N2 < N3; the equal ranks limit can be easily included.
After the dualization the ranks obey the following inequalities N1 < Ñ2 = N1 +N3−N2 <
N3.

We work in the regime where |µ1| > |µ3|, and we comment on what happens in
the opposite limit in the in next subsection, where we shall discuss dangerous tachyonic
directions in the quark fields.

We find that the following vacuum is a non supersymmetric tree level minimum

q1,2 = q2,1 = µ1 (1N1 0) q2,3 = q3,2 =

(
0 µ31 eN2−N1

0 0

)

M1,1 = 0 M1,3 = M3,1 = 0 M3,3 =

(
0 0
0 X

)
(2.121)
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where the field X is the pseudomodulus, which is a massless field not associated with
any broken global symmetries. This flat direction has to be stabilized by the one loop
corrections. Westart the one loop analysis by rearranging the fields and expanding around
the vevs

q=

(
q1,2
q3,2

)
=




µ1 + Σ1 Σ2
Σ3 µ3 + Σ4

Φ1 Φ2


 q̃ =

(
q2,1 q2,3

)
=

(
µ1 + Σ5 Σ6 Φ3

Σ7 µ3 + Σ8 Φ4

)

M =

(
M1,1 M1,3

M3,1 M3,3

)
=




Σ9 Σ10 Φ5

Σ11 Σ13 Φ6

Φ7 Φ8 X + Σ


 (2.122)

We now compute the superpotential at the second order in the fluctuations. We find
that the non supersymmetric sector is a set of decoupled O’Raifeartaigh like models with
superpotential

W = hµ2
3X + hX(Φ1Φ3 + Φ2Φ4) + hµ3(Φ1Φ5 + Φ2Φ6) + hµ1(Φ3Φ7 + Φ4Φ8) (2.123)

In this way all the pseudomoduli can get a mass. The quantum corrections behave exactly
as in [2], which means that the pseudomoduli get positive squared mass around the origin
of the field space.

The choice (2.121) guarantees that there are no tachyonic directions and have to be
made coherently with the hierarchy of the couplings µi; see below for details.

The lifetime of the non supersymmetric vacuum is related to the value of the scalar
potential in the minimum, and to the displacement of the vevs of the fields between the
false and the true vacuum. The scalar potential in the non supersymmetric minimum is

Vmin = (N3 +N1 − Ñ2)|hµ2
3|2 = N2|hµ2

3|2 (2.124)

The vevs of the fields in the supersymmetric vacuum have to be studied considering
the non perturbative contributions arising from gaugino condensation. When we take
into account these non perturbative effects, we expect that the mesons get large vevs and
this allows us to integrate out the quarks using their equation of motion, qi,j = 0. In the
supersymmetric vacua also M1,3 = 0 and M3,1 = 0. If we define

M =

(
M1,1 0

0 M3,3

)
(2.125)

the effective superpotential is

W = (N1 +N3−N2)
(
det(hM)Λ2N1+2N3−3N2

2i

) 1
N1+N3−N2 −h

(
µ2

1trM1,1 + µ2
3trM3,3

)
(2.126)

We have now to solve the equation of motion for M1 and M3. The equations to be solved
are

(
hMM

(N2−N3)
1,1 MN3

3,3 Λ
(2N1+2N3−3N2)
2i

) 1
N1+N3−N2 − µ2

1 = 0

(
hN2MN1

1,1M
(N2−N1)
3,3 Λ

(2N1+2N3−3N2)
2i

) 1
N1+N3−N2 − µ2

3 = 0 (2.127)
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The vevs of the mesons follow solving (2.127)

〈hM1,1〉 = µ
2

N1−N2
N2

1 µ
2

N3
N2

3 Λ
3N2−2N3−2N1

N2
2i 1N1 〈hM3,3〉 = µ

2
N1
N2

1 µ
2

N3−N2
N2

3 Λ
3N2−2N3−2N1

N2
2i 1N3

(2.128)
Since |µ1| > |µ3|, it follows that 〈hM3,3〉 > 〈hM1,1〉. This implies that in the evaluation of
the bounce action, with the triangular barrier [51], we can consider only the displacement
of M3 in the field space. We obtain for the bounce action

S ∼ (∆Φ)4

∆V
=

(
µ1

µ3

) 3N2−2N3
N2

(
Λ2i

µ1

)4
3N2−2N3−2N1

N2

(2.129)

Both exponents are positive in the range (2.119). This implies that SB � 1, and the
vacuum is long living.

N1 < N2 > N3

The ranks of the groups after the duality obey the relation N1 > Ñ2 = N1+N3−N2 < N3.
We choose now |µ1| > |µ3|, but also the other choice is possible, leading to other vacua.
In the meta-stable vacuum all the vevs of the fields have to be chosen to be zero except
a block of the quarks q1,2 and q2,1 and the pseudomoduli. The vevs are

q1,2 = µ1

(
1N1

0

)
qT2,1 = µ1

(
1N1

0

)
(2.130)

The pseudomoduli come out from the meson M3,3 and a (Ñ2 −N1)× (Ñ2 −N1) diagonal
block of the other meson, M1,1. The one loop analysis is the same as before and lifts all
the flat directions.

In order to estimate the lifetime we need the vevs of the fields in the supersymmet-
ric vacuum, which are again (2.128), and the value of the scalar potential in the non
supersymmetric vacuum (2.130)

Vmin = (N2 −N3)|hµ1|2 +N3|hµ3|2 (2.131)

Since |µ1| > |µ3| we approximate the scalar potential by the term ∼ |µ1|2 and the field
displacement by 〈hM3〉, obtaining as bounce action

S ∼
(
µ1

µ3

)2
N2−N3

N2

(
Λ2i

µ1

)4
3N2−2N1−2N3

N2 � 1 (2.132)

Goldstone bosons

The analysis we made in the A3 theories started from the limit |µ1| > |µ3|. Also the
opposite limit can give meta-stable vacua. To understand the differences among the
various choices, we have to study the classical masses acquired by the fields expanding
them around their vevs.
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We study the case with ranks N1 < Ñ2 < N3. Since the flavor symmetry is U(N1) ×
U(N3), and not U(N1+N3), the linear terms of the mesons are different. We are still free to
choose the hierarchy between them. We here analyze the breaking of the global symmetries
taking |µ1| > |µ3|. Treating the gauge symmetry as a global one, and rearranging the
quarks in the form

〈q〉 =

(
q1,2
q3,2

)
=




µ11N1 0
0 µ31 eN2−N1

0 0


 〈q̃T 〉 =

(
q2,1
q2,3

)
=




µ11N1 0
0 µ31 eN2−N1

0 0




(2.133)
we see that the global symmetry breaks as

U(N1) × U(Ñ2) × U(N3) −→ U(N1)D × U(Ñ2 −N1)D × U(N1 +N2 − Ñ2) (2.134)

This implies that the Goldstone bosons are Ñ2
2 + 2(Ñ2 − N1)(N1 + N3 − Ñ2). The first

Ñ2
2 Goldstone bosons come from the upper Ñ2 × Ñ2 block matrices in the quark fields,

exactly the same as in ISS. The second part is a bit different. In fact in ISS, with equal
masses, the Goldstone bosons which come from the lower (N1+N3−Ñ2)×Ñ2 sector in the

quarks matrices, are 2Ñ2(N3 +N1 − Ñ2). In this case, since we started with lesser flavor

symmetry, there are 2N1(N3 +N1− Ñ2) massless Goldstone bosons fewer than in ISS. We
have to control the other directions. From the scalar potential we have to compute the
masses that the fields acquire expanding around the vacuum. The relevant expansions for
the potentially tachyonic directions are the ones around the vevs of the quarks

q12 =
(
µ1 + φ1 φ2

)
q21 =

(
µ1 + φ̃1

φ̃2

)

q23 =

(
φ3 µ3 + φ4

φ5 φ6

)
q32 =

(
φ̃3 φ̃5

µ3 + φ̃4 φ̃6

)
(2.135)

The relevant terms of the scalar potential come from the F -terms of the mesons

V = |FM11 |2 + |FM13 |2 + |FM31|2 + |FM33|2 (2.136)

If we study the mass terms of the fields φ5 and φ̃5 we note that they are not zero, since
µ1 6= µ3. In fact their mass matrix is9

(
φ5 φ̃†

5

)( µ2
1 −µ2

3

−µ2
3 µ2

1

)(
φ†

5

φ̃5

)
(2.137)

with eigenvalues µ2
1±µ2

3. A minimum of the scalar potential without tachyonic directions
imposes a constraint on the masses, µ1 > µ3, consistent with the analysis of ISS.

9From now on we will consider all the mass terms as real.
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We can ask now what happens if µ1 < µ3. The vacua we studied before are not true
vacua any longer, but they have tachyonic directions in the quark fields. The meta-stable
vacua are obtained choosing the vevs of q1,2 and q2,1 to be zero, and the vevs of the other
quarks to be

q3,2 = qT2,3 =

(
µ31 eN2

0

)
(2.138)

The differences in the two cases are the value of the scalar potential and the pseudo-
moduli. In fact in the first limit Vvac = (N1 +N3 − Ñ2)|hµ2

3|2, and in the second limit the

scalar potential is Vvac = (N3 − Ñ2)|hµ2
3|2 + N1|hµ2

1|2. Since we choose the masses to be
different, but of the same order, both cases have long lived meta-stable vacua. As far as
the pseudo-moduli are concerned, in the case analyzed during the paper, they come out
from a block of the M3,3 meson, and in this case they come out from the whole M1 meson

and from a diagonal block (N3 − Ñ2) × (N3 − Ñ2) of the M3,3 meson.

Renormalization group flow

The analysis of sections 2.3 and 2.3 relies on the fact that we neglect the contributions
to the dynamics due to the odd nodes. It means that these groups have to be treated
as flavours groups, i.e. global symmetries. However, in the An quiver theory each node
represents a gauge group factor and we have to analyze how its coupling runs with the
energy.

The magnetic window (2.112) constraints the even nodes to be UV free in the high
energy description, i.e. b2i > 0. The odd groups are not uniquely determined by (2.112)
and can be both UV free or IR free in the electric description. In the first case we will
choose their scale Λ2i+1 to be much lower than the even one

Λ2i+1 � Λ2i. (2.139)

In the second case, when b2i+1 < 0, Λ2i+1 is a Landau pole and we take

Λ2i+1 � Λ2i. (2.140)

In these regimes the even nodes become strongly coupled before the odd ones in the flow
toward the infrared. This means that we need a new description provided by Seiberg
dualities on the even nodes.

In order to trust the perturbative description at low energy, we have to impose that at
the supersymmetry breaking scale (typically µi) the odd nodes (flavour), are less coupled
than the even ones (gauge), which are always IR free. This requirement will give other
constraints on the scales.

As already said there are two possible behaviors of the flavour groups above the scale
Λ2i: they can be IR free or UV free. For both cases there are three different possibilities
about the beta coefficients in the low energy description.

We start discussing the case when the flavours group are UV free in the electric
description. The following three possibilities arise for each flavour group U(N2k+1) in the
dual theory (Plots 1,2,3 in Figure 1).
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1. The first one is characterized by

b2k+1 > 0 b̃2k+1 < b̃2i < 0 (2.141)

In this case the flavour groups U(N2k+1) are more IR free than the even nodes after
Seiberg duality. The couplings of the flavour groups become more and more smaller
than the couplings of the gauge groups along the flow toward low energy. Hence we
do not need other constraints on the scales except (2.139).

2. The second possibility is reported in Plot 2 in Figure 1

b2k+1 > 0 b̃2i < b̃2k+1 < 0 (2.142)

The flavour groups U(N2k+1) are IR free in the dual theory, but less than the U(Ñ2i)
gauge groups (2.142). Below a certain energy scale the flavours become more coupled
than the gauge groups. If this happens before the supersymmetry breaking scale we
cannot trust our description anymore. To solve this problem we have to choose the
correct hierarchy between the electric scales of the flavour and the gauge groups, and
the supersymmetry breaking scale. We impose that the couplings of the flavours are
smaller than the couplings of the gauge groups at the breaking scale, in the magnetic
description. This condition can be rewritten in terms of electric scales only using
the matching between the magnetic and the electric scales of the flavours. This
procedure is explained in the Appendix A.3 and gives the following condition on
Λ2k+1

Λ2k+1 �
(
µ

Λ2i

)eb2k+1−
eb2i

b2k+1

Λ2i � Λ2i (2.143)

This imposes a constraint stronger than (2.139) on the strong coupling scale of the
flavours.

3. The third possibility (Plot 3 Figure 1) is

b2k+1 > 0 b̃2k+1 > 0 (2.144)

In this case the flavour group U(N2k+1) is asymptotically free in the low energy
description. Once again we have to impose that at the breaking scale the flavours
are less coupled than the gauge groups. The procedure is the same outlined above,
and the condition is the same as (2.143). This case may become problematic in the
far infrared. Indeed, since the flavour group is UV free, it develops strong dynamics
at low energy. If we take into account the non perturbative contributions they could
restore supersymmetry. Another interesting feature is the appearance of cascading
gauge theories, flowing in the IR. We do not discuss these issues here.

If the flavour groups U(N2k+1) are IR free in the electric description the same three
possibilities discussed above arise (see Plots 4, 5, and 6 of Figure 1).
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4. The plot 4 of Figure 1 is characterized by

b2k+1 < 0 b̃2k+1 < b̃2i < 0 (2.145)

Here we do not need any other constraint except (2.140).

5. The plot 5 in Figure 1 is

b2k+1 < 0 b̃2i < b̃2k+1 < 0 (2.146)

The requirement that the odd nodes are less coupled than the even ones at the
supersymmetry breaking scale give once again non trivial constraints, with the same
procedure outlined previously

Λ2k+1 �
(

Λ2i

µ

)eb2i−
eb2k+1

b2k+1

Λ2i � Λ2i (2.147)

where now the strong coupling scale of the flavour groups in the electric description
is a Landau pole.

6. The last possibility (Plot 6 of Figure 1)

b2k+1 < 0 b̃2k+1 > 0 (2.148)

lead to the same constraint (2.147). In the far infrared the strong dynamics of the
flavours node can lead to non perturbative phenomena, as in the case 3.
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Figure 1: The blue lines refer to flavour/odd groups which are UV free in the electric
description, while the red ones are IR free. The green lines refer to the gauge/even group
couplings. We denote with µ the supersymmetry breaking scale, and ΛG and ΛF are the
strong coupling scales of the gauge and the flavour groups, respectively.

Meta-stable An

We work in the regime where the ratio
µ2

i

m
is larger than the strong scale of the even nodes

Λ2i. This requirement is satisfied if λi � Λ2
2i in the electric theory. This allows us to
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ignore in the dual superpotential (2.113) the presence of quadratic deformations in the
mesonic fields.

In this approximation the superpotential of the An quiver (2.113) reduces to n−1
2

copies
of A3 superpotentials. Hence a generic An diagram results decomposable in copies of A3

quivers, where every adjacent pair shares an odd node.
For each A3 the even nodes provide the magnetic gauge groups, and each A3 has long

living metastable vacua, if the perturbative window is correct. It follows that the An

quiver theory, which is a set of metastable A3 quivers, possesses metastable vacua.
We still have to be sure of the perturbative regime. This means that we have to control

the gauge contributions from the odd nodes of the An diagram. We have to proceed as in
section 2.3, and study the beta coefficients of the groups. From (2.116) we can see that
the magnetic beta coefficients of the internal odd nodes involve the ranks of the next to
next neighbor groups, i.e. they depend on five integer numbers. This means that in order
to know these beta coefficients it is enough to study the A5 consistent with (2.112). Below
we classify all the possible metastable A5 diagrams and we give the corresponding electric
and magnetic beta coefficients of the central flavour node. This classification describes
the RG behaviour of all the internal odd nodes of the An.

The running of the first and of the n-th node of the An quiver is still undefined and it
is discussed below.

This provides a classification of metastable An quiver gauge theories with alternate
Seiberg dualities.

A5 classification

We study A5 quiver gauge theories obtained gluing all the possible combinations of A3

which present metastable vacua, i.e. the one of section (2.3)
We analyze the beta function coefficients for these A5 quiver gauge theories, with

gauge group U(N1) × U(N2) × U(N3) × U(N4) × U(N5). The even nodes are in the IR
free window

N2 < N1 +N3 <
3

2
N2 N4 < N3 +N5 <

3

2
N4 (2.149)

We write in the table the beta coefficients of the third node of the A5, specifying the
range, compatible with (2.149), when this node is UV free or IR free in the electric and in
the magnetic descriptions, respectively. The table classifies the possible A5 quiver gauge
theories which present alternate Seiberg dualities and which have metastable vacua.

As explained in section 2.3 we can obtain an An quiver gauge theory by gluing the A3

patches. For the renormalization group, the internal flavour nodes of the An chain behave
as the third node of the A5 patches.

The table does not say anything about the external nodes of the An. In the electric
theory one has b1 = 3N1 − N2 and bn = 3Nn − Nn−1; after duality, in the low energy
description we have b̃1 = N1 +N2−N3, and b̃n = Nn+Nn−1−2Nn−2. The possible values
for b̃1 and b̃n have to be studied separately.
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Ranks of A5
Further

condition(I)
Further

condition(II)
electric
b− factor

magnetic
b− factor

N1 < N2 ≤ N3 < N4 ≤ N5

N2 +N4 < 3N3

3N3 < N2 +N4

b3 > 0

b3 < 0

b̃3 < 0

b̃3 < 0

N1 < N2 > N3 < N4 ≤ N5 b3 < 0 b̃3 < 0

N1 ≥ N2 > N3 < N4 ≤ N5 b3 < 0 b̃3 < 0

N1 < N2 > N3 < N4 > N5

N3 < N1 +N5

N3 > N1 +N5

N2 +N4 < 3N3

3N3 < N2 +N4

N2 +N4 < N3 + 2N1 + 2N5

N3 + 2N1 + 2N5 < N2 +N4

b3 > 0

b3 < 0
b3 > 0

b3 > 0

b̃3 < 0

b̃3 < 0

b̃3 < 0

b̃3 > 0

N1 < N2 ≤ N3 ≥ N4 > N5

N2 +N4 < N3 + 2N1 + 2N5

N3 + 2N1 + 2N5 < N2 +N4

b3 > 0

b3 > 0

b̃3 < 0

b̃3 > 0

N1 < N2 ≤ N3 < N4 > N5

N3 < N1 +N5

N3 > N1 +N5

N2 +N4 < 3N3

3N3 < N2 +N4

N2 +N4 < N3 + 2N1 + 2N5

N3 + 2N1 + 2N5 < N2 +N4

b3 > 0

b3 < 0
b3 > 0

b3 > 0

b̃3 < 0

b̃3 < 0

b̃3 < 0

b̃3 > 0

In the first column we report all the possible inequalities among the A5 rank numbers consistent with (2.149). Moving from left to
right the further condition fix the signs of b3, b̃3.
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Example

We show now a simple example of metastable An diagram. We choose the even nodes in
the electric description to become strongly coupled at the same scale Λ2i. We require that
at such scale the flavours (odd nodes) are less coupled than the gauge ones. Moreover we
will show that we can also require that in the low energy description all the nodes are IR
free and also that the flavour groups (odd nodes) are less coupled than the gauge groups
(even nodes) at any scale below the Λ2i.

We study an An theory, where n = 4k+ 1, with k integer. The chain is built as follow

U(N) U(M) U(K) U(M) U(N) U(K) U(M) U(N)U(M)

with N < M < K. This range allows for metastable vacuum in each A3 piece as showed
previously. We perform alternate Seiberg dualities, working in the in the window

M + 1 < N +K <
3

2
M

Thanks to the simple choice for the ranks we have four values for the b coefficients of
the beta functions in the electric description, and four values for the coefficients b̃. They
are summarized in the following table

node b b̃
1, n (red) 3N −M N − 2K +M
2i (green) 3M −N −K 2K + 2N − 3M

4i− 1 (blue) 3K − 2M 2M − 4N −K i = 1, . . . , n−1
4

4j + 1 (violet) 3N − 2M 2M − 4K −N j = 1, . . . , n−5
4

We require that in the magnetic description all the nodes are IR free. Moreover we
require the beta coefficients of the odd groups to be lower than the even group ones, i.e.
b̃odd < b̃2i. This restricts the window to

K > 2N 3N < 2M < 4N +K (2.150)

In this regime all the nodes in the electric description are UV free except the 4j + 1-th
ones. Seiberg duality is allowed on the even nodes, if we impose the following hierarchy
of scales

Λ1,Λn,Λ4i−1 � Λ2i � Λ4j+1 (2.151)

The running of the gauge couplings of the different nodes are depicted in Figure 2.

µ Λ
2i

E

1
2g
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Figure 2: The green line represents the running of the coupling of the even sites. The
violet line is related to the 4j + 1-th sites, the blue one to the 4i− 1-th sites and the red
to the first and the last nodes.

At high energy the 4j + 1-th nodes are strongly coupled, while the other nodes are all
UV free. At the scale Λ2i the even nodes become strongly coupled and Seiberg dualities
take place. All the runnings of the couplings are changed by these dualities, and all the
coefficients of the beta functions b̃i become negative. Hence at energy scale lower than
Λ2i the theory is weakly coupled. Furthermore the beta coefficients of the odd nodes are
more negative than the even node ones. This guarantees that we can rely on perturbative
computations, treating the odd nodes as flavours.

Gauge mediation

The models analyzed in this work can admit mechanisms of gauge mediation. This means
that the breaking of supersymmetry can be transmitted to the Standard Model sector via
a gauge interaction. This idea has already appeared in the literature of metastable vacua
in An theories [39, 56].

Different realizations are possible here. A first one, of direct gauge mediation, identifies
the SM gauge group with a subgroup of a flavour group in the quiver [39] and leads to a
gaugino mass consistently with the bound of [45].

A second possibility [56] is to connect one of the extremal nodes of the An quiver
with a new gauge group, which represents the Standard Model gauge group. The arrows
connecting these nodes are associated with the messengers f and f̃ , which communicate
the breaking of supersymmetry to the standard model. Neglecting all the quartic terms,
except the term which couples the messengers f, f̃ with the last meson, it is possible to
show that also in this case gaugino masses arise at one loop.

In our models of metastable An quivers another possibility arises for gauge mediation.
It consists in substituting an even node with the Standard Model gauge group.
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q f
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The low energy description is constituted by two metastable An (A3 in this case) which
are connected through the SM sector. Both communicate the supersymmetry breaking to
the standard model. The superpotential leads to two copies of messengers fields related
to the two different hidden sectors

W =
(
m1 + θ2h1FM3

)
f1f̃1 +

(
m2 + θ2h2FM5

)
f2f̃2 (2.152)
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A gaugino mass arises at one loop proportional to
(
h1

FM3

m1
+ h2

FM5

m2

)
.

In this section we have studied metastability in models of An quiver gauge theories. The
low energy description in terms of macroscopic fields can be achieved via Seiberg dualities
at chosen nodes in the An diagram. This choice defines, to a certain extent, the models.

A strategy for building acceptable models unfolds from the request for a reliable per-
turbative analysis. This constrains the ranks of the gauge groups associated with the
nodes and their strong coupling scales. We chose to dualize alternate nodes and we fixed
two scales: a unique breaking scale µ and a common strong coupling scale ΛG for each
dualized node. The RG flows of the dualized and non dualized gauge groups must be
such that at energy scale higher than µ the gauge groups of the dualized nodes are more
coupled than the other ones.

The RG properties of the different nodes of an An quiver can be studied decomposing
it in A5 quivers and the decomposition of the An in A3 patches gives the structure of
the metastable vacuum. In this way we classify all the possible An quiver gauge theories
which show metastable vacua with the technique of alternating Seiberg dualities.Finally
we have discussed different patterns of gauge mediation.

2.4 Geometric deformations

A string approach to the ISS mechanism remains a problems and only partial results are
at hand, either within the gauge/gravity correspondence or toward a more direct string
origin or interpretation [6, 57, 58]

Some steps have emerged for the grounding of a geometrical interpretation of the
features of metastability in simple quiver gauge theories on D-branes near a singularity
inside a CY manifold [10, 59]. The aim is to phrase the metastable F -type susy breaking
in a general geometrical language. A key point is that the non perturbative dynamics
behind the existence of metastable vacua corresponds to deformations of a theory with
unbroken supersymmetry [10]. The deformations regard the superpotential: in the D-
brane setting of IIB string theory they are mapped into complex deformations in the
local geometry.

In this section we develop this approach further. We study systems of branes at toric
conical Calabi-Yau singularities of a special type, i.e. deformable singularities, in the
sense of Altman’s deformations [60], that are not isolated. These form a large subfamily
of toric singularities and consist of a cone with a singularity at the tip and some set of lines
of C2/Zn singularities passing through it. Different combinations of fractional branes at
these singularities give rise to different IR behaviors of the gauge theory: N = 2 dynamics,
confinement, runaway supersymmetry breaking [61], and long living metastable vacua, as
recently pointed out in [10]. Some of the different IR dynamics can be geometrically
understood as motion in the moduli space of the CY singularities.
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Our discussion is mainly focused on metastability in the quiver gauge theories living on
deformed Laba singularities. Such theories correspond to an infinite class of non isolated
toric singularities, with a known metric. Beyond their role in model building and in the
gauge/gravity duality, they form a fitting laboratory for the investigation of the field
theory/geometry correspondence. In the analysis of general Laba quivers we show that we
can always extract subclasses where metastable vacua exist. The features of broken and
restored supersymmetry find a systematic geometric counterpart in terms of appropriate
deformations of the geometry of the unbroken susy phase.

We start this section by reviewing the case of the Suspended Pinch Point (SPP )
singularity, its associated field theory and the relation between their corresponding defor-
mations. This simple case will be the guideline for the whole section. Then we introduce
the family of Laba singularities and the corresponding quiver gauge theories. We analyze
the metastable vacua in the Laba gauge theories with b 6= a and the Laaa gauge theories.
In all these cases we show that some deformation of the geometry leads to metastability
and some other deformation restores supersymmetry. Metastability turns out to be a
quite generic phenomenon in these deformed toric theories. Finally we try to extend this
analysis to more complicated singularities.

Complex deformations and metastability: the SPP example

The SPP gauge theory [62] is obtained as the near horizon limit of a stack of D3 branes
on the tip of the conical singularity

xy2 = wz . (2.153)

The holomorphic equation defining the singularity can be encoded in a graph called the
toric diagram (see the Appendix A.1). In the paper we will use these diagrams to give an
intuitive visual picture of the singularities.
The field theory has U(N1) × U(N2) × U(N3) gauge groups and chiral superfields that
transform in the adjoint and bifundamental representations of the various gauge group
factors. The fields Xii are in the adjoint of the i-th gauge group and the fields qij transform
in the fundamental representation of the U(Ni) gauge group and in the anti-fundamental
representation of the U(Nj) gauge group. The symmetries and the matter content of a
gauge theory related to branes at singularities can be encoded in a graph called the quiver
diagram. The toric diagram and the quiver of the SPP singularity are shown in Figure
2.3.

Its superpotential is10

W = X11(q13q31 − q12q21) + q21q12q23q32 − q32q23q31q13 . (2.154)

Taking into account the F-term equations for (2.154) we can choose

x = X11 = q23q32 , y = q12q21 = q13q31 , w = q13q32q21 , z = q12q23q31 (2.155)

10The superpotential is a sum of gauge field monomials obtained contracting gauge indexes and taking
the trace. Explicit index contractions and traces will be omitted in the paper.
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Figure 2.3: The toric diagram and the quiver of the SPP singularity

as generators of the mesonic chiral ring. The set of algebraic relations among these fields
reproduces the geometric singularity (2.153). The presence of an adjoint chiral field is a
signal for the presence of a non isolated singularity. In fact, giving a vev toX11 corresponds
to motion in the geometry along the x direction, which is a line of non isolated C2/Z2

singularities: y2 = wz. This line of singularities can be deformed to a smooth space

xy2 = wz → xy(y − ξ) = wz . (2.156)

Moreover the conical singularity (2.153) has a complex deformation in which the tip of
the cone is substituted by a three sphere S3. In this case the SPP geometry is deformed
as

xy2 − yε− wz = 0 . (2.157)

This is the same process as the conifold transition in the KS solution [63].
Using toric geometry it is possible to visualize these two processes. First of all draw

the toric diagram of the singularity. Then, if the dual graph has some parallel lines,

(b)(a)

Figure 2.4: Toric diagram, dual diagram and complex deformation for (a) the conifold
case xy−wz = 0 → xy−wz− ε = 0; (b) the SPP case xy2−wz = 0 → xy2−yε−wz = 0.
The broken line represents the S3 due to the fluxes. The volume of S3 is parameterized
by ε.

this implies that there exist non isolated C2/Zk lines of singularities (depending on the
number of parallel lines). These singularities can be deformed by inserting two spheres
S2 parameterized by a set of complex ξi parameters. If the dual diagram admits splits
in equilibrium (the edges of every sub-diagrams sum to zero), there exist deformations
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of the singularities on the tip of the cone. These deformations are obtained by inserting
three spheres S3, parameterized by some set of complex εj parameters (see Figure 2.4).

In this paper we argue that metastable supersymmetry breaking is geometrically re-
alized by moving in the space of complex deformations. The motion in the ξ-parameter
space breaks supersymmetry (in a metastable vacuum) while moving in the ε-parameter
space restores the supersymmetry. We will provide several examples and show that this
is a general phenomenon in an infinite class of quiver gauge theories.

We now review the possible IR behavior of the SPP gauge theory and their geometric
interpretation. The SPP gauge theory has two kinds of fractional branes, because of the
non anomalous distribution of ranks for the gauge group factors: (1, 0, 0) and (0, 1, 0). The
different combinations of these set of branes and the possible geometric deformations of the
singularity characterize different IR dynamics. We summarize the different possibilities.

The first fractional brane is called an N = 2 brane. The quiver in Figure 2.3 with
(N1, 0, 0) fractional branes reduces to an N = 2 gauge theory. The vev of the adjoint
field X11 is a modulus of the theory, corresponding to x in the geometry. Moving along x
corresponds to the D-brane exploring the curve of A1 singularities y2 = wz.

The second fractional brane is called deformation brane. Indeed the back reaction
of (0, N2, 0) D5 branes wrapped on the collapsed two cycle of the conifold inside the
SPP induces a geometric transition which deforms the singularity to a smooth manifold:
xy2+εy = wz (see Figure 2.4). In the gauge theory description, the deformation parameter
ε is related to the gaugino condensate. The branes (0, N2, 0) induce deformation in the
geometry and confinement in the gauge theory [64].

The deformation brane and the N = 2 brane are incompatible. If we put (N1, N2, 0)
branes in the SPP singularity the gauge theory has a runaway behavior, which is the
most common behavior in non conformal quiver gauge theories [61, 65, 66]. Consider the
case N2 � N1 = 1: the perturbative superpotential is

Wpert = X11q12q21 . (2.158)

The node 2 is UV free and develops strong dynamics in the IR. The gauge invariant
operators are the degrees of freedom that describe the IR dynamics of this node, i.e. the
meson M11 = q12q21. The node 2 has Nc > Nf and generates a non perturbative ADS
superpotential. The complete IR superpotential is then

WIR = X11M11 + (N2 − 1)
(Λ3N2−1

M11

) 1
N2−1

. (2.159)

The F term equations give the runaway.
Now we can include in the theory the deformation parameter ξ of the A1 singularity

and obtain the geometry (2.156). This corresponds to the superpotential term: Wξ =
−ξ(X11 − q13q31). Taking the same brane distribution as in the previous case, the IR
superpotential is

WIR = X11M11 + (N2 − 1)
(Λ3N2−1

M11

) 1
N2−1 − ξX11 (2.160)
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and hence the theory develops a supersymmetric vacuum.
Finally, as pointed out in [10], if we consider the theory deformed by ξ (2.156) in the

regime N1 = N + M and N2 = N (Figure 2.5), the theory admits ISS like metastable
vacua, provided M > 2N . In this case the node N2 is the IR free gauge group and the

0N+MN

Figure 2.5: The fractional brane disposition to obtain the ISS theory from the SPP
singularity.

node N1 is treated as the flavour group (see the Appendix 2.1 for a discussion about this
approximation). The superpotential is

Wpert = −ξX11 +X11q12q21 (2.161)

and supersymmetry is broken at tree level by the rank condition. Observe that from this
construction we obtain directly the dual magnetic theory of the ISS model. This theory
has also M supersymmetric vacua far away in the moduli space. As usual, these vacua
are obtained by considering the non perturbative contribution to the superpotential due
to the gaugino condensation

WIR = −ξX11 +N

(
detX11

Λ2M−N
m

)1/N

→ 〈X11〉 = Λ
M−2N

M
m ξ

N
M e

2πik
M 1M+N (2.162)

The gauge theory dynamics that restore supersymmetry have a dual geometric inter-
pretation. The geometry describing the IR gauge theory is the A1 deformed conifold
variety (2.157). Indeed, using the techniques of [10, 59], we can recover the complete IR
non perturbative superpotential (2.162) from the geometry (2.157), performing a classical
computation (see the Appendix A.4).

The SPP singularity can be considered the simplest representative of the family of
deformable non isolated toric singularities. We will give a detailed analysis of an infinite
sub-class of this family of singularities called the Laba singularities [67, 68, 69, 70, 71],and
we will then comment about their generalizations to more complicated examples.

The Laba Singularities

Laba with b ≥ a refers to an infinite class of deformable non isolated singularities that
include the SPP as a special case: L121 = SPP (see Figure 2.6). The Laba singularities
contain ”a” conifold like singularities (hence ”a” conifold like complex deformations) and
two lines of non isolated singularities passing through the tip of the cone: C2/Za and
C2/Zb. Indeed the Laba singularities are described by a quadric in C4

xayb = wz . (2.163)
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b=2,a=1

(0,0,1) (1,0,1)

(1,a,1)

(0,b,1)

Figure 2.6: Toric diagram of Laba singularity in the case a = 2, b = 5, its dual diagram
with the complex deformations, and its reduction to the SPP toric diagram.

The lines parametrized by non zero values of x and y are the C2/Zb and C2/Za non
isolated singularities

x 6= 0 → yb = wz , y 6= 0 → xa = wz . (2.164)

We can deform the singularities (2.164) by inserting two cycles at the singular point. A
generic C2/Zn contains, indeed, n − 1 two spheres collapsed at the origin and can be
deformed to a smooth space turning on n− 1 generic complex deformation parameters ξi,
i = 1, ..., n− 1

xn = yz → x
n−1∏

i=1

(x− ξi) = yz . (2.165)

On the other hand, from figure 2.6, we note that Laba contain a conifolds that can be
locally deformed as

xy − wz = 0 → xy − wz − εj = 0 , j=1,...a . (2.166)

We have thus identified two families of deformations: the ξ deformations and the ε defor-
mations. As already mentioned, we argue that the motion in the ξ deformations breaks
supersymmetry to a metastable vacuum, while the motion in the ε deformations restores
it.

The gauge theories dual to these singularities [69, 70, 71] are non chiral and have the
quiver representations11 in Figure 2.7. The theory has gauge group U(N1)×U(N2)× ...×
U(Na+b) and chiral fields transforming in the adjoint or in the bi-fundamental represen-
tations. The superpotentials are

W =
b+a∑

i=2a+1

Xii(qi,i−1qi−1,i − qi,i+1qi+1,i) +
2a∑

j=1

(−1)j+1qj,j−1qj−1,jqj,j+1qj+1,j(2.167)

11This is just a possible toric phase. By Seiberg duality one can move to other toric phases with
generically different content of matter and different superpotential but all flowing to the same IR fixed
point and hence having the same singularity as mesonic moduli space.
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b−a2 a 

Figure 2.7: The quiver for the generic Laba singularity.

where a+ b + 1 = 1 and the fields Xii transform in the adjoint representation of the i-th
gauge group, while qi,i+1 transform in the fundamental representation of the i-th group
and in the anti-fundamental of the i+1-th group.

The chiral ring constrains of the gauge theory can be related to the algebraic geometric
description of the singularity. The complex deformations can be mapped into deformations
of the superpotential, as well. Indeed the equation (2.163) can be reconstructed through
the supersymmetric constraints on the mesonic chiral ring of the gauge theory. Define the
following set of basic mesonic chiral operators

x1 = q12q21 , x2 = q34q43 , ... , xa = q2a−1,2aq2a,2a−1;

y1 = q23q32 , y2 = q45q54 , ... , ya = q2a,2a+1q2a+1,2a, (2.168)

ya+1 = q2a+1,2a+2q2a+2,2a+1 , ... , yb = qb,1q1,b;

X2a+1,2a+1 , X2a+2,2a+2 , ... , Xb,b;

w = q1,bqb,b−1 ... q3,2q2,1 , z = q1,2q2,3 ... qb−1,bqb,1 . (2.169)

These operators satisfy
x1...xa y1...yb = wz . (2.170)

From the F -term equations we get the relations

x1 = ... = xa = X2a+1,2a+1 = ... = Xb,b , y1 = ... = yb . (2.171)

The chiral ring constraints (2.170,2.171) reproduce the geometric singularity (2.163).
By this technique, using the F -term constraints, we can also map the complex defor-

mations of the geometry to deformations of the superpotential.
A final, important, remark is that different UV gauge theories, flowing in the IR to

the same conformal fixed point, correspond to the same toric singularity. These theories
are related by Seiberg dualities and give equivalent physical descriptions at the conformal
point. Here we choose the more convenient Seiberg phase for finding metastable vacua
in the related non conformal case. This can be achieved by performing a set of Seiberg
dualities on the quiver gauge theories with only regular branes, and then placing the right
set of fractional branes that breaks conformal invariance.

Meta-stable vacua in Laba theories

This paragraph is devoted to the analysis of metastability in the Laba theories with b > a.
The simplest example is the one studied in [10], where the ISS dynamics dynamics was
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found in the infrared of a deformed L121 theory. We now extend this analysis to more
complicated cases, like L131 and then L1n1. After that we show how to generate chains of
theories that have supersymmetry breaking meta-stable vacua. Generally speaking, if we
have a Laba theory which shows metastability, we argue that the Lan,bn,an theory behaves
as a set of decoupled theories of this sort. At the end of this section, we give a general
recipe for the existence of metastable vacua in a Laba theory, by decomposing it into a set
of shorter quivers.

In the analysis of the metastable vacua we consider some nodes of the quivers as gauge
groups and other nodes as flavor groups, tuning the dynamical scales as explained in the
section(2.1). This is implicit in all the cases that we treat.

Note that, in the notation of ISS, we are working in the magnetic description. This
means that we deal with IR free gauge groups, without performing Seiberg duality on
them. Another important remark is that, since we are dealing with the magnetic phase,
if we want to realize metastable vacua, we need linear deformations in the mesons rather
than massive quarks.

We present here several examples, as well as general results, to stress the fact that the
ξ deformations lead to metastable non supersymmetric vacua whereas the ε deformations
bring to supersymmetry restoration.

The L131 theory

The L131 theory is described by the quiver in figure 2.8, with superpotential

U(N )U(N ) 34

U(N )1 U(N )2

Figure 2.8: Quiver for the L131 theory.

W = X33(q32q23 − q34q43) − hq21q12q23q32 + hq12q21q14q41 + (2.172)

+X44(q43q34 − q41q14) (2.173)

and it corresponds to the singular geometry

xy3 = wz (2.174)

which is correctly reproduced by the mesonic chiral ring as explained in section 2. We
now add a superpotential deformation

Wdef = −ξ1(X33 − hq12q21) − ξ2(X44 − hq12q21) . (2.175)
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Imposing the constraints from the F -term equations we find the new relations on the
mesonic chiral ring

y = q23q32 = q34q43 + ξ1 = q41q14 + ξ1 + ξ2 . (2.176)

These constraints are translated into the deformed geometry

xy(y − ξ1)(y − ξ1 − ξ2) = wz . (2.177)

Obviously, we are not obliged to add a linear term for each adjoint field but the case with
only one deformation turns out to be unstable, as we show in the following.

We study this theory setting one node to zero. There are two different possibilities:
we can set to zero a node with an adjoint field (N3 or N4) or a node without it (N1 or
N2), obtaining a theory with one or two adjoint fields respectively. In the second case
the scalar potential has dangerous flat directions and we cannot find metastable vacua.
In the following we only analyze the first case and show the existence of long living non
supersymmetric metastable vacua.

The theory under investigation is then obtained setting to zero the N4 node (the case
with N3 = 0 is the same), described by the quiver in figure 2.9.

N N N+M

Figure 2.9: L131 theory with N4 = 0. The blue lines indicate massive matter.

The superpotential is

W = X33q32q23 − hq21q12q23q32 − ξ1X33 + h(ξ1 + ξ2)q21q12 . (2.178)

For simplicity, in the analysis of the equations of motion we fix the ranks of the groups
to be

N1 = N2 = N N3 = N +M . (2.179)

First of all we have to impose the correct tuning on the scales of the gauge groups and
on the rank numbers in order to treat the node N2 as an infrared free gauge group and
the other gauge groups as flavours. Calculating the beta functions we have

b1 = 2N b2 = N −M b3 = N + 2M . (2.180)

Since we require the group U(N2) to be infrared free we impose the constraint M >
N . Moreover, we require that this group is more coupled than the other groups at the
supersymmetry breaking scale and at the scale of supersymmetry restoration12. This can

12With supersymmetry restoration we mean the supersymmetric vacua that arise due to the strong
dynamics of U(N2). For what concern the other supersymmetric vacua, given by the strong dynamics of
the other groups, the tuning on the scales put them far away in the field space.
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be done by tuning the scales Λ1 and Λ3, which are the strong coupling scales of two
UV free gauge groups. Their scales have to be chosen13 much smaller than the scale of
supersymmetry breaking (which is the deformation hξ1) and much smaller than the scale
Λ2 of U(N2).

Now that we have correctly set up the role played by each gauge group in the quiver
we can proceed in finding the vacua. The F -term equation for the X33 field is the rank
condition and breaks supersymmetry, fixing the vev of the fields q23 and q32. The equation
for the q12 quark is

Fq12 = h (−q23q32 + (ξ1 + ξ2)) q21 = hξ2q21 (2.181)

and it is solved with q12 = 0 = q21. This is related to the fact that we have added two
deformation parameters (ξ1, ξ2), i.e. two linear contributions to the superpotential for the
two adjoint fields. Otherwise (for ξ2 = 0), the equation (2.181) would be automatically
satisfied, leaving the fields q12 and q21 unfixed at tree level and leading to potentially
dangerous flat directions.

The non supersymmetric vacuum at tree level is

q12 = qT21 = 0 q32 = qT23 =

( √
ξ11N
0

)
X33 =

(
0 0
0 χ

)
(2.182)

where χ is the pseudomodulus of dimension M ×M . This vacuum is stable under one
loop correction, and the pseudomodulus is stabilized at χ = 0.

The restoration of supersymmetry is obtained in the hypothesis that the group labeled
by N2 develops a strong dynamics, by adding to the low energy superpotential a non
perturbative contribution

WIR = −ξ1X33 +N2

(
Λ3N2−N3 detX33

) 1
N2 (2.183)

where we have integrated out all the massive fields. From the geometric point of view,
supersymmetry restoration, governed by the dynamics of the U(N2) gauge group, can be
described deforming the geometry with an S3, i.e. an ε deformation,

(y − ξ1)(y − ξ1 − ξ2)(xy − ε) = wz . (2.184)

The low energy field theory superpotential (2.183) can be recovered from the geometric
data (2.184). Indeed, setting y = x′ − y′ and x = x′ + y′, equation (2.184) becomes:

(x′ − y′ − ξ1)(x
′ − y′ − ξ1 − ξ2)

(
x′ +

√
y′2 + ε

)(
x′ −

√
y′2 + ε

)
= wz . (2.185)

The low energy superpotential can be written as a function of the glueball field S2 (iden-
tified with ε/2) and of the adjoint field X33

WIR(S2, X33) = WGVW (S2)+Wadj(S2, X33) = N2S2

(
log

S2

Λ3
2

− 1

)
+
t

g2
S2 +Wadj(S2, X33) .

(2.186)

13See section 2.1 and [31] for a complete analysis.

80



Following the procedure explained in Appendix A.4 the last term is derived from the
geometric data

Wadj(S2, X33) =

∫
(x′2(y

′) − x′3(y
′))dy′ = (2.187)

=

∫ (
y′ + ξ1 −

√
y′2 + ε

)
∼ ξ1X33 − S2 log

X33

Λm

where we have expanded the integral in the approximation y ′ � ξ1, ε. We can now solve
the equation of motion for the glueball field S2 and integrate it out, ignoring the multi-
istanton contribution. In this way we recover from the geometry (2.184) the low energy
superpotential (2.183).

As claimed in the introduction, we have shown, in this simple example, that the ξi
deformations lead to metastable vacua whereas the ε deformation leads to supersymmetry
restoration.

The L1n1 theories

The metastable L131 theory can be generalized to the more complicate L1n1 case. We
find metastable supersymmetry breaking in the L141 and L151 theories and then we show
how to extend this procedure to the L1n1 case. A relevant aspect in the analysis is the
decoupling between the breaking sector and the supersymmetric one.

L141

Here we study the quiver gauge theory of figure 2.10, with superpotential

U(N )1 U(N )2 U(N )3 U(N )4 U(N )5

Figure 2.10: L141 theory.

W = hq12q23q32q21 −X33q32q23 +X33q34q43 −X44q43q34

X44q45q54 −X55q54q45 +X55q51q15 − hq51q12q21q15 . (2.188)

The geometry associated with this theory is described by the equation

xy4 = wz . (2.189)

Supersymmetry breaking is driven by linear terms for the adjoint fields. We add the
deformation superpotential

Wdef = −ξ3(X33 − hq32q23) + ξ4(X44 − hq32q23) − ξ5(X55 − hq32q23) . (2.190)
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We have add a linear term for all the adjoint fields: this is crucial for the stability of the
non supersymmetric vacuum. The q23 and q32 quarks become massive, since the F -terms
constraints have to be compatible.

The corresponding geometry reads now

x(y − ξ3)(y − ξ3 − ξ4)(y − ξ3 − ξ4 − ξ5)y = wz . (2.191)

If we consider as gauge group the node U(N2) and choosing the ranks as14

N1 = N2 = N5 = N N3 = N +M N4 = 0 (2.192)

with M > N , this theory breaks supersymmetry through rank condition for the meson
X33. In the next paraghraph we give a detailed analysis that shows that this theory
possesses metastable vacua without dangerous flat directions.

Two important remarks are in order. Without turning on the deformation ξ4 (the
one related to the node set to zero) we are not protected from instabilities of the scalar
potential. Furthermore, as we did in the L131 case, we have decoupled an ISS like sector
with supersymmetry breaking from a supersymmetric sector. These two facts hold in all
the L1n1 cases.

The process of supersymmetry restoration works as in the L131, when the dynamics of
the gauge group U(N2) gives rise to non perturbative contributions to the superpotential.

L151

Here we study metastability in the L151 quiver gauge theory. This is the basic example
for the generalization of the analysis to the L1n1 case. The gauge theory, related to the

U(N )1 U(N )2 U(N )3 U(N )4 U(N )5 U(N )6

Figure 2.11: The L151 theory.

quiver in figure 2.11, has superpotential

W = hq12q23q32q21 −X33q32q23 +X33q34q43 −X44q43q34 +X44q45q54

−X55q54q45 +X55q51q15 −X66q65q56 +X66q61q16 − hq61q12q21q16 (2.193)

and it is associated to the geometry

xy5 = wz . (2.194)

14Note that also the situation with gauge group U(N1) and N3 = N and N5 = N + M leads to
metastable vacua.
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Once again we deform the superpotential with linear terms for the adjoint fields and
masses for the quarks

Wdef = −ξ3(X33 − hq32q23) − ξ4(X44 − hq32q23) − ξ5(X55 − hq32q23) − ξ6(X66 − hq32q23) .
(2.195)

The deformation (2.195) leads to the geometric deformation

x(y − ξ3)(y − ξ3 − ξ4)(y − ξ3 − ξ4 − ξ5)(y − ξ3 − ξ4 − ξ5 − ξ6)y = wz . (2.196)

We choose the ranks of the groups as

N1 = N2 = N5 = N6 = N N3 = N +M N4 = 0 (2.197)

with M > N . The equation of motion for the field X33 is the ISS rank condition, that
breaks supersymmetry at the classical level. In the next paragraph we show that the
supersymmetry breaking minimum is stable. Stability of the metastable vacuum requires
ξ3, ξ4, ξ5 6= 0 and arbitrary ξ6.

The supersymmetry restoration carries on exactly as in the L131, with non perturbative
contribution to the superpotential due to the dynamics of the gauge group U(N2).

L1n1

We now extend the results about metastability to the general L1n1 theory. The superpo-
tential is

W =

n∑

i=3

Xi,i(qi,i−1qi−1,i − qi,i+1qi+1,i) + hq21q12q23q32 − hq12q21q1,n+1qn+1,1 +(2.198)

+Xn+1,n+1(q1,n+1qn+1,1 − qn,n+1qn+1,n) (2.199)

and the geometry
xyn = wz . (2.200)

The deformation of the superpotential is

∆W =
n+1∑

i=3

ξi(hq12q21 −Xi,i) (2.201)

which corresponds to the geometry

xy
n+1∏

i=3

(y −
i∑

j=1

ξi) = wz . (2.202)

We choose the ranks of the nodes to be

N4 = 0 N3 = N +M Nj = N (j 6= 3, 4) (2.203)
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such that supersymmetry is broken at node 3. Moreover it should be M > N for U(N2)
to be IR free.

The deformations ξ3, ξ4 and ξ5 have to be different from zero for the non supersym-
metric vacuum to be stable. All the other deformations can be chosen arbitrarily The
breaking sector is the same than all the other L1n1 cases analyzed before. The only
difference is that the supersymmetric sector is larger here.

Supersymmetry is restored by the strong dynamics of the gauge group U(N2), and the
metastable vacuum is long living. This concludes the analysis of the L1n1 theories.

Details on the non supersymmetric vacua

In this paragraph we discuss the stability of the non supersymmetric vacua studied in the
rest of the section. The relevant aspects in the analysis of metastable vacua are related
to the tree level flat directions that can arise in the scalar potential around the would
be minimum. If these directions are not related to any broken global symmetry they are
pseudomoduli, and they have to be lifted classically or quantum mechanically. Even if
these directions arise in a sector which is supersymmetric up to the third order in the
fluctuations around the vacuum, we have to check that all of them acquire positive squared
masses. Otherwise these fields can acquire tachyonic masses due to their coupling to the
non supersymmetric sector at higher order. In the analysis we treat all the gauge groups
as U(n). This implies that the D-term scalar potential for the fluctuations around the
minimum receives contributions not only from the SU(n) part of the gauge groups but
also from the U(1)’s. These contributions could be relevant in some examples to lift flat
directions. We comment on this when needed.

A last comment is necessary. In the text we called the complex deformations that
lead to supersymmetry braking ξi. Here we use a different notation, denoting µ2

i these
deformations. In this way we work with couplings of mass dimension one.

L131

We analyze the quiver gauge theory of figure 2.12 with superpotential

N N N+M 0

Figure 2.12: The L131 theory with N4 = 0. The blue line indicate the massive fields

W = X33q32q23 − µ2
3X33 − hq12q23q32q21 + hm2q12q21 (2.204)

with m2 = µ2
3 + µ2

4. The adjoint field has a linear term and the quarks have a mass
generally different from the deformation of the adjoint field. We take the ranks of the
gauge groups as

N3 = N +M N2 = N3 = N N4 = 0 (2.205)
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with M > N . With this choice we are guaranteed that the second node is infrared free.
We consider the other groups less coupled.

Solving the equation of motion and expanding around the tree level minimum we have

q32 =

(
µ3 + σ1

φ1

)
q23
(
µ3 + σ2 φ2

)
X33 =

(
σ3 φ3

φ4 χ

)
q21 = σ4 q12 = σ5

(2.206)
where χ is a classical flat direction not associated to any broken symmetry. The case with
µ4 = 0 (and hence m2 = µ2

3) is problematic since in this case the quarks q12 and q21 are
potentially dangerous tree level flat directions.

Now, the non supersymmetric sector (the fields φi) gives the usual O’Raifeartaigh
like model of ISS which gives positive squared mass through 1 loop corrections to the
pseudomoduli15 χ. The fields φi get tree level masses except the Goldstone bosons as in
the ISS model.

In the supersymmetric sector, the σ1, σ2, σ3 fields are stabilized as in ISS. The fields
σ4 and σ5 get non trivial squared mass ∼ |hm2 − hµ2|2 = |hµ2

4|2.

L141

We analyze here a more complicated example that arises setting to zero a node in the L141

quiver gauge theory. The resulting quiver is reported in figure 2.13 and the superpotential

N N N+M 0 N

Figure 2.13: The L141 theory with N4 = 0. The blue line indicate the massive fields

is the following

W = hq12q23q32q21 − µ2
3X33 −X33q32q23 + µ2

5X55 +X55q51q15 − hq51q12q21q15 + hm2q12q21
(2.207)

where all the adjoint fields receive a linear term. From the geometric description we know
that

m2 = µ2
3 + µ2

4 − µ2
5 (2.208)

where µ2
4 is related to the node we have set to zero. Having set the ranks of the gauge

group to be
N1 = N2 = N5 = N N3 = N +M N4 = 0 (2.209)

a rank condition mechanism is realized for the X33 meson.

15If the U(1) factor of U(N2) decouples there is another pseudomodulus, θ + θ∗, stabilized by 1-loop
corrections (see Section 2.1).
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Solving the equation of motion and expanding around the tree level minimum we have

q23 =

(
µ3 + σ1

φ1

)
q32
(
µ3 + σ2 φ2

)
X33 =

(
σ3 φ3

φ4 χ

)

q12 = σ4 q21 = σ5 q51 = µ5 + σ6 q15 = µ5 + σ7 X55 = σ8 . (2.210)

The non supersymmetric sector (the φi fields) is like the ISS model, and give raise to an
O’Raifeartaigh model which stabilize at one loop the pseudomodulus at χ = 0.

The supersymmetric sector (the σi fields) has the following superpotential at the rel-
evant order for the mass matrix

W = µ3σ3(σ1 + σ2) − hµ2
4σ4σ5 − µ5σ8(σ6 + σ7) . (2.211)

The σ1, σ2, σ3 fields behave exactly as in ISS: some of them acquire tree level positive
mass. The massless ones are either Goldstone bosons either pseudomoduli. The latter
are lifted by the D term potential for the U(N2) gauge group.

The σ4, σ5 fields have tree level masses and this is due to the fact that we have turned
on all the possible deformation for the geometry, i.e. µ4 6= 0. Otherwise they would be
dangerous flat directions.

The σ6, σ7, σ8 fields behave as the σ1, σ2, σ3 sector. However we note that here the
pseudomoduli arising in these fields are lifted by the D terms of the U(N5) gauge group,
that we have considered less coupled than the gauge group U(N2).

L151

We study here the quiver gauge theory associated to the L151 singularity. The aim is to
find the relevant aspects for the generalization to the L1n1 theory. After setting to zero a
node in the L151 theory we obtain the quiver in figure 2.14 with superpotential

N N N+M 0 N N

Figure 2.14: The L151 theory with N4 = 0. The blue line indicate the massive fields

W = X33q23q32 − hq12q23q32q21 + hq61q12q21q16 −X55q56q65 +X66q65q56 −X66q61q16

−µ2
3X33 + µ2

5X55 + µ2
6X66 + hm2q12q21 . (2.212)

The geometric description implies

m2 = µ2
3 + µ2

4 − µ2
5 − µ2

6 (2.213)

where the parameter µ4 is related to the deformation for the node we have set to zero.
The ranks of the groups are taken to be

N3 = N +M N1 = N2 = N5 = N6 = N N4 = 0 . (2.214)
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Solving the equation of motion and expanding around the tree level minimum we have

q23 =

(
µ3 + σ1

φ1

)
q32
(
µ3 + σ2 φ2

)
X33 =

(
σ3 φ3

φ4 χ

)

q12 = σ4 q21 = σ5 q16 =
√
µ2

5 + µ2
6 + σ6 q61 =

√
µ2

5 + µ2
6 + σ7 (2.215)

X66 = σ8 q65 = µ5 + σ9 q56 = µ5 + σ10 X55 = σ11 . (2.216)

The non supersymmetric sector works as in the previous examples and stabilize the pseu-
domodulus χ at χ = 0. The supersymmetric sector (the σi) has, at the relevant order for
the mass matrix, the following superpotential

W = µ6(σ11 − σ8)(σ9 + σ10) +
√
µ2

6 + µ2
5 σ8(σ6 + σ7)− hµ2

4σ4σ5 + µ3σ3(σ1 + σ2) . (2.217)

It can be analyzed as three separated sectors.
The first one is made by the fields σ1, σ2, σ3 and behave exactly as in ISS. The second

one is made by the fields σ4, σ5. Here once again the parameter in the whole theory
associated to the node set to zero (µ4) is crucial for the stability of the vacuum. In fact
if µ4 = 0 the directions σ4 and σ5 would result massless at tree level.

The third sector is made by the other fields and it is stabilized at tree level taking into
account the D term contributions to the scalar potential for the gauge groups U(N5) and
U(N6).

Another important fact to be stressed is that in this case we are not obliged to switch
on the deformation µ6.

L1n1

The analysis made in the last example can be extended to the gauge theory obtained from
the L1n1 quiver as explained in the text. The vacuum is chosen as a natural generalization
of the previous examples, and the fluctuation superpotential has the same structure.
The non supersymmetric sector is the same than in ISS. The supersymmetric sector is
decoupled in three different parts as in the last subsection. The tree level flat directions
are stabilized provided the deformation associated with the node set to zero and to the
first and the last nodes are switched on.

Another requirement for stabilizing the flat directions in the L1n1 theories with n > 3
is to take into account the tree level D-term potential of some of the flavour groups.
Note that for these nodes we need to consider also the U(1) contribution to the D-term
potential of the U(n) groups. Otherwise, if the U(1)’s decouple, some flat directions due
to the trace part of the fundamental fields can remain in the one loop spectrum. It would
be interesting to explore their two loop behaviour.

Extension to longer quivers

We extend here the analysis of the L1n1 theories to more complicated Laba cases. The
strategy is to decouple an Laba theory in a set of a metastable theories, adding b − a
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(a)

(b)

Figure 2.15: Two different Seiberg phases of the same L363 quiver gauge theory.

deformations, one for each adjoint field. In the case b − a ≥ a ,by using the results
obtained for L1n1, we are able to find metastable vacua in each Laba theory.

Our general strategy will be to consider in each metastable subset only one group as
a gauge group, since there are some difficulties in treating the dynamics of more than one
gauge group simultaneously.

We study first the simplest cases, like the Ln2nn theory, which can be viewed as a
set of decoupled ISS models. This is a pedagogical example, useful for the extension of
the analysis to the general situations and for the proof that metastability is a generic
phenomenon in the Laba theories. At the end of this subsection, we furnish the general
recipe to build metastable Laba quivers.

Ln2nn as a set of decoupled ISS

The L121 gauge theory, in the ISS regime, has been shown to possess meta-stable vacua
[10]. Starting from an Ln2nn quiver gauge theory we can perform a set of Seiberg dualities
going from the first quiver in the Figure 2.15 to the second one. In fact, Seiberg duality
on these theories has the effect of displacing the adjoint fields. Each duality moves one
adjoint field two nodes farther.

We now deform the geometry, associating each ξi deformation with the i-th node,
obtaining

n∏

i=1

x(y − ξ3i−2)y = wz . (2.218)

This deformation corresponds, on the gauge side, to the combined addition of linear terms
for the adjoint fields and of masses for the appropriate bifundamentals (i.e. that ones not
directly coupled to the adjoint fields). By setting to zero one node, without an adjoint field,
every three nodes, we have a theory of decoupled metastable ISS models (see Figure 2.16).
The analysis of metastable vacua is the same as in ISS for each sector. Supersymmetry is
restored in the large field region in each ISS sector, where the gauge group gives rise to a
non perturbative contribution in the effective theory. The non perturbative contributions
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N+M N 0 N+M 0 N+M 0NN

Figure 2.16: L363 as a set of three decoupled ISS models

(a)

(b)

Figure 2.17: Two different Seiberg phases of the same L393 quiver gauge theory.

modify the constraints on the mesonic moduli space, and hence the geometry, as

n∏

i=1

y ((y − ξ3i−2)x− εi) = wz . (2.219)

The technique of Appendix A.4 can be applied to the new singularities of the geometry
to recover the correct low energy behavior of the field theory. The calculation proceeds
exactly as in the L121 case

The Ln3nn theories

With this strategy we can build longer quivers with metastable vacua. For example the
L131 case can be extended to metastable Ln3nn theories. Indeed we can perform a set of
Seiberg dualities to obtain a new phase of the theory as shown in Figure 2.17. As we did
in the Ln2nn case, we then deform the geometry

2n∏

i=1

(y − ξ4(i−1) − ξ4(i+1)+1)yx(y − ξ4i) = wz with ξ0 = ξ4n . (2.220)

The deformation brings in the superpotential a linear term for each adjoint field, and a
mass term for the quarks stretched between two nodes without the adjoint fields.

We set then to zero the right nodes and breaks the Ln3nn into a set of metastable
gauge theories. Indeed, setting the ranks number as in Figure 2.18, in each decoupled
sector we have the same breaking patterns as in the L131 studied before. Each sector has
the superpotential

W = hqi,i+1qi+1,i+2qi+2,i+1qi+1,i −qi+1,iXi,iqi,i+1−ξiXi,i+h(ξi+ξi+3)qi+2,i+1qi+1,i+2 (2.221)
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N N N N N NN+M 0 N+M 0 N+M 0

Figure 2.18: L393 as a set of three decoupled L131 models.

which leads to long living metastable vacua, as it has been explained for the L131 theory.
Supersymmetry restoration can be obtained separately in each decoupled sector, through
the strong dynamics of the gauge group. In the geometric description it can be read from
the deformation of the variety

2n∏

i=1

(
(y − ξ4(i−1) − ξ4i−3)x− εi

)
y(y − ξ4i) = wz . (2.222)

It is straightforward to show that it corresponds to adding a term proportional to detXii

for each gauge group and restores supersymmetry.

Extension with an example

The procedure just outlined for the L121 and L131 can be applied also for the L1n1 case,
extending it to Lm,nm,m metastable theories.

More generally, we can consider an Laba quiver that can be decomposed into subsets
of different theories, each one metastable.

We show the technique in a clarifying example and then give a general recipe. For
instance, we take the L252 theory and perform a Seiberg duality to obtain the phase of
figure 2.19. By deforming all the adjoint fields with a linear term the chiral ring gets

NN N N+M 0 0N+M

Figure 2.19: The Seiberg phase of L252 suitable for metastable vacua

modified to be

y = q23q32 = q34q43 + ξ3 = q56q65 = q67q76 + ξ6 = q71q17 + ξ6 + ξ7

x = q12q21 = q45q54 (2.223)

with the corresponding deformed geometry

x2y2(y − ξ3)(y − ξ6)(y − ξ6 − ξ7) = wz . (2.224)

We choose then the sequence of the ranks of the groups as shown in figure 2.19, setting to
zero the fourth and the last node. Now the first sector corresponds to the L131 theory and
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the second one to the L121 one. Each sector shows metastable supersymmetry breaking
vacua. The superpotential is

W = hq12q23q32q21 − q23X33q32 − q56X66q65 − ξ3X33 − ξ6X66 + (ξ3 + ξ7)q21q12 . (2.225)

Supersymmetry is restored by the strong dynamics of the nodes two and five that give
rise to the non perturbative contribution

Wdyn = N
(
Λ2N−M

2 detX33

)1/N
+N

(
Λ2N−M

5 detX66

)1/N
(2.226)

which deforms the geometry to

(xy − ε1)(xy − ε2)(y − ξ3)(y − ξ6)(y − ξ6 − ξ7) = wz . (2.227)

Indeed, from this geometry, with the technique discussed in the Appendix A.4, we can
recover now the low energy superpotential of the field theory.

We start writing the general IR superpotential as a function of the mesons X33 and
X66 and of the glueballs S2 and S5

WIR = WGVW (S2) +WGVW (S5) +Wadj(S2, X33) +Wadj(S5, X66) . (2.228)

Substituting y = x′ − y′ and x = x′ + y′ in (2.227) we can calculate the contributions
W (S,X) in the superpotential

Wadj(S2, X33) =

∫ (
y′ + ξ3 −

√
y′2 + ε1

)
dy′ ∼ ξ3X33 − S2 log

X33

Λ2

Wadj(S5, X66) =

∫ (
y′ + ξ6 −

√
y′2 + ε2

)
dy′ ∼ ξ6X66 − S5 log

X66

Λ5
(2.229)

where we identify (2S2, 2S5) = (ε1, ε2). We remark that the variable y′, that parametrizes
the position of the brane, can be interpreted as the vev of the field Xii in each integral.
Integrating out the glueball fields S2 and S5 we recover the low energy description of the
field theory.
This example shows that we can obtain metastable Laba theories by breaking them up
into shorter quivers.

General analysis

Here we decompose an Laba theory into a set of L1ni1 theories, each one with metastable
vacua.

We consider a distribution of gauge groups with ranks such that there are no consecu-
tive nodes set to zero. Moreover we consider only Seiberg phases with b− a adjoint fields
to be distributed on the a gauge nodes. This implies that we can only describe theories
with b − a ≥ a. In the next paragraph we extend this result to theories with b − a < a,
studying Seiberg phases with more adjoint fields.
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With these assumptions, starting from a Laba and setting a nodes to zero, we can obtain
a metastable L1ni1 theories. Each decoupled sector possesses long living metastable vacua
like the ones studied in the L1ni1 theories and hence the whole theory is metastable. The
procedure is not unique: we can indeed decouple the Laba theory in different sets of L1ni1

quivers. This is related to the fact that we can distribute differently the b − a adjoint
fields on the a gauge nodes and set to zero nodes with or without adjoint fields.

This can be shown in a simple example. The L383 theory can be decoupled in three
different sectors, where the number of adjoint fields totals up to five. There are two
inequivalent possibilities to obtain metastable vacua as shown in figure 2.20. We set

N+M0 N N 0 N+M N 0 N+M N N

0N N+MNNN+M 0 N+M 0 N N

Figure 2.20: The two inequivalent possible L383 that give rise to three decoupled
metastable sectors

three different nodes to zero (nodes 1, 5, 8 in the first case and 3, 6, 11 in the second
one), obtaining three decoupled metastable theories. For the first case the analysis of
metastability follows from L121 and L131, while in the second case it follows from L121 and
L141. So we decouple L383 in two different ways: as 2L131 + L121 or as 2L121 + L141. By
this technique, we can write Laba as a sum of

∑a
i=1 L

1ni1, with the constraint
∑a

i=1 ni = b,
ni ≥ 2. All these theories lead, with the right distribution of ranks, to metastable vacua.

Three nodes with two adjoint fields

We analyze the quiver gauge theory of figure 2.21 with superpotential

N N+MN+M

Figure 2.21: The quiver for the L222 theory with a node set to zero

W = X11q12q21 − µ2
1X11 − hq12q23q32q21 + hm2

1q12q21 + hm2
3q32q23 +X33q32q23 − µ2

3X33 .
(2.230)

We keep the more general situation arising from the geometries analyzed here. That is
the adjoint fields have linear terms and the quarks have masses generally different from
the deformations of the adjoint field. The choice of the ranks for the gauge groups is

N1 = N3 = N +M N2 = N (2.231)
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with 2M > N and so we are guaranteed that the second node is infrared free. We consider
this infrared free group as the most strongly coupled.

Solving the equation of motion and expanding around the tree level minimum we have

q12 =

(
µ1 + σ1

φ1

)
q21
(
µ1 + σ2 φ2

)
X11 =

(
h(µ2

3 −m2
1) + σ3 φ3

φ4 χ1

)

q32 =

(
µ3 + σ5

φ5

)
q23
(
µ3 + σ6 φ6

)
X33 =

(
h(µ2

1 −m2
3) + σ7 φ7

φ8 χ2

)

where χ1 and χ2 are the pseudomoduli. The superpotential for the supersymmetry break-
ing sector is

W = χ1φ1φ2 − µ2
1χ1 + µ1(φ1φ4 + φ2φ3) − h(µ2

3 −m2
1)φ1φ2 +

+ χ2φ5φ6 − µ2
3χ2 + µ3(φ5φ8 + φ6φ7) − h(µ2

1 −m2
3)φ5φ6 (2.232)

and it consists in two O’Raifeartaigh like models after shifting the pseudomoduli as χ′
1 =

χ1 − h(µ2
3 − m2

1) and χ′
2 = χ2 − h(µ2

1 − m2
3). Hence the pseudomoduli are stabilized at

χ′
1 = χ′

2 = 0 such that the non supersymmetric vacuum at quantum level is where the
mesons X11 and X33 are proportional to the identity.

Meta-stable vacua in Laaa theories

In the case a = b, i.e. Laaa the theory does not posses adjoint matter, since b − a = 0.
Nevertheless, by performing Seiberg dualities, we can create the necessary adjoint fields.
As explained above, this procedure does not affect the geometry, which is of the form

xaya = wz . (2.233)

We can then add the deformations for the adjoint fields and obtain theories suitable for
metastable supersymmetry breaking.

Once again the strategy to analyze a long quiver consists in breaking it up in a set of
shorter quivers, each one with metastable vacua.

We study in detail the simplest example, L222, and then we comment on possible
generalizations.

The L222 theory

We analyze here the L222 theory after a Seiberg duality. The quiver of the complete theory
(see figure 2.22) is related to the double conifold. The superpotential is

W = −q21X11q12+hq12q23q32q21−q23X33q32+q41X11q14−hq14q43q34q41+q43X33q34 (2.234)

and the geometry is given by the equation

x2y2 = wz . (2.235)
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Figure 2.22: The L222 quiver without any node set to zero

We deform the geometry
x(y − ξ1)y(x− ξ3) = wz . (2.236)

This deformation changes the constraints on the mesonic chiral ring. The new constraints
can be satisfied by adding in W two linear terms of the form ξ1X11 and ξ3X33, and we
have to switch on also two mass terms in the quarks fields. Setting to zero one node,
we can have the three different cases, as shown in figure 2.23. They all have metastable

N N+MN+M N N+MN+M N N+MN+M

Figure 2.23: Three different quivers from the deformed L222. The massive quarks are
represented with blue lines, the massless quarks are represented with black lines.

vacua in the correct regime of couplings, ranks and scales.
These models are similar to ISS, but with two differences: the quartic term for the

quarks and the mass term for some of the quarks.
We study here the case with only one group of massive quarks (the first case in the

figure 2.23), and then we comment on the other at the end of this paragraph.
We choose the ranks of the groups to be

N2 = N N1 = N +M = N3 . (2.237)

The second node is treated as the gauge group and the other two nodes as flavours. The
superpotential is

W = −(ξ1X11 + ξ3X33) − q21X11q12 + hq12q23q32q21 − q23X33q32 + hξ1q32q23 . (2.238)

We then solve the equations of motion for the various fields, recognizing the ISS rank
condition, responsible for breaking of supersymmetry. The F -terms fix the vacuum to be

q12 = qT21 =

( √
ξ1
0

)
q32 = qT23

( √
ξ3
0

)
X11 =

(
0 0
0 χ1

)
X33 =

(
ξ1 0
0 χ3

)
.

(2.239)
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We show that this vacuum is stable up to one loop corrections, fixing the pseudomoduli
to 〈χ1〉 = 0 and 〈χ3〉 = ξ1. The two breaking sectors are separated at the one loop
level, and their quantum corrections are as in ISS. The ξi deformations have thus lead to
supersymmetry breaking vacua.

The strong dynamics of the gauge group restores supersymmetry, and is geometrically
described by the ε deformation

(x− ξ1) (x(y − ξ3) − ε) y = wz . (2.240)

In the field theory analysis we explore the large field region for the mesons, by integrat-
ing out the massive fields, and by taking into account the non perturbative contributions
due to gaugino condensation. The low energy superpotential results

WIR = N
(
Λ−2M−N detX11 detX33

) 1
N − (ξ1TrX11 + ξ3TrX33) (2.241)

which guarantees the long life of the vacuum16.
On the other hand, we can use the geometric techniques of Appendix A.4 to recover

the same low energy superpotential (2.241) from the geometry (2.240). Relabeling the
variables in (2.240) by y = (x′ − y′) and x = (x′ + y′) we can rewrite

(x′ − y′ − ξ1) ((x′ − y′)((x′ + y′ − ξ3) − ε) = wz . (2.242)

The geometric superpotential is

WIR(S,X11, X33) = N2S

(
log

S

Λ3
m

− 1

)
− t

g
S +Wadj(S,X11) +Wadj(S,X33) . (2.243)

The two contributions Wadj derive from the singularities of the geometry. Repeating the
computations as in Appendix A.4 we have

Wadj(S,X11) =

∫ 
y′ + ξ1 −

ξ3
2
−
√(

y′ − ξ3
2

)2

+ ε


 dy′

Wadj(S,X33) =

∫ 
ξ3

2
−
√(

y′ − ξ3
2

)2

+ ε+ y′


 dy′ . (2.244)

In the previous integral we identify 2S with ε and y′ with the vev of the adjoint fields X11

and X33 respectively. In the regime y′ � ε, ξi we can compute the integrals expanding
at first order in ε and ξi, obtaining the superpotential for the interaction between the
glueball field and the adjoint fields

Wadj(S,X11) +Wadj(S,X33) = ξ1TrX11 + ξ3TrX33 − S log det

(
X11

Λm

)
− S log det

(
X33

Λm

)
.

(2.245)

16The restoration of supersymmetry in the other cases in figure 2.23 follows directly.
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The equation for the glueball field S can be derived from (2.243) and (2.245). Solving for
S and ignoring the multi-istanton contributions we have

S =
(
Λ3N2−N1−N3
m detX11 detX33

) 1
N2 =

(
Λ−N−2M
m detX11 detX33

) 1
N . (2.246)

Substitution of (2.246) in (2.243) gives the same low energy superpotential of field theory
(2.241), up to an overall sign.

The ε deformation has lead to supersymmetry restoration.

The L333 theory

Here we search for metastable vacua in an L333 theory, after performing on it some Seiberg
dualities. This theory has six nodes without adjoint fields, with superpotential

W =

4∑

i=1

(−1)ihqi,i+1qi+1,i+2qi+2,i+1qi+1,i − hq56q61q16q65 + hq61q12q21q16 . (2.247)

A Seiberg duality on the sixth node and integration out of the massive matter. leads to
the superpotential

W = −q61X11q16 + q21X11q12 − hq12q23q32q21 + hq23q34q43q32 − hq34q45q54q43

+q45X55q54 − q65X55q56 + hq56q61q16q65 (2.248)

with the quiver given in figure 2.24. The geometry is then deformed by the ξi terms to

5

2U(N  ) U(N  ) 4 

U(N  )6 U(N  )U(N  )1

3 U(N  )

Figure 2.24: The L333 theory after a Seiberg duality on node 6.

x2y2(y − ξ1)(x− ξ5) = wz . (2.249)

This deformation corresponds in the field theory to linear terms ξ1X11 and ξ5X55 in the
superpotential. For consistency with the F -term constraints, we also add some mass term
for the bifundamentals, i.e.

∆W = −ξ1X11 + ξ5X55 + hξ1q23q32 − hξ5q43q34 . (2.250)
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We set the ranks of the groups as follows

N1 = N5 = N +M N2 = N4 = N N3 = N6 = 0 . (2.251)

We then obtain two decoupled ISS like models that break supersymmetry through rank
conditions for the mesons X11 and X55.

The supersymmetric vacua can be recovered by adding the non perturbative contri-
butions arising for each gauge group. From the geometry, restoration of supersymmetry
can be described by the εi deformations

xy(x(y − ξ1) + ε1)((x− ξ5)y − ε2) = wz . (2.252)

This deformed geometry gives, with the techniques of Appendix A.4, the right low energy
superpotential that leads to the supersymmetric vacua.

Extension

We now briefly outline a procedure for finding metastable vacua in a generic Laaa theory.
The strategy again consists in breaking the quiver into a set of shorter quivers, each

one metastable.
We study a phase of the theory, derived by acting with Seiberg dualities, which has a

number of a adjoint fields if a is even and a− 1 if a is odd.
We then set to zero the right nodes17 in order to obtain a set of decoupled theories

that have the same structure of the deformed L222 and L333 studied above. This can be
done choosing appropriately the Seiberg phases.

We now show how to proceed in a simple example, L555 in figure 2.25. We perform

NN+M N 0 N+M 0 N+M N N+M 0

Figure 2.25: Quiver for the deformed L555 theory.

Seiberg dualities on the sixth and on the tenth node and obtain 4 adjoint fields. We then
deform the geometry in such a way that, in the field theory description, all the adjoint
fields get linear terms

x3y3(y − ξ1)(x− ξ5)(y − ξ7)(x− ξ9) = wz . (2.253)

Indeed, this deformation give rise to linear terms for all the adjoint fields, and masses for
some of the quarks. The new superpotential contribution is 18

∆W = ξ1q23q32 + ξ5q34q43 + ξ7q56q65 + ξ9q110q101− ξ1X11 − ξ5X55− ξ7X77− ξ9X99 . (2.254)

17We set to zero only not consecutive nodes.
18Other choices for the masses of the quarks are possible, and all of them lead to metastability.
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We now set to zero the third, the sixth and the tenth node. In this way we decompose the
theory in three different metastable sectors. The first two sectors have the same structure
of L333, whereas the last sector is like the theory emerging from a L222. In short we have
decomposed the L555 as L222 and L333.

Supersymmetry restoration is achieved in each sector separately. From the geometric
point of view this transition is read as an ε deformation of (2.253) to

x2y2((y − ξ1)x− ε1)(y(x− ξ5) − ε2)((y − ξ7)(x− ξ9) − ε3) = wz (2.255)

where the three εi take into account the deformations on the moduli space imposed by
the strong dynamics of the three groups that we considered as gauge groups. Using
the geometric techniques of Appendix A.4 it is possible also in this case to recover the
correct low energy behavior in the supersymmetric vacua. The three different deformation
parameters εi are interpreted as the three glueball fields of the three gauge groups.

Back to Laba

Up to now we have found metastable vacua in all the Laaa theories (with a > 1) and in
Laba with the constraint b − a > a. The study of the Laaa theories gives us a way out
from the constraints imposed on Laba. If we have an Laba theory with b− a < a we have
indeed to look for a different Seiberg phase. Given an Laba theory one can find a dual
theory with at most b + a− 2 adjoint fields, instead of b− a.

We proceed in a simple example: the L343 theory. A Seiberg duality on the fourth
node gives the quiver in figure 2.26. By adding a linear deformation for each adjoint field,

Figure 2.26: L343 theory with a Seiberg duality on the fourth node.

the geometry becomes
x2y2(y − ξ1)(x− ξ2)(y − ξ3) = wz . (2.256)

We can now set some node to zero and obtain a set of decoupled theories with a metastable
IR behavior. A possible choice is shown in figure 2.26, where we set to zero the white
nodes. We have broken up L343 theory in two sectors: the first one has the same property
of metastability of L121, and the second one of L222, the double conifold.

Supersymmetry is restored by the geometric ε deformation 19

xy((y − ξ1)x− ε1)(x− ξ2)(xy − ε2)(y − ξ3) = wz (2.257)

through the strong dynamics of the gauge group in each decoupled sector.

19Note that in this case we chose massless quarks in the last two lines of the quiver.
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Beyond the Laba cases

In the previous paragraphs we performed metastable supersymmetry breaking in the
family of Laba singularities. An immediate generalization is the embedding of Laba in
larger singularities and the recovering of metastable dynamics in the IR.

We need to start with a UV quiver gauge theory and flow by way of the renormalization
group to a set of gauge theories with fewer gauge groups. These theories are decoupled
at low energy, and they keep at least one Laba singularity. These singularities trigger
metastability in the IR.

In the RG flow to the IR two different decouplings are possible, the resolution and the
deformation of the mother singularity.
Blowing up two spheres gives first the resolution of the mother singularity. The daugh-
ters singularities are geometrically separated by the volume of these two spheres. This
corresponds to the motion in the Kahler moduli space of the singularities.
The second one, the deformation, is achieved by blowing-up three spheres. Here the sin-
gularities are separated by the volume of the three spheres.
In both cases the IR theories decouple at the level of massless states and the masses of the
messenger fields are controlled by the volume of the two and three spheres respectively.
We now describe these two possibilities by proceeding with pictures and examples.

The graphical resolution of a singularity in the toric language corresponds to drawing
a line in the toric diagram (the red line in our figures) and a perpendicular line in the
dual diagram (the dashed line). This last line parametrizes the volume of the two sphere
(see Figure 2.27).

(b)(a)

Figure 2.27: The toric resolution of the double conifold: L222. (a) The toric diagram
representation, (b) the dual diagram: the broken red arrow parametrize the volume of
the blown up two sphere.

A natural laboratory for these constructions is the family of Pseudo del Pezzo singu-
larities PdPn. These are complex cones over P2, blown up at n non-generic points. This
blowing up generates lines of singularities passing trough the tip of the cones (Figure
2.28).

In the PdP4 and PdP5 singularities it is possible to recover two of the singularities
that show a metastable behavior, L121 (SPP ) and L222 (double conifold), through the
resolution of the singularities as shown in Figure 2.29. We first assign a set of fractional
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(b)(a)

Figure 2.28: The toric diagrams and the dual diagrams for (a) PdP4 and (b) PdP5.

(b)(a)

Figure 2.29: Resolutions of (a) PdP4 and (b) PdP5.

branes to the mother singularity such that it reproduces, at least for one of the daughter
singularities, the set of fractional branes that has metastable non supersymmetric vacua.
We turn then on Kahler moduli deformations, decoupling in the IR one L121 and one
L222 singularities from the PdP4. For the PdP5 singularity we can decouple two L222

singularities. In each situation the two decoupled IR theories are separated at the level
of massless states 20. Finally, metastable supersymmetry breaking can be realized, since
we can deform the A1 singularities belonging to one or to both the IR theories.

The other possibility for the decoupling of a mother singularity is the deformation (see
section 2.4 for a graphical description). It furnishes a second embedding of L121 and L222

into PdP4 and PdP5. These configurations are described in Figure 2.30.
We have to distribute the fractional branes at the mother singularity in such a way

that they lead to the complex moduli deformation. Gaugino condensation is then induced
by the strong dynamics of some gauge groups. This decoupling leads to the remaining
daughter singularities in the IR, and, in this case, we are left with L121 and L222. We can
move in the complex moduli space deformations of the non local singularity, reproducing
the supersymmetry breaking behaviour of the Laba theories.
The advantage of this procedure is that the moduli associated with the volumes of the
three spheres are automatically stabilized by the strong IR gauge dynamics. The draw-

20As discussed in [72] using Kahler moduli space deformations it is possible to compute the mass of
the “messenger particles” but the Kahler moduli remain free parameters to be stabilized in some way.
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(b)(a)

Figure 2.30: Deformations of (a) PdP4 and (b) PdP5.

back is that the computation of the masses of the messenger sector is not straightforward.

Following the two procedures explained in this section and the methods developed in
[72] many examples, useful for model building, can be studied.

There exist conical singularities that provide extensions of MSSM as the IR limit of
the dynamics of D3 branes put at the tip of the cone. The easiest example is given by
D3 branes at dP0 singularity.

Here, by using either Kahler moduli deformations or complex moduli deformations, it
is possible to separate a singularity into a dP0 sector and some Laba sector. In the IR,
dP0 is an extension of the MSSM, Laba is the hidden supersymmetry breaking sector, and
the massive fields are the messengers. It is possible to find many examples of singularities
that, after the resolution, decouple in a MSSM like sector and in a hidden supersymmetry
breaking sector, also metastable. We show here two possibilities.

The first one, in Figure 2.31, admits a resolution that decouples in the IR a dP0 and
two SPP singularities. The dP0 plays the role of phenomenological sector, while the two
SPP singularities play the role of supersymmetry breaking hidden sectors. The second
one, in figure 2.32, admits a complex deformation. It decouples a dP0 sector and a single
SPP sector. In this section we discussed the geometric interpretation of metastable
vacua for systems of D3 branes at non isolated deformable toric CY singularities. We
have generalized the analysis done in [10] to the infinite family of Laba singularities and
we have proposed the embedding of these theories in bigger singularities. The dynamical
generation of the ξ deformation which sets the scale of the supersymmetry breaking is
still an open problem. Since much is known about the metric of the Laba spaces, another
challenging question regards metastability in the gauge/gravity correspondence. The
models here studied may play the role of hidden sector in mechanisms of gauge mediation
of supersymmetry breaking [73] in metastable vacua [74].
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(b)(a)

Figure 2.31: The resolved toric diagram (a) and the dual diagram (b). The triangle at the
bottom is the dP0 singularity that represents the “visible sector”, the polygon on the top
are two decoupled SPP singularities that represent the supersymmetry breaking sector.

(b)(a)

Figure 2.32: (a) The toric diagram of the mother singularity and (b) the deformed dual
diagram that contain the dP0 visible sector and the SPP supersymmetry breaking sector.

2.5 Metastable vacua at two loop

In section 2.1 we discussed the relation between supersymmetry breaking and spontaneous
R-symmetry breaking. We reviewed the known results at tree level and at one loop.
Here we propose a mechanism for spontaneous R-symmetry breaking in supersymmetry
breaking vacua through two loop effects. In [28] two loop corrections were shown to
destabilize an R-charged field at the origin of the pseudomoduli space. Then the addition
of a small tree level effect stabilize this field in the large vev region, breaking R-symmetry.

Here we look for models with spontaneous R-symmetry breaking at two loop. This
breaking occurs when an R-charged field gets a vev only from the two loop effective
potential. We show that different couplings in the superpotential lead to different signs
for the two loop mass. The strategy is to combine these contributions to give non zero
vev to the R-charged field.
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I J m2
Z

1 4 h6µ2(log 4 − 1 − π2

6
) < 0

1 5 h6µ2(log 4 − 1) > 0

2 4 h6µ2(log 2 − 1 + π2

12
) > 0

2 5 h6µ2(log 2 − 1) < 0

Table 2.1: Two loop squared mass for Z.

One loop flat directions

Here we present the class of models we consider through this section. They are theories
of pure chiral fields with canonical Kahler potential and with a renormalizable superpo-
tential. We study two loop corrections in models with spontaneous breaking of supersym-
metry. The most natural way consists in coupling an O’Raifeartaigh sector to another
bunch of fields through three-linear couplings. This implies that the one loop corrections
lift the potential for the O’Raifeartaigh field but do not lift pseudomoduli space of the
other sector. The superpotentials we consider are

W = h

(
−f

2
X +Xφ2

1 + µφ1φ2 + φIρξJ + Zξ2
4 + µξ4ξ5

)
(2.258)

where I = 1, 2 and J = 4, 5.
The supersymmetry breaking vacuum is at the origin of the moduli space. The fields

φ2 and ξ4 and ξ5 have positive squared mass h2µ2. The field φ1 splits its mass in h2µ2 ±
h2f , for its real and imaginary component. The other fields are pseudomoduli. The
pseudomodulus X is stabilized at one loop at the origin. The pseudomodulus ρ is also
stabilized at one loop at the origin, when I = 1, i.e. when it is directly coupled in the
three-linear term with the field φ1 which has a mass splitting. For the case with I = 2 we
add a mass term for the field ρ, to avoid tachyons

∆WI=2 = mρ2 (2.259)

with m� µ.
The pseudomodulus Z is not lifted at one loop and a two loop analysis is required.

In the Appendix A.6 we give the details of the calculation. We summarize in Table 1
the results for the two loop mass of the field Z, at order o(m) for the cases I = 2. The
model (I, J) = (1, 4) gives the same result than [28]. In fact it is the same model of
pure chiral fields. Then, the explicit calculation shows that the model with (I, J) = (2, 5)
has a runaway behaviour, while the two loop potential for the Z field in the models
(I, J) = (1, 5) and (I, J) = (2, 4) has a stable minimum at the origin and the potential
increases in the large field region.

The model (I, J) = (1, 4) has the bad behaviour discussed in the surveying of [34].
Methods of [34] can be generalized for the other three models as well. For the case with
I = 4 the beta function of the mass term µφ1φ2 has to be taken into account. Moreover,
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X φ1 φ2 φ4 φ5 φ6 φ7 φ8 Z
U(1)R 2 0 2 3 -1 1 1 3 -4
Z2 0 π π 0 0 0 π π 0
Z2 0 π π π π π 0 0 0
Z2 0 0 0 π π π π π 0

Table 2.2: U(1)R and Z2 charges of the fields.

in the cases with J = 5, the field ξ5 does not decouple at large Z, and the term φIρξJ
affects the effective potential for long RG time (i.e. large Z). In all the cases this analysis
gives the same qualitative behaviour than our explicit computation21.

One can also notice that under the exchange ξ4 ↔ ξ5 the quadratic mass for the Z
field changes sign. This change corresponds to an opposite R-symmetry charge for the
field Z. Connecting the behaviour of the two loop potential for Z with its R-charge is an
interesting question that we leave for future investigation.

Breaking R-symmetry at two loop

In Table 2.1 we observe that masses of different signs are related to different three-linear
couplings between the φi and the ξi sector. Combining these contributions we can generate
a two loop potential for the field Z which stabilizes it, but not at the origin. In the
following we study a model with several three-linear couplings. The field Z acquires a
non trivial vev 〈Z〉 6= 0 in the true quantum minimum at two loop. The model has a tree
level R-symmetry, and the field Z has a non trivial R-charge, then the R-symmetry is
spontaneously broken by the two loop corrections.

The basic example

In this section we present the model that breaks supersymmetry and perturbatively R-
symmetry at two loop. The superpotential is

W = −hf
2
X+hXφ2

1+hµφ1φ2+hαφ1φ7φ6+hβφ1φ8φ5+hγφ2φ7φ5+h Zφ
2
4+hµφ4φ5+hµφ

2
6

(2.260)
where h is a marginal coupling, and α, β and γ are numerical constants. All the couplings
can be made real with a phase shift of the fields.

We give in Table 2.2 the R charges and the Z2 discrete symmetries. These global
symmetries and renormalizability constraints the theory to the form (2.260), except for
three terms Zφ2

8, µφ
2
7, Xφ5φ6. In the limit f → 0 the theory admits a U(1) global

symmetry which forbids the terms Zφ2
8, µφ

2
7. The term Xφ5φ6 has to be tuned to zero.

It cannot be forbidden even introducing global symmetries involving the couplings, to be

21We are grateful to Ken Intriligator for explaining us how to analyze these cases with the techniques
of [34].
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Figure 2.33: Scalar potential for φ7 at the origin. The ratio α/γ is respectively 2, 1, 0.9,
0.8 and 0.7 from the red to the yellow curve.

thought as spurion fields. A possible solution to this tuning is discussed at the end of this
section.

There is a supersymmetry breaking vacuum at the origin of the moduli space. Around
this vacuum the fields φ2, φ4, φ5 and φ6 have positive squared mass h2µ2. The field φ1

splits its mass in h2µ2 ± h2f , which are both positive for y = |f/µ2| < 1. The other fields
are pseudomoduli, and their squared mass spectrum has to be analyzed by looking at the
loop expansion of the scalar potential.

One loop corrections

The one loop corrections lift the X and φ8 directions and set 〈X〉 = 0 and 〈φ8〉 = 0, with
positive squared masses

m2
X =

16h4

f

(
−2µ2f−8µ2f log[hµ]−(µ2 − f)2 log[h2(µ2−f)] + (µ2 + f)2 log[h2(µ2 + f)]

)

m2
φ8

=
|β|2
4
m2
X (2.261)

The fields φ7 is also stabilized at the origin but this direction can develop a runaway
behaviour to be analyzed. First note that this pseudomoduli space is stable for

|〈φ7〉| <
µ

γ

√
1 − y

y
(2.262)

Figure 2.33 then shows for which values of the ratio α/γ the one loop mass of φ7 is
positive, after fixing f/µ2 = 0.5 (all the other choices with y < 1 are possible). We choose
the ratio α/γ to stabilize the field φ7 at the origin. For φ7 larger than (2.262) the theory
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has a runaway behaviour, parametrized by φ7 → ∞,

φ1 ∼
√
f

2
φ2 ∼

√
f

2

α2

2γµ2
φ2

7 φ4 ∼ 0 φ5 ∼
√
f

2

µ

γ

1

φ7
φ6 ∼

√
f

2

α

2µ
φ7

φ8 ∼
α2

2βµ2
φ3

7 X ∼ α2

2γµ
φ2

7 Z ∼
√
f

2

µ2

γ

1

φ4φ7

(2.263)

Two loop corrections

The potential for the field Z is not lifted at one loop, and a two loop analysis is necessary.
Considering Z as a background field, the masses of φ4 and φ5 mix. We diagonalize the
fermionic mass matrix for these two fields. The rotation is

φ4 = −sθρ4 + cθρ5

φ5 = cθρ4 + sθρ5 (2.264)

where

sθ2 =
h2µ2 − λ2

−
λ2

+ − λ2
−

(2.265)

and

λ2
∓ =

h2

2

(
Z2 + 2µ2 ∓ Z

√
Z2 + 4µ2

)
(2.266)

The contributions to the two loop effective potential for Z are computed with the same
strategy of [28], which is reviewed in Appendix A.6. The three contributions are given in
Figure A.6 and are called VSS, VSSS and VFFS. We found

VSS = h2β2cθ2
(
fSS(h

2(µ2 − f), λ2
−) + fSS(h

2(µ2 + f), λ2
−) − 2fSS(h

2µ2, λ2
−)
)

+
(
cθ2, λ− ↔ sθ2, λ+

)

VSSS = h4µ2(sθ2β2 + cθ2γ2)(fSSS(0, h
2(µ2 − f), λ2

−) + fSSS(0, h
2(µ2 + f), λ2

−)

−2fFSS(0, h
2µ2, λ2

−)) +
(
sθ2, cθ2, λ− ↔ cθ2, sθ2, λ+

)

VFFS = h2(β2cθ2)(fFSS(0, λ
2
−, h

2(µ2 − f)) + fFSS(0, λ
2
−, h

2(µ2 + f))

−2fFSS(0, λ
2
−, h

2µ2)) +
(
cθ2, λ− ↔ sθ2, λ+

)
(2.267)

Expanding the two loop effective potential for small Z, the mass term at the origin is

m2
Z = h6µ2(β2f(τ 2) − γ2g(τ 2)) (2.268)

where

τ 2 = f/µ2 (2.269)

f(x) = −2 − (1 − x)2

x
log(1 − x) +

(1 + x)2

x
log(1 + x)

g(x) = 2 +
(1 − x)

x
log(1 − x) − (1 + x)

x
log(1 + x) (2.270)
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. The region of interest is the one below the curve.

and the functions f(x) and g(x) are positive for x < 1. There is a regime of the parameters
for which this mass term is negative. This happens in the region where

β

γ
<

√
g(τ 2)

f(τ 2)

as in Figure 2.34. In such a regime of the parameter we look for a minimum of the two loop
scalar potential. We indeed observe in Figure 2.35, by plotting the scalar potential, that
there is a choice of the ratio β/γ where the scalar potential has a minimum at 〈Z〉 6= 0.

We can then conclude that the model (2.260) spontaneously breaks R-symmetry at
two loop in a non supersymmetric (metastable) vacuum. All the tree level flat directions
of the scalar potential are lifted by quantum effects. The vacuum is metastable because
the field φ7, which acquires positive squared mass around the origin through one loop
corrections, develops a runaway in the large vev region. The effective potential for φ7

has to be analyzed to estimate the lifetime of the vacuum. We found a supersymmetry
breaking model in which R-symmetry is spontaneously broken at two loop in the scalar
potential. It is a model of pure chiral fields without any gauge symmetry. There is
a tuning in the superpotential, since we did not consider all the terms invariant under
the global symmetries of the theory. Adding the allowed term should spoil some of the
infrared properties, i.e. supersymmetry breaking.

The tuning problem can be solved by embedding the superpotential in a quiver gauge
theory. In this case the pure chiral fields model has to be considered as the effective
theory around the non supersymmetric vacuum found at tree level in the gauge theory,
as in [2]. This embedding might also stabilize the runaway behavior in the large field
region, where strong dynamics effects of the gauge groups add non perturbative terms to
the superpotential.

Moreover, this two loop analysis can be applied to many models with metastable
vacua. In most of them an approximate R-symmetry exists at such vacua. Two loop
effects can offer a solution for this problem. Indeed, as in the model we studied, we can
couple the theory to an R-charged pseudomodulus that receives two loop corrections from
the supersymmetry breaking sector. This field can acquire a quantum scalar potential
that breaks spontaneously R-symmetry.
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Figure 2.35: Scalar potential for Z, plotted for different values of the ratio β/γ, respec-
tively 0.7, 0.65, 0.6 and 0.55, from left to right. The ration f/µ2 has been chosen to be
0.5

Another possibility is to build a model with a “tension” between the one loop and the
two loop contributions for some pseudomoduli. This competition could shift the minimum
from the origin, breaking R-symmetry. In [28] the one and two loop corrections in the ISS
model with a mass hierarchy among the fundamental fields have been studied. However
in that case one can check that the quantum corrections lead to a runaway, without any
local minimum, and then restore supersymmetry. It would be interesting to find models
where the combination of one loop and two loop quantum corrections lead to metastable
vacua.
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34

Figure 2.36: Quiver for the superpotential (2.271).

Embedding in quiver gauge theories

A possible embedding in quiver gauge theory is a four U(1) nodes theory (note that also
non-abelian groups are admitted) with superpotential

W = q
(1)
12 q

(1)
21 X11 − fX11 + µ

(
q
(1)
12 q

(2)
21 + q

(2)
12 q

(1)
21

)
+ q

(1)
21 q

(7)
14 q

(6)
42

+ q
(1)
12 q

(6)
24 q

(7)
41 + q

(2)
21 q

(7)
14 q

(5)
42 + q

(2)
12 q

(5)
24 q

(7)
41 + q

(1)
21 q

(8)
14 q

(5)
42

+ q
(1)
12 q

(5)
24 q

(8)
41 + q

(4)
23 Z33q

(4)
32 + q43q

(4)
32 q

(5)
24 + q

(5)
42 q

(4)
23 q34 + q34Y44q43 − µ2Y44 (2.271)

The quiver is shown in Figure 2.36. The upper scripts map the fields in (2.271) with the
corresponding fields in (2.260). The fields q34 and q43 get a vev µ from the equation of

motion of the field Y44. This gives a mass term for the fields q
(4)
32 q

(5)
24 and q

(5)
42 q

(4)
23 , as in

(2.260).
In this model the requirement of gauge invariance forbids the dangerous term Xφ5φ6

that we discussed in section 2.5.
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Chapter 3

Stringy instantons

Instantons are responsible for non-perturbative phenomena in 4D gauge theory and have,
by now, found meaningful roles in string theory as well. Relevant work [15] has been
done in different branches. It has been shown that instantons in string theory generate
non perturbative contributions to the superpotential [16, 18, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87] and higher F-term contributions [88, 89, 90, 91, 92]. Moreover
they have a role in model building, since they can be responsible for moduli stabilization
[93, 94, 95] and for other phenomenological aspects like neutrino masses, supersymmetry
breaking and gauge mediation [30, 58, 96, 97, 98, 99, 100, 101, 102]. Other results are
found by adding fluxes [103, 104, 105, 106] and more generally by looking at the string
compactification scenarios [107, 108, 109, 110, 111, 112, 113, 114, 115].

One distinguishes between ordinary D-brane instantons and stringy D-brane instan-
tons. Ordinary D-brane instantons are euclidean D-branes wrapping cycles in the geom-
etry occupied by other space time filling D-branes. They reproduce ordinary instantons
effects for the gauge theory living on the space time filling D-branes. Stringy D-brane in-
stantons are euclidean branes wrapped over cycles in the geometry which are not occupied
by any space-time filling brane.

In this chapter we explain the role of Seiberg duality in connecting the contribution of
a class of stingy instanton to N = 1 quiver gauge theories. These contribution were called
exotic, since they did not seem to have an explanation in term of gauge theory. Indeed,
looking at the four dimensional quiver gauge theories as theories of regular and fractional
D3 branes at CY singularity, the stringy instanton are D(−1) branes wrapped on cycles
with no D3. Since a D(−1) is believed to be an instanton for a D3, there is no reason
to expect a contribution in the superpotential from this construction. Nevertheless, by
explicit calculation, it has been shown that this contribution exists. For this reason this
contribution has been called exotic.

Here we explain that the this contribution corresponds to the classical constraint on
the moduli space of a gauge theory with Nf = Nc+1. This is the limiting case of Seiberg
duality and we have already discussed it in section 1. In this way we can connect the low
energy theory with the theory one step below in the cascade, connecting the instanton
contributions with the strong dynamics effects.
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In the following we first review the ADHM construction of N = 4 instantons using
branes. In this picture instantons are D(−1) branes on D3 branes, which represents the
U(N) gauge theory. This brane construction is useful in the calculation of the instanton
action of four dimensional theories with less amount of supersymmetry. Indeed, by ap-
plying orbifold and higgsing procedure, one can calculate the action of many theory at
CY singularity. Here we concentrate on toric quiver gauge theories. The knowledge of the
action is enough to calculate the general form of the contribution of the stringy instan-
tons to these quiver gauge theories. We see that these theories, that admit a cascading
behavior, have some regime without regular branes. Nodes with 1 fractional brane (in the
unitary case) or 0 branes (in the symplectic case) give rise to exotic contributions in the
superpotential. We show that they are not exotic, if they are thought at higher steps in
the cascade.

3.1 D-instantons

D-instantons are D(−1) branes located on D3 branes. Their contribution is determined
by the collective coordinate measure. The collective coordinate are given by the massless
states in the open string spectrum. For a generic Dp brane the collective coordinates
come from the reduction of a U(1) vector multiplet from ten to p + 1 dimensions. After
the dimensional reduction the ten dimensional gauge field Aµ, µ = 1, . . . , 9, gives raise
to a p + 1 dimensional gauge field and 9 − p real scalars. Moreover the ten dimensional
multiplet contains a Majorana-Weyl fermion that has to be opportunely reduced.

In the case of k separated parallel D-branes instantons there are k copies of collective
coordinates, and the gauge group is U(1)k. If some of the D-branes are coincident a part
(or at least all) of the gauge group becomes non abelian and the low energy theory is
obtained from dimensional reduction from the ten dimensional action. It is

S
(10)
k =

1

g2
10

∫
d10xtr k

(
1

2
F 2
µν + iλΓµDµΨ

)
(3.1)

with DµΨ = ∂µΨ− i[Aµ,Ψ]. The Γ matrices compose the ten dimensional Euclidean Clif-
ford algebra (see appendix B.1) The instanton contribution to string theory is calculated
by integrating over the collective coordinates. This is similar to the quantum field the-
ory calculation. Indeed the instantons contribute to correlation functions through their
saddle-point contribution to the (Euclidean) path integral, but in the semiclassical limit
the path integral reduces to an ordinary integral over the instanton moduli. Analogously
here, a charge-k instanton contributes via the partition function

Zk =
1

V olU(k)

∫

U(k)

d10Ad16Ψexp(−Sk) (3.2)

and the contribution of the integral to the correlators of the low energy supergravity fields
can be interpreted as instanton induced vertex in the low energy effective action. The
position xµ is the location of the vertex itself.

111



The contribution of D-instantons to four dimensional gauge theory are calculated after
determining how the D-instanton measure is modified by the presence of D3 branes. The
dynamics of N D3-branes in flat spacetime in Type IIB give raise to N = 4 gauge theory,
with gauge group U(N). Yang-Mills instanton in the gauge theory is equivalent to a
D-instantons placed on the D3-branes. In general a Dp brane placed on a D(p+ 4) brane
is an instanton p-brane for the gauge theory living on the D(p+4) brane. Here we review
the case of D5 instantons placed on D9 brane in type I, and then obtain the D3/D(−1)
case via dimensional reduction

In six dimensions it has N = (1, 1) supersymmetry (two Weyl supercharges, with
opposite chirality). The Lorentz group is now SO(10) → SO(1, 5) × SO(4), i.e. the
six dimensional Lorentz and R-symmetry. The ten dimensional gauge field AM and the
Majorana-Weyl fermion are decomposed as

AM = i

(
χa,

1

2πα′a
′
n

)
a = 1, . . . , 6 n = 1, . . . , 4 (3.3)

Ψ =
1

2πα′

(
1
0

)
⊗
(

1
0

)
M′A

α +

(
0
1

)
⊗
(

0
1

)
λα̇a A = 1, . . . , 4 α, α̇ = 1, 2

where both χa, adjoint scalars, and a′µ, a six dimensional gauge fields, are Hermitian. The
fermion Ψ has been decomposed under the covering group of SO(1, 5)× SO(4), which is
SU(4) × SU(2)L × SU(2)R. Using A = 1, . . . , 4 as a spinor index for SO(4) and α, α̇ as
spinor indexes for the two SU(2)’s, the Majorana-Weyl spinor Ψ is decomposed as in the
(4, 2, 1) and in the (4̄, 1, 2) representations. This shows that the two fermions M′ and λ
have opposite chirality. The fields (χa, a

′
n,M′A

α , λ
α̇
a ) form a vector multiplet of N = (1, 1)

in six dimensions.The action of the dimensional reduced theory is

S =
1

g2
6

(
Sgauge +

1

4π2α′2S
(a)
matter

)
≡ 4π2

g2
p+5

(4π2α′2Sgauge + S
(a)
matter) (3.4)

where the last relation holds since g2
p+5 = (2π)4α′2g2

p+1.

Sgauge =

∫
d6ξtr k

(
1

2
F 2
ab − iΣaABλADaλB +

1

2
D2
mn

)
(3.5)

and

S
(a)
matter =

∫
d6ξ tr k

{
Daa′nDaa

′
n −

i

4
Σ̄a
ABMADaM′B − i[M′αA, a′αα̇]λ

α̇
A + i ~D · ~τ α̇

β̇
ā′β̇αa′αα̇

}

(3.6)
where D is a covariant derivative, D transforms in the adjoint representation of SU(2)R
and we have defined Dmn = −Dcη̄cmn. The Σ matrices have been defined in appendix B.1.

After that, one introduces the N D9 branes, whose world volume theory is U(N)
supersymmetric Yang-Mills in ten dimensions. In the effective action there is a coupling
[116] between the two-form F (the field strength of the gauge field) and a six-form RR
field C(6). This coupling is given by the ten dimensional integral

∫
C(6) ∧ F ∧ F (3.7)
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The six form C(6) couples also with the RR charge carried by the D5 branes, i.e. U(N)
gauge fields act as a source for D5-brane charge. The D5 is interpreted as an instanton
on the D9.

The system of D5/D9 branes breaks the N = (1, 1) supersymmetry down to the
N = (0, 1) sub-algebra, with a vector multiplet (χa, λ

α̇
a ) and a scalar adjoint, (a′n,M′A

α ).
There are new hyper-multiplets of N = (0, 1), in the bifundamental representation of
U(k) × U(N). There are two complex scalars wuiα̇, with α̇ = 1, 2, and i and u are
respectively fundamental of U(k) and U(N). Each hyper-multiplet contains a pair of
complex Weyl spinors, µAui and µ̄Aiu. The action is

S
(f)
matter =

∫
d6ξ tr k

{
−Daw̄α̇Dawα̇−

i

2
Σ̄a
ABµ̄

ADaµ
B− i

(
µ̄Awα̇+ w̄α̇µ

A
)
λα̇A+ i ~D ·~τ α̇

β̇
w̄β̇wα̇

}

(3.8)
The complete action is

S =
4π2

g2
p+5

(
4π2α′2Sgauge + S

(a)
matter + s

(f)
matter

)
(3.9)

One conclude that the six-dimensional fields are the collective coordinates of the D5-
branes. The vacuum moduli space of the U(k) gauge theory on the D5 branes represent
the ADHM construction of the supersymmetric k-instanton moduli space of N = 4 SYM.

The ADHM constraints are also recovered in this formalism. Indeed the D term
equations are the bosonic ADHM constraints

α′2 ~D =
i

16π2
~τ α̇
β̇

(
w̄β̇wα̇ + ā′

β̇α
a′αα̇

)
= 0 (3.10)

The ADHM fermionic constraint are found after an integration on the fermionic zero
mode λA. Indeed this integration leaves a delta function that imposes

µ̄wα̇ + w̄α̇µ+
[
M′α, a′αα̇

]
= 0 (3.11)

This last is exactly the ADHM fermionic constraint.
The D3/D(−1) system is recovered from this D9/D5 system by a dimensional reduc-

tion. The contribution of k D-instantons to the correlation functions of the low energy
fields in presence of N D3 branes is given by the partition function

Zk =
1

V ol(U(k))

∫
d6ξd8λd3Dd4a′d8Md2wd2w̄δ4µd4µ̄s−S (3.12)

The action is calculated by dimensional reducing (3.9) to zero dimensions. One find

SG = tr k

{1

2
[χa, χb]

2 − ΣAB
a λA[χa, λB] − 1

2
D2
mn

}

SK = tr k

{
− [χa, a

′
n]

2 + χaw̄
α̇wα̇χa −

1

4
Σ̄aABM′αA[χa,M′B

α ] +
1

2
Σ̄aABµ̄

AµBχa

}

SD = tr k

{
− i ~D · ~τ α̇

β̇

(
w̄β̇wα̇ + ā′β̇αa′αα̇

)
+ i
(
µ̄Awα̇ + w̄α̇µ

A + [M′Aα, a′αα̇]
)
λα̇A

}
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This construction ends once we consider the N = 4 theory on its Coulomb branch, i.e.
the N D3 branes separate in the six dimensional transverse space. The lengths of the
strings stretched between the D-instantons and the D3-branes changes and this process
introduces a mass term for the fundamental hypermultiplets. This displacement gives
raise to an interaction of the sector charged under the gauge group and the scalars of the
gauge theory. This part of the action is

SC = tr

(
w̄α̇X

aXaw
α̇ +

i

2
(Σ̄a)ABµ̄

AXaµ
B

)
(3.13)

For the N = 1 application is more useful a notation in term of explicit SU(4) indexes,then
broken into SU(3) representations. The six scalars in the antisymmetric representation
of SU(4) are

XAB = −XBA = (Σ̄a)AB (3.14)

and with the action becomes

SC = tr

(
1

8
εABCDw̄α̇XABXCDw

α̇ +
i

2
µ̄AXABµ

B

)
(3.15)

The breaking into SU(3) splits the index A as A = (i, 4), and one can identify the scalars
of N = 4 as Φ†

i = Xi4 in the 3̄ and Φi = 1
2
εijkXjk in the 3. In term of these field the

action for this part of the charged sector becomes

Sc = tr

(
1

2
w̄α̇Φ

i,Φ†
iw

α̇ +
i

2
µ̄iΦ†

iµ
4 − i

2
µ̄4Φ†

iµ
i +

i

2
εijkµ̄

iΦjµk
)

(3.16)

where we have distinguish the fourth component of the fields µ and µ̄ as µA = (µi, µ4)
and µ̄A = (µ̄i, µ̄4). The same distinction in term of SU(3) representations can be done
for the other fields with the index A. Finally also the six real fields χa can be written in
term of the fields si i = 1, 2, 3, which are their complexification

The ADHM limit

In order to recover the same results of ADHM construction in gauge theory we still have
to set α′ → 0. Indeed the collective integral depends explicitly from α′ via the kinetic
term of the vector multiplet. Correlation functions will have a non trivial expression in
terms of the α′. This is not possible in the pure gauge theory construction. This implies
that the decoupling of gauge theory from gravity is necessary, and it is done by taking
the limit α′ → 0.

3.2 A general action for instanton in toric quiver

gauge theories

Once the action for the N = 4 theory is known, one can extend the calculation to
theories with a lower amount of supersymmetry. In this section we explain a procedure
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studied in [17], that calculates the multi-instanton action for a generic N = 1 toric
quiver gauge theory. Through many examples it is possible to extrapolate the general
behavior of the action of the bosonic and fermionic zero modes in the neutral and charged
instantonic sector. For the charged sector, a general rule, in term of the superpotential
of the associated quiver gauge theory is given by generalizing the rules of [17, 18].

Before going on we reorganize the N = 4 instanton action in three sectors as in [17]

S1 = tr
{
− [am, s

†
i ][a

m, si] − i

2

(
Mαi[s†i ,M

4
α] −

1

2
εijkM

αi[sj,Mk
α ]
)

+ i
(
µ̄iωα̇ + ω̄α̇µ

i + σmβα̇[M
βi, am]

)
λα̇i + i

(
µ̄4ωα̇ + ω̄α̇µ

4 + σmβα̇[M
β4, am]

)
λα̇4

− iDc
(
ω̄α̇(τ c)β̇α̇ωβ̇ + iη̄cmn[a

m, an]
)}

(3.17)

A second part of the action, involving the Φi fields is

S2 = tr
{1

2

(
ω̄α̇Φ

i + siω̄α̇

)(
Φ†
iω

α̇ + ωα̇s†i

)
+

1

2

(
ω̄α̇Φ

†
i + s†i ω̄α̇

)(
Φiωα̇ + ωα̇si

)

+
i

2
µ̄i
(
Φ†
iµ

4 + µ4s†i
)
− i

2
µ̄4
(
Φ†
iµ

i + µis†i
)
− i

2
εijkµ̄

i
(
Φjµk − µjsk

)}

(3.18)

The last term is

S3 = tr
{1

2
D2
c −

i

2

(
λα̇i[s

i, λα̇4 ]− 1

2
εijkλα̇i[s

†
j, λ

α̇
k ]
)

+ [si, sj][s†j, s
†
i ] +

1

2
[si, s†i ][s

j, s†j]
}

(3.19)

The last sectors is usually suppressed in the limit α′ → 0, but here it plays a crucial role.
The techniques necessary for the calculation of the instanton action in this framework

are the action of orbifold group and the higgsing procedure. The orbifold that acts on
the N = 4 gauge theory is mapped to the whole instanton sector, giving the action for
all these theories (e.g. C2/Z2, C2/(Z2 × Z2) etc . . . ). Then one can come through the
orbifold limit and obtain the action for all the toric singularities, via the higgsing.

In this supersymmetric scenario the higgsing takes place through the partial resolution
of the singularity, which means that some FI is switched on in the GLSM associated to
the singularity. Some of the fields of the theory acquire a vev, and some fields become
dynamically massive, because of this vev. The massive fields are integrated out and the
effective action is the one describing the non-orbifold toric singularity.

This is a standard procedure in the analysis of toric quiver gauge theory. In [17] the
authors has shown how this procedure applies to give raise to the correct action for the
instanton zero modes. By inspection one notes that some care is necessary in the mapping
of the partial resolution to the neutral instanton sector. Indeed some consistency check
show that a FI term ξ for a chiral field Φ of the gauge theory has to be reproduced by a FI
term −ξ for a field χ in the associated neutral instanton sector. Otherwise the integration
out procedure cannot take into account all the orders in the Gaussian integral, and for
consistency an opportune scaling limit is considered.

115



Without describing the details of the calculation we here review the general behaviour
of the instantonic action for toric quivers.

A first observation is based on the behaviour of the fields after the orbifold projection.
The same structure of the fields Φi is acquired by the fields si,M i, λi, µ

i and µ̄i. Otherwise
the fields am, D

c, w, w̄,M4, λ4, µ4, µ̄4 are block diagonal and their behaviour does not
change after the projection.

Another important remark is the role of the FI in the SG action. The commutator
[si, s†j] is changed in [si, s†j] − ξ and this change in the SG action is important (although
this action vanishes in the ADHM limit, this term is important in the higgsing procedure).

We can now discuss explicitly what happens in (3.17) and (3.18). The first term
changes only via the orbifold projection, but the equation of motion and the new inter-
actions do not alter it. This is constituted by a neutral sector that is totally unchanged
and by a charged sector. For every pair of nodes a and b for which the relevant field exist,
there are the couplings

ω̄aaΦabΦ
†
baωaa, ω̄aaΦ

†
abΦbaωaa, µ̄aaΦ

†
abµba, µ̄abΦ

†
baµaa (3.20)

Differently the second term, S2 is strongly constrained from the interactions. Indeed
one sees that, if one has a term tr Φ12Φ23Φ34Φ41 in the superpotential, then in the charged
sector some new term arise

tr
(
µ̄12Φ23Φ34µ41 + µ̄23Φ34Φ41µ12 + µ̄34Φ41Φ12µ23 + µ̄41Φ12Φ23µ34

)
(3.21)

An analog result is obtained for s. For future aims we will ignore the si, because we are
interested only in the one instanton action, without multi instanton contributions.

One instanton action

For the convenience of the reader we briefly review the basic instanton framework of
relevance here. We describe the most general configuration with a SU(1) node in a toric
quiver gauge theory and we place a (stringy) instanton on that node. We consider only
rigid instantons, without adjoint fields charged under the SU(1) gauge group. We use the
instantonic action for toric quiver gauge theories as discussed above.

The system consists of N D3 branes and k D(−1) brane in type II B. The strings
with endpoints attached to the D3 branes lead to SU(N) N = 4 SYM. The strings with
endpoints attached to the D(−1) branes lead to the neutral sector, uncharged under the
gauge group. It includes bosonic moduli aµ and fermionic zero modes MαA and λα̇A
where α and α̇ denote the positive and negative chirality in four dimension and A is an
SU(4) index (fundamental or anti fundamental) denoting the chirality in the transverse
six dimensions. The equations of motion for the zero modes λα̇A implement the fermionic
ADHM constraint. There is also a triplet of auxiliary bosonic fields Dc whose equations of
motion implement the bosonic ADHM constraint. The charged sector is associated with
strings stretching between D3 branes and the D(−1) branes. It includes bosonic spinors
ωα̇ and ω̄α̇ and fermions µA and µ̄A. These fields are matrices of dimension N × k.
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In order to obtain the toric quiver gauge theory together with the instanton sector
the whole field content has to be projected with the orbifold and then higgsed. Notice
that instanton moduli scale with the same Chan-Paton structure of ordinary gauge theory
fields.

The resulting gauge theory is a toric quiver gauge theory with many gauge groups,
where we can change the ranks of the groups by adding fractionalD-branes. The instanton
sector works in a similar way. There are k instantons placed on each node, and we can
add instantonic fractional branes (not to be confused with fractional instantons) to obtain
a different numbers ki of instantons on the various nodes. Here we are interested in one
instanton corrections without multi-instantons effects.

From now on we consider one instanton placed on a SU(1) node in a generic toric
quiver gauge theory (see Figure 3.1). We denote with A the index associated with that

A

ω

µ

µ

ω

a

λ

D

M

α

α

αα

AA

AA

AA

AA

.

.

.

µ c

ΦΦ

µ µ

b c

Ab

Ab

cA

cA

Figure 3.1: Stringy instanton on a SU(1) node in a generic quiver. This is only the sector
directly connected to the node A of an anomaly free quiver.

node. The auxiliary instanton group is U(1). The node A could be connected to the
neighbor nodes with fields ΦAb, for outgoing arrows in the quiver, or with fields ΦcA,
for incoming arrows. In general, there could be more fields with the same gauge groups
indexes. To simplify the notation we suppose here that every neighbor node is connected
to the node A with a single field. The general case is treated in the appendix B.2.

The spectrum is reported in Figure 3.1 and in Table 3.1. The toric quiver represents
the gauge sector. The neutral sector includes the bosonic zero mode aµ and Dc, and the
fermionic zero modes Mα and λα̇ (only the 4 component survive the orbifold projection
in the one instanton case). There is a charged sector connecting the node A and the
instanton, given by ωα̇AA, ω̄α̇AA, µAA, µ̄AA, and a charged sector connecting the instanton
with the neighbor nodes, in a way similar to the field content of the gauge theory. For each
existing outgoing arrow ΦAb there is a fermionic zero mode µ̄Ab, and for each incoming
arrow ΦcA there is µcA.
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Sector ADHM Statistic Chan-Paton
Charged µAb Fermion k ×Nb

Charged µ̄cA Fermion Nc × k
Charged µAA Fermion k ×NA

Charged µ̄AA Fermion NA × k
Charged ωα̇ AA Boson k ×NA

Charged ω̄α̇ AA Boson NA × k
Neutral aµ Boson k × k
Neutral Mα Fermion k × k
Neutral λα̇ Fermion k × k
Neutral Dc Boson k × k

Table 3.1: Spectrum of the ADHM moduli in the charged and in the neutral sector

The instantonic action reads

Sinst = S1 + S2 + SW (3.22)

where
S1 = i(µ̄AAωα̇AA + ω̄α̇AAµAA)λα̇ − iDc(ω̄α̇AAτ

cωα̇AA) (3.23)

S2 =
1

2

∑

b

[
ω̄α̇AAΦAb(ΦAb)

†ωα̇AA + i µ̄Ab(ΦAb)
†µAA

]
+ (3.24)

1

2

∑

c

[
ω̄α̇AA(ΦcA)†ΦcAωα̇AA − i µ̄AA(ΦcA)†µcA

]
(3.25)

SW = − i

2

∑

b,c

µ̄Ab
∂W

∂(ΦcAΦAb)
µcA, (3.26)

Observe that the SW action involves derivatives of the superpotential with respect to
bilinears of fields contracted on the A index1.

3.3 Stringy Instanton and Seiberg Duality

In this section we investigate the relations between stringy instantons and strong dynamics
effects in type IIB toric quiver gauge theories. Stringy instanton contributions to the
superpotential in quiver gauge theories have been shown to exist for SP (0), SU(1) and
SO(3) nodes. The second and third cases are named stringy since the low energy dynamics
associated to those groups is trivial and no instanton contribution is expected. The results,

1This is necessary in order to take into account the contribution to this expression for non abelian
superpotential and for superpotentials with terms involving more than 3 fields.
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up to now, show that the stringy instanton contributions reproduce the non perturbative
part of the superpotential of the gauge theory, i.e. part of the classical constraint on the
moduli space. Here we present a clear-cut argument based on the involutive nature of
the Seiberg duality, which explains the retrieval of the exact instanton contribution as
a strong dynamical effect. We shall speak of equivalence or correspondence between the
instantonic and gauge schemes.

In the following we first we give a general overview of the correspondence between
stringy instantons and dynamical effects. Then we review the one-instanton action for
a general quiver gauge theory and compute the contribution to the superpotential. We
argue that the correspondence is implied by the involutive property of Seiberg duality,
and we give two examples, the L121 and the dP1 quiver gauge theories. After that we
discuss the correspondence for stringy instantons on SP (0) and SO(3) gauge groups in
orientifolded quiver gauge theories, with clarifying examples.

Overview

Consider a quiver gauge theory with an SU(1) node and a tree level superpotential Wtree.
A stringy instanton on a SU(1) node gives rise to a superpotential term [18, 82, 84]. The
cycle wrapped by the euclidean D-brane is occupied also by one D-brane and the non
trivial interaction lifts the fermionic zero modes. The resulting superpotential is

W = Wtree +Winst (3.27)

Gauge theories with a SU(1) gauge group are obtained as low energy (magnetic) descrip-
tions of a strongly coupled SU(Nc) gauge theory with Nc + 1 flavours. The low energy
description of this strongly coupled SU(Nc) gauge theory is a limiting case of Seiberg
duality. Indeed, it can be described by a magnetic gauge group SU(1), where the ele-
mentary degrees of freedom are mesons and baryons. The baryons are the dual magnetic
quarks. The classical moduli space of such a theory is not modified at quantum level.
The classical constraint is imposed in the dual description by the addition of a non trivial
superpotential for the mesons and the baryons, of the form

Weff ∼ BMB̃ − detM (3.28)

We shall show that the second term in (3.28) is exactly reproduced by the stringy instanton
contribution in (3.27). Here and in the rest of the paper we set to unity the dimension-full
coefficients.

Relations between non perturbative dynamics and stringy instantons has been already
observed in [81, 82] for cascading gauge theories. The correspondence we ascertain holds
at every step of a cascade when the Seiberg duality is in the limiting case. The non
perturbative contribution to the superpotential is then continuously mapped at every
step until the bottom of the cascade [82].
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Stringy instanton contribution

The stringy instanton contribution is obtained by integrating over all the zero modes

Z = C
∫
d{aµ,M, λα̇, D, ωAA, ω̄AA, µAA, µ̄AA, µ̄Ab, µcA} e−Sinst (3.29)

where C is a dimension-full parameter which is discussed in appendix B.3. The integration
over the aµ and the Mα zero mode is interpreted as the superspace integration. Hence
the stringy instanton contribution to the superpotential is given by

Winst ∼
∫
d{λα̇, D, ωAA, ω̄AA, µAA, µ̄AA, µ̄Ab, µcA} e−Sinst (3.30)

The bosonic integration is discussed in appendix B.3. As for the fermionic integration

Winst ∼
∫
dλα̇dµ̄AA dµAA

∏

b,c

(dµ̄Ab)
Nb (dµcA)Nce−Sinst (3.31)

the integral on λα̇ can be performed as in [84] using the S1 part of the instanton action
and it gives the ADHM fermionic constraints. It also saturates the fermionic integration
on µ̄AA and µAA. We end up with the integral

Winst ∼
∫ ∏

b,c

(dµ̄Ab)
Nb (dµcA)Nce−SW (3.32)

and this fermionic integration gives

Winst ∼ det
( ∂W

∂(ΦcAΦAb)

)
≡ det

(
M
)

(3.33)

Notice that M is a a square matrix from the anomaly free condition for the node A, which
is
∑

bNb =
∑

cNc.

Discussion on the equivalence

The contribution generated by a stringy instanton on an SU(1) gauge node is here ob-
tained from the strong dynamics of the gauge theory. This equivalence follows from the
involutive property of the (limiting case) of Seiberg duality (i.e. the case with Nf = Nc+1
for unitary gauge groups).

We consider the previous toric quiver gauge theory with a SU(1) gauge group labeled
by A, with Nf flavours spread on the nodes connected to the SU(1) one. The part
of the superpotential involving the fields charged under the gauge group A is a generic
holomorphic function

W = W0(ΦcAΦAb, X
(p)
bc ) (3.34)

where the Φ fields are bifundamentals charged under the SU(1). The X
(p)
bc are fields

or products of fields charged under the gauge groups connected to A in the quiver. In
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section 3.2 we showed that a stringy instanton on node A gives a contribution to the
superpotential of the form

Winst ∼ det
∂W0

∂(ΦcAΦAb)
(3.35)

We now perform two consecutive Seiberg dualities on the node A and compare the
resulting theory with the original one. The first step is a formal Seiberg duality for the
gauge group SU(1). This gives a SU(Ñ = Nf − 1) gauge theory with Nf flavours, and
superpotential

Wdual = W0(Mcb, X
(p)
bc ) +McbqbAqAc (3.36)

where Mcb = ΦcAΦAb and qbA and qAc are the dual quarks.
The next step is another duality on the node A. Since Nf = Ñ + 1, the dual gauge

group is SU(1), and the superpotential is

Weff = W0(Mcb, X
(p)
bc ) +McbNbc −NbcbcAbAb + detNbc (3.37)

where Nbc = qbAqAc, the b are baryons, and we have changed the sign of the interaction
term as in [117]. The last two terms implement the classical constraint on the moduli
space [1].

For the involution to hold, this theory should coincide with the original one, after
integrating out the massive mesons Mcb, Nbc. The equations of motions of the fields Nbc

give
bcAbAb = Mcb = ΦcAΦAb (3.38)

Hence we identify the baryons b with the original fields Φ. The equation of motion of the
meson Mcb implies that

Nbc ∼
∂W0

∂Mcb
=

∂W0

∂(ΦcAΦAb)
(3.39)

so we recover in (3.37) the original theory (3.34) and also the stringy instanton contri-
bution (3.35), i.e. the determinant term. This proves the correspondence. We conclude
that the involution of the Seiberg duality in the limiting case provides a gauge theory
explanation of the stringy instanton contribution.

Examples

In this section we exhibit two examples of the correspondence: a non chiral theory, the
L121 quiver gauge theory, and the dP1 chiral theory.

We begin with a theory where there is a node with Nf = Nc + 1, we then consider
strong dynamics for that node and we study the low energy theory, performing a Seiberg
duality in the limiting case, obtaining a non trivial contribution to the superpotential.
The same contribution is obtained analyzing directly the low energy theory and taking
into account the stringy instanton effect on the dualized node, an SU(1) node.
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Figure 3.2: L121 quiver gauge theory.

Non chiral example: L121

The superpotential is

W = −X33Q31Q13 +X33Q32Q23 +Q21Q13Q31Q12 −Q32Q21Q12Q23 (3.40)

We choose the assignment of ranks for the gauge groups such that

N2 +N3 = N1 + 1 (3.41)

We now consider strong dynamics for the node 1. This node has Nf = Nc + 1. The low
energy can be analyzed performing a limiting case of Seiberg duality. The magnetic gauge
group is SU(1), and the magnetic quarks are identified with the baryons of the electric
description. The resulting theory has superpotential

W = −X33M33 +X33Q32Q23 +M23M32 −M22Q23Q32

+M33q31q13 +M22q21q12 −M23q31q12 −M32q21q13 + det

(
M22 −M23

−M32 M33

)
(3.42)

We have added the determinant contribution in order to correctly implement the classical
constraint on the moduli space. Integrating out the massive fields, we obtain the quiver
in figure 3.3 with the following superpotential

W = −q21q13q31q12 +Q23q31q13Q32 + q12M22q21 −Q32M22Q23 + det

(
M22 −q21q13

−q31q12 Q32Q23

)

(3.43)
where there is an extra determinant term with respect to the usual SPP superpotential.
The theory of figure 3.3 has an SU(1) gauge group. Strong dynamics effects from the
theory one step backward in Seiberg duality have produced a non trivial superpotential
contribution, i.e. the determinant term in (3.43). We show here that the same term is
generated by a stringy instanton in the theory of figure 3.3.
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Figure 3.3: L121 after dualizing node 1.

The instantonic action for the D-instantons in the SPP has been constructed in [17]:

Sinst = i(µ̄11ωα̇11 + ω̄α̇11µ11)λ
α̇ − iDc(ω̄α̇11 (τ c)α̇β̇ ω

β̇
11)

+
1

2
ω̄α̇11

(
q12q

†
12 + q†21q21 + q13q

†
13 + q†13q31

)
ωα̇11

+
i

2

(
µ̄12q

†
12µ11 + µ̄13q

†
13µ11 − µ̄11q

†
21µ21 − µ̄11q

†
31µ31

)

− i

2
(µ̄12M22µ21 − µ̄12q21q13µ31 − µ̄13q31q12µ21 + µ̄13Q32Q23µ31) (3.44)

The corresponding quiver is given in figure 3.4. The solid lines are the chiral superfields.
The dashed lines are the fermionic zero modes connecting the instanton and the other
D-branes in the theory. In order to compute the instanton contribution to the effective
superpotential we have to integrate over the fermionic and bosonic zero mode that couple
among them and with the chiral superfields. The aµ andMα zero modes are the superspace
coordinates. The integral over the λα̇ and Dc can be done using the first line in (3.44),
and they give the two fermionic and the three fermionic ADHM constraints. The other
bosonic integration has been shown in appendix B.3 to give only a constant, via a general
dimensional argument. Here we explicitly show this result via an explicit calculation
[83, 84] The fermionic ADHM constraints are

δ (µ̄11ω1̇11 + ω̄1̇11µ11) δ (µ̄11ω2̇11 + ω̄2̇11µ11) = (µ̄11ω1̇11 + ω̄1̇11µ11) (µ̄11ω2̇11 + ω̄2̇11µ11) =

= µ̄11 (ω1̇11ω̄2̇11 − ω2̇11ω̄1̇11)µ11 (3.45)

This term saturates also the integrations over the zero modes µ11 and µ̄11. A non vanishing
result can be found only expanding the action at zero order in µ11 and µ̄11 The bosonic
integral factorizes and it is

Ibos =

∫ ∞

0

d3Dcd2wα̇11d
2wα11 (ω1̇11ω̄2̇11 − ω2̇11ω̄1̇11) e

−iDc(ω̄α̇11(τc)α̇
β̇
ωβ̇

11)ω2̇11ω̄1̇11+ 1
2
ω̄α̇11g({q})ωα̇11

(3.46)

123



   SU(N )3

SU(1) SU(    )N2

q

q

M

µ

µ µ

31

21 12

22
12

31

13

µ 11

ωα
11

ωα
11

11
µ

µ 21

13
q Q23

Q32

aµ Mα λα D
c

q

Figure 3.4: L121 with instanton on node N1 = 1.

where g({q}) =
(
q12q

†
12 + q†21q21 + q13q

†
13 + q†13q31

)
. The integral Ibos can be calculated by

expliciting the Pauli matrices τ c. One arrives at the expression

Ibos =

∫ ∞

0

d3Dcd2wα̇11d
2wα11

(
− ∂

∂M1
− ∂

∂M4

)
e
−

“
w̄1̇11w̄2̇11

”
0
@ M1 M2

M3 M4

1
A

0
@ w1̇11

w2̇11

1
A

(3.47)

where M1 = −iD3 + 1
2
g({q}), M2 = −iD1 −D2, M3 = −iD1 +D2 and M4 = iD3 1

2
g({q}).

The integration over the zero modes w and w̄ gives

Ibos =

∫ ∞

0

d3D

(
− ∂

∂M1

− ∂

∂M4

)
1

M1M4 −M2M3

(3.48)

If we define D2 =
∑

(Dc)2 the bosonic integral can be written as

Ibos =

∫ ∞

0

d3D
g({q})

(D2 + 1
4
g({q}))2

(3.49)

In spherical coordinates, d3D = D2dDdΩ, the angular measure gives a 4π factor and the
linear variable can be rescaled as D′ = 2D/g({q}). The integral is

Ibos = 4π

∫ ∞

0

dD′ D′

(D′2 + 1)2
= π2 (3.50)

This shows that the contribution of the bosonic integral is only a non vanishing numerical
factor.
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1= NN ~
2= N−MN

Figure 3.5: Quivers representing the two dual phases studied for dP1

We are left with the following fermionic integral

Winst ∼
∫
dN2µ̄12d

N2µ21d
N3 µ̄13d

N3µ31e
−Sinst (3.51)

The relevant part of the action for this integral is the last line in (3.44). It can be
rearranged as

Sinst = · · · − i

2

(
µ̄12 µ̄13

)( M22 −q21q13
−q31q12 Q32Q23

)(
µ21

µ31

)
(3.52)

and the fermionic integration (3.51) gives the contribution

Winst ∼ det

(
M22 −q21q13

−q31q12 Q32Q23

)
(3.53)

This is exactly the same determinant contribution we have obtained in (3.43). The cor-
respondence between the superpotential terms holds. Indeed, adding (3.53) to the tree
level superpotential for the quiver in figure 3.3, we exactly recover (3.43).

dP1

Here we study the the chiral dP1 toric quiver gauge theory. The quiver of the theory is
in figure 3.5.a . The superpotential is

W = εαβX
α
23X

β
34X42 + εαβX

α
34X

β
41X13 − εαβX12X

α
23X

3
34X

β
41 (3.54)

We choose the ranks to be

N1 = N N2 = N + 3M N3 = N +M N4 = N + 2M

and consider strong dynamics for the node 2. The dual degrees of freedom are the dual
quarks (bα32, b21, b24) and the mesons (Mα

13,M
α
43). The resulting quiver is in figure 3.5.b

and the superpotential, after integrating out the massive matter, is

W = εαβb
α
32b24X

β
41X13 + εαβM

α
13b

β
32b21 − εαβM

α
13X

3
34X

β
41 (3.55)
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We used the equations of motion of the massive fields (Mα
43, X

α
34) that fix

M1
43 = X1

41X13 M2
43 = X2

41X13 (3.56)

Choosing N = M + 1 we are in the limiting case of Seiberg duality, where the dualized
magnetic gauge group is SU(1). The classical constraint on the moduli space in this case
is implemented adding to the superpotential (3.55) a determinant term

∆W = detM = det

(
M1

13 −M2
13

−M1
43 M2

43

)
= det

(
M1

13 −M2
13

−X1
41X13 X2

41X13

)
(3.57)

where we used the equation of motions to express it as a function of the fields of the
effective theory.

We now recover the same contribution as a stringy instanton effect in the magnetic
theory, the one in figure 3.5.b. We place a stringy instanton on the SU(1) node. The
saturation of the zero modes proceed as usual and we are left with the following integral

Winst ∼
∫

(dµ̄24)
N4 (dµ̄21)

N1 (dµ̄1
32)

N2 (dµ̄2
32)

N2 e−Sinst (3.58)

The relevant part of the instantonic action is (3.26) and can be deduced from the super-
potential (3.55) to be

Sinst ⊃ εαβµ̄24X
β
41X13µ

α
32 + εαβµ̄21M

α
13µ

β
32 =

(
µ̄21 µ̄24

)( M1
13 −M2

13

−X1
41X13 X2

41X13

)(
µ2

32

µ1
32

)

(3.59)
Performing the fermionic integrals we then find that

Winst ∼ det

(
M1

13 −M2
13

−X1
41X13 X2

41X13

)
(3.60)

that is Winst = ∆W as claimed. The stringy instanton contribution has been exactly
mapped to the strong dynamics effect.

Orthogonal and symplectic gauge groups

In this section we generalize the correspondence to orthogonal and symplectic gauge
groups. Quiver gauge theories with these groups can be obtained from unitary gauge
groups applying orientifold projections. Since we consider toric quiver gauge theories, we
use the technology developed in [118] to perform orientifold projections on dimer models
[70, 71, 119, 120, 121, 122]. We review this procedure in appendix A.2

The O-plane projects out some degrees of freedom both in the gauge sector and in the
instanton sector. As a consequence the number of bosonic and fermionic zero modes and
the corresponding ADHM constraints are different [125].

The stringy instanton contribution to the superpotential for symplectic and orthogonal
gauge groups has been studied in [16, 81, 82, 87]. Non trivial contributions, in analogy
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Figure 3.6: Dimer model for the fixed line orientifold of the SPP.

with the SU(1) case, arise for stringy instantons of SP (0) and SO(3) gauge groups. The
auxiliary instantonic groups are in these cases O(1) and SP (2), respectively2.

The relation between stringy instantons and strong dynamics effects of the gauge
theory holds also in these cases. Electric magnetic dualities have been studied in [1, 123,
124] for symplectic and orthogonal gauge groups. For these groups there exist limiting
cases of the duality, as the Nf = Nc + 1 case for SU(Nc). They are respectively the
Nf = Nc + 4 for SP (Nc) and Nf = Nc − 1 for SO(Nc) gauge groups. For unitary groups
the dual description is a SU(1) gauge theory. For symplectic and orthogonal gauge groups
the dual descriptions are SP (0) and SO(3), respectively. Indeed they are the configuration
where stringy instanton effects add to the superpotential.

We now point out the agreement between stringy instanton and gauge theory analysis
with some example.

The orthogonal case

In this subsection we study an orientifold projection of the SPP. We choose an orientifold
from the dimer with a fixed line, where the unit cell of the dimer has a rhombus geometry
(see Figure 3.6). The orientifold charge for the fixed line is chosen positive. In this case all
the unitary groups SU(Ni) become orthogonal SO(Ni) groups. Half of the bifundamentals
survive the projection, and they become

qi,j = (2i,2j) (3.61)

The adjoint field M22 is projected to a symmetric representation. We then choose the
number of fractional branes for each group such that

N1 = N N2 = 3 N3 = 0 (3.62)

This theory is described by the superpotential

W = qT12q12M22 (3.63)

We add D-brane instantons on the SO(3) node. In the ADHM construction of SO(N)
N = 4 SYM the instantonic auxiliary group [125] is SP (k). In this case the counting

2In our convention SP (2) ' SU(2).
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Figure 3.7: Zero modes (in green) for the S̃P (2) instanton placed on an SO(3) gauge
group.

of the zero modes tells that stringy instanton contributes to the superpotential if the
auxiliary group is SP (2). The orientifolded quiver gauge theory with the instanton and
the relative zero modes are shown in the figure 3.7. The action for the zero modes is

Sinst = iλiα̇
(
wα̇a1 σiabµ

b
1

)
+ iλ′iα̇

(
w̄α̇a1 σiabµ

b
1

)
− iDk

i

(
wα̇a1 σk

α̇β̇
σiabw̄

βb
1

)

+
1

2

(
wα̇a1

(
q12q

†
12

)
w̄α̇a1 + iµa2q

†
12µ

b
1εab − iµa2εabµ

T
2

b
M22

)
(3.64)

where a and b are SP (2) indexes. Imposing the reality conditions we find six independent
λiα̇, λ

′i
α̇ and four Mα zero modes. The aµ, in the adjoint of SP (2), are symplectic anti-

symmetric matrices. This representation has dimension 1, which implies that there are
four zero modes from aµ. The Dc are nine while there are twelve independent wα̇a

1 , w̄α̇a1

bosonic spinors. There are six fermionic µa1 fields connecting the gauge group SO(3)
with the auxiliary instantonic group SP (2). The sector connecting the SP (2) instanton
with the flavor group gives 2Nf fermionic zero modes µa2. We can now perform the inte-
gration over the fermionic and bosonic zero modes to obtain the instanton contribution.
The (aµ,Mα) zero modes are as usual interpreted as superspace coordinates, giving the
superpotential contribution

Winst = C
∫
d{λ, λ′, D, ω1, ω̄1, µ1, µ2} e−Sinst (3.65)

We discuss in the appendix B.3 the bosonic integration and the dimension-full constant
C. We only quote here the nine ADHM bosonic constraints obtained integrating over the
Dk
i

δ(9)
(
wα̇ac σ

k
α̇β̇
σiabw̄

βb
c

)
(3.66)

Now we focus on the fermionic integration. The integration over the λiα̇, λ
′i
α̇ fermionic

zero modes can be done using the first two terms in (3.64) and it gives the six ADHM
fermionic constraints

δ(3)(ωacσ
i
abµ

b
c)δ

(3)(ω̄acσ
i
abµ

b
c) (3.67)
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This saturate also the fermionic integration on µa1 in (3.65). We are left with the fermionic
integral

Winst ∼
∫

[dµa2] e
−Sinst (3.68)

The integration is done expanding the relevant part of the action in the exponent

Sinst ⊃ µ1
2µ

T
2

2
M22 − µ2

2µ
T
2

1
M22 =

(
µ1

2 µT2
2
)( 0 M22

−M22 0

)(
µ1

2

µT2
2

)
(3.69)

The gaussian integration gives the contribution

Winst ∼ Pf

(
0 M22

−M22 0

)
= detM22 (3.70)

This last equality holds since M is a symmetric matrix. In appendix B.3 we show,
using dimensional analysis, that the bosonic integral is adimensional. This means that
it is independent from the physical fields and it gives only a constant contribution. We
conclude that (3.70) is the SP (2) stringy instanton contribution on the SO(3) node.

We now argue that the same relationship between stringy instanton and strong dy-
namics that holds in the case of unitary groups is valid also in this situation.

Once again we exploit the involutive property of Seiberg duality. We thus perform
two consecutive Seiberg duality, recovering in the end the starting theory. The first one
is a formal Seiberg duality on the SO(3) node with N flavours, and we obtain the theory
one step backwards. This gives an SO(Ñ = Nf − Nc + 4 = N + 1) gauge group with N
flavor. The superpotential of this theory is

W = QT
12Q12N22 +N22M22 (3.71)

Integrating out the massive field this superpotential vanishes. We perform then another
Seiberg duality. Since for this theory Nf = Nc − 1 we are in the limiting case of Seiberg
duality for orthogonal gauge groups. The dual gauge group is SO(Nf −Nc + 4 = 3) and
the superpotential

W = qT12q12M22 + detM22 (3.72)

where we have added the determinant to take into account the classical constraint on the
moduli space.

We have thus recovered in (3.72) the starting superpotential (3.63) and the stringy
instanton contribution (3.70). So also for orthogonal gauge group we have mapped the
stringy instanton contribution in strong dynamics effects.

The symplectic case

We first consider symplectic SQCD. We take SP (0) as the gauge group, with SP (N)
flavours. There is a meson M in the antisymmetric representation and there is no super-
potential.
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Figure 3.8: Dimer for the orientifold of the double conifold. The dashed blue lines repre-
sents the orientifold fixed lines.

It has been shown that a stringy instanton on the SP (0) gauge group gives a non
trivial contribution to the superpotential. In the ADHM construction the instantonic
auxiliary group for a symplectic gauge group is O(k). The non perturbative contribution
is obtained if the instantonic number is k = 1, with auxiliary group O(1). There are no
fermionic and bosonic ADHM constraint, no w, D and λ fields. There are two Mα and
four aµ which are interpreted as the superspace coordinates. The instantonic action is
given by the interaction of the meson with the fermionic zero modes µ connecting the
O(1) instanton and the flavor group

S = − i

2
µMµT (3.73)

The superpotential contribution is obtained integrating over the µ fermionic zero modes

Winst ∼
∫
d[µ]e−S = PfM (3.74)

Also for symplectic gauge groups we relate this contribution to strong dynamics effects.
Through a formal electric magnetic duality on the SP (0) node we obtain the dual theory.
It is an SP (Ñ = Nf −Nc− 4 = N − 4) gauge group with N flavours and no mesons. We
then perform another duality obtaining a SP (Nf−Nc−4 = N− Ñ−4 = 0) gauge group,
where the only degree of freedom is the meson M . This is the starting theory. However,
since we are in the limiting case of Seiberg duality for symplectic gauge group, we also
obtain the following contribution to the superpotential

Weff = PfM (3.75)

which implement the classical constraints on the moduli space. The equivalence between
(3.74) and (3.75) shows that, also for symplectic gauge groups, the strong dynamic effect
coincides with the stringy instanton contribution to the superpotential.

Example: Orientifold of the double conifold

In this subsection we give an example of the correspondence using an orientifold of the
double conifolds. The dimer model is represented in figure 3.8. The unit cell is delimited
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Figure 3.9: Stringy instanton on the orientifolded double conifold. The green lines repre-
sent the fermionic zero modes in the instantonic action.

by the red lines. The projection is done by the two independent dashed blue fixed lines.
We choose their orientifold charge to be negative. This implies that all the groups are
symplectic. The bifundamentals fields are in the (2i,2j) representation of the SP (2Ni)×
SP (2Nj) gauge groups. The fields in the adjoint representation of the SU(Ni) gauge
groups are now in the antisymmetric representation of the SP (2Ni) groups. The rank of
the first group SP (2N1) is chosen to be zero. The choice of the others ranks is free. Here,
for simplicity, we choose the same rank N for all of them. The superpotential for this
theory is

W = M22 ·Q23 ·Q23 −Q23 ·Q23 ·Q34 ·Q34 +M44 ·Q34 ·Q34 (3.76)

where the · represent the symplectic products.
We add a stringy instanton on the SP (0) node and we study its contribution to the

superpotential. The zero modes are shown in figure 3.9. The instantonic action is

Sinst = − i

2
µ12M22µ

T
12 −

i

2
µ14M44µ

T
14 (3.77)

The integration over the fermionic zero modes µ12 and µ14 gives a non perturbative con-
tribution

Winst ∼
∫
d[µ12]d[µ14]e

−Sinst = PfM22PfM44 (3.78)

to the superpotential (3.76).
The same result can be found from the gauge theory analysis. The theory one step

backwards in Seiberg duality is obtained by a formal duality on the SP (0) node. We get
a SP (2N − 4) gauge group with 2N flavours. The superpotential of this dual theory is

W = Q12 ·Q12 ·Q23 ·Q23 −Q23 ·Q23 ·Q34 ·Q34

+ Q34 ·Q34 ·Q41 ·Q41 −Q41 ·Q41 ·Q12 ·Q12 (3.79)
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We perform then another Seiberg duality to go back to the starting theory. We obtain a
SP (0) gauge group and superpotential

W = −M24 ·M42 +M22 ·Q23 ·Q23−Q23 ·Q23 ·Q34 ·Q34 +M44 ·Q34 ·Q34 +Pf

(
M22 M24

M42 M44

)

(3.80)
The mesons are defined as Mij = qiλi

Jλ1λ2qj,λ2. Since we are in the case Nf = Nc + 4 we
have added the non perturbative term to implement the classical constraint on the moduli
space. Note that the antisymmetry of Jλ1,λ2 implies thatM42 = −MT

24. Integrating out the
massive fields (M24,M42) we recover the starting theory (3.76) plus the non perturbative
contribution

Wnp = PfM22PfM44 (3.81)

This is exactly the same contribution obtained from the stringy instanton computation
(3.78).

In this section we have considered stringy instantons in toric quiver gauge theories deriving
from D3/D(−1) systems. We have provided an interpretation for the stringy instanton
contribution as a strong dynamics effect by analyzing the theory one step backwards in
Seiberg duality, for the node where the instanton is located. Our result is valid for stringy
instantons on SU(1), SP (0) and SO(3) nodes3.

There are interesting aspects we have not discussed here. The results we presented
could be extended to non toric quiver gauge theories. Our analysis might also be useful in
understanding the role played by stringy instantons in dynamical supersymmetry break-
ing in quiver gauge theories. Another issue would be the study of non-rigid instantons
and multi-instantons effects in toric quiver gauge theories, and their relation to strong
dynamics of the gauge theory. Finally4 a similar correspondence should exist for instan-
tonic higher F -term contributions in relation with strong dynamics leading to magnetic
SU(0) gauge group, i.e. the Nf = Nc case.

3See [126, 127] for related discussion in the context of matrix models.
4We thank A. M. Uranga for suggesting this to us.

132



Chapter 4

Three dimensions

Recently a breakthrough toward the explicit realization of the AdS4/CFT3 correspondence
was done in [128] where the authors propose U(N)k × U(N)−k CS matter theories, with
N = 6 supersymmetry, to be the low energy theories of N M2-branes at the C4/Zk

singularities. Afterward, this construction has been extended to many others CS matter
theories with a lower amount of supersymmetries [129, 130, 131, 132, 133, 134, 135, 136,
137, 138, 139, 140, 141].

A subclass of N = 2 quiver gauge theories have then been conjectured to be dual to
M theory on AdS4 × SE7, where SE7 is a seven dimensional Sasaki Einstein manifold.
The theories are Chern-Simons matter theories associated with CY4 toric singularity.

In this chapter we propose a three dimensional Seiberg duality by studying the classical
moduli space. In this case the computation simplifies because of the powerful of the toric
geometry. Indeed the moduli space is encoded in the toric diagram, and we propose that
the identification, up to an SL(3, Z) transformation, of the toric diagrams (Toric Duality)
is Seiberg duality.

Since this duality is of the strong/weak type one can provide a perturbative study of
supersymmetry breaking in the dual theory. However higher orders in the perturbative
expansions are usually important in three dimensions. It the last part of this chapter we
analyze some method to make the perturbative expansion valid.

4.1 The ABJM model

In this section we review the basic properties of the ABJM model. It is a CS matter
theory with gauge group U(N)×U(N) and with an N = 6 superconformal symmetry. It
is a special case of a N = 3 theory, where supersymmetry is enhanced for a specific choice
of the gauge groups and field content to N = 6. We start the review of CS gauge theories
starting from the N = 2 case. A pure CS theory in 2+1 dimensions is a topological theory.
After been coupled to matter fields the theory is not topological anymore, but it can be
conformal invariant. The N = 2 CS matter theory with no superpotential is an example
of an exactly conformal theory of this class. This theory is obtained from dimensional
reduction from four dimensions. Dimensional reduction gives a vector multiplet V in the
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adjoint of the gauge group and chiral multiplets Φ charged under the gauge group. The
chiral multiplet has canonical kinetic term. The vector multiplet has a CS supersymmetric
kinetic term. When it is written in components, in the WZ gauge the kinetic CS term
takes the form

SN=∈ =
k

4π

∫
Tr

(
A ∧ A +

2

3
A3 − χχ̄+ 2σD

)
(4.1)

In this superpotential χ is the Gaugino field, D is the auxiliary field of the vector multiplet,
and σ is another scalar in the vector multiplet, that arises from dimensional reduction).
If the gauge symmetry is non abelian the level k is quantized. Moreover it is an integer
number in the case of unitary group if the trace is in the fundamental representation.
The fields of the vector multiplet have no kinetic terms, and they are all auxiliary. Inte-
grating out the field D and χ the action is

S =

∫
k

4π
Tr

(
A ∧ A+

2

3
A3

)
+Dµφ̄1D

µφi + iψ̄iγ
µDµψi

−16π2

k2
(φ̄iT

a
Ri
φi)(φ̄jT

b
Rj
φj)φ̄kT

a
Rk
T bRk

φ(k)

−4π

k
(φ̄iT

a
Ri
φi)(ψ̄jT

a
Rj
ψj) −

8π

k
(ψ̄iT

a
Ri
φi)(φ̄jT

a
Rj
ψj) (4.2)

This action preserves conformal invariance also at quantum level.
The N = 3 generalization of this action is obtained by considering the field content of
an N = 4 theory. An additional auxiliary field ϕ in the adjoint is added to the vector
multiplet. The action includes a term Φ̃iϕΦi, and the CS term has an additional term
− k

8π
Tr(ϕ2). φ is an auxiliary field that can be integrated out. It gives

W =
4π

k
(Φ̃iT

a
Ri

Φi)(Φ̃jT
a
Rj

Φj) (4.3)

This action is the same of the N = 3 at which the term (4.3) has been added. The
R-symmetry group in three dimensions is SO(N ). This theory has also an U(NF ) global
symmetry. In a special case the N = 3 theory has gauge group U(N) × U(N) with two
pairs of hypermultiplets (A1, A2) and (B1, B2). The CS levels are equal and opposite, k
and −k, After integration of massive matter the superpotential becomes

W =
4π

k
Tr(A1B1A2B2 − A2B1A1B2) (4.4)

After a counting of the global symmetries associated to the superconformal group one
shows that in this case supersymmetry is enhanced to N = 6. The coupling constant is
1/k and at large k the theory is weakly coupled. In the large N limit, at fixed N/k one
can expand in 1/N 2 and consider only the planar contribution. The effective coupling
constant in the planar diagrams is the ’t Hooft coupling λ = N/k. The theory is weakly
coupled for N � k and strongly coupled for N � k.
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N D3

NS NS

k D5

Figure 4.1: The N = 2 brane configuration in IIB with thek D5 branes

k D5

NS5 NS5

k D5
(1,k)5

Figure 4.2: Web deformation of the system of NS5 and D5 branes, and creation of the
fivebrane.

This field theory can be also described as a system of brane in type II B string theory.
The ABJM model is realized from branes as an N = 3 supersymmetric theory that flows
in the IR to the N = 6 theory. Consider a system of two parallels NS5 branes along
(012345) and separated along 6, which is a compact direction, and N D3 branes along
0126. The common (012) directions are the coordinates of the three dimensional field
theory. The N D3 branes can break on the NS5 branes, and this implies that there are
two U(N) gauge groups. The bifundamental fields are the open strings that ends on the
D3 and cross the NS, the Ai and Bi fields. This is an N = 4 theory U(N)× U(N) gauge
theory.

Then one adds k D5 branes along (012349) as in figure 4.1, that intersect the D3
along (012) and one of the NS5 along (01234). Supersymmetry is broken to N = 2 and
2k massless chiral multiplet (a two component Majorana fermion and a complex scalar),
k in the fundamental and k in the antifundamental are added.

The CS term is obtained from this brane configuration via mass deformation. The
mass deformation of interest is a web deformation, in which the k D5 and the NS break
along the 1234 directions and generate a (1, k) or (1,−k) fivebrane. The angle in the 59
placed is chosen to be tan θ = k. This process is represented in figure 4.2

The CS terms are produced from parity anomaly after integrating out the fermions
in the chiral and anti-chiral multiplet. Each Majorana fermion with positive mass con-
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tributes with a +1/2 coefficient to the CS level and each negative mass term gives a −1/2
contribution. At the end of this process one group has a level k and the other has level
−k.

The final configuration is an N = 2 theory with one NS5 brane along (012345) and a
(1, k) fivebrane along (1234[59]θ), where [59]θ = x5 cos θ +X9 sin θ.

The N = 3 theory is found by rotating the (1, k)5-brane in the 37 and 78 planes. If
the two angles are equal N = 2 supersymmetry is preserved. If the angles coincide with
θ, the angle in the 9 plane, supersymmetry is enhanced to N = 3 and this is the brane
picture that realizes the high energy ABJM theory (see figure 4.3). The N = 6 theory is
then recovered integrating out all the massive fields. This IIB brane construction turns

N D3

(1,k)5 NS

Figure 4.3: The N = 3 configuration reproducing ABJM in IIB.

into a IIA description through a T-duality along the x6 compact direction. Note the D3
branes transform in D2 branes. Finally one lifts the configuration to M theory, and the
D2 lift to M2 branes. In this M-theory picture the IR limit becomes the near horizon
limit of N M2 branes probing a C4/Zk singularity.

The ABJ model: fractional branes

As we explain in chapter 1 Seiberg duality in four dimensions has a direct interpretation
in systems of intersecting branes, as an exchange of NS5 branes. In three dimensions there
is an analog argument, as explained in [142]. The exchange of a (1, k) and a NS5 brane
has been interpreted in [19] as a Seiberg duality in SQCD CS gauge theories in three
dimensions. In the ABJM model this exchange of branes produce D3 fractional branes in
the compact direction. This imply that Seiberg duality in this three dimensional scenario
is intimately connected with fractional branes. Fractional branes in the ABJM model
were studied in [143]. Here we review the relevant aspect of their result for our analysis.
Adding l fractional D3 branes as in figure 4.4 changes the gauge groups from U(N)×U(N)
to U(N + l) × U(N), while the field content and the interactions remain the same. The
classical moduli space is unchanged. Indeed the l fractional D3 do not have a moduli
space because they branes are not free to move, they are constrained by NS5 brane and
the (1, k) fivebrane.
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N D3

(1,k)5 NS

N+l D3

Figure 4.4: Addition of k D3 branes to the N = 3 theory

There is a constraint on the number of fractional brane that we can add. There cannot
be more than one D3 brane connecting a D5/NS5 pair. This condition is the s-rule [142].
In this case this rule imposes that a supersymmetric configuration is found only if l ≤ k.

If one moves one of the fivebrane along the compact direction another effect of [142]
becomes important. When one NS5 crosses a (1, k) fivebrane k D3 branes are created. In
this case if the NS5 brane crosses the (1, k) fivebrane as in figure 4.5 we are left with k− l
branes.

The equivalence stated in [143] is between the U(N+ l)k×U(N)−k theory and the new
theory whose gauge group content is U(N)−k × U(N + k − l)k. The superpotential and
the field content of the two theories does not change, and in terms of Seiberg duality this
is due to the self similarity of the superpotential. The fivebranes can crosses more than
once, but the new configuration are not supersymmetric, and they have been ignored. We

N+l D3

(1,k)5 NS5

N+k−l D3

(1,k)5 NS5

N D3

N D3

Figure 4.5: Displacing the (1, k) and the NS

are interested to the k = l case, that relates the original ABJM theory and a theory with
fractional branes.

U(N + k)k × U(N)−k ↔ U(N)−k × U(N)k (4.5)

The two theories have the same classical moduli space, and are equivalent. In three
dimensional CS gauge theories a theory with no fractional branes is connected with a
theory containing fractional branes. This relation will be important in the derivation of
the rules for three dimensional Seiberg like duality.
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4.2 N = 2 toric CS matter theory

A large and interesting, but still very peculiar, class of AdS4/CFT3 pairs is realized by
M2 branes at Calabi Yau four-fold toric singularities [134, 135, 136, 140, 141, 144, 145].
The low energy theories are proposed to be a special kind of N = 2 Chern-Simons matter
theories. It was soon realized [136] that, as in the AdS5/CFT4 case, different N = 2 Chern-
Simons matter theories can be associated with the same Calabi Yau fourfold geometry.

N = 2 Chern-Simons matter theories for M2 branes at singularities are typically
described by a quiver with an assignment of Chern-Simons levels ki and a superpotential
in a way similar to the gauge theories for D3 branes at Calabi Yau three-fold singularities.
Indeed a class of N = 2 three dimensional theories can be simply obtained from four
dimensional N = 1 quivers with superpotential in the following way: rewrite the theory
in three dimensions, change the SU(N) gauge factors to U(N) factors, disregard the super
Yang-Mills actions and add a super Chern-Simons term for every factors. We will say
that these three dimensional theories have a four dimensional parent. Viceversa we will
call theories without four dimensional parents the three dimensional theories that cannot
be obtained in the way just explained [141].

M2 branes and N = 2 Chern Simons theories

As discussed in the introduction, supersymmetric Chern Simons theories coupled to mat-
ter fields are good candidates to describe the low energy dynamics of M2 branes [128, 146].
We are interested in M2 branes at Calabi Yau four fold toric conical singularities. The
authors of [135] proposed that the field theories living on these M2 branes are (2 + 1)
dimensional N = 2 Chern Simons theories with gauge group

∏G
i=1 Ui(N) with bifunda-

mental and adjoint matter fields. The Lagrangian in N = 2 superspace notation is:

Tr

(
−i
∑

a

ka

∫ 1

0

dtVaD̄
α(etVaDαe

−tVa)−
∫
d4θ
∑

Xab

X†
abe

−VaXabe
Vb +

∫
d2θW (Xab) + c.c.

)

(4.6)
where Va are the vector superfields and Xab are bifundamental chiral superfields. The su-
perpotential W (Xab) satisfies the toricity conditions: every field appears just two times:
one time with plus sign and the other time with minus sign. Since these theories are con-
jectured to be dual to M theory on AdS4×SE7, where SE7 is a seven dimensional Sasaki
Einstein manifold, the moduli space of these theories must contain a branch isomorphic to
the four-fold Calabi Yau real cone over SE7: M4 = C(SE7). To study the moduli space
we need to find the vanishing conditions for the scalar potential. The scalar potential is:

Tr

(
−4
∑

a

kaσaDa +
∑

a

Daµa(X) −
∑

Xab

|σaXab −Xabσb|2 −
∑

Xab

|∂Xab
W |2

)

where µa(X) =
∑

bXabX
†
ab−

∑
cX

†
caXca+[Xaa, X

†
aa], σa and Da are scalar components of

the vector superfield Va, and with abuse of notation Xab is the lowest scalar component
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of the chiral superfield Xab. The moduli space is the zero locus of the scalar potential and
it is given by the equations:

∂Xab
W = 0, σaXab −Xabσb = 0, µa(X) = 4kaσa. (4.7)

In [135] it was shown that if ∑

a

ka = 0 (4.8)

then the moduli space contains a branch isomorphic to a four-fold Calabi Yau singularity.
This branch is interpreted as the space transverse to the M2 branes. Let us start with
the abelian case in which the gauge group is U(1)G. We are interested in the branch in
which all the bifundamental fields are generically different from zero. In this case the
solution to the first equation in (4.7) gives the irreducible component of the master space
IrrF [ [147, 148]. The second equation in (4.7) imposes σa1 = ... = σaG

= σ. The last
equation in (4.7) are G equations; the sum of all the equations gives zero and there are
just G− 1 linearly independent equations. The remaining G− 1 equations can be divided
in one along the direction of the Chern Simons levels, and G − 2 perpendicular to the
direction of the Chern Simons levels. The first equation fixes the value of the field σ while
the other G− 2 equations looks like µi(X) = 0 and can be imposed, together with their
corresponding U(1) gauge transformations, modding IrrF [ by the complexified gauge group
action (C∗)G−2. The equation fixing the field σ leaves a Zk action with gcd({kα}) = k
by which we need to quotient to obtain the moduli space. In the following we will take
gcd({kα}) = 1. Summarizing, the branch of the moduli space we just analyzed is:

M4 = IrrF [�H (4.9)

where H is the (C∗)G−2 kernel of

C =

(
1 1 1 1 1 1
k1 k2 . . . . . . kG−1 kG

)
(4.10)

IrrF [ is a G + 2 dimensional toric Calabi Yau cone [147, 148] and the vectors of charges
in H are traceless by construction; it implies that M4 is a four dimensional Calabi Yau
cone and it is understood as the transverse space to the M2 branes. Following the same
procedure in the non abelian case it is possible to see that the moduli space contains the
N -times symmetric product of M4, and it is interpreted as the the transverse space to a
set of N BPS M2 branes.

It is quite generic that a specific Calabi Yau four-fold is a branch of the moduli space
of apparently completely different N = 2 Chern-Simons theories. This fact it is called
toric duality. We want to systematically study M4 for some set of Chern Simons theories
and see if it is possible to find examples of toric dual pairs. To do this we will use the
algorithm proposed in [140].
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An Algorithm to compute M4

Let us review the algorithm proposed in [140] to compute M4. We consider an N = 2
Chern-Simons theory described in the previous section with gauge group U(1)G, and with
the following constraints on the Chern-Simons levels:

∑
ka = 0 gcd({ka}) = 1 (4.11)

To compute M4 we need three matrices: the incidence matrix d, the perfect matching
matrix P , and the Chern-Simons levels matrix C. d contains the charges of the chiral
fields under the gauge group U(1) factors of the theory, and can be easily obtained from
the quiver. P is a map between the gauge linear sigma model variables and the chiral fields
in the Chern-Simons theory. It can be obtained from the superpotential of the theory
and we refer the reader to [140, 141] for explanations. Summarizing, the determination
of the field theory contains the three matrices d, P , C. They are defined respectively by
the gauge group representations of the chiral fields, the chiral fields interactions and the
Chern Simons levels. Once we get these three matrices we can obtain the toric diagram
of M4. From P and d we compute the matrix Q. It is the matrix of charges of the gauge
linear sigma model variables under the U(1)G gauge group: d = Q · P T . From Q and C
we construct the charge matrix QD = ker(C) · Q. We denote with K ≡ ker(C). From
P we get the charge matrix QF : QF = ker(P T ). Once we have QD and QF we combine
them in the total charge matrix Qt:

Qt =

(
QD

QF

)
(4.12)

The toric diagram of M4 is given by the kernel of Qt:

Gt = (ker∗(Qt))
T (4.13)

where the columns of Gt are the vectors defining the toric diagram of M4. Note that, as
pointed out in [140], we have to find the integer kernel, that we denote ker∗, and not the
null-space of the charge matrix. Each row of Gt is reduced to a basis over the integer for
every choice of the CS levels. We will see this algorithm at work in the following sections.

4.3 M2 branes and Seiberg duality

In the AdS5/CFT4 it happens that to a single geometry correspond different UV field
theory descriptions. This phenomenon was called Toric Duality in [149], analyzed in
[150, 151] and identified as a Seiberg duality in [152, 153]. Due to the difficulties to
understand the field theory living on M2 branes the AdS4/CFT3 correspondence was less
mastered.

The phenomenon of toric duality reappears in the AdS4/CFT3 correspondence, but in
a much general context. Indeed, contrary to the four dimensional case, in three dimensions

140



one find models with different numbers of gauge group factors to describe the same IR
physics (for example mirror symmetry pairs [154]). In the literature some very specific
pairs of dual field theories were constructed. A step was done in [19, 143] where a sort
of Seiberg like duality for three dimensional Chern-Simons matter theory was proposed1.
In the context of M2 branes at singularities, we can divide the set of dualities in the ones
that change and in the ones that do not change the number of gauge group factors. In
this section we will call the second type of duality Seiberg-like toric duality.

In this section we investigate Seiberg-like toric dualities for (2+1) dimensional N = 2
Chern-Simons matter theories associated with M2 branes at Calabi Yau four-fold toric
singularities. Using a generalization of the forward algorithm for D3 branes [140] we ana-
lyze a particular branch of the moduli space that is supposed to reproduce the transverse
four-fold Calabi Yau singularity. We identify a set of Seiberg-like toric dualities for three
dimensional Chern-Simons quiver theories.

For theories with four dimensional parents one could try to simply extend the four
dimensional Seiberg duality to the three dimensional case. In fact, three dimensional
theories share the same Master Spaces [147, 148] of their four dimensional parents. In
the map between four and three dimensions a direction of the Master Space become a
direction of the physical Calabi Yau four-fold. Unfortunately, it turns out that an arbitrary
assignment of 2+1 dimensional Chern-Simons levels does not in general commute with
3+1 dimensional Seiberg duality [136]. In fact it was shown in [157] that the Master Space
for four dimensional Seiberg dual theories are not in general isomorphic. Actually it seems
that three dimensional CS theories with chiral four dimensional parents do not admit a
simple generalization of the three dimensional SQCD Seiberg duality as it happens in the
four dimensional case.

Here, we first analyze non chiral three dimensional CS theories with (3+1)d parents.
Using a type IIB brane realization, we propose a Seiberg like duality, with a precise
prescription for the transformation of the CS levels and the gauge groups factors. We
then check that this proposed Seiberg like duality is indeed a toric duality, namely that
the two dual theories are associated with M2 branes probing the same Calabi Yau four-fold
singularity.

We try to simply extend to chiral CS theories with (3+1)d parents the rules that we
have found for the non chiral theories. For chiral four dimensional theories the Master
Space is not isomorphic among Seiberg dual phases [157]. This fact presumably puts
constraints on the duality transformations for the three dimensional case. We find in-
deed difficulties for a straightforward realization of Seiberg like toric dualities for 2+1
dimensional Chern-Simons matter theories with four dimensional chiral parents.

However, by analyzing several examples, we find a rule for the assignments of the CS
levels such that toric duality still holds among Seiberg like dual phases.

We finally give some examples of Chern-Simons theories without four dimensional
parents. In this case there is no immediate insight from the four dimensions, but we show
that the duality proposed for the chiral theories works also for theories without a 3+1

1Seiberg duality for 3D gauge theories were previously studied in [155, 156].
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parents.
Our analysis is a first step to the study of Seiberg-like toric dualities in the context

of M2 branes. We tried to use the intuition from the non-chiral case and to leave as
arbitrary as possible the values of the Chern-Simons levels. It is reasonable that more
general transformation rules exist. Moreover it would be nice to investigate more general
families of toric dualities, like the ones changing the number of gauge group factors and
the large limit for Chern-Simons levels. We leave these topics for future investigations.

Non-Chiral Theories

We consider non-chiral 3D N = 2 CS matter quiver gauge theories which are the three
dimensional analog of the four dimensional Laba theories [69, 70, 71]. and will be denoted

as L̃aba{ki}. We say that a theory is non chiral if for every pair of gauge group factors U(N)i
and U(N)i+1 the number of bifundamental fields in the representation (Ni, N̄i+1) is the
same as the number of bifundamental fields in the conjugate representation (N̄i, Ni+1).

Otherwise the theory is chiral. The quiver for the L̃aba{ki} is in figure 4.6, with gauge
groups

∏
i U(N)ki

. We label the nodes from left to right. The action is

b−a2 a 

Figure 4.6: The quiver for the generic L̃aba{ki}.

S =
∑

i

SCS(ki, Vi) (4.14)

+

∫
d4θTr

∑

i

(e−ViQ†
i,i+1e

Vi+1Qi,i+1 + eViQi+1,ie
−Vi+1Q†

i+1,i) +
∑

j

X†
j,je

−2VjXj,j

+

∫
d2θ
∑

l

(−1)lTrQl−1,lQl,l+1Ql+1,lQl,l−1 +
∑

j

TrQj−1,jXj,jQj,j−1 −Qj+1,jXj,jQj,j+1

where
i = 1, . . . a+ b, j = 2a+ 1 . . . a + b, l = 1 . . . 2a, (4.15)

and SCS(ki, Vi) is the first term in (4.6).

Brane construction

3D gauge theories can be engineered in type IIB string theory as D3 branes suspended
among five branes [142]. For 3d CS theories the setup includes (p, q)5 branes [158, 159].
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# brane directions
N D3 012 6
1 NS1 012 3 45
1 NS2 012 3 89
1 NS3 012 3 89
p1 D51 012 45 7
p2 D52 012 7 89
p3 D53 012 7 89

Table 4.1: Brane content for the L̃121{k1,k2,k3} theory.

Here we construct N = 2 three dimensional L̃aba{ki} CS theories, in analogy with the 4D
construction [160].

As an example we show in figure 4.7 the realization of the L̃121{k1,k2,k3} theory. The

generalization to the L̃aba{ki} is straightforward. We have the brane content resumed in

NS1

D3

D3

D3

7

8945

6

D5(3)

D5(2)

D5(1)

NS3

NS2

Figure 4.7: Brane construction for L̃121{k1,k2,k3}. The D5 branes fill also the vertical
directions of the corresponding NS5.

Table 4.1. The NS branes and the corresponding D5 branes get deformed in (1, pi) five
branes at angles tan θi ' pi, obtaining

• N D3 brane along 012 6

• (1, p1) brane along 012 [3,7]θ1 45

• (1, p2) brane along 012 [3,7]θ2 89

• (1, p3) brane along 012 [3,7]θ3 89
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Since the (1, p2) and the (1, p3) branes are parallel in the 89 direction there is a massless

adjoint field on the node 2. This brane system gives the three dimensional L̃121{k1,k2,k3}
CS theory. The Chern-Simons levels are associated with the relative angle of the branes
in the [3, 7] directions, i.e.

ki = pi − pi+1 i = 1, . . . , a+ b (4.16)

automatically satisfying (4.8). The gauge groups are all U(N). Similar brane configura-
tions have been studied in [137, 138, 139] for N = 3 and/or non toric theories.

Seiberg-like duality

As in the four dimensional case [161], we argue that electric magnetic duality corresponds
to the exchange of two orthogonal (1, pi) and (1, pi+1) branes. In appendix C.1 we briefly
discuss the process of Seiberg duality in three dimensional CS SQCD,and we see that it
reduces to the exchange of fivebranes. During this process, |pi − pi+1| = |ki| D3 branes
are created [158]. Observe that, since the pi and pi+1 of the dualized gauge group are
exchanged, this gives non trivial transformations also for the CS level of the neighbor
nodes.

6

i+2

i−1(1, p     )

(1, p     )

i+1

i
(1, p  )

(1, p     )

i+1i
N+|p  −p    |

NN

45

89

Figure 4.8: Configuration after exchanging the position of the (1, pi) and (1, pi+1) branes.
The movement implies that |pi− pi+1| D3 are created in the middle interval. The rank of
the dualized group is N + |pi − pi+1| = N + |ki|. The CS levels change as (pi−1 − pi, pi −
pi+1, pi+1 − pi+2) → (pi−1 − pi+1, pi+1 − pi, pi − pi+2).

From the brane picture (see figure 4.8) we obtain the rules for a Seiberg like duality

on a node without adjoint fields in the L̃aba{ki} quiver gauge theories. Duality on the i-th
node gives

U(N)ki
→ U(N + |ki|)−ki

U(N)ki−1
→ U(N)ki−1+ki

(4.17)

U(N)ki+1
→ U(N)ki+1+ki

and the field content and the superpotential changes as in 4D Seiberg duality.
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In the following we will verify that this is indeed a toric duality by computing and
comparing the branch M4 of the moduli space (i.e. the toric diagram) of the two dual
descriptions.

We observe that the Seiberg like duality (4.17) modifies the rank of the dualized gauge
group, introducing fractional branes. This is a novelty of this 3d duality with respect to
the 4d case (see also [19, 143, 162]).

The k fractional D3 branes are stuck between the five branes, so there is no moduli
space associated with their motion. This is as discussed in [143], and the same field theory
argument can be repeated here. The moduli space of the magnetic description is then the
N symmetric product of the abelian moduli space.

The fractional branes can break supersymmetry as a consequence of the s-rule [142].
Indeed it was suggested in [159, 163, 164] that for U(l)k YM-CS theories supersymmetry
is broken if l > |k|. We notice from (4.17) that in the moduli space of the magnetic
description, there is a pure U(k)−k YM-CS theory. Thus the bound is satisfied and
supersymmetry is unbroken. However, if we perform multiple dualities we can realize
configurations with several fractional branes on different nodes. At every duality we have
to control via s-rule that supersymmetry is not broken. We leave a more thorough study
of these issues related to fractional branes for future investigation.

Finally, the duality proposed maps a theory with a weak coupling limit to a strongly
coupled theory. Indeed if we define the i-th ’t Hooft coupling as λi = N/ki, the original
theory is weakly coupled for ki >> N . In this limit the dual theory is strongly coupled
since the i-th dual ’t Hooft coupling is λ̃i = 1 +O(N/ki).

L̃121{k1,k2,k3}

The L̃121{k1,k2,k3} is the first example that we study. The quiver is given in Figure 4.9. The

1

23

N,k1

N,k1+k2N,k2N,−k1−k2

N,−k13

12

(a) (b)
N+ |k2|, −k2

Figure 4.9: Quiver, ranks and CS levels for the L̃121{k1,k2,k3} in the two phases related by
Seiberg like duality on node 2.

toric diagram that encodes the information about the classical mesonic moduli space is
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computed with the techniques explained in section 4.2. We extract the incidence matrix
dG,i, where G = 1, . . . , Ng runs over the labels of the gauge groups, and i runs over the

fields (i = 1, . . . , 7 for the L̃121{k1,k2,k3}, six bifundamental and one adjoint)

d =




1 −1 0 0 −1 1 0
−1 1 1 −1 0 0 0
0 0 −1 1 1 −1 0


 (4.18)

The matrix of the perfect matchings Pα,i is computed from the determinant of the
Kastelein matrix

Kas =

(
Q23 +Q32 Q12 +Q21

Q13 +Q31 X11

)
(4.19)

If we order the fields in the determinant of (4.19) we can build the matrix Pi,α where
α = 1, . . . , c is the number of perfect matchings, that corresponds to the number of
monomials of the detKas. In this matrix we have 1 if the i-th field appears in the α-th
element of the determinant, 0 otherwise

P =




1 0 0 0 1 0
0 1 0 0 0 1
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 1 0
1 0 0 0 0 1
0 0 1 1 0 0




(4.20)

The matrix Q that represents the charge matrix for the GLSM fields is obtained from the
relation dG,i = QG,α · P T

i,α

Q =




1 −1 0 0 0 0
0 1 −1 1 −1 0
−1 0 1 −1 1 0


 (4.21)

The contribution of the D-terms to the moduli space is given by quotienting by the G−2
FI parameters induced by the CS couplings. These FI parameters are in the integer kernel
of the matrix of the CS level

K = Ker

(
1 1 1
k1 k2 −k1 − k2

)
(4.22)

The F -term equations are encoded in the matrix QF = Ker(P ). The Toric diagram is
the kernel of the matrix obtained by combining QD = K · Q and QF . Acting with an
SL(4, Z) transformation the toric diagram reads

Gt = Ker∗
[
K ·Q,Ker[P T ]

]
=




1 1 1 1 1 1
k2 k1 + k2 0 0 k1 + 2k2 0
1 1 0 1 2 0
0 0 1 1 0 0


 (4.23)
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This system of vectors is co-spatial. This is a CY condition that guarantees that the toric
diagram lives on a three dimensional hypersurface in Z4.

The last three rows of (4.23) defines the toric diagram for the three dimensional Chern-

Simons L̃121{k1,k2,k3} toric quiver gauge theory. Note that the toric diagram of the (3+1)d
parent is recovered by setting to zero the row with the CS levels.

We perform the Seiberg-like duality (4.17) on node 2. The resulting theory is shown
in figure 4.9(b). The L121 four dimensional parent theory has only one toric phase. The
dual theory is in the same phase, thanks to the mapping among the nodes (1 → 3, 2 →
1, 3 → 2), see Figure 4.9. In the L̃121{k1,k2,k3} we should also properly map the CS levels
in the two dual descriptions. The transformation rules (4.17) change the CS level as in
figure 4.9. Then we apply the same mapping we used for the gauge groups. After these
steps the resulting K matrix is

Kdual = Ker

(
1 1 1

k̃3 k̃1 k̃2

)
= Ker

(
1 1 1

k3 + k2 k1 + k2 −k2

)
=

= Ker

(
1 1 1

−k1 k1 + k2 −k2

)
(4.24)

where with k̃i we denote the CS level of the i-th node in the dual phase. Concerning
the field content and the superpotential, the dual theory is in the same phase than the
starting theory. Thus we use the same matrices P, d,Q for the computation of the moduli
space. The toric diagram is then computed with the usual algorithm. Up to an SL(4, Z)
transformation it coincides with the same as the one computed in the original theory
(4.23).

In this example we have shown that the Seiberg like duality (4.17) is a toric duality.
Observe that the non trivial transformation on the CS levels of (4.17) are necessary for
the equivalence of the moduli spaces of the two phases.

L̃222{ki}

The second example is the L̃222{ki} theory. The main difference is that this theory has
two phases with a different matter content and superpotential (see Figure 4.10), obtained
by dualizing node 2. These phases are dual for the (3+1)d parents theory. Here we show
that the same holds in three dimensions with the Seiberg like duality (4.17). The P, d,Q
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N4,−k1−k2−k3

N1,k1+k2

N3,k2+k3

N4,−k1−k2−k3

N3,k3

N1,k1

N2,k2 N2+|k2|,−k2

Figure 4.10: The quivers for the two phases of L222.

and K matrices for the first phase are

d =




1 −1 0 0 0 0 −1 1
−1 1 1 −1 0 0 0 0
0 0 −1 1 1 −1 0 0
0 0 0 0 −1 1 1 −1


 P =




0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1
1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0




(4.25)

Q =




−1 0 1 0 1 −1 0 0
1 −1 0 0 −1 1 0 0
−1 1 0 0 0 1 0 −1
1 0 −1 0 0 −1 0 1


 K = Ker

(
1 1 1 1
k1 k2 k3 −k1 − k2 − k3

)

(4.26)
The resulting toric diagram is

Gt =




1 1 1 1 1 1 1 1
2 1 1 0 2 1 1 0
1 1 1 1 0 0 0 0

−k1 − k2 −k1 k2 0 k2 + k3 k2 + k3 0 0


 (4.27)
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By duality on node 2 we obtain the inequivalent phase of L̃222{ki} , see figure 4.10. The
toric diagram is computed with new d, P , Q and K matrices

d =




0 1 −1 0 0 0 0 0 −1 1
0 −1 1 1 −1 0 0 0 0 0
0 0 0 −1 1 0 1 −1 0 0
0 0 0 0 0 0 −1 1 1 −1


 P =




0 0 0 0 1 1 1 1
1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1
1 1 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0




(4.28)

Q=




0 −1 1 0 0 0 0 0
0 0 −1 1 0 0 1 −1
0 0 0 0 0 1 −1 0
0 1 0 −1 0 −1 0 1


 K =Ker

(
1 1 1 1

k1+k2 −k2 k3+k2 −k1−k2−k3

)

(4.29)

It results

Gt =




1 1 1 1 1 1 1 1
2 1 1 0 2 1 1 0

−k1 − k2 −k1 k2 0 k2 + k3 k2 + k3 0 0
1 1 1 1 0 0 0 0


 (4.30)

which is equivalent to (4.27).

The general L̃aba{ki}

In the previous section we have seen two simple examples. In this section we consider the

generic case of non-chiral N = 2 toric three dimensional CS quiver gauge theories L̃aba{ki}
singularities. Four dimensional theories based on these singularities share the same toric
diagram among the different Seiberg dual phases. Here we show that two theories that
are related by Seiberg like duality in three dimension (4.17) share the same toric diagram.
Our argument is based on the algorithm [144] that extracts toric data of the CY four-fold
by using brane tiling.

Toric diagrams from bipartite graphs

Let us remind the reader that to every quiver describing a four dimensional conformal
field theory on D3 branes at Calabi Yau three-fold singularities it is possible to associate
a bipartite diagram drawn on a torus. It is called tiling or dimer [120, 121], and it
encodes all the informations in the quiver and in the superpotential. To every face in
the dimer we can associate a gauge group factor, to every edge a bifundamental field
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and to every node a term in the superpotential. A similar tiling can be associated with
three dimensional Chern-Simons matter theories living on M2 branes probing a Calabi
Yau four-fold singularity simply adding a flux of Chern-Simons charge. The CS levels are
described as a conserved flow on the quiver, or equivalently on the dimer. To every edge
we associate a flux of Chern-Simons charge and the CS level of the gauge group is the
sum of these contributions taken with sign depending on the orientation of the arrow.

In this section we review the proposal of [144] for the computation of the moduli space
of three dimensional CS toric quiver gauge theories. This method furnishes the toric data
from the bipartite graphs associated with the quiver model and with the CS levels.

One has to choose a set of paths (p1, . . . , p4)on the dimer. The paths p1 and p2 corre-
spond to the α and β cycles of the torus described by the dimer. The path p4 is a paths
encircling one of the vertexes. One can also associate mesonic operators to these paths.
These operators correspond to the product of the corresponding bifundamentals along the
paths. For example the operator associated on the p4 path is a term of the superpotential.
The moduli space of the three dimensional theory requires also the definition of the path
p3. This is a product of paths corresponding to a closed flow of CS charges along the
quiver. We choose p3 in the tiling of the Laba singularity by taking a minimal closed path
connecting the bifundamentals from the first node to the a + b-th node of the quiver.
Then one associates the CS charge

n∑

i=1

ki (4.31)

to each bifundamental in this closed loop, with n = 1, . . . , a + b. The last charge is zero
since it corresponds to sum of all the CS levels in the theory. This conserved CS charges
flow is represented on the dimer by a set of oriented arrows connecting the faces of the
dimer, the gauge groups.

In [144] it has been shown that the toric polytope of CY4 is given by the convex hull
of all lattice point vα = (vα1 , . . . , v

α
4 ), with

vαi = 〈pi, Dα〉 (4.32)

where Dα are the perfect matchings. The operation 〈., .〉 in (4.32) is the signed intersection
number of the perfect matching Dα with the path pi. Note that v4 is always 1, since there
is always only one perfect matching connected with the node encircled by p4.

Seiberg-like duality on L̃aba{ki} and toric duality

In subsection (4.3) we argued that the action of Seiberg duality on the field content and
on the superpotential is the same as in four dimensions. The only difference is the change
of the CS levels associated with the groups involved in the duality (4.17).

In an Laba theory, if duality is performed on node N2, the levels become

k1 → k1 + k2

k2 → −k2

k3 → k3 + k2 (4.33)
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X23X12

X34
k1 k1+k2

k1+k2+k3

Y23Y12

−k1−k2 −k1

Figure 4.11: Action of Seiberg duality on the dimer and modification of the CS flow.

The action of Seiberg duality (4.17) not only modifies the dimer as in the 4d, but also the
CS levels of the gauge groups. This changes the path p3 in the dual description. Many
SL(4, Z) equivalent choices are possible. Among them we select the p3 path as in figure
4.11. We associate a charge l1 to Y12 and l2 to Y23, but with the opposite arrows that
before. The values of the charges l1 and l2 are derived from (4.33) and are

l1 = −k1 − k2 l2 = −k1 (4.34)

The field X34 is not involved in this duality and it contributes to the CS flow with the
same charge k1 + k2 + k3 in both phases.

We claim that the two theories share the same toric diagram. For the proof of this
relation it is useful to distinguish two sector of fields from which all the perfect matching
are built. In Figure 4.12 we separated these two sectors for the electric and magnetic
phase of an Laaa theory (the same distinction is possible in a generic Laba theory). Every
perfect matching is built by choosing in these sets only one field associated with each
vertex. For example in Figure 4.12(a) every perfect matching is a set of blue lines chosen
such that every vertex is involved only once.

The paths p1 and p2 are shown in figure 4.13 for the electric and the magnetic phase.
The intersection numbers 〈p1, D

α〉 and 〈p2, D
α〉 give the same bi-dimensional toric diagram

of the associated four dimensional Laba theories, up to an overall SL(3, Z) translation.
This is shown by mapping the perfect matching in the two description. This mapping is
done with a prescription on the choice of the fields in the perfect matching of the dual
description. If duality is performed on node Ni, the field Xi−1,i, Xi,i−1, Xi,i+1 and Xi+1,i

are respectively mapped in the fields Yi,i+1, Yi+1,i, Yi−1,i and Yi.i−1 of the dual theory.
This prescription gives a 1− 1 map of each point of the 2d toric diagrams of the two dual
theories.
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(a) (b) 

Figure 4.12: Different sectors of fields that generate all perfect matching in the (a) electric
and (b) magnetic theory

P4

(a)

P1

2P P

P

1

4

(b)
P2

Figure 4.13: Paths pi in the two dual versions of the theory
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k1+k2

k1+k2+k3

k1+k2+k3+k4

.........

(a)

k1

k1+k2+k3+k4
(b) 

.....

k1+k2+k3 .....−k1−k2

−k1

Figure 4.14: Decomposition of the path p3 on the different perfect matchings

The whole diagram for the three dimensional L̃aba theory is obtained by considering
the intersection numbers 〈p3, D

α〉, which give the third component of the vectors vα. The
path p3 corresponds to the flux of CS charges from the group N1 to the group Ng, where
the last arrow is omitted since it carries zero charge. In the dual theory the path p3

changes as explained above, and as we show in Figure 4.13 for duality on a node labeled
by 2. Note that only the arrows connected with the dualized gauge group change.

With this choice of p3 and using the basis of perfect matching we prescribed, the
intersection numbers 〈p3, D

α〉 coincide in the two phases for every point of the 2d toric
diagram. This is shown by associating the relevant part of the path p3 to each sector of
perfect matching as in Figure 4.14. The arrow that carries charge k1 in the electric theory
corresponds to the arrow with charge −k1 in the magnetic theory. Its contribution to the
moduli space remains the same, since also the orientation of this arrow is the opposite.
The same happens for the arrow carrying charge k1 + k2.

Thus the 3d toric diagrams of the two dual theories are the same. We conclude that

the action of three dimensional Seiberg like duality (4.17) in the L̃aba{ki} theories implies
toric duality.

Chiral theories

In this section we study Seiberg like duality for N = 2 three dimensional Chern-Simons
theories with four dimensional parent chiral theories, which as such suffer from anomalies.
The anomaly free condition imposes constraints on the rank distribution. In 3d there are
no local gauge anomalies. Nevertheless we work with all U(N) gauge groups such that
the moduli space is the N symmetric product of the abelian one. Moreover for three
dimensional Chern-Simons chiral theories we do not have a brane construction as simple
as for the non-chiral case, and were not able to deduce the duality from the brane picture.
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However, using what we learned from the non-chiral case, we infer that at least a subset
of the possible three dimensional Seiberg-like toric dualities acts on the field content and
on the superpotential as it does in 4d and moreover recombines the Chern-Simons levels
in a similar way as in (4.17). As a matter of fact, a straightforward extension of the
rule (4.17) does not seem to work in the chiral case. This could be related to the fact
that the Master Spaces of the four dimensional dual Seiberg parents are not isomorphic
[157]. For this reason we restrict ourself to the case where the CS level of the group which
undergoes duality is set to zero. We assume that the other CS levels are unchanged, and
no fractional branes are created. This could be suggested by the parity anomaly matching
argument (see appendix C.2). We also set to zero the CS level of those gauge groups that
after duality have the same interactions with the rest of the quiver as the dualized gauge
group.

By direct inspection we find that under these assumptions on the CS levels also for
chiral 3D CS theories Seiberg like duality leads to toric duality. For F̃0 we can take milder
assumptions. Indeed we find that a generalization of the rule (4.17) to the chiral case still
gives toric duality for this theory.

F̃0{ki}

Here we study the (2+1)d CS chiral theory whose (3+1)d parent is F0. In (3+1)d there
are two dual toric phases of F0, denoted as FI0 and FII0 . In (2+1)d the two phases for
arbitrary choices of the CS levels do not have the same moduli space. Nevertheless it is
possible to find assignments for the Chern-Simons levels such that the two phases have
the same toric diagram.

(a) (b)

     k1   k2

  k3

 −k2

−k1−k2−k3−k1−k2−k3

  k1+k2

k2+k3

Figure 4.15: (a) quiver for F̃I0 and (b) quiver for F̃II0 for one of the possible choice of CS
levels.

The quiver representing the F̃I0 phase is in figure 4.15(a). The superpotential is

W = εijεklX
i
12X

k
23X

j
34X

l
41 (4.35)
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The incidence matrix and the matrix of perfect matchings are

d =




1 -1 0 0 0 0 -1 1
-1 1 1 -1 0 0 0 0
0 0 -1 1 1 -1 0 0
0 0 0 0 -1 1 1 -1


 P =




1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 1 0 1 0
0 1 0 1 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1




(4.36)
The charges of the GLSM fields determine the matrix Q, the can be chosen as

Q =




1 0 0 0 0 0 0 -1
-1 0 0 0 1 0 0 0
0 0 0 1 -1 0 0 0
0 0 0 -1 0 0 0 1


 (4.37)

The second phase F̃II0 is obtained by dualizing node 2. The dual superpotential is

W = εijεklX
ik
13X

l
32X

j
21 − εijεklX

ik
13X

l
34X

j
41 (4.38)

The matrices d, P and Q are determined from the quiver and the superpotential

d =

0
BB@

-1 -1 0 0 0 0 -1 -1 1 1 1 1
1 1 -1 -1 0 0 0 0 0 0 0 0
0 0 1 1 1 1 0 0 -1 -1 -1 -1
0 0 0 0 -1 -1 1 1 0 0 0 0

1
CCA P =

0
BBBBBBBBBBBBBBBB@

0 0 0 0 0 1 0 1 1
0 0 1 0 0 1 0 0 1
0 0 0 1 1 0 1 0 0
0 1 0 0 1 0 1 0 0
0 0 1 0 0 0 1 0 1
0 0 0 0 0 0 1 1 1
0 1 0 0 1 1 0 0 0
0 0 0 1 1 1 0 0 0
1 1 1 0 0 0 0 0 0
1 1 0 0 0 0 0 1 0
1 0 0 1 0 0 0 1 0
1 0 1 1 0 0 0 0 0

1
CCCCCCCCCCCCCCCCA

(4.39)

Q =




1 0 0 0 0 -1 0 0 0
0 0 0 0 -1 1 0 0 0
-1 0 0 0 0 0 1 0 0
0 0 0 0 1 0 -1 0 0


 (4.40)

Two families

The F̃0{ki} theories turn out to be a special case. Indeed one can single out two different
possibilities: in the first one we put to zero just the CS level associated with the group
2; while in the second case we can fix to zero just the Chern-Simons level of the group 4
and transform the CS levels as in the non-chiral case. In the first case we choose the CS
levels as (k1, k2, k3, k4) = (k, 0, p,−k − p). The CS level matrix for both phases is:

C =

(
1 1 1 1
k 0 p −k − p

)
(4.41)
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and the toric diagram is given by:

G
(I)
t =




1 1 1 1 1 1 1 1
p 0 p 0 p p k+p k+p
0 1 -1 0 0 0 0 0
0 0 0 0 0 1 -1 0


 (4.42)

The CS levels for the dual phase, obtained by duality on N2, are unchanged and the toric
diagram

G
(II)
t =




1 1 1 1 1 1 1 1 1
p k+p p p k+p k+p 0 0 0
0 0 -1 0 0 0 0 1 0
0 -1 0 1 0 0 0 0 0


 (4.43)

is equivalent to the one above.
In the second case we choose the CS levels as (k1, k2, k3, k4) = (k, p,−k − p, 0). The

phase F̃II0 is computed by dualizing the node 2. We observe that by applying the rules

(4.17) the CS levels of F̃II0 are (k + p,−p,−k, 0). The C matrices for the two phases are:

CI =

(
1 1 1 1
k p −k − p 0

)
CII =

(
1 1 1 1

k + p −p −k 0

)
(4.44)

The toric diagram for the first phase is:

G
(I)
t =




1 1 1 1 1 1 1 1
k k 0 0 k+p 0 k+p 0
0 0 0 0 0 1 -1 0
0 -1 1 0 0 0 0 0


 (4.45)

while the toric diagram for the second phase is:

G
(II)
t =




1 1 1 1 1 1 1 1 1
0 0 0 k k k+p k k+p k+p
0 0 1 0 0 0 0 -1 0
0 1 0 -1 0 0 0 0 0


 (4.46)

And they are equivalent.
The F0 theory seems to be the only case where the assumptions we gave at the be-

ginning of this section can be relaxed. In the following examples we will just apply those
basic rules.

d̃P1{ki}

Here we study the (2+1)d CS chiral theory whose (3+1)d parent is dP1. In (3+1)d dP1

has only one phase. After Seiberg duality on node 2 the theory has a self similar structure
and it is described by the same quiver. The only difference is that we have to change
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−k1−k3 k3 k3 k1

k1 0 0 −k1−k3
1 2

34

4

13

2

Figure 4.16: Quiver and CS level for the d̃P1{ki} in the two phases related by duality on
node 2.

the labels of the groups as (1 → 2, 2 → 4, 3 → 1, 4 → 3). The matrix d, P and Q are
unchanged by duality. The CS levels in the C matrix change as the labels of the gauge
groups do. We give in figure 4.16 the two phases.

We take the assumption described in the introduction of section 4.3. Hence we choose
the CS level of the group that undergoes duality to be 0. With this choice the two phases
of the 2 + 1 dimensional theory (see figure 4.16) have the same toric diagram.

The superpotential is

W = εabX13X
a
34X

b
41 + εabX42X

a
23X

b
34 + εabX34X

a
41X12X

b
23 (4.47)

The d, P,Q matrices are

d =

0
BB@

1 0 -1 0 0 0 -1 0 0 1
0 0 0 0 -1 1 0 1 0 -1
-1 1 0 1 0 -1 0 -1 1 0
0 -1 1 -1 1 0 1 0 -1 0

1
CCA P =

0
BBBBBBBBBBBBB@

1 1 1 0 0 0 0 0
0 0 0 1 1 1 0 0
0 0 0 0 0 0 1 1
0 0 0 1 1 0 1 0
1 1 0 0 0 0 0 1
0 0 1 0 0 1 0 0
0 0 0 0 0 1 0 1
0 0 1 0 0 0 1 0
1 0 0 1 0 0 0 0
0 1 0 0 1 0 0 0

1
CCCCCCCCCCCCCA

(4.48)

Q =




0 0 1 0 1 -1 -1 0
0 -1 1 0 0 0 0 0
0 0 -1 1 0 0 0 0
0 1 -1 -1 -1 1 1 0


 (4.49)

Following the relabeling of the gauge groups, the C matrix in the two phases are

C1 =

(
1 1 1 1
k1 0 k3 −k1 − k3

)
C2 =

(
1 1 1 1
0 −k1 − k3 k1 k3

)
(4.50)

The toric diagram for the first theory is given by the matrix G
(1)
t

G
(1)
t =




1 1 1 1 1 1 1 1
0 0 0 0 0 -1 1 0
-1 0 0 0 1 1 0 0

k1 + k3 k1 k1 k1 + k3 k1 k1 0 0


 (4.51)
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The toric diagram of the dual theory, up to SL(4, Z) transformation, is

G
(2)
t =




1 1 1 1 1 1 1 1
0 0 0 0 0 -1 1 0
-1 0 0 0 1 1 0 0

k1 + k3 k1 + k3 0 k1 k1 0 k1 k1 + k3


 (4.52)

This shows that the two systems of vectors give the same toric diagram and that the two
theories have the same abelian moduli space also in the 2+1 dimensions, provided k2 = 0.

d̃P2{ki}

1

5

34

2

1
2

3

5

4

Figure 4.17: The quivers representing the dual phases of dP2

We analyze the (2+1)d CS chiral theory with dP2 as (3+1)d parents. The 4D theory
has two inequivalent phases. The two phases are connected by duality on node 5 and are
reported in figure 4.17.

The constraint on the CS levels explained in the introduction of this section imposes
k2 = 0 and k5 = 0. Under this assumption the two phases have the same toric diagram
also for the (2+1)d CS theory.

The superpotential for the two phases are

WI = X13X34X41 − Y12X24X41 +X12X24X45Y51 −X13X35Y51

+ Y12X23X35X51 −X12X23X34X45X51

WII = Y41X15X54 −X31X15X53 + Y12X23X31 − Y12X24X41 + Y15X53X34X41

− Z41Y15X54 +X12X24Z41 −X12X23X34Y41 (4.53)
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We compute the toric diagrams G
(I)
t and G

(II)
t for the two phases

G
(I)
t =




1 1 1 1 1 1 1 1 1 1
0 0 1 0 0 0 0 -1 0 -1
0 -1 0 0 1 0 0 0 0 -1
k1 k1 k1 k1 0 0 0 0 −k3 −k3




G
(II)
t =




1 1 1 1 1 1 1 1 1 1 1
0 -1 0 0 1 0 0 0 0 0 -1
0 -1 -1 0 0 0 0 1 0 0 0
0 −k3 k1 0 k1 −k3 k1 0 0 0 0


 (4.54)

They result the same.

d̃P3{ki}

Here we study d̃P3{ki}. This theory has four phases in four dimensions, with superpoten-
tials

WI = X13X34X46X61 −X24X46X62 +X12X24X45X51 −X13X35X51

+ X23X35X56X62 −X12X23X34X45X56X61

WII = X13X34X41 −X13X35X51 +X23X35X52 −X26X65X52 +X16X65Y51

− X16X64X41 +X12X26X64X45X51 −X12X23X34X45Y51

WIII = X23X35X52 −X26X65X52 +X14X46X65Y51 −X12X23Y35Y51 +X43Y35X54

− Y65X54X46 +X12X26Y65X51 −X14X43X35X51

WIV = X23X35X52 −X52X26X65 +X65Z54X46 − Z54X41Y15 + Y15Z52X21 − Z52X23Y35

+ Y35X54X43 −X54X46Y65 + Y65Y52X26 − Y52X21X15 +X15Y54X41 − Y54X43X35

Phases (II, III, IV) are computed from phases (I, II, III) by dualizing nodes (6, 4, 1)
respectively. The quivers associated with each phase are given in Figure 4.18. We now
show the equivalence of phases (I,II), (II,III) and (III,IV) by choosing (k3 = k6 = 0),
(k2 = k4 = 0) and (k1 = k3 = k6 = 0) respectively. For phases (I, II) we have

G
(I)
t

=

0
BB@

1 1 1 1 1 1 1 1 1 1 1 1
-1 0 0 0 0 1 0 0 0 -1 1 0
-1 0 -1 0 0 1 0 1 0 0 0 0

k1 + k2 0 k1 k1 + k2 + k4 k1 + k2 0 k1 k1 + k2 + k4 k1 + k2 k1 + k2 0 0

1
CCA

G
(II)
t

=

0
BB@

1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 -1 0 0 0 0 -1 0 0 0 1 1
0 1 0 0 0 -1 0 -1 0 0 0 0 1

k1 k1 + k2 + k4 k1 + k2 k1 + k2 k1 + k2 k1 k1 + k2 + k4 k1 + k2 k1 + k2 k1 + k2 0 0 0

1
CCA

For phases (II, III) we have

G
(II)
t

=

0
BB@

1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 0 0 -1 0 0 0 0 0 -1 0
0 0 1 0 0 0 0 1 0 0 0 -1 -1

−k1 k3 + k5 k3 + k5 k3 + k5 −k1 −k1 − k3 k5 −k1 − k3 k5 −k1 − k3 0 0 0

1
CCA

159



21

45

63

1

2

5

34 6

1

4

5

2

6

5

3 142

I

IV

II

III

63

Figure 4.18: The quiver of dP3

G
(III)
t

=

0
BB@

1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 0 1 0 -1 0 0 -1 0 0 0 0
0 1 -1 0 0 0 -1 0 0 0 0 0 1 0
0 k3 + k5 0 −k1 k3 + k5 −k1 0 k3 + k5 k5 −k1 − k3 −k1 −k1 −k1 − k3 −k1 − k3

1
CCA

For phases (III, IV ) we have

G
(III)
t

=

0
BB@

1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 -1 1 0 0 0 1 0 0 0 0 0 -1 0
0 -1 0 0 -1 0 1 0 0 1 0 0 0 0

k2 + k4 k2 k2 + k4 k2 k2 + k4 k2 + k4 k4 0 0 0 0 k4 0 0

1
CCA

G
(IV )
t

=

0
BB@

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 1 0 0 0 0 0 0 1 0 -1 0 0 -1
0 0 0 0 0 -1 0 0 0 0 0 1 0 -1 1 0 0

k2 + k4 k2 + k4 k2 + k4 k2 + k4 k2 + k4 k2 + k4 k2 + k4 k2 + k4 k2 + k4 k2 + k4 k4 k4 k2 k2 0 0 0

1
CCA

Ỹ 32{ki}

This is the last chiral theory we analyze. In this case, after duality, there is not an
identification between the gauge group that undergoes duality with other groups. This
implies that the assumptions of section 4.3 impose only kg = 0, where kg is the CS level
of the dualized gauge group. As for the case of dP1 and all the Y p,p−1 theories, the Y 3,2

theory is self similar under four dimensional Seiberg duality. We can evaluate M4 for one
phase and then the toric diagram associated with a dual phase is given by an appropriate
change of the D-term modding matrix.

We fix the conventions on the groups by giving the tiling of the two dual phases, see
Figure 4.19. The two phases are connected by duality on node 5, so we set k5 = 0.

The CS matrices for the two dual phases are:

C1 =

(
1 1 1 1 1 1
k1 k2 k3 k4 0 −k1 − k2 − k3 − k4

)
C2 =

(
1 1 1 1 1 1
k4 −k1 − k2 − k3 − k4 k1 k2 k3 0

)

The toric diagrams are encoded in the Gt matrices.

G
(1)
t

=

0
BB@

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 -1
2 1 1 1 0 1 0 0 1 0 0 0 -1 -1 1 0 0 0

k3 + k4 0 −k6 k2 + k3 + k4 k2 k3 + k4 0 −k6 k4 −k3 k1 + k2 + k4 k2 + k4 k1 + 2k2 + k4 k2 − k3 0 k2 0 0

1
CCA
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Figure 4.19: The tiling for the two dual phases of Y 32. Seiberg duality has been performed
on groups 5.

G
(2)
t

=

0
BB@

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 -1
2 1 1 1 0 1 0 0 1 0 0 0 -1 -1 1 0 0 0

k3 + k4 k4 k4 0 −k3 −k6 k1 + k2 + k4 k1 + k2 + k3 k2 + k3 + k4 k2 + k4 k2 + k4 k2 k1 + 2k2 + k4 k2 − k3 k3 + k4 0 −k6 0

1
CCA

and they coincide for arbitrary k1, k2, k3, k4, remind k6 = −k1 − k2 − k3 − k4.

Dualities for CS theories without 4d parents

Three dimensional CS theories with four dimensional parents are a subset of all the
possible 3d CS theories [141]. For CS theories without four dimensional parents we miss
in principle the intuition from the 4d Seiberg duality. In this short section we see that
we can still describe a subset of 3d CS theories with the same mesonic moduli space if we
just apply the rules we learn in the previous sections.

We study a case associated with Q111. We show that by performing a Seiberg-like
duality and by setting the CS level of the dualized gauge group to zero, the toric diagrams
of the two models coincide.

Example

The theory is described by the quiver given in Figure 4.20a. It is a generalization of the
C(Q1,1,1) with arbitrary CS levels [141]. The superpotential is

W = X41X13X
1
34X42X23X

2
34 −X41X13X

2
34X42X23X

1
34 (4.55)
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(a) (b)
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−k1−k2

0

  k1

−k1−k2

k2

0

Figure 4.20: The quiver for Q111 in the two dual phases.

The toric diagram for k4 = 0 is given by

Gt =




1 1 1 1 1 1
1 0 1 0 1 0
1 0 0 1 1 0
k1 k2 0 0 0 0


 (4.56)

Seiberg duality on node N4 gives the superpotential

W = X13X
(1)
32 X23X

(2)
31 −X13X

(2)
32 X23X

(1)
31 +X24X

(2)
43 X

(2)
32 −X24X

(1)
43 X

(1)
32

+ X14X
(1)
43 X

(1)
31 −X14X

(2)
43 X

(2)
31 (4.57)

and the theory is described by the quiver given in Figure 4.20b. The toric diagram in this
case is

Gt =




1 1 1 1 1 1 1 1
1 0 1 0 1 0 1 0
1 0 1 0 1 1 0 0
k1 k2 k1 k2 0 0 0 0


 (4.58)

and it is equivalent to the toric diagram for the first phase.

In this section we made some advances towards the understanding of toric duality for
M2 branes. Generalizing the work of [19, 143], we proposed a Seiberg-like duality for
non-chiral three dimensional CS matter theories and we verified that the mesonic moduli
space of dual theories is indeed the same four-fold Calabi Yau probed by the M2 branes.
In the chiral case and in the case in which the three dimensional theories do not have a
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four dimensional parent, the situation is more complicated. However, fixing to zero the
value of some of the Chern-Simons levels, we were able to realize toric dual pairs.

We have just analyzed the mesonic moduli space, it would be important to study the
complete moduli space, including baryonic operators.

For the non-chiral case the two main limitations are the lack of understanding of
the transformation rule for the rank of the gauge groups and the fact that we forced
to zero some of the ki. It is reasonable that there exist some more general and precise
transformation rules and we would like to investigate them.

We concentrated on Seiberg-like transformations, but it is well known that in three
dimension there exist duality maps that change the number of gauge group factors. It
would be interesting to systematically study these more general transformations.

A lot of possible directions and generalizations are opening up and after these first
steps we hope to step up.

4.4 Supersymmetry breaking

In three dimensions the mechanisms of supersymmetry breaking have been still rather
unexplored. In a recent paper [20] the authors have shown that a mechanism analog to
the ISS takes place in three dimensional massive SQCD with CS or YM gauge theories.
The low energy dynamics is controlled by a Wess-Zumino (WZ) model. In four dimensions
WZ models have been useful laboratories for supersymmetry breaking, playing a crucial
role in the ISS mechanism.

In this section we analyze supersymmetry breaking in three dimensional WZ models.
The WZ models studied in [20] had relevant couplings and the quantum corrections could
be computed only after the addiction of an explicit R-symmetry breaking deformation.
On the contrary, a different solution to the problem of the computation of quantum
corrections in three-dimensional WZ models is given by preserving an SO(2)R ' U(1)R
R-symmetry and by adding only marginal deformations to the superpotential. The non-
supersymmetric vacua turn out to be only metastable, since the marginal couplings induce
a runaway behavior in the scalar potential. A property of these models is thatR-symmetry
is spontaneously broken in the non supersymmetric vacua. As a general result it seems
that in three dimensions R-symmetry needs to be broken (explicitly or spontaneously) for
the validity of the perturbative expansion.

We first review the model of [20] and the problems of the perturbative approach. Then
we present a model with marginal couplings and long lifetime metastable vacua, and we
study the general behavior of WZ models with marginal couplings The regime of validity
of the perturbative approximation in models with relevant coupling is also discussed.

Effective potential in 3D WZ models

While a systematic study of supersymmetry breaking mechanisms in 3 + 1 dimensions
has been done, in 2 + 1 dimension such an analysis still lacks. A recent step towards the
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q q̃ M

U(N) N N 1

U(NF ) NF NF N2
F

Table 4.2: Representation of the fields in the model of [20]

comprehension of supersymmetry breaking in 2 + 1 dimensions has been done in [20]. In
this section we briefly review their model and results.
The theory is a WZ model with canonical Kähler potential

K = Tr
(
M †M + q†i q

i + q̃†i q̃
i
)

(4.59)

and superpotential

W = hqMq̃ + hTr

(
1

2
εµM2 − µ2M

)
(4.60)

with an U(N)×U(NF ) global symmetry. The representations of the matrix valued chiral
superfields q, q̃ and M are given in Table 4.2. All the three dimensional couplings and
fields in (4.60) have mass dimension 1/2, except ε which is adimensional. The model
(4.60) has supersymmetric vacua labeled by k = 0, . . . , N . At given k the expectation
values of the chiral fields in the supersymmetric vacuum is

M =

(
0 0
0 µ

ε
1NF−k

)
qq̃ =

(
µ21k 0

0 0

)
(4.61)

Moreover this model also has metastable vacua, in which the combination of the tree
level and one loop scalar potential stabilizes the fields. In the analysis of [20] the authors
studied the case of different values of k. Here we only refer to the simplified case k = N .
The vacuum is

M =

(
0 0
0 X1NF−N

)
qq̃ =

(
µ21N 0

0 0

)
(4.62)

where X is a pseudomodulus, stabilized, in this case, by the one loop effective potential.
This potential is given by the Coleman-Weinberg formula, that in three dimensions is [20]

V
(1)
eff = − 1

12π2
STr|M|3 ≡ − 1

12π2
Tr
(
|MB|3 − |MF |3

)
(4.63)

The cubic dependence on the bosonic and fermionic mass matrices MB and MF can be
eliminated by expressing (4.63) as

V
(1)
eff = − 1

6π2
STr

∫ ∞

0

v4

v2 + M2
dv (4.64)

In appendix C.4 we observe that (4.64) can be generalized to every dimension.
The superpotential that is necessary to calculate the one loop corrections for the WZ
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model (4.60) simplifies by expanding the fields around (4.62). The fluctuations of the
fields can be organized in two sectors, respectively called φi and σi. The former represents
the fluctuation necessary for the one loop corrections of the field X, while the latter
parameterizes the supersymmetric fields that do not contribute to the one loop effective
potential. We have

q =

(
µ+ σ1

φ1

)
q̃T =

(
µ+ σ2

φ2

)
M =

(
σ3 φ3

φ4 X

)
(4.65)

The one loop CW is calculated by inserting (4.65) in the superpotential (4.60). There are
NF (NF −N) copies of WZ models with superpotential

W =
1

2
hµεX2 − hµ2X + hµεφ3φ4 + hXφ1φ2 + hµ(φ1φ3 + φ2φ4) (4.66)

The tree level potential and the one loop corrections calculated from (4.66) give raise to
a non-supersymmetric vacuum at

φi = 0 X ' εµ

b
(4.67)

where b = (3−2
√

2)h
4πµ

is a dimensionless parameter. Thereafter we use a notation that makes

clear the relevancy of the cubic three-dimensional couplings, by rewriting (4.66) as

W =
1

2
εmX2 − fX + εmφ3φ4 +

m2

f
Xφ1φ2 +m(φ1φ3 + φ2φ4) (4.68)

where we have defined
f ≡ hµ2 m ≡ hµ (4.69)

The new parameters of the theory,, f and m,respectively have mass dimension 3/2 and 1.
The X field vacuum expectation value is proportional to εf/(bm) and the expansion of
the one-loop potential near the origin is possible if the R-symmetry breaking parameter
ε satisfies

ε� b (4.70)

which expresses the condition X � µ of [20].
Moreover, for the perturbative expansion to be valid, higher orders in the loop ex-

pansion must be negligible. This last condition is satisfied when the relevant coupling is
small at the mass scale of the chiral fields

h2 � hX ⇐⇒ m4

f 2
� m2

f
X (4.71)

This requirement imposes a lower bound on the R-breaking parameter ε

b� ε� b
m3

f 2
(4.72)
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and by using the definition of b = 3−2
√

2
4π

m3

f2

3 − 2
√

2

4π

m3

f 2
� ε� 3 − 2

√
2

4π

m6

f 4
(4.73)

The parameter ε cannot approach zero. In fact, in this case the theory becomes strongly
coupled and the effective potential cannot be evaluated perturbatively.

Three dimensional WZ models with marginal couplings

Relevant couplings do not complete the renormalizable interactions of a three dimensional
superpotential. In fact quartic marginal terms can be also added to a WZ model. Here we
study supersymmetry breaking in a renormalizable WZ model with quartic marginal cou-
plings and no trialling interactions. We show that supersymmetry is broken at tree level
and the perturbative approximation is valid without any explicit R-symmetry breaking.
The three dimensional N = 2 superpotential is

W = −fX + hX2φ2
1 + µφ1φ2 (4.74)

and the classical scalar potential is

Vtree = |2hXφ2
1 − f |2 + |2hX2φ1 + µφ2|2 + |µφ1|2 (4.75)

The chiral superfields have R-charges

R(X) = 2, R(φ1) = −1, R(φ2) = 3 (4.76)

The F -terms of the fields X, φ1 and φ2 cannot be solved simultaneously and super-
symmetry is broken at tree level. We study the theory around the classical vacuum
〈φ1〉 = 〈φ2〉 = 0 and arbitrary 〈X〉. Stability of supersymmetry breaking requires the
computation of the one loop effective potential for the X field. The squared masses of
the scalar components of the fields φ1 and φ2 read

m2
1,2 = µ2+2h〈|X|〉

(
h〈|X|〉3 + ηf + σ

√
f 2 + 2ηfh〈|X|〉3 + h2〈|X|〉6 + 〈|X|〉2µ2

)
(4.77)

where 〈|X|〉 is the vacuum expectation value of the field X and η and σ are ±1. These
masses are positive for

〈|X|〉 < µ2

4fh
(4.78)

In this regime the pseudomoduli space is tachyon free and classically stable. Outside this
region there is a runaway in the scalar potential. The squared masses of the fermions in
the superfields φ1 and φ2 are

m2
1,2 = µ2 + 2h〈|X|〉

(
h〈|X|〉3 + σ

√
h2〈|X|〉6 + 〈|X|〉2µ2

)
(4.79)
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The two real combinations of the fermions of X and X † are the two goldstinos of the
N = 2 → N = 0 supersymmetry breaking.

The one loop effective potential is computed with the CW formula (4.64). At small
X√
µ

the field X has a negative squared mass

m2
X=0 ∼ −f

2h2

µ
(4.80)

and the origin is unstable.
A (meta)stable vacuum is found if there is a minimum such that (4.78) is satisfied. As

long as the adimensional parameter f2

µ3 is small the effective potential has a minimum at

〈X〉 '

√√
2µ

h
(4.81)

This imposes a bound on the coupling constant

h <
µ3

16
√

2f 2
(4.82)

since the scalar potential has to be tachyon free.
When (4.78) or (4.82) are saturated the classical scalar potential (4.75) has a runaway

behavior. Indeed, if we parameterize the fields by their R-charges (4.76), we have

X =
f

2hµ
e2α, φ1 =

√
µe−α, φ2 = − f 2

2h
√
µ5
e3α (4.83)

and we get FX = Fφ1 = 0 and Fφ2 → 0 as α → ∞.

Lifetime

The decay rate of the non-supersymmetric state is proportional to the semi-classical decay
probability. This probability is proportional to e−SB , where SB is the bounce action. Here
the lifetime of the metastable vacuum is estimated from the bounce action of a triangular
potential barrier, since the two vacua are well separated in field space and the maximum
is approximately in the middle of them.

The computation is similar to [51], but in this case we have to deal with a three
dimensional theory. In the appendix C.4 we compute the bounce action for a triangular
potential barrier in three dimensions. We found that it is

SB ∼
√

(∆Φ)6

∆V
(4.84)

In our case we estimate the behavior of the potential barrier by using the evolution of the
scalar potential along the field X. The non supersymmetric minimum has been found in
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X

V

Figure 4.21: One loop scalar potential for the one-loop validity region X < µ2

4hf
. Over this

value, we find a classical runaway. At the origin the pseudomodulus has negative squared
mass. The potential is plotted for µ = 1, f = h = 0.1

(4.81) and the potential is Vmin = |f |2.
The one loop scalar potential plotted in Figure 4.21 is always increasing between the
metastable minimum and (4.78). When (4.78) is saturated there is a classical runaway

direction, and the local maximum of the potential can be estimated to be at 〈X〉 = µ2

4hf
,

where the potential is Vmax ∼ 2|f |2. After this maximum the potential starts to decrease
and the field X acquires large values. There is not a local minimum, nevertheless the
lifetime of the non-supersymmetric state can be estimated as in [42, 4]. Indeed, by using
the parametrization (4.83) of the fields along the runaway the scalar potential has the

same value as Vmin for 〈XR〉 ∼ µ2

2hf
.

In the regime f2

µ3 � h � 1 the barrier is approximated to be triangular, and the
gradient of the potential is constant. The non-supersymmetric state is near the origin of
the moduli space, and the bounce action is

SB ∼
√

〈XR〉6
Vmin

∼
√

1

h

(
µ3

f 2

)4

�
(
µ3

f 2

)2

� 1 (4.85)

The general case

In this section we consider the class of models with a single pseudo-modulus X which
marginally couples to n chiral superfields φi. As shown in [4] for the class of four-
dimensional renormalizable and R-symmetric models, many general features are worked
out by R-symmetry considerations. For the three-dimensional case, we find some in-
teresting features concerning such models. The perturbative expansion is reliable under
the weak condition that the coupling constants are small numbers, i.e. one can use the
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one-loop approximation and made higher loop corrections suppressed. The origin of the
moduli space is a local maximum of the one-loop potential, and the pseudomodulus ac-
quires a negative squared mass. Finally the scalar tree-level potential exhibits runaway
directions for every choice of the couplings.

To deal with renormalizable three-dimensional WZ models, we consider only canonical
Kähler potential, and superpotential of the type

W = −fX +
1

2
(M ij +X2N ij)φi φj (4.86)

in which R-symmetry imposes the conditions

M ij 6= 0 ⇒ R(φi) +R(φj) = 2 N ij 6= 0 ⇒ R(φi) +R(φj) = −2 (4.87)

The conditions (4.87) could not be sufficient to uniquely fix the R–charges. However,
it is clear that a basis always exists in which there are both charges greater than two and
charges lower than two.

In a basis where the fields with the same R-charge are grouped together, the M matrix
is written in the form

M =




M1

M2

.
.

MT
2

MT
1




(4.88)

and similar for the N matrix. The scalar potential of this model can be written as

VS =
∣∣−f +XN ijφiφj

∣∣2 +
∣∣M ijφj +X2N ijφj

∣∣2 (4.89)

which we assume to have a one-dimensional space of extrema given by

φi = 0 X arbitrary VS = |f |2 (4.90)

For general couplings, there can be other extrema and in particular some lower local
minima away from of the origin of φ’s. Furthermore for some choices of the coupling
constants at least some of (4.90) are saddle points. Here we work under the hypothesis
that this is not the case.

We show now that the effective potential always has a local maximum at the origin of
the pseudo-moduli space:

Veff(X) = V0 +m2
X |X|2 + O(X3) (4.91)

and the X field acquires a negative squared mass. We derive a general formula for m2
X in

the one-loop approximation by using the Coleman-Weinberg formula

V
(1)
eff = − 1

12π
STr|M|3

= − 1

6π2
Tr

∫ Λ

0

dv v4

(
1

v2 + M2
B

− 1

v2 + M2
F

)
(4.92)
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where M2
B and M2

F are, respectively, the squared mass matrices of the bosonic and
fermionic components of the superfields of the theory

M2
B = (M̂ +X2N̂)2 − 2fXN̂

M2
F = (M̂ +X2N̂)2

(4.93)

where we have defined

M̂ ≡
(

0 M †

M 0

)
N̂ ≡

(
0 N †

N 0

)
(4.94)

which take a form analogous to (4.88).
Substituting the mass formulas into the Coleman-Weinberg potential (4.92) and ex-

panding up to second order in the field X we find

V
(1)
eff = − 1

6π2
Tr

∫ Λ

0

dv v4 1

v2 + M̂2


 1

1 + X2{M̂,N̂}−2fXN̂

v2+M̂2

− 1

1 + X2{M̂,N̂}
v2+M̂2


+ . . .

= −2f 2X2

3π2
Tr

∫ Λ

0

dv v4 1

v2 + M̂2

1

v2 + M̂2
N̂

1

v2 + M̂2
N̂ + O(X3)

= −f
2X2

2π2
Tr

∫ Λ

0

dv v2 1

v2 + M̂2
N̂

1

v2 + M̂2
N̂ + O(X3) (4.95)

where the last step follows after an integration by parts. From the previous formula we
note that the origin of moduli space is always a local maximum, i.e. the pseudo-modulus
always acquires a negative squared mass at one-loop level. The vacuum cannot be at the
origin, and we have to find it at X 6= 0, where R-symmetry is spontaneously broken. The
existence of this vacuum is not guaranteed by (4.95), but it depends on the couplings in
(4.94)

We show now that the models in (4.86) have a runaway direction. In four-dimensional
theories if the R-charges of the superfields are both greater than two and lower than two
then the potential exhibits runaway [35]. In three-dimensional renormalizable theories
(4.86), conditions (4.87) state there are always both superfields with R-charge greater
than two and superfields with R-charge lower than two. We parametrize the fields by
their R-charge R(φi) ≡ Ri as

φi = ci e
Riα

X = cX e
2α (4.96)

The runaway behavior of the potential is analyzed by looking at the R-charges of
F -terms. The F -terms with R charges lower or equal to zero can be solved. All the non
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vanishing F terms have charge greater than zero. They vanish only if α → ∞. By (4.87),
the F -terms are

FX = −f +XN ijφiφj = −f +N ijcXcicj (4.97)

Fφi
= M ijφj +X2N ikφk =

(
∑

j

M ijcj +
∑

k

N ikc2Xck

)
e(2−Ri)α (4.98)

We distinguish three possibilities. The first is that the field φi couples both to the matrices
M and N . In this case, the equation (4.98) fixes the relative coefficients of the fields. The
second possibility is that the field φi does not couple with the matrix N but it has more
than one entry in the matrix M . In this case we fix the relative coefficients.The last
possibility is that φi only couples once to M . In this case we set cj = 0.

The discussion above does not solve all the Fφi
= 0 in (4.98). Some of the F -terms

with R-charge greater than zero have not been set to zero yet. They vanish when α→ ∞,
which implies a runaway behavior in the directions parameterized by some fields in (4.96)

Relevant couplings

In three dimensions there exist WZ models with relevant deformations that can be pertur-
batively studied without the addition of explicit R-symmetry breaking deformations. Even
if R-symmetry is not explicitly broken in three dimensions, quantum non-supersymmetric
vacua can appear out of the origin of the moduli space. The vevs at which the vacua are
found set the spontaneous R-symmetry breaking scale which plays the same role as the ε
deformation in [20].

The models which exhibit explicit or spontaneous R-symmetry breaking can be per-
turbatively studied in three dimensions. The former case has been analyzed in [20]. We
treat here the latter case. Assuming the R-symmetry breaking vacuum is near the origin,
we require that the pseudomodulus acquires a negative squared mass at the origin of
moduli space, i.e.there is a vacuum of the quantum theory which spontaneously breaks
the R-symmetry. This happens if not all the R-charges take the values R = 0 and R = 2.
This result was shown in four dimensions in [4] and can be analogously demonstrated in
three dimensions. We classify these models in two subclasses.

In the first class we identify the models without runaway behavior, i.e. all the charges
are lower or equal to two. There can be a regime of couplings in which supersymmetry is
broken in non R-symmetric vacua. The vev of the field that breaks R-symmetry introduce
a scale which bounds the perturbative window for the relevant couplings.

In the second class, that we consider in the following, there are runaway models. They
have R-charges lower and higher than two. Under the assumption of a hierarchy on the
mass scales, we distinguish two possibilities. Some of these models flow in the infrared
to models with only marginal couplings, that have been treated in sections 4.4 and 4.4.
The other possibility is that the effective descriptions of these theories share marginal and
relevant terms in the superpotential. In both cases a perturbative regime is allowed.
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A model with relevant couplings

Consider the superpotential

W = λXφ1φ2 − fX + µφ1φ3 + µφ2φ4

+ mφ1φ5 +mφ3φ5 (4.99)

The first line corresponds to the ISS low energy superpotential, while the second line of
(4.99) asymmetrizes the behavior of φ1 and φ2. If the mass term m is higher than the
other scales of the theory (m2 � µ2 and m2 � f 4/3) we can integrate out the second line
of (4.99), and obtain

W = hX2φ2
2 − fX + µφ2φ4 (4.100)

where h = λ
4µ

is a marginal coupling. The perturbative analysis of this model is now
possible, with the only requirement that h� 1.

The superpotential (4.100) is identical to (4.74). This example shows that in three
dimensions models with cubic couplings in the UV can flow to theories with quartic terms
in the IR, which are perturbatively accessible.

Models with relevant and marginal couplings

A model with relevant couplings can flow to a model with both marginal and relevant
couplings. For example if we take the superpotential

W = −fX + λ5Xφ1φ5 −
m

2
φ2

5 + µφ1φ2 + λXφ2
3 + µφ3φ4 (4.101)

and we study this model in the regime m2 � µ2, m2 � f 4/3, we can integrate the field
φ5 out. The effective theory becomes

W = −fX + hX2φ2
1 + µφ1φ2 + λXφ2

3 + µφ3φ4 (4.102)

where h =
λ2
5

m
. This model preserves R-symmetry and the charges of the fields are

R(X) = 2 R(φ1) = −1 R(φ2) = 3 R(φ3) = 0 R(φ4) = 2 (4.103)

As before this theory has a runaway behavior in the large field region, and the fields are
parametrized as

X =
f

2hµ
e2α, φ2 =

√
µe−α, φ4 = − f 2

2h
√
µ5
e3α φ3 = 0 φ4 = 0 (4.104)

Near the origin the classical equations of motion break supersymmetry at tree level at
φi = 0. The field X is a classical pseudomodulus whose stability has to be studied

perturbatively. The pseudomoduli space is stable if |〈X〉| < µ2

4fh
and λ√

µ
< µ3/2

2f
.

We study the effective potential by expanding it in the adimensional parameter f2

µ3 , finding

V
(1)
eff(X) = −3f 2λ2(λ2X2 + 2µ2)

2(λ2X2 + µ2)3/2
− 6f 2h2X2(h2X4 + 2µ2)

(h2X4 + µ2)3/2
(4.105)

172



This perturbative analysis holds if the coupling λ is small at the mass scale of the chiral
field φ3

λ2 � λX (4.106)

This requirement imposes that the field X cannot be fixed at the origin, and R-symmetry
has to be broken in the non supersymmetric vacuum. The coupling λ has to be small,
and we can expand the potential in the adimensional parameter λ√

µ
. At the lowest order

we found that a minimum exists and it is

X ∼ 21/4

(
µ2

h2
− 9

√
3λ2µ2

15
√

3h2λ4 + 4h4µ2

)1/4

(4.107)

Inserting (4.107) in (4.106) we find the condition under which the one loop approximation
is valid. In this range we found a (meta)stable vacuum at non zero vev for the pseudo-
modulus.

We have shown that metastable supersymmetry breaking vacua in three dimensional
WZ models are generic. Relevant couplings potentially invalidate the perturbative ap-
proximation. Nevertheless, as we have seen, this problem is removed by the addiction of
marginal couplings.

Our study may be useful for the analysis of spontaneous supersymmetry breaking in
3D gauge theories. This issue has been investigated in [159, 163, 165] as a consequence of
brane dynamics. A preliminary step towards the study of supersymmetry breaking in the
dual field theory living on the branes appeared in [20], where the three dimensional ISS
mechanism has been discovered for Yang-Mills and Chern-Simons gauge theories. The
first class has been deeply studied in [155]. The second class has become more important
in the last years, because of its relation with the AdS4/CFT3 correspondence. It would
be interesting to generalize the three dimensional ISS mechanism of [20] in theories which
admit a Seiberg-like dual description [19, 162, 166, 167].

Another interesting aspect, that needs a further analysis, is the role of R-symmetry. In
fact in three dimensions supersymmetry breaking seems always paired with R-symmetry
breaking, spontaneous or explicit. A similar result holds in four dimensions [3]. Here
the condition seems stronger, since known models without R-symmetry breaking are not
perturbatively accessible.
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Conclusions

In this thesis we have discussed various application of Seiberg duality in supersymmet-
ric gauge theories. Many other direction can be investigated, both in four and three
dimensions.

For example the discover of the existence of metastable vacua receives a great interest
both for the theoretics developments both for the phenomenological application. Much of
the theoretical interest is devoted to the application of metastability to the gauge/gravity
duality. For example quiver gauge theories have given many extensions of the ISS mech-
anism. Moreover these theories, representing wrapped branes at CY singularity, can in
principle relate the metastable supersymmetry breaking vacua to the dS vacua of [93]. A
similar idea appeared in [30], but a general comprehension of this phenomenon still lacks.
It is not clear how to match the dS vacua in the CY throat with the ISS vacua. The
phenomenological zoo of supersymmetry breaking models has been enlarged by ISS like
models. Indeed many deformations of ISS model have been investigated as hidden sectors
of supersymmetry breaking. Gauge mediation is the natural mechanism used to propa-
gate the supersymmetry breaking to the MSSM superpartners, sfermions and gauginos.
Recently [168, 169] have applicated the idea of pseudomoduli to DM. It seems a promising
possibility, since it fits with the requirements on relic abundance and pseudomoduli DM
can be rather light, i.e. at the TeV scale.

Another application that we discussed is the connection between exotic stringy instan-
ton contribution and gauge theory. Duality furnishes an interpretation in terms of gauge
instanton contribution on one side that becomes classical constraints on the moduli space
in the dual model. This behaviour is typical of cascading theories and is general. It is
possible that a similar result holds in the case of multi F -term contributions.

The last application of duality that we have shown is the connection among different
theories describing the motion of M2 branes on CY4 toric singularities. These theories
have a CFT3 interpretation in terms of CS matter N = 2 gauge theories. Seiberg duality
in three dimensional CS theories has similar rules than in the four dimensional case.
Nevertheless the introduction of the CS levels change the rules of transformation of the
gauge groups. The intuition given by the knowledge of the four dimensional case is not
enough in three dimensions. Indeed a larger duality symmetry, called mirror symmetry,
should connect theories with different number of gauge groups in three dimensions. This
implies that in three dimensions duality acts in a more complicated way than in four
dimensions, and a complete comprehension and classification of dual theories in here
still lacks. It is also interesting to study the ISS mechanism in these three dimensional

174



quiver gauge theories. From our analysis it is evident the gauge theories must break R-
symmetry in proximity of the metastable state. From four dimensions we learned that it
is happens only explicitly. Indeed no four dimensional gauge theories that spontaneously
break R-symmetry at the metastable vacua are known. The ISS mechanism in quiver
gauge theories has to be realized by deforming the singularity with supersymmetry and
R-symmetry breaking terms.
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Appendix A

Analysis of N = 1 supersymmetric

theories

A.1 Quiver gauge theories

In this appendix we review the general properties of two classes of quiver gauge theories.
The first class is the quiver gauge theory associated to a ALE space with a A-D-E
singularity. The second class is associated to toric singularities.

Quiver gauge theory arises in AdS/CFT in the study of D3 branes at CY singularity.
In four dimensions quiver gauge theories are supersymmetric models with a product of
U(N) or SU(N) gauge groups and bifundamental or adjoint two index tensors matter
fields. We focus only on N = 1 theories. The structure of the gauge groups and of the
matter are encoded in a graph composed of directed arrows and vertexes. The arrows
represents the matter fields and the vertexes the gauge group. Every arrow that connects
two vertexes represents a bifundamental field. The tail of the arrow tells us that the field
is in the fundamental representation of the gauge group associated to the vertex, while
the head entails the antifundamental representation. If the two endpoints of an arrow
coincide the matter field is in the adjoint representation of the associated vertex.

One can define the incidence matrix Qa
i of the quiver, that encodes the U(1) factors of

U(N) under which the fields are charged. In this matrix a +1 factor is associated to the
fundamental representation, a −1 factor to the antifundamental and 0 for the adjoint.

The superpotential of a quiver is a function of the gauge invariant operators (closed
loops in the quiver), but there is no algorithm to work it out for a given quiver, and other
information are necessary.

The other information are given by the AdS/CFT origin of quiver theories. The struc-
ture of the internal CY3 geometry, and of its singularity determine the superpotential of
the theory. In some simple case, like ADE and toric singularities there are straightforward
algorithm to compute the structure of the superpotential.
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An quiver gauge theories

We consider a class of N = 1 supersymmetric gauge theories that takes origin from
wrapping D-branes on ADE fibered CY3. These theories are N = 2 quiver gauge theories
associated to the ADE Dinkin diagrams deformed to N = 1 by polynomial superpotential
terms in the adjoint fields.

The undeformed theory

The N = 2 theory arises from ALE spaces with ADE singularities at the origin. These
spaces are obtained by quotienting C2 by a discrete subgroup Γ of SU(2). We study
only the cyclic An geometry. The geometry is an hypersurface f(x, y, z) = 0 on C3,
f = x2 + y2 + zr+1 and the origin is singular. These spaces can be desingularized by
proper deformations. There are two possibility, one can add deformation to the equation
f(0, 0, 0) = 0, or blow up the singularity.

In the first case one can deform the equation for an Ar−1 space as

x2 + y2 +
r∏

i=1

(z + ti) (A.1)

with the constraint
∑r

1=1 ti = 0. The space f = 0 admits r non-vanishing S2. There exists
a basis for which the intersection of these S2

i is the same of the Ar−1 Dynkin diagram.
These S2 are related to the volume of the corresponding two-cycles in the geometry. The
integral of the holomorphic two forms over the corresponding S2 is

αi =

∫

S2
i

dw =

∫

S2
i

dxdy

z
(A.2)

The αi are identified with the simple roots of the Ar−1. One can alternatively use
these αi instead of the ti as deformation parameter, since the two quantities are related
by αi = ti − ti+1.

The other possibility to obtain an S2 is to blow up the singularity. The ALE space has
a three dimensional space of deformations (complex deformation and blow up) for each
S2
i . Moreover in IIB string theory one can turn on B fields, BNS and BR. This gives a 5

parameter family of deformation. The volume of each S2
i is

Vi =
(
(BNS

i )2 + r2
I + |αi|2

)2
(A.3)

where ri =
∫
S2

i
k, and k is the Kahler form.

Then D5 spacetime filling branes are wrapped on the deformed space (Ni branes at
each S2

i ). The gauge theory living on the branes is a N = 2 quiver gauge theory with
gauge group G

G =

r∏

i=1

U(Ni) (A.4)
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and each group has coupling constant given by

1

g2
YM

=
Vi
gs

(A.5)

For each intersecting pair of S2
i , S

2
j there is an N = 2 hypermultiplet. In N = 1 notations

this is a pair of bifundamental superfields Qij and Qji, that transforms in the fundamental
of the first index and in the antifundamental of the second. The superpotential is

W =
∑

i,j

sijTr (QijΦjQji) (A.6)

where Φj is the N = 1 adjoint field charged under U(Nj). The matrix sij is antisymmetric
and |sij| = 1.

Before fibering the geometry an observation is necessary. The space C2/Γ gives r + 1
choices for the basis of wrapped D-branes in the case of Ar. Here we have added r D5
branes wrapped over two cycles in the H2 homology class of the ALE space. The extra
charge arises from the H0 class of homology of the ALE space, and it corresponds to add
a spacetime filling D3, which is point like in the ALE space. This new brane has the effect
of connecting the first and the r-th node of the quiver with the fields Q1r and Qr1. From
now on we concentrate on the non affine case only, where the D3 branes do not appear.

Fibration of the space and deformation to N = 1

Supersymmetry breaking to a N = 1 theory is obtained after wrapping the branes on the
fibered geometry. The fibration takes place over the complex plane t, transverse to the
D5. The Kahler class is fixed on the 2-fold geometry and the complex moduli of the ALE
space are varied. One has ti = ti(t) and αi = αi(t). If αi is not a single value function
of t one has a monodromic fibration, on the contrary if αi is single valued the fibration is
non monodromic.

In the simplest case, A1 the equation for the 3-fold is

f = x2 + y2 + z2 + α(t)2 = 0 (A.7)

and over each point in the complex plane t there is a S2 with holomorphic volume α(t).
The D5 branes are wrapped around the S2 fiber as before, and the modulus t param-

eterizes the vev of the adjoint field Φ. The superpotential is [170]

W (Φ) =

∫ t=Φ

S2(t)×I
w ∧ dt =

∫ Φ

I

α(t)dt (A.8)

and I is an interval on t. Modulo a constant factor one has

dW

dΦ
= α(Φ) (A.9)
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In the general case of an An Dynkin diagram one considers non monodromic fibrations,
such that the branes can be wrapped over non trivial 2-cycles in the fibered geometry.
Each αi can be taken to be a polynomial in t. Defining αi(t) = dPi(t)/dt the complete
superpotential is

W =
∑

i,j

sij (TrQijΦjQji) +
∑

i

TrPi(t) (A.10)

Toric quiver gauge theories

The other class of quiver gauge theory that we need to review is the class of toric quiver
gauge theories. In the study of branes at singularities we have a stack of N D3 branes
placed at a toric CY singularity. The toric condition asks a U(1)3 isometry group in the
internal geometry. From the field theory side this means that there is a U(1)R symmetry
and two additional U(1) global flavour symmetries. Moreover the theory may have addi-
tional baryonic U(1) symmetries (corresponding to gauged symmetries in the dual AdS
string theory). Differently from non-toric theories the requirement of having three U(1)3

fixes the superpotential of the gauge theories.
From the geometry side the D3 brane are stable far from the singularity, but they

become unstable and decay into fractional branes at the singularities. Fractional branes
break the conformal symmetry and give raise to a non trivial dynamics in the flow through
the IR. For example many theories have a cascading behaviour after fractional branes are
added. The singular structure determine the structure of the gauge theory. The gauge
theory is a product of U(N) gauge group. In the IR the U(1) factors become global
symmetries and we are left with a

∏
SU(Ni) gauge theory. These symmetries were in

origin non anomalous. In the original theory there could be also anomalous U(1) gauge
symmetries, that are canceled in string theory, with the associated gauge fields getting
a mass. Examples of toric quiver gauge theories are the N = 4, the conifold and their
orbifold. In this thesis we studied also other examples of toric theories as the Y pq, the
Lpqr and the del Pezzo singularities. An additional property typical of toric gauge theories
is the F terms structure. Each field appears linearly twice in the superpotential, with
opposite sign and F terms have a structure “monomial”=“monomial”. Moreover these
equation constraints the mesonic operators to form a chiral ring. In many applications
the moduli space of these toric theories is constructed from a GLSM [171].

Dimer models

The analysis of quiver toric theories is further simplified by another geometric structure,
the dimer model. This simplify the analysis of the moduli space of the toric model, and
the identification of the GLSM fields is straightforward in this formalism.

The first step in the building of a dimer model is the association of each superpotential
term with a polygon. Each edge of the polygon is associated to a field. Each pairs of poly-
gons are glued together with only one of their edge (every field in a toric theory appear
only twice, and with opposite sign in the superpotential). This construction represents a
polygonal tiling of a orientable Riemann surface, called the planar quiver. This Riemann
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surface has genus g = 1, because of the conditions of toricity and conformity, and it is
topologically a torus T 2.

Planar Quiver Brane Tiling
Vertex Gauge group Superpotential Term
Edge Matter Field Matter Field
Face Superpotential Term Gauge group

The dual graph, called the brane tiling, is built by inverting the role of faces and vertexes.
The dual vertexes represents the superpotential interactions and the dual faces represents
the gauge groups. The role of the edges in unchanged, and they still represents the matter
fields. This graph is bipartite, and the sign of the superpotential term reflected in the
black or with color of the vertexes (e.g. “black=+1” and “white=−1”).

A dimer is defined as a marked edge connecting the black and the white in a bipartite
tiling. A collection of dimers that involve all the edges only once is called a perfect match-
ing. A dimer model is the collection of the bipartite graph and the perfect matchings. In
four dimensions the knowledge of the perfect matchings is fundamental for the building
of the GLSM that describe the classical moduli space (see [172] for reviews).

The Newton polygon is a convex polygon in Z2 generated by the integer exponent of
the monomial in P . It represents the toric diagram associated to the moduli space. The
perfect matchings are in 1− 1 correspondence with the fields of the GLSM that describes
the toric geometry. As explained in [149] there is an algorithm for the calculation of this
diagram. Since it is the moduli space one has to solve the F terms and the D terms.
The contribution of the F terms is contained in the matrix that maps the bifundamental
field in the GLSM fields, e.g. the perfect matching. This charge matrix Q has dimensions
(c−NG− 2)× c, where c is the number of perfect matchings. Another charge matrix QD

determines the action of the D-terms on the perfect matchings, and QD is a NG − 1 × c
matrix. The toric diagrams corresponds to the column of the matrix Gt = Ker(Qt)

T ,
where Qt is given by joining Q and QD.

Toric diagrams

From the algebraic-geometric point of view the data of a conical toric Calabi-Yau are
encoded in a rational polyhedral cone C in Z3 defined by a set of vectors Vα α = 1, ..., d.
For a CY cone, using an SL(3,Z) transformation, it is always possible to carry these
vectors to the form Vα = (xα, yα, 1). In this way the toric diagram can be drawn in the
x, y plane (see for example Figure 2.3). The CY equations can be reconstructed from this
set of combinatorial data using the dual cone C∗.
The two cones are related as follow. The geometric generators for the cone C∗, which are
vectors aligned along the edges of C∗, are the perpendicular vectors to the facets of C.
To give an algebraic-geometric description of the CY, we consider the cone C∗ as a semi-
group and find its generators over the integer numbers. The primitive vectors pointing
along the edges generate the cone over the real numbers but we generically need to add
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other vectors to obtain a basis over the integers. Denote by Wj with j = 1, ..., k a set of
generators of C∗ over the integers. To every vector Wj one can associate a coordinate xj
in some ambient space. k vectors in Z3 are linearly dependent for k > 3, and the additive
relations satisfied by the generators Wj translate into a set of multiplicative relations
among the coordinates xj. These are the algebraic equations defining the six-dimensional
CY cone.
All the relations between points in the dual cone become relations among mesons in the
field theory. In fact, there exists a one to one correspondence among the integer points
inside C∗ and the mesonic operators in the dual field theory, modulo F-term constraints
1. To every integer point mj in C∗ we indeed associate a meson Mmj

in the gauge the-
ory with U(1)3 charge mj, which uniquely determine them. The first two coordinates
Qmj = (m1

j , m
2
j) of the vector mj are the charges of the meson under the two flavour U(1)

symmetries. Since the cone C∗ is generated as a semi-group by the vectors Wj the generic
meson will be obtained as a product of basic mesons MWj

, and we can restrict to these
generators for all our purposes. The multiplicative relations satisfied by the coordinates
xj become a set of multiplicative relations among the mesonic operators MWj

inside the
chiral ring of the gauge theory. It is possible to prove that these relations are a conse-
quence of the F-term constraints of the gauge theory. The abelian version of this set of
relations is just the set of algebraic equations defining the CY variety as embedded in Ck.
In the example of SPP from the four mesons x, y, z, w we associate the quadric xy2 = zw
in C4.

Example: the conifold

We study the moduli space of the conifold by using the rules of toric geometry. This theory
represents the CY3 singularity whose affine coordinates are given by the hypersurface in
C4

xy − wz = 0 (A.11)

The worldvolume gauge theory of a stack of N D3 branes on this singularity has two gauge
groups SU(N)× SU(N) with four bifundamental fields Ai and Bi. The superpotential is

W = A1B1A2B2 − A1B2A2B1 (A.12)

We start by studying the case N = 1 where the superpotential is W = 0. The gauge
invariant mesonic operators x = A1B1, y = A2B2, w = A1B2 and z = A2B1 are subject
to (A.11). For generic N one has the N-symmetrized products of N copies of the conifold.

The quiver and the brane tiling of this theory are given in figure A.1. The Kastelein
matrix is a 1× 1 matrix, the sum of the four bifundamental fields. The perfect matchings

1For the relations between the chiral ring of toric CFT and the geometry of the singularities see
[173, 174, 175, 176, 177].
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Figure A.1: (a) Quiver for the conifold, (b) brane tiling of the conifold

are four and they correspond to the fields Ai and Bi. The d and P matrices are

d =

(
1 1 −1 −1
−1 −1 1 1

)
P =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 (A.13)

The matrix of the GLSM fields Q corresponds to the matrix d in this case. The D term

(0,1) (1,1)

(1,0)(0,0)

Figure A.2: Toric diagram for the conifold

contribution is obtained by quotienting the matrix Q by the G− 1 FI parameters of the
gauge theory, that are in the integer kernel of K = (1, 1). The toric diagram, drawn in
figure A.2 is

G =

(
QD

QF

)
=

(
Ker(K) ·Q
Ker(P T )

)
=




1 0 0 1
1 0 1 0
1 1 1 1


 (A.14)

ant it encodes the classical moduli space for the GLSM model.
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A.2 Orientifold projection from dimers

In this appendix we discuss the procedure to follow for orientifolding a toric quiver gauge
theory using dimers. This operation has been worked out in [118], and we needed it to
built the instantonic action in chapter 3.

There are two possibility, orientifold from dimers with fixed points and orientifold from
dimers with fixed lines.

Orientifolds from dimers with fixed points

We consider systems of D3 branes on toric CY3 singularity. If the orientifold action
commute with the U(1)3 mesonic symmetry group the orientifold act as a Z2 symmetry
on the dimer corresponding to reflections of the two coordinated of the T 2 torus.

There are four fixed points under this Z2 in the dimer diagram, these fixed points
correspond to the orientifold planes, O+ and O−. This sign assignment determines the
projection on the chiral and vector multiplets. If we name with an a the index of a
face and a′ the index of the image of a under the projection, the rules that relate the
un-orientifolded theory and the orientifolded theory are

* Every face a 6= a′ gives a gauge factor U(Na);

* Every face a = a′ on a O+(O−) plane gives a factor SO(Na) (Sp(Na/2));

• A chiral multiplet in the bi-fundamental (�a,�b) with b 6= a′ gives a bi-fundamental
in the orientifolded theory (�a,�b) (the image is (�b′ ,�b′));

* A bi-fundamental (�a,�b′) gives a bi-fundamental (�a,�b);

* An edge with a = a′ that represents a bifundamental (�a,�a′) on the top of a plane

O+ (O−) is projected on ��a

(
�
�a

)

* The orientifolded theories are in general chiral theories (also if the parents were
vector like). This introduces gauge anomalies, that are usually canceled by the
Green-Schwartz mechanism. If it is not the case some new D7 branes are required;

* The superpotential of the orientifolded theory is obtained from the parent theory
by projecting out an half of the terms and substituting the other terms with their
images under orientifold.

The sign of the orientifold is determined by the number of terms in the superpotential.
The number of orientifold planes with the same sign is even (odd) if the number of therm
in the superpotential is even (odd).
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Orientifolds from dimers with fixed lines

In this case the orientifold planes do not preserve the mesonic symmetry but only a
combination. In the dimer these are symmetries with a fixed line. Orientifold with fixed
lines are obtained from dimers whose fundamental cell is invariant under a line reflection
(and the constraint of mapping black nodes with black nodes and white nodes with white
nodes). There are two possible fundamental cells with this characteristic, rectangles and
rhombus, see figure A.3 and A.4. Since the brane tiling is interpreted a set suspended

Figure A.3: Orientifold with fixed lines: rectangular fundamental cell

Figure A.4: Orientifold with fixed lines: rhombus fundamental cell

D5 on NS5 branes, the fixed lines are interpreted as physical orientifold planes. The rules
of the projection are

* The faces that are mapped into themselves from the orientifold action have the
gauge factors projected on SO or Sp, depending on the orientifold charge. The
different faces that are identified become unitary groups.

* The edges mapped in themselves become chiral multiplets in the symmetric (anti-
symmetric) representation in the case of O+ (O−). The edges that are coupled by
a line are identified as bifundamental matter.

* The nodes that are mapped in themselves are the interaction terms in the superpo-
tential.
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A.3 Hierarchy of scales

One of the main approximation we used to find metastable vacua has been to neglect the
fact that the odd nodes are gauge nodes. In order to treat them as flavours groups in the
region of interest, it is necessary that their gauge couplings are lower than the couplings
of the even nodes. We can treat the odd groups as flavour groups only if this relation
holds.

In order to substantiate this idea we have to relate the electric scale of the flavour
group to the other scales of the theory. The latter ones are the strong coupling scale of
the gauge theories, Λ2i, and the supersymmetry breaking scale µ, which is the value of
the linear term in the dual version of the theory.

We must impose the groups related to the flavour/odd nodes to be less coupled than
the gauge/even groups in the magnetic region. A similar analysis was performed in [29].

There are six possibilities, shown in Figure 1 in section 2.3. We have already discussed
what happens in all these different cases. We will now show how to derive the formulas
(2.143) and (2.147).

Let’s denote by f all the objects related to the flavour group, and by g all the objects
related to the gauge group. We have to distinguish four different cases, all with b̃f > b̃g
2. In fact the flavours can be IR free or UV free in the electric description (i.e. above the
scale Λ2i) and also UV free or IR free in the magnetic description.

We start studying a single case, and then we will comment about the others. Let’s
study the case (2) in Figure 1, where the flavours are UV free in the electric and IR free

in the magnetic description, i.e. bf > 0 and b̃f < 0.
We require that after Seiberg duality the gauge coupling gg is larger than the flavour

coupling gf . More precisely we require that this happens at the supersymmetry breaking
scale µ

1

g2
f(µ)

>
1

g2
g(µ)

⇒ b̃f log

(
Λ̃f

µ

)
< b̃g log

(
Λ̃g

µ

)
(A.15)

from which follows

Λ̃f >

(
Λ̃g

µ

)ebg−ebf
ebf

Λ̃g > Λ̃g (A.16)

The scale matching relation coming from Seiberg duality

Λ
3ng−nf
g Λ̃

2nf−3ng
g = Λ̂

nf
g (A.17)

fixes Λg = Λ̃g, if we choose the intermediate scale to be Λ̂g = Λg.
For the flavour scale we observe that, at the scale Λg, where we perform Seiberg duality,

the coupling in the electric description for the odd node is the same that the coupling of

2The opposite inequality do not require this analysis, since at low energy the flavours are always less
coupled than the gauge.
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the magnetic description, and this implies

gf = g̃f →
(

Λf

Λg

)bf
=

(
Λ̃f

Λg

)ebf

(A.18)

We can now write (A.16) in term of the electric scales (Λf and Λg) using (A.18), and we
obtain

Λf < µ

ebf−ebg

bf Λ

ebg−ebf +bf
bf

g (A.19)

Since the exponent of µ is positive we have

b̃f − b̃g
bf

> 0 → Λf <

(
µ

Λg

)ebf−ebg

bf

Λg � Λg (A.20)

This imposes a stronger constraint on the scale of the flavour group Λf . In fact it is not
enough to choose it lower than the gauge strong coupling scale Λg. It is also constrained
by (A.20). The next figure explains what happens

1
g2

Λgµ EΛ f

1
g2

Λgµ EfΛ 

In the first picture the scale Λf is lower than Λg but not enough: at the breaking scale it is
not possible to neglect the contribution coming from g̃f . Instead, if we constrain the scale
Λf using (A.20), we obtain the runnings depicted in the second picture: here the flavour
groups are less coupled than the gauge groups at the supersymmetry breaking scale.

As explained above there are four different possibilities. The second possibility is that
the flavours are UV free both in the electric description and in the magnetic description,
with b̃f > 0. The analysis is the same as before, and we obtain the same inequality as
(A.20). However this situation requires a more careful analysis, since in the infrared the
gauge coupling associated to the flavour group develops a strong dynamics which has to
be taken under control.

For the other two possibilities, where bf < 0, one finds

Λf >

(
Λg

µ

)ebg−ebf
bf

Λg � Λg (A.21)

The general recipe we learn from this analysis can be summarized in three different
cases
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• If the inequality b̃f < b̃g holds one has simply to choose Λf � Λg or Λf � Λg if
bf > 0 or bf < 0 respectively as in (2.139,2.140).

• If b̃f > b̃g we can still distinguish two cases

– In the first case bf > 0, and we have to constraint Λf with (A.20).

– In the second case bf < 0, and we have to constraint Λf with (A.21).

A.4 Geometric transition and the superpotential

In this Appendix we review the geometric transition techniques of [59] for computing
the low energy superpotential from the geometrical data. The computation is illustrated
here for the ε-deformed geometries. These deformations are due to the strong dynamics
developed by the gauge groups that lead to the supersymmetric vacua.

With this technique it is possible to write the superpotential for the gaugino condensate
and its interaction with the adjoint fields, which are the mesons describing the low energy
theory. The dynamical deformation ε of the geometry is related to the gaugino condensate,
while the adjoint field is interpreted as the location of the D5-branes relative to the
dynamically deformed conifold.

In the SPP example, the deformed geometry is

(x(y − ξ) − ε) y = wz (A.22)

and the glueball field is given by ε = 2S.
The low energy superpotential WIR is composed by two contributions

WIR = WGVW (S) +Wadj(S,X) (A.23)

the first one involves the glueball field S whereas the second one is the contribution of
the adjoint field X.

The superpotential for the glueball field is the GVW flux superpotential

WGVW (S) =

∫
H ∧ Ω = NS

(
log

S

Λ3
m

− 1

)
+

t

gs
S . (A.24)

This perturbative superpotential is a function of the glueball field S and of a parameter
t. The t parameter takes into account the multistanton contribution to the low energy
superpotential. In fact since we have D5-branes wrapping rigid P1 in a Calabi-Yau, D1-

brane istantons wrapping the P1 generate a superpotential proportional to exp− t
gsN with

t =
∫
S2 B

NS + igsB
RR. Expanding with respect of t in the low energy theory we can take

into account the multistanton contribution.
In [59] it has been shown how to compute from geometrical data the adjoint con-

tribution Wadj(S,X) to the low energy superpotential. It is given by the integral over
holomorphic 3-form

Wadj(S,X) =

∫

Γ

Ω (A.25)
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where Γ is a 3-chain bounded by the 2-cycle that the D5 brane wraps. This can be
computed writing the geometry (A.22) in terms of new variables x = x′−y′ and y = x′+y′

3∏

i=1

(x′ − x′i(y
′)) = wz (A.26)

and evaluating

Wadj =

∫
(x′3(y

′) − x′1(y
′))dy′ . (A.27)

More generally, [59] if we have a geometry of the form

n∏

i=1

(x′ − x′i(y
′)) = wz (A.28)

the contribution of the j-th node to this superpotential is of the form

Wj,adj =

∫
(x′j(y

′) − x′j+1(y
′))dy′ . (A.29)

In the SPP case the only node in the quiver with the adjoint field is N1, and indeed
the contribution to the superpotential is (A.27). In the regime where all the deformations
are lower than y′ (y′ � ε, ξi), we can expand the integral (A.27) at first order in ε, and
obtain

Wadj = ξX11 − S log

(
X11

Λm

)
(A.30)

where we have identified ε = 2S. From the full low energy superpotential WIR (A.23)
we can now obtain a description in terms of the adjoint field only. This is achieved by
integrating out the glueball field, using (N +M) copies of (A.30)

S =
(
Λ2N−M
m detX11

)1/N
e−t/gs ∼

(
Λ2N−M
m detX11

)1/N
(A.31)

without considering multi-istanton contributions. With this procedure we recover the
expected result

WIR = ξ1X11 −N
(
Λ2N−M
m detX11

)1/N
(A.32)

which is understood in field theory as the low energy contribution to the superpotential
due to the gaugino condensation of the node N1.

A.5 Stability and UV completion

In this Appendix we discuss the issue of UV completion. A related problem concerns the
unstable directions that can arise when we set some node to zero. The most natural UV
completion to the IR theories analyzed in this paper seems to describe them as the last
step of a duality cascade. If this is the case there could be potentially dangerous baryonic
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flat directions, due to the breaking of the baryonic symmetry. It occurs if we choose the
baryonic branch after the confinement of some of the gauge groups. For supersymmetry,
the Goldstone boson associated to the breaking of baryonic symmetry fits in a chiral
supermultiplet containing another scalar particle that is not protected by any symmetry.
This particle is a pseudogoldstone and signals a dangerous flat direction.

This scalar mode is decoupled at one loop and studying the stability of this direction
remains an open problem. This was the case in [30, 42, 178]. A possible solution is the
gauging of the baryonic symmetry. The resulting D-term potential lift these dangerous
directions. Another possible way out, as noticed in [30], is to consider non canonical terms
in the Kahler potential. We comment on this problem and discuss it in a simple example,
the L444 theory.

We consider the quiver in figure A.5 and we study its low energy dynamics. Tuning the

N
N+MN  =6

2N+MN  =5

2N+MN  =1

NN  =7
N   =8

NN  =4N  =3N+M NN  =2

Figure A.5: The L444 theory which gives metastable vacua after the confinement of the
nodes N1 and N5

scales such that the first and the fifth node are the more strongly coupled gauge groups,
we can describe the low energy with gauge singlets for these groups as

W = q23q34q43q32 − q34X44q43 +M44X44 −M46M64 + q76M66q67 − ξ1M66 + ξ1X44

− q67q78q87q76 + q78X88q87 −M88X88 +M82M28 − q32M22q23 + ξ2M22 − ξ2X88 .

We observe that for the first and the fifth nodes the number of flavour coincides with
the number of colors. Hence we have to impose the following quantum constraint on the
moduli space

det

(
M44 M46

M64 M66

)
− b1b̃1 − Λ4N+2M

1 = 0

det

(
M22 M28

M82 M88

)
− b2b̃2 − Λ4N+2M

2 = 0 . (A.33)

Choosing the baryonic branch, we have bib̃i = Λ4N+2M
i , which breaks the baryonic sym-

metries. If we integrate out the massive mesons we obtain the low energy theory corre-
sponding to set the nodes N1 and N5 to zero

W = q76M66q67 − ξ1M66 − q67q78q87q76

− q32M22q23 + ξ2M22 + q23q34q43q32 . (A.34)
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This superpotential corresponds to two decoupled copies of theories obtained from L131

setting to zero a node with an adjoint field, and where we set the two deformations to
have the same value but opposite sign. This implies that there is not a mass term for the
quarks. The two theories have metastable vacua, as shown in section 2.4.

As mentioned, the problem here is that the breaking of the global baryonic symmetry
gives rise to a Goldstone boson and to a pseudoflat direction, which is not protected by
any global symmetry. This direction does not receive any one loop contribution by the
CW effective potential, and can get tachyonic at higher loops. The possible way out to
this source of instability is that we are dealing with a compactified theory. This implies
that the baryonic symmetry is gauged, and this gauging gives origin to a positive squared
mass term for the pseudoflat direction.

A.6 Quantum analysis

In this appendix we review some formulas, useful for the calculation of the spectrum of
supersymmetry breaking models. First we give the explicit expressions for the squared
mass matrices. Than we review the basic aspects for the one loop and two loop calculation
used in the text.

Mass Matrices

In the analysis of supersymmetry breaking we made use of the squared bosonic and
fermionic mass matrices. These can be calculated not only in the supersymmetric cases,
where they coincide, but also in non supersymmetric case, i.e. where some F or D terms
are not vanishing.

In this section we review the general formulation for these mass matrices in the general
case of F 6= 0 and D 6= 0, for the vector, fermion and spinor field.

Vector Fields

In the general case, where some of the chiral fields get a vev, 〈φi〉 6= 0, the standard
Higgs mechanism is at work and some vector fields get a mass. In the Lagrangian it is
due to the interaction

g2φ†T aT bφvaµv
aµ (A.35)

If one defines the derivatives of the D terms as

Da
i =

∂Da

∂φi
= −g(φ†T a)i Di a =

∂Da

∂φ†
i

= −g(T aφ)i Dai
j = −gT aij (A.36)

the mass matrix takes the form
m2
v = 2Da

iD
bi (A.37)
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where the φi’s fields are substituted by their vevs.

Fermionic Fields

In the Lagrangian there are two terms that can participate to the mass matrix for the
fermions. One comes from the D terms and relates the gauginos with the fermions of the
chiral multiplet. the second one is only due to the superpotential.

i
√

2gaφ†
j(T

a)jiλ
aψi − 1

2
Wijψ

jψi + h.c. (A.38)

where

W ij =
∂2W

∂φj∂φi
(A.39)

If one organizes (A.38) in a matrix form the expression is

−1

2

(
ψi λa

)( Wij

√
2iDb

i√
2iDa

j 0

)(
ψj

λb

)
(A.40)

The squared mass matrix is given by the product of the matrix above with the conjugated
one. One has

m2
f =

(
WilW

jl + 2Dc
iD

cj −
√

2iWilD
bl

√
2iDa

lW
jl 2Da

lD
bl

)
(A.41)

Scalar Fields

The squared mass matrix is given by the second derivatives of the scalar potential. In
term of the superpotential we have 3

m2
B =

(
WipW

kp +DakDa
i +DaDak

i W pWilp +Da
iD

a
l

WpW
jkp +DajDak WlpW

jp +DajDa
l +DaDaj

l

)
(A.42)

Once we have written the mass matrices we can write a general relation, that holds
also in the case of spontaneous supersymmetry breaking. It is

STrM2 = 3Trm2
v − 2Trm2

f + Trm2
B = −2gDaTrT a (A.43)

The 3 and 2 factors count the physical degrees of freedom of massive vectors and
fermions. The + and − signs represent the fermionic and bosonic number. The STrM2

is zero if there are no U(1) or FI terms. This strongly constraints the spectrum of a
supersymmetry breaking theory.

3Note that we use the terminology mB for this matrix since in the cases that we have analyzed the
only bosons necessary for the analysis were the scalars.
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Note that we can use a different form of the mass matrices, in order to have the same
coefficients in (A.43) in front of the different traces. Here we discuss only the case of
interest, i.e. the case where susy is spontaneously broken by F terms, and the D terms
are all zero. If also the gauge symmetry is unbroken we have that mf can be written as

m2
f =

(
WilW

jl 0
0 W ilWjl

)
(A.44)

We have doubled the mass matrix for m2
f . In this way we will have only a (−1) factor in

the supertrace formula, since the correct number of degrees of freedom is counted already
in the mass matrix. For the m2

b we have

m2
B =

(
WipW

kp W pWilp

WpW
jkp WlpW

jp

)
(A.45)

There it is manifest that supersymmetry is broken by the out diagonal blocks in (A.45).
Note that now the supertrace formula assumes the simple form Trm2

B − Trm2
F = 0.

The one loop effective potential

In a non supersymmetric theory the vacuum energy is corrected at quantum level. The
one loop correction is given by summing the one loop diagrams vacuum and the Coleman-
Weinberg formula (CW) is the result of this summation. If we consider a model without
gauge interactions, the CW formula takes the form

V
(1)
eff =

1

64π2
STrM4 log

M2

Λ2
=

1

64π2

(
Trm4

B log
m2
B

Λ2
− Trm4

F log
m2
F

Λ2

)
(A.46)

This formula is commonly used to calculate the one loop scalar potential as a function of
a tree level massless field. Indeed if the mass matrices are calculated as functions of this
fields, than (A.46) gives a correction to V0 and in addiction the effective potential, at one
loop, for the pseudomodulus.

The ultraviolet cut-off Λ is absorbed in the renormalization of the coupling constant
in V0. Moreover the term StrM4 is independent of the pseudomodulus. This implies that
the effective potential for the pseudomodulus does not depend on the cut-off Λ.

Two loop effective potential

The calculation of the two loop effective potential for a pseudomodulus is more difficult,
since a general formula like the CW potential does not exists. One can sum all the vacuum
diagrams and calculate in each model the effective potential. This procedure involve a lot
of graphs that potentially can contribute.

Here we used the trick of [28], which makes the calculation simpler. One has to switch
off the supersymmetry breaking scale and compute the supersymmetric masses for all the
fields. The pseudomoduli are massless also in this supersymmetric version of the model,
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Figure A.6: Relevant Feynman graphs to the two loop potential

but in this case they cannot be lifted by quantum corrections. The two loop potential
for these fields can be calculated by subtracting the supersymmetric part to the non
supersymmetric one. In formulas, calling V (2)(Z) the two loop potential, it is given by

V (2)(Z) = V
(2)
nonSUSY (Z) − V

(2)
SUSY (Z) (A.47)

This formula means that the effective potential for Z is due to the diagrams that depends
both on the fields whose masses split in the non supersymmetric case (to respect to the
supersymmetric one) and on the fields whose masses depend on Z. This trick generically
reduces the number of diagrams that contribute to the two loop potential.

Example

Here we see the trick at work by studying the model (2.260) There are only few diagrams
of this form and they are computed using the formulas of [179, 180]. The model (2.260)
gives rise to three different diagrams, VSS, VSSS and VFFS, and they are given in Figure
A.6.

Details on the calculation

Here we explain the details on the computation of the mass for the pseudomodulus Z
around the origin. The potential is made of three different pieces

V (2)(Z) = VSS + VSSS + VFFS (A.48)

They come from three different Feynman graphs, and they have been explicitly derived
in [179, 180] They are

VSS(x, y) = J(x)J(y)

VSSS(x, y, x) = −I(x, y, z)
VFFS(x, y, z) = J(x)J(y) − J(x)J(z) − J(y)J(z) + (x + y − z)I(x, y, z) (A.49)
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where

J(x) = x

(
log

x

Q2
− 1

)
(A.50)

In our calculation one argument of the function I(x, y, z) is always zero. We give the
expression for this simplified case

I(0, x, y) = (x− y)

(
Li2(y/x) − log(x/y) log

x− y

Q2
+

1

2
log2 x

Q2
− π2

6

)

− 5

2
(x + y) + 2x log

x

Q2
+ 2y log

y

Q2
− x log

x

Q2
log

y

Q2
(A.51)

Using these formulas we found in (2.268) that the mass term for Z is m2
Z = m2

Zβ
+m2

Zγ
,

with τ 2 = f
µ2 ,

m2
Zβ

=
h6β2µ2

τ 2

(
− 2τ 2 − (1 − τ 2)2 log(1 − τ 2) + (1 + τ 2)2 log(1 + τ 2)

+
1

2
log2 (1 + τ 2) + Li2(−τ 2) + Li2

(
τ 2

1 + τ 2

))
(A.52)

and

m2
Zγ

= −h
6γ2µ2

τ 2
(2τ 2 + (1 − τ 2) log(1 − τ 2) − (1 + τ 2) log(1 + τ 2))) (A.53)

The last line in (A.52) vanishes for τ 2 < 1 because of an identity of dilogarithms.

A.7 Bounce action for a triangular barrier in 4 D

Usually a supersymmetric gauge theory does not have a single vacuum state. In some
case there is a set of discrete separated vacua, counted by the Witten index. In other case
there is a moduli space of states at zero energy. In the case of metastable vacua there
are also minima of the scalar potential with non zero energy. These metastable states are
unstable and decay into the supersymmetric states. The lifetime of a false vacuum state
depends on it decay rate to the true vacuum.

In the case of SQCD and its extensions the decay rate can be estimated by approxi-
mating the potential with a triangular barrier, represented in Figure A.7. The tunneling
rate is estimated by using the trajectory of minimal energy connecting the two vacuum
states. This is the bounce action, and it is defined as the difference between the tunneling
configuration and the metastable vacuum in the Euclidean action.

In the ISS model this action corresponds to a motion in the space parameterized by
the scalar components of the chiral multiplets. Usually it reduces to a mono-dimensional
motion.in this field space. From the vacuum state to the local maximum the motion
evolves along the direction of the pseudomodulus. Then after passing the maximum the
motion takes place in the quark directions.
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It is necessary to estimate the bounce action for a single scalar field in four dimensions,
from one false vacuum, say φF to a true vacuum, namely φT . This action is

SE[φ] = 2π2

∫ ∞

0

r2dr

(
1

2

dφ̇2

dr
+ V (φ)

)
(A.54)

The field φ(r) is the solution that minimizes the action. It equation of motion is

d2φ

d2r
+

3

r

dφ

dr
=
dV (φ)

dφ
(A.55)

This equation is solved after imposing the boundary conditions on the field at large radius
and on its derivative at the false vacuum. The first requirement is that the field at large
radius approaches to the configuration of the false vacuum. The second condition is that
the theory makes sense at the false vacuum. The conditions are

lim
r→∞

φ(r) = φF , φ̇(RF ) = 0 (A.56)

The bounce action is the difference of the action calculated on the solution of (A.55). and
the action of for the case in which the field remains at the false vacuum. This bounce
action is given by

B = SE[φ(r)] − SE[φF ] (A.57)

where we have called the action for the field sitting at the false vacuum φF .
It is then helpful to define the gradient of the potential V ′(φ) in terms of the parameters

at the extremal points,

λF = Vmax−VF

φmax−φF
≡ ∆VF

∆φF

λT = −Vmax−VT

φT −φmax
≡ −∆VT

∆φT
(A.58)

where the first has positive sign and the second has negative one.
The solution of the equation of motion at the two side of the triangular barrier are

solved by imposing the boundary conditions, and a matching condition at some radius
r +Rmax, that has to be determinate.

The choice of the boundary condition proceeds as follows. Firstly the field φ reaches
the false vacuum φF at a finite radius RF and stays there. This imposes

φ(RF ) = φF

φ̇(RF ) = 0 (A.59)

For the second boundary condition we work in the simplified situation such that the field
has initial value φ0 < φT at radius r = 0. In this way we imposes the conditions

φ(0) = φ0

φ̇(0) = 0 (A.60)
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Solving the equations of motion we have two solution at the two sides of the barrier

φR(r) = φ0 −
λT r

2

8
for 0 < r < Rmax (A.61)

φL(r) = φFmax +
λF
8r2

(r2 − R2
F )2 for Rmax < r < RF (A.62)

By matching the derivatives at Rmax we are able to express RF as a function of Rmax

R4
F = (1 + c)R4

max (A.63)

where c = −λT/λF . Out of the value of the field at Rmax we get two useful relations

φ0 = φmax +
λT
8
R2
max

∆φF =
λF (

√
1 + c− 1)

8
R2
max (A.64)

The bounce action B can be evaluated by integrating the equation (A.57) from r = 0 to
r = RF . We found

B =
32π2

3

1 + c√
1 + c− 1

∆φ4
F

∆VF
(A.65)

There is a second possibility that holds if φ0 > φT . In this case the field is closed to
φ0 from R = 0 until a radius R0, and then it evolves outside. In this case the boundary
conditions (A.60) become

φ(r) = φT 0 < r < RT

φ(RT ) = φT (A.66)

φ̇(RT ) = 0
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In this case the equations of motion are solved by

φR(r) = φT for 0 < r < RT

φR(r) = φT − λT
8r2

(r2 − RT )2 for RT < r < Rmax (A.67)

φL(r) = φF − λF
8r2

(r2 − RF )2 for Rmax < r < RF

There are three unknowns to determine, RT , Rmax and RF . Matching the derivatives
at the top of the barrier one relation is found

R4
F − R4

max = c(R4
max − R4

F ) (A.68)

The matching of the fields at Rmax gives

∆φT =
λT

8R2
max

(R2
max −R2

T )2 ∆φF =
λF

8R2
max

(R2
max − R2

T )2 (A.69)

Then one expresses RT and Rmax in terms of RF , and then determine RTas a function of
the parameters of the potential. This is done by defining

βF =

√(
8δφF
λF

)
βT =

√(
8δφT
λT

)
(A.70)

Combining (A.69) with (A.70) we have

R2
T = R2

max − βTRmax R2
F = R2

max + βFRmax (A.71)

and (A.68) becomes

Rmax =
1

2

(
β2
F + cβ2

+

cβ− − β+

)
(A.72)

By integrating the solution we can write the bounce action as

B =
1

96π2
π2λ2

FR
3
max

(
−β3

F + 3cβ2
FβT + 3βFβ

2
T − c2β3

T

)
(A.73)

If (
∆VF
∆VT

)1/2

=
2∆φT

∆φT − ∆φF
(A.74)

then (A.65) coincides with (A.73). and the bounce action reduces to

B =
2π2

3

(∆φ2
F − ∆φ2

T )2

∆VF
(A.75)
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Appendix B

Details of the instantonic

calculations

B.1 Clifford Algebra and Spinors

In this appendix we review some useful formulas necessary for the calculation of D-
instanton action. It is necessary to connect fermions and Clifford algebra in various
dimensions.

In d = 4 the gamma matrices have been taken in the representation

γn =

(
0 σn
σ̄n 0

)
γ5 =

(
1 0
0 −1

)
(B.1)

this representation holds in Euclidean space. In the minkoskian case (σ0, σi) → (σ0, iσi)
In d = 6 a similar representation holds. For a = 1, . . . , 6 it is

γa =

(
0 Σa

Σ̄a 0

)
γ7 =

(
−1 0
0 1

)
(B.2)

The four dimensional matrices Σa and Σ̄a are usually expressed in term of the ’t Hooft
eta symbols

Σa
AB = (ηcAB , iη̄

c
AB Σ̄AB

a = (−ηcAB , iη̄cAB (B.3)

For c = 1, 2, 3 the following relations holds

η̄cAB = ηcAB = εcAB A,B = 1, 2, 3

η̄c4A = ηcA4 = δcA (B.4)

ηcAB = −ηcBA η̄cAB = −η̄cBA

Then in both d = 4 and d = 6 it is useful to define the matrices

γmn =
i

4
[γn, γm] = i

(
σnm 0
0 σ̄nm

)
γab =

i

4
[γa, γb] = i

(
Σab 0
0 Σ̄ab

)
(B.5)
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We can now built the representations of the Clifford Algebra in ten Euclidean space.
Suppose that Clifford algebra in p and q euclidean dimensions are known and the genera-
tors are Γ

(p)
n and Γ

(q)
a with n = 1, . . . , p and a = 1, . . . , q. A representation of the Clifford

algebra in p+ q dimensions is

ΓN =
{
Γ(p)
n ⊗ 1,Γ

(p)
p+1 ⊗ Γ(q)

a

}
N = 1, . . . , p+ q (B.6)

B.2 General result for U(1) instanton

In this appendix we compute the general contribution to the superpotential for a rigid
U(1) instanton placed on a SU(1) node (denoted with A) in a toric quiver gauge theory,
generalizing the result of section 3.2. The more general configuration includes the pos-
sibility of having more than one field with the same gauge group indexes, connected to
the node A. We label these fields with an extra index α for outgoing arrow and β for
incoming arrow. Hence the fields connecting the node A to the other gauge nodes are
referred as Φα

Ab or Φβ
cA. These extra indexes have to be inserted, and summed over, in all

the formula of section 3.2, e.g. for the instantonic action. An important remark is that
now the anomaly free condition for the node A is

∑

b,α

Nb =
∑

c,β

Nc (B.7)

The procedure for getting the superpotential contribution is as in section 3.2. The inte-
gration of the bosonic zero modes and of the fermionic zero mode λα̇ and µAA, µ̄AA, give
the same result. We have to perform the following integral

Winst ∼
∫ ∏

b,α,c,β

(dµ̄αAb)
Nb (dµβcA)Nce−SW (B.8)

where now

SW = − i

2

∑

b,α,c,β

µ̄αAb
∂W

∂(Φβ
cAΦα

Ab)
µβcA (B.9)

In order to compute this integral we can arrange the fermionic variable in vectors

µ̄AB = (µαAb) µCA = (µβcA)T (B.10)

of dimension
B = 1, . . . ,

∑

b,α

Nb C = 1, . . . ,
∑

c,β

Nc (B.11)

and rewrite the instantonic action as

SW = − i

2
µ̄ABMBCµCA (B.12)
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where M is a matrix of dimension
∑

b,αNb ×
∑

c,βNc, built taking derivatives of the
superpotential

M =
∂W

∂(Φβ
cAΦα

Ab)
(B.13)

M is a square matrix because of the anomaly free condition (B.7). The ordering of the
fields in building M is irrelevant for the final contribution to the superpotential, which is
a determinant. Indeed we can perform the fermionic integration and obtain the stringy
instanton contribution

Winst ∼ det
∂W

∂(Φα
cAΦβ

Ab)
(B.14)

B.3 Bosonic integration

In this appendix we show, via dimensional arguments similar to [84], that the integration
over the bosonic zero modes of the stringy instantons change the results of the fermionic
integration only by a constant factor. We analyze the general bosonic integration for the
U(1) and the SP (2) instanton. The O(1) case is trivial since there are no bosonic zero
modes to integrate over.

The U(1)-instanton

In section 3.2 we have considered an SU(1) node A in the quiver and label with index b
all the outgoing arrows, and with c all the incoming arrows. We have then the collection
of fields ΦAb and ΦcA.

We have seen that the contribution to the superpotential after fermionic integration,
due to an instanton on node A is given by the determinant of the squared matrix M.
The determinant of this matrix has mass dimension

[detM] = M (
P

cNc)
s = M (

P
b Nb)

s (B.15)

We can now compute the dimension of the measure factor for the general instanton com-
putation of section 3.2

Z = C
∫
d{aµ,M, λ,D, ωAA, ω̄AA, µAA, µ̄AA, µ̄Ab, µcA} e−Sinst (B.16)

The dimension-full coefficient C is for the moment unknown. Using the usual standard
dimensions we arrive at

[d{aµ,M, λ,D, ωAA, ω̄AA, µAA, µ̄AA, µ̄Ab, µcA}] = M
−na+ 1

2
nM− 3

2
nλ+2nD−nω,ω̄+ 1

2
nµ,µ̄

s (B.17)

Since

na = 4 nM = nλ = 2 nD = 3 nω,ω̄ = 4NA nµµ̄ = 2NA +
∑

b

Nb +
∑

c

Nc (B.18)
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we obtain

[d{aµ,M, λ,D, ωAA, ω̄AA, µAA, µ̄AA, µ̄Ab, µcA}] = M
−(3NA− 1

2
(
P

b Nb+
P

c Nc))
s = M−βA

s (B.19)

where we have recognized the 1 loop beta function of the node A.
Now, since Z in (B.16) should be adimensional we obtain that

C = ΛβA (B.20)

Hence we have

Z = ΛβA

∫
d{aµ,M, λ,D, ωAA, ω̄AA, µAA, µ̄AA, µ̄Ab, µcA} e−Sinst (B.21)

Now, we expect that

Z =

∫
d4xd2θWinst (B.22)

and then

Winst = ΛβA

∫
d{λ,D, ωAA, ω̄AA, µAA, µ̄AA, µ̄Ab, µcA} e−Sinst (B.23)

Now, we have seen that the fermionic (plus the D) integrations give, when NA = 1, the
following

Winst = ΛβAIboson detM (B.24)

where M is the meson built before and we still have to perform the bosonic integration
Iboson, and show that it gives a numerical coefficient. Indeed the dimensional analysis
gives

[W ] = [ΛβA] + [Iboson] + [detM] = βA + [Iboson] + (
∑

b

Nb) = (B.25)

= 3 − 1

2
(
∑

b

Nb +
∑

c

Nc) + [Iboson] + (
∑

b

Nb) = 3 + [Iboson]

where we have used the anomaly free condition. In order to have a superpotential of
dimension 3 we have to set [Iboson] = 0, i.e. a number.

The SP (2)-instanton

We can easily repeat the analysis done in the previous section for the SP (2) instanton
on the SO(3) gauge node. We denote with A the SO(3) gauge group where we place the
instantons and label with index b all the outgoing arrows, and with c all the incoming
arrows. In general the contribution to the superpotential after fermionic integration, due
to SP (2) instantons on node A is given by a pfaffian of dimension

[PfM] = M (
P

c Nc)
s = M (

P
b Nb)

s (B.26)

201



We can now compute the dimension of the instanton measure factor

Z = C
∫
d{aµ,M, λ,D, ωAA, µAA, µ̄Ab, µcA} e−Sinst (B.27)

The dimension-full coefficient C is up to now unknown. Using the usual dimensions we
arrive at

[d{aµ,M, λ,D, ωAA, µAA, µ̄Ab, µcA}] = M
−na+ 1

2
nM− 3

2
nλ+2nD−nω,ω̄+ 1

2
nµ,µ̄

s (B.28)

Now we have to remind that the auxiliary group for the instanton is SP (2) and this gives
different numbers of components respect to the U(1) case, that is

na = 4 nM = 2, nλ = 6 nD = 9 nω = 4NA nµµ̄ = 2NA +
∑

b

Nb +
∑

c

Nc (B.29)

we obtain

[d{aµ,M, λ,D, ωAA, µAA, µ̄Ab, µcA}] = M
−(3NA−6− 1

2
(
P

b Nb+
P

c Nc))
s = M−βA

s (B.30)

where we have recognized the 1 loop beta function of the SO(NA) node.
Now, since Z in (B.27) should be adimensional we obtain that

C = ΛβA (B.31)

Hence we have

Z = ΛβA

∫
d{aµ,M, λ,D, ωAA, µAA, µ̄Ab, µcA} e−Sinst (B.32)

Now, we expect that

Z =

∫
d4xd2θWinst (B.33)

and then

Winst = ΛβA

∫
d{λ,D, ωAA, µAA, µ̄Ab, µcA} e−Sinst (B.34)

Now, we have seen that the fermionic (plus the D) integrations give, when NA = 3, the
following

Winst = ΛβAIbosonPfM (B.35)

where Iboson is the bosonic integration. The dimensional analysis told us that

[W ] = [ΛβA] + [Iboson] + [PfM] = βA + [Iboson] + (
∑

b

Nb) = (B.36)

= 3NA − 6 − 1

2
(
∑

b

Nb +
∑

c

Nc) + [Iboson] + (
∑

b

Nb) = 3NA − 6 + [Iboson]

Since we have NA = 3, in order to have a superpotential of dimension 3 we have to set
[Iboson] = 0, i.e. a number.
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B.4 Relation between our results and known models

In this appendix we show that there is no disagreement between the stringy instanton
contributions of [16, 84] and our results.

The SU(1) theory

The theory studied in [84] is the C3/(Z2 × Z2) orbifold. This is a quiver gauge theory
with four gauge groups, described by the superpotential

W = Φ12Φ23Φ31 − Φ13Φ32Φ21 + Φ13Φ34Φ41 − Φ14Φ43Φ31

+Φ23Φ34Φ42 − Φ24Φ43Φ32 + Φ12Φ24Φ41 − Φ14Φ42Φ21 (B.37)

The ranks of the groups are (N1, N2, N3, N4) = (N1, N2, 1, 0). A stringy instanton placed
on node N3 contributes to the superpotential only if N1 = N2. In this case it has be
shown that its contribution is

Winst = det Φ12 det Φ21 (B.38)

We now find the same result from gauge theory analysis. Dualizing the node 3 we find
a theory with gauge group SU(Ñ3 = N1 +N2 − 1) and superpotential

W = M11Q13Q31 −M22Q23Q32 (B.39)

We then dualize again node 3. Since it is in the case Nf = Nc + 1, the dual theory has
SU(N3) = SU(1) gauge group, and the superpotential is

W = M11Φ11−M22Φ22+Φ11Φ13Φ31−Φ22Φ23Φ32+Φ12Φ23Φ31−Φ13Φ32Φ21+det

(
Φ11 Φ12

Φ21 Φ22

)

(B.40)
After the integration of the massive field M11,M22,Φ11,Φ22, the superpotential is

W = Φ12Φ23Φ31 − Φ13Φ32Φ21 + det

(
0 Φ12

Φ21 0

)
(B.41)

The first two terms are the same than (B.37). The det piece coincide with (B.38), as
expected. Note that it vanishes if N1 6= N2 as in the stringy instanton computation.

The SP (0) theory

It is also possible to make an orientifold projection of the C3/(Z2×Z2) orbifold. A possible
orientifold is described by the dimer in Figure B.1. It is a fixed point projection. Since
N [W ] = 8, the total orientifold charge is positive. This condition can be imposed choosing
all the single charge to be negative. All the groups are identified with themselves and they
are all symplectic. All the fields are bifundamental in the (2i,2j) of the SP (Ni)×SP (Nj)

203



X
X

X

X

3

2

3
1

3

2

3

2

1

4

1

4

1

1

4

4 1

2

4

4

Figure B.1: Unit cell and fixed point for C3/(Z2 × Z2)

gauge groups. There is no superpotential for these fields. This is the same projection
described in [16]. In that paper the ranks were (N1, N2, N3, N4) = (N,N, 0, 0), and the
stringy instanton was located on the third node. The stringy instanton contribution to
the superpotential is given by

Winst = det Φ12 (B.42)

The same result can be found by the gauge theory analysis. The dual theory has rank
2N − 4 for the third node, and superpotential

W = M11 ·Q13 ·Q13 −M22 ·Q23 ·Q32 (B.43)

We then perform again electric magnetic duality on the third node. The gauge group
becomes SP (N1 +N2 −N3 − 4) = SP (0), and the superpotential is

W = M11 · Φ11 −M22 · Φ22 + Pf

(
Φ11 Φ12

Φ21 Φ22

)
(B.44)

where all the blocks of the meson are in an antisymmetric representation of the flavor,
and Φ21 = −ΦT

12. Integrating out the massive fields the only non vanishing term of the
superpotential is the non perturbative one

W = Pf

(
0 Φ12

−ΦT
12 0

)
= det Φ12 (B.45)

It is exactly the same than the stringy instanton contribution (B.42).
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Appendix C

Aspects of field theories in 3D

C.1 Seiberg duality in three dimensional CS SQCD

from branes

Nc D3
NS

Nf+k D5

(1,k)NS’

Nf D5

NS
Nc D3

Figure C.1: The electric theory

The rules of Seiberg duality in three dimensional CS matter theory are worked out
from systems of intersecting branes. The simplest example is a three dimensional N = 2
CS gauge theory with gauge group U(Nc), CS level k and matter fields charged under a
global U(Nf ) flavor symmetry. Here we review the behaviour of this theory under Seiberg
duality, by engineering it in a system of intersecting NS5, D5 and D3 branes in IIB, as in
[19]. The branes are displaced as in the table.

0 1 2 3 4 5 6 7 8 9
NS x x x x x x
NS’ x x x x x x

NC D3 x x x x
Nf + k D5 x x x x x x

This system preserves an N = 2 supersymmetry in the (012) space time dimensions. The
NS’ brane intersect the stack of k D5branes in the (37) plane and there is a recombination
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of branes that gives a (1, k) fivebrane at angle θ such that tan θ = gsk (see figure C.1).
This system of branes represents a U(NC) field theory with Nf +k flavors Q and Q̃. Then
one moves k of the D5 branes to the NS’ brane, replacing these branes with the (1, k)
fivebrane. This is the level k CS U(Nc) gauge theory with Nf fundamental fields.

The dual theory is obtained by exchanging the NS and the (1, k) fivebranes. The D5
branes and the (1, k) fivebrane move along the x6 direction and they pass the NS brane.
This process produces new D3 branes in the 0126 directions, and the final configuration is
represented in figure C.2. This system of branes is identified with the Seiberg dual theory.
It is a U(Nf + k − Nc) level (−k) CS gauge theory, with Nf fundamentals q and q̃ and
the bifundamental M , a Nf × Nf matrix. The fundamentals couple with M through a
superpotential term

Wdual = TrMqq̃ (C.1)

NS

(1,k)

Nf+k−Nc D3

Nf D3

Nf D5

Figure C.2: The magnetic theory

The constraint
Nf + k −Nc > 0 (C.2)

has to be imposed on both the theories. It is the condition that the theories have super-
symmetric vacua and it coincides with the constraint imposed by the s-rule, i.e. no more
than one D3 brane can end on each fivebrane. In this case the costraint C.2 coincides
with the window in which duality makes sense.

C.2 Parity anomaly

We briefly review parity anomaly for 3D gauge theories [181, 182] and the parity anomaly
matching argument [155]. In three dimensions there are no local gauge anomalies. How-
ever gauge invariance can require the introduction of a classical Chern-Simons term, which
breaks parity. This is referred to as parity anomaly.
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For abelian theories with multiple U(1)’s, there is a parity anomaly if

Aij =
1

2

∑

fermion

(qf)i(qf )j ∈ Z +
1

2
(C.3)

Here (qf)i is the charge of the fermion f under the U(1)i. We work in a basis where all
the charges are integers.

Parity anomaly matching

In the context of dualities in 4D gauge theory, a relevant tool have been the ’t Hooft
anomaly matching between the electric and the magnetic description. Having some global
symmetries, we suppose that they are gauged and we compute their anomaly. The result
of this computation should be equal in the two dual descriptions. The same technique
can be used here for the parity anomaly. We suppose we gauge the global U(1)’s of the
theory, and we compute their parity anomaly both in the electric and in the magnetic
description. The two computations should match.

The parity anomaly matching is much weaker then the ’t Hooft one. Indeed in 4D the
precise anomalies associated with gauging global symmetries must match. In 3D there is
a weaker Z2 type condition.

For the L̃aba{ki} theories, parity anomaly matching is obeyed by the Seiberg like duality
we propose.

In chiral theories, parity anomaly matching can be non trivial between dual phases if
fractional branes are introduced by the duality.

As an example we analyze the toric chiral (2+1)d CS theory which has as (3+1)d par-
ents dP2. We consider the parity anomaly associated to the two U(1) flavour symmetries
F1 and F2. The charges of the chiral fields of the theory under these symmetries can be
derived from [157]. The electric theory has equal ranks n. In the magnetic description we
set rank n+ k for the dualized gauge group (number 5) and n for the others. The integer
k counts the number of fractional branes introduced in the duality. The parity anomaly
matrices are

Aele ∈
(

Z Z

Z Z

)
(C.4)

and

Amag ∈
(

Z Z + nk
2

Z + nk
2

Z

)
(C.5)

One can see that in the electric description there are no parity anomalies. In the magnetic
description the off diagonal components of Amag can instead lead to parity anomaly if kn
is odd. If we set k = 0 the electric and magnetic theories satisfies the parity anomaly
matching for the two flavour symmetries.
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C.3 Bounce action for a triangular barrier in 3 D

In this appendix we calculate the bounce action B for a triangular barrier in three di-
mensions (Figure A.7). The bounce action is the difference between the tunneling con-
figuration and the metastable vacuum in the euclidean action. The tunneling rate of the
metastable state is then given by Γ = e−B

Following [51] we reduce to the case of a single scalar field with only a false vacuum
φF decaying to the true vacuum, φT . The tunneling action is

SE[φ] = 4π

∫ ∞

0

r2dr

(
1

2
φ̇2 + V (φ)

)
(C.6)

where φ(r) is the tunneling solution, function of the Euclidean radius r. Solving the
equation of motion for the φ field and imposing the boundary conditions

lim
r→∞

φ(r) = φF

φ̇(RF ) = 0 (C.7)

the bounce action is given by

B = SE[φ(r)] − SE[φF ] (C.8)

where we have subtracted the action for the field sitting at the false vacuum φF .
It is then helpful to define the gradient of the potential V ′(φ) in terms of the parameters

at the extremal points,

λF = Vmax−VF

φmax−φF
≡ ∆VF

∆φF

λT = −Vmax−VT

φT −φmax
≡ −∆VT

∆φT
(C.9)

where the first has positive sign and the second has negative one.
The solution of the equation of motion at the two side of the triangular barrier are

solved by imposing the boundary conditions, and a matching condition at some radius
r +Rmax, that has to be determinate.

The choice of the boundary condition proceeds as follows. Firstly the field φ reaches
the false vacuum φF at a finite radius RF and stays there. This imposes

φ(RF ) = φF

φ̇(RF ) = 0 (C.10)

For the second boundary condition we work in the simplified situation such that the field
has initial value φ0 < φT at radius r = 0. In this way we imposes the conditions

φ(0) = φ0

φ̇(0) = 0 (C.11)
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Solving the equations of motion we have two solution at the two sides of the barrier

φR(r) = φ0 −
λT r

2

6
for 0 < r < Rmax (C.12)

φL(r) = φFmax −
λFR

2
F

2
+
λFR

3
F

3r
+
λF
6
r2 for Rmax < r < RF (C.13)

By matching the derivatives at Rmax we are able to express RF as a function of Rmax

R3
F = (1 + c)R3

max (C.14)

where c = −λT/λF . Out of the value of the field at Rmax we get two useful relations

φ0 = φmax +
λT
6
R2
max

∆φF =
λF (3 + 2c− 3(1 + c)

2
3 )

6
R2
max (C.15)

The bounce action B can be evaluated by integrating the equation (C.8) from r = 0 to
r = RF . We found

B =
16
√

6π

5

1 + c

(3 + 2c− 3(1 + c)2/3)3/2

√
∆φ6

F

∆VF
(C.16)

There is a second possibility that holds if φ0 > φT . In this case the field is closed to
φ0 from R = 0 until a radius R0, and then it evolves outside. In this case the boundary
conditions (C.11) become

φ(r) = φT 0 < r < RT

φ(RT ) = φT (C.17)

φ̇(RT ) = 0

In this case the equations of motion are solved by

φR(r) = φT for 0 < r < RT

φR(r) = φT +
λTR

2
T

2
− λTR

3
T

3r
− λT r

2

6
for RT < r < Rmax (C.18)

φL(r) = φF − λFR
2
F

2
+
λFR

3
F

3r
+
λFr

2

6
for Rmax < r < RF

By integrating these solution we can write the bounce action as

B =
8π

15
λF (R3

F∆φT − cR3
T∆φF ) (C.19)
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where the relations among the unknowns and the parameters of the potential are

R3
max(1 + c) = R3

F + cR3
T

∆φT =
(RT − Rmax)

2(2RT +Rmax)λT
6Rmax

(C.20)

∆φF =
(RF − Rmax)

2(2RF +Rmax)λF
6Rmax

(C.21)

We conclude by observing that in the limit RT = 0 (C.19) coincides with (C.16).

C.4 Coleman-Weinberg formula in various dimensions

The CW formula for the one-loop superpotential

V
(1)
eff =

1

2
STr

∫
ddp

(2π)d
ln(p2 +m2) (C.22)

is not always straightforward to compute, since the theory can contain many fields, and
one has to diagonalize the squared mass matrices. Some property of the models with
metastable vacua can be analyzed without evaluating the eigenvalues of the squared mass
matrices of component fields of the theory. To this purpose, we generalize a formula
previously given for four-dimensional theories [4] to work in any dimension. Indeed,
writing (C.22) in spherical coordinates and integrating by parts, we have

V
(1)
eff =

πd/2

Γ(d/2)
STr

∫
dp

(2πd)
pd−1 ln(p2 +m2)

= −1

d

1

2d−1 πd/2Γ(d/2)
STr

∫
dp

pd+1

p2 +m2
(C.23)

where Ad = 2πd/2/Γ(d/2) is the d-dimensional spherical surface. By substituting d = 3
we recover (4.64).
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