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Abstract

We present a new model where the distribution of innovations is a Nor-
mal variance-mean mixture. In the model, the mixing process follows an
a¢ ne Garch model with Gamma innovations, then we obtain a recursive
procedure for the characteristic function of the logprices and we evalu-
ate a European call by inverse Fourier Transform. The model admits the
Garch model with Gamma innovations and the Variance-Gamma model
as special cases.

1 Introduction

Several empirical studies have documented important departures from the as-
sumption of normality of log-returns. Indeed skewness, kurtosis, serial correla-
tion and time-varying volatilities are observed in �nancial time series. For this
reason di¤erent models have been investigated in discrete-time and in continu-
ous time.

In continuous time, the Lévy processes seem to be a natural generalization of
the Brownian motion. Indeed the Lévy process exihibits right-continuous sam-
ple paths with stationary and independent increments. Moreover, the marginal
distribution can be easily identi�ed by characteristic function (see Schoutens
(2003)). However, the Lévy processes usually represent an incomplete mar-
ket and therefore we need to choose an equivalent martingale measure. The
standard approach is based on Esscher Transform or the Minimal Entropy Mar-
tingale Measure (see Hubalek and Sgarra (2006) for a survey and comparison of
these measures).
Another way to capture the departure from normality is based on the con-

cept of random time, introduced in �nance by Clark (1973). A new process,
namely the subordinated process, can be obtained from a primitive stochastic
process by using an independent random time change process, referred to as
a subordinator (usually an increasing Lévy process). The distribution of this
process is closely related to a mixture distribution. In particular, if we consider
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the time-changed Brownian motion, the distribution at time one is a Normal
variance-mean distribution. Some cases considered in the literature are the
Variance-Gamma (see Madan and Seneta (1990)), the normal Inverse Gaussian
(see Barndor¤-Nielsen (1995)) and the hyperbolic and generalized hyperbolic
distributions (see Barndor¤-Nielsen (1977)).

As far as discrete time models are considered, the main classes are the sto-
chastic volatility models and Garch-like models.
In stochastic volatility models, the distribution of returns is speci�ed indi-

rectly by the structure of the model, indeed there exists a random variable V
such that the conditional distribution of log-returns given V is known (usually
normal). This kind of assumption is often made in continuous-time where the
volatility also follows a di¤usion process. The main drawback of this approach
is that the stochastic volatility is an undetectable process and this gives rise to
an estimation problem.
Garch-like models explicitly model the conditional variance given the past

returns observed. For option pricing, the a¢ ne Garch models represent a suit-
able class, since they yield a closed form formula for option prices based on
inverse Fourier transform (see Heston and Nandi (2000) for normal innovations,
Christo¤ersen et Al. (2006) for Inverse Gaussian innovations, Bellini and Mer-
curi (2007) for Gamma innovations and Mercuri (2008) for Tempered Stable
innovations).

In this paper, we present a new discrete-time stochastic volatility model
where the increments of log-returns follow a conditional Normal variance-mean
mixture. The main feature of this model is that the mixing process, following
an a¢ ne Garch model with Gamma innovations, allows a recursive procedure of
characteristic function to be obtained and accordingly we evaluate the European
call option by inverse Fourier Transform (see Heston (1993) and Carr-Madan
(1999)). We observe that this model encompasses the a¢ ne Garch model pro-
posed by Bellini and Mercuri (2007) as special case.
As in other stochastic volatility models we need to identify an equivalent

martingale measure. In this paper we use the Conditional Esscher transform
proposed by Buhlmann (1996) and widely applied in Garch-like models with
non-normal innovation (see Siu et Al. (2004)). The main advantage of this
approach is that the conditional distribution of log-returns is still a Normal
variance-mean mixture with gamma mixing density.

In Section 2, we review some classical results of Normal variance-mean distri-
bution and we focus on Variance Gamma distribution. In Section 3, we present
our model and, following the approach proposed by Heston and Nandi (2000),
we obtain a recursive procedure for characteristic function and we achieve the
a¢ ne Garch model with Gamma innovations and the Variance Gamma model
as special cases. In Section 4, we apply the Conditional Esscher transform intro-
duced and we obtain a closed form formula for option prices by inverse Fourier
transform (see Heston 1993). Moreover, we show that, under martingale mea-
sure, the model can be rewritten with two di¤erent speci�cations of parameters.
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In Section 5, the proposed model is calibrated on 738 daily last prices of Euro-
pean options on S&P500 where the moneyness is between 0.975 and 1.025 and
the daily quotations span from 12/23/2008 to 02/17/2009. We calibrate our
model using Total Relative Pricing Error and Mean Squared Error. In both
cases, we obtain a small pricing error. In the Appendix we study the behavior
of a European call option when the time interval is no longer unitary; it shrinks.
Consequently, under a suitable choice of parameters, we achieve an analytical
formula for characteristic function and we reduce signi�cantly the run time.

2 The Normal variance-mean mixture

In this Section, we review the Normal variance-mean mixture and we focus on
the Variance-Gamma distribution. The Normal variance-mean mixture with
positively continuous mixing density is a random variable de�ned as:

Y
d
= �0 + �V + �

p
V Z (1)

where �0; � 2 R; � 2 [0;+1), Z s N (0; 1) and V is a random variable de�ned
on the positive real line with density function g (V ) and independent of Z:
The density function is given by:

f (y) =

+1Z
0

1p
2��2v

exp

 
� 1
2

�
y � (�0 + �v)

�
p
v

�2!
g (v) dv (2)

Moreover, if the random variable V admits moment generating function (m.g.f.),
the m.g.f. of Y is obtained by:

MY (c) = exp (c�0)MV

�
c�+ c2

�2

2

�
For instance, the Variance-Gamma distribution (V.G.), introduced in �nance
by Madan and Seneta (1990), is obtained by choosing a Gamma distribution as
mixing density. Let V s �

�
1
v ;

1
v

�
, the m.g.f. is given by:

MY (c) = exp (c�0)

 
1

1�
�
c�v + c2v �

2

2

�!1=v (3)

Figure 1 compares the V.G. distribution for di¤erent values of parameters
(�; �; v)

Insert here Figure 1

Table 1 reports mean, variance, skewness and kurtosis:
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Insert here Table 1

From Table 1 and Figure 1, we note that the parameter � controls the skew-
ness, indeed the V.G. distribution is symmetric when � = 0; positively skewed
when � > 0 and negatively otherwise. Moreover the kurtosis is a decreasing
function of v.

3 The model

The aim of this Section is to present our model. We analyze the probabilis-
tic aspects and we provide a recursive procedure for conditional characteristic
function.
Given a �ltered complete probability space (
;z;zt;P ) with t = 0; 1; : : : ; T;

the stock price process has an exponential form:

St = St�1 exp (Yt)

the log-returns are de�ned as:8>><>>:
Yt = r + �Vt + �

p
VtZt

VtjFt�1 s � (aht; 1)
Zt s N (0; 1)
ht = �0 + �1Vt�1 + �1ht�1

(4)

where Vt follows an a¢ ne Garch model with Gamma innovations. Moreover the
conditional distribution is a Normal variance-mean mixture where the mixing
density is a Gamma distribution. The �rst four conditional moments of log-
returns are given by:

8>>>>>><>>>>>>:

E (Yt jFt�1) = r + a�ht
E
�
Y 2t
��Ft�1� = r2 + ��2 + 2r�+ �2� aht + �2a2h2t

E
�
Y 3t
��Ft�1� = r3 + a �3r� (r + �) + �3��2 + �3 (aht�1 + 2)� (aht�1 + 1)�ht�1

E
�
Y 4t
��Ft�1� = r4 + �4r3�+ ��6r2�2 + 6r2�2 + 12r��2�+

+
��
4r�3 + 6�2�2

�
+
�
�4 + 3�4

�
(aht + 3)

�
(aht + 2)

�
(aht + 1)

�
aht

(5)
The conditional variance is given by

V art�1 =
�
�2 + �2

�
aht (6)

therefore by choosing:

a =
1

(�2 + �2)

the ht process can be interpreted as variance dynamics.
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In order to derive the conditional distribution of log (ST ) ; given the infor-
mation at time t; we follow the approach proposed in Heston and Nandi (2000).
We de�ne the conditional m.g.f. as:

't (c) := E [exp (c log (ST )) jFt ] (7)

and we claim that 't (c) has following form:

't (c) = S
c
t exp (A(t : T; c) +B (t : T; c)ht+1) (8)

We assume the equation (8) holds at time t + 1 and, by the iteration law of
conditional expected value, we get the conditional m.g.f at time t:

't (c) = E [E ['t+1 (c) jFt+1 ] jFt ] =
= E [exp (c log (St+1) +A(t+ 1 : T; c) +B (t+ 1 : T; c)ht+2) jFt ] =
= Sct exp (cr +A(t+ 1 : T; c) + �0B (t+ 1 : T; c) + �1B (t+ 1 : T; c)ht+1) �

� E
h
exp

h
(c�+ �1B (t+ 1 : T; c))Vt+1 + c�

p
Vt+1Zt+1

i
jFt
i
:

by applying the m.g.f. of Normal variance-mean mixture with Gamma mixing
density, we get:

't (c) = S
c
t exp [cr +A(t+ 1 : T; c) + �0B (t+ 1 : T; c) + �1B (t+ 1 : T; c)ht+1] �

�
�
1�

�
c�+ �1B (t+ 1 : T; c) +

c2�2

2

���aht+1
where A(t : T; c) and B (t : T; c) follow the system below:

(
A(t : T; c) = cr +A(t+ 1 : T; c) + �0B (t+ 1 : T; c)

B (t : T; c) =
h
�1B (t+ 1 : T; c)� a log

h
1�

�
c�+ �1B (t+ 1 : T; c) +

c2�2

2

�ii
(9)

with terminal conditions: �
A(T : T; c) = 0
B (T : T; c) = 0

Since 't (c) is the conditional m.g.f., 't (ic) is the characteristic function of
logarithm of spot price. Therefore, the conditional distribution is achieved by
inverse Fourier transform.
Figure 2 shows the conditional distribution of log-returns for di¤erent values

of parameters.

Insert here Figure 2
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As shown in Figure 2, we see that, as the V. G. distribution, the � parameter
in�uences the asymmetry. Since we have a right-tailed distribution when � > 0,
a left-tailed distribution when � < 0 and a symmetric distribution when � = 0:
Moreover the kurtosis is a decreasing function of the a parameter.
As special cases, we obtain the a¢ ne Garch Gamma model when � = 0 and

the discrete time version of V.G. model, when �0 = 0; �1 = 0; �1 = 1: Indeed,
in the previous case the recursive system is:(

A(t : T; c) = cr +A(t+ 1 : T; c)

B (t : T; c) =
h
B (t+ 1 : T; c)� a log

h
1�

�
c�+ c2�2

2

�ii
Given the terminal condition, we obtain the explicit solution for coe¢ cients:(

A(t : T; c) = c (T � t) r
B (t : T; c) = �2a(T � t) log

h
1�

�
c�+ c2�2

2

�i
and the conditional m.g.f. is given by

't (c) = S
c
t exp (c (T � t) r)

�
1�

�
c�+

c2�2

2

���2a�h(T�t)
(10)

Remark 1 A similar model can be constructed by using the Inverse Gaussian
Garch model instead of the Gamma Garch model. In this case, the model is
a generalization of the CHJ model (see Christo¤ersen et Al. (2004)) and the
Normal Inverse Gaussian model (See Barndor¤-Nielsen (1995)). Alternatively
we can use the Tempered Stable Garch model (See Mercuri (2008)).

4 Option pricing formula

In this Section we analyze the option pricing issue. Our model represents an
incomplete market. Indeed we have an in�nity of states of nature and so it is
not possible to replicate each pay-o¤ using only two assets. Therefore we have
the classic problem of choosing an equivalent martingale measure.
In our model, given the simplicity of the conditional moment generating

function, a natural choice seems to be the Conditional Esscher transform pro-
posed by Buhlmann et Al. (1996) and applied in Garch framework (see Siu et
Al. (2004)).
Following the same notation of Siu et Al. (2004), the conditional m.g.f. of

log-returns can be written as:

MYkjFk�1 (c) = E [ exp (cYk)jFk�1] =

= exp (cr)

�
1

1�
�
c�+c2 �

2

2

��ahk
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The Esscher equation and the � Esscher parameter are given by:

exp (r) =
exp((�+1)r)

 
1

1�((�+1)�+(�+1)2 �22 )

!ahk

exp(�r)

 
1

1�(��+�2 �22 )

!ahk
(11)

and �� admits an explicit solution

�� = �
�
�
�2 +

1
2

�
The conditional moment generating function, under martingale measure, is ob-
tained as:

MQ
YkjFk�1 (c) =

MYkjFk�1 (c+�
�)

MYkjFk�1 (�
�) =

= exp (cr)

0@ 1

1�
�
c

�2
1
4�

2�2+c
2 �2

2� 1
4�

2

�
1Aahk

(12)

The innovations are distributed as a Normal variance-mean mixture with Gamma
mixing density.
The model can be rewritten by choosing following conditions:

�Q =
�2

1
4�

2�2 (13)

(�Q)
2

2
= �2

2� 1
4�

2 (14)

and then

�Q = �
(�Q)

2

2
(15)

In order to ensure the positivity of �Q; we need

2� 1
4
�2 > 0

accordingly we have a restriction of � under real measure, moreover from the
condition (15) and (5) ; the conditional distribution is again a Normal variance-
mean mixture with Gamma mixing density shifted from the right to the left if
� > 0.
Under the martingale measure Q, the log-returns dynamics are shown in the

following 8>>><>>>:
St = St�1 exp

�
Y Qt

�
Y Qt = r � �2Q

2 Vt + �Q
p
VtZt

VtjFt�1 s � (aht; 1)
ht = �0 + �1Vt�1 + �1ht�1

(16)
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To identify the model, we need �ve parameters a; �0; �1; �1 and �Q of which
the �rst four are the same for real measure and then they can be estimated from
the underlying asset. Alternatively, de�ning the process hQt as:

hQt := V ar
Q
t�1 (Yt) = a

�
�2Q + �

2
Q

�
ht

and letting (
�Q0 = a

�
�2Q + �

2
Q

�
�0; �Q1 = a

�
�2Q + �

2
Q

�
�1

�Q1 = �1 aQ = 1

[�2Q+�2Q]

the model becomes: 8>>>>><>>>>>:
St = St�1 exp

�
Y Qt

�
Y Qt = r � �2Q

2 V
Q
t + �Q

q
V Qt Zt

V Qt

���Ft�1 s ��aQhQt ; 1�
hQt = �

Q
0 + �

Q
1 Vt�1 + �

Q
1 h

Q
t�1

(17)

In this way, the model is identi�ed by four parameters
�
�Q; �

Q
0 ; �

Q
1 ; �

Q
1

�
but

only �Q1 remains the same under real measure:
In order to check the accuracy of the procedure for both systems, we compare

the option prices obtained by the inverse Fourier Transform (FT.) with the
Monte Carlo simulation (MC.) in Tables 2, 3 and 4:

Insert here Tables 2,3,4

Figure 3 compares the density of log-price under real measure with corre-
sponding density under equivalent martingale measure obtained by Conditional
Esscher transform:

Insert here Figure 3

5 Calibration

The aim of this Section is to investigate the ability of the model to describe
market option prices. The classic approach, based on minimization between
prices predicted by model and market option data, presents several di¢ culties.
Indeed, the option pricing formula is not a linear function of parameters, it is
possible to arrive a local minimum and the error surface is not smooth. A range
of objective functions have been proposed in �nancial literature, we perform all
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calibrations using two objective functions, the root of Relative Mean Squared

Error
�p
RMSE

�
de�ned as:

p
RMSE =

vuutX
i

�
Ctheoi � Cmkti

Cmkti

�2

and the root of Mean Squared Error (
p
MSE) as:

p
MSE = min

sX
i

!i
�
Ctheoi � Cmkti

�2
where the weights !i are usually chosen in order to assign more relevance to
at-the money options, whose bid-ask spreads are typically smaller. Possible
choices consist in choosing the reciprocal of the bid-ask spreads or even the
Black-Scholes Vega. In calibration exercises, we consider only option prices in
which the moneyness is between 0:975 and 1:025; in this way, we can omit the
weights.
In order to limit the number of parameters, we consider only the system

(17) and we estimate the parameters
�
�Q; �Q0 ; �

Q
1 ; �

�
from data. We consider

a dataset composed of 738 daily last prices of European options on S&P500
where the daily quotations range from 12/23/2008 to 02/17/2009. We perform
all minimization by the Newton-Raphson algorithm and Tables 5 and 6 report
the results for each quotation day and for both calibrations:

Insert here Tables 5, and 6.

In both cases, a small pricing error results but the procedure based onp
MSE seems to give more stable parameters over a period of time.
It is also well known that the error pricing surface, usually, is not a convex

function and can be irregular with respect to parameters. For these reasons,
in Figures 4 and 5, we conduct an analysis of the sections of the error pricing
surface at 29st quotation day.

Insert here Figures 4 and 5

In general, the surfaces appear to be su¢ ciently smooth and, although the
estimates obtained can reach a local minimum, the Newton-Raphson algorithm
seems to return acceptable values of parameters.
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6 Appendix

In this Appendix we investigate the behavior of a European call option when
the length of time interval � is no longer unitary but shrinks. For this reason,
we analyze the behavior of conditional m.g.f of the log-price and we provide
two closed form formula for m.g.f under suitable choices of parameters. Under
martingale measure, the price dynamics are de�ned as:8>>><>>>:

St = St�� exp (Yt)

Yt = r��
�2q
2
Vt + �q

p
VtZt

VtjFt�� s � (aht; 1)
ht = �0 + �1Vt�� + �1ht��

(18)

As shown in Section 2, the conditional m.g.f. is log-linear w.r.t. variance and
the time-dependent coe¢ cients are obtained by solving the system below:

(
A(t : T; c) = cr�+A(t+� : T; c) + �0B (t+� : T; c)

B (t : T; c) =
h
�1B (t+� : T; c)� a log

h
1�

�
�1B (t+� : T; c) +

�
c2 � c

� �2q
2

�ii
(19)
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with �nal conditions �
A(T : T; c) = 0
B (t : T; c) = 0

To analyze the behavior of system (19) ; �rstly we consider the incremental
ratios of coe¢ cients A (t : T; c) ; B (t : T; c)

A(t+�:T;c)�A(t:T;c)
� =

�cr���00�B(t+�:T;c)
�

B(t+�:T;c)�B(t:T;c)
� = 1��1

� B (t+� : T; c) +
a log

�
1�
�
�1B(t+�:T;c)+(c2�c)

�2v
2

��
�

Unfortunately when the time interval � shrinks, the result is not unique but
it depends on the behavior of parameters, indeed by de�ning:8<:

�0 := �
0
0�; �1 := �

0
1�

�2v := �
2�; �1 := 1� �

0

1�
a := a

(20)

and as limit, we get the following di¤erential equations:8><>:
@B (t : T; c)

@t
= CB (t : T; c)�D

@A (t : T; c)

@t
= �cr � �00B (t : T; c)

(21)

where

D := a
�
c2 � c

� �2
2

C := (�01 � a�01)
given �nal conditions, we get an analytical solutions of coe¢ cients:8<: B (t : T; c) = D [1�exp(�C(T�t))]

C

A (t : T; c) = cr (T � t) + �00
D

C
(T � t)� �

0
0

C
B (t : T; c)

(22)

Alternatively, we obtain another limit price by using8><>:
�0 := �

0
0�; �1 := �

0
1�

2 + �001�

�2v := �
2�2; �1 := 1� �

0

1�� a0�001
a :=

a0

�

(23)

following the same approach, we obtain the system below:
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8>>>>>>>>>><>>>>>>>>>>:

@B (t : T; c)

@t
= �D + CB (t : T; c)� E [B (t : T; c)]2

@A (t : T; c)

@t
= �cr � �00B (t : T; c)

D := a0
�
c2 � c

� �2
2

C := (�01 � a0�01)

E := (�001)
2 a

0

2

(24)

with �nal conditions �
B (T : T; c) = 0
A (T : T; c) = 0

The system (24) is more general. Indeed, as expected, we recover the system
(21) choosing �001 = 0, moreover a similar system is achieved by Heston1 (1993).
The system (24) allows an explicit solution given by:8>>>>>><>>>>>>:

d1 =
p
C2 � 4DE

f� =
C�d1
2E

g :=
f_
f+

B (t : T; c) = f_
1�exp(�d1(T�t))
1�g exp(�d1(T�t))

A (t : T; c) = cr (T � t) + �00
n
f_ � T � 1

E log
�
1�g exp(�d1(T�t))

1�g

�o (25)

In order to check our result, Tables 7, 8 and 9 provide a comparison between
the recursive procedure analyzed in discrete time and option prices obtained by
system (22), in Tables 10, 11 and 12 we consider the system (25) : We report
the run time in number of seconds per option and we measure the error between
the two procedures by Mean Relative Absolute error (MRAE) de�ned as:

MRAE =
1

N

PN
i=1

����� Call�i � Calllimi
0:5
�
Call�i + Call

lim
i

� �����
Insert here Tables 7, 8 and 9

Insert here Tables 10, 11 and 12
1We obtain exactly Heston�s formula modifying the dynamics of log-returns as follow:

Yt = r�+ �0ht + �1Vt + �v
p
VtZt

and posing: 8>>><>>>:
�0 := �00�; �1 := �01�

2 + �001�

�2v := �
2�2; �1 := 1� �

0
1�� a0�001

a :=
a0

�
; �1 := ��00��

�

2
�2

�0 = �00�
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Tab.1. Moments of the Variance-Gamma distribution

VGÝW, a, v Þ

mean W0 + WX

variance a2 + vW2

skewness
Wv 3a2 + 2vW2

a2 + vW2 3/2

kurtosis 3 1 + 2v ? va4

a2 + vW2 2

Tab.2. Comparison between the Monte Carlo and semi-analytical formula

T= 15, N = 10000

K MC FT

0.9 0.1356 0.1336

0.95 0.1040 0.1013

0.975 0.0903 0.0874

1 0.0782 0.0750

1.025 0.0674 0.0642

1.05 0.0580 0.0549

1.1 0.0430 0.0401

K MC FT

0.9 0.1365 0.1336

0.95 0.1045 0.1013

0.975 0.0907 0.0874

1 0.0786 0.0750

1.025 0.0679 0.0642

1.05 0.0587 0.0549

1.1 0.0437 0.0401

The Table shows a comparison between Monte Carlo simulation and
semi-analytical formula for European call options. The left side reports option
prices obtained by choosing �Q = -0.0050, �Q = 0.1001, a = 3, �0 = 0.05, �1
= 0.12, �1 = 0.08, h0 = 0.15, or equivalently �Q = -0.0050, �Q = 0.1001, aQ =

99.6256, �Q0 = 0.0015, �
Q
1 = 0.0036, �

Q
1 = 0.0800 h

Q
0 = 0.0045 on the

right-hand side.
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Tab.3. Comparison between the Monte Carlo and semi-analytical formula

T= 30, N = 10000

K MC FT

0.9 0.1651 0.1632

0.95 0.1366 0.1350

0.975 0.1240 0.1224

1 0.1123 0.1108

1.025 0.1015 0.1002

1.05 0.0916 0.0905

1.1 0.0745 0.0736

K MC FT

0.9 0.1631 0.1632

0.95 0.1351 0.1350

0.975 0.1225 0.1224

1 0.1110 0.1108

1.025 0.1004 0.1002

1.05 0.0907 0.0905

1.1 0.0740 0.0736

The Table shows a comparison between Monte Carlo simulation and
semi-analytical formula for European call options. The left side reports option
prices obtained by choosing �Q = -0.0050, �Q = 0.1001, a = 3, �0 = 0.05, �1
= 0.12, �1 = 0.08, h0 = 0.15, or equivalently �Q = -0.0050, �Q = 0.1001, aQ =

99.6256, �Q0 = 0.0015, �
Q
1 = 0.0036, �

Q
1 = 0.0800 h

Q
0 = 0.0045 on the

right-hand side.

Tab.4. Comparison between the Monte Carlo and semi-analytical formula

T= 45, N = 10000

K MC FT

0.9 0.1847 0.1856

0.95 0.1584 0.1593

0.975 0.1464 0.1473

1 0.1352 0.1361

1.025 0.1247 0.1257

1.05 0.1150 0.1160

1.1 0.0978 0.0987

K MC FT

0.9 0.1869 0.1856

0.95 0.1607 0.1593

0.975 0.1487 0.1473

1 0.1375 0.1361

1.025 0.1271 0.1257

1.05 0.1174 0.1160

1.1 0.1000 0.0987

The Table shows a comparison between the Monte Carlo simulation and
semi-analytical formula for European call options. The left side reports option
prices obtained by choosing �Q = -0.0050, �Q = 0.1001, a = 3, �0 = 0.05, �1
= 0.12, �1 = 0.08, h0 = 0.15, or equivalently �Q = -0.0050, �Q = 0.1001, aQ =

99.6256, �Q0 = 0.0015, �
Q
1 = 0.0036, �

Q
1 = 0.0800 h

Q
0 = 0.0045 on the

right-hand side.
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Tab.5. Parameters from
p
MSE

t �Q �Q0 �Q1 � 1
N

p
MSE

1 2.08*10-2 2.06*10-4 3.55*10-5 0.48 0.94
2 2.07*10-2 2.07*10-4 2.73*10-5 0.44 0.99
3 2.20*10-2 2.20*10-4 1.92*10-5 0.43 0.99
4 1.96*10-2 1.95*10-4 2.93*10-5 0.46 1.16
5 2.29*10-2 2.21*10-4 1.79*10-6 0.40 1.23
6 1.99*10-2 1.77*10-4 1.88*10-6 0.38 1.43
7 1.82*10-2 1.71*10-4 1.05*10-5 0.39 2.23
8 1.81*10-2 1.70*10-4 1.31*10-4 0.40 2.21
9 4.27*10-2 5.53*10-5 2.58*10-5 0.26 1.10
10 4.18*10-2 3.32*10-5 2.32*10-5 0.26 0.57
11 2.13*10-2 2.11*10-4 7.66*10-5 0.19 2.08
12 2.17*10-2 2.35*10-4 8.22*10-5 0.19 2.06
13 1.61*10-2 2.17*10-4 6.93*10-5 0.25 1.74
14 1.90*10-2 3.05*10-4 7.64*10-5 0.20 2.47
15 1.61*10-2 2.16*10-4 6.61*10-5 0.23 2.12
16 1.56*10-2 2.02*10-4 6.47*10-5 0.24 0.73
17 1.60*10-2 2.11*10-4 6.94*10-5 0.24 0.71
18 2.22*10-2 3.80*10-4 7.64*10-5 0.16 0.63
19 1.82*10-2 2.71*10-4 5.15*10-5 0.15 0.85
20 1.97*10-2 3.17*10-4 5.96*10-5 0.15 0.81
21 1.78*10-2 2.59*10-4 6.16*10-5 0.17 0.68
22 1.83*10-2 2.72*10-4 6.87*10-5 0.18 0.65
23 1.67*10-2 2.25*10-4 5.81*10-5 0.18 0.49
24 1.39*10-2 1.61*10-4 3.40*10-5 0.20 0.70
25 1.71*10-2 2.44*10-4 6.21*10-5 0.23 1.35
26 1.82*10-2 2.79*10-4 7.41*10-5 0.24 1.67
27 1.37*10-2 1.49*10-4 6.47*10-5 0.34 1.71
28 1.32*10-2 1.29*10-4 5.63*10-5 0.28 0.93
29 1.34*10-2 1.25*10-4 6.42*10-5 0.29 0.55
30 1.44*10-2 1.61*10-4 4.81*10-5 0.27 0.36
31 1.54*10-2 1.72*10-4 2.62*10-5 0.27 0.56
32 1.53*10-2 1.93*10-4 7.98*10-9 0.36 0.39
33 1.86*10-2 3.00*10-4 1.32*10-5 0.39 1.67
34 1.64*10-2 2.29*10-4 1.50*10-5 0.39 1.25
35 1.50*10-2 1.67*10-4 1.52*10-9 0.33 0.65
36 1.37*10-2 1.57*10-4 3.17*10-5 0.45 1.74
37 1.89*10-2 3.18*10-5 2.79*10-4 0.16 1.71

The Table reports the daily parameters obtained by minimizing the root of
Mean Squared Error. Daily quotations range from 12/23/2008 to 02/17/2009
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Tab.6. Parameters from
p
RMSE

t �Q �Q0 �Q1 � 1
N

p
RMSE

1 8.77*10-2 3.69*10-4 9.41*10-4 9.14*10-2 1.40*10-2

2 9.02*10-2 3.55*10-4 9.76*10-4 8.48*10-2 1.54*10-2

3 9.14*10-2 3.55*10-4 1.00*10-4 8.38*10-2 1.55*10-2

4 9.30*10-2 3.41*10-4 1.10*10-4 7.59*10-2 1.84*10-2

5 7.91*10-2 3.19*10-4 6.87*10-4 8.27*10-2 1.95*10-2

6 6.48*10-2 2.45*10-4 3.26*10-4 8.52*10-2 2.49*10-2

7 4.79*10-2 2.28*10-4 4.33*10-4 1.23*10-2 4.42*10-2

8 6.21*10-2 2.35*10-4 8.93*10-4 8.85*10-3 4.27*10-2

9 2.82*10-2 3.43*10-5 1.63*10-4 8.28*10-3 1.53*10-2

10 2.71*10-2 2.40*10-4 1.61*10-4 1.61*10-5 8.24*10-3

11 2.22*10-2 2.94*10-4 1.88*10-4 5.16*10-5 3.01*10-3

12 2.45*10-2 1.94*10-4 2.26*10-4 5.54*10-4 2.70*10-2

13 2.12*10-2 2.32*10-4 2.67*10-4 4.41*10-2 2.33*10-2

14 2.30*10-2 1.84*10-6 1.30*10-5 4.39*10-2 3.07*10-2

15 4.45*10-3 9.11*10-7 6.16*10-6 0.35 0.18
16 1.46*10-3 2.18*10-7 1.39*10-6 0.35 1.90*10-2

17 1.94*10-3 1.38*10-7 2.45*10-6 0.35 1.02*10-2

18 2.02*10-3 4.00*10-6 2.62*10-6 0.34 1.83*10-2

19 2.28*10-3 5.11*10-6 3.35*10-6 0.35 1.60*10-2

20 2.70*10-3 7.29*10-6 4.68*10-6 0.34 1.35*10-2

21 4.43*10-3 1.96*10-5 1.24*10-5 0.33 1.61*10-2

22 4.33*10-3 1.63*10-5 1.18*10-5 0.32 1.36*10-2

23 4.77*10-3 2.27*10-5 1.35*10-5 0.30 2.09*10-2

24 8.17*10-3 6.69*10-5 3.84*10-5 0.27 2.37*10-2

25 5.24*10-3 1.08*10-5 1.88*10-5 0.30 2.66*10-2

26 5.24*10-3 3.51*10-6 1.93*10-5 0.29 2.20*10-2

27 4.70*10-3 3.14*10-6 1.54*10-5 0.29 1.91*10-2

28 5.38*10-3 5.21*10-6 2.02*10-5 0.29 1.10*10-2

29 4.63*10-3 6.58*10-6 1.43*10-5 0.32 1.25*10-2

30 3.87*10-3 4.81*10-6 9.96*10-6 0.32 1.90*10-2

31 1.64*10-3 8.83*10-6 1.81*10-6 0.32 1.03*10-2

32 2.13*10-3 1.47*10-6 3.04*10-6 0.32 2.45*10-2

33 2.22*10-3 4.93*10-6 3.29*10-6 0.32 2.79*10-2

34 2.16*10-3 4.68*10-6 3.09*10-6 0.32 3.86*10-2

35 3.30*10-3 1.09*10-5 7.18*10-6 0.31 2.39*10-2

36 3.59*10-3 1,27*10-5 8.29*10-6 0.31 2.40*10-2

37 3.30*10-3 5,56*10-5 3.20*10-5 0.32 2.38*10-2

The Table reports the daily parameters obtained by minimizing the root of
Relative Mean Squared Error. Daily quotations range from 12/23/2008 to

02/12/2009.
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Tab.7. Comparison between discrete time and option pricing limit formula

T=10

A

1

0.1

0.01

Limit price

K = 0.925 K = 0.95 K = 0.975 K = 1 K = 1.025 K = 1.05 K = 1.075

8.0917*10 ­2 6.1089*10 ­2 4.4060*10 ­2 3.0264*10 ­2 1.9776*10 ­2 1.2305*10 ­2 7.3088*10 ­3

8.1122*10 ­2 6.1471*10 ­2 4.4591*10 ­2 3.0858*10 ­2 2.0323*10 ­2 1.2722*10 ­2 7.5678*10 ­3

8.1142*10 ­2 6.1508*10 ­2 4.4644*10 ­2 3.0917*10 ­2 2.0377*10 ­2 1.2764*10 ­2 7.5933*10 ­3

8.1144*10 ­2 6.1513*10 ­2 4.4649*10 ­2 3.0923*10 ­2 2.0383*10 ­2 1.2768*10 ­2 7.5962*10 ­3

sec./(numb) MRAE

0.0429 0.0212

0.1524 0.0021

1.6344 2.08*10 ­4

0.0254 ­

The Table shows a comparison between European call options in discrete time
and option pricing limit formula using the parameters de�ned by (20)

�00 = 0:72; �
0
1 = 0:11; �

2 = 0:0154; �01 = 0:27; a = 1:

Tab.8. Comparison between discrete time and option pricing limit formula

T=20

A

1

0.1

0.01

Limit price

K = 0.925 K = 0.95 K = 0.975 K = 1 K = 1.025 K = 1.05 K = 1.075

9.4467*10 ­2 7.7554*10 ­2 6.2624*10 ­2 4.9732*10 ­2 3.8842*10 ­2 2.9847*10 ­2 2.2577*10 ­2

9.4617*10 ­2 7.7761*10 ­2 6.2870*10 ­2 4.9993*10 ­2 3.9095*10 ­2 3.0070*10 ­2 2.2752*10 ­2

9.4633*10 ­2 7.7782*10 ­2 6.2895*10 ­2 50019*10 ­2 3.9121*10 ­2 3.0093*10 ­2 2.2770*10 ­2

9.4635*10 ­2 7.7785*10 ­2 6.2898*10 ­2 5.0022*10 ­2 3.9124*10 ­2 3.0095*10 ­2 2.2772*10 ­2

sec./(numb) MRAE

0.0531 0.0056

0.2677 5.67*10 ­4

3.9927 5.68*10 ­5

0.0236 ­

The Table shows a comparison between European call option in discrete time
and the limit option pricing formula using parameters de�ned by (20)

�00 = 0:72; �
0
1 = 0:11; �

2 = 0:0154; �01 = 0:27; a = 1:

Tab.9. Comparison between discrete time and option pricing limit formula

T=30

A

1

0.1

0.01

Limit price

K = 0.925 K = 0.95 K = 0.975 K = 1 K = 1.025 K = 1.05 K = 1.075

1.0653*10 ­1 9.0882*10 ­2 7.6821*10 ­2 6.4343*10 ­2 5.3410*10 ­2 4.3948*10 ­2 3.5857*10 ­2

1.0664*10 ­1 9.1027*10 ­2 7.6985*10 ­2 6.4515*10 ­2 5.3578*10 ­2 4.4103*10 ­2 3.5989*10 ­2

1.0666*10 ­1 9.1042*10 ­2 7.7001*10 ­2 6.4532*10 ­2 5.3595*10 ­2 4.4118*10 ­2 3.6003*10 ­2

1.0666*10 ­1 9.1043*10 ­2 7.7003*10 ­2 6.4534*10 ­2 5.3597*10 ­2 4.412*10 ­2 3.6004*10 ­2

sec./(numb) MRAE

0.0687 0.0028

0.4404 2.87*10 ­4

7.9983 2.87*10 ­5

0.0261 ­

The Table shows a comparison between European call option in discrete time
and the limit option pricing formula using parameters de�ned by (20)

�00 = 0:72; �
0
1 = 0:11; �

2 = 0:0154; �01 = 0:27; a
0 = 1:
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Tab.10. Comparison between discrete time and option pricing limit formula

T=10

A

1

0.1

0.01

Limit price

K = 0.925 K = 0.95 K = 0.975 K = 1 K = 1.025 K = 1.05 K = 1.075

8.0989*10 ­2 6.0400*10 ­2 4.2544*10 ­2 2.8364*10 ­2 1.8205*10 ­2 1.1494*10 ­2 7.2405*10 ­3

8.1143*10 ­2 6.0952*10 ­2 4.3542*10 ­2 2.9580*10 ­2 1.9237*10 ­2 1.2116*10 ­2 7.4808*10 ­3

8.1159*10 ­2 6.1003*10 ­2 4.3635*10 ­2 2.9691*10 ­2 1.9334*10 ­2 1.2177*10 ­2 7.5060*10 ­3

8.1161*10 ­2 6.1009*10 ­2 4.3645*10 ­2 2.9703*10 ­2 1.9344*10 ­2 1.2184*10 ­2 7.5088*10 ­3

sec./(numb) MRAE

0.0467 0.0334

0.1651 0.0032

1.7874 3.21*10 ­4

0.0293 ­

The Table shows a comparison between European call option in discrete time
and the limit option pricing formula using parameters de�ned by (23)

�00 = 0:72; �
0
1 = 0:11; �

0
1 = 1; �

2 = 0:0154; �01 = 0:27; a
0 = 1:

Tab.11. Comparison between discrete time and option pricing limit formula

T=20

A

1

0.1

0.01

Limit price

K = 0.925 K = 0.95 K = 0.975 K = 1 K = 1.025 K = 1.05 K = 1.075

9.3381*10 ­2 7.5811*10 ­2 6.0397*10 ­2 4.7306*10 ­2 3.6550*10 ­2 2.7959*10 ­2 2.1254*10 ­2

9.3846*10 ­2 7.6552*10 ­2 6.1346*10 ­2 4.8343*10 ­2 3.7527*10 ­2 2.8761*10 ­2 2.1818*10 ­2

9.3890*10 ­2 7.6620*10 ­2 6.1433*10 ­2 4.8438*10 ­2 3.7617*10 ­2 2.8836*10 ­2 2.1871*10 ­2

9.3895*10 ­2 7.6628*10 ­2 6.1442*10 ­2 4.8448*10 ­2 3.7626*10 ­2 2.8844*10 ­2 2.1877*10 ­2

sec./(numb) MRAE

0.0560 0.0206

0.3054 0.0019

4.5406 1.90*10 ­4

0.0287 ­

The Table shows a comparison between European call option in discrete time
and the limit option pricing formula using parameters de�ned by (23)

�00 = 0:72; �
0
1 = 0:11; �

0
1 = 1; �

2 = 0:0154; �01 = 0:27; a
0 = 1:

Tab.12. Comparison between discrete time and option pricing limit formula

T=30

A

1

0.1

0.01

Limit price

K = 0.925 K = 0.95 K = 0.975 K = 1 K = 1.025 K = 1.05 K = 1.075

1.0493*10 ­1 8.8822*10 ­2 7.4442*10 ­2 6.1834*10 ­2 5.0966*10 ­2 4.1743*10 ­2 3.4028*10 ­2

1.0553*10 ­1 8.9601*10 ­2 7.5350*10 ­2 6.2794*10 ­2 5.1899*10 ­2 4.2579*10 ­2 3.4715*10 ­2

1.0559*10 ­1 8.9672*10 ­2 7.5432*10 ­2 6.2880*10 ­2 5.1983*10 ­2 4.2655*10 ­2 3.4778*10 ­2

1.0559*10 ­1 8.9680*10 ­2 7.5441*10 ­2 6.2890*10 ­2 5.1993*10 ­2 4.2664*10 ­2 3.4785*10 ­2

sec./(numb) MRAE

0.0681 0.0156

0.4283 0.0014

7.8447 1.41*10 ­4

0.0274 ­

The Table shows a comparison between European call option in discrete time
and the limit option pricing formula using parameters de�ned by (23)

�00 = 0:72; �
0
1 = 0:11; �

0
1 = 1; �

2 = 0:0154; �01 = 0:27; a
0 = 1:
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Fig.4. Sections of the root of Mean Squared Error at 29st quotation day.
�Q = 134 � 10�2; �Q0 = 1:25 � 10�4; �

Q
1 = 6:42 � 10�5; � = 0:29:
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Fig.5. Sections of the root of Relative Mean Squared Error at 29st quotation
day. �Q = 4:63 � 10�3; �Q0 = 6:58 � 10�6; �

Q
1 = 1:43 � 10�5; � = 0:32:
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