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Abstract
Depuis la fin des années 1980, le problème de l’interpolation paramétrique de points et de normales sur des
maillages triangulaires a été étudié afin de modéliser des surfaces de type topologique arbitraire. En particulier,
l’interpolation locale par des facettes paramétriques triangulaires et non-planes est un sujet d’actualité en raison
de la difficulté pour obtenir des formes lisses et sans ondulations. La localisation des données est extrêmement
importante dans certaines applications telles que l’informatique graphique utilisée pour le jeux vidéo et pour le
rendu en temps réel. Des schémas produisant des surfaces interpolantes continues basés sur des facettes trian-
gulaires non-planes sont apparus récemment afin de répondre aux conditions spécifiques d’environnements de
hardware limités en ressources. Ces méthodes améliorent la qualité visuelle de la surface C0 en utilisant unique-
ment des informations locales. Dans cet article, nous présentons un survol des méthodes de ce type récemment
développées en discutant leur construction originale ainsi qu’en donnant leur formulation Bézier. Nous comparons
les différentes surfaces construites par les méthodes considérées pour des maillages grossiers qui caractérisent en
fait leurs utilisations concrètes.

Since the end of the 1980’s, parametric interpolation of points and normals over triangular meshes has been in-
vestigated to answer the problem of modeling two-manifold surfaces of arbitrary topological type. In particular,
local parametric curved shape interpolation is a problem of ongoing research, since it is difficult to obtain surfaces
with fair and smooth shapes. Locality of data is extremely important in some applications, for instance in com-
puter graphics used for gaming and real time rendering. Continuous interpolant curved shape schemes recently
emerged to address specific requirements of resource-limited hardware environments and to offer smooth surfaces
by visually enhancing the resulting C0 surface using only local information. In this paper we present a survey
on the recently developed continuous surface schemes discussing their original construction and then comparing
them from a geometric point of view in Bézier patch form. We compare the different surfaces constructed by the
schemes for low triangle count meshes that actually correspond to their real-world utilization.

1. Introduction

The easiest way of modeling free-form surfaces is to use
tensor-product Bézier, BSpline or NURBS patches. For this
reason a long time ago, they became a "de facto" standard in

† La doctorante Maria Boschiroli bénéficie du soutien de
l’Université Franco Italienne sous la forme d’une bourse
d’accompagnement à sa thèse dans le cadre du programme da Vinci.

the CAD/CAM industry. But, unfortunately, tensor-product
patches are able to model only a restricted type of surfaces,
those which are topologically equivalent to a square. How-
ever, two-manifold surfaces with arbitrary topological type
are very common in everyday life, and many different direc-
tions have been pursued to model them with the computer.

One of them consists of building a patchwork of smoothly
joined parametric patches with the same topology as the con-
trol polygons. The topological information is usually spec-
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ified as adjacency information relating the data points (ver-
tices), edges, and faces. Triangular meshes, i.e., meshes in
which the faces are triangular and any number of faces may
join at a vertex, are sufficiently general to represent surfaces
of arbitrary genus.

Especially in geometric modeling, the problem of pass-
ing a surface through a set of data points is a very useful
and intuitive feature. In the case of triangular meshes, the
given data are the triangular mesh vertices and their respec-
tive normals. The first approach is to construct the triangular
mesh simply connecting the points in triangular plane faces.
Obviously, with coarse meshes this leads to only continu-
ous surfaces with low quality shape (see for example Figure
3(a)) and acceptable visually smooth shapes can be obtained
only by deeply refining the triangular mesh.

Instead, a parametric curved shape inter-
polant scheme constructs a vector-valued surface,
s(u,v) = (x(u,v),y(u,v),z(u,v)) that interpolates the
given points and normals and, unlike a functional method,
is able to represent arbitrary topological shapes.

Besides distinguishing between parametric and functional
methods, we can also classify surface fitting schemes by the
locality of data used in constructing a part of the surface.
A local scheme only considers those points near the portion
of the surface it is creating, thus if a single input vertex is
moved, the interpolating surface changes only in the neigh-
borhood of the vertex. This feature is particularly attracting
in most applications; however local parametric interpolation
is an open problem because usually the schemes don’t pro-
vide surfaces of acceptable quality or with fair and smooth
shape.

Computer graphics used for gaming and realtime render-
ing is about shading and animating with triangle meshes.
A large body of work has been devoted to creating an in-
creasing realism of rendered surfaces. Shading techniques
like phong shading, normal mapping and reflection mapping
are commonly used to present cineastically looking surfaces.
For animation [Col05], models are applied with a suitable
skeleton structure during rigging [BP07], and then all trian-
gle vertices can be moved according to this structure. Espe-
cially in computer games, its highly elaborate art pipeline
builds upon the triangle mesh, which usually does not have
stored neighborhood information. Several techniques have
been leveraged for processing on programmable graphics
hardware recently [Kau04, SKUP∗09].

Continuous (C0) interpolant curved shape surface
schemes emerged to address requirements specific to the
resource-limited hardware environment and to offer smooth
surfaces by visually enhancing the resulting C0 surface by
means of local information only.

More precisely, the smallest amount of information about
neighboring triangles has to be used in constructing the
patch. As a consequence, continuous surface schemes point

their attention towards visual smoothness. Namely, realizing
that in most situations exact geometric smoothness and con-
tinuity are not critical as long as the surface appears to be
smooth as a result of the shading technique. For example,
interpolating per-vertex normal vectors for shading compu-
tations achieves visual smoothness, still processing triangles
independently and avoiding knowledge of neighbors. The in-
terest in continuous surface patches comes primarily from
saving bus bandwidth for transfers to the graphics hardware.

The aim of this paper is to provide a unifying survey of the
recently developed local parametric triangular curved shape
C0 schemes we are aware of.

The paper is organized as follows. In section 2 we present
the existing continuous surface schemes both discussing
their original construction and presenting a reformulation of
every scheme in triangular Bézier patch form. This allows us
to discuss their geometric interpretations and compare them.
In section 3 we then compare the surface quality of all sur-
veyed schemes analyzing their behavior on arbitrary triangle
meshes. Finally, in section 4 we discuss our conclusions.

2. Continuous Surface Schemes

Triangular Bézier patches have been around since the birth
of Computer Aided Geometric Design. De Casteljau investi-
gated them as extensions of Bézier curves to surfaces. They
are a simple geometric primitive that can be used to inter-
polate scattered data while offering interactive manipulation
by its control points and local control of a surface.

The key idea behind the C0 curved shape schemes that
we are going to present is that each original flat triangle of
the input mesh can be replaced by a curved shape, namely
a cubic or quadratic triangular Bézier patch. The patch con-
trol net is constructed only by means of the point and nor-
mal information at the vertices of the input mesh. According
to requirements explained above, no additional data beyond
the positions and normals are used. Let us denote the three
triangle vertices by p0, p1, p2, the respective normals with
n0, n1, n2, and the edges with d1 = p1 −p0, d2 = p2 −p1,
d3 = p2−p0, as shown in Figure 1. Additionally, we will re-

Figure 1: Notation for the vertices and respective normals
of the input flat triangles.

fer to the tangent plane in pi (defined by ni) by τi, i = 1,2,3.
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For comparison purposes, although each scheme uses its
own formulation, we decided to describe all the schemes us-
ing the same notation in terms of triangular Bézier patches
and to analyze their geometrical interpretation.

Using a triangular network of control points

bi jk : i+ j+ k = n, i, j,k > 0

and degree-n bivariate Bernstein polynomials

Bn
i jk(u,v,w) =

n!
i! j!k!

uiv jwk, u+ v+w = 1,

a degree-n triangular Bézier patch is defined by

s(u,v,w) = ∑
i+ j+k=n

bi jkBn
i jk(u,v,w).

It maps a triangular domain D ∈ R2 to an affine space, typ-
ically R3, where u, v and w are the barycentric coordinates
of a domain point relative to D. For our purposes the main
features of a triangular Bézier patch that turn out to be more
interesting are the corner point interpolation, the convex hull
property and the fact that the images of the three edges of the
domain triangle are Bézier curves defined by the boundary
control points of the patch (see [Far02] for details).

Together with the schemes that we are going to present,
we would also like to cite [VMT98, VOW97a] as interest-
ing related to the interpolation problem we are considering.
However, we decided not to include them in our discussion
because they do not fit into the class of analytically repre-
sentable curved patches.

2.1. PN Triangles

Curved PN triangles by Vlachos et al. [VPBM01], in a cer-
tain sense, are the pioneers in the study of parametric curved
patches for C0 interpolation of triangle meshes. The geom-
etry of a PN triangle is defined by a cubic triangular Bézier
patch and the construction of its control points is based on
projections over the tangent planes in the vertices.

The scheme initially places the intermediate control
points bi jk in the positions (ip0 + jp1 + kp2)/3, leaving the
three corner points unchanged. Then, each bi jk on the border
is constructed projecting the respective intermediate control
point bi jk into the plane defined by the nearest corner point
and the normal in that corner. For example, Figure 2 shows
the construction of b210.

Finally, the center control point b111 is constructed mov-
ing the corresponding b111 halfway in the direction m−b111
where m is the average of the six control points just com-
puted on the border.

Figure 2: Construction of b210 in PN triangle’s scheme: pro-
jection of b210 = (2p0 +p1)/3 into the tangent plane at p0.

In formulas:

b300 = p0, b030 = p1, b003 = p2,

wi j = (p j −pi) ·ni,

b210 =
1
3
(2p0 +p1 −w01n0), b120 =

1
3
(2p1 +p0 −w10n1),

b021 =
1
3
(2p1 +p2 −w12n1), b012 =

1
3
(2p2 +p1 −w21n2),

b102 =
1
3
(2p2 +p0 −w20n2), b201 =

1
3
(2p0 +p2 −w02n0),

m =
1
6
(b210 +b120 +b021 +b012 +b102 +b201),

b111 =
1
3
(p0 +p1 +p2),

b111 = m+
1
2
(m−b111).

As shown in [VPBM01], this particular choice for the
central control point b111 is based on exact reproduction
of quadratic polynomials and has the merit of keeping the
curved patch provably close to the flat triangle, preserving
the shape and avoiding interference with other curved trian-
gles.

In Figure 3(b) an example of Curved PN triangles on a
triangular mesh is illustrated.

2.2. Phong tessellation

Phong tessellation [BA08] is a recent work based on the idea
that a real-time mesh refinement operator should be as effi-
cient and simple as Phong normal interpolation. The main
concept behind the scheme is that the tangent plane in each
vertex point defines the appropriate local surface geometry
and thus has to be used in the construction of the middle-
edge control points.

The patch is evaluated at the barycentric coordinates
(u,v,w) in three simple steps:

• compute the point p(u,v,w) as linear combination be-
tween the three triangle vertices:

p(u,v,w) = up0 + vp1 +wp2;
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(a) (b) (c) (d) (e)

Figure 3: A triangular head model rendered with different schemes. (a) Gourand shaded model, (b) PN triangles, (c) Phong
tessellation, (d) Nagata triangles and (e) NLSA triangles. Patch borders are also plotted in (b)-(e).

• project p(u,v,w) in the tangent planes defined by the input
vertices and normals obtaining the three points:

π0(p(u,v,w)) = p(u,v,w)− [(p(u,v,w)−p0) ·n0] ·n0,

π1(p(u,v,w)) = p(u,v,w)− [(p(u,v,w)−p1) ·n1] ·n1,

π2(p(u,v,w)) = p(u,v,w)− [(p(u,v,w)−p2) ·n2] ·n2;

• compute the final evaluation point as the linear interpola-
tion of these three projections:

p∗(u,v,w)= uπ0(p(u,v,w))+vπ1(p(u,v,w))+wπ2(p(u,v,w)).
(1)

Additionally, a shape factor α can be used to interpolate
between linear (flat) and Phong tessellation, controlling the
distance from the flat triangle. Hence, the final surface can
be written as:

sα(u,v,w) = (1−α)p(u,v,w)+αp∗(u,v,w).

In [BA08], α = 3/4 is proposed because this value exper-
imentally provides convincing results in most of the situa-
tions.

Writing out the definition (1) of Phong tessellation with-
out the shape factor, it can be easily seen that p∗(u,v) is a
quadratic patch:

p∗(u,v,w) = u2p0 + v2p1 +w2p2+

+uv [π0(p1)+π1(p0)]+

+ vw [π1(p2)+π2(p1)]+

+wu [π2(p0)+π0(p2)] .

(2)

Eq. (2) allows us to get a formulation of Phong tessellation
patch P∗(u,v) in quadratic Bézier triangle form with control
points:

b200 = p0, b110 =
1
2
[π0(p1)+π1(p0)],

b020 = p1, b011 =
1
2
[π1(p2)+π2(p1)],

b002 = p2, b101 =
1
2
[π2(p0)+π0(p2)].

In this form Phong tessellation has a simple geometric in-
terpretation: the three control points b110, b011 and b101 are
the average of the projections of the edge corners into the
tangent plane in the respective opposite edge corner (see Fig-
ure 4).

Figure 4: Projection of p1 in the tangent plane in p0 defined
by n0.

In Figure 3(c) the Phong tessellation of the triangular
mesh representing a head is shown.

2.3. Nagata Triangles

The central idea in the scheme proposed by T. Nagata in
[Nag05] is quadratic interpolation of a curved segment from
the position and normal vectors at the end-points, with the
aid of generalized inverses. More precisely, this scheme first
replaces each edge of the planar triangle with a curve or-
thogonal to the normals given at the end-points, then fills in
the interior of the patch with a parametric quadratic surface
reproducing the modified boundaries.

For instance, let x1(t) (t ∈ [0,1]) be the quadratic polyno-
mial curve between p0 and p1 written in monomial form

x1(t) = a1 +b1t + c1t2. (3)

End-points interpolation imposes that c = p0 and a1 +b1 +
c1 = p1. Therefore, we can write the curve as

x1(t) = p0 +(d1 − c1)t + c1t2
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where c1 can be interpreted as an unknown that makes the
segment curved. Orthogonality condition between the curve
and the normal n0 in t = 0 and n1 in t = 1 leads to the system
of equations

(
nT

0
nT

1

)
c1 =

(
nT

0 d1
−nT

1 d1

)
. (4)

Nagata suggests to find a solution for eq. (4) minimizing c1
through the use of generalized inverse (or pseudo inverse).
This can be attained by

c1 =

(
nT

0
nT

1

)+(
nT

0 d1
−nT

1 d1

)
(5)

where + denotes the generalized inverse. Its explicit expres-
sion is obtained by the analytical formula

A+ = lim
α→0+

(
A∗A+αE

)−1 A∗, (6)

where A, respectively A∗, are an arbitrary matrix, respec-
tively its transposed conjugate, and E is the identity matrix of
consistent dimension. Direct substitution of (6) in (5) gives:

c1 =

{ ∆d
1−∆c ν+ d

∆c ∆ν, c 6=±1;
0, c =±1;

(7)

where ν and ∆ν are the average and the deviation of the unit
normals

ν =
n0 +n1

2
, ∆ν =

n0 −n1
2

,

d and ∆d are their inner products with d1

d = dT
1 ν, ∆d = dT

1 ∆ν,

and

∆c = nT
0 ∆ν, c = nT

0 n1 = 1−2∆c.

The same procedure can be applied to the edges d2 and d3
resulting in the two curves

x2(t) = p1 +(d2 − c2)t + c2t2

and

x3(t) = p0 +(d3 − c3)t + c3t2,

defined by the coefficients c2 and c3, respectively.

Now, let s(t,s) (0 6 s 6 t 6 1) be a quadratic triangular
patch in monomial form

s(t,s) = c00 + c10t + c01s+ c11ts+ c20t2 + c02s2.

By imposing

s(t,0) = x1(t),

s(1,s) = x2(s),

s(t, t) = x3(t),

the surface coefficients can be easily computed as

c00 = p0,

c10 = d1 − c1,

c01 = d2 + c1 − c3,

c11 = c3 − c1 − c2,

c20 = c1,

c02 = c2.

Once the boundary is interpolated the parametric represen-
tation of the patch is readily obtained.

Although the monomial form allows an easy and fast co-
efficients computation, a triangular Bézier formulation of the
patch can be obtained by means of a change of parametriza-
tion and has a simple geometric interpretation. The three
control points b110, b101 and b011 are defined moving the av-
erage of the vertices on an edge halfway the direction given
by the computed coefficient related to that edge:

b110 =
1
2
(p0 +p1)− 1

2
c1,

b011 =
1
2
(p1 +p2)− 1

2
c2,

b101 =
1
2
(p0 +p2)− 1

2
c3,

where explicitly

c1 =





d1· n0−n1
2

1−n0· n0−n1
2

n0+n1
2 +

d1· n0+n1
2

n0· n0−n1
2

n0−n1
2 , n0 ·n1 6=±1;

0, n0 ·n1 =±1.
(8)

and analogous formulas hold for c2 and c3.

Equations (7) and (8) defining the coefficient c1 have a
stability problem that might strongly engrave on the surface.
In fact, there are two denominators that obviously should not
become zero. This happens when c = n0 ·n1 =±1 or equiv-
alently when ∆c = 0 or ∆c = 1, and in these cases the cur-
vature coefficient is set to be zero. This means that when the
angle between the two normals in the vertices of one edge
is 0◦ or 180◦, the curvature coefficient cannot be calculated
and it is set to zero, leading the surface to be linear on that
edge.

Unfortunately, avoiding these two configurations is often
not sufficient. In fact, when the angle between the two nor-
mals is not 0◦ but very small (or analogously when it is near
180◦) we have the same stability problem because we divide
by a number close to zero. This can lead to visible artifacts
on the surface.

We corrected this problem by using a threshold ε in the
coefficient definitions (7) and (8), where c1 is set to 0 if ∆c 6
ε or 1−∆c 6 ε (or equivalent conditions on c).

In Figure 3(d) Nagata’s surface of the head model is
shown.
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2.4. NLSA Triangles

The last scheme we describe presents the construction of
a curvilinear mesh using quadratic curves with near least
square acceleration (NLSA). This scheme was proposed by
Barrera et al. in [BHB02]. It constructs a quadratic surface
using quadratic curves which are derived using vertex nor-
mals and vertex points only, as Nagata’s scheme above, but
with different minimizations.

Consider the edge d1, and a quadratic end-points inter-
polating curve in monomial form as in (3). Their approach,
after computation of the tangents t0 and t1 from the normals
n0 and n1, first computes a curve q1(t) such that its deriva-
tive in p0 is equal to the tangent t0 and the derivative in p2
is as close to the tangent t1 as the least square minimization
allows. Then, they compute the curve q2(t) with the deriva-
tive equal to the tangent in p1 and optimized at p0. Finally,
by taking the average of q1(t) and q2(t), they get the near
least square acceleration second degree curve x1(t) which is
close to optimal in both ends.

Defining q1(t) as required implies that the conditions
q′

1(0) = α1β1t0 and q′
1(1) = β1t1 have to be satisfied to-

gether with the end-points interpolation condition. This
forces the coefficient b1 to be

b1 = α1β1t0,

and the curve takes now the form

q1(t) = p0 +b1t +(d1 −b1)t
2. (9)

Hence, the definition of q1(t) consists in the determination
of the constants α1 and β1.

First, the difference between the derivative and the tangent
in p1 is minimized. Thus, by imposing:

∂
∂α1

{
‖q′

1(1)−β1t1‖2
}
= 0,

the following first condition is obtained:

2d1 · t0 −α1β1t0 · t0 −β1t0 · t1 = 0.

Next, a second condition is derived imposing that the in-
tegral of the acceleration is the least-square minimum in the
interval [0,1]:

∂
∂β1

∫ 1

0
‖q′′

1 (t)‖2 = 0,

leading to

d1 · t0 −α1β1t0 · t0 = 0.

We therefore end up with a system of two equations in the
unknowns α1 and β1 with solution

α1 =
t0 · t1
t0 · t0

and β1 =
d1 · t0
t0 · t1

.

The next step is to repeat the same procedure for the other
tangent t1 at the other end of the curve, in order to obtain
q2(t). This requires to impose the conditions q′

2(0) = β1t0
and q′

2(1) = α1β1t1, leading to

c2 = α1β1t1 −d1,

b2 = 2d1 −α1β1t1.

Finally, the quadratic curve becomes

q2(t) = (α1β1t1 −d1)t
2 +(2d1 −α1β1t1)t +p0, (10)

where α1 and β1 are defined by repeating the same mini-
mization process as before on q2(t), thus yielding

α1 =
t0 · t1
t1 · t1

and β1 =
d1 · t1
t0 · t1

.

By taking the mean value of (9) and (10) we get the final
symmetric curve with near least square acceleration:

x1(t) =

(
α1β1t1 −α1β1t0

2

)
t2+

+

(
d1 +

α1β1t0 −α1β1t1

2

)
t +p0.

The same procedure can be repeated for the edges d2 and d3
to obtain the curves x2(t) and x3(t) defined respectively by
the parameters α2, β2, α2, β2 and α3, β3, α3, β3.

Having the three border curves in monomial form, it is
easy to compute their Bézier formulation. The three central
control points together with the vertices are then used as con-
trol net for a quadratic Bézier triangle. In formulas:

b110 =
1
2
(p0 +p1)+

1
4

(
α1β1t0 −α1β1t1

)
,

b011 =
1
2
(p1 +p2)+

1
4

(
α2β2t1 −α2β2t2

)
,

b101 =
1
2
(p0 +p2)+

1
4

(
α3β3t0 −α3β3t2

)
.

Note that α1β1t0 is nothing else that the projection of d1 on
t0. Similarly, α1β1t1 is the projection of d1 on t1.

It means that NLSA triangles in Bézier formulation have
a simple geometric interpretation. The central control point
on one edge is defined moving the average of the two edge
vertices in the direction given by the sum of the projections
of the edge on the tangents of the two vertices.

In Figure 3(e) the triangle mesh of a head model is ren-
dered by NLSA triangles.

3. Comparison

We implemented all the schemes as an Autodesk Maya R©
plug-in (MPxHwShaderNode). The Polygons part of Au-
todesk Maya R© is a classic polygonal modeler, and lots of
low-level and high-level functions are available for surface
creation. The normals in input for every mesh are computed
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as the average of the incident face normals with Maya’s
soften edges function.

In section 3.1, we compare the schemes on an arbitrary
triangle mesh with a low triangle count (1000− 3000 trian-
gles). Similar meshes will occur in real-world uses of the
schemes. Phong, Nagata and NLSA triangles use surfaces of
degree at most 2. PN triangles is the only scheme using a
surface of degree 3.

3.1. Arbitrary Triangle Meshes

In this section we want to compare the surfaces constructed
by the four schemes on an arbitrary triangle mesh in Figure
5. It has a low triangle count that actually corresponds to the
real-world utilization of these schemes.

Figure 5: Triangular mesh of a Bunny.

In Figure 6 the four schemes are compared using three
different normal patches in the shading process. In the first
row analytic normals are used, directly computed from the
patch as

n(u,v) =
∂s
∂u (u,v)× ∂s

∂v (u,v)∥∥∥ ∂s
∂u (u,v)× ∂s

∂v (u,v)
∥∥∥
.

With analytic normals we can analyze the real surface ge-
ometry. The PN triangle’s surface appears smoother than
the other three quadratic surfaces due to its higher degree.
Nonetheless, it also has to deal with the discontinuity of nor-
mals. The three quadratic schemes show more or less the
same behavior, and normals discontinuity is clearly visible.

The normals that can be computed analytically from the
constructed patch in general do not vary continuously from
triangle to triangle. In particular, the schemes in this survey
use only the three vertices and normals in the input. As a
consequence, they do not control the patch normals. Deal-
ing with this problem, in fact, would mean to impose more
constraints on the control points defining the patch.

Thus, as solution, an independent normal patch (usually
linear or quadratic) has been proposed together with the sur-
face to improve the surface visualization as a sort of nor-
mal smoothing. Using these normals in the shading pro-
cess, the surface appearance gives us the impression that it

is smoother because curvature discontinuities are alleviated.
It has to be pointed out that in this way the surface is simply
enhanced in its visualization and not at all smoothed in its
geometry. More details can be found in [VOW97b].

The second and the third row in Figure 6 show the dif-
ference between the use of linear and quadratic normals.
Although quadratic models shaded using quadratic normal
patches may sometimes show oscillations, they give the im-
pression of more real surfaces. Linear normal patches, in-
stead, result in more flattened surfaces.

In Figure 7, the same surfaces in Figure 6 are shaded with
highlight lines ( [HBB∗08]).

In the first row, the four surfaces with analytic normals
are compared. First, the difference in the case of analytic
normals between each of the quadratic patches and the cu-
bic one are clearly visible. Furthermore, there are large dif-
ferences between the three quadratic patches. Nagata’s sur-
face seems to be the worst although it has to be noticed that
dealing with this mesh Nagata’s scheme suffers from sta-
bility problems and needs to keep a threshold ε quite high
(ε = 0.03). Phong tessellation and NLSA triangles do not
present a lot of differences, but their lines are very broken.
Again PN triangles result in the best surface compared to the
other three, nonetheless they show important discontinuities
and breaks.

The situation changes when linear and quadratic indepen-
dent normal patches are used. In the second and third row,
the four surfaces do not present remarkable differences due
to the fact that the same independent normal patch is used for
each scheme. Rather, the difference between the linear nor-
mal patch and the quadratic normal patch is clearly visible
in the surface visualization.

4. Conclusions

This survey covers parametric curved patches for C0 inter-
polation of triangle meshes as used in computer graphics to
save bandwidth when rendering curved models or sections
of them. The main emphasis of the survey is to compare the
surface quality of the different schemes available. Related
techniques from computer graphics to improve the silhou-
ette only ( [GGH∗99,SGG∗00,DRS08]) were not taken into
account. The comparison includes four different schemes
based on Bézier triangles: PN triangles that are of degree
3; Phong triangles, NLSA triangles and Nagata triangles, all
of degree 2.

For real-world models with moderately fine faces, the dif-
ferences between all the schemes are quite small, as can be
seen in Figures 3 and 6. Nagata triangles impose the addi-
tional restriction on the angles between the vertex normals
to avoid artifacts.

Depending on the application, the user should decide
whether the degree 3 scheme is required or one of the de-
gree 2 schemes could be sufficient for his/her task.
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Figure 6: Gouraud-shaded surfaces in columns from left to right: Phong, Nagata (ε = 0.027), NLSA, PN triangles. First row:
Analytic normals. Second row: Linear normals. Third row: Quadratic normals.
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Figure 7: Highlight lines: Phong, Nagata (ε = 0.027), NLSA, PN triangles. First row: Analytic normals. Second row: Linear
normals. Third row: Quadratic normals.
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