
Università degli Studi di Milano-Bicocca
Dipartimento di Informatica, Sistemistica e Comunicazione

Dottorato di Ricerca in Informatica – XXII Ciclo
Anno Accademico 2008–2009

DISSIPATIVE MULTILAYERED CELLULAR AUTOMATA

FACING ADAPTIVE LIGHTING

Andrea Bonomi
Ph.D. Thesis

Thesis advisor: Prof.ssa Stefania Bandini
Thesis tutor: Prof.ssa Carla Simone

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 5
1.3 Outline of the thesis . 6

2 Adapting Lighting 7
2.1 Application Scenarios . 7

2.1.1 Interactive Installation . 7
2.1.2 Stage Lighting . 9
2.1.3 Domotics . 12

2.2 Design and Implementation . 14
2.2.1 Programming Approaches . 14

2.2.1.1 Max . 14
2.2.1.2 Pure Data . 15
2.2.1.3 vvvv . 18
2.2.1.4 Quartz Composer . 18
2.2.1.5 Processing . 19

2.2.2 Application Software for Lighting Control 22
2.2.2.1 Sunlite Suite . 22
2.2.2.2 Lula . 22

2.2.3 Enabling Communications Technologies 24
2.2.3.1 DMX512-A . 25
2.2.3.2 ACN . 27
2.2.3.3 MIDI . 28
2.2.3.4 X10 . 29
2.2.3.5 KNX . 30

3 Cellular Automata And Other Cellular System 33
3.1 Cellular Automata . 33

3.1.1 Formal Definition . 33
3.1.1.1 Regular Lattice . 33
3.1.1.2 State set . 34
3.1.1.3 Neighborhood . 35
3.1.1.4 Boundary Conditions . 36
3.1.1.5 Transition Function . 37

3.1.2 Applications . 38
3.1.2.1 Games . 38
3.1.2.2 Physical and Biological Systems 40
3.1.2.3 Social Science . 42
3.1.2.4 Traffic flow . 43

I

CONTENTS

3.1.2.5 Pedestrian and Crowd Dynamics 43
3.1.2.6 Other Applications . 45

3.1.3 Elementary Cellular Automata . 46
3.1.4 Stochastic Cellular Automata . 49
3.1.5 Asynchronous Cellular Automata 49
3.1.6 Dissipative Cellular Automata . 50
3.1.7 Cellular Automata With Memory 51

3.2 Automata Networks . 53
3.2.1 Formal Definition . 55
3.2.2 Multilayered Automata Networks 56

3.3 Random Boolean Network . 59
3.3.1 Formal Definition . 59
3.3.2 Classification of Random Boolean Networks 60

4 Effects of Asynchrony on Cellular Automata 63
4.1 Asynchronous Cellular Automata . 63

4.1.1 Synchronous Scheme . 65
4.1.2 Random Independent . 66
4.1.3 Random Order . 66
4.1.4 Cyclic . 67
4.1.5 Generic Cyclic . 68
4.1.6 Clocked . 68
4.1.7 Generic Clocked . 69
4.1.8 CA Update Schemes Ontology . 69

4.2 One Neighbor Binary Cellular Automata 76
4.2.1 Totalistic Rules . 79
4.2.2 Neighbor-Independent and Self-Independent 80
4.2.3 λ-parameter . 81
4.2.4 Sensitivity . 82
4.2.5 Rule density . 83
4.2.6 Rules symmetries . 83

4.3 1nCA Spatiotemporal Patterns . 87
4.3.1 Class 04TNS . 87
4.3.2 Class 14T . 88
4.3.3 Class 24 . 91
4.3.4 Class 34N . 92
4.3.5 Class 44 . 93
4.3.6 Class 54S . 94
4.3.7 Class 64T . 96
4.3.8 Class 84T . 98
4.3.9 Class 104S . 99

II

CONTENTS

4.3.10 Class 124N . 102
4.3.11 Synthesis of the Effects of Asynchrony on 1nCA 102

5 MDCA - Multilayered Dissipative
Cellular Automata 105
5.1 MDCA Model . 105

5.1.1 Basic Cell . 106
5.1.2 Composite Cell . 108
5.1.3 Update Schemes . 111

5.2 MDCA Programming . 112
5.2.1 MDCA Language . 114
5.2.2 MDCA Visual Programming . 118

5.3 MDCA Environment . 120
5.3.1 Kernel . 120
5.3.2 Cellular Space . 124

6 The Indianapolis Project 127
6.1 The Scenario . 127
6.2 A Network of Sensors and Actuators . 131
6.3 The Proposed Approach . 132

6.3.1 System Architecture . 134
6.3.2 Sensors Layer . 134
6.3.3 Diffusion Rule . 135

6.3.3.1 Regular neighborhood 136
6.3.3.2 Irregular neighborhood 137

6.3.4 Actuators Layer . 138
6.4 The Design Environment . 139

6.4.1 The Simulation Environment . 140
6.4.2 The Visualization Facility . 142

7 From Theory to Product: Digital Footprints 145
7.1 Toward a Modular Adaptive Lighting System 145
7.2 Hardware Prototype . 147
7.3 Software Implementation . 151

7.3.1 Body Cell . 152
7.3.2 Actuator Cell . 157
7.3.3 Edge Cell . 157
7.3.4 Command Shell Cell . 158

7.4 The Configuration Interface . 164
7.5 Considerations . 168

III

CONTENTS

8 Conclusions and Future Developments 169
8.1 Conclusion . 169
8.2 Future Developments . 172

IV

Acknowledgements

I would like to gratefully acknowledge my advisor Prof. Stefania Bandini who gave
me the opportunity to work on amazing projects. I wish to thank Prof. Carla Simone
for her support in the Ph.D and for valuable feedbacks. Moreover, this thesis would
not have been possible without the support of the Acconci Studio and Egicon srl.

I am grateful to all my friends from LIntAr, in particular Ettore, Fabio, Giuseppe,
Glauco, Ivo, Matteo, Paolo, Sara.

Finally, I am forever indebted to my parents and Gemma for their understanding,
endless patience and encouragement when it was most required.

V

...computers in the future may have only 1000
vacuum tubes and perhaps weigh only 1.5
tons.

Popular mechanics, 1949 1
Introduction

1.1 Motivation

CELLULAR Automata (CA) were introduced by John von Neumann as an environ-
ment for studying self-replicating systems (von Neumann, 1966). They have

been primarily investigated as a theoretical model and as a method for simulation and
modeling of complex systems (Weimar, 1997b). CA are a class of spatially and tem-
porally discrete mathematical systems characterized by local interactions (Wolfram,
1986b). Even if the interaction is based on simple local rules, the resulting structures
from the CA evolution may be extremely complex (Wolfram, 1994, 1984a).

CA are also an abstract and formal model of the cellular systems, a wide class of
systems present in nature. Such systems are composed of several interacting elements
(i.e. cells) acting with a certain degree of independence. The collective behavior (e.g.
the respond to the stimuli from the environment) is the result of the local interactions.

The ability to sense and respond to physical stimuli is of crucial importance to
all living organisms (Telewski, 2006). This work is inspired by a particular type or-
ganisms: the plants. The relative immobility of plants as compared with animals has
naturally provoked a dependance upon their ability to sense and respond to subtle
environmental signals (Jaffe et al., 2002). However responses to the environmental
stimuli are found over the entire range of the plant kingdom.

A beautiful example of such global behavior obtained by simple interactions is the
Heliotropism, a phenomenon in which the leaves or leaflets adjust their position with
respect to the direction of incoming solar radiation (Ehleringer and Forseth, 1980). As
a result of these movements, leafs an sun rays become perpendicular (maximizing the
amount of absorbed radiation) or parallel (reducing the transpiration). The mecha-
nism of leaf movement involves cells turgor changes. An increase in turgor on one
side is accompanied by a decrease in turgor in the opposite side, leading to leaf move-
ment, as shown in Figure 1.1.

The rationale of this work is to exploit this kind of self-organizing behavior present
in biological systems to model, design and realize Distributed Control Systems.

Distributed Control Systems, schematized in Figure 1.2, are composed of nodes,
managing internal resources and interacting with the physical environment (through

1

1. INTRODUCTION

Figure 1.1: Size distribution of motor cells in main pulvis of Mimosa Pudica (a) before and
(b) after the petiole is stimulated by touch. (Source: Taya, 2003, fig. 7, p. 59)

sensors and actuators) and neighboring nodes so as to obtain the desired overall sys-
tem behavior as a result of local actions and interactions among components.

For many applications, especially when there are several components character-
ized by a certain degree of local control and interactions with other elements of the
system, a distributed control system approach is suitable and more natural than a cen-
tralized control system.

Adaptive Lighting is one of the paradigmatic examples of applications that cannot
be always controlled in a comfortable way with a centralized control system. Adaptive
Lighting is a broad application field regarding the design and development of lighting
systems capable of controlling the light emission according to internal programs and
external stimuli.

Interactive installations, stage lighting, and domotics are the major fields of appli-
cation of Adaptive Lighting. Figure 1.3 shows a few examples of different Adaptive
Lighting applications.

Adaptive Lighting is a particular case of Ambient Intelligence (Shadbolt, 2003),
that promises, seamlessly integrating computing with the physical world, to give so-

2

1.1 Motivation

Internal
State

Sensors Actuators

Environment

Controller

ActionsPerceptions

Feedback

Controllers
Networks

Node

Figure 1.2: Schematization of a distributed control system.

ciety an improved living standard, greater security, and unparalleled convenience and
efficiency.

In the Ambient Intelligence vision, data and services will be available anyplace,
any time to all people. Many services and facilities (e.g. public transportation, traffic
control, electricity distribution networks, heating, ventilation, and air conditioning)
will become more efficient, integrated and capable. Such systems will be able to inter-
act together and with the people, improving our environment according to our needs.

The main aim of research on Ambient Intelligence is the definition of models and
tools for the realization of environments endowed with a large number of electronic
devices, interconnected by means of wireless communication facilities, able to per-
ceive and react to the presence of people. These facilities can have different goals,
ranging from explicitly providing electronic services to humans accessing the envi-
ronment by means of computational devices (e.g. personal computers or PDAs), to
simply providing some form of ambient adaptation to the users’ presence (or voice, or
gestures), without requiring an explicit interaction though a traditional computational
device.

An Ambient Intelligence system can be viewed in terms of autonomous entities,
managing internal resources and interacting with surrounding ones in order to obtain
the desired overall system behavior as a result of local actions and interactions among
system components. Approaches that take this perspective share a growing interest

3

1. INTRODUCTION

Figure 1.3: Examples of different Adaptive Lighting applications: public lighting, interactive
installation, stage lighting and decorative indoor lighting.

on models and mechanisms supporting forms of self-organization and management
of the components (both hardware and software) of such systems.

Several authors consider that the recent confluence of embedded and real-time
systems with wireless, sensor, and networking technologies is creating a nascent in-
frastructure for a technical, economic, and social revolution (Stankovic et al., 2005).
On the other hand such pervasive technology application opportunities, presents it-
self as problematic (e.g. regarding the privacy, see Kafeza and Kafeza, 2009) and it is
not without criticisms (e.g. see Araya, 1995; Friedewald, 2005).

The Ambient Intelligence vision is not the only one to propose the adoption of
embedded computational devices to enhance human environments. A similar idea
was expressed by Nicholas Negroponte in his book Soft Architecture Machines (Ne-
groponte, 1975). He coined the term Responsive Architecture when he proposed that
architecture would benefit from the integration of computational devices into built
spaces and structures, and that better performing, more rational buildings would be
the result. Research in this area has had to do with the ability to adapt the building
structure to the needs of the people.

In recent years, a considerable amount of effort has been spent on intelligent homes,
the emphasis here has been mainly on the development of computerized systems
to adapt the interior of the building to the needs of users. This could improve the

4

1.2 Objectives

standard of living for many people, especially elderly and disabled persons. In fact,
technology to help the elderly and disabled living independently is one of the major
reasons that such technologies began to be developed. Other major applications are
integrated security, safety systems, ease of living and comfort, and energy saving.

The starting point of this work is the following question: is it possible to control in a
comfortable way Adaptive Lighting systems with a cellular distributed control system
in order to take advantage of the cellular systems’ qualities (e.g. auto-organization,
robustness, self-repair and adaptation)?

Adaptive Lighting is in fact a challenging Ambient Intelligent application and a
positive result in the above direction represent a starting point for a more general
application even in other scenarios.

1.2 Objectives

In order to address the previously introduced general question, several specific objec-
tives has been defined:

� To define a cellular automata model suitable for distributed control and in par-
ticular for the control of Adaptive Lighting installations. This objective implies
to understand the Adaptive Lighting domain-specific issues.

� To investigate the effect of the asynchronous nature of cellular distributed con-
trol systems, in order to understand the problematics deriving from the adoption
of an asynchronous model that is much more adequate to distributed systems
than a synchronous one.

� To build a prototype of a real Adaptive Lighting installation in order to verify it
the proposed model is suitable. This task requires to deeply understand the light
designers’ requirements and to create tools helping the designer in defining the
dynamic behavior of the system.

� To define a programming language suitable for creating control systems with
the proposed model. In order to enable the designer to define by theirself the
cells’ behavior, a visual programming language is required (visual programming
languages are popular in communities of designer and artists).

� To create a cellular execution environment suitable for the class of microcon-
trollers typically used in distributed control systems.

� To design an Adaptive Lighting system module based on the proposed model
suitable for different adaptive lighting installations. Such module is intended
as an off-the-shelf solution requiring a set of services enabling the end user to
design and construct their own installations.

5

1. INTRODUCTION

1.3 Outline of the thesis

Chapter 2 presents the Adaptive Lighting scenario. We present the major fields of
application of Adaptive Lighting, the approaches to control such lighting systems and
the relevant approaches and technologies.

Chapter 3 gives an overview of the state of the art of Cellular Automata, that were
introduced by John von Neumann as an environment for studying self-replicating
systems (von Neumann, 1966). CA in fact are the fundamental model for cellular
system that will be employed in this work.

Chapter 4 discusses the issues deriving from the asynchronicity in Cellular Au-
tomata. Cellular Automata have traditionally treated time as discrete and state up-
dates as occurring synchronously and in parallel. However, several authors (e.g.
Paolo, 2000; Thomas and Organization., 1979) have argued that asynchronous mod-
els are viable alternatives to synchronous ones and suggest that asynchronous models
should be preferred where there is no evidence of a global clock in the model of the
system.

Chapter 5 proposes a Cellular Automata model for Adaptive Light: Multilayered
Dissipative Cellular Automata (MDCA). The main characteristics of the models are:
Asynchrony, Heterogeneity, Multilayered and Openess. Such features are useful for
designing systems composed of several distributed interacting components. MDCA
can be used both to simulate the behavior of such distributed systems and to control
the real installations.

Chapter 6 introduces the Indianapolis Project, an Adaptive Lighting installation of
the Acconci Studio, and then it presents the proposed cellular-automata based model.

Chapter 7 narrates the experience of the application of the model. In this chapter
we propose a Modular Adaptive Lighting System composed of several independent
modules, equipped with proximity sensors, and RGB leds guided by the proposed
model.

Chapter 8 contains the conclusion with indication of future work.

6

Sometimes the best lighting of all is a power failure.

Doug Coupland 2
Adapting Lighting

2.1 Application Scenarios

ADAPTIVE Lighting is a broad application field regarding the design and devel-
opment of lighting systems capable of controlling the light emission according

to internal programs and external stimuli. Adaptive Lighting involves several differ-
ent aspects from lighting design to hardware (e.g. automated lights, other actuators,
sensors). Lighting control is a key component of Adaptive Lighting.

There are several human activities requiring a lighting control based on timing or
events. Examples of Adaptive Lighting’s application are stage lighting, interactive in-
stallation and domotics. In this section we present these three different application
scenarios. This section does not represent an exhaustive description of all the aspects
of this area but will provide the reader with a basic knowledge of some scenario mo-
tivating the presented work.

2.1.1 Interactive Installation

Installation is arguably the most original, vigorous, and fertile form of art today (De Oliveira
et al., 1994). Installation Art is a kind of modern art in which artists use the specific
setting (e.g walls, floor, lights) as part of composition. Typically the viewers are able
to move around the works and interact with the them, so that they become part of
that work in that specific moment in time. Installations are usually not intended to be
permanent.

Interactive installation is a kind of installation art in which the viewers are able to
interact with the artist work. Different kinds of interactivity can be defined. In Han-
nington and Reed (2002), three types of interaction are presented:

Passive where the content has a linear presentation and users interact by only starting
and stopping the presentation;

Interactive when users are allowed to choose a personal path through the content;

Adaptive is the interaction in which users are able to “enter their own content and
control how it is used”.

7

2. ADAPTING LIGHTING

Usually, an interactive installation involves the audience acting on it or the installa-
tion responding to the people activity. Edmonds et al. (2004) proposed four categories
of relationship between the artwork, artist, viewer and environment:

Static where the installation lack of interaction;

Dynamic-Passive when the artwork response is triggered by environmental factors
(e.g. sound, light, temperature);

Dynamic-Interactive where, in addition to the environmental factor, the human pres-
ence and actions influenced the artwork;

Dynamic-Interactive (varying) where, in addition to the human interaction, the orig-
inal specification of the art object is modified by an agent (either human or soft-
ware).

With the technology improvement over the years, artists are now able to create
installations involving sensors (e.g. motion sensors, touch sensors, light sensors) and
actuators (e.g. lights, monitors, speakers). Two examples of interactive installations
are shown in Figure 2.1.

The interactive installations’ behavior become more complex, requiring the inte-
gration of information from different sources and the coordination of several actuator.
Today there are several programming environment created for develop the control
system of such installations. The aim of that software is to bridge the gap between the
requirements of the artists and the complexity of the development of a control system.

Moreover, complex installations commonly requires specialists with different ar-
eas of competence to collaborate with the artist (e.g. architects, electrical engineers,
software engineers). The artist could express itself with its own language (e.g. draws,
animation, narrative description) and the engineer have to translate such desiderata
into hardware and program requirements.

Requirements definition is one of the most difficult tasks for the software develop-
ers in the interactive installations. According to Machin (2002), greatest challenges in
even identifying what the artist requires. In Marchese (2006) is asserted that the most
important part of the process because without a precise understanding of the system
requirements it is possible to build a well functioning system that does not perform
the tasks requested by the user.

Several authors (e.g. Machin, 2002; Edmonds et al., 2004) suggest that some of
the difficulties in requirements elicitation might be due to practical communication
problems, since artists and technologists use their domain specific language, terms
and concepts and might misunderstand each other or underestimate the importance
of issues from the other domain. It is important that both artists and technologists
are aware of these properties of the requirements. Requirements might be difficult to
capture, vague at the beginning and frequently changeable. Having this in mind will

8

2.1 Application Scenarios

allow choosing the most appropriate software development methods and designing
the most suitable architecture of the product (Trifonova et al., 2008).

Dune 4.0 by Daan Roosegaarde is an interactive landscape which physically changes
its appearance in accordance to human presence.

Aperture by Frédéric Eyl and Gunnar Green is an interactive facade installation con-
sisting of an iris diaphragm matrix.

Figure 2.1: Examples of interactive installations.

2.1.2 Stage Lighting

Stage lighting is a branch of the lighting design concerning the illumination of “live
events”, such as theatrical productions, dance, opera, concerts, sports events, fashion
shows, conferences, TV shows.

Stage lighting is often not only used on stages, but also for permanent installa-

9

2. ADAPTING LIGHTING

tions. Both human environment (e.g. monuments, fountains, squares, bridges, swim-
ming pools, retail stores) and natural environment (e.g. caves, fall) are often enhanced
through the use of lighting.

The function of lighting is not only illumination, but also help to set a scene, or
focus and direct the audience attention. Examples of different light effects during a
concert are shown in Figure 2.2. Light without a precise control is not much use for
most situations, and because of this, lights control has long been the critical part of
stage lighting.

Figure 2.2: Examples of different light effects during a concert.

In a typical show, several light have to change their parameter at a precise time
or in response to an external event. There are several configurable parameters for the
modern lighting fixtures, such intensity, color, and other parameters. Moving lights
have many more control parameters than fixed lights: multiple axis positions, gobo1,
shutter, and focus.

1A gobo controls the light by blocking, coloring, or diffusing some portion of the beam before it
reaches the lens, in order to project the desired pattern onto whatever surface it is pointed at such as a
wall or floor.

10

2.1 Application Scenarios

Par Can (Par56 DMX LED RGB) Scanner (DMX–600 Intimidator 1.0)

Moving Light (Chauvet MiNWASH) Led bar (EUROLITE LED bar 324/10 RGB)

Profile Spot (PS-A014B) Mirror Ball (DMX Mirror Ball American DJ)

Fog Machine (ANTARI Z-1000II) Laser Show (L388RGB)

Figure 2.3: Examples of different kind of stage fixtures.

11

2. ADAPTING LIGHTING

Figure 2.4: Examples of two different lighting consoles produced by LSC Lighting Systems
Pty Ltd. On the left, an entry level console, on the right an high end console.

Other equipment are generally controlled by the stage lighting system, such mirror
ball, laser light show, video server and artificial fog. In Figure 2.3 are shown several
kind of stage fixtures.

Laser systems provide spectacular effects for a wide variety of production. The
basic concept behind a laser light show is simple: using one (or more) colored, narrow
beams of light, a graphical picture is drawn.

Video Servers are the primary source for modern video playback. A video server
typically plays back a digital video file from a hard disk. External control is critical
for video servers, since they are integrated with other performance elements. Many
video servers are capable of a wide variety of control over parameters such as image
geometry and playback speed. The video signal, provided by the video server, is
delivered to video monitor, projectors or large-format display devices such as LED
displays. Professional video monitors and video projectors are generally capable of
external control, if only for simple things such as power and lamp on/off and input
selection.

There are three parts in a modern lighting control system: a control console, the
control data distribution system, and the controlled devices.

Early control consoles a row of sliders would be set as a “scene” or “preset” and the
operator would manually “cross-fade” between the presets. In this preset operation,
every parameters have to be entered into the system to be associated to each cue. In
more modern consoles, only the changes to each scene need be entered. These consoles
are known as “tracking” consoles. Today, for the complex shows are often used fully
computerized consoles. In Figure 2.4 are show two examples of lighting consoles.

2.1.3 Domotics

Domotics is the application software and hardware in housing applied to the areas
of safety and security (e.g. alarms, surveillance), comfort and self-care (e.g. lighting
control, ventilation control, heating control), communication, property control and
management (e.g. energy saving) (Allen et al., 2001).

12

2.1 Application Scenarios

Access control

Security

Home Theater

Lighting

Irrigation

Gas Detection
Internet

Access and Control

Multi-room audio

Intelligent Fridge

Blinds
Control

Water
Control

Figure 2.5: Examples of the domotic house’s services.

Domotics is the field where housing meets technology in its various forms (in-
formatics, but also robotics, mechanics, ergonomics, and communication) to provide
better homes from the point of view of safety and comfort (Aiello and Dustdar, 2008).

Domotics evolves from the tradition home automation solutions, that are simple
control systems, including set of sensors, switches and actuators, connected together
using direct wiring. At the beginning, home automation solutions were provided by
one vendor, using one proprietary standard for communication. Successively, several
standards have been developed by different vendors. Domotics devices are heteroge-
neous in all aspects: they are produced by different vendors, have different hardware
features, network interfaces, and operating standards. Today one of the biggest chal-
lenge for the diffusion of the domotics is the interoperability.

The key concept of domotics is integration of home control, entertainment and
computers into one environment. In order to do so, it is necessary to establish com-
munication links between all devices and have a shared protocols understood by all
members of the network.

There are several alternative technologies to establish communication links be-
tween the devices. The mainly adopted are powerline for networking, dedicated
wired networks, wireless networks, and usage of existing wired networks (e.g. Ether-
net).

13

2. ADAPTING LIGHTING

According to Aiello and Dustdar (2008), the key properties to judge a domotic
technology and related standards are:

Openness the publicity of the protocol and the possibility of implementing it on any
home appliance;

Scalability the possibility of adding and removing devices to and from a home net-
work without affecting its functionalities and its performances;

Heterogeneity the support for different kind of hardware, networks, operating sys-
tems, and programming languages;

Topology the way in which devices are connected to one another.

2.2 Design and Implementation

There are mainly two approaches to the design of dynamic behavior for adaptive light-
ing and interactive installation in general: define the behavior using an ad hoc appli-
cation to configure a predefined model to achieve the desired effect (e.g. stage lighting
control software) or actually writing a program to realize the behavior using a (either
general purpose or specialized) programming language. In the following sections we
examine both the options.

2.2.1 Programming Approaches

In this section, we introduced the most popular programming languages used for cre-
ating multimedia interactive installation. In out knowledge, there are no specific pro-
gramming language for the lighting control. Moreover these programming languages
are suitable for adaptive lighting. Many of them are visual programming languages.
Visual Programming refers to any system that allows the user to specify a program in a
two or more dimensional fashion (Myers, 1990). Visual programming languages have
a long history during which there have been many different languages developed with
the common goal of ameliorating the difficulties of programming (Edmonds et al.,
2005). There is a common belief that visual languages are easier to use for end users.
However, there is no scientific evidence that visual is generally better or easier than
text (Goodell et al., 1999).

2.2.1.1 Max

Max1 is a graphical programming environment for music and multimedia. During its
20 year history, it has been primarily used by performers, composers, artists, scien-
tists, teachers, and students, for creating interactive software and installations. Max

1http://www.cycling74.com/

14

2.2 Design and Implementation

is widely regarded as the lingua franca for developing interactive music performance
software.

Max is named after Max Vernon Mathews, a pioneer in the world of computer
music.

Max was originally developed by Miller Puckette in the mid-1980s at IRCAM (In-
stitut de Recherche et Coordination Acoustique/Musique) to give composers access
to an authoring system for interactive computer music. It was first used in a piano and
computer piece called Pluton written by Philippe Manoury in 1988. The first commer-
cial version of the program was sold in 1990 by the Opcode Systems and since 1999 by
Cycling ’74 company.

Max is highly modular, allowing third-party development of new routines. As a
result, Max has a large community of programmers who enhance the software with
commercial and non-commercial extensions. Extensions to the program can be written
as Max patchers, or written in C, C++, Java, or JavaScript.

Most notably, a set of audio extensions, called MSP, allowed for the manipulation
of digital audio signals in real-time, allowing users to create their own synthesizers
and effects processors.

Max is a data-flow language: Max programs (called patches) are made by arranging
and connecting building-blocks of objects within a patcher. These objects act as self-
contained programs, each of which may receive input through one or more visual
input line and generate output through visual output lines. Objects pass messages
from their output line to the input line of the connected objects. Messages can be
atomic data types (e.g. int, float, symbol) and more complex data structures (e.g. array,
hash table, XML, audio, video)

There are graphical object, including sliders, number boxes, dials, table editors,
pull-down menus, buttons, and other objects allowing controlling the program inter-
actively. An interactive installation could be controlled by the viewers through this
kind of graphical interfaces. Another possibility is react to external MIDI (Musical
Instrument Digital Interface) events, allowing the Max-controlled installation to inter-
face to a large number of MIDI complaint devices. A developer can also create ad-hoc
extension to interact to specific sensor (e.g. motion sensor).

It was observed that the diagrammatic layout of the Max is effective because it
represents the underlying computational or logical process.The user derives a sense
of engaging directly with this process (Edmonds et al., 2005).

2.2.1.2 Pure Data

Pure Data1 is a free real-time graphical programming environment for audio, video,
and graphical processing. Pure Data provides the main features of Max, but is also
intended to support the definition and editing of compound data structures in a more

1http://puredata.info/

15

2. ADAPTING LIGHTING

Figure 2.6: A MAX patch. The program structure and the user interface are presented simul-
taneously.

sophisticated way than Max does (Puckette, 1996).
The core of the language is written and maintained by Miller Puckette (the orig-

inal author of Max) and includes the work of many developers. The work of many
developers is already available as part of the standard packages and the developer
community is growing rapidly. Recent developments include a system of abstractions
for building performance environments and a library of objects for generating and
processing video in realtime.

According to Miller Puckette, the most significant weakness of Max is the difficulty
of maintaining compound data structures of the type that might arise when analyzing
and resynthesizing sounds or when recording and modifying sequences of events of
many different types. Also it has proved hard to integrate non-audio signal, video or
sensors information for instance.

Pure Data’s working prototype attempts to simplify the data structures in Max to
make them more readily combined into user data structure.

As shown in Figure 2.7, it is composed of two main parts. The Pd, shown on the
left, does realtime computation using a Max-like interpreter and schedule. All the
programs (i.e. patches and objects), including the editor, reside in the address space of
Pd. The other process, Pd-gui, talks to the window system through the Tk (Osterhout,
1994) cross-platform widget toolkit.

In order to better present the Pure Data program language, we describe the exam-
ple program presented in Figure 2.8. This program is a synthesizer, generating sounds
at different frequencies.

The metro object is turned on and off by sending either a 1 or a 0 to its left input line.

16

2.2 Design and Implementation

Figure 2.7: Pure Data architecture, showing realtime and not-realtime modules. (Source:
Puckette, 1997, fig. 1, p. 270)

Figure 2.8: An example of a Pure Data patch generating sounds at different frequencies.

We use the toggle button near the start label to send these messages. metro 100 is used
to send the message bang every so 100 milliseconds. f is a float variable. Its output
is connected to the object + 1, which returns the value of the variable incremented by
one. Since the output of the + 1 object is connected to the input line of f, the value of the
variable replaced by the new value. These operations are performed every time a bang
message is received from the metro object, so the value of the variable is incremented
by one every 100 milliseconds. The value of the variable is taken as input for the %
32 object, that returns the value of the variable modulo 32. The output is send both
to a gray box near the midi note label and to the mtof object. mtof is the object which
turns a MIDI note into a frequency in Hertz. The resulting frequency (i.e. the output
of mtof) is sent both to the gray box near the hertz label and to a sine wave oscillator
osc object, which sends audio to the dac (Digital to Analog Converter). The Digital to
Analog Converter is the connection to the soundcard. The two connections between
the osc and the dac represent the audio left and the right channels.

17

2. ADAPTING LIGHTING

2.2.1.3 vvvv

vvvv1 is a visual programming environment for real-time graphics, video processing
and installation control. It was created by the Meso group in Frankfurt, who origi-
nally designed it as a tool to design their installation projects. vvvv is free for non-
commercial use. Any commercial use requires a license.

vvv is similar in operation to Max/MSP, as shown in Figure 2.9, but focused on
visuals and show control. It has functions for controlling a variety of different types of
third party devices, including DVD players, touch-screen monitors, gaming devices,
switches, position and orientation sensors, MIDI equipment, DMX interfaces, serial
port devices, keyboards and (multiple simultaneous) mice.

vvvv file format is XML conform which, allows reading data from a running script
as well as setting a script state from itself. In other words a script can manipulate
itself. Another feature of vvv is boygrouping, that it is a way of setting up a piece to
render on a cluster of separate PCs using a master-slave distribution setup, allowing
easy multiple-projection output. An integrated Web Server allows direct serving of
web content and can be useful for remote administration of vvvv installations.

Figure 2.9: On the left, a screenshot of the vvvv visual programming environment, on the
right an example of a multitouch prototype controlled with vvvv created by Chris Engler.

2.2.1.4 Quartz Composer

Quartz Composer is a real-time visual programming environment developed by Ap-
ple Computer. Quartz Composer uses OpenGL, JavaScript, and other technologies to
build a developer tool around a simple visual programming paradigm. It has many
similarities to Max, Pure Data and vvvv, although its primary usage is for graphical
rather than audio processing. It is able to access to many functions offered by the Mac
OS X operating system, such as MIDI, Networking (Web, RSS), Audio Input/Analysis,

1http://vvvv.org

18

2.2 Design and Implementation

video and audio filters. The ability to construct interactive video compositions that
react to audio or MIDI signals is one of the features allowing the creation of interac-
tive installations with Quartz Composer. A tool called Quartz Composer Visualizer
allows compositions to be rendered across multiple screens on a single machine, or
even spanned across several machines and displays.

Most of programming in Quartz Composer is done by drawing connections be-
tween nodes (i.e. patches), twirling dials and entering values into input boxes. As
Max, Pure Data and vvvv, each change to the program is immediately reflected in the
viewer, without recompiling. As show in Figure 2.10 the interface of Quartz Com-
poser is simple and intuitive. Each patch is similar to a subroutine in a traditional
programming language. The patch can receives input from other patch and produce
some results. Circles on the left side of a patch represent the accepted inputs, circles on
the right side are the patch outputs. For example, the Random patch will accept Min
and Max parameters and use them to create a Value output,

Figure 2.10: A screenshot of the Quartz Composer User Interface.

2.2.1.5 Processing

Processing is an open source programming language and environment built for the
electronic arts and visual design communities. The project was initiated by Ben Fry

19

2. ADAPTING LIGHTING

and Casey Reas, evolved from ideas explored in the Aesthetics and Computation
Group at the MIT Media Lab. The system facilitates teaching many computer graphics
and interaction techniques including vector/raster drawing, image processing, color
models, mouse and keyboard events, network communication, and object-oriented
programming (Reas and Fry, 2007). One of the stated aims of Processing is to act as a
tool to get non-programmers started with programming, through the instant gratifica-
tion of visual feedback. Processing it is primarily used by students, artists, designers,
researchers, and hobbyists for learning, prototyping, and production.

The Processing language is simplification of the Java language. When program-
ming in Processing the code is translated into pure Java before compiling.

Processing is distributed with the following set of libraries:

� Video Interface to Apple’s QuickTime for using a camera, playing movie files,
and creating movies.

� Network Sending and receiving data via the Internet through the creation of
simple clients and servers.

� Serial Supports sending data between Processing and external hardware via se-
rial communication (RS-232).

� PDF Export Generates PDF files.

� OpenGL Support for exporting OpenGL accelerated sketches.

� Minim Uses the JavaSound API to provide an easy-to-use audio library.

� DXF Export Lines and triangles from modes can be sent directly to a DXF file.

� Arduino Allows direct control of an Arduino board through Processing.

� Netscape.JavaScript Methods for interfacing between Javascript and Java Ap-
plets exported from Processing.

It is easy to extend Processing integrating existing Java libraries. The processing
libraries encapsulate the Java libraries, simplifying their usage. There are many thirdy-
parts libraries useful for creating interactive installation available from the Processing
web site:

� bluetoothDesktop Send and receive data via Bluetooth wireless networks.

� EEML Library Extended Environments Markup Language (EEML) is a protocol
for sharing sensor data between remote responsive environments.

� ezGestures A modular gesture recognition library.

20

2.2 Design and Implementation

� Most Pixels Ever Framework for spanning Processing sketches across multiple
screens.

� OpenCV An OpenCV interface for processing including blob detection, face
recognition.

� proMidi Allows Processing to send and receive midi signals.

� QRCode Reads QR Code images, a two-dimensional barcode format.

� RiTa An easy-to-use natural language library that provides simple tools for ex-
perimenting with generative (or computational, or digital) literature.

� TUIO Client library for the simple creation of tangible interactive surfaces, re-
ceiving TUIO data from object and multi-touch trackers such as reacTIVision.

Processing includes a sketchbook, a minimal Integrated Development Environment
(IDE) for organizing projects. The IDE, shown in Figure 2.11, consists of a text editor
for writing code, a message area, a text console, tabs for managing open files, and
a toolbar with buttons for common actions. The console display compilation error
message and text output by Processing program, the message area gives feedback
while for several operations (e.g. saving, loading, compiling). When a Processing
program starts, it open a new window for the graphical output.

Figure 2.11: A screenshot of the Processing IDE, with a simple program placing 3D objects in
space. The lights() method reveals their imagined dimension. The box() and sphere() methods
each have one parameter which is used to specify their size. These shapes are positioned using
the translate() function.

21

2. ADAPTING LIGHTING

Processing has spawned another project, Wiring, which uses the Processing IDE
together with a simplified version of the C programming language as a way to teach
artists how to program microcontrollers. There are now two separate hardware projects,
Wiring and Arduino, using the Wiring environment and language.

2.2.2 Application Software for Lighting Control

In this section, we introduced two lighting control software as example of two differ-
ent approaches for lighting control. The first one is a popular commercial software
suite for creating and visualizing lighting show. We present this software as an exam-
ple of the state of the art of the stage lighting solutions. The second is a computer–
assisted lighting design and control system presented by Michael Sperber in his Ph.D.
thesis.

2.2.2.1 Sunlite Suite

The Sunlite Suite1 is a set of software for creating and visualizing lighting show. The
two most significant softwares are Easy Show and Magic 3D Easy View.

Easy Show is a tool for synchronizing lighting effects with audio and video. Simi-
lar to audio editing software, it includes timelines where users can control their light-
ing effects. Lighting effects timelines can also be synchronized with audio and video
timelines.

Magic 3D Easy View is a lighting visualizer software. It provides a real–time 3D
rendering of a stage. As shown in Figure 2.12, it allows the lighting designer to pre-
view light movement, colors, and every other effect available in robotic/intelligent
lighting (e.g. strobe, dimmer, shutter, etc). It is also possible to insert objects to cus-
tomize the stage (i.e. drums, piano, furniture) from a predefined libraries of objects,
or to import objects from a CAD software. The software allows to reconstruct stages
and venues in a very realistic way. It is possible to record videos of the lighting shows
and take still pictures.

2.2.2.2 Lula

Lula (Sperber, 2001) is a system for computer-assisted stage lighting design and con-
trol developed by Michael Sperber. Its main improvement from existing lighting con-
trol systems is its modelling of the conceptual structure of a lighting design rather
than its implementation.

A more faithful representation of the structure of a lighting design requires re–
examining all basic design premises of existing systems, and has resulted in a com-
plete redesign of the concept of the lighting control system.

1http://www.nicolaudie.com

22

2.2 Design and Implementation

Figure 2.12: A screenshot of the Sunlite Magic 3D Easy View. In the top left quadrant there
is a frame of the 3D rendering of the stage, bottom left there is the top view of the stage, bottom
right the front view. In the top right quadrant is shown the list of the fixtures.

Lula tries to address another shortcoming of existing systems: these systems ex-
hibit significant non–linearities between the user–interface controls and the actual sit-
uation on stage. Lula lighting component model is based on a rigorous formal speci-
fication. This specification is the basis for both the Lula internal data representations
and its graphical user interface. According to the author, the uniformity of the spec-
ification is not a guarantee, but a necessary prerequisite and good indicator for the
usability of the interface.

Lula internally expresses all light changes as animations in term of Functional Re-
active Programming (FRP) (Elliott and Hudak, 1997). FRP is a programming technique
for representing values that change over time and react to events. For constructing
complex animations, the user has direct access to FRP via a built-in domain–specific
programming language called Lulal. Lulal is a higher-order, purely functional, strongly
typed language. Lulal syntax is borrowed from Scheme language. Lulal is for the
designer of dynamic lighting components, not for every user of a lighting control sys-
tem. The language is hidden to the user who merely wants to assemble a show from
cues, fades and prefabricated pieces. Such users can create their shows through the
script editor, that allows pasting events into a theatrical script. An event corresponds to
an event on stage which requires a coordinated lighting change. A screenshot of the
script editor is shown in Figure 2.13.

23

2. ADAPTING LIGHTING

Figure 2.13: A screenshot of the Lula Script editor showing show the final lighting event of a
show. On the left there is the editor pane, on the right there is the list of the lighting component.
(Source: Sperber, 2001, fig. 5, p. 131)

In theatrical use, Lula drastically cuts down on the time usually needed for pro-
gramming the control system. Lula is especially attractive for touring productions:
since it allows separating the conceptual components of a design from its implemen-
tation, the operator can preserve large parts of the programming between venues.

2.2.3 Enabling Communications Technologies

Most automated lighting fixtures use a standard protocol. There are several protocols
suitable for Adaptive Lighting. We divide the protocols in two families, according to
the protocol designation. There are protocols designed for the Stage Lighting control
and protocols for the Domotics.

The most common protocols of the two families are the following:

Stage Lighting Protocols

� Analog (0–10V) Control

� DMX512-A

� Art–Net II

� ACN

� MIDI

� Open Sound Control

24

2.2 Design and Implementation

Domotics Protocols

� X10

� INSTEON

� BACNet

� LonWorks

� European Home Systems Protocol (EHS)

� BatiBUS

� European Installation Bus (EIB)

� KNX

� SCS BUS – OpenWebNet

In the following paragraphs we describe in details the most significant of such
communication protocols.

2.2.3.1 DMX512-A

DMX512-A is an unidirectional communications protocol used to control stage light-
ing and effects (e.g. fog machine). It was created in 1986 by the United States Institute
for Theatre Technology (USITT) as a standard for controlling stage lighting and it was
subsequent revised in 1990.

The communications standard covers digital multiplexed signals, provides up to
512 control channels per data link. Each of these channels was originally intended
to control lights intensity and can assume an integer value between 0 and 255 (i.e.
8-bit number). The value 0 corresponds to the light being completely off while 255
corresponds to the light being fully on. More complex devices use adjacent channels
to control different aspects of their behavior. For example, an RGB moving light can
use 5 channel: 3 for the RGB color intensities, 1 for the pan (horizontal rotation) and 1
for the tilt (vertical rotation). To control position more accurately, some fixtures use 2
channels each for pan and tilt. This gives a 16-bit value range of 65536, permitting an
higher accuracies for each axis.

According to the standard, a DMX512 controller is connected to the devices in a
multi-drop bus topology commonly called a daisy chain. As shown in Figure 2.15,
each device has an input and out connector. The controller is linked via a DMX512
cable to the input connector of the first device. A second cable then links output con-
nector on the first device to the next device, and so on. The final output connector
should have a terminating connector plugged into it.

25

2. ADAPTING LIGHTING

Controller

Splitter

Splitter

Termination

Light
#1

Light
#2

Light
#3

Light
#4

Light
#8

Light
#7

Light
#6

Light
#5

Termination Light
#10

Light
#9

Figure 2.14: An example of a DMX network with 10 lights and 2 splitters.

Figure 2.15: The back of the EUROLITE TC-150 DMX Color changer spot. The two connec-
tors on the bottom right of the picture are the DMX512 input and out connector. The DMX
channel is configurable via dip switches on the top right.

A DMX512 output from a DMX512 transmitter has the capacity to drive up to 32
units. In order to drive more than 32 units, a DMX Splitter is required. A Splitter
consists of a DMX input connector and several DMX output connectors. Each of the
DMX output connectors can now drive 32 units each. A Splitter is used also then the

26

2.2 Design and Implementation

cabling between two fixtures is very long, since the signal can degrade significantly.
An example of a DMX network is shown in Figure 2.14.

Many improvements to DMX512 have been proposed to address limitations such
as the maximum slot count of 512 per universe, the unidirectional signal, and the lack
of inherent error detection.

The 2004 revision of the standard also lays the foundation for the RDM (Remote
Device Management) protocol through the definition of Enhanced Functionality. RDM
allows for diagnostic feedback from fixtures to the controller by extending the DMX512
standard to encompass bidirectional communication between the lighting controller
and lighting fixtures. RDM can be used for:

� Identification and classification of connected devices;

� Addressing of devices;

� Status reporting;

� Configuration.

DMX512 standard states that the data link shall utilize 5-pin XLR connector and 5
wire cables. However the DMX signal can being routed on other media such ethernet
of wireless, in order to control distance or remote devices.

2.2.3.2 ACN

Architecture for Control Networks (ACN) is a suite of network protocols for theatri-
cal control being developed by Entertainment Services and Technology Association
(ESTA). ESTA started work on ACN in 1997, and the standard was finally released in
2006.

It may replace DMX as the control protocol for lighting systems and will be used
for controlling more complex devices like media servers and audio mixers. ACN en-
ables a number of components to be connected on a control network. ACN is platform
and network independent, but, the most commonly used UDP/IP and will run over
standard Ethernet and Wi-Fi networks. The layers of the ACN protocols are shown in
Figure 2.16.

Every unit connected to an ACN network needs a unique address, known as Com-
ponent Identifier (CID). CID is a 128-bit number, allowing for a large possible range.

The Device Description Language (DDL) is an XML language defining the device
interface. Each devices is associated to a DDL document. The document describes
the properties associated with behaviors, providing additional information about the
property, such as what the property actually does, a name for the property to be used
by the controller, and so on. Each properties may have several children. For example,
for a moving light, the root property is the automated light itself, the pan function
is a sub-property of the root, and the max and min degree of pan are sub-property

27

2. ADAPTING LIGHTING

Application

Presentation

Session

Transport

Network

Data Link

Physical

Device Management
Protocol (DMP)

Session Data
Transport (SDT)

UDP

IP

802.3 (Ethernet),
802.11g MAC/LLC

(Wifi)

100Base-TX
802.11a/b/g/n PHY

Root Layer Protocol
(RLP)

OSI Model ACN

Figure 2.16: The layers of the Architecture for Control Networks (ACN), compared the OSI
Model. The azure layers are not part of the ACN standard, but are the most commonly used.

of pan. The Device Class Identifier (DCID) is used by a manufacturer to indicate a
particular device model. Each device with the same DCIC is associated to the same
DDL document.

The Device Management Protocol (DMP) is the mechanism to control, configure,
or monitor specific properties in a connected device. Other functions of DMP include
the handling of parameters that might be continuously updated, through the use of
events and subscriptions.

The Session Data Transport (SDT) provides reliable multicasting and guarantees to
layers above (e.g. DMP) that packets will be delivered to multiple receivers and and
they arrive in the correct order.

The Root Layer Protocol (RLP) is the interface between ACN protocols and the
lower-layer network transport protocols. RLP has been designed separately to ensure
maximum network independence.

2.2.3.3 MIDI

The Musical Instrument Digital Interface (MIDI) is an standard protocol defined in
1982 that was originally designed for electronic musical instruments interconnection,
and is now used widely in many parts of the entertainment industry. MIDI does not
transmit an audio signal but only control information representing musical events is
sent.

MIDI is a simple point-to-point interface, allowing devices to be connected in a
simple master/slave relationship. Since the standard is unidirectional, a MIDI devices

28

2.2 Design and Implementation

usually has both a receiver (MIDI In), a transmitter (MIDI Out). Sometimes, MIDI
devices has a pass-through connector (MIDI Thru), that is used for daisy-chaining
devices. The output of MIDI Thru is a copy of the data on the MIDI In.

An approach, better than daisy chain, for control applications is to use a MIDI
Splitter, which takes one MIDI input and creates multiples copies of that input. With
such a device, a hierarchical network can be created.

MIDI Show Control (MSC) is an open, standardized protocol for show control de-
veloped in 1991. The purpose of MIDI Show Control is to allow MIDI systems to
communicate with and to control dedicated control equipment in theatrical and live
performance. MSC enables several kinds of entertainment equipment to communicate
with each other through the process of show control. Applications may range from a
simple interface through which a single lighting controller can be instructed to start
and stop, to complex communications with large, timed and synchronized systems
utilizing many controllers of all types of performance technology.

MSC messages are transmitted in the same way as musical messages and are
fully compatible with all conventional MIDI hardware. Commands are most often
addressed to one device at a time. Each MSC message contains a device ID, determin-
ing to what address a message is intended. Since MIDI is a broadcast standard, all
messages go to all devices. Each devices is responsible to check if it is the intended
receiver of a particular message. There are 112 individual device IDs, 15 groups id (i.e.
groups of devices to be addressed simultaneously) and a broadcast id, which is used
to transmit global messages to all receivers in the network.

One of the limitation of MSC, is commands are completely open loop: no feedback
or confirmation of any kind is required for the completion of any action. When a
controller sends a message out, it has no idea if the target device even exists.

2.2.3.4 X10

X10 is a power–line based home automation protocol, developed in the 1975. The
control signals are transmitted via existing power lines, without the need of dedicated
buses. In addition to the power-line, X10 provides remote controls based on radio
communication. An example of an X10 network is shown in Figure 2.18. X10 is used
to trigger simple control events. However, it is not suitable for critical applications
because no feedback channel is provided. The messages are modulated on a 120 kHz
signal on the power line. The data rates are slow, about 20 bit/s.

X10 messages consist of a four bit house code followed by one or more four bit unit
code, finally followed by a four bit command. Combining the house code and the unit
code, 256 devices can be addressed and controlled in a X10 network. The X10 protocols
defines the following 16 commands are the following:

29

2. ADAPTING LIGHTING

Clocked
Controller

Light

Light

Light

Wireless
Gateway

Wall
controller

Electrical wiring

Remote Control

Lamp
Module

Lamp
Module

Lamp
Module

Wall
controller

Figure 2.17: An example of an X10 network comprising 3 lamp, 2 wall controller, a clocked
controller a wireless gateway and a remote controller.

Code Command Description
0000 All Units Off Switch off all devices
0001 All Lights On Switches on all lighting
0010 On Switches on a device
0011 Off Switches off a device
0100 Dim Reduces the light intensity
0101 Bright Increases the light intensity
0110 All Light Off Switches off all lighting
0111 Extended Code Commands extension
1000 Hail Request Transmitted to see if there are any X10 transmitters
1001 Hail Acknowledge Response to the Hail command
1010 Pre-Set Dim Select the first predefined level of light intensity
1010 Pre-Set Dim Select the second predefined level of light intensity
1100 Extend Data Commands extension
1101 Status is On Response indicating that the device is switched on
1110 Status is Off Response indicating that the device is switched off
1111 Status Request Request requiring the status of a device

2.2.3.5 KNX

KNX is a standardised network communications protocol for intelligent buildings. It
is the successor of three previous systems for home and building automation: the
European Home Systems Protocol (EHS), BatiBUS, and the European Installation Bus

30

2.2 Design and Implementation

(EIB). The standard is based on the communication stack of EIB.
A KNX installation consists of a set of devices connected into a network. The stan-

dard is designed to be independent of any particular communication media. The KNX
system offers the choice for the manufacturers choose between several physical layers,
or to combine them. The KNX messages can be delivered on powerline networking,
twisted pair wiring, radio, infrared. KNX has also an unified service and integration
solutions for IP-enabled media like Ethernet, Bluetooth, WiFi. On the different me-
dia, the transmission speeds are different. For example, the EIB-compatible mode on
twisted pair wiring reaches a transmission speed of 9.6 kbits/s.

The KNX device on a network can be identified by their individual address, or by
their unique serial number (similar to the MAC address in the Ethernet networks),
depending on the configuration mode. The individual address is a 16-bit, allowing up
to 65536 devices on a single network.

Light

Light

Light

Electrical wiring

Power
Supply

IR
Receiver

Touchscreen
Room

Thermostat

Light
Control
Module

Wall
controller

KNX bus

IP
Router

lan

Weather
sensor

IR Wall
Mounted
Transmitter

Light
Control
Module

Weather
sensor

Light
Control
Module

IR Hand
Held
Transmitter

Figure 2.18: An example of an KNX home network over twisted pair bus, comprising several
devices.

31

2. ADAPTING LIGHTING

32

The sciences do not try to explain, they hardly
even try to interpret, they mainly make models.

John Von Neumann 3
Cellular Automata And Other

Cellular System

3.1 Cellular Automata

CELLULAR Automata (CA), introduced by John von Neumann as an environment
for studying self-replicating systems (von Neumann, 1966), have been primary

investigated as theoretical concept and as a method for simulation and modeling (Weimar,
1997b). CA are a class of spatially and temporally discrete mathematical systems char-
acterized by local interactions (Wolfram, 1986b). Even if the interaction is based on
simple local rules, the resulting structures from the CA evolution may be extremely
complex (Wolfram, 1994, 1984a).

Informally, a cellular automaton is a regular array of identically programmed units
called cells. Each cell is characterized by an internal state selected from a finite set of
states. At discrete time step, each cell changes its state according to a finite set of
prescribed rules for local transitions and the neighbors states.

3.1.1 Formal Definition

We call cellular automaton the 4-tuple (L, S,N, f) where

� L is a regular lattice,

� S is a finite set of states,

� N is a finite set of neighbors,

� f : Sn → S is a transaction function.

3.1.1.1 Regular Lattice

A d-dimensional lattice denoted by L, consists of a periodic paving of a d-dimensional
space domain. Every element of L is called cell. A cell is denoted by c, will be indexed
by a tuple (il, i2, ..., iu) of integers. The definition of a cellular automaton requires

33

3. CELLULAR AUTOMATA AND OTHER CELLULAR SYSTEM

Figure 3.1: Two successive microscopic configurations in a cellular automaton fluid model.
Each arrow represents a discrete “particle” on a link of the hexagonal grid. (Source: Frisch
et al., 1986, fig. 1, p. 1)

the lattice to be regular, i.e., invariant with respect to translation in d independent
directions.

We can consider various possibilities for one, two, and three dimensions. In the
one-dimensional case (1D), we have a linear array of cells, that may be wrapped into
a torus for periodic boundary conditions.

In two-dimensional (2D), there are three regular lattices depending on the cell
shape, namely triangular, square, and hexagonal lattices (Weimar, 1997b). Triangu-
lar lattices can be useful in some cases because the small number of cells neighbors.
Square lattices are simple to represent and visualize, but in some cases they have in-
sufficient isotropy. Hexagonal lattices have a lower anisotropy compared to the trian-
gular and square. Often this feature makes simulation appear more natural, and in
some cases it is necessary to model the phenomena correctly (Wolfram, 1986a; Frisch
et al., 1986). Figure 3.1 shows an example of an hexagonal cellular automaton fluid
model.

In three dimensional (3D), there are many possible regular lattices, but the most
common is the cubic lattice, since it is easiest to represent. According to Frisch et al.
(1986), there are no regular three-dimensional lattices that have sufficient symmetry
to correctly simulate hydrodynamics in the particle representation.

3.1.1.2 State set

The state set, denoted by S, is a nonempty, finite and ordered set of state values. It
may consist, for simplicity, of integer numbers. Cell states are given at discrete times
t = 0, 1, 2..... The state of cell c at time t is denoted by st(c) and the state of its neigh-
borhood by st(N(c)). Then we have for every c ∈ L, st(c) ∈ S, and st(N(c)) ∈ Sn.
st(N(c)) represents the neighborhood configuration at time t and st(L) represents the
configuration of the cellular automaton at time t.

34

3.1 Cellular Automata

Figure 3.2: Example of different neighborhoods in two-dimensional lattices: von Neumann,
Moore, von Neumann with radius 2, Moore with radius 2.

3.1.1.3 Neighborhood

By definition, a cellular automata rule is local, so the updating of a given cell requires
one to know only the state of the cells in its neighborhood. We introduce a cell neigh-
borhood as a set of cells which affect the evolution of a central cell. A neighborhood is
then defined by the mapping

N : L→ Ln (3.1)

which makes a relation between the central cell c and n neighboring cells c1, c2, ..., cn.
We denoted by N(c) the set of neighbors of cell c. The integer n (or the number of
neighbors) will characterize the size of the neighborhood.

In two-dimensional (2D) lattices, the neighborhoods are often considered: the
von Neumann and the Moore neighborhood. Denoting the cell c at position (i, j) as
ci,j , the von Neumann neighborhood is defined as

Nci,j = {ck,l ∈ L : |k − i|+ |l − j| ≤ 1} (3.2)

and the Moore neighborhood is defined as

Nci,j = {ck,l ∈ L : |k − i| ≤ 1, |l − j| ≤ 1} (3.3)

The generalization of von Neumann neighborhood of radius r is defined as

Nci,j = {ck,l ∈ L : |k − i|+ |l − j| ≤ r} (3.4)

and the Moore neighborhood of radius r is defined as

Nci,j = {ck,l ∈ L : |k − i| ≤ r, |l − j| ≤ r} (3.5)

The mentioned neighborhoods are shown in Figure 3.2. The neighborhoods may be
punctured, i.e., c /∈ N(c), or may include the central cell, i.e., c ∈ N(c).

Another popular two-dimensional neighborhood is the Margolus (Margolus, 1984),
which consists of partitioning the space into adjacent blocks of 2× 2 cells in which the
automata’s rule is applied completely locally. The two partitioning, called odd and
even, are possible (e.g < c0,0, c0,1, c1,0, c1,1 > or < c1,1, c1,2, c2,1, c2,2 >). The neighbor-
hood alternates between these two situations at even and odd time steps.

35

3. CELLULAR AUTOMATA AND OTHER CELLULAR SYSTEM

Figure 3.3: On the left, 2D Margolus neighborhood: even (solid lines) and odd (dotted lines)
partitions of a two-dimensional array into 2x2 blocks. One block in each partition is shaded.
On the right 1D version of the Margolus neighborhood. The partitions alternate between even
and odd steps. Solid lines delimit a partition. (Source: Cerdá et al., 2005, fig. 2, p. 281)

9 1 2 3 4 5 6 7 8 9 1 0 1 2 3 4 5 6 7 8 9 0

periodic fixed value

1 1 2 3 4 5 6 7 8 9 9 2 1 2 3 4 5 6 7 8 9 8

adiabatic reflective

Figure 3.4: Various types of boundary conditions on a 1D cellular automata. The shaded
blocks represent the virtual cells added at the extremities to complete the neighborhoods.

It is possible to generalize Margolus neighborhood to arbitrary dimensions and
arbitrary block sizes. A 1D Margolus neighborhood is presented in Cerdá et al. (2005),
the Necker neighborhood is an extension of the Margolus neighborhood for the 3D
lattices. Figure 3.3 shown two examples of one and two dimensional Margolus neigh-
borhoods.

3.1.1.4 Boundary Conditions

There are mainly two reasons to define Cellular Automata on finite lattices. The first
is that in practice, it is impossible to simulate a truly infinite lattice on a computer. We
can simulate a CA over a infinite lattice only if the active region always remain finite.
The other reason are the natural boundary of the phenomenon we want to simulate.
For example, in the simulation the coffee percolation process (Bandini et al., 1992),
the boundary conditions are determined by the shape of the percolation device (i.e.
the coffee machine filter). Event if the phenomena has natural boundaries, it not al-
ways necessary to impose boundaries conditions to the automaton: another possibility
would be to design transactions functions depending on the number of neighborhood.

There are four kinds of boundaries we will consider here (shown in Figure 3.4):

� Periodic Boundaries, obtained by periodically extending the lattice, are a very
common solution. That is one supposes that the lattice is embedded in a torus-
like topology. No cell in this topology “see” the boundary in any way and thus it
come closes to simulating an infinite lattice, and are therefore often used (Weimar,
1997b).

36

3.1 Cellular Automata

Figure 3.5: On the left, the evolution of the Elementary Cellular Automaton Rule 30 with
periodic boundaries, on the right, the same automaton with fixed value boundaries.

� Fixed Value Boundaries are defined so that the neighborhood is completed with
cell having a pre-defined fixed value.

� Adiabatic Boundaries are similar to a fixed value Boundaries, but the value dy-
namically change according to the value of the boundary cells.

� Reflective Boundaries are obtained by reflecting lattices at boundaries.

As shown in Figure 3.5, the choice of the boundary condition can heavily influ-
enced the dynamic evolution of an automaton. The figure shown two evolutions of
the Rule 30 Elementary Cellular Automaton with different boundaries conditions. On
the left is presented the evolution of the automaton with periodic boundaries, display-
ing aperiodic, chaotic behavior. On the right is shown the same automaton with zero
as fixed boundary value. The evolution of the automaton leads to an homogeneous
configuration.

3.1.1.5 Transition Function

The transition function governs the evolution of the system itself. It may be given by
an analytical function, a matrix, or a set of transition rules. The transition function f
may be considered as a mapping Sn → S given by

f : Sn → S (3.6a)

s
(t)
N(c) → s(t+1)

c (3.6b)

37

3. CELLULAR AUTOMATA AND OTHER CELLULAR SYSTEM

where st
N(c) are the states of cells in the neighborhood N(c) at time t and s

(t+l)
c is the

state of the cell c at time t+ 1. The relation

s(t+l)c = f(s
(t)
N(c)) (3.7)

is the state equation of the cellular automaton.
The evolution of a cellular automaton can be described by a table specifying the

state a given cell will have in the next generation based on the value of the cell itself
and the value of the neighbors cells. The table size, for an automaton with s states and
n neighbors, is sn.

3.1.2 Applications

Several researchers from diverse fields have identified cellular automata dynamics
with problems in their own fields. The broad area of application of different tech-
niques, technologies and approaches are presented one by one in the following para-
graphs. This section does not represent an exhaustive description of all the aspects of
this area but will provide the reader with a basic knowledge.

3.1.2.1 Games

The Game of Life, proposed in 1970 by the mathematician John Conway, is probably
the most popular cellular automaton game. He imagined a two dimensional square
lattice (with punctured Moore neighborhood) in which each cell can be in either death
(state 0) or alive (state 1). The update rule is as follows:

� A dead cell with exactly three living neighbors becomes alife,

� A living cell with two or three living neighbors stays alive,

� In any other case, a cell dies or remains dead (overcrowding or loneliness).

From a formal point of view, the Game of Live is a Totalistic Cellular Automata,
since the value of a cell at time t+ 1 depends only on the sum of the values of the cells
in its neighborhood at time t. A cellular automaton is called totalistic if the value of a
cell depends only on the sum of the values of its neighbors at the previous time step,
and not on their individual values (Wolfram, 1983b)

We call n(t)c the sum of the values of the neighbors of the cell c at time t.

n(t)c =
∑
i∈N(c)

s
(t)
i (3.8)

We can write the Game of Life rule as

38

3.1 Cellular Automata

Figure 3.6: An example of a simple glider, that reappears after 4 generations in the same
orientation but in a different position.

s(t+1)
c =


1 if n

(t)
c = 3, s

(t)
c = 0

1 if 2 ≤ n(t)c ≤ 3, s
(t)
c = 1

0 otherwise
(3.9)

According to (Gardner, 1970), Conway chose the rules carefully, after a long period
of experimentation, to meet three desiderata:

� There should be no initial pattern for which there is a simple proof that the pop-
ulation can grow without limit.

� There should be initial patterns that apparently do grow without limit.

� There should be simple initial patterns that grow and change for a considerable
period of time before coming to end in three possible ways: fading away com-
pletely, settling into a stable configuration, or entering an oscillating phase.

In spite of the simplicity of these rules, surprisingly complex patterns can emerge.
For example a gun, a configuration that repeatedly shoots out moving objects such
as the glider (a configuration that moves) or a puffer train (a configuration that moves
and leaves behind a trail of smoke). An example of a simple glider is shown in figure
3.6 Many more patterns have in investigated in Berlekamp et al. (1982) and Gardner
(1983).

Besides the Game of Life, there are other games which have been modeled through
cellular automata. Notable among these are the games which provide insights into the
synchronization problems. The most popular, known as the Firing Squad Synchroniza-
tion Problem, was introduced by Myhill in 1957.

The problem is design a transition function such that after some steps all cells
go into a special “firing” state, that never occurred before. A valid solution must
not depend on the length of the line: the same transaction function must be used for
every possible finite line. That problem has been long studied and a very rich set of
solutions has grown up (Moore, 1964; Waksman, 1966; Balzer, 1967; Kobayashi, 1977;
Mazoyer, 1987; Yunes, 1994; Imai and Morita, 1996; Settle and Simon, 2002; Umeo and
Yanagihara, 2009; Umeo et al., 2009).

39

3. CELLULAR AUTOMATA AND OTHER CELLULAR SYSTEM

3.1.2.2 Physical and Biological Systems

In physics, the time evolution of quantities is often governed by nonlinear partial dif-
ferential equations, and the solutions of these dynamical system can be very complex.
Cellular Automata are an alternative approach to differential equations in modeling
laws of physics (Toffoli, 1984; Omohundro, 1984).

Good theoretical overviews and insights highlighting the possibilities of Cellular
Automata replacing partial differential equations can be found in Ruffo and Lio (2001);
Chopard and Droz (1998); Deutsch and Dormann (2008). This has resulted in investi-
gation of CA models for pattern formation in reaction-diffusion systems (Madore and
Freedman, 1983; Oono and Kohmoto, 1985; Winfree et al., 1985). There are two main
approach to simulate nonlinear reaction-diffusion system with cellular automata: Re-
active Lattice Gas Automata realize diffusion through a particles random walk over a
lattice (Dab et al., 1990; Boon et al., 1995) and a second class, based on local average,
that is a more macroscopic approach and is more efficient (Weimar, 1997a).

Wave propagation models have been studied by researchers based on Cellular Au-
tomata (Frisch et al., 1986; Chen et al., 1988; Cole et al., 1993). Chopard et al. (1997)
had modeled wave propagation by Lattice Boltzmann approach applicable for prac-
tical situations such as the radio wave transmission in complex urban environments.
In Komatsuzaki et al. (1999) is presented an acoustic wave propagation model for
simulating sound source movement, sound diffraction by the presence of barriers and
reflection due to inhomogeneity of acoustic media. Komatsuzaki and Iwata simu-
lated the acoustic wave propagation for understanding fundamental sound absorp-
tion mechanism of porous materials and evaluating sound absorption performance,
where the details of porous material structure is considered in the model (Komat-
suzaki and Iwata, 2006).

Lattice Gas Automata are an important class of cellular automata to simulate fluid
flows, that obey to the Navier-Strokes equations of hydrodynamics. LGA is based on
a microscopic representation of particles that interact together, according to the laws
governing the conservation of mass, momentum and energy. Many variant of the LGA
has been developed, starting from a first square-lattice model (Hardy et al., 1976) to
hexagonal-lattice models that better exhibit a fluid-like behavior (Frisch et al., 1986).

CA have also been employed ecological research, in order to study the population
dynamics. Mingfeng He and Qui-Hui Pan and Shuang Wang proposed a cellular au-
tomata model containing movable wolves, sheep and reproducible grass. The authors
introduced the energy rule and the predator-prey mechanism for wolf and sheep. With
considering age-structured, genetic strings, minimum reproduction age, cycle of the
reproduction, number of offspring, there are three possible states of a predatorprey
system: the coexisting one with predators and prey, the absorbing one with prey only,
and the empty one where no animal survived (He et al., 2005).

Mynett and Chen (2004) simulated the competitive growth and succession of two
plant in an aquatic ecosystem. In order to model aquatic ecosystems, the authors

40

3.1 Cellular Automata

Figure 3.7: An example of three different stages of the simulation of the evolution of a vegetable
population composed by black locusts, oaks, and pine trees. (Source: Bandini and Pavesi, 2002,
fig. 2, p. 208)

extended the purely geometrically-determined rules to include external factors.

Bandini and Pavesi presented a model based on a two-dimensional Cellular Au-
tomata, that allows to model and simulate the evolution of heterogeneous vegetable
populations composed by different perennial species (Bandini and Pavesi, 2002). In
this model, the evolution of a vegetable population is influenced by the available re-
sources (i.e. sunlight, water, substances present in the soil), and the different individ-
uals compete for them. An example of three different stages of the simulation of the
evolution of a vegetable population composed by black locusts, oaks, and pine trees,
is shown in Figure 3.7.

Boer and Hogeweg (1992) developed a model of the immune system using an
asynchronous cellular automaton.

Resnick (1997) has developed a chemotaxis CA model used to simulate random
walk in response to a chemical gradient. The effect of random walk by single and a
number of individuals in a system has been modeled and extensively studied in Shlesinger
(1992).

41

3. CELLULAR AUTOMATA AND OTHER CELLULAR SYSTEM

3.1.2.3 Social Science

Several social scientists have been try to apply the methods of dynamical system anal-
ysis to social systems. In carrying out this project, however, one immediately runs
into the fact that social systems comprise the interactions of conscious human beings,
unlike physical systems in which the behavior of the elements arises only from their
physical properties (Albin and Foley, 1999).

One early prototype of Cellular Automata model for the social science (without
explicitly referring to Cellular Automata) was proposed in Sakoda (1971). The cen-
tral goal of his model, already present in his unpublished dissertation of 1949, is to
understand group formation. Another early example is the Schelling spatial proxim-
ity model (Schelling, 1971, 1969), that analyzed racial segregation processes among
individuals belonging to two different groups. As shown in Figure 3.8, this model il-
lustrates how distinctive patterns of spatial segregation can emerge even if individuals
are only weakly segregationist.

Figure 3.8: Screenshot of a Luis R. Izquierdo implementation of the Schelling spatial proximity
model of segregation.

The first work that explicitly classified checkerboard models under cellular au-
tomata framework was proposed by Albin in his book “The Analysis of Complex So-
cioeconomic Systems” (Albin, 1975). In his work, the author emphasize the potential
of Cellular Automata for understanding social dynamics.

Keenan and O’Brien (1993) proposed a one-dimensional Cellular Automata eco-
nomic model to analyze pricing in a spatial setting. In his book “The Evolution of
Cooperation” (Axelrod, 1984), Axelrod analyzed the cooperation dynamics within a
Cellular Automata framework. Other studies of the dynamics of cooperation using
Cellular Automata are presented in Nowak and May (1992, 1993); Kirchkamp (1995);

42

3.1 Cellular Automata

Messick and Liebrand (1995); Liebrand and Messick (1996).
A good analysis of Cellular Automata modeling for social science is presented

in Hegselmann and Flache (1998).

3.1.2.4 Traffic flow

The main challenge in traffic flow modeling is the construction of macroscopic and
microscopic models that lend themselves to a faithful representation of road traffic. In
recent years, there is a significant use of cellular automata for modeling and simulating
traffic flow (Nagel and Schreckenberg, 1992; Chopard et al., 1996; Nagel, 1996, 2002;
Knospe et al., 2004; Campari et al., 2004; Maerivoet and De Moor, 2005). The first
proposed CA traffic model, describing a single-lane traffic flow on a ring, is Nagel
and Schreckenberg (1992).

The model is based on a one dimensional stochastic cellular automaton where the
lattice represent a circular lane and each cells is either occupied by exactly one car
(with speed ∈ N0, v ≤ vmax) or empty. At each step, the following four consecutive
steps are performed in parallel for all the vehicles:

� Acceleration: if the velocity v is lower than vmax and if the distance d to the next
vehicle is larger than v + 1, the speed is increased by one,

� Slowing down: if the distance to the next vehicle is less than the current speed
(d < v), the speed is reduced to d,

� Randomization: with probability p, the velocity of a moving (v > 0) vehicle is
reduced by one,

� Car motion: each vehicle proceeds by the value of its velocity (v).

According to the authors, the probabilistic step 3 (Randomization) is essential in
simulation realistic traffic flow, since otherwise the dynamics is completely determin-
istic. It takes into account velocity fluctuations due to human behavior or external
conditions. Without this step, every initial configurations of vehicles reaches a sta-
tionary pattern.

Figure 3.9 shown simulated traffic. Each line shows the traffic lane after one fur-
ther complete velocity-update and just before car motion. Empty sites are represented
by a dot, sites that are occupied by a car are represented by the value v (the vehicle
velocity). The vehicles move from left to right. Note the backward motion of traffic
jam (recognizable by the presence of vehicles with speed equals to zero).

3.1.2.5 Pedestrian and Crowd Dynamics

Different modeling techniques have been adopted to represent pedestrian and crowd
dynamics, for example, forcebased models, Cellular Automata models and Multi Agent
System models.

43

3. CELLULAR AUTOMATA AND OTHER CELLULAR SYSTEM

Figure 3.9: Nagel-Schreckenberg simulated traffic. (Source: Nagel and Schreckenberg, 1992,
fig. 2, p. 2224)

Into the context of pedestrian and crowd dynamics, approaches based on Cellu-
lar Automata are demonstrated to be particularly adequate (Blue and Adler, 2001).
The success of CA-based approaches derives mainly from the fact that are simpler
to understand and to use by experts of several application contexts. Peculiarities of
CA-based models is the explicit representation of the space as a regular grid (Schad-
schneider, 2002; Burstedde et al., 2002; Schreckenberg and Sharma, 2002), where the
size of each cell is the minimal space occupied by a person. In this models, the state
of cell includes the representation of the presence of individuals, of environmental ob-
stacles and the direction of pedestrian’s goals, through static and dynamic potential
fields. The cell local interaction involved in transition function, therefore, represents
also pedestrian movement by cell state change (e.g. an occupied cell becomes empty
and, synchronously, an adjacent empty cell becomes occupied).

The bi-directional model (Blue and Adler, 2000, 1998, 1999a,b), introduced by Blue
and Adler, focuses on the phenomenon of the crosswalk of two groups of pedestrians
from a sidewalk to another. Each time step pedestrians decide to remain into its own
queue or to shift in a neighbor one (the pedestrian chooses the most free queue). After

44

3.1 Cellular Automata

the choice of the queue, pedestrians choose randomly its own speed. Conflict manage-
ment can force a pedestrian to reduce the chosen speed or to remain at the same place,
if there is no space to move. This model is very simple and very fast in simulation
with a large number of pedestrians. The model allows to observe auto-organization
phenomena as, for example, line formations, as shown in Figure 3.10.

Figure 3.10: Example of multiple lines formation in the bi-directional model. Red cells
represent eastbound pedestrian, blue cells represent westbound pedestrian, and white cells are
void.

This floor field model was proposed in Burstedde et al. (2001). The aim of the model
is to represent in a CA-based approach the attraction of pedestrians towards the target,
and in the same time the attractions that pedestrians seem to have each other in some
particular situations (i.e. panic scenarios).

The lattice is constituted by multiple layers. Each level contain different informa-
tion about the same space. One level contains information about the current position
and direction of each pedestrian. A second level give information about a sort of field
of attraction forces discretized on the space and representing the force of attraction in
each position of a given pedestrian towards the target. In the third level we can find
the virtual wake traced by the pedestrian in its movement. Each pedestrian chooses
the the next cell in which to move evaluating the intensity of the field attraction gra-
dient presents in the second level.

3.1.2.6 Other Applications

In this section, we briefly presents some other CA applications, not limited to the
previously presented categories.

Cellular automata can be applied in digital image processing. In Popovici and
Popovici (2002) the authors discussed the application of two-dimensional cellular au-
tomata to the problems of noise removal and border detection in digital images. An
attempt to use cellular automata in pattern recognition is proposed in Maji et al.
(2002).The pattern recognition approach is designed around a general class of CA
known as Generalized Multiple Attractor Cellular Automata (GMACA). GMACA em-
ploys non-linear CA rules with attractor cycle length greater than or equal to 1. A
GMCA can efficiently model an associative memory (Ganguly et al., 2001, 2002). The
Cellular Automata Machine is synthesized around a GMACA. The synthesis of GMACA

45

3. CELLULAR AUTOMATA AND OTHER CELLULAR SYSTEM

can be viewed as the training phase of Cellular Automata Machine for pattern recog-
nition. The result of the synthesis is the rule vector of the desired GMCA.

Toguchi, Akamine, and Endo presented a research on the generation of sound ef-
fects using a CA (Toguchi et al., 2008). According to the authors, the most commonly-
used production methods for sound effects are: to record real sound, edit and then use
it, to generate sound effects using a synthesizer,and to process recorded sound simi-
lar to the desired sound, or to use prerecorded sample collections for sound effects.
The purpose of their research is development of a CA-based tool generating sound
effects through physical simulation. There are a number of different types of sound
effect that can be simulated with the proposed approach. For example, impact sound,
aerodynamic sound, explosion sound, and friction sound.

In Xu et al. (2004), the authors proposed a cellular automata modeling an Elevator
Group Control Systems (EGCS). The EGCS model consists of three modules: group
control module, elevator movement module and assignment sequence module. Ele-
vator movement module simulates the moving behaviors of elevators by using cellu-
lar automata. Assignment sequence module is established to logically store call or-
ders to every elevator. According to the authors, computer simulations show that the
proposed modeling method is creditable and the established EGCS model gives out
satisfied performance.

CA have also been employed to control Modular Self-Reconfigurable Robot (MSR).
MSR consist of many of identical and independent module. Each module is indepen-
dent and include sensors, actuators, processor, communication and power. A module
can connect and detach autonomously from the adjacent modules. An example of the
movements of this kind of robots is shown in Figure 3.11. In Wu et al. (2005) the au-
thors proposed a CA-based emergent control model. The approach comprise a two
layers neural network with 7 inputs and single output, simulating the nonlinear rules
function. The feature vector of module is the input of CA rules and the action of mod-
ule is output of CA. The simulation results show that emergent control based CA is
great significance to enhance robustness and scale extensibility of MSR.

3.1.3 Elementary Cellular Automata

The simplest, non-trivial, class of 1D cellular automata are the Elementary Cellular
Automata (ECA) that have two possible values for each cell (0 or 1), and rules that
depend only on nearest neighbor values (Wolfram, 1982).

The evolution of an elementary cellular automaton can completely be described
by a table specifying the state a given cell will have in the next generation based on
the value of the cell to its left, the value the cell itself, and the value of the cell to its
right (Wolfram, 1982). Since each transaction table can be represented with 8 binary
states, there are a total of 256 elementary cellular automata and each transaction func-
tion can be indexed with an 8-bit binary number. Figure 3.12 shown an example of
the rule 30. Each of the eight possible sets of values for a cell and its nearest neighbors

46

3.1 Cellular Automata

Figure 3.11: Example of the movement of a Modular Self-Reconfigurable Robot composed by
4 modules (represented by the white cubes) in front of an obstacle (represented by the grey
cubes). (Source: Wu et al., 2005, fig. 7, p. 186)

appear on the upper line, while the lower line gives the value to be taken by the cell
on the next time step.

0 0 0 1 1 1 1 0
0*2 0*2 0*2 1*2 1*2 1*2 1*2 0*27 6 5 4 3 2 1 0

+ + + + + + + = 30

Figure 3.12: Example of the transition table for the elementary cellular automaton rule 30.
Each of the eight possible sets of values for a cell and its nearest neighbors appear on the upper
line, while the lower line gives the value to be taken by the cell on the next time step.

The evolution of an elementary cellular automata and, more in general, one-dimensional
cellular automat, can be displayed with ease, as shown in Figure 3.13. The evolution
of the automaton is illustrated by starting with the initial state (generation zero) in the
first row, the first generation on the second row, and so on.

An important aspect in theory of Elementary Cellular Automata is classification,
dividing cellular automata into groups with related properties. More than one rule
space classification scheme has been used in the literature. The first qualitative be-
havior classification, dividing cellular automata according to their observed periodic
or chaotic behavior, was proposed by Wolfram (Wolfram, 1984b). The classification
proposed by Wolfram in divides the automata into 4 classes:

Class 1 cellular automata evolve after a finite number of steps to a unique homoge-
neous state, in which all sites have the same value, from almost all initial config-
urations. Such cellular automata may be considered to evolve to simple “limit
points” in phase space; their evolution completely destroys any information on
the initial state.

47

3. CELLULAR AUTOMATA AND OTHER CELLULAR SYSTEM

Figure 3.13: Example of the evolution of a one-dimensional cellular automaton. The evolution
is illustrated by starting with the initial state in the first row, the next generation on the second
row, and so on. The figure above illustrated the first 13 generations of the rule 30 elementary
cellular automaton, starting with a single black cell.

Class 2 evolution leads to a set of separated simple or periodic structures. Cellular
automata generate separated simple structures from particular (typically short)
initial site value sequences.

Class 3 evolution leads to a “chaotic” patterns, from almost all possible initial con-
figurations. After sufficiently many time steps, the statistical properties of these
patterns are typically the same for almost all initial states. In particular, the den-
sity of nonzero sites typically tends to a fixed nonzero value.

Class 4 evolution leads to complex localized structures sometimes long-lived.

This classification was very important since it motivated numerous researches but
was at the same time criticized by many authors on grounds that no formal definitions
of the classes were given (Fatès, 2003).

Later on, Li and Packard proposed a series of refinements in the original Wolfram
classification (Li, 1992; Li and Packard, 1990; Li et al., 1990b). The following is one
version (Li, 1992; Oliveira et al., 2001) of their classification scheme, which divides the
rule space into the following six classes:

Null rules : the limiting configuration (i.e., the automaton state of the entire lattice) is
formed only by zeros or ones.

Fixed-Point rules : the limiting configuration is invariant, with possibly a spatial
shift, by applying the cellular automaton rule, excluding all zeros or all ones
configurations.

Two-Cycle rules : the limiting configuration is invariant, with possibly a spatial shift,
by applying the rule twice.

48

3.1 Cellular Automata

Periodic rules : the limiting configuration is invariant by applying the automaton
rule L times, with the cycle length L either independent or weakly dependent
on the system size.

Edge of Chaos rules : although their limiting dynamics may be periodic, the conver-
gence time can be extremely long and they typically increase more than linearly
with the system size. One hallmark of this class of rules is its marginal stability
with respect to perturbations, and another is its poor convergence of any statis-
tical property such as the transient time.

Chaotic rules : they produce non-periodic dynamics. These rules are characterized
by the exponential divergence of its cycle length with the system size, and for
the instability with respect to perturbations. The transient time can either be
long or short.

In Fatès (2003) the author proposed a classification based on the observation of
the statistical evolution of the density, i.e. the number of cells in state one divided by
the total number of cells. If the density evolves with large statistical distributions, the
automaton is classified as chaotic-looking. If the evolution of the density eventually
enters into a cycle of small length, the automaton is classified as periodic-looking.

3.1.4 Stochastic Cellular Automata

Stochastic Cellular Automata are an extension of the cellular automat in which the
transition function has a probabilistic component. There is a considerable amount
of freedom in the way to randomize the transaction rule. For instance, Burks (1970)
chooses at random the rules that are applied in the updates. Buvel and Ingerson (1984)
allow, for each cell, a certain probability that the respective cell is not updated. Lee
et al. (1990) introduce the adaptive Stochastic Cellular Automata in which the proba-
bilistic rules are nonuniform. For a broad overview of stochastic Cellular Automata
we refer to (Wolfram, 1986c). One popular Stochastic Cellular Automata model is in-
troduces in Nagel and Schreckenberg (1992), describing single-lane traffic flow on a
ring.

3.1.5 Asynchronous Cellular Automata

Cellular Automata have traditionally treated time as discrete and state updates as oc-
curring synchronously and in parallel. The state of every cell of the automaton is
updated together, before any of the new states influence other cells. The synchronous
approach assumes the presence of a global clock to ensure all cells are updated to-
gether.

Several authors (e.g. Paolo, 2000; Thomas and Organization., 1979) have argued
that asynchronous models are viable alternatives to synchronous models and suggest

49

3. CELLULAR AUTOMATA AND OTHER CELLULAR SYSTEM

that asynchronous models should be preferred where there is no evidence of a global
clock. Nehaniv (2003) has demonstrated an asynchronous CA model that can behave
as a synchronous CA, due to the addition of extra constraints on the order of updating.

Cornforth, Green, and Newth argue that asynchronous updating is widespread
and ubiquitous in both natural and artificial networks (Cornforth et al., 2005). They
identified two classes of asynchronous behavior: Random Asynchronous (RAS), and
Ordered Asynchronous (OAS) updating. Random Asynchronous includes any pro-
cess in which at any given time individuals to be updated are selected at random ac-
cording to some probability distribution; Ordered Asynchronous includes any process
in which the updating of individual states follows a systematic pattern. The authors
presents a total of six specific update pattern (shown in Figure 3.14:

� Synchronous: all cells are updated in parallel at each time step,

� RAS - Random Independent: at each time step, a cell to update is chosen at
random,

� RAS - Random Order: at each time step, all nodes are updated, but in random
order (each node is updated exactly once per time step),

� OAS - Cyclic: at each time step a cell is chosen according to a fixed update order,
which was decided at random during initialization phase,

� OAS - Clocked: a timer is associated to each cell, so that updating is autonomous
and proceeds at different rates for different cells,

� OAS - Self-sync: similar to the clocked, but incorporates local synchrony.

In order to investigate the differences in behavior that result from the updating
schemes described above, in Figure 3.15 are shown the dynamic evolution of some
one-dimensional cellular automata with different update schemes. The automata have
250 cells and the states of all cells were randomly initialized before each run. All mod-
els were evolved for 5000 time steps, where, for the synchronous and cyclic schemes,
one time step is completed when each cell has been updated once and for the other
schemes, one time step is completed when there have been 250 cell updates.

3.1.6 Dissipative Cellular Automata

The Dissipative Cellular Automata (DCA) are a class of cellular automata that have
been defined as dissipative, i.e., cellular automata that are open and makes it possible
for the environment to influence their evolution (Zambonelli et al., 2002).

The two main characteristics of the DCA are the asynchronous time-driven dy-
namics and openness. DCA are Asynchronous Cellular Automata: according to the
asynchronous dynamics (Buvel and Ingerson, 1984; Lumer and Nicolis, 1994), at each

50

3.1 Cellular Automata

Figure 3.14: Diagrams of the six asynchronous updating schemes. The horizontal axis shows
time, and marks indicate when the cell is updated. (Source: Cornforth et al., 2005, fig. 1, p. 72)

time, one cell has a probability of rate λa to autonomously wake up and update its
state.

The above characteristics of modern software systems are reflected in DCA. can
be considered as a minimalist open agent system (or, more generally, as a minimalist
open software system). As that, the dynamic behavior of DCA is likely to provide
useful insight into the behavior of real-world open agent systems and, more generally,
of open distributed software systems.

From a more formal point of view, the elements characterizing a dissipative cellu-
lar automaton are

� a cellular automata A = (L, S,N, f),

� an asynchronous dynamics (with uniform distribution of rate λa);

� a perturbation action ϕ(α,D, λe).

The updating of a cell is an atomic operation and is mutually exclusive among
neighbors, without preventing non-neighbor cells to update their state concurrently.
The dynamic behavior of the DCA can be influenced by the external environment:
some cells can be forced from the external to change their state. The perturbation ac-
tion ϕ is a transition function that can change the state of any cell to a given state α
according to a probabilistic distribution D. The state change imposed by the pertur-
bation action is independent from the current state of the of the cell and its neighbors.

3.1.7 Cellular Automata With Memory

Standard CA are ahistoric (memoryless): the cells have no memory of previous states,
except the last one in the case the central cell is included in the neighborhood. His-
toric memory can be embedded in CA increasing the number of states and modifying
the transaction function. Alonso-Sanz proposed to maintain the transaction rule un-
altered, but make them act not only to the current state but weighted mean value of

51

3. CELLULAR AUTOMATA AND OTHER CELLULAR SYSTEM

Figure 3.15: Time space diagrams for elementary cellular automata using different update
schemes. The rules shown represent different classes of behavior. Rules 2 and 38: cyclic attrac-
tor, rule 4: point attractor, rules 18, 22 and 146: chaotic behavior. (Source: Cornforth et al.,
2005, fig. 2, p. 76)

52

3.2 Automata Networks

their previous states (Alonso-Sanz and Martı́n, 2002; Alonso-Sanz and Martin, 2003;
Alonso-Sanz, 2003, 2004, 2006, 2007; Alonso-Sanz and Cardenas, 2008). The values
mean for the cell, mc is calculated as:

m(t)
c =

t∑
i=1

αt−iσ(t)c

t∑
i=1

αt−i

≡ ω
(t)
c

Ω(t)
(3.10)

where α is the memory factor. The particular case of α = 1 is called full memory. For the
binary cellular automata, geometrically discounted memory does not have an effect if
α ≤ 0.5. If α ≥ 0.61805, a cell with state history 001 or 110 will be featured after t = 3

as 0 and 1 respectively instead of 1 and 0. The patterns of the ahistoric and historic
models typically diverge where t > 3.

The memory mechanism proposed by Alonso-Sanz is accumulative in its demand
of knowledge of past history: to calculate the memory charge ω(t)

c it is not necessary
to know the whole {σ(t)c } series, while it suffices to sequentially proceed as: ω(t)

c =

αω
(t−1)
c + σ

(t)
c .

In the two-state scenario, the s values are obtained as:

s(t)c =

{
σ
(t)
c if m

(t)
i = 1

2

round(m
(t)
i) otherwise

(3.11)

Figure 3.16 shown an example of the effect of different memory factors an the same
rule (the parity rule) in a two-dimensional lattice starting from a single “live” cell.
According to the author, CA with memory can be considered as a promising extension
of the basic CA paradigm. In some contexts, a transaction rule with memory could
math the correct behavior of the CA system of a given complex system.

3.2 Automata Networks

Automata Networks are a generalization of the Cellular Automata, introduced by
Ulam, McColloch and von Neumann to study physical and biological phenomena (Mc-
culloch and Pitts, 1943; Ulam, 1962; von Neumann, 1966). Informally, the automata
network are similar to a cellular automata in which the space is a graph instead of a
regular lattice. The research in the field was oriented towards formalizing the com-
plexity of automata measured by their computing capabilities (Golès and Martinez,
1990). In many cases, the dynamic evolution of an automaton network is impre-
dictable and the only way to know its evolution is to simulate the automaton.

53

3. CELLULAR AUTOMATA AND OTHER CELLULAR SYSTEM

Figure 3.16: The effect of different memory factors (α) starting with a single site live cell
when the parity rule is applied in a two-dimensional lattice, Moore Neighborhood with radius
1. (Source: Alonso-Sanz and Martı́n, 2002, fig. 4, p. 225)

54

3.2 Automata Networks

1

2 3 4

Figure 3.17: Example of the XOR network graph.

3.2.1 Formal Definition

We call automata network the triple (G, S, (fi : i ∈ I)) where

� G = (I,V) is a graph on the set of sites I with connection given by the set of arcs
V ⊂ I× I,

� S is the set of states, which in most cases is assumed to be finite,

� fi : Q|vi| → Q is the transaction function associated to the vertex i.

The graph G is assumed to be locally finite, which means that Vi = {j ∈ I : (j, i) ∈
V} is finite. The update rule of an automaton can take different form, for example,
it could be parallel or sequential. These two kind of updating may have completely
different dynamic behaviors. A detailed analysis on the different kinds of iterations
are presented in Robert (1986).

In a parallel iteration, all the sites of the graph G are update at the same time, so
the dynamics of the network A is given by the equation

xi(t+ 1) = fAi(yi : j ∈ Vi) (3.12)

In a sequential iteration the sites of the networks are updated one at a time, in a
predefined order, given by the relation ≤ on I, so the dynamics of the network A is
given by the equation

xi(t+ 1) = fAi(xj(t) : j ∈ Vi) (3.13)

where

yi =

{
xj(t+ 1) if j < i

xj(t) if j ≥ i (3.14)

The different update strategies influenced the dynamic evolution of the networks.
In order to better explain this concept, we introduce an example of automata network,
called XOR Network. Let A = (G, S, fi) be a finite automaton where

� G is the graph shown in Figure 3.17;

55

3. CELLULAR AUTOMATA AND OTHER CELLULAR SYSTEM

� S = {0, 1};

� f1(x2, x3, x4) = (x2 + x3 + x4) mod 2

� f2(x1) = x1;

� f3(x2) = x2;

� f4(x3) = x3.

Having 4 nodes with 2 possible states, there are 24 = 16 possible states for the network.
In the iteration graphs, each state is identified with x ∈ N, where

x =
4∑
i=1

xi2
(i−1) (3.15)

The iteration graph for the synchronous update is show in Figure 3.18, in Figure 3.19
is shown the update order 1 < 2 < 3 < 4 and, in Figure 3.20 the update order 4 < 3 <

2 < 1.

8

0

10

4

15

13

6
3

1

9

14

12

7

11
5

2

Figure 3.18: Iteration graph of the synchronous XOR network.

8 0 10

4

15

13
6

3

1

9

14 12

711
5 2

Figure 3.19: Iteration graph of the XOR network with sequential update order 1 < 2 < 3 < 4.

3.2.2 Multilayered Automata Networks

Multilayered Automata Networks (MAN) have been defined in Bandini and Mauri
(1999) as a generalization of Automata Networks. MAN were introduced for mod-
eling complex biological process, for example simulating the dynamic regulation of

56

3.2 Automata Networks

8

0

10

415

13

6

3

1

9
14

12

7

11

5

2

Figure 3.20: Iteration graph of the XOR network with sequential update order 4 < 3 < 2 < 1.

Ca2+ distribution in the subcompartments of a living cell. The main features of the
Multilayered Automata Network are the explicit introduction of a hierarchical struc-
ture based on nested graphs. Such graphs are composed of vertices and edges where
each vertex can be in turn be a nested graph of lower level. If we have a graph of level
0, then each node will be a finite state automaton, while for a graph of level k > 0,
every node will correspond to an automata network of level k − 1. In the particular
case in which k = 0 the multilayered automata network has only one level, giving an
automata network in the sense of (Golès and Martinez, 1990).

A Multilayered Automata Network of level 0 (A0) is a triple (G, S,F) where

� G0 = (V0, l0) ∈ G is the support graph of A0;

� S0 is the finite set of states;

� F0 = {f0v |v ∈ V0} is a set of functions, where f0v : (S0)lv → S0.

A MAN of level i (Ai) is a fourtuple (H G i, Si,Fi, gi) where

� H G i = (Gi, ϕi) ∈H G i,G
i = (Vi, li) ∈ G is the support graph of Ai;

� Si is a finite set of states the cells of Vi can assume;

� Fi = {f iv|v ∈ Vi} is s a set of transaction functions, where f iv : (Si)l
i
v × Si → Si.

� gi = {giv|v ∈ Vi} is a set of functions such that giv : (S
(i−1)
v)δ(v) → Si where Si−1v is

the set of states of the network having ϕi(v) as its support graph.

Spatial structure Multilayered Automata Network are defined on a hierarchical struc-
ture based on nested graphs. Such graphs are composed of vertices and edges where
each vertex can be in turn be a nested graph of lower level.

A graph G is a pair (V, l) where

� V is a finite or countable set of elements called nodes;

57

3. CELLULAR AUTOMATA AND OTHER CELLULAR SYSTEM

level 0

level 1

level 2

Figure 3.21: Example of a nested graph of level 2.

� l : V → p(V) is the neighborhood function, which determines for each node
v ∈ V the adjacent nodes. For sake of simplicity, the notation lv is use instead of
l(v).

A graph G is locally finite if and only if ∀v ∈ V (|lv| < ∞). The set of graphs will be
denoted by G.

The hierarchical structure is recursively defined as a set of nested graphs, where the
set of nested graph of level 0 is the set of graphs HG0 = G and the set of nested graphs
of level i+ 1 is the set of pairs

H G i+1 = {(G, ϕ)|G = (V, l) ∈ G, ϕ : V →H G i} (3.16)

where G is a graph called supportgraph of the pair (G, ϕ) and ϕ is a map which asso-
ciates to every node of G a nested graph of level i. The set H G of nested graphs is the
union of all the sets H G i. A nested graph of level i will be denoted as H G i and each
node of the graph will be identified by a pair (i, v) where i denotes the level and v is
the identifier of the node in the graph of level i.

The horizontal neighborhood of the node (i, v) is defined by the neighborhood func-
tion li related to the graph of level i.

The nesting neighborhood function δ associates to the node (i, v) the set δ(v) = V i−1
v

of nodes of the graph at level i− 1:

ϕi(v) =

{
H G i−1

v = (V i−1
v , li−1v) if i− 1 = 0

H G i−1
v = ((V i−1

v , li− 1v), ϕ
i−1
v) if otherwise

(3.17)

As an example, let us consider the nested graph of level 2 shown in Figure 3.21.
Both the level 0 and the level 1 are constituted by a family of graphs, each one cor-
responding to a node at the preceding level, and the level 2 is composed by one con-
nected graph consisting of two nodes.

If we take two nodes of two distinct subgraphs of level 1, there is no path from one
to the other given by edges of level 1, but if the two subgraphs correspond to adjacent
nodes of level 2, then a path which connects them exists.

58

3.3 Random Boolean Network

tim
e

c1 c2 c3 c4 c5

c1 c2 c3 c4 c5

c1 c2 c5

wiring scheme

pseudo neighborhood

network at time t

network at time t + 1

c1 c3c1 c3 c4 c5 c1 c5

Figure 3.22: Example of a Random Boolean Network. Each cell updates its value according
to the values in the pseudo neighborhood. Each network element may have a different wiring
scheme and rule.

Dynamics Since the “next state” of each node in the network depends on the “cur-
rent state” of the node and of its (horizontal or vertical) neighbours, the evolution of
the networks depends also from the updating policy we choose.

As for the automata networks, it is possible to give different types of dynamics also
for the multilayered automata networks, depending on the fact that the state transition
occurs in parallel in all the nodes of the network or that only a node is updated at
every time step, in a sequential way. In synchronous iteration all the nodes are updated
in parallel. In the sequential iteration the states of the nodes are updated one at a time,
by levels from k to 0 and, at every level, following a given schedule.

3.3 Random Boolean Network

Random Boolean Network (RBN) are the most general instance of a synchronous dis-
crete dynamical system. RBN may be viewed as a generalization of CA (Wuensche,
1993), allowing arbitrary wiring scheme and subjective rules for each network cell. An
example of a RBN is shown in Figure 3.22.

RBN have been used in diverse areas to model complex systems. RBN were pro-
posed in Kauffman (1969), as models of genetic regulatory networks. The author
argues that proto-organisms probably were randomly aggregated nets of chemical re-
actions. The hypothesis that contemporary organisms are also randomly constructed
molecular automata is examined by modeling the gene as a boolean device and study-
ing the behavior of large, randomly constructed nets of these binary genes. The Kauff-
man results suggest that if in a RBN each gene is directly affected by two or three other
genes, the network behaves with great order and stability.

3.3.1 Formal Definition

Formally a RBN is the n-tuple (L, S,N, f) where

59

3. CELLULAR AUTOMATA AND OTHER CELLULAR SYSTEM

� L is a set of n cells,

� S = {0, 1} is the set of v states (v is equal to 2 for the Boolean Network),

� N is a finite set of neighbors,

� F is a set of n transaction function fi : Sn → S.

The global state of a network of n cells is the pattern resulting from values as-
signed to each element from a finite set of v values. At each time step t, the value of
a cell ci depends on its transaction boolean function fi, applied to its pseudo neigh-
borhood. The neighborhood of each cell in RBN is determined by its wiring scheme.
The number of neighbors k is the same for each node of the network in the case of
homogenous connectivity k or different in the case of the mixed k networks. Since
duplicated connections are allowed, there are nk possible wiring scheme. The net-
working scheme is usually fixed over time. A fully connected RBN is equivalent to a
random mapping (Kauffman, 1969).

The time evolution of the cell ci is given by

c
(t+1)
i = fii(c

t
wi,1

, ctwi,2
, ctwi,3

, . . . , ctwi,k
) (3.18)

where cwi,1 , . . . , cwi,k
are k neighbors of the cell ci.

RBN have a vastly parameter space, and thus behavior space than CA. According
to (Wuensche, 1993), the number of all possible combinations of wiring and rule of a
RBN of size n with an homogenous connectivity k is given by

Sn,k = (nk)n × (22
k
)n (3.19)

In “Classic” Random Boolean Networks (CRBN), the updating scheme is syn-
chronous. All the nodes in the network are updated at time t + 1 depending on their
states at time t.

The dynamics arising from such networks are very interesting, since depending
on the values of n and k, they can be ordered, complex, or chaotic (Kauffman, 1993).
Diverse properties of CRBNs have been studied, among others, Wuensche (1998) and
Aldana et al. (2003).

Since Classic Random Boolean Networks are deterministic, once the state of a net-
work reaches an attractor, it will never have states different from the ones in the at-
tractor.

3.3.2 Classification of Random Boolean Networks

A classification of the RBN is presented in Gershenson et al. (2003). In Figure 3.23 the
classification is graphic representation. In order to have a complete taxonomy of RBN,
the authors defined several types of RBN, setting all of them under the label Discrete

60

3.3 Random Boolean Network

Figure 3.23: Classification of Random Boolean Networks. (Source: Gershenson et al., 2003,
fig. 1, p. 2)

Dynamic Networks (DDN). DDN have all the properties common in all the types of
RBN. In fact, DDN are discrete in terms of time, space, and values.

The most general networks are the Generalized Asynchronous Random Boolean
Networks (GARBN), that are as Asynchronous Random Boolean Networks which can
update any number of nodes at each time step. GARBN can go from updating only
one random node at each time step, to updating all the nodes synchronously.

Asynchronous Random Boolean Networks (ARBN) updating is asynchronous and
random. At each time step, a single node is selected at random in order to be updated
ARBN are non-deterministic, so there are no cycle attractors, only point and, loose
attractors (Harvey and Bossomaier, 1997) which are parts of the state space which also
capture the dynamics, but since the updating order of the nodes is random, the order
of the states will not be repeated deterministically.

A small subset of all possible ARBN have Rhythmic (Rhythmic ARBN) and Non-
Rhythmic (Non-Rhythmic ARBN) attractors. The measure of rhythmic behavior will
be a measure of how patterns occurring at different instants in the history of a system
relate to one another. For the case of ARBN in particular it is possible to devise a
variety of simple measures based on correlations between states occurring at different
points during the evolution (Paolo, 2001).

Deterministic Asynchronous Random Boolean Networks (DARBN) (Gershenson
et al., 2003) as ARBN which do not select at random which node to update. Each node
has associated two parameters: p and q, where (p, q ∈ N, q < p). The parameter p
determines the period of the update (i.e. how many time steps the node will wait in
order to be updated), and the parameter q the translation of the update. A node will
be updated when the modulus of time t over p is equal to q. If two or more nodes will
be updated at a specific time, the first node is updated, and then the second is updated

61

3. CELLULAR AUTOMATA AND OTHER CELLULAR SYSTEM

Figure 3.24: On the left, the transition table for a RBN n = 2, k = 2. On the right graphs
of RBN with different updating schemes. The arrows with numbers indicate which transition
will take place depending on the modulus of time over two. (Source: Gershenson et al., 2003,
fig. 2, p. 3)

taking into account the new state of the network.
Also in Deterministic Generalized Asynchronous Random Boolean Network (DGARBN),

each node is associated with the two parameters p and q. If more then one node are
determined to be updated at the same time step, they will be updated synchronously
(i.e. they will all be updated at time t+ 1 taking into account the state of the nodes at
time t).

Boolean Random Maps are obtained when n = k, and, for all the nodes of the
network, p = 1 and q = 0.

Classic Random Boolean Network are a subset of random maps and Boolean Cel-
lular Automata are specific cases of CRBN, where the connectivity is limited by the
spatial organization of the nodes.

As an example of the different updating schemes, in Figure 3.24 is shown the tran-
sition table of a RBN with n = 2, k = 2, and the network evolution according to the
different schemes.

62

The only reason for time is so that
everything doesn’t happen at once.

Albert Einstein 4
Effects of Asynchrony on Cellular Automata

IN this chapter we present a study of the effect of asynchrony on Cellular Automata.
The aim of this study is to introduce the problematics deriving from the adoption of

an asynchronous CA model. In the first section, we present several cellular automata
update schemes and a tentative classification of such schemes. In order to study the
effects of the different update schemes, we introduced a class of simple CA, called One
Neighbor Binary Cellular Automata (1nCA). We firstly overview the general features
of 1nCA, than we present the effects of 6 different updates schemes on all the class of
1nCA.

4.1 Asynchronous Cellular Automata

Cellular Automata have traditionally treated time as discrete and state updates as
occurring synchronously and in parallel. Moreover, several authors (e.g. Paolo, 2000;
Thomas and Organization., 1979) have argued that asynchronous models are viable
alternatives to synchronous models and suggest that asynchronous models should be
preferred where there is no evidence of a global clock.

There are several cellular automata asynchronous update schemes. Kanada (1994)
introduce an asynchronous model, which is called 1D-ACA. This CA update scheme
is basically a sequential model, in which one cell is update in each time step. The order
of updating sequence is defined by one of the following three methods:

� Random order The elements of the updating sequence are random.

� Fixed Random Order The first N , where N in the number of cells, elements of the
sequence are random numbers, and these values are repeated in the sequence.
Thus, the sequence is periodic

� Interlaced order: The index of the cell to be update at time t is calculated as
C t mod N , where C is a parameter and prime to N .

Cornforth et al. (2005) identify three classes of update scheme: Synchronous Up-
date Random Asynchronous (RAS), and Ordered Asynchronous (OAS). According to

63

4. EFFECTS OF ASYNCHRONY ON CELLULAR AUTOMATA

the Random Asynchronous, at any given time individuals to be updated are selected
at random according to some probability distribution. In the Ordered Asynchronous
update process, the updating of individual states follows a systematic pattern. The
authors consider a total of six update patterns, including two RAS schemes and three
OAS scheme.

� Synchronous Scheme All individuals are updated in parallel at each time step.

� Random Independent (RAS) At each time step, the cell to be updated is chosen at
random.

� Random Order (RAS) All nodes are updated in random order. After the updating
off all the nodes, the order is changed.

� Cyclic (OAS) At each time step a node is chosen according to a fixed update
order, which was decided at random.

� Clocked (OAS) A timer is assigned to each cell, so that updating is autonomous
and proceeds at different rates for different cells.

� Self-Sync This model is similar to the clocked scheme, but incorporates local syn-
chrony. The author chose to implement local synchrony by using a coupled os-
cillator approach. The period of each timer is adjusted after an update so as to
more closely match the period of other cells in its neighbourhood.

Starting from the previously presented works, we create a classification of the up-
date schemes. In order to classify the update schemes, we define the following param-
eters:

� p
(t)
i determines the period of the update of the cell i at the time step t, i.e. how

many time steps the cell i will wait in order to be updated. The value of p can
change during the time, e.g. in the Self-Sync update scheme.

� l
(t)
i determines the length (in terms of time step) of the updating of the cell i at

the time step t, i.e. after how many time steps the neighbor cells taking into
account the new state during their updated.

� di, determines the delay (in terms of time step) before the first update.

� U (t) is the set of cells beginning the updating process at the at the time step t.

� u(t) = |U (t)|, is the number of cells beginning the updating process at the time
step t.

64

4.1 Asynchronous Cellular Automata

We introduce a simple example in order to explain the meaning of such parame-
ters. Let consider the cellular automaton shown in Figure 4.1. It is a one dimension
cellular automaton composed of 4 cells. The neighborhood size is 2 (radius 1), so each
cells has almost 2 neighbors. The state of each cell is an integer number between 0 an
100. The update rule is the following: the new cell state is the sum of the previous cell
state and the neighbors cell modulo 100.

� L = {c0, c1, c2, c3} is a one dimensional array of cells,

� S = 0 . . . 100 is the set states,

� N = {{c0, c1}, {c1, c0}, {c1, c2}, {c1, c2}, {c2, c3}, {c3, c2}, } is the set of neighbors,

� f(s, n1, n2) = (a + n1 + n2) mod 100 is a transition function for the cell with 2
neighbors, for the cell with only one neighbor, the transition function is f(s, n1) =

(a+ n1) mod 100.

t

cell 0

cell 1

cell 2

cell 3

0 5 10 15

 l(t)i

 p(t)
i

5 11 30

8 19 81

5 13 32

19 49 98

2

3

1

4

initial state
of the cell

6

 di

2

3

1

4

cell 0

cell 1

cell 2

cell 3

new state of the cell

initial delay period

updating length

Figure 4.1: An example of cellular automata composed of 4 cell and its evolution according to
the asynchronous clocked update scheme.

In the following section we present several update schemes. We each update
scheme, we give a formal definition. These formal definition are successively em-
ployed for the schemes classification.

4.1.1 Synchronous Scheme

All individuals are updated in parallel at each time step, as shown in Figure 4.2. The
updating of a cell takes 1 time step. More formally:

∀ t ∈ Z t > 0 ∀ i ∈ Z 0 ≤ i < N p
(t)
i = 1 l

(t)
i = 1 di = 0 u(t) = N (4.1)

65

4. EFFECTS OF ASYNCHRONY ON CELLULAR AUTOMATA

t

cell 0

cell 1

cell 2

cell 3

0 1 2 4

52

3

1

4

initial value

6

8

5 13

19

19

11 30

49

51

32

79

30

32

83

9

41

45

15

3

Figure 4.2: The evolution of the cellular automata according to the synchronous update
scheme.

4.1.2 Random Independent

At each time step, one and only cell, chosen at random, is updated. The updating
of a cell takes 1 time step. The evolution of the example automata according to the
Random Independent update scheme is shown in Figure 4.3. More formally:

∀ t ∈ Z, t > 0 ∀ i ∈ Z 0 ≤ i < N l
(t)
i = 1 u(t) = 1 ∃ t, i p

(t)
i > 1 (4.2)

t

cell 0

cell 1

cell 2

cell 3

0 5 10 15

5 2911

5 29

18

2

3

1

4

initial value

6

24

9571

0

53

72

25

95

Figure 4.3: The evolution of the cellular automata according to the Random Independent
update scheme.

4.1.3 Random Order

All nodes are updated in random order. After the updating off all the nodes, the order
is changed. The updating of a cell takes 1 time step. The evolution of the example au-
tomata according to the Random Independent update scheme is shown in Figure 4.4.

66

4.1 Asynchronous Cellular Automata

The maximum length of the update period is less than 2N . More formally:

∀ t ∈ Z t > 0 ∀ i ∈ Z 0 ≤ i < N p
(t)
i < 2N l

(t)
i = 1 di < N u(t) = 1 (4.3)

We can define an update interval [α, ω] as:

∀ z ∈ Z, z > 0 α = 1 + z N ω = (z + 1) N (4.4)

In every update interval, each cell is update exactly one time:

∀ i ∈ Z 0 ≤ i < N ∀ tn ∈ Z, α ≤ tn ≤ ω, ∀ tm ∈ Z, α ≤ tm ≤ ω, (4.5)

ci ∈ U (tn), ci ∈ U (tm) ⇐⇒ tn = tm

t

cell 0

cell 1

cell 2

cell 3

0 5 10 15

5

5

2

3

1

4

initial value

6

12

0

92

17

91

16

23

28

40

45

91

85

Figure 4.4: The evolution of the cellular automata according to the RAS Random Order update
scheme.

4.1.4 Cyclic

As shown in Figure 4.5, at each time step a node is chosen according to a fixed update
order. Formally:

∀ t ∈ Z t > 0 ∀ i ∈ Z 0 ≤ i < N p
(t)
i = N l

(t)
i = 1 di < N u(t) = 1 (4.6)

We can identify two subtypes of this update scheme:

� Random Cyclic The update order is decided at random during initialisation of
the automaton. This update scheme correspond to the Kannada’s Fixed Ran-
dom (Kanada, 1994) and Cornforth’s Cyclic OAS (Cornforth et al., 2005).

� Fixed Cyclic The update order is fixed in the automaton definition. The Sequential
Ordered and the Interlaced Cyclic belong to this update type:

67

4. EFFECTS OF ASYNCHRONY ON CELLULAR AUTOMATA

– Sequential Ordered The cells are updated one-by-one according to their nat-
ural order:

di = 1 + i; qt = (t− 1)mod N u(t) = {cqt} (4.7)

– Interlaced Cyclic Called Interlaced Order in Kanada (1994). The set of cell u(t)

to be update at time step t is calculated as

qt = C (t− 1)mod N u(t) = {cqt} (4.8)

where C is a parameter prime to N .

t

cell 0

cell 1

cell 2

cell 3

0 5 10 15

5 11

11

15 69

28

2

3

1

4

initial value

6

54

2521

39

13

44

60

82

Figure 4.5: The evolution of the cellular automata according to the Cyclic update scheme.

4.1.5 Generic Cyclic

Is a generalization of the Cyclic update scheme, obtained relaxing the constraint on
the updating length. In this update scheme, the updating length is limited only by the
period. Formally:

∀ t ∈ Z t > 0 ∀ i ∈ Z 0 ≤ i < N p
(t)
i = N l

(t)
i ≤ p

(t) di < N u(t) = 1 (4.9)

4.1.6 Clocked

A timer is assigned to each cell, so that updating is autonomous and proceeds at dif-
ferent rates for different cells, as shown in Figure 4.6. The update frequency of each
cells is fixed:

∀ t ∈ Z t > 0 ∀ i ∈ Z 0 ≤ i < N p
(t)
i = p

(0)
i l

(t)
i ≤ p

(0)
i di ≤ p(0)i (4.10)

As subtype of the Clocked update scheme is the Equal Frequency Clocked. According
to this update scheme, every cells has the same update frequency:

∀ t ∈ Z t > 0 ∀ i ∈ Z 0 ≤ i < N p
(t)
i = p

(0)
0 (4.11)

68

4.1 Asynchronous Cellular Automata

t

cell 0

cell 1

cell 2

cell 3

0 5 10 15

5 11 30

8 19 81

5 13 32

19 49 98

2

3

1

4

initial value

6

Figure 4.6: The evolution of the cellular automata according to the Clocked update scheme.

4.1.7 Generic Clocked

Is a generalization of the Cyclic update scheme, obtained relaxing the constraint on
the fixed update frequency. The two subtypes of this update scheme are the Clocked
and Variable Clocked.

According to the Variable Clocked scheme, a timer is assigned to each cell, so that
updating is autonomous and proceeds at different rates for different cells. The updat-
ing frequency is not fixed:

∃t, i : p
(t)
i 6= p

(0)
i (4.12)

The Self-Sync update scheme is an example of Variable Clocked scheme.

4.1.8 CA Update Schemes Ontology

In this section we present a tentative classification of the previously presented update
schemes. In order to manage the complexity deriving from the classification of the
schemes according to different features (e.g. the number of cells updated at each time
step, the maximum length of the update period) we create the CA Update Scheme On-
tology. The ontology is expressed using the OWL 2 DL1 language, a W3C endorsed
format that can be adopted to define ontologies. This language allows defining rela-
tively rich semantics including relations between classes of entities, cardinality, equal-
ity, properties, characteristics of properties, and enumerated classes.

The CA Update Scheme Ontology consists a set of classes and properties. We de-
fined the following OWL data properties:

� hasClock type of clock for the timer-based update schemes;

� hasInitialDelay length of the initial delay;

� hasOrder order of the update sequence;
1http://www.w3.org/TR/owl2-primer/

69

4. EFFECTS OF ASYNCHRONY ON CELLULAR AUTOMATA

Figure 4.7: A schematic representation of the classes of the CA Update Scheme Ontology
before the classification.

� hasPeriod length of the update period;

� hasRandomComponent this boolean properties has the true value if and only if the
update scheme has some random parameters.

� hasUpdatingLength length of the cells updating;

� updatesCellsPerTimeStep number of cells updated each time step.

The domain of such properties is the UpdateScheme class, the root class of our on-
tology. We defined the following classes:

Asyncronous ≡ UpdateScheme u ¬ Synchronous

Asynchronous update scheme, defined as any update scheme that is not synchronous.

Clocked ≡ UpdateScheme u
¬(∃hasClock.{variable})u
∃hasClock.stringu
∃updatesCellsPerTimeStep.{*}

Clocked update scheme. The update frequency of each cells is fixed (not variable).

Cyclic ≡ UpdateScheme u
∃hasPeriod.{N}u

70

4.1 Asynchronous Cellular Automata

∃hasUpdatingLength.{1}u
∃updatesCellsPerTimeStep.{1}

Cyclic update scheme with period N . Only one cell per time step is updated and
updating length is equal to 1

EqualFrequencyClocked ≡ UpdateScheme u
∃hasClock.{eq}u
∃updatesCellsPerTimeStep.{*}

Clocked update scheme. The update frequency is the same for all the cells.

FixedCyclic ≡ UpdateScheme u
∃hasPeriod.{N}u
∃hasRandomComponent.{false}u
∃hasUpdatingLength.{1}u
∃updatesCellsPerTimeStep.{1}

Cyclic, non-random update order with period N . Only one cell per time step is up-
dated and updating length is equal to 1

FixedUpdatingLength ≡ UpdateScheme u
¬(∃hasUpdatingLength.{*})

Update scheme with fixed cell updating length.

GenericClocked ≡ UpdateScheme u
∃hasClock.stringu
∃updatesCellsPerTimeStep.{*}

Generic clocked update scheme. Any number of cells can start the update at the same
time step.

GenericCyclic ≡ UpdateScheme u
∃hasPeriod.{N}u
∃updatesCellsPerTimeStep.{1}

The instances of this class have cyclic update order. Only one cell per time step starts
the update at each time step.

71

4. EFFECTS OF ASYNCHRONY ON CELLULAR AUTOMATA

InterlacedCyclic ≡ UpdateScheme u
∃hasOrder.{interlaced}u
∃hasPeriod.{N}u
∃hasRandomComponent.{false}u
∃hasUpdatingLength.{1}u
∃updatesCellsPerTimeStep.{1}

Cyclic interlaced update order with period N . Only one cell per time step is updated
and updating length is equal to 1

MultiCellUpdate ≡ UpdateScheme u
¬ SingleCellUpdate

The instances of this class are update scheme which update more than one cell for
each time step.

RandomCyclic ≡ UpdateScheme u
∃hasPeriod.{N}u
∃hasRandomComponent.{true}u
∃hasUpdatingLength.{1}u
∃updatesCellsPerTimeStep.{1}

Cyclic random update order with period N . Only one cell per time step is updated
and updating length is equal to 1

RandomIndependent ≡ UpdateScheme u
¬ RandomOrder u
¬(∃hasPeriod.{N})u
∃hasRandomComponent.{true}u
∃hasUpdatingLength.{1}u
∃updatesCellsPerTimeStep.{1}

Random independent update order.
Only one cell per time step is updated and updating length is equal to 1

RandomOrder ≡ UpdateScheme u
∃hasPeriod.{¡2N}u
∃hasRandomComponent.{true}u
∃hasUpdatingLength.{1}u
∃updatesCellsPerTimeStep.{1}

72

4.1 Asynchronous Cellular Automata

Random order with period < 2N .
Only one cell per time step is updated and updating length is equal to 1

RandomUpdateScheme ≡ UpdateScheme u
∃hasRandomComponent.{true}

The instances of this class are update schemes with a random component.

Sequential ≡ UpdateScheme u
∃hasUpdatingLength.{1}
∃updatesCellsPerTimeStep.{1}

Sequential updating: only one cell per time step is updated and updating length is
equal to 1

SequentialOrdered ≡ UpdateScheme u
∃hasOrder.{sequential}u
∃hasPeriod.{N}u
∃hasRandomComponent.{false}u
∃hasUpdatingLength.{1}u
∃updatesCellsPerTimeStep.{1}

Cyclic, sequential update order.

SingleCellUpdate ≡ UpdateScheme u
∃updatesCellsPerTimeStep.{1}

The instances of this class are update scheme which update only one cell for each
time step.

Synchronous ≡ UpdateScheme u
¬(∃hasClock.string)u
∃hasInitialDelay.{0}u
∃hasPeriod.{1}u
∃hasRandomComponent.{false}u
∃hasUpdatingLength.{1}u
∃updatesCellsPerTimeStep.{N}

Synchronous update scheme.

73

4. EFFECTS OF ASYNCHRONY ON CELLULAR AUTOMATA

UpdateScheme v >

This is the root class of the CA Update Schemes.

UpdatingLength1 ≡ ∃hasUpdatingLength.{1}

Update scheme with cell updating length equals to 1.

VariableClocked ≡ UpdateScheme u
∃hasClock.{variable}u
∃updatesCellsPerTimeStep.{*}

Clocked update scheme. The update frequency of each cells is variable.

A schematic representation of the ontology is shown in Figure 4.7.

Figure 4.8: A schematic representation of the classes of the CA Update Scheme ontology after
the automatic classification.

We computed the class hierarchy using the Pellet1 Semantic Reasoner, an open
source Java reasoner for OWL 2 DL. A reasoner is a software able to infer logical con-
sequences from a set of asserted axioms. An example of inference is the compute of
the class hierarchy. Starting from the update scheme defined as OWL classes, a rea-
soner is able to inter how update scheme are subtypes of other schemes. The result of

1http://clarkparsia.com/pellet

74

4.1 Asynchronous Cellular Automata

such classification is shown in Figure 4.8. As shown in the figure, several classes are
subclasses of more than one class.

FixedUpdatingLength

UpdatingLength1

Sequential

Cyclic

InterlacedCyclicSequentialOrdered

FixedCyclic

SingleCellUpdate

Generic Cyclic

MultiCellUpdate Synchronous

GenericClocked

Clocked VariableClocked

EqualFrequency
Clocked

RandomIndependent RandomOrder

RandomCyclicRandomUpdateScheme

Figure 4.9: A schematic representation of the classes of the CA Update Scheme ontology. The
classes UpdateScheme and Asynchronous are not shown for simplicity.

We reorganized the classes in the graph shown in Figure 4.9. An update schema
can update one cell per time step (SingleCellUpdate) or more than one (MultiCellUp-
date). The clocked update schemes (GenericClocked) and the synchronous update scheme
update more than one cell per time step. The schemes that update the cells in se-
quence (Sequential) are subclass of the schemes in which the update of the cell takes
exactly one time step (UpdatingLength1). This class is a subclass of the update scheme
in which the update of the cells takes always a fixed amount of time step (FixedUp-
datingLength). The synchronous update scheme is a sequential update scheme. The
cyclic schemes (Cyclic) are both Sequential and GenericCyclic. The two subclasses of
Cyclic are FixedCyclic and RandomCyclic. The RandomCyclic class is also a subclass of
RandomUpdateScheme, The RandomUpdateScheme instances are update schemes with a
random component, such RandomIndependent and RandomOrder. This two classes are
also instance of sequential because they update only one cell per time step.

75

4. EFFECTS OF ASYNCHRONY ON CELLULAR AUTOMATA

4.2 One Neighbor Binary Cellular Automata

One Neighbor Binary Cellular Automata (1nCA) is a one-dimensional Cellular Au-
tomata, with two possible states per cell. Each cell has two neighbors, left and right,
defined to be the adjacent cells on either side, but the update rule consider only one
neighbor per step. The neighborhood includes the cell itself and the left or the right
adjacent cell and alternates between these two situations at even and odd time steps.

The size of the neighborhood is always 2, so there are 4 possible patterns for the
neighborhood and only 16 possible rules. The number of possible rules is small com-
pared to the 256 possible rules of the Elementary Cellular Automata, so it is easier to
exhaustively study the dynamic behavior of the all rules.

These 16 1nCA rules will be referred using the Wolfram notation, with the rule
numbers followed by the 4 symbol to avoid confusion with the Elementary Cellular
Automata rules (e.g. “Rule 10” is an Elementary Cellular Automata rule, “Rule 104”
is an 1nCA rule).

We call One Neighbor Binary Cellular Automata the cellular automata (L, S,N,F)
where

� L = [c0, c1, . . . , cn] is an array of n cells,

� S = {0, 1} is the set of states (k = 2),

� Nc is neighborhood of the cell c and ∀c : L |Nc| = 2,

� f : S2 → S is a transition function.

Denoting the cell c at position i as ci, the neighborhood N
(t)
ci of the cell ci at time t

is defined as
N(t)
ci = [ci, n

(t)
ci] (4.13)

where n(t)ci is the neighbor of the cell, given by

n(t)ci =

{
ci+1 if t is even
ci−1 otherwise

(4.14)

The neighborhood of the cell ci at different time steps is shown in Figure 4.10.
Following the Wolfram’s notation, the rules are characterized by a sequence of

binary values (βi ∈ S) associated with each of the 4 possible patterns for the neighbor-
hood. The transition function is defined as:

f(ci, n
(t)
ci) =


β0 if ci = 0, n

(t)
ci = 0

β1 if ci = 0, n
(t)
ci = 1

β2 if ci = 1, n
(t)
ci = 0

β3 if ci = 1, n
(t)
ci = 1

(4.15)

76

4.2 One Neighbor Binary Cellular Automata

time 0

time 1

time 2

time 3

ci ci+1ci-1

Figure 4.10: The neighborhood of the cell ci at different time steps.

As shown in Figure 4.11, there are 16 possible transition functions, identified by a
rule number R computed as

R =

3∑
i=0

βi2
i (4.16)

For example, the “Rule 64” is characterized by the following transition function:

f(ci, n
(t)
ci) =


0 if ci = 0, n

(t)
ci = 0

1 if ci = 0, n
(t)
ci = 1

1 if ci = 1, n
(t)
ci = 0

0 if ci = 1, n
(t)
ci = 1

(4.17)

Another possibility for representing the rules, is considered each rule as a boolean
function. Considering 0 as ⊥ and 1 as >, each rule can be rewritten as:

Rule 04 f(ci, n
(t)
ci) = ⊥ Rule 84 f(ci, n

(t)
ci) = ci ∧ n(t)ci

Rule 14 f(ci, n
(t)
ci) = ¬(ci ∨ n(t)ci) Rule 94 f(ci, n

(t)
ci) = ¬(ci ⊕ n(t)ci)

Rule 24 f(ci, n
(t)
ci) = ¬ci ∧ n(t)ci Rule 104 f(ci, n

(t)
ci) = n

(t)
ci

Rule 34 f(ci, n
(t)
ci) = ¬ci Rule 114 f(ci, n

(t)
ci) = ¬(ci ∧ ¬n(t)ci)

Rule 44 f(ci, n
(t)
ci) = ci ∧ ¬n(t)ci Rule 124 f(ci, n

(t)
ci) = ci

Rule 54 f(ci, n
(t)
ci) = ¬n(t)ci Rule 134 f(ci, n

(t)
ci) = ¬(¬ci ∧ n(t)ci)

Rule 64 f(ci, n
(t)
ci) = ci ⊕ n(t)ci Rule 144 f(ci, n

(t)
ci) = ci ∨ n(t)ci

Rule 74 f(ci, n
(t)
ci) = ¬(ci ∧ n(t)ci) Rule 154 f(ci, n

(t)
ci) = >

The configuration of a cellular automata is a mapping q : L → S which assigns
to each cell of the array L a state from S. We denoted with qt the configuration of a
cellular automata at time t:

qt = [s0, s1, . . . , sn] ∈ Sn (4.18)

77

4. EFFECTS OF ASYNCHRONY ON CELLULAR AUTOMATA

Rule 2△

Rule 0△

Rule 1△

Rule 3△

Rule 6△

Rule 4△

Rule 5△

Rule 7△

Rule 10△

Rule 8△

Rule 9△

Rule 11△

Rule 14△

Rule 12△

Rule 13△

Rule 15△

β0β1β2β3 β0β1β2β3

Figure 4.11: Representation of the 16 One Neighbor Binary Cellular Automata transition
rules.

where n is the number of cells of L. Given an initial configuration q0, the evolution of
an automaton is represented by a sequence of configurations:

q0 → q1 → q2 → . . .→ qt (4.19)

A deterministic finite cellular automaton eventually falls into a cycle (with period p >
1) or a fixed point (p = 1):

qt → qt+1 → qt+2 → . . .→ qt+p

qt = qt+p

qt+1 = qt+p+1

qt+2 = qt+p+2

...

qt+p = qt+2p

(4.20)

78

4.2 One Neighbor Binary Cellular Automata

We defined two constant configurations 0 and 1 as:

0 = [0, 0, . . . , 0] ∈ Sn (4.21a)

1 = [1, 1, . . . , 1] ∈ Sn (4.21b)

In the following section is presented ad classification of the 1nCA Rules. A central
issue in the theory of cellular automata is the classification, i.e. understand how cellu-
lar automata can be meaningfully grouped according to their structure and behavior.
There are mainly two approach for the classification of the cellular automata: the direct
way, called Phenotypic Classification, to classified cellular automata is to observe their
behavior through the spatial-temporal patterns they generates out of several random
initial conditions, and then to use statistical metrics to quantify the observed behav-
ior (Li et al., 1990a). Another approach, called Genotypic Classification, is based on
the analysis of the automaton transition rules.

There are several works (e.g. (Wolfram, 1983a; Gutowitz et al., 1987; Li and Packard,
1990; Sutner, 1990; Wuensche, 1999)) focusing on the classification of the one dimen-
sional cellular automata and in particular on the Elementary Cellular Automata. In
this section we present an approach of genotypic classification applied to the One
Neighbor Binary Cellular Automata. The idea of a genotypic classification of cellular
automata is to divide a population of automata into groups according to the intrinsic
properties of the rules. The aim is that some features of the cellular automata behav-
iors are predictable on the basis of a genotypic classification.

4.2.1 Totalistic Rules

Half of the possible rules are totalistic. A cellular automaton is called totalistic if the
value of a cell depends only on the sum of the values of its neighbors at the previous
time step, and not on their individual values (Wolfram, 1983b). The sum n of the
neighborhood cells is computed n = ci + n

(t)
ci and 0 ≤ n ≤ 2. The following rules are

totalistic:

Rule 04 f(n) = 0 Rule 84 f(n) =


0 if n = 0

0 if n = 1

1 if n = 2

Rule 14 f(n) =


1 if n = 0

0 if n = 1

0 if n = 2

Rule 94 f(n) =


1 if n = 0

0 if n = 1

1 if n = 2

79

4. EFFECTS OF ASYNCHRONY ON CELLULAR AUTOMATA

Rule 64 f(n) =


0 if n = 0

1 if n = 1

0 if n = 2

Rule 144 f(n) =


0 if n = 0

1 if n = 1

1 if n = 2

Rule 74 f(n) =


1 if n = 0

1 if n = 1

0 if n = 2

Rule 154 f(n) = 1

4.2.2 Neighbor-Independent and Self-Independent

A rule is Neighbor-Independent if the value of a cell depends only on its previous value
and not on the value of the neighbors. Formally, a rule is Neighbor-Independent if

∀s ∈ S, f(s, 0) = f(s, 1) (4.22)

so, according to the definition of the transaction function, a rule is Neighbor-Independent
if

β0 = β1, β2 = β3 (4.23)

A rule is Self-Independent if the value of a cell depends only on the value of the
neighbors and not on its previous value. Formally, a rule is Self-Independent if

∀s ∈ S, f(0, s) = f(1, s) (4.24)

so, according to the definition of the transaction function, a rule is Self-Independent if

β0 = β2, β1 = β3 (4.25)

The Neighbor-Independent and Self-Independent rules are shown in Table 4.1.

Table 4.1: Neighbor-Independent and Self-Independent rules

Rule Ind. Rule Ind. Rule Ind. Rule Ind.
Rule 04 N S Rule 14 Rule 24 Rule 34 N
Rule 44 Rule 54 S Rule 64 Rule 74
Rule 84 Rule 94 Rule 104 S Rule 114
Rule 124 N Rule 134 Rule 144 Rule 154 N S

80

4.2 One Neighbor Binary Cellular Automata

4.2.3 λ-parameter

An even cruder piece of information about a rule is the number of non-quiescent out-
puts in a rule-table. For the One Neighbor Binary Cellular Automata, this parameter
is equal to the number of β parameters that are equal to one and can be calculated as

c =
3∑
i=0

βi (4.26)

Langton (Langton, 1990) proposed the so called λ-parameter as an order-chaos pa-
rameter for Cellular Automata. This parameter measures the density of non-quiescent
(not zero) outputs in a rule-table. For the One Neighbor Binary Cellular Automata the
λ-parameter can be calculated as:

λ =
c

kn
=

1

4

3∑
i=0

βi (4.27)

where k is the number of states and n is the neighborhood size. λ varies between 0
(order) to 0.5 (chaos) to 1 (order). As λ is increased from 0 to 0.5 (or decreased from 1
to 0.5), the automata move from having the most homogeneous rule tables to having
the most heterogeneous. The values of the λ parameter for all the rules are shown in
Table 4.2.

Table 4.2: The rules classified according to the λ parameter

λ = 0 Rule 04
λ = 0.25 Rule 14 Rule 24 Rule 44 Rule 84
λ = 0.5 Rule 34 Rule 54 Rule 64 Rule 94 Rule 104 Rule 124
λ = 0.75 Rule 74 Rule 114 Rule 134 Rule 144
λ = 1 Rule 154

Langton presented evidence that there is some correlation between the λ parame-
ter and the behavior of an “average” Cellular Automata on an “average” initial congu-
ration (Langton, 1990). Behavior was characterized in terms of quantities such as
single-site entropy, two-site mutual information, dierence-pattern spreading rate, and
average transient length. Generally the correlation is quite good for very low and very
high lamda values, which predict fixed-point or short-period behavior. However, for
intermediate λ values, there is a large degree of variation in behavior (Mitchell et al.,
1993).

81

4. EFFECTS OF ASYNCHRONY ON CELLULAR AUTOMATA

4.2.4 Sensitivity

Binder (1994, 1993) proposed the sensitivity parameter µ, motivated by the observation
that the Wolfram classes are characterized by its sensitivity to changes in the state of a
unique cell of the neighborhood of the transition rule.

Sensitivity is dened as the number of changes in the outputs of the transition rule,
caused by changing the state of each cell of the neighborhood, one cell at a time, over
all possible neighborhoods of the rule being considered:

µ =
1

nm

∑
n

m∑
j=1

δf

δsj
(4.28)

wherem is the number of cells in the neighborhood and n is the number of possible
neighborhoods in the rule table. For 1 Neighbor Cellular Automata, m = 2, and n =

2m = 4. The Boolean derivate for Cellular Automata (Vichniac, 1990) δf
δsj

is equal to 1
if f(s1, . . . , sj , . . .) 6= f(s1, . . . ,¬sj , . . .), otherwise is equal to 0.

Table 4.3: The values of the sensitivity parameter for all the rules

Rule µ Rule µ Rule µ Rule µ

Rule 04 0 Rule 14 0.5 Rule 24 0.5 Rule 34 0.5

Rule 44 0.5 Rule 54 0.5 Rule 64 1 Rule 74 0.5

Rule 84 0.5 Rule 94 1 Rule 104 0.5 Rule 114 0.5

Rule 124 0.5 Rule 134 0.5 Rule 144 0.5 Rule 154 0

The values of the sensitivity parameter for all the rules is presented in Table 4.3.
The sensitivity parameter takes on three different values: 0, 0.5, and 1. The sensitivity
parameter helps to relatively discriminate null and chaotic behaviors: the null behav-
ior happens in rules with low sensitivity and the chaotic behavior happens in rules
with high sensitivity. Fixed-point and periodic behaviors are concentrated around 0.5.

82

4.2 One Neighbor Binary Cellular Automata

4.2.5 Rule density

The Rule density is a simply parameter introduced to describe the rules behavior. The
rule density, Rρ, is computed as:

Rρ = (λ− 1

2
) 2(β3−β0) +

1

2
(4.29)

Roughly speaking, the rule density indicates average fraction of sites with value
equal to one in the rule dynamic evolution. The rule density value is comprised be-
tween zero and one. A value of zero indicated that a rule converges (for most of the
initial configurations) to zero state in all the cells, a value of one indicated a conver-
gence to one. The rule density values for all the rules are shown in Table 4.7.

Table 4.4: The values of the rule density for all the rules

Rule Rρ Rule Rρ Rule Rρ Rule Rρ

Rule 04 0 Rule 14 0.375 Rule 24 0.25 Rule 34 0.5

Rule 44 0.25 Rule 54 0.5 Rule 64 0.5 Rule 74 0.625

Rule 84 0 Rule 94 0.5 Rule 104 0.5 Rule 114 0.75

Rule 124 0.5 Rule 134 0.75 Rule 144 1 Rule 154 1

4.2.6 Rules symmetries

One means of verication of the consistence of the rule density parameter (and also the
other parameters) is the use of symmetries: if two rules are conjugate, the rule density
of one rule is equals to 1−Rρ of the other rule.

In Fatès (2003) the author defines the reflected, conjugate and reflected conjugate
symmetries for the Elementary Cellular Automata. The only possible symmetry for
the 1nCA is For any transition rule f , we can associate

f∗, the conjugate rule of f , defined by

∀(ci, nci) ∈ S2, f∗(ci, nci) = f(¬cl,¬nci) (4.30)

where ¬ denotes the operation of changing the zeros into ones and ones into zeros.
The β∗ parameters of the conjugate rule are calculated as:

β∗3 = ¬β0 β∗2 = ¬β1 β∗1 = ¬β2 β∗0 = ¬β3 (4.31)

In Table 4.5 are shown, for each rule, the reflected, the conjugated and the reflected
conjugated rules. We can identified 6 classes of rules, shown in Table 4.6, according to
the symmetries: we can group in one class all the rules that are symmetric (reflected,
conjugated or reflected conjugated). The classes are named according to the lowest
member index. Each class is formed by all totalistic or all not-totalistic rules.

83

4. EFFECTS OF ASYNCHRONY ON CELLULAR AUTOMATA

This kind of classification of the One Neighbor Binary Cellular Automata is impor-
tant because we can restrict the study of the dynamic behavior to only one member of
each class and the behavior of the other members can be simply inferred according to
the symmetric relations.

Table 4.5: Rules Symmetries

Rule Conjugated rule Rule Conjugated rule
Rule 04 (0000) Rule 154 (1111) Rule 14 (0001) Rule 74 (0111)
Rule 24 (0010) Rule 114 (1011) Rule 34 (0011)
Rule 44 (0100) Rule 134 (1101) Rule 54 (0101)
Rule 64 (0110) Rule 94 (1001) Rule 74 (0111) Rule 14 (0001)
Rule 84 (1000) Rule 144 (1110) Rule 94 (1001) Rule 64 (0110)
Rule 104 (1010) Rule 114 (1011) Rule 24 (0010
Rule 124 (1100) Rule 134 (1101) Rule 44 (0100)
Rule 144 (1110) Rule 84 (1000) Rule 154 (1111) Rule 04 (0000)

Table 4.6: The rules divided according to the symmetries. The value of rule density is re-
ported for each rule. The classes marked with T are formed by totalistic rules, N by Neighbor-
Independent rules, and S by Self-Independent rules.

Class 04TNS : Rule 04 (Rρ = 0) Rule 154 (Rρ = 1)

Class 14T : Rule 14 (Rρ = 0.375) Rule 74 (Rρ = 0.625)

Class 24 : Rule 24 (Rρ = 0.25) Rule 114 (Rρ = 0.75)

Class 34N : Rule 34 (Rρ = 0.5)

Class 44 : Rule 44 (Rρ = 0.25) Rule 134 (Rρ = 0.75)

Class 54S : Rule 54 (Rρ = 0.5)

Class 64T : Rule 64 (Rρ = 0.5) Rule 94 (Rρ = 0.5)

Class 84T : Rule 84 (Rρ = 0) Rule 144 (Rρ = 1)

Class 104S : Rule 104 (Rρ = 0.5)

Class 124N : Rule 124 (Rρ = 0.5)

84

4.2 One Neighbor Binary Cellular Automata

Rule 04 (Class 04TNS) Rule 14 (Class 14T) Rule 24 (Class 24) Rule 34 (Class 34N)
Rρ = 0 Rρ = 0.375 Rρ = 0.25 Rρ = 0.5

λ = 0, µ = 0 λ = 0.25, µ = 0.5 λ = 0.25, µ = 0.5 λ = 0.5, µ = 0.5

Rule 44 (Class 44) Rule 54 (Class 54TS) Rule 64 (Class 64T) Rule 74 (Class 14T)
Rρ = 0.25 Rρ = 0.5 Rρ = 0.5 Rρ = 0.625

λ = 0.25, µ = 0.5 λ = 0.5, µ = 0.5 λ = 0.5, µ = 1 λ = 0.75, µ = 0.5

Rule 84 (Class 84T) Rule 94 (Class 64T) Rule 104 (Class 104S) Rule 114 (Class 24)
Rρ = 0 Rρ = 0.5 Rρ = 0.5 Rρ = 0.75

λ = 0.25, µ = 0.5 λ = 0.5, µ = 1 λ = 0.5, µ = 0.5 λ = 0.75, µ = 0.5

Rule 124 (Class 124N) Rule 134 (Class 44) Rule 144 (Class 84T) Rule 154 (Class 04T)
Rρ = 0.5 Rρ = 0.75 Rρ = 1 Rρ = 1

λ = 0.5, µ = 0.5 λ = 0.75, µ = 0.5 λ = 0.75, µ = 0.5 λ = 1, µ = 0

Figure 4.12: 60 steps of the time evolution of all the 16 One Neighbor Binary Cellular Au-
tomata with the default synchronous update scheme and periodic boundaries conditions start-
ing from an initial random configuration of 60 cells.

85

4. EFFECTS OF ASYNCHRONY ON CELLULAR AUTOMATA

Table 4.7: Classification summary

Rule Bin Wolfram Li-Packard Symmetry Tot. Ind. λ Rρ µ

Class Class Class
04 0000 W1 Null 04 T NS 0 0 0
14 0001 W2 Two-Cycle 14 T 0.25 0.375 0.5
24 0010 W2 Two-Cycle 24 0.25 0.25 0.5
34 0011 W2 Two-Cycle 34 N 0.5 0.5 0.5
44 0100 W1 Fixed-Point 44 0.25 0.25 0.5
54 0101 W2 Two-Cycle 54 S 0.5 0.5 0.5
64 0110 W3 Chaotic 64 T 0.5 0.5 1
74 0111 W2 Two-Cycle 14 T 0.75 0.625 0.5
84 1000 W1 Null 84 T 0.25 0 0.5
94 1001 W3 Chaotic 64 T 0.5 0.5 1
104 1010 W2 Two-Cycle 104 S 0.5 0.5 0.5
114 1011 W2 Two-Cycle 24 0.75 0.75 0.5
124 1100 W2 Fixed-Point 124 N 0.5 0.5 0.5
134 1101 W2 Fixed-Point 44 0.75 0.75 0.5
144 1110 W1 Null 84 T 0.75 1 0.5
154 1111 W1 Null 04 T NS 1 1 0

86

4.3 1nCA Spatiotemporal Patterns

4.3 1nCA Spatiotemporal Patterns

In this section we present the effects of several update schemes on 1nCA automata
dynamic evolutions.

In Figure 4.12 are shown the time evolution of all the 16 rules according with syn-
chronous update scheme and periodic boundaries conditions, starting from an initial
random configuration of 60 cells. As shown in the following sections, the different
update schemes produce tremendous effects on the several automata.

The tested the following update schemes on all the 1nCA rules:

� Synchronous

� Random Cyclic

� Equal Frequency Clocked

� Random Order

� Random Independent

Moreover we tested the combined effect of the update scheme and the historic
memory. We adopted the geometrically discounted memory mechanism proposed
in Alonso-Sanz and Martı́n (2002); Alonso-Sanz and Martin (2003); Alonso-Sanz (2003,
2004, 2006, 2007); Alonso-Sanz and Cardenas (2008).

In the following paragraphs, we present the observation results for all the classes.

4.3.1 Class 04TNS

The rules of this class (Rule 04 and Rule 154), that are Totalistic, Neighbor-Independent
and Self-Independent, have a trivial behavior: they “erase” any initial configuration,
reaching a fixed point. The limiting configuration (i.e., the automaton state of the en-
tire lattice) is formed only by zeros for Rule 04 (Rρ = 0, λ = 0, µ = 0) the and ones
for the Rule 154 (Rρ = 1, λ = 1, µ = 0). According to the Li-Packard classification,
the rules of this class are classified as Null rules and as Class 1 according to Wolfram.

α = 0 α = .5 α = .55 α = .75 α = .9 α = .99

Figure 4.13: Time space diagrams of Rule 04 with different memory factor α.

Since the rule are Neighbor-Independent, the behavior do not change varying the
update strategy. The only parameter that affect the dynamic behavior is the memory

87

4. EFFECTS OF ASYNCHRONY ON CELLULAR AUTOMATA

factor. More formally, for the Rule 04

∀ q1 ∈ Sn, t > tt, qt = 0 (4.32)

and for the Rule 154
∀ q1 ∈ Sn, t > tt, qt = 1 (4.33)

where, tt, the length of the transient. The value of tt is equal to 1 for all the update
strategy when the memory factor α ≤ 0.5. Increasing the memory factor, the dynamics
converge slower to the fixed point. In Figure 4.13 are shown time space diagrams of
Rule 04with different values of the memory factor α.

4.3.2 Class 14T

The Rule 14 (Rρ = 0.375, λ = 0.25, µ = 0.5) and Rule 74 (Rρ = 0.625, λ = 0.75, µ =

0.5) are Totalistic. With Synchronous, Cyclic, and Equal Frequency Clocked update
strategies, they transform any initial pattern in a new pattern that reappears every
two time steps. The rules of this class are Two-Cycle rules according to the Li-Packard
classification and Class 2 according to the Wolfram classification.

Formally, the behavior can be described as

∀ q1 ∈ Sn, t > tt, qt =

{
qtt+1 if t− tt is odd
qtt+2 if t− tt is even

(4.34)

The values of tt depends both on the update strategy and the memory factor. A rule of
this class with the synchronous update and without memory (α = 0) reaches the cycle
in one step (tt = 1), so

∀ q1 ∈ Sn, t > 1, qt =

{
q2 if t is even
q3 if t is odd

(4.35)

As shown in Figure 4.14, with the Cyclic and Equal Frequency Clocked update
schemes, the dynamical evolution slowly converges to an attractor cycles of period 2.
Increasing the memory factor α, the convergence is even slower.

In Figure 4.15 are presented the time space diagrams of the Rule41 using different
update schemes starting from the same initial configuration (q1 = 01). As shown in the
figure, the dynamic evolutions of the rules, with the Random Independent and Ran-
dom Order update schemes, don’t seem to converge to an attractor cycle, nor starting
from an “ordered” pattern, nor with an high memory factor (α = 0.99).

We can identified several phases of the dynamic update. Some phases are present
with all the update schemes. The phases are clearly identifiable when the memory
factor is higher, since the phases length is longer. The phase p1 is the initial phase and
is always present. In this phase, the initial configuration is preserved. The length of
the phase depend on the memory factor. If the is no memory, the length of this phase
is equal to one.

88

4.3 1nCA Spatiotemporal Patterns

The second phase p2 is the transient phase. For the Synchronous and the Cyclic,
and Equal Frequency Clocked update scheme, this phase is an intermediate phase
between the initial phase and the attractor cycle phase. The initial configuration is
“scrambled” until an attractor cycle is reached. Increasing the memory factor, the
transient phase presents an initial cyclic sub-phase. In this sub–phase, the same con-
figuration is reproduced with a period of 2. As shown in Figure 4.15, this sub-phase
could be very long with an high memory factor (α = 0.99). For the synchronous up-
date scheme, this sub–phase constitute the whole second phase. This sub–phase is
present also with the Random Order update scheme.

The third phase p3 is the attractor cycle phase. This phase is terminal, i.e. the
dynamical evolution never exit from this phase. The length of the cycle is equal to
2. With the update schemes, the dynamical evolution never enters in this phase. For
the synchronous update scheme, the attractor cycle is independent from the mem-
ory factor, so starting from the same configuration, with different memory factors, the
same attractor cycle is reached. For the Cyclic and Equal Frequency Clocked update
schemes, the configuration of the attractor cycle depends both on the initial configu-
ration an the order of activation of the cells. So, with the same parameters, the same
initial configuration could reach different attractor cycles.

Synchronous Random Equal Frequency Random Random
Cyclic Clocked Order Idependent

α = 0

α = .55

α = .7

α = .9

Figure 4.14: Time space diagrams of Rule 14 using different update schemes and memory
factors.

89

4. EFFECTS OF ASYNCHRONY ON CELLULAR AUTOMATA

Synchronous Random Equal Frequency Random Random
Cyclic Clocked Order Idependent

α = 0

α = .7

α = .99

Figure 4.15: Time space diagrams of Rule 14 using different update schemes starting from
the same initial configuration (q1 = 01).

90

4.3 1nCA Spatiotemporal Patterns

4.3.3 Class 24

Synchronous Random Equal Frequency Random Random
Cyclic Clocked Order Idependent

α = 0

α = .55

α = .7

α = .9

Figure 4.16: Time space diagrams of Rule 24 using different update schemes and memory
factors.

The rules of this class are Rule 24 (Rρ = 0.25, λ = 0.25, µ = 0.5) and Rule 114
(Rρ = 0.75, λ = 0.75, µ = 0.5). With synchronous update strategy, the rules transform
any initial pattern in a new pattern that reappears every two time steps:

∀ q1 ∈ Sn, t > tt, qt =

{
qtt+1 if t− tt is odd
qtt+2 if t− tt is even

(4.36)

The values of tt depends only on the memory factor α. A rule of this class with the
synchronous update and without memory (α = 0) reaches the cycle in one step (tt =

1). The rules of this class are Two-Cycle rules according to the Li-Packard classification
and Class 2 according to the Wolfram classification.

As show in 4.16, the rules have a different behavior with the asynchronous up-
date schemes: starting from any initial configuration, the dynamic evolution finally
reached the limiting configuration. The limiting configuration is formed only by zero
for the Rule 24:

∀ q1 ∈ Sn, t > tt, qt = 0 (4.37)

and by ones for the Rule 114:

∀ q1 ∈ Sn, t > tt, qt = 1 (4.38)

91

4. EFFECTS OF ASYNCHRONY ON CELLULAR AUTOMATA

The length of the transient tt depends on the memory factor α.

4.3.4 Class 34N

The Rule 34 (Rρ = 0.5, λ = 0.5, µ = 0.5) is a Neighbor-Independet rule. With Syn-
chronous, Cyclic, Equal Frequency Clocked, and Random Order update strategies, the
rule transforms any initial pattern into its complement. The pattern reappears every
two time steps:

∀ q1 ∈ Sn, t > tt, qt =

{
qtt+1 if t− tt is odd
¬qtt+1 if t− tt is even

(4.39)

As show in 4.17, the length of the transient tt depends on the memory factor α:
without memory, tt is equal to 0. The rules of this class are Two-Cycle rules according
to the Li-Packard classification and Class 2 according to the Wolfram classification.
With the Random Independent update strategy, the rule has a chaotic behavior.

Synchronous Random Equal Frequency Random Random
Cyclic Clocked Order Idependent

α = 0

α = .55

α = .7

α = .9

Figure 4.17: Time space diagrams of Rule 34 using different update schemes and memory
factors.

92

4.3 1nCA Spatiotemporal Patterns

4.3.5 Class 44

The rules of this class are the Rule 44 (Rρ = 0.25, λ = 0.25, µ = 0.5) and the Rule 134
(Rρ = 0.75, λ = 0.75, µ = 0.5). In Figure 4.18 are presented the time space diagrams of
the Rule44 using different update schemes and memory factors. The rule transform
any initial pattern into a new pattern that is the limiting configuration:

∀ q1 ∈ Sn, t > tt, qt = qtt (4.40)

The length of the transient tt depends on the memory factor α and the update strategy.
For the synchronous update strategy, without memory, tt is equal to 2. According to
the Li-Packard classification, this rules is classified as Fixed point rule and as Class 1
according to Wolfram.

Synchronous Random Equal Frequency Random Random
Cyclic Clocked Order Idependent

α = 0

α = .55

α = .7

α = .9

Figure 4.18: Time space diagrams of Rule 44 using different update schemes and memory
factors.

93

4. EFFECTS OF ASYNCHRONY ON CELLULAR AUTOMATA

4.3.6 Class 54S

The Rule 54 (Rρ = 0.5, λ = 0.5, µ = 0.5) is Self-independent, i.e. the next value
depends only on the value of its neighbor. The rule has a periodic behavior: after a
transient phase p1, the dynamic behavior follows into an attractor cycle of period 2.

Synchronous Random Equal Frequency Random Random
Cyclic Clocked Order Idependent

α = 0

α = .55

α = .7

α = .9

Figure 4.19: Time space diagrams of Rule 54 using different update schemes and memory
factors.

In Figure 4.19 are presented the time space diagrams of the Rule45 using different
update schemes. The rule of this class is Two-Cycle rules according to the Li-Packard
classification and Class 2 according to the Wolfram classification. Formally, the behav-
ior for Synchronous, Cyclic, and Clocked schemes, can be described as

∀ q1 ∈ Sn, t > tt, qt =

{
qtt+1 if t− tt is odd
qtt+2 if t− tt is even

(4.41)

The length of the transient depends on several factors: the update scheme, the
memory factor, the initial configuration and the boundaries conditions. For the syn-
chronous update scheme, without memory, tt is equal to 0. The length of the transient
for the Cyclic, and Equal Frequency Clocked update schemes is little longer then for
the synchronous one. Increasing the memory factor α, the length of the transient be-
come longer.

94

4.3 1nCA Spatiotemporal Patterns

The configuration 01 is invariant, so

q1 = 01, t > 1, qt = q1 (4.42)

α = 0 α = 0 α = 0 α = .7 α = .7 α = .7

q1 = 0 q1 = 1 q1 = 01 q1 = 0 q1 = 1 q1 = 01

Figure 4.20: Time space diagrams of Rule 54 using the Random Idependent update scheme,
starting from different initial configurations.

The rule has a different behavior with the Random update schemes. As shown in
Figure 4.20, the spaces is divided into region with the 01 pattern repeated over the
region. The regions are divided by edges characterized by “broken” patterns 00 or 11,
a shown in Figure 4.21.

Such regions grow, merge and collapse. Regions transformations are determined
by edge movements. Transformations never occur in the middle of a region, i.e. a
region cannot split into two regions. If a region grows enough to occupied all the
spaces, that regions remains constant in the time (a fixed point is reached). The two
fixed point are the configurations 01 and 10. With periodic boundaries, if the number
of cells is odd, such fixed configurations can never be reached.

95

4. EFFECTS OF ASYNCHRONY ON CELLULAR AUTOMATA

Figure 4.21: Time space diagrams of Rule 54 using the Random Idependent update scheme,
showing the edge between two zone. In the image on the right, the edge is in evidence.

4.3.7 Class 64T

The rules of this class are Rule 64 (Rρ = 0.5, λ = 0.5, µ = 1) and Rule 94 (Rρ =

0.5, λ = 0.5, µ = 1). The dynamic behaviors of the Rule 64 using different up-
date schemes and memory factors are shown in Figure 4.23. The rules of this class
are Chaotic: these rules are characterized by the exponential divergence of its cycle
length with the system size, and for the instability with respect to perturbations. If the
number of cells is finite, for the Synchronous, Random Cyclic, and Equal Frequency
Clocked schemes, the evolution eventually falls into a cycle (with period p > 1) or a
fixed point (p = 1). The configuration 0 is the fixed point of the Rule 64, the config-
uration 1 is the fixed point of the Rule 94. These configurations are fixed points also
using the Random update schemes.

Synchronous Random Equal Frequency Random Random
Cyclic Clocked Order Idependent

Figure 4.22: Time space diagrams of Rule 64 using different update schemes starting from a
single seed.

Changing update scheme has dramatic effect on the rule of this class. As shown in
Figure 4.22, with the Synchronous update scheme, the Rule 64 produces a dynamic
evolution similar to the Sierpinski Triangle fractal. This typical shape is not present
with any of the other update schemes.

96

4.3 1nCA Spatiotemporal Patterns

Moreover if the automaton has periodic boundaries conditions and the number of
cells is a power of two, starting from an initial configuration, the evolution of the syn-
chronous automata eventually reaches the fixed point. The automata with the other
update schemes does not have this behavior.

Synchronous Random Equal Frequency Random Random
Cyclic Clocked Order Idependent

α = 0

α = .51

α = .53

α = .55

α = .7

α = .9

Figure 4.23: Time space diagrams of Rule 64 using different update schemes and memory
factors.

97

4. EFFECTS OF ASYNCHRONY ON CELLULAR AUTOMATA

4.3.8 Class 84T

The rules of this class (Rule 84 and Rule 144) reach a fixed point for almost any initial
configuration. As shown in Figures 4.24 and 4.25, the limiting configuration, formed
only by zeros for Rule 04 (Rρ = 8) the and ones for the Rule 144 (Rρ = 1), is
reached after a number of steps depending on the max number of consecutive ones
(for the Rule 84) or zeros (Rule 144). If the initial state is composed only of ones (for
Rule 84) or zeros (for Rule 144) the automata maintain this configurations as fixed
point. Formally, for the Rule 84:

qt =

{
0 if q0 6= 1, t > tt
1 if q0 = 1, t > 1

(4.43)

The rules of this class are Null rules according to the Li-Packard classification and
Class 1 according to the Wolfram classification.

Synchronous Random Equal Frequency Random Random
Cyclic Clocked Order Idependent

α = 0

α = .55

α = .7

α = .9

Figure 4.24: Time space diagrams of Rule 84 using different update schemes and memory
factors.

98

4.3 1nCA Spatiotemporal Patterns

Synchronous Random Equal Frequency Random Random
Cyclic Clocked Order Idependent

α = 0

α = .7

Figure 4.25: Time space diagrams of Rule 84 using different update schemes and memory
factors, starting from the same initial configuration (all cells with state equals to 1 except one).

4.3.9 Class 104S

The Rule 104 (Rρ = 0.5, λ = 0.5, µ = 0.5) is Self-independent, i.e. the next value
depends only on the value of its neighbor. The rule has a periodic behavior: after a
transient phase p1, the dynamic behavior follows into an attractor cycle of period 2.
The length of the transient phase depends on the memory factor, the initial pattern,
and the update scheme. In Figure 4.26 are presented the time space diagrams of the
Rule410 using different update schemes.

The rule of this class is Two-Cycle rules according to the Li-Packard classification
and Class 2 according to the Wolfram classification.

Formally, the behavior of the rule with Synchronous, Cyclic and Equal Frequency
Clocked schemes can be described as

∀ q1 ∈ Sn, t > tt, qt =

{
qtt+1 if t− tt is odd
qtt+2 if t− tt is even

(4.44)

,where tt is the length of the transient phase p1.
The rule has a different behavior with the Random update schemes. As shown in

Figure 4.27, the spaces is divided into homogeneous region (all zero or all one). Up-
dating the automaton with the Equal Frequency Clocked scheme, that regions remain
“fixed”: they shift left and right at each time step, but they returns to the same posi-
tions after two cycles. Using the Random update schemes, such regions grow, merge

99

4. EFFECTS OF ASYNCHRONY ON CELLULAR AUTOMATA

and collapse. Regions transformations are determined by edge movement. Trans-
formations never occur in the middle of a region, i.e. a region cannot split into two
regions. If a region grows enough to occupied all the spaces, that regions remains con-
stant in the time (a fixed point is reached). The two fixed point are the configurations
0 and 1.

Synchronous Random Equal Frequency Random Random
Cyclic Clocked Order Idependent

α = 0

α = .55

α = .7

α = .9

Figure 4.26: Time space diagrams of Rule 104 using different update schemes and memory
factors.

100

4.3 1nCA Spatiotemporal Patterns

Equal Frequency Clocked Random Order Random Independent

Figure 4.27: Time space diagrams of Rule 104 using different update schemes starting from
the same initial configuration (q1 = 01).

101

4. EFFECTS OF ASYNCHRONY ON CELLULAR AUTOMATA

4.3.10 Class 124N

The rules Rule 124 is a Neighbor-Independent rule that simply maintain any initial
configuration over time (i.e. the limiting configuration is equal to the initial configu-
ration. Formally,

∀ q1 ∈ Sn, t > 1, qt = q1 (4.45)

According to the Li-Packard classification, this rules is classified as Fixed point rule and
as Class 1 according to Wolfram. As shown in Figure 4.28, this rule is the most “stable”
of all the rules: the dynamic behavior is not influenced by the update strategy and by
the memory factor.

Synchronous Random Equal Frequency Random Random
Cyclic Clocked Order Idependent

α = 0

α = .55

α = .7

α = .9

Figure 4.28: Time space diagrams of Rule 124 using different update schemes and memory
factors.

4.3.11 Synthesis of the Effects of Asynchrony on 1nCA

In this section we present a synthesis of the effect induced by the different update
schemes on the 1nCA. We can classify the 1nCA according to how much the dynamic
evolution is influence by the update scheme.

Comparing the dynamic behavior of each automata with the synchronous update
scheme with the same automata with a different update scheme, we defined the fol-
lowing 4 classes of asynchrony influence:

102

4.3 1nCA Spatiotemporal Patterns

� AS1 – Not influenced by the update schemes, the dynamic behavior does not
change varying the update scheme.

� AS2 – The Random Independent update scheme perturbs the dynamic behavior.

� AS3 – The Random Independent and Random Order update schemes perturb
the dynamic behavior.

� AS4 – Any update schemes different from synchronous perturbs the dynamic
behavior.

In Table 4.8 is shown the Classification summary.

Table 4.8: Classification summary

Rule Bin Wolfram Li-Packard Class λ Rρ µ Asynchrony
Class Class Sensitive

04 0000 W1 Null 04TNS 0 0 0 AS1
14 0001 W2 Two-Cycle 14T 0.25 0.375 0.5 AS3
24 0010 W2 Two-Cycle 24 0.25 0.25 0.5 AS4
34 0011 W2 Two-Cycle 34N 0.5 0.5 0.5 AS2
44 0100 W1 Fixed-Point 44 0.25 0.25 0.5 AS1
54 0101 W2 Two-Cycle 54S 0.5 0.5 0.5 AS3
64 0110 W3 Chaotic 64T 0.5 0.5 1 AS4
74 0111 W2 Two-Cycle 14T 0.75 0.625 0.5 AS3
84 1000 W1 Null 84T 0.25 0 0.5 AS1
94 1001 W3 Chaotic 64T 0.5 0.5 1 AS4
104 1010 W2 Two-Cycle 104S 0.5 0.5 0.5 AS3
114 1011 W2 Two-Cycle 24 0.75 0.75 0.5 AS4
124 1100 W2 Fixed-Point 124N 0.5 0.5 0.5 AS1
134 1101 W2 Fixed-Point 44 0.75 0.75 0.5 AS1
144 1110 W1 Null 84T 0.75 1 0.5 AS1
154 1111 W1 Null 04TNS 1 1 0 AS1

103

4. EFFECTS OF ASYNCHRONY ON CELLULAR AUTOMATA

104

We can’t solve problems by using the same kind
of thinking we used when we created them.

Albert Einstein 5
MDCA - Multilayered Dissipative

Cellular Automata

5.1 MDCA Model

IN this chapter we proposed a new cellular automata approaches to model, simulate,
and control Adaptive Lighting systems. The proposed model, called Multilayered

Dissipative Cellular Automata (MDCA), is an Asynchronous, Heterogeneous, Multi-
layered, and Dissipative Cellular Automata.

MDCA extends the “classic” cellular automata in several ways. The main charac-
teristics of the models are:

� Asynchrony - The cells can be updated according to several update schemes,
both synchronous and asynchronous. This characteristic is required because the
model is suitable for distributed Adaptive Lighting installation, where there is
no evidence of a global clock.

� Heterogeneity - Cells are heterogeneous, in terms of space of the states and tran-
sition rule.

� Multilayered - The cellular space is a hierarchical structure, deriving from the
structure of the Multilayered Automata Networks (Bandini and Mauri, 1999). A
schematization of the MDCA hierarchical structure is shown in Figure 5.1.

� Openess - MDCA is a Dissipative Cellular Automata (Roli and Zambonelli, 2002)
(Zambonelli et al., 2002), i.e the dynamic behavior of the automata is influenced
by the external environment and influences the external environment. This char-
acteristic is fundamental for the Adaptive Lighting system, that are open system
comprising sensors and actuators.

Such features are useful for designing systems composed of several distributed
interacting components. MDCA can be used both to simulate the behavior of such
distributed systems and to control the real installations. Moreover it can be used in
centralized situations to control peripheral components. In the following sections we
introduce the main elements of the model.

105

5. MDCA - MULTILAYERED DISSIPATIVE
CELLULAR AUTOMATA

level 0

level 1

level 2

composite cells

basic cells

Figure 5.1: Schematization of the MDCA multilayered structure.

5.1.1 Basic Cell

As a cellular system, the fundamental element of MDCA is the cell. As a cellular
system, the fundamental element of MDCA is the cell. There are two kind of cells:
basic cells and composed cells.

The basic cells are basic building block of the MDCA. Elaborate behaviors are de-
fined composing such basic cells. Each basic cell c, schematized in Figure 5.2, is a triple
(Rc,Ec, fc) where

� Rc = {Src,1 , Src,2 , · · · , Src,3} is a finite set of “organs of the cell”, called receptors,
able to respond to external stimulus. Each receptor is characterized by a set of
state that can assume Src,n . The receptor can be “connected” to a transmitter of
an other cell, or to a receptors of the its father cell. When connected, it assume
the value of the other cells external state. A receptor not connected to any other
cells assumes the null state.

� Ec = {Sec,1 , Sec,2 , · · · , Sec,3} is a finite set of states “exposed” to the other cells
(external states);

� fc : Rc → Ec is the transition rule, determining the new value of the external
states.

The receptors and externals set of states are nonempty, finite and ordered set of
state values. The following “primitive” data sets are defined in the model:

� int: signed integer number

� float: floating point number

� boolean = { true, false}

The dimension (in terms of numbers of bits) of the numeric data types depends on
the specific implementations. We introduce other two data sets:

106

5.1 MDCA Model

External state

Transition
function

Receptor 2Receptor 1

Figure 5.2: Schematization of a basic cell.

� number = int ∪ float: a signed integer number or a floating point number

� any = int ∪ float ∪ boolean : any type of data.

MDCA is an open system, in the sense that the dynamic behavior of the automata is
influenced by the external environment and influences the external environment. We
defined the following “special” basic cells:

� sensor cell is a cell that can be forced from the external to change its state;

� actuator cell influences the external environment according to its external state;

� open cell is both a sensor cell and an actuator cell;

An example of MDCA sensors and actuator cells is shown in Figure 5.3. The ex-
ternal state of the sensor cell shown in the example depends on the value obtained by
the ultrasonic distance measurement sensor. In the second example, the activation of
the fog machine depends on the status of the actuator cell.

There are several predefined basic cells. The basic cells set is not intended to be
“minimal”, but to allows the Adaptive Lighting developer to easy compose the de-
sired behavior. Such cells fall into a number of groups:

� Arithmetic Integer (Table 5.1) - This cells performs arithmetic operations on in-
teger numbers.

� Floating Point (Table 5.2) - This cells performs operations on floating point num-
bers. This cells are available only for the MDCA Virtual Machines supporting
the floating point numbers.

� Logic (Table 5.3) - This cells performs bitwise operations, i.e. they operates on
one or two bit patterns at the level of their individual bits.

107

5. MDCA - MULTILAYERED DISSIPATIVE
CELLULAR AUTOMATA

Ultrasonic distance
measurement sensor

External state

The transition
function "reads"

the external sensor

Receptor 2

Receptor 1

Sensor Cell

Receptor 3

Actuator Cell

Fog machine

The DMX
message to be
send to the fog

machine
depends on the
receptors state

Figure 5.3: Schematization of an MDCA sensors and actuator cells.

� Miscellaneous (Table 5.4) - Miscellaneous cells, such as inv cell, that copy the
receptor state to external state, if, equal, and notEqual cells.

The set of basic cells can be extended according to requirements of the specific appli-
cations.

5.1.2 Composite Cell

The composite cells are automata composed of cells, both basic and composed. Each
composite cell c is is a triple (Rc,Ec, fc) where

� Rc = {Src,1 , Src,2 , · · · , Src,3} is a finite set of receptors of the cell able to respond
to external stimulus. Each receptor is characterized by a set of state that can
assume Src,n . The receptor can be “connected” to other cells Transmitter. When
connected, it assume the value of the other cells external state. Each receptor can
be connect the receptor of an internal cell.

� Ec = {Sec,1 , Sec,2 , · · · , Sec,3} is a finite set of external states. The external states
must be connected to the external states of of an internal cell and they assume
the values of the external state they are connected to.

� Cc = {cc,1, cc,2, · · · , cc,n} is a finite set of internal cells (sub–cells).

� Vc ⊂ Cc ∪Rc × Cc ∪ Ec is a set of directed arcs, connecting the receptors with the
sub–cells, the sub–cells together, and the sub-cells to the external states.

108

5.1 MDCA Model

Table 5.1: Arithmetic Integer Basic Cells

Name Receptor Transition rule External State
add r1:int, r2:int e1 = r1 + r2 e1:int
sub r1:int, r2:int e1 = r1− r2 e1:int
mul r1:int, r2:int e1 = r1 ∗ r2 e1:int
div r1:int, r2:int e1 = r1/r2 e1:int
rem r1:int, r2:int e1 = remainder of division of r1 by r2 e1:int
less r1:int, r2:int e1 = r1 < r2 e1:boolean
lessEq r1:int, r2:int e1 = r1 ≤ r2 e1:boolean
great r1:int, r2:int e1 = r1 > r2 e1:boolean
greatEq r1:int, r2:int e1 = r1 ≥ r2 e1:boolean

Table 5.2: Floating Point Basic Cells

Name Receptor Transition rule External State
addF r1:float, r2:float e1 = r1 + r2 e1:float
subF r1:float, r2:float e1 = r1− r2 e1:float
mulF r1:float, r2:float e1 = r1 ∗ r2 e1:float
divF r1:float, r2:float e1 = r1/r2 e1:float
lessF r1:float, r2:float e1 = r1 < r2 e1:boolean
lessEqF r1:float, r2:float e1 = r1 ≤ r2 e1:boolean
greatF r1:float, r2:float e1 = r1 > r2 e1:boolean
greatEqF r1:float, r2:float e1 = r1 ≥ r2 e1:boolean
intToFloat r1:int e1 = convert int r1 to float e1:float
floatToInt r1:float e1 = convert float r1 to int e1:int

Table 5.3: Logic Basic Cells

Name Receptor Transition rule External
State

and r1:any, r2:any e1 = r1 bitwise and r2 e1:any
or r1:any, r2:any e1 = r1 bitwise or r2 e1:any
xor r1:any, r2:any e1 = r1 bitwise xor r2 e1:any
not r1:any, r2:any e1 = r1 bitwise not r2 e1:any

109

5. MDCA - MULTILAYERED DISSIPATIVE
CELLULAR AUTOMATA

Table 5.4: Miscellaneous Basic Cells

Name Receptor Transition rule External
State

inv r1:any r1 e1:boolean
equal r1:any, r2:any r1 = r2 e1:boolean
notEqual r1:any, r2:any r1 6= r2 e1:boolean

if r1:bool, r2:any,
r3:any

e1 =

{
r2 if r1 = true

r3 if r1 = false
e1: any

shiftLeft r1:any, r2:int r1 left shifted by r2 bits e1:any
shiftRight r1:any, r2:int r1 right shifted by r2 bits e1:any

A different update scheme can be associated to each cell. For example, the lower
layer composite cell (composed only of basic cells) can adopt a synchronous scheme.

An example of composed cell is shown in Figure 5.4. In the example, we imple-
mented the the 1NCA Rule 64 as MDCA composed cell. The Rule 64 behavior can
be summarized as: computer the xor between the internal state and, alternatively, the
state of the left and right neighbors. The automaton is characterized by:

� Receptors - Rc = {Src,1 , Src,2}, where r1 ∈ boolean, r2 ∈ boolean connected to the
external state of the left and right cells.

� External states - Ec = {Sec,1 , Sec,2}, where e1 ∈ boolean.

� Sub–cells - Cc = {c1, c2, c3, c4, c5}, the set of internal cells. The initial external state

not

if inv

xor

Receptor 2 Receptor 1

External state

c3 c4

c5

inv

c1

c2

r1 r2

e1

left neighbor right neighbor

left neighbor right neighbor

Figure 5.4: Example of implementation of the 1NCA Rule 64 as MDCA composed cell.

110

5.1 MDCA Model

of all the cells is False.

� Connections - the set of directed arcs, as shown in the figure.

In two cycles this automaton computes as a Rule 64 cell, as shown in Table 5.5

Table 5.5: Dynamic evolution of the automata presented in the example.

t r1 r2 c1 c2 c3 c4 c5 e1
0 True False False False False False False False
1 True False True False True False False False
2 True False True True True False True False
3 True False False True True True False True
4 True False False False False False False False

Considering the Elementary Cellular Automata, introduced by Wolfram (Wolfram,
1982). As shown in Figure 5.5, is very easy to create an MDCA cell that simulate the
behavior of any of the Elementary Cellular Automata.

and

e1

mux

Right Receptor Left Receptor

r1 r2
ECA Rule
number

r3

External State

left neighbor right neighbor

right neighborleft neighbor

2

e1

r1

r2
r3

mux cell

add

mul

add

4

mul

Figure 5.5: Implementation of a parametric Elementary Cellular Automata with MDCA.

5.1.3 Update Schemes

As shown in Chapter 4, the update scheme has a great influence the system behavior.
A “flexible” update scheme is key feature of MDCA. The proposed model supports
several update schemes (e.g. synchronous, cyclic, clocked) by defining two parame-
ters.

The update scheme is determined by the parameters di, pi associated to each cell i.
The parameter di determines the delay (in terms of time step) before the first update.

111

5. MDCA - MULTILAYERED DISSIPATIVE
CELLULAR AUTOMATA

The parameter pi, determines the period of the update of the cell i, i.e. how many time
steps the cell i will wait in order to be updated. Both the parameters are relative to the
container cell. Considering the example depicted in Figure 5.6. The cells c1, c2, c3 are
subcells of the cell c4, the cells c5, c6, c7 are subcells of the cell c8. The update periods
are the following:

d1 = 1, d2 = 2, d3 = .5, d4 = 1, d5 = 1, d6 = 2, d7 = .5, d8 = 2

According to such update scheme, the cells c1, c2, c3 update twice as fast as the cells
c5, c6, c7, because the cell c4 update periods is half than the cell c8.

c1

c2

c3

c5

c6

c7

c4

c8

t

Figure 5.6: Example of cells with different update periods.

As shown in Figure 5.7, varying the two parameters is it possible to obtain the
behavior of the Synchronous, Cyclic, Clocked, and Clocked update schemes. The default
values for the parameter are di = 0 and pi = 1. This setup corresponds to the Syn-
chronous update scheme: all the cells are updated in parallel at each time step. The
Cyclic update schemes are obtained associating to each of the n cells a different value
of di between 0 and n−1, and the same period pi = n. The Clocked update schemes are
characterized by different values of di and pi. The Equal Frequency Clocked is character-
ized by different values of di but the same value of pi for every cells of the automaton.

5.2 MDCA Programming

In this section we describe the MDCA programming language and tools. The first
part of this section introduce the MDCA language, a textual cellular automata pro-
gramming language. The language allows the user to create automata creating new
cells and combining existing cells. In the successive section we present the MDCA
visual programming and the visual editor.

112

5.2 MDCA Programming

synchronous

equal frequency clocked clocked

t = 1

t = 2

t = 3

t = 4

t = 5

t = 6

pi=1
di=0

cyclic

pi=6

d1=0
d2=1
d3=2
d4=3
d5=4
d6=5

c1 c2 c3 c4 c5 c6 c1 c2 c3 c4 c5 c6

c1 c2 c3 c4 c5 c6 c1 c2 c3 c4 c5 c6

pi=6

d1=0
d2=0
d3=1
d4=0
d5=1
d6=2

p1=2 d1=0
p2=4 d2=0
p3=4 d3=1
p4=2 d4=0
p5=3 d5=1
p6=2 d6=2

t

t = 1

t = 2

t = 3

t = 4

t = 5

t = 6

t

t = 1

t = 2

t = 3

t = 4

t = 5

t = 6

t

t = 1

t = 2

t = 3

t = 4

t = 5

t = 6

t

Figure 5.7: An example of different update scheme obtained varying the di and pi parameters.

113

5. MDCA - MULTILAYERED DISSIPATIVE
CELLULAR AUTOMATA

5.2.1 MDCA Language

The MDCA Language is a cellular automata programming language. It allows the
user to create automata creating new cells and combining existing cells.

A MDCA programs consist in a set of cells descriptions. A cell description de-
termines the receptors, sub–cells, and external states composing the cell, the wiring and
update schemes. The order of the elements inside a cell definition is not relevance.
Nevertheless the order of the cells definitions is relevance: all the subcells of a cell
must be defined before the cell itself. An example of cell definition is the following:

cell rule6 {
// Receptors and external state
receptor boolean r1;
receptor boolean r2;
external boolean e1;

// Cells
cell not c1;

cell inv c2;
cell if c3;
cell inv c4;
cell xor c5;

// Initial values
c1.e1 = false;
c2.e1 = false;
c3.e1 = false;
c4.e1 = false;
c5.e1 = false;

// Wiring
c1.e1 -> c2.r1;
c2.e1 -> c1.r1;
c1.e1 -> c3.r1;
r1 -> c3.r2;
r2 -> c3.r3;
c3.e1 -> c5.r1;
c4.e1 -> c5.r2;
c5.e1 -> c4.r1;
c5.e1 -> e1;

}

114

5.2 MDCA Programming

The MDCA syntax is influenced by the Java syntax. MDCA source code is free–form
which allows arbitrary use of whitespace and ends of lines to format code. Comments
may appear either between the delimiters /* and */, or following // until the end of
the line.

A MDCA programs consist in a set of cells definitions. The order of the definition
is not relevant. Each cell definitions begins with the cell keyword followed by the cells
name (identifier) and the cell definition.

Every identifier is made from the following characters, starting with a letter:

� Letters: a–z, A–Z

� Digits: 0–9

� Underscore:

No identifier can be the same as a MDCA keyword or pre–defined cell name. The
MDCA keywords are the following: cell, receptor, external, int, float, boolean, true, false,
null.

Cells definitions are enclosed in braces ({ and }) to limit their scopes. A cell defini-
tions consists in a list of the following elements:

� Receptor Declaration Declaration of a cell receptor, expressed with the following
syntax:

receptor <receptor type> <receptor identifier>;

where the receptor type is on of the built–in data type and receptor identifier is an
identifier. The keywords int, float, and boolean specify built–in data types.

� External State Declaration Declaration of a cell external state, expressed with the
following syntax:

external <external state type> <external state identifier>;

where the external state type is on of the built–in data type and external state iden-
tifier is an identifier.

� Sub–Cell Declaration Declaration of a sub–cell, expressed with the following syn-
tax:

cell <cell type> <cell identifier>;

where the cell type is an identifier of a pre–defined or a user–defined cell type
and cell identifier is an identifier for the sub–cell. The sub–cells scope is limited
to the cell definition.

115

5. MDCA - MULTILAYERED DISSIPATIVE
CELLULAR AUTOMATA

� Initial Value Assignment Assignment of the initial external state of a sub–cell, ex-
pressed with the following syntax:

<sub-cell identifier>.<sub-cell external state identifier> = <literal>;

where sub–cell identifier is an identifier of a sub–cell, sub-cell external state identifier
is an identifier of an external state of the sub–cell, and literal is the value to be
assigned to the external state of the cell. A literal is the source code representation
of a value of a built–in data type. The literals are the numberic literals, floating–
point numbers expressed according to the Java syntax, boolean literal, true and
false, and the null literal, represented by the keyword null.

� Initial Delay Assignment Assignment of the initial delay before the first update of
a sub–cell, expressed with the following syntax:

<sub-cell identifier>.delay = <number>;

where sub–cell identifier is an identifier of a sub–cell and number is the initial delay
in terms of time step.

� Period Assignment Assignment of the update period of a sub–cell, expressed with
the following syntax:

<sub-cell identifier>.period = <number>;

where sub–cell identifier is an identifier of a sub–cell and number is the length of
the period expressed in time step.

� Wiring: Definition of an arc between two cells, or a receptor and a cell or a cell
an an external state. Direct arc between a receptor and an external state are not
allowed.

<source> -> <target>;

where source can be a receptor identifier or a sub–cell receptor identifier and the
target can be an external state identifier of a sub–cell external state identifier. The
sub–cell receptor and external state identifier are expressed with the following
syntax:

<sub-cell identifier>.<receptor/external state identifier>

The syntax diagram for the MDCA language is the following:

116

5.2 MDCA Programming

〈program〉 ::==--
� �� 〈cell definition〉 � -�

〈cell definition〉 ::==-- ‘cell’ 〈identifier〉 ‘{’
� �� � 〈receptor declaration〉� 〈external declaration〉 �� 〈subcell declaration〉 �� 〈subcell initial value〉 �� 〈wiring〉 �� 〈subcell initial delay〉 �� 〈subcell period〉 �

� � ‘}’ -�

〈receptor declaration〉 ::==-- ‘receptor’ 〈basic type〉 〈identifier〉 ‘;’ -�

〈external declaration〉 ::==-- ‘external’ 〈basic type〉 〈identifier〉 ‘;’ -�

〈subcell declaration〉 ::==-- ‘cell’ 〈type〉 〈identifier〉 ‘;’ -�

〈subcell initial value〉 ::==-- 〈identifier〉 . 〈identifier〉 ‘=’ 〈literal〉 ‘;’ -�

〈wiring〉 ::==-- �〈identifier〉 . 〈identifier〉 ‘->’ 〈identifier〉 . 〈identifier〉� 〈identifier〉 ‘->’ 〈identifier〉 . 〈identifier〉 �� 〈identifier〉 . 〈identifier〉 ‘->’ 〈identifier〉 �
� ‘;’ -�

〈subcell initial delay〉 ::==-- 〈identifier〉 . 〈identifier〉 ‘=’ 〈number〉 ‘;’ -�

〈subcell initial period〉 ::==-- 〈identifier〉 . 〈identifier〉 ‘=’ 〈number〉 ‘;’ -�

〈literal〉 ::==-- � 〈number〉� 〈boolean literal〉 �� -�

〈boolean literal〉 ::==-- � ‘true’� ‘false’ �� -�

〈number〉 ::==-- �〈integer number〉� 〈float number〉 �� -�

〈integer number〉 ::==-- �‘-’� �� 〈digit〉
� �� 〈digit〉 � -�

117

5. MDCA - MULTILAYERED DISSIPATIVE
CELLULAR AUTOMATA

〈float number〉 :==-- �‘-’� �� �� �� 〈digit〉 ���. �
� � �� 〈digit〉 � �

� ��

� .
� �� 〈digit〉 � �

� -

- �
� �E�e ����+ ��- �

�� �� 〈digit〉 � �
� -�

〈type〉 :==-- � 〈basic type〉� 〈identifier〉 �� -�

〈basic type〉 :==-- � float� int ��boolean �
� -�

〈identifier〉 ::==-- �〈letter〉� ��
� �� � 〈letter〉� 〈digit〉 �� �

� � -�

〈letter〉 ::==-- �a..z�A..Z �� -�

〈digit〉 ::==-- 0..9 -�

5.2.2 MDCA Visual Programming

Visual Programming refers to any system that allows the user to specify a program in a
two or more dimensional fashion (Myers, 1990). Visual programming languages have
a long history during which there have been many different languages developed with
the common goal of ameliorating the difficulties of programming (Edmonds et al.,
2005). There is no scientific evidence that visual programming is generally better or
easier than text (Goodell et al., 1999). However visual programming languages, such
Max, Pure Data, vvvv are more popular that text languages in designer and artists
communities.

MDCA Visual Programming Editor is a graphical programming environment. Us-
ing the MDCA Visual Programming Editor (MDCA VPE), the MDCA textural lan-
guage is hidden to the user.

118

5.2 MDCA Programming

The user interface of MDCA VPE has one main window and any number of sub–
windows. Each window is a cell editor. Programming through MDCA VPE works
by connecting cells. The editor allows to add, remove and edits the sub–cells, the
receptors, and the external states, and define the wiring.

As shown in Figure 5.8 the user interface is inspired both by Pure Data and Quartz
Composer.

There are several types of elements in the user interface: cell, receptor, external,
value, and comment.

Cells are the basic elements of the visual language, similar to routines in traditional
programming languages. A cell is represented as a rectangle, with the type of the cell
written as title. The text the user types into the title of a cell box determines how
many and what kinds of receptor and externals the box will have. Circles on the cell
represent connections, with receptors on the left side of a cell and externals on the
right side. Each receptors and externals are characterized by a name and a type.

Receptor and external as created writing the words “receptor” or “external” in the
box title. The receptor boxes are characterized by a single receptor with a name and a

Figure 5.8: A screenshot of the MDCA Visual Programming Editor editing the 1NCA Rule
64 cell.

119

5. MDCA - MULTILAYERED DISSIPATIVE
CELLULAR AUTOMATA

type, and external boxes by a single external state.
Value boxes are boxes with a single numeric or boolean value written inside. Such

boxes are used as initial values. They can be connected only to the externals connec-
tions.

Figure 5.9: Example of different types of boxes: a cell of type if, a value true, a comment, a
receptor, and an external state. Circles on the cell represent connections, with receptors on the
left side of a cell and externals on the right side.

5.3 MDCA Environment

In this section we introduce the MDCA Embedded Environment (MDCAee). It is a
run-time environment for the MDCA cells suitable for the class of microcontrollers
typically used in distributed control systems. At a different level of granularities,
the MDCAee node itself can be viewed as a cell of large system, composed of sev-
eral MDCAee nodes. In order to act as an environment for the cells, MDCAee offers
some functionalities of a “traditional” operating system, such as hardware abstrac-
tion, scheduling, memory management, I/O. MDCAee is a simple operating system
designed to run on 8-bit and 16-bit microcontroller. Moreover, it can run as a user
process on a standard desktop operating system. This feature simplified the devel-
opment (and the debug) of MDCA cells. The operating system is written in ANSI C
language, together with a number of short sections of device-dependent code written
in the assembly.

As depicted in Figure 5.10, MDCAee is composed of two layer: the kernel and
the cellular space. The aim of the kernel is to provide the basic functionalities such as
hardware abstraction, scheduling, memory management, I/O to the upper layer. The
cellular space contains all the cells. In the following sections, we introduce the main
components of MDCAee.

5.3.1 Kernel

The MDCAee Kernel is composed of the MDCAe Core and the devices drivers. The
MDCAee Core contains the main modules of the operating system, those are in charge

120

5.3 MDCA Environment

Memory
Manager

IRQ
Handler

Cells
Scheduler/
Manager

D
riv

er
...

D
riv

er
...

C
om

m
D

riv
er

MDCAee Core

MDCAee Kernel

Shell
Cell

Type
2

Cell

Type
1

Cell

Edge
Cell

Type
3

Cell

Cellular Space

...
Api

...
Api

Comm
Api

Type
1

Cell

Actu
ator
Cell

Type
2

Cell

Figure 5.10: Schematization of the main components of MDCAe. The gray rectangles repre-
sent the device-dependents modules.

to share the resources (i.e. the memory and the CPU time) between the cells. The
MDCAee Core comprised:

� Cells Scheduler/Manager, that relays on the interrupt handler. The aim of this
component is manage the cells and invoke the cells update functions.

� Interrupt Handlers are hardware–dependent callback routine whose execution is
triggered by the reception of an interrupt. Interrupt are used both by the device
driver and the scheduler.

� Memory Manager, a very simple heap–based, memory allocator. Heap memory
is an internal memory pool that cells use to dynamically allocate memory as
needed.

The Cells Scheduler/Manager is the most interesting component of the MDCAee
kernel. It is quite different from the scheduler of both the embedded and the desktop
operating systems because MDCAee is ground on cells instead of processes.

The scheduler, invoked by an interrupt hander, cycles on the cells list and execute
the update function for all the cells that need to be updated and are not in inactive state.
To each cell is associated an update frequency. For each cells, if the time passed since
the last update is grater than the waiting period, the update function is executed. For
the composed cell, the subcells are updated according to their initial delay and period

121

5. MDCA - MULTILAYERED DISSIPATIVE
CELLULAR AUTOMATA

parameters, as described in Chapter 5. As shown in Table 5.6, there are 7 update
frequencies; to each update frequencies is associated a waiting period.

Frequencies Very Low Low Medium High Very High
Waiting period 1 s 100 ms 20 ms 5 ms 1 ms

Table 5.6: Cell update frequencies and associated waiting period.

Cell 1 state

Cell 2 state

Cell 3 state

update function 1

update function 2

pointer to
the

memory
state

pointer to
the update

function

update
freque

ncy

High

High

0x100

0x200

0x300 Low

0x100

0x200

0x300

0xFA0

0xFA0

0xFA0

0xFB0

0xFB0

..

..

..

Figure 5.11: The memory structure used by the Cells Scheduler/Manager.

Interrupt handlers are functions that are activated synchronously with peripheral
hardware interrupt sources, CPU exceptions, and software interrupt instructions. In-
terrupt handlers can be defined for each interrupt source. If an interrupt occurs while
a cell update is running, the function is temporarily interrupted and the interrupt
handler (corresponding to the interrupt source that occurred) is executed. All of the
interrupt handlers run at a higher priority than the cells, therefore cells do not run
until the interrupt handler has finished. If multiple interrupt handlers are activated,
task execution does not continue until all of the interrupt handlers have finished pro-
cessing.

To manage the cells waiting period, MDCAee uses a timer interrupt that occurs
at intervals of 1 ms. The timer handler raises flags after 1 ms, when the scheduler is
executed, it checks these flags to determinate which cells need to be updated.

The memory structure used by the Cells Scheduler/Manager is shown in Fig-
ure 5.11. As shown in the figure, to each cell in the list, there are associated a pointer
to the update function, a pointer to the memory area containing the cell state and the
cell update frequency. The update function also determinate the cell type. The update

122

5.3 MDCA Environment

function is a common C function. When it is executed, the pointer to the cell state is
passed as an argument.

There is no process identifier to uniquely identify a cell. In fact, the Cells Sched-
uler/Manager does not provide any function to manage individual cells according
to an id. This is a precise choice in the design of the operating system. The choice
is motivated by the cellular environment metaphor. A cell can destroy itself or its
neighborhood, but cannot have direct effect on distance cells. Moreover, the Cells
Scheduler/Manager provides basic functionalities for executing a function on all the
cells of a particular kind. This function is intended for development, debug, special
modes or emergency response. For example, it can be use for disable all the actuators
cell in response to a not–expected condition, or to disable all the communications cells
during a node setup. The cells can be frozen. If a cell is frozen, its update function will
non be executed.

The memory manager is in charge to dynamically allocate the memory for the
cells, scheduler and drivers. Dynamic memory allocation is important aspect of an
operating system. An efficient dynamic memory allocator improves the performance
of operating systems.

MDCAee nodes can have very different memory and timing requirements to an-
other. A single memory allocation algorithm will only ever be appropriate for a subset
of hardware and applications. In this section we presents three simply memory allo-
cation strategies implemented in the MDCAee.

The operating system can be extended with more advanced memory allocator
schemes designed for embedded devices, such as the algorithm presented in (Min
et al., 2007). A quite old but useful survey on dynamic memory allocation can be
found in (Wilson et al., 1995).

� Simple Memory Allocation is the simplest scheme of all. It does not permit mem-
ory to be freed once it has been allocated. Despite this, it is suitable for a large
number of applications. The algorithm simply subdivides a the heap area into
smaller blocks as requests for memory are made. This scheme can be used if
the application never deletes any cells and the memory required by each cell is
constant after the initial allocation.

� First Fit Memory Allocation algorithm basically extends the Simple Memory Allo-
cation, adding a list of free blocks. When the allocator will receive a request of n
bytes, it will lookup the list for an available block to fit n bytes. The algorithm
select the first block equal or greater than n. This approach will lead to the unde-
sired effect of memory fragmentation (i.e. larger block will be split into smaller
ones to fit the requests and may end up with the impossibility of allocating n

bytes although the sum of all free, but smaller, blocks is greater than n.

� Fixed–Size Blocks Memory Allocator is a simple heap–based memory allocator.
Heap memory is an internal memory pool that cells use to dynamically allo-

123

5. MDCA - MULTILAYERED DISSIPATIVE
CELLULAR AUTOMATA

cate memory as needed. The Memory Manager manages a list of free blocks of
memory of the same size. A benefit of the fixed–size block memory pool is that
this approach do not need to store allocation metadata for each allocation block.
This provides a substantial space savings for small allocation. Allocating and
releasing of memory blocks is performed in constant time.

The device drivers act as an abstraction layer between the hardware and the cells.
The drivers are composed of a standard interface and an hardware–specific imple-
mentation. The driver interfaces is common to different implementation, so the cells
code is independent from the underlying hardware (for example, the same cell update
function can be compiled on for a microcontroller or a desktop, without modification).

Communications can be used for:

� exchanging state information with the other nodes, mimic the interaction mech-
anism of the cells;

� acquiring external (not on-board) inputs (e.g. motion sensor, light sensors);

� controlling external devices (e.g. DMX-controlled lights);

� monitoring and control the nodes.

MDCAe does not provide any high level communication facilities. It simply pro-
vides functions for sending messages or bytes over communication lines.

There are two kind of communication line defined in MDCAee: message-oriented
and char-oriented. The kind of the communication line does not depends on the com-
munication technology but depends on the communication line aim.

The message-oriented communication lines are primary used to exchange state
between the cells. Char-oriented communication line are used to interact with external
devices, and for monitor and control the nodes.

In the developed prototype, only serial communication driver is present. The de-
veloped drivers supports both message–oriented and char-oriented lines. The char-
oriented communication is used to manage and debug the nodes, the message-oriented
communication is used to share information between the neighbors.

5.3.2 Cellular Space

The cellular space is the environment in which the MDCA cell exist and their update
functions are periodically executed. The main component of the cellular space is the
MDCA virtual machine, which executes the cell bytecode. The bytecode is the form of
cells definitions that the MDCA Virtual Machine understands. Through the MDCAc
compiler, implemented in the Java language, the MDCA source code is compiled into
MDCA bytecode.

Consider the following cell definition:

124

5.3 MDCA Environment

cell pow2 {
receptor float r1;
external float e1;

cell mul c1;
c1.e1 = 0;
c1.delay = 0;
c1.period = 1;

r1 -> c1.r1;
r1 -> c1.r2;
c1.e1 -> e1;

}

The MDCAc compiler translates the code above into MDCA bytecode as follows:

pow2,1,1,null,10,mul,0,1,3,3,0

Such bytecode correspond to the following representation:

0 1 2 3 4 5 6 7 8 9 10
name #rcpts #exts r1 e1 c1 c1.delay c1.period c1.r1 c1.r2 c1.e1
pow2 1 1 null 10 mul 0 1 3 3 0

At the first position there is the identifier of the cell, that the numbers of receptors
and external. After there are a cell for each receptors and externals, followed by the
subcells. Each subcell is characterized by cell identifier (position 5), initial delay and
period (positions 6 and 7), receptors (positions 8 and 9) and externals (position 10).
The elements at positions 4, 8 and 9 are pointers: they indicates the location in which
the values is contained. For example, the value 10 in the position 4 indicates that the
external value of the pow2 cell at position 10. The external value of the main cell and
the receptor of the subcells are always pointers.

The cellular space is in charge of managing the cell lifecycle: creation, updating
and destroying. In the cellular space, in any moment of its life a cell is characterized
by its life-state. As shown in Figure 5.12, there are 5 life-states for a cell:

� Created: a just created cell. When the cell will be added to the schedule, its state
become Waiting or Frozen;

� Updating: in this state, the CPU is executing the update function of the cell. Only
one cell can be in this state at any point in time, while all the other states can be
adopted simultaneously by several cells,

� Waiting: all prerequisites for a transition into the running state exist, and the cell
only waits for allocation of the processor;

125

5. MDCA - MULTILAYERED DISSIPATIVE
CELLULAR AUTOMATA

� Frozen: in this state the cell is passive and can be activated or destroyed only by
the other cells;

� Destroyed: a destroyed cell, waiting to be deleted from the memory.

Created

Destroyed

Waiting Updating

Frozen

created
active

created
frozen

destroy

destroydestroy
enable/
disable disable

update/end update

Figure 5.12: The life-states of a cell.

The Cellular Space is also the link between the cells and the external environment.
In fact, through the cellular space, the cells interact with the device drivers and the
dynamic behavior of the automata is influenced by the external environment and in-
fluences the external environment.

For the cells, the device drivers are “special” basic cells:

� sensor cell is a cell that can be forced from the external to change its state;

� actuator cell influences the external environment according to its external state;

� open cell is both a sensor cell and an actuator cell;

The MDCAee cellular space supports all the MDCA basic cell. Moreover it is pos-
sible to extend the basic cell defining (through the C language) new basic cells specific
for the hardware and application.

126

There’s a legal term for a problem in public space: something that might
draw people to an area–say, across train tracks–where they might be caused
harm. It’s called a “public nuisance”. I wouldnt mind being called that for my
life’s work.

Vito Acconci 6
The Indianapolis Project

IN this chapter we describe an Adaptive Lighting system aimed at improving the
everyday experience of pedestrians and people passing through the related envi-

ronment.
A specific scenario related to the definition and development of an adaptive illu-

mination facility is introduced, and a automata based model supporting the specified
behavior for the illumination facility is defined. The presented system represents a
first tentative step toward a cellular automata-based model for Adaptive Lighting.

A prototype of an environment supporting designers in the definition of the rele-
vant parameters for this model and for the overall illumination facility is also intro-
duced.

6.1 The Scenario

The Acconci Studio was founded in 1988 to help realize public-space projects through
experimental architecture and public art efforts. The method of Acconci Studio is
on the one hand to make a new space by turning an old one inside-out and upside-
down; and on the other hand to insert within a site a capsule that grows out of itself
and spreads into a landscape. They treat architecture as an occasion for activity; they
make spaces fluid, changeable, portable. They have recently worked on a person-
made island in Graz, a plaza in Memphis, a gallery in NY, a clothing store in Tokyo, a
building façade in Milan, a park on a street median in Vienna, and a skate park in San
Juan, Puerto Rico.

The Studio has been involved in a project for the renovation of a tunnel in the Vir-
ginia Avenue Garage in Indianapolis. The tunnel is currently mostly devoted to cars,
with relatively limited space on the sidewalks and its illumination is strictly func-
tional. Several photos of the Virginia Avenue Garage are shown in Figure 6.1.

The planned renovation for the tunnel comprises a set of interventions along the
direction defined by the following narrative description of the project:

The building bursts with color. Well no, not really: it might be more re-
alistic to say that color spills out of the building, color oozes out of the

127

6. THE INDIANAPOLIS PROJECT

Figure 6.1: Photos of the Virginia Avenue Garage, Indianapolis.

building, color leaks out. The Studio has a disagreement here; Nate, who’s
spent some time in the garage, says that, during the day, so much sunlight
comes in that any color would pale, white out. I don’t want to believe that
yet; I want to feel sure, at least for the time being, that – even if sunlight
blots out the color at each end – there’s enough of a middle that the passage
through the building can hold its color, be its color.

The passage through the building should be a volume of color, a solid of
color. It’s a world of its own, a world in itself, separate from the streets
outside at either end. Walking, cycling, through the building should be
like walking through a solid, it should be like being fixed in color.

The color might change during the day, according to the time of day: pink
in the morning, for example, becomes purple at noon becomes blue, or
blue-green, at night. This world-in-itself keeps its own time, shows its
own time in its own way.

The color is there to make a heaviness, a thickness, only so that the thick-
ness can be broken. The thickness is pierced through with something,
there’s a sparkle, it’s you that sparkles, walking or cycling though the pas-
sage, this tunnel of color. Well no, not really, it’s not you: but it’s you that
sets off the sparkle – a sparkle here, sparkle there, then another sparkle in-
between – one sparkle affects the other, pulls the other, like a magnet – a

128

6.1 The Scenario

point of sparkle is stretched out into a line of sparkles is stretched out into
a network of sparkles.

These sparkles are above you, below you, they spread out in front of you,
they light your way through the tunnel. The sparkles multiply: it’s you
who sets them off, only you, but – when another person comes toward
you in the opposite direction, when another person passes you, when a car
passes by – some of these sparkles, some of these fire-flies, have found a
new attractor, they go off in a different direction.

But these aren’t fireflies. They’re LED lights in a network, a mesh, a struc-
ture; the lights aren’t moving with you, it’s just that different lights are
flashing in sequence, they go on-and-off linearly, radially, maybe they spi-
ral as they go on-and-off. . . But the lights themselves aren’t moving: it’s
as if the fireflies are pinned to their mesh of structure. Yes, you cause the
lights; the lights aren’t really swarming around you, following you, mov-
ing ahead of you and lighting your way – it’s just that you’re turning lights
on-and-off as you move.

So we’d better be worried here; or at least we’d better be concerned. We
know that you’ll see the structure: the lights will light up the structure –
the structure might be almost as visible as the lights. It’s all a trick, and
everybody can see through it. So does that mean we shouldn’t be doing
this, we shouldn’t be trying to do what we know we can’t do, we can’t
make the lights themselves move, like a swarm of insects, like a flock of
baby birds. . .

Instead of doing what we can’t do, let’s do all we can. Instead of trying to
hide the structure, let’s admit the structure, and revel in the structure. . .

Picture a nighttime sky of branches: there’s a jungle of branches, a bramble,
a tangle of branches, above you and beside you. As you walk, as you cycle,
something stirs in the branches: a swarm of fireflies is moving, lighting
up, through the branches. But maybe you’re not even thinking of branches
anymore, don’t think of fireflies: this night is blue-green, it’s a purple night,
a pink night – everything is more abstracted here and now. You’re in a
tangle, a ravel, a knot, the complex is swarming with particles of light, the
particles of light are swarming around you. . .

The above narrative description of the desired adaptive environment comprises
two main effects of illumination:

� An overall effect of uniformly coloring the environment through a background,
ambient light that can change through time, but slowly with respect to the move-
ments and immediate perceptions of people passing in the tunnel.

129

6. THE INDIANAPOLIS PROJECT

Figure 6.2: Screenshots of a graphical animation showing the desired visual effects.

� A local effect of illumination reacting to the presence of pedestrians, bicycles,
cars and other physical entities, also depicted in a graphical elaboration of the
desired visual effect shown in Figure 6.2.

The first type of effect can be achieved in a relatively simple and centralized way,
requiring in fact a uniform type of illumination that has a slow dynamic. The second
point requires instead a different view on the illumination facility. In particular, it must
be able to perceive the presence of pedestrians and other physical entities passing in
it, in other words it must be endowed with sensors. Moreover, it must be able to
exhibit local changes as a reaction to the outputs of the sensors, providing thus for a
non uniform component to the overall illumination. The overall environment must be
thus split into parts, proper subsystems.

However, these subsystems cannot operate in isolation, since one of the require-

130

6.2 A Network of Sensors and Actuators

Figure 6.3: Armature with lights viewed at eye level.

Figure 6.4: Armature with lights viewed from above.

ments is to achieve patterns of illumination that are local and small, when compared
to the size of the tunnel, but that can have a larger extent than the space occupied by
a single physical entity (“sparkles are above you, below you, they spread out in front
of you, they light your way through the tunnel”). The subsystems must thus be able
to interact, to influence one another to achieve more complex illumination effects than
just providing a spotlight on the occupied positions.

6.2 A Network of Sensors and Actuators

The installation is composed of an armature that will hold up the swarm lighting. The
armature, shown in Figures 6.3 and 6.4 is made of ribs of bent steel pipe, approxi-
mately 5 cm in diameter spaced at approximately 1.2 meters apart. The upper portion
of these ribs is suspended from the concrete structure of the building.

Between these ribs, 1.2 cm diameter steel conduit serves a dual function of holding
the LEDs and protecting the wiring. The wiring for the in air swarm lighting is chan-
neled through the conduit and then though the ribs to a compartment that houses the

131

6. THE INDIANAPOLIS PROJECT

Figure 6.5: A representation of the physical structure of a cell and the cells connections.

microcontrollers and motion sensors.
The lighting system is created using networked cells, shown in Figure 6.5. To re-

duce installation time and price, these grids will be pre-fabricated off site and assem-
bled on site later. These pre-fabricated cells will each house a microcontroller, a sensor,
and a set of LED lights. Each cell has four communication line on the edges.

The designed system is an homogeneous peer system. As shown in Figure 6.6,
every controller has the responsibility of managing the sensors and actuators belong-
ing to a fixed area of the space. Controllers are homogeneous in terms of hardware
and software capabilities. Every controller is connected to a motion sensor, which
roughly covers the controlled area, some LEDs (about 40 LED lights) and neighboring
controllers.

6.3 The Proposed Approach

The control of presented application can be achieved with a centralized control sys-
tem (i.e. a central processor unit coordinates all the lights according to the state of
the sensors) or a distributed control system. For this kind of that installation, a dis-
tributed control system is suitable and more natural, especially because the installa-
tion is composed of several components, with some degree of local control and global
interactions.

Such control system can be schematized as in Figure 6.7. Each node of the system
is composed of a control, a programmable device with an internal state (a persistence
or volatile memory). A node can be connected to several sensors and actuators. Gen-
erally, in distribute control systems, the node are connected in a networks. Through
the networks, the nodes exchange messages, in order to coordinate their activities.

The proposed approach adopts a Cellular Automata model to realize the distributed
control system able to face the challenges of the previously presented scenario.

132

6.3 The Proposed Approach

Motion
Sensor

Neighbor
Controlled

area

Controller
Communication

line

Controlled
area

Light

Neighbor

Figure 6.6: A schematization of the architecture of the cells.

Internal
State

Sensors Actuators

Environment

Controller

ActionsPerceptions

Controllers
Networks

Figure 6.7: Schematization of a distributed control system constituted of homogeneous nodes.

133

6. THE INDIANAPOLIS PROJECT

In the proposed architecture, every node is a cell of an automata that can commu-
nicate only with its neighbors, processes signals from sensors and it controls a pre-
defined set of lights associated to it. The approach is totally distributed: there is no
centralized control and no hierarchical structuring of the controllers, nor from a logical
point of view neither from a physical one.

In the following sections, each of the components of the proposed approach will
be described in details.

6.3.1 System Architecture

The proposed architecture is composed of four layers:

� inter-controller communication layer;

� intra-controller layer;

� sensors layer;

� actuators layer.

As shown in Figure 6.8, the external layer (level 2) is the communication layer be-
tween the controllers of the system. Each controller is an automata network of two
nodes. One node is a sensor communication layer and represents a space in which
each sensor connected to the microcontroller has a correspondent cell. The other node
represents the actuators layer in which the cells pilot the actuators (lights, in our case).
Since the external layer is a physical one and every cell is an independent microcon-
troller, it cannot be assumed that the entrire network is synchronized. In same cases,
a synchronous network can be constructed (for example, a single clock devices can
be connected to each microcontrollers or the microcontrollers can be synchronized by
a process without a master node), but the most general case is an asynchronous net-
work.

6.3.2 Sensors Layer

The Sensor Layer is a Level 0 Dissipative Automata. As previously introduced, it is
composed of a single cell, since only one sensor is connected to each microcontroller.
It is a Dissipative Automata because the internal state of the cell is influenced by the
external environment. The state of the cell is represented by a single numerical value
vs ∈ N8bit, where

N8bit ⊂ N0,∀x : x ∈ N8bit ⇒ x < 28 (6.1)

The limit value was chosen for performance reasons because 8-bit microcontrollers
are widely diffused and they can be sufficiently powerful to manage this kind of situ-
ation. The value of vs is computed as

134

6.3 The Proposed Approach

Level 2
Inter-controller
communication

Level 1
Intra-controller
communication

Level 0
Actuators Layer

Level 0
Sensors Layer

Figure 6.8: The proposed automata network.

vs(t+ 1) = vs(t) ·m+ s(t+ 1) · (1−m) (6.2)

where m ∈ R, 0 ≤ m ≤ 1 is the memory coefficient that indicates the degree of
correlation between the previous value of vs and the new value, s(t) ∈ N8bit is the
reading of the sensor at the time s(t). If the sensor is capable of distance measuring,
s(t) is inverse proportional to the measured distance (so, if the distance is 0, the value
is 255, if the distance is∞ the value is 0). If the sensor is a motion detector sensor (it
able to signal 1 if an object is present or 0 otherwise) s(t), s(t) is equal to 0 if there is
not detected motion, c in case of motion, where c ∈ N8bit is a constant (in our tests, 128
and 192 are good values for c).

6.3.3 Diffusion Rule

In this section we describe the diffusion rule, that is used to propagate the sensors
signals through the system. At a given time, every level 2 cell is characterized by an
intensity of the signal, v ∈ N8bit. Informally, the value of v at time t + 1 depends of
the value of v at time t and on the value of vs(t + 1), to capture both the aspects of
interaction with neighboring cells and the memory of the previous external stimulus
caused by the presence of a physical entity in the area associated to the cell.

The intensity of the signal decreases over time, in a process we call evaporation. In
particular, let us define εevp(v) as the function that computes the quantity of signal to
decrement from the signal and is defined as

εevp(v) = v · e1 + e0 (6.3)

where e0 ∈ R+ is a constant evaporation quantity and e1 ∈ R, 0 ≤ e1 ≤ 1 is the
evaporation rate (e.g. a value of 0.1 means a 10% evaporation rate).

135

6. THE INDIANAPOLIS PROJECT

The evaporation function evp(v), computing the intensity of signal v from time t
to t+ 1, is thus defined as

evp(v) =

{
0 if εevp(v) > v

v − εevp(v) otherwise
(6.4)

The evaporation function is used in combination with the neighbors’ signal inten-
sities to compute the new intensity of a given cell. We first present the formula for a
regular neighborhood and than we generalize to the irregular structure.

t = 0 t = 10

t = 20 t = 30

Figure 6.9: An example of the dynamic behavior of a diffusion operation. The signal intensity
is spread throughout the lattice, leading to a uniform value; the total signal intensity remains
stable through time, since evaporation was not considered.

6.3.3.1 Regular neighborhood

The automaton is contained in the finite two-dimensional square grid N2. We suppose
that the cell Ci,j is located on the grid at the position i, j, where i ∈ N and j ∈ N.
According to the von Neumann neighborhood (Gutowitz, 1991), a cell Ci,j (unless it is
placed on the border of the lattice) has 4 neighbors (as shown in figure 6.10), denoted
by Ci−1,j , Ci,j+1, Ci+1,j , Ci,j−1. For simplicity, we numbered the neighbors of a cell
from 1 to 4, so for the cell Ci,j , N1 is Ci−1,j , N2 is Ci,j+1, N3 is Ci+1,j , and N4 is Ci,j−1

136

6.3 The Proposed Approach

At a given time, every cell is characterize by an intensity of the sensor signal. Each
cell is divided into four parts (as shown in Figure 6.10), each part can have a different
signal intensity, and the overall intensity of the signal of the cell is the sum of the
parts intensity values. The state of each cell Ci,j of the automaton is defined by Ci,j =

〈v1, v2, v3, v4〉 where v1, v2, v3, v4 ∈ N8bit represent the intensity of the signal of the
4 subparts. Vi,j(t) represents the total intensity of the signals (i.e. the sum of the
subparts’ signal intensity) of the cell i, j at time t. The total intensity of the neighbors
are denoted by VN1, VN2, VN3, and VN4. The signal intensity of the subparts and the
total intensity are computed with the following formulas:

vj(t+ 1) =

{
evp(V (t))·q+evp(VNj(t))·(1−q)

4 if ∃Nj
evp(V (t))

4 otherwise
(6.5a)

V (t+ 1) =

4∑
i=1

vi(t+ 1) (6.5b)

where q ∈ R, 0 ≤ q ≤ 1 is the conservation coefficient (i.e. if q is equals to 0, the
new state of a cell is not influenced by the neighbors’ values, if it is equals to 0.5 the
new values is a mean among the previous value of the cell and the neighbors’ values,
if it is equals to 1, the new value does not depend on the previous value of the cell but
only from the neighbors). The effect of this modeling choice is that the parts of cells
along the border of the lattice are only influenced through time by the contributions
of other parts (that are adjacent to inner cells of the lattice) to the cell’s intensity.

C(i,j-1)

C(i-1,j) C(i,j) C(i+1,j)

C(i,j+1)

X

Y

V1

V2

V3

V4

Figure 6.10: On the left, the von Neumann neighborhood of the cell Ci,j , on the right, the
internal structure of a cell of the regular automaton.

6.3.3.2 Irregular neighborhood

The irregular structure automata is a generalization of the regular one. The automaton
is composed of cell numbered from 1 to N , so we use Ci for 0 ≤ i ≤ N to indicate the
i-th cell. Every cell Ci can have an arbitrary number of neighbors Li, 0 ≤ Li ≤ L ≤
N − 1 where Li is the numbers of neighbors of the cell Ci and L = max(Li) is the

137

6. THE INDIANAPOLIS PROJECT

maximum numbers of neighbors of every cell the system. Neighboring cells of cell i
can be denoted as Ni,l.

As for the regular neighborhood case, each cell is divided into L parts, each part
can have a different signal intensity, and the overall intensity of the cell’s signal is the
sum of the intensity values of the parts.

The state of each cell Ci of the automaton is defined as Vi =
∑Li

l=0 vi,l where vi,l ∈
N8bit represent the intensity of the signal of the L subparts. Finally, the intensity of
each neighboring cell of Ci is denoted by Vi,l.

The signal intensity of the subparts and the total intensity can thus be computed
according to the following formulas:

vi,l(t+ 1) =

{
evp(Vi(t))·q+evp(Vi,l(t))·(1−q)

L if ∃Ni,l
evp(Vi(t))

Li
otherwise

(6.6a)

Vi(t+ 1) =

Li∑
l=1

vi,l(t+ 1) (6.6b)

In the real system, the maximum number of neighbors (L) is constrained by the
number of available inputs on the microcontrollers.

6.3.4 Actuators Layer

The cells of the actuator layer determinate the actuators actions. In this project the
actuators are LED lamps that are turned on and of according the the state of the cell.
Instead of controlling a single LED from a cell, every cell is related to a group of LEDs
disposed in the same (small) area.

In the case of regular neighborhood, each controlled area in divided into 9 sub-
areas and each sub-area contains a group of LEDs controlled by the same actuators
layer cell. The state of each cell is influenced only by the state of the signal intensity
of the upper layer cell. The correlation between the upper layer cell subparts and the
actuators layer cells is shown in Figure 6.11.

The state of the actuators cells A1..A9, Aj ∈ N8bit is computed with the following
formula:

138

6.4 The Design Environment

A5 A1 A6

A4 A9 A2

A8 A3 A7

v1

v2

v3

v4

v1

v2

v3

v4

v1 + v2

2

v2 + v3

2

v3 + v4

2

v + v1

2

∑vn
n=1

4

4

Figure 6.11: Correlation between the upper layer cell subparts and the actuators layer cells.

Ai(t+ 1) =



vi(t+ 1) 1 ≤ i ≤ 4
v4(t+ 1) + v1(t+ 1)

2
i = 5

v1(t+ 1) + v2(t+ 1)

2
i = 6

v2(t+ 1) + v3(t+ 1)

2
i = 7

v3(t+ 1) + v4(t+ 1)

2
i = 8

1

4

4∑
j=1

vj(t+ 1) i = 9

(6.7)

There are different approaches, called “coloring strategies”, to associate LED ac-
tivity (i.e. being on or off, with which intensity) to the state of the related actuator cell.
An example of coloring strategy consists in directly connecting the lights’ intensity
to the signal level of the correspondent cell; more details on this will be given in the
following Section.

6.4 The Design Environment

The design of a physical environment (e.g. building, store, square, road) is a compos-
ite activity, comprising several tasks that gradually define the initial idea into a de-
tailed project, through the production of intermediate and increasingly detailed mod-
els. CAD softwares, and also 3D modeling applications are generally used to define
the digital models for the project and to generate photo realistic renderings and ani-
mations. These applications are extremely useful to design a lights installation like the
one related to this scenario, but mainly from the physical point of view.

In order to generate a dynamics in this kind of structure, to grant the lights the
ability to change illumination intensity and possibly color, it is also possible to “script”
these applications in order to characterize lights with a proper behavior. Such scripts,
created as text files or with graphical logic editors, define the evolution of the overall
system over time. These scripts are however heavily dependent on the adopted soft-
ware and they are not suitable for controlling real installations, even though they can

139

6. THE INDIANAPOLIS PROJECT

be used to achieve a graphical proof of concept. Another issue is that these tools are
characterized by a “global” approach, whereas the system is actually made up of in-
dividual microcontroller program acting and interacting to achieve the global desired
effect.

In this experience, our aim was to facilitate the user in designing the dynamic be-
havior of a lights installation by supporting the envisioning of the effects of a given
configuration for the transition rule guiding lights; therefore we created an ad-hoc
tool, also shown in Figure 6.13, comprising both a simulation environment and a
graphical parameters configurator. This tool support the specification of the values
for some of the parameters of the transition rule, affecting the global behavior of the
overall system. The integrated simulation helps understanding how the changes of
the single parameters influence the overall behavior of the illumination facility: every
changed parameter is immediately used in the transition rule of every cell.

CA model for
adaptive illumination

Pedestrian and car
simulations Visualization system

Actual sensors
(motion or presence)

Simulated
data

Field data CA model for
adaptive illumination

Actuators'
states

Actual actuators
(lights)

Actuators'
states

Design
support
configuration

System
management
configuration

Parameters

Parameters

Figure 6.12: A schema describing the modules of the design support system prototype.

The design environment is composed of two main modules, also shown in Fig-
ure 6.12: a simulation environment (that is in turn decomposed into a pedestrian and
cars simulation module and an adaptive lighting module) and a visualization facility.
In the following paragraphs these modules will be described.

6.4.1 The Simulation Environment

The simulation environment actually comprises three main modules:

� lights simulator;

� pedestrians simulator;

� cars simulator.

The light simulator simulates the network of controllers with sensors and actuators.
The pedestrians and cars simulator simulates the environment in which the adaptive

140

6.4 The Design Environment

Figure 6.13: Screenshot of the design environment. The front windows is the 2D visualization
of the pedestrian, car an lights simulation. The background windows is the 3D view of the
environment, including the architectural structures, lights, pedestrians the cars.

lighting facility is situated and the pedestrians and cars situated in it. The two simula-
tions are connected: in particular, the state of the sensors is influenced by the position
of the simulated pedestrians and cars.

The lights simulator simulates the dynamic evolution of the cells over the time,
according to the transition rule. In order to simulate an asynchronous system, an
independent thread of control, that re-evaluates the internal state of the cell every 200
ms is associated to each cell. At the simulation startup, each thread starts after a small
(< 1 s) random delay, in order to avoid a sequential activation of the threads, that is
not realized in the real system. The operating system scheduler introduces additional
random delays during both the activation and the execution cycle of the threads.

The pedestrian and car simulator is based on the MMASS (Bandini et al., 2006)
model. This module actually feeds the self-organization model with simulated field
data. The previously described model managing the self-organization of the illumina-
tion facility will react according to the current occupation of the space in the environ-
ment and according to its own parameters.

In this way, the designer can effectively envision the interaction between the peo-
ple an the specified adaptive environment. The simulation environment allows the de-
signer in configuring the network, defining the type, number, position of the sensors
and actuators, and in specifying the behavior of the controllers, by means of defining
the parameters of the model.

141

6. THE INDIANAPOLIS PROJECT

6.4.2 The Visualization Facility

The design environment provides both 2D and 3D views. The 2D visualization is
interactive: it is possible to define an action event to be fired when an object is clicked
(e.g. simulate the perception of a pedestrian when the user clicks on a sensor). This is
useful because allows the designer to test the system behavior before specifying in an
extensive way a pedestrian simulation scenario.

The 3D visualization is useful not only to “understand” the global behavior of the
system but also to visualize how the pedestrian and the car drivers perceive the lights
system. The 3D visualization is based on the jMonkey engine1,an open source 3D
engine written in Java. The engine simplifies the development of 3D applications. It
allows loading several 3D model formats and supports many high level effects (e.g.
lens flare, particle systems).

In the 3D view, there are three different modes of exploration of the space:

� free look;

� pedestrian’s viewpoint;

� car driver’s viewpoint.

During the simulation, the user can switch between the modes with the keyboard.
In the free look mode, the user can freely navigate the 3D space with the mouse, chang-
ing his/her point of view. He/she is not subjected to the gravity force, so he/she
can move up/down and observer the simulation from an arbitrary point of view, as
shown in Figure 6.13.

Figure 6.14: Two screenshots of the 3D view: on the left, an example of pedestrian’s viewpoint,
on the right, car driver’s viewpoint.

In the pedestrian’s viewpoint mode, the user takes the perspective of one of the
pedestrians walking in the environment. The user cannot move freely because the

1http://www.jmonkeyengine.com/

142

6.4 The Design Environment

position is given by the simulated pedestrian, but it can “rotate the head” with the
mouse. The car driver’s viewpoint is similar but the viewpoint of is centered on a car
driver, as shown in Figure 6.14.

The 3D visualization system also simulates the position of the sun during the dif-
ferent hours of the day, as shown in Figure 6.15. It is important for the design of
the lights system because the amount of environment light influence the person abil-
ity to see the lights effects. The daylight simulation is based on the model presented
in Preetham et al. (1999).

Figure 6.15: Two screenshots of the 3D view representing the environment in the late evening.

143

6. THE INDIANAPOLIS PROJECT

144

An amazing invention - but who would ever want to use one?

made a call from Washington to Pennsylvania with Alexander Graham
Bell’s telephone, patented on 7 March 1876 7

From Theory to Product: Digital Footprints

7.1 Toward a Modular Adaptive Lighting System

IN this chapter we propose a Modular Adaptive Lighting System composed of sev-
eral independent modules. Each module is an Adaptive Lighting system, equipped

with proximity sensors, and RGB leds.

Figure 7.1: A rendering of the proposed Adaptive Lighting module.

A module can be used alone or together with other modules. The modules are
square shaped and they can be combine like “bricks” in order to create a larger light-
ing system. The modules can be combined in several different ways, as shown in
Figure 7.5. For example the modules can be arranged around a window, they can be
used to create an aesthetic composition on a wall, they can be put along a passage or
on the floor.

An existing product, similar to the proposed one, is Color Kinetics R© iColor R©Mod-

145

7. FROM THEORY TO PRODUCT: DIGITAL FOOTPRINTS

Figure 7.2: Color Kinetics R© iColor R© Module FX with 36 leds (15.2 cm x 15.2 cm).

ule FX1. The module, shown in Figure 7.2, is a 15.2 cm square modular unit intended
for versatile designs that call for individually controllable points of light, including
intricate patterns, images, animation and video. Each panel incorporates 9 or 36 in-
dividually addressable RGB leds on a circuit board employing a microchip that in-
tegrates power, communication, and control to individual nodes, across one unit or
a multi-unit installation. The modules are compatible with most Color Kinetics con-
trollers and third-party DMX controllers. This system is similar to the proposed one,
however there are a deep difference: these panels do not include any sensors and are
intended to be controlled by as a display device by and external centralized controller.

Helen Evans and Heiko Hansen made a modular light system for architecture
called Light Brix, shown in Figure 7.3. It is a modular light system that responds to
touch: through the electromagnetic fields of the human body. The hexagonal units can
be assembled in any shape and modulated to compose multiple lighting situations.

The MIT Media Lab developed a set of smart blocks, shown in Figure 7.4, called
“siftables” (Merrill et al., 2007) (Ullmer and Schmidt, 2007). The blocks are small,
self-contained input and display devices wirelessly link together to form an indepen-
dent network. Users feed information into the system simply by shuffling the siftables
around, while the siftables themselves relay information back to the user. Each siftable
measures about 5-centimetres square and is fitted with an LCD screen, battery, mem-
ory, an accelerometer to detect motion, a Bluetooth radio to communicate with other
computers, and an infrared link to detect the presence and orientation of neighboring
siftables.

Siftables are wireless battery power devices that can be easily recombined, the pro-
posed modular Adaptive Lighting device can be assembled in the desired shaped dur-
ing the installation (or the reconfiguration) of the system. Depending on the type of

1Color Kinetics and iColor are registered trademarks of Color Kinetics Incorporated.

146

7.2 Hardware Prototype

Figure 7.3: Light Brix by Helen Evans and Heiko Hansen.

installation, the modules can be connected each others only by magnetic force or they
can be installed on a frame. As shown in Figure 7.1, each module has power and com-
munication lines on its edge: when two modules are side by side, they communicate
together.

7.2 Hardware Prototype

In 2009 CSAI (Complex System and Artificial Intelligence Research Centre) started a
collaboration with Egicon (stratEGIC innovatiON)1, an italian electronic engineering
company that has been founded by people with many years of experience in electronic
business. Egicon mission is to support the customer with innovative and effective
solutions from the design to the production. Egicon wants to be the strategic partner
for innovation.

The aim of the collaboration between CSAI an Egicon is the development of a
prototype of a hardware platform suitable for a modular Adaptive Lighting. The pro-
totypal board developed by the Egicon engineers has the following components:

� 16 RGB leds

� 16 proximity sensors

� a speaker

1http://www.egicon.com

147

7. FROM THEORY TO PRODUCT: DIGITAL FOOTPRINTS

Figure 7.4: MIT Media Lab Siftables (5 cm x 5 cm).

148

7.2 Hardware Prototype

Figure 7.5: Examples of different compositions of the modular Adaptive Lighting system.

149

7. FROM THEORY TO PRODUCT: DIGITAL FOOTPRINTS

Figure 7.6: The front and back sides of the module prototype. In the front picture, the white
elements are the RGB leds, the black elements are the proximity sensors. In the back picture, the
central element is the Fujitsu F2MC-16LX microcontroller, on the edges there are the connector,
on top left the speaker.

� 4 communication and power connector

� a Fujitsu F2MC-16 microcontroller

The RGB led contains three leds (red, green and blue) encased in one shell. It
looks like a single white led except that it has four leads - one for the common ground
connection and one for each led. The current through each of the leds determines its
light output (i.e. its contribution to the total output color). By controlling the current
through each led it is possible to obtain different light colors.

The proximity sensors are optical proximity switch that reacts at a typical working
distance of 20 mm. The sensors allow the users to interact with the Adaptive Lighting
system simply touching the glass covering the lights, without pushing any buttons.

As depicted in Figure 7.7, the board has 4 connectors on the edges. Each connector
carries both a bi-directional serial communication line and a power line, so only one
of the module of an Adaptive Lighting system need to be directly connected to the
power supply. Moreover each connectors provide a shared one-wire serial line for
communication with an external system (e.g. a pc). This communication line is used
to send command from an external controller to all the boards (e.g. for reprogramming
the boards).

The board is driven by a Fujitsu F2MC-16LX microcontroller. The family of F2MC-
16LX series microcontrollers serve for consumer (e.g. digital cameras, handheld elec-
tronic product), white goods (e.g. washing machines, refrigerators), industrial (e.g.
utility meters, air-conditioning systems), and automotive (e.g. body control networks,

150

7.3 Software Implementation

Back View

Power

One-wire
Serial

Figure 7.7: Schematization of the connections between 9 modules.

dashboards, chassis networks) applications. The MB90347 microcontroller is a 16 bit
CISC running at 24MHz and has 128Kb Flash and 6Kb RAM.

7.3 Software Implementation

The prototype is a MDCA Embedded Environment (MDCAee) comprising cells of
different types, as depicted in Figure 7.8. The main cells types are:

� Body

� Actuator

� Edge

� Command Shell

In the rest of this section we describe we describe the default behavior of such cells.
Moreover is possible to reprogram such cells in order to obtain different behaviors.

151

7. FROM THEORY TO PRODUCT: DIGITAL FOOTPRINTS

Body
Cell

Body
Cell

Body
Cell

Body
Cell

Body
Cell

Body
Cell

Body
Cell

Body
Cell

Body
Cell

Body
Cell

Body
Cell

Body
Cell

Body
Cell

Body
Cell

Body
Cell

Body
Cell

Edge
cell

Edge
cell

Edge
cell

Edge
cell

Shell
Cell

Actuator
Cell

Actuator
Cell

Actuator
Cell

Actuator
Cell

Actuator
Cell

Actuator
Cell

Actuator
Cell

Actuator
Cell

Actuator
Cell

Actuator
Cell

Actuator
Cell

Actuator
Cell

Actuator
Cell

Actuator
Cell

Actuator
Cell

Actuator
Cell

Body
Cell

Actuator
Cell

Edge
cell

Proximity
Sensor
Driver

Actuator
Driver

Serial Port
Driver

Figure 7.8: On the left, the schematization of the module cells. The connections between the
Shell Cell and the other cells are not shown for simplicity. On the right, a detail about the
connection between the cells and the drivers.

7.3.1 Body Cell

Each body cells is characterized by three “substances levels”. To introduce a similarity
with the biological cell, each substance level represent the amount of a specific chem-
ical substance inside the cell (e.g. CA++). The three “virtual substances” are named
Q1, Q2 and Q3. Internally, the levels of the three substance (respectively s1, s2 and s3)
are represented by an integer number between 0 and 216 − 1.

The amount of each substance is influenced by three processes:

� Stimulus Response

� Evaporation

� Diffusion

The Stimulus Response is the reaction of the cell to an external stimulus. The body
cells are able to react to external stimuli because they are connected to the proximity
sensors. Each body cell is connected to a different sensor. When a sensor is stimulated,
the levels of the virtual substance of the related cell are increased in response to the
stimolus. Each substance level si, i ∈ {1, 2, 3} is incremented by a quantity defined by
the parameter inci, an integer number between 0 and 255.

The Evaporation is the process of gradual disappearance of a substance, i.e. the
level of the substances decreases over time. Let us define εi(v) as the function that
computes the quantity of substance i to decrement from the substance level and is
defined as

εi(s) = s · e(1)i + e
(0)
i (7.1)

152

7.3 Software Implementation

where e(0)i ∈ R+ is a constant evaporation quantity and e(1)i ∈ R, 0 ≤ e(1)i ≤ 1 is the
evaporation rate (e.g. a value of 0.1 means a 10% evaporation rate).

The evaporation function evpi(s), computing the level of substance s from time t
to t+ 1, is thus defined as

evpi(s) =

{
0 if εi(s) > s

s− εi(s) otherwise
(7.2)

The Diffusion process simulates the diffusion of the substances through the cells.
The body cell are disposed in a regular two-dimensional 4×4 square grid. We suppose
that the cell Cx,y is located on the grid at the position i, j, where i ∈ N and j ∈ N.
According to the von Neumann neighborhood (Gutowitz, 1991), a cell Cx,y has the
4 neighbors Cx−1,y, Cx,y+1, Cx+1,y, Cx,y−1. Also the cells on the border have four
neighbors: one or two of neighbors are Edge Cells.

For simplicity, we numbered the neighbors of a cell from 1 to 4, so for the cell Cx,y,
N1 is Cx−1,y, N2 is Cx,y+1, N3 is Cx+1,y, and N4 is Cx,y−1. The substance level i of
the neighbor cell n is indicated with sn,i. The mean of the substance levels sni of the
neighbors cell is computed as:

sni =

4∑
n=1

sn,i

c
(7.3)

where c is the number of connected neighbors. A neighbor is considered connected if
it is a Body Cell or if it is a Edge Cell connected to a neighborhood module.

The new value of each substance level s1, s2, s3 is computed as:

new si =
sni · q + si · (1− q)

2
(7.4)

where q ∈ R, 0 ≤ q ≤ 1 is the sensitivity coefficient (i.e. if q is equals to 0, the
new state of a cell is not influenced by the neighbors values, if it is equals to 0.5 the
new values is a mean among the previous value of the cell and the neighbors value,
if it is equals to 1, the new value does not depend on the previous value of the cell
but only from the neighbors). The computed value are rounded to integer before the
assignment of the value to the substance level.

Examples of the effect of the different parameters on the amount of substance are
shown in Figures 7.9, 7.10 and 7.11.

153

7. FROM THEORY TO PRODUCT: DIGITAL FOOTPRINTS

0 2 4 6 8 10
0

100

200

t

si

C0,0

0 2 4 6 8 10
0

100

200

t

si

C1,0

0 2 4 6 8 10
0

100

200

t

si

C2,0

0 2 4 6 8 10
0

100

200

t

si

C0,1

0 2 4 6 8 10
0

100

200

t

si

C1,1

0 2 4 6 8 10
0

100

200

t

si

C2,1

0 2 4 6 8 10
0

100

200

t

si

C0,2

0 2 4 6 8 10
0

100

200

t

si

C1,2

0 2 4 6 8 10
0

100

200

t

si

C2,2

0 2 4 6 8 10
0

100

200

t

si

C0,0

0 2 4 6 8 10
0

100

200

t

si

C1,0

0 2 4 6 8 10
0

100

200

t

si

C2,0

0 2 4 6 8 10
0

100

200

t

si

C0,1

0 2 4 6 8 10
0

100

200

t

si

C1,1

0 2 4 6 8 10
0

100

200

t

si

C2,1

0 2 4 6 8 10
0

100

200

t

si

C0,2

0 2 4 6 8 10
0

100

200

t

si

C1,2

0 2 4 6 8 10
0

100

200

t

si

C2,2

Figure 7.9: Examples of dynamic evolution of substance level on 9 cells. The cell C0,0 is
stimulated after 0.3 s, the sensitivity parameter q is equal to 0.1, inci = 255. On the top
without evaporation e(0) = 0, e(1) = 0, on the bottom with evaporation e(0) = 0.2 e(1) = 0.

154

7.3 Software Implementation

0 2 4 6 8 10
0

100

200

t

si

C0,0

0 2 4 6 8 10
0

100

200

t

si

C1,0

0 2 4 6 8 10
0

100

200

t

si

C2,0

0 2 4 6 8 10
0

100

200

t

si

C0,1

0 2 4 6 8 10
0

100

200

t

si

C1,1

0 2 4 6 8 10
0

100

200

t

si

C2,1

0 2 4 6 8 10
0

100

200

t

si

C0,2

0 2 4 6 8 10
0

100

200

t

si

C1,2

0 2 4 6 8 10
0

100

200

t

si

C2,2

0 2 4 6 8 10
0

100

200

t

si

C0,0

0 2 4 6 8 10
0

100

200

t

si

C1,0

0 2 4 6 8 10
0

100

200

t

si

C2,0

0 2 4 6 8 10
0

100

200

t

si

C0,1

0 2 4 6 8 10
0

100

200

t

si

C1,1

0 2 4 6 8 10
0

100

200

t

si

C2,1

0 2 4 6 8 10
0

100

200

t

si

C0,2

0 2 4 6 8 10
0

100

200

t

si

C1,2

0 2 4 6 8 10
0

100

200

t

si

C2,2

Figure 7.10: Examples of dynamic evolution of substance level. The cells C0,0,C0,1,C1,0 and
C1,1 are stimulated after 0.3 s, the sensitivity parameter q is equal to 0.3, inci = 255. On
the top with constant evaporation e(0) = 0.5, e(1) = 0, on the bottom with proportional
evaporation e(0) = 0 e(1) = 0.01.

155

7. FROM THEORY TO PRODUCT: DIGITAL FOOTPRINTS

0 2 4 6 8 10
0

100

200

t

si

C0,0

0 2 4 6 8 10
0

100

200

t

si

C1,0

0 2 4 6 8 10
0

100

200

t

si

C2,0

0 2 4 6 8 10
0

100

200

t

si

C0,1

0 2 4 6 8 10
0

100

200

t

si

C1,1

0 2 4 6 8 10
0

100

200

t

si

C2,1

0 2 4 6 8 10
0

100

200

t

si

C0,2

0 2 4 6 8 10
0

100

200

t

si

C1,2

0 2 4 6 8 10
0

100

200

t

si

C2,2

0 2 4 6 8 10
0

100

200

t

si

C0,0

0 2 4 6 8 10
0

100

200

t

si

C1,0

0 2 4 6 8 10
0

100

200

t

si

C2,0

0 2 4 6 8 10
0

100

200

t

si

C0,1

0 2 4 6 8 10
0

100

200

t

si

C1,1

0 2 4 6 8 10
0

100

200

t

si

C2,1

0 2 4 6 8 10
0

100

200

t

si

C0,2

0 2 4 6 8 10
0

100

200

t

si

C1,2

0 2 4 6 8 10
0

100

200

t

si

C2,2

Figure 7.11: Examples of dynamic evolution of substance level. On the top, the cell C1,1 is
stimulated two times (after 0.3 s and after 4.5), q = 0.4, inci = 255, e(0) = 0, e(1) = 0.005.
On the bottom the same cell is stimulated for 3 s, q = 0.2, inci = 255, e(0) = 0, e(1) = 0.02.

156

7.3 Software Implementation

7.3.2 Actuator Cell

The actuators cells control the leds activities. Each actuator cell is connected to exactly
one RGB led and one body cell. The actuator cell control the led according to the
substance level of the Body cell. The RGB led has three independently controllable led:
one red, one green and one blue. The led actuation is controlled by an intensity value
between 0 and 255. The three intensity values, denoted with lr, lg, lb, are computed as:

lr = s1 · cr (7.5a)

lg = s2 · cg (7.5b)

lb = s3 · cb (7.5c)

where s1, s2, s3 are the substance amounts and cr, cg, cb are the three components
of the color parameter.

7.3.3 Edge Cell

Body
Cell

Body
Cell

Body
Cell

Body
Cell

Edge Cell

Mirror
Cell

Mirror
Cell

Mirror
Cell

Mirror
Cell

Serial Port
Driver

Body
Cell

Body
Cell

Body
Cell

Body
Cell

Edge Cell

Mirror
Cell

Mirror
Cell

Mirror
Cell

Mirror
Cell

Serial Port
Driver

Module 1 Module 2

Bi-directional
Serial Line

Figure 7.12: Schematization of the interactions between the edge cells and the body cells.

The aim of the Edge Cells is to communicate with the other modules. Internally,
each edge cells acts has 4 “mirror” cells connected to the near body cell. A schema-
tization of the mirror cell is shown in Figure 7.12. For the body cells, the mirror cells
appear identical to the other body cell, i.e. each mirror cell exposes three substances
levels. The mirror cells act as a remote copies of the body cell connected on the other
side of the serial connection. Through the mirror cell, the body cells values are send

157

7. FROM THEORY TO PRODUCT: DIGITAL FOOTPRINTS

over the serial connection the other module. The activity of the edge cells can be reas-
sumed in two tasks:

� Transmission task - During the transmission task, the values of the body cells
connected to the edge cell are serialized in a message. The message is send over
the serial line by the serial driver.

� Reception task - A message received through the serial driver is deserialized and
the values of the body cells of the other module are copied into the mirror cell.

7.3.4 Command Shell Cell

The developed prototype provides a command-line shell for interacting with the Adap-
tive Lighting system. The users are able to interact (e.g. for debugging and configur-
ing) with the cells through a serial terminal. The command shell is implemented as a
particular cell that receives the commands from the serial line, executes the command,
and sends the response to the terminal. The serial line used by the shell is a one wire
serial connection shared by all the cell. This means that a command sent over the serial
connection is received to all the modules belonging to the same installation.

In order to send command to specific modules, each modules is characterized by a
16-bit address. When a command is preceded by a module address (represented as a
hexadecimal number), all the modules with a different address ignore the command.
For example, the following command

ff ev0 10

is interpreted only by the module with address 255 (FF in in hexadecimal) and dis-
carded by the other modules. All the lines starting with the # character are discarded.
In order to avoid that a response from a module is interpreted as a command from
another module (because the modules are connected through a one wire serial con-
nection), all the responses generated by the modules start with the # character. After
the # character, each response contains the address of the module. For example, the
following message

#10 r 64 g 128 b 64

was generated by the module with address 16 (10 in hexadecimal)).
The following is the list of the available commands:

help Display helpful information about builtin commands. This comand does not
accept any parameters. Example:

help
#10 color

158

7.3 Software Implementation

#10 help
#10 ev0
#10 ev1
#10 inc
#10 sens
#10 sn
#10 edge
#10 ps
#10 prox

color Display or set the components (cr, cg, cb) of the color parameter. This values are
composed with the substance levels in order to control the RGB leds. The color com-
ponents are represented as integer number between 0 and 255. Example of displaying
the color parameter:

color
#10 r 64 g 128 b 64

Example of setting a new value for the color parameter:

color 255 0 0
#10 r 255 g 0 b 0

ev0 Display or set the e(0)i parameters (constant evaporation). There is a separate
value of the parameter for each substance. If the command is invoked without pa-
rameters, the current values of the parameter are displayed. If it is invoked with one
parameter, the same new value is assigned to each e

(0)
i parameters. To set a differ-

ent value for each substance, invoke the command with 3 arguments. The parameters
range is an integer number between 0 and 255. Example of displaying the evaporation
e
(0)
i :

ev0
#10 16 16 16

Example of settings e(0)1 to 16, e(0)2 to 20, and e(0)3 to 23:

ev0 16 20 23
#10 16 20 23

ev1 Display or set the e(1)i parameters (proportional evaporation). There is a sepa-
rate value of the parameter for each substance. If the command is invoked without
parameters, the current values of the parameter are displayed. If it is invoked with

159

7. FROM THEORY TO PRODUCT: DIGITAL FOOTPRINTS

one parameter, the same new value is assigned to each e(1)i parameters. To set a differ-
ent value for each substance, invoke the command with 3 arguments. The parameters
range is an integer number between 0 and 255. Example of displaying the evaporation
e
(1)
i :

ev1
#10 0 0 0

Example of settings e(1)1..3 to 32:

ev1 32
#10 32 32 32

inc Display or set the inci parameters, the substance increments in response to sen-
sors stimulus. If the command is invoked without parameters, the current values of
the parameter are displayed. If it is invoked with one parameter, the same new value
of the increment is assigned to each inci parameters. To set a different vale for each
channel, invoke the command with 3 arguments. Example of displaying inci:

inc
#10 40 40 40

Example of settings inc1..3 to 32:

inc 32 32 32
#10 32 32 32

sens Display or set the q parameter (sensitivity). The value of the parameter is an
integer number between 0 and 255. The value 0 corresponds to q = 0, the value 255
corresponds to q = 1. Example of displaying the parameter:

sens
#10 40

Example of settings the sensitivity parameter to 51 (q = 0.2):

sens 51
#10 51

sn Display or set the substance intensities of each body cell of the module. Example
of displaying the substance intensities:

sn
#10 0x0000 31219 31219 31219
#10 0x0001 31151 31151 31151

160

7.3 Software Implementation

#10 0x0002 31142 31142 31142
#10 0x0003 31103 31103 31103
#10 0x0004 31151 31151 31151
#10 0x0005 31107 31107 31107
#10 0x0006 31102 31102 31102
#10 0x0007 31060 31060 31060
#10 0x0008 31142 31142 31142
#10 0x0009 31102 31102 31102
#10 0x000a 31097 31097 31097
#10 0x000b 31052 31052 31052
#10 0x000c 31103 31103 31103
#10 0x000d 31060 31060 31060
#10 0x000e 31052 31052 31052
#10 0x000f 30975 30975 30975

Example of settings the substance intensities to 128 for all the substances and all the
cells:

sn 128

edge Display the information about the edge cells. For each edge cells, the command
reports the edge direction, the serial line, transmission and reception status, and the
state of internal mirror cells. Example:

edge
#10 direction: 1
#10 line: 3
#10 tx/rx: rt
#10 0x00ff 0 0 0
#10 0x00ff 0 0 0
#10 0x00ff 0 0 0
#10 0x00ff 0 0 0
#10 direction: 2
#10 line: 4
#10 tx/rx: rt
#10 0x00ff 0 0 0
#10 0x00ff 0 0 0
#10 0x00ff 0 0 0
#10 0x00ff 0 0 0
#10 direction: 3
#10 line: 1
#10 tx/rx: rt

161

7. FROM THEORY TO PRODUCT: DIGITAL FOOTPRINTS

#10 0x00ff 0 0 0
#10 0x00ff 0 0 0
#10 0x00ff 0 0 0
#10 0x00ff 0 0 0
#10 direction: 0
#10 line: 2
#10 tx/rx: rt
#10 0x00ff 0 0 0
#10 0x00ff 0 0 0
#10 0x00ff 0 0 0
#10 0x00ff 0 0 0

ps The ps command displays lines containing information about all the cells of the
module. It also displays the total number of cells in the modules and the amount of
free memory. Example:

ps
#10 n update state s mem
#10 ------------------------------
#10 0 0x404a80 0x000000 m 0
#10 1 0x401fff 0x409374 m 76
#10 2 0x401c4e 0x4093c0 m 8
#10 3 0x401fff 0x4093c8 m 76
#10 4 0x401c4e 0x409414 m 8
#10 5 0x401fff 0x40941c m 76
#10 6 0x401c4e 0x409468 m 8
#10 7 0x401fff 0x409470 m 76
#10 8 0x401c4e 0x4094bc m 8
#10 9 0x401fff 0x4094c4 m 76
#10 10 0x401c4e 0x409510 m 8
#10 11 0x401fff 0x409518 m 76
#10 12 0x401c4e 0x409564 m 8
#10 13 0x401fff 0x40956c m 76
#10 14 0x401c4e 0x4095b8 m 8
#10 15 0x401fff 0x4095c0 m 76
#10 16 0x401c4e 0x40960c m 8
#10 17 0x401fff 0x409614 m 76
#10 18 0x401c4e 0x409660 m 8
#10 19 0x401fff 0x409668 m 76
#10 20 0x401c4e 0x4096b4 m 8
#10 21 0x401fff 0x4096bc m 76

162

7.3 Software Implementation

#10 22 0x401c4e 0x409708 m 8
#10 23 0x401fff 0x409710 m 76
#10 24 0x401c4e 0x40975c m 8
#10 25 0x401fff 0x409764 m 76
#10 26 0x401c4e 0x4097b0 m 8
#10 27 0x401fff 0x4097b8 m 76
#10 28 0x401c4e 0x409804 m 8
#10 29 0x401fff 0x40980c m 76
#10 30 0x401c4e 0x409858 m 8
#10 31 0x401fff 0x409860 m 76
#10 32 0x401c4e 0x4098ac m 8
#10 33 0x405775 0x409bb4 m 40
#10 34 0x405775 0x409d0c m 40
#10 35 0x405775 0x409e64 m 40
#10 36 0x405775 0x409fbc m 40
#10 37 0x403d35 0x000000 m 0
#10 38 0x401380 0x000000 m 0
#10 39 0x4013c1 0x000000 d 0
#10 40 0x404df0 0x40a114 m 8
#10 number of cells: 41
#10 free memory: 852

prox Display the status of the proximity sensors. Example:

prox
#10 0 0
#10 1 0
#10 2 0
#10 3 0
#10 4 0
#10 5 0
#10 6 0
#10 7 0
#10 8 0
#10 9 0
#10 10 0
#10 11 0
#10 12 0
#10 13 0
#10 14 0

163

7. FROM THEORY TO PRODUCT: DIGITAL FOOTPRINTS

#10 15 0
#10 0x0000

serial connection

Adaptive Lighting Modules

access point

mobile
device

wifi

gateway

ethernet

Figure 7.13: Connection between the configuration interface running on an iPhone and an
adaptive lighting installation.

7.4 The Configuration Interface

In this section we present a prototypal application allows to configure a modular adap-
tive lighting system from an iPhone or an iPod Touch. We chosen these devices be-
cause they are multi-touch handheld devices with a large display covering most of
the top surface and they have a wifi connection. In fact, the configuration interface in-
teracts with the adaptive lighting installation though wifi, as depicted in Figure 7.13.
Moreover the proposed application can be easy ported to different hardwares, both
mobile devices and dedicated embedded system.

The main menu, shown in Figure 7.14, is the first menu displayed when the pro-
gram is opened. Starting from the main menu, the user has access to various configu-
ration.

The stimulus response configuration interface allows the user to set the inci parame-
ters, i.e. the amounts of virtual substance to be added to the cells when a sensor is
stimulated. The user can individually set the parameters using slider bars.

The diffusion control interface (Figure 7.15) allows the user to set the sensitivity coef-
ficient using a slider bar. The largest part of the screen is devoted to the simulation of
the effect of the different values of the parameter. The multi-touch screen allows the
user to stimulated the cells touching them.

The evaporation configuration interface, shown in Figure 7.16, allows to set the
parameters regarding the constant and proportional evaporation (i.e. e(0)1..3 and e

(1)
1..3).

A graph in the interfaces allows to visualize the effect of the different configurations.

164

7.4 The Configuration Interface

Figure 7.14: Screenshots of the main menu of the configuration application.

The actuations library, shown in Figure 7.17, allows to enable different actuation
cells. The behavior of the default actuator cells is described in Section 7.3.2. Other
behaviors can be defined through MDCA cell definitions. This interfaces allows to
chose the desire behavior and to configure them. In the proposed screenshot is shown
the only configurable parameter of the default behavior: the color. Moreover different
actuator cells can have others user-settable parameters.

The reaction library, shown in Figure 7.18, allows to enable different reaction cells.
A reaction cells is a cell that “reacts” to the presence (or absence) of a substance, con-
verting one or more substances into other substance. In the default configuration of
the modular lighting system, reaction cells are not present. An example of cellular
automata for reaction-diffusion systems is presented in Weimar (1997a). As for the ac-
tuator cells, the reaction cells behaviors can be defined through MDCA cell definitions.
Each kind of reaction cell can have several user-settable parameters.

The application can simulate an installation composed of several lighting mod-
ules, as shown in Figure 7.18. The simulation take care of the parameters configured
throughs the other forms and display the dynamic behavior of the cells. The user can
stimulate the cells touching the screen, in order to test how they react to the stimuli.
Finally the configuration can be saved on the devices and deployed in a real installa-
tion.

165

7. FROM THEORY TO PRODUCT: DIGITAL FOOTPRINTS

Figure 7.15: Screenshots of the stimulus response configuration interface (on the left) the
diffusion control interface (on the right).

Figure 7.16: Screenshots of the evaporation configuration interface.

166

7.4 The Configuration Interface

Figure 7.17: Screenshots of the actuations library (on the left) and configuration of the default
actuation scheme (on the right).

Figure 7.18: Screenshots of the reactions library (on the left) and configuration simulation (on
the right).

167

7. FROM THEORY TO PRODUCT: DIGITAL FOOTPRINTS

7.5 Considerations

This chapter introduced a prototype of a MDCA-based modular adaptive lighting sys-
tem. The proposed system is currently being developed. An hardware prototype has
been developed by Egicon. This prototype is important both for testing the validity
of the proposed model for the realization of real adaptive lighting installation and to
demonstrate the concept of modular adaptive lighting to the designers and the poten-
tial users.

Future work is intended to identify and build the infrastructure required for en-
abling designers and final users to independently create and configure lighting instal-
lation. One of such tools is the proposed configuration interfaces for the iPhone and
iPod Touch. Such interface needs to be extended allowing to easy configure the pa-
rameters and the shape of the installation. However the proposed interfaces shown
that controlling adaptive lighting installation can be easy also for non-expert users.

168

The whole is more than the sum of its parts.

Aristotle, Metaphysica 10f-1045a 8
Conclusions and Future Developments

8.1 Conclusion

THE starting point of this work was the following question: is it possible to con-
trol in a comfortable way Adaptive Lighting systems with a cellular distributed

control system in order to take advantage of the cellular systems’ qualities?
In order to address this question, several specific objectives has been defined. This

section highlights the accomplished objectives.

OBJECTIVE 1 To define a cellular automata model suitable for distributed control and in
particular for the control of Adaptive Lighting installations.

The proposed model, called Multilayered Dissipative Cellular Automata (MDCA),
is an Asynchronous (i.e. the cells can be updated according to several update schemes,
both synchronous and asynchronous), Heterogeneous (i.e cells are heterogeneous, in
terms of space of the states and transition rule), Multilayered (i.e. cellular space is
a hierarchical structure), and Dissipative (i.e the dynamic behavior of the automata
is influenced by the external environment and influences the external environment)
Cellular Automata.

Such features are useful for designing systems composed of several distributed
interacting components. MDCA can be used both to simulate the behavior of such
distributed systems and to control the real Adaptive Lighting installations. Adaptive
Lighting is in fact a challenging Ambient Intelligent application and a positive result
in the above direction represent a starting point for a more general application even in
other scenarios.

169

8. CONCLUSIONS AND FUTURE DEVELOPMENTS

OBJECTIVE 2 To investigate the effect of the asynchronous nature of cellular distributed
control systems, in order to understand the problematics deriving from the adoption of an
asynchronous model that is much more adequate to distributed systems than a synchronous
one.

We analyzed several cellular automata update schemes presented in literature (e.g.
Random order, Fixed Random Order, Interlaced order, Synchronous Scheme, Random
Independent, Random Order, Cyclic, Clocked) and outlined a tentative classification
of such schemes. To the best of our knowledge, this is the first update schemes’ classi-
fication.

In order to study the effects of the different update schemes, we introduced a class
of very simple CA, called One Neighbor Binary Cellular Automata (1nCA). We pre-
sented the effects of several update schemes on this class and classified the automata
according to how much the dynamic evolution is influence by the update scheme.

OBJECTIVE 3 To build a prototype of a real Adaptive Lighting installation in order to verify
it the proposed model is suitable.

During the Indianapolis Project we developed a first tentative step toward a cel-
lular automata-based model for Adaptive Lighting. During the project, we worked
with the designer of the Acconci studio in order to deeply understand the light de-
signers’ requirements. Our aim was to facilitate the user in designing the dynamic
behavior of a lights installation by supporting the envisioning of the effects of a given
configuration for the transition rule guiding lights; therefore we created an ad-hoc
tool, comprising both a simulation environment and a graphical parameters configu-
rator. This tool support the specification of the values for some of the parameters of
the transition rule, affecting the global behavior of the overall system. The integrated
simulation helps understanding how the changes of the single parameters influence
the overall behavior of the illumination facility: every changed parameter is immedi-
ately used in the transition rule of every cell. This experience with the prototype lead
us to conclude that it is feasible to control Adaptive Lighting installation through the
proposed CA model. This work was published in Bandini et al. (2008) and Bandini
et al. (2009).

170

8.1 Conclusion

OBJECTIVE 4 To define a programming language suitable for creating control systems with
the proposed model.

In order to enable the users to define by theirself the cells’ behavior, we define
a textual and a visual programming languages. The textual programming language,
MDCA Language is a cellular automata programming language that allows the user
to create automata creating new cells and combining existing cells. MDCA Visual Pro-
gramming Editor is a graphical programming environment for the MDCA Language,
but using this editor, the textural language is hidden to the user. A visual program-
ming language was required because visual programming languages are popular in
communities of designer and artists.

OBJECTIVE 5 To create a cellular execution environment suitable for the class of microcon-
trollers typically used in distributed control systems.

In order to effectively the MDCA model and programming language for the con-
trol of real Adaptive Lighting installation, we developed a run-time environment for
the MDCA cells suitable for the class of microcontrollers typically used in these sys-
tems. The runtime environment offers some functionalities of a “traditional” oper-
ating system (e.g. as hardware abstraction, scheduling, memory management, I/O).
In fact, it can be considered simple operating system designed to run on 8-bit and
16-bit microcontroller. The environment was successfully tested on different micro-
controllers.

OBJECTIVE 6 To design an Adaptive Lighting system module based on the proposed model
suitable for different adaptive lighting installations.

In 2009 CSAI (Complex System and Artificial Intelligence Research Centre) started
a collaboration with Egicon, an italian electronic engineering company, for designing
and developing an modular lighting system based on MDCA. The aim of the collab-
oration between CSAI an Egicon is the development of a prototype of a hardware
platform suitable for a modular Adaptive Lighting.

In collaboration with Egicon, we had developed a Modular Adaptive Lighting Sys-
tem composed of several independent modules, equipped with proximity sensors,
and RGB leds guided by the proposed model. A module can be used alone or to-
gether with other modules. The modules are square shaped and they can be combine
like “bricks” in order to create a larger lighting system.

Also, we had developed a prototypal application allows to configure a modular
adaptive lighting system from iPhone and iPod Touch devices.

171

8. CONCLUSIONS AND FUTURE DEVELOPMENTS

8.2 Future Developments

The work that has been presented in this thesis can be further continued in other di-
rections. Let us describe some of them:

� Further investigation of the effect of asynchronicity. In addition, we expect that
the model can also be useful for further studying the emergence of collective
behavior of asynchronous cellular automata.

� To adopt the MDCA approach in other Ambient Intelligence scenarios, e.g.:

– Dynamic Wayfinding To develop a dynamic wayfinding system, equipped
with sensors and actuators, that provides to the pedestrians adaptive indi-
cations for reaching the building’s exit according to the current state of the
path (e.g. crowded or dangerous areas).

– Demain Control Ventilation Demand-Control Ventilation (DCV) is a method
of controlling the ventilation of a space based on a continuously monitoring
of the CO2 level, in the same way the thermostats regulate the amount of
cooling or heating supplied to a building space. MDCA can be adopted to
this scenario to create intelligent ventilation devices able to interact with the
other facilities of the building (e.g. the access control system). Each node
is responsible to maintain the required air quality in a fixed region of the
space but could communicate with the neighborhood MDCA nodes.

172

Bibliography

Aiello, M. and Dustdar, S. (2008). Are our homes ready for services? a domotic infras-
tructure based on the web service stack. Pervasive and Mobile Computing, 4(4):506 –
525.

Albin, P. S. (1975). The Analysis of Complex Socioeconomic Systems. D. C. Health and
Company/Lexington Books, Lexington, MA.

Albin, P. S. and Foley, D. K. (1999). Barriers and bounds to rationality: Essays on
economic complexity and dynamics in interactive systems. J. Artificial Societies and
Social Simulation, 2(4).

Aldana, M., Coppersmith, S., and Kadanoff, L. P. (2003). Boolean dynamics with random
couplings, pages 23–89. Springer-Verlag.

Allen, B., van Berlo, A., Ekberg, J., Fellbaum, K., Hampicke, M., and Willems, C. (2001).
Design Guidelines on Smart Homes. COST 219bis guidebook.

Alonso-Sanz, R. (2003). Reversible cellular automata with memory: patterns starting
with a single site seed. Physica D, 175(1–2):1–30.

Alonso-Sanz, R. (2004). One-dimensional, r=2 cellular automata with memory. Inter-
national Journal of Bifurcation and Chaos, 14(9):3217–3248.

Alonso-Sanz, R. (2006). The beehive cellular automaton with memory. Journal of Cel-
lular Automata, 1(3):195–211.

Alonso-Sanz, R. (2007). A structurally dynamic cellular automaton with memory.
Chaos, Solitons & Fractals, 32(4):1285–1295.

Alonso-Sanz, R. and Cardenas, J. P. (2008). On the effect of memory in one-
dimensional k=4 automata on networks. Physica D, 237(23):3099–3108.

Alonso-Sanz, R. and Martı́n, M. (2002). One-dimensional cellular automata with mem-
ory: patterns starting with a single site seed. International Journal of Bifurcation and
Chaos, 12(1):205–226.

Alonso-Sanz, R. and Martin, M. (2003). Elementary cellular automata with memory.
Complex Systems, 14(2):99–126.

Araya, A. A. (1995). Questioning ubiquitous computing. In CSC ’95: Proceedings of the
1995 ACM 23rd annual conference on Computer science, pages 230–237, New York, NY,
USA. ACM.

Axelrod, R. (1984). The Evolution of Cooperation. Basic Book, New York, NY.

173

BIBLIOGRAPHY

Balzer, R. (1967). An 8-state minimal time solution to the firing squad synchronization
problem,. Information and Control, 10(1):22 – 42.

Bandini, S., Bonomi, A., and Vizzari, G. (2009). Simulation supporting the design of
self-organizing ambient intelligent systems. In SAC ’09: Proceedings of the 2009 ACM
symposium on Applied Computing, pages 2082–2086, New York, NY, USA. ACM.

Bandini, S., Bonomi, A., Vizzari, G., Acconci, V., DeGraaf, N., Podborseck, J., and
Clar, J. (2008). A ca-based self-organized illumination facility. In Brueckner, S. A.,
Robertson, P., and Bellur, U., editors, SASO, pages 485–486. IEEE Computer Society.

Bandini, S., Cattaneo, G., and Tarantello, G. (1992). Distributed ai models for percola-
tion. In Intelligent Scientific Computation, AAAI Fall Symposium Series, Cambridge
(MA).

Bandini, S., Manzoni, S., and Vizzari, G. (2006). Towards a platform for multilayered
multi agent situated system based simulations: Focusing on field diffusion. Applied
Artificial Intelligence, 20(4–5):327–351.

Bandini, S. and Mauri, G. (1999). Multilayered cellular automata. Theor. Comput. Sci.,
217(1):99–113.

Bandini, S. and Pavesi, G. (2002). Simulation of vegetable populations dynamics based
on cellular automata. In ACRI ’01: Proceedings of the 5th International Conference on
Cellular Automata for Research and Industry, pages 202–209, London, UK. Springer-
Verlag.

Berlekamp, E. R., Conway, J. H., and Guy, R. K. (1982). Winning Ways for your Mathe-
matical Plays, volume 2. Academic Press, ISBN 0-12-091152-3. chapter 25.

Binder, P. (1993). A phase diagram for elementary cellular automata. Complex Systems,
7:241–247.

Binder, P. (1994). Parametric ordering of complex systems. Physical Review E,
49(3):2023–2025.

Blue, V. J. and Adler, J. L. (1998). Emergent fundamental pedestrian flows from cellular
automata microsimulation. Journal of the Transportation Research Board.

Blue, V. J. and Adler, J. L. (1999a). Bi–directional emergent fundamental pedestrian
flows from cellular automata microsimulation. In 14th international symposiumon
transportation and traffic theory, pages 235–254.

Blue, V. J. and Adler, J. L. (1999b). Cellular automata micro-simulation of bi–directional
pedestrian flows. Journal of the Transportation Research Board, pages 135–141.

174

BIBLIOGRAPHY

Blue, V. J. and Adler, J. L. (2000). Cellular automata model of emergent collective
bi–directional pedestrian dynamics. In Artificial Life VII, The Seventh International
Conference on the Simulation and Synthesis of Living Systems.

Blue, V. J. and Adler, J. L. (2001). Cellular automata microsimulation for modeling
bidirectional pedestrian walkways. Trasportation Research Part B.

Boer, R. J. D. and Hogeweg, P. (1992). Growth and recruitment in the immune network.
In Perelson, A. F. and Weisbuch, G., editors, Theoretical and Experimental Insights into
Immunology, volume 66, pages 223–247. Springer Verlag, New York.

Boon, J., Dab, D., Kapral, R., and Lawniczak, A. (1995). Lattice gas automata for
reactive systems. Physics Reports, 273:55–147.

Burks, A., editor (1970). Essays on Cellular Automata. University of Illinois Press, Ur-
bana.

Burstedde, C., Kirchner, A., Klauck, K., Schadschneider, A., and Zittartz, J. (2002).
Cellular automaton approach to pedestrian dynamics - applications. Pedestrian and
Evacuation Dynamics, pages 87–97.

Burstedde, C., Klauck, K., Schadschneider, A., and Zittartz, J. (2001). Simulation of
pedestrian dynamics using a 2–dimensional cellular automata. Physica.

Buvel, R. and Ingerson, T. (1984). Structure in asynchronous cellular automata. Physica
D, 1:59–68.

Campari, E. G., Levi, G., and Maniezzo, V. (2004). Cellular automata and roundabout
traffic simulation. In Sloot et al. (2004), pages 202–210.

Cerdá, J., Gironés, R. G., Martı́nez, J. D., and Sebastia, A. (2005). A tool for implement-
ing and exploring sbm models: Universal 1d invertible cellular automata. In Mira,
J. and Álvarez, J. R., editors, IWINAC (1), volume 3561 of Lecture Notes in Computer
Science, pages 279–289. Springer.

Chen, H., Chen, S., Doolen, G., and Lee, Y. C. (1988). Simple lattice gas models for
waves. Complex Systems, 2(3):259–267.

Chopard, B. and Droz, M. (1998). Cellular Automata Modeling of Physical Systems. Cam-
bridge University Press.

Chopard, B., Luthi, P. O., and Queloz, P. A. (1996). Cellular automata model of car
traffic in two-dimensional street networks. Journal of Physics A: Mathematical and
General, 29:2325–2336.

175

BIBLIOGRAPHY

Chopard, B., Luthi, P. O., and Wagen, J.-F. (1997). Lattice boltzmann method for wave
propagation in urban microcells. Microwaves, Antennas and Propagation, IEE Proceed-
ings, 144(4):251–255.

Cole, J. B., Krutar, R. A., Creamer, D. B., and Numrich, S. K. (1993). A cellular au-
tomation methodology for solving the wave equation. In ICS ’93: Proceedings of the
7th international conference on Supercomputing, pages 348–356, New York, NY, USA.
ACM.

Cornforth, D., Green, D. G., and Newth, D. (2005). Ordered asynchronous processes
in multi-agent systems. Physica D: Nonlinear Phenomena, 204(1-2):70 – 82.

Dab, D., Lawniczak, A., Boon, J.-P., and Kapral, R. (1990). Cellular-automaton model
for reactive systems. Phys. Rev. Lett., 64(20):2462–2465.

De Oliveira, N., Oxley, N., Petry, M., and Archer, M. (1994). Installation Art. Smithso-
nian Institution Press.

Deutsch, A. and Dormann, S. (2008). Cellular Automaton Modeling of Biological Pattern
Formation. Springer.

Edmonds, E., Turner, G., and Candy, L. (2004). Approaches to interactive art systems.
In GRAPHITE ’04: Proceedings of the 2nd international conference on Computer graphics
and interactive techniques in Australasia and South East Asia, pages 113–117, New York,
NY, USA. ACM.

Edmonds, E. A., Weakley, A., Candy, L., Fell, M., Knott, R., and Pauletto, S. (2005). The
studio as laboratory: Combining creative practice and digital technology research.
Int’l Journal of Human Computer Studies, 63:4–5.

Ehleringer, J. and Forseth, I. (1980). Solar tracking by plants. Science, 210(4474):1094–
1098.

Elliott, C. and Hudak, P. (1997). Functional reactive animation. In International Con-
ference on Functional Programming, Amsterdam, The Netherlands. ACM Press, New
York.

Fatès, N. (2003). Experimental study of elementary cellular automata dynamics us-
ing the density parameter. In Morvan, M. and Rémila, é., editors, Discrete Models
for Complex Systems, DMCS’03, volume AB of DMTCS Proceedings, pages 155–166.
Discrete Mathematics and Theoretical Computer Science.

Friedewald, M. (2005). Safeguards in a world of ambient intelligence. In Hutter, D.
and Ullmann, M., editors, SPC, volume 3450 of Lecture Notes in Computer Science,
pages 63–69. Springer.

176

BIBLIOGRAPHY

Frisch, U., Hasslacher, B., and Pomeau, Y. (1986). Lattice-gas automata for the Navier-
Stokes equation. Physical Review Letters, 56:1505–1508.

Ganguly, N., Das, A., Maji, P., Sikdar, B. K., and Chaudhuri, P. P. (2001). Evolving
cellular automata based associative memory for pattern recognition. In HiPC ’01:
Proceedings of the 8th International Conference on High Performance Computing, pages
115–124, London, UK. Springer-Verlag.

Ganguly, N., Maji, P., Das, A., Sikdar, B. K., and Chaudhuri, P. P. (2002). Characteri-
zation of non-linear cellular automata model for pattern recognition. In AFSS ’02:
Proceedings of the 2002 AFSS International Conference on Fuzzy Systems. Calcutta, pages
214–220, London, UK. Springer-Verlag.

Gardner, M. (1970). The fantastic combinations of John Conway’s new solitaire game
“life”. Scientific American, 223:120–123.

Gardner, M. (1983). Wheels, Life, and Other Mathematical Amusements. W. H. Freeman
and Company, New York. ISBN 0-7167-1589-9.

Gershenson, C., Broekaert, J., Aerts, D., and Apostel, C. L. (2003). Contextual ran-
dom boolean networks. In In Workshop and Tutorial Proceedings, Ninth International
Conference on the Simulation and Synthesis of Living Systems (ALife IX, pages 1–8. MIT
Press.

Golès, E. and Martinez, S. (1990). Neural and Automata Networks: Dynamical Behavior
and Applications. Kluwer Academic Publishers. ISBN 0-792-30632-5.

Goodell, H., Kuhn, S., Maulsby, D., and Traynor, C. (1999). End user program-
ming/informal programming. ACM SIGCHI Bulletin, 31(4):17–21.

Gutowitz, H. (1991). Cellular Automata: Theory and Experiment. MIT Press/Bradford
Books, Cambridge Mass. ISBN 0-262-57086-6.

Gutowitz, H., Victor, J. D., and Knight, B. W. (1987). Local structure theory for cellular
automata. Physica D, 28:18–48.

Hannington, A. and Reed, K. (2002). Towards a taxonomy for guiding multimedia
application development. Asia-Pacific Software Engineering Conference, page 97.

Hardy, J., de Pazzis, O., and Pomeau, Y. (1976). Molecular dynamics of a classical
lattice gas: Transport properties and time correlation functions. Physical Review A,
13:1949–1961.

Harvey, I. and Bossomaier, T. (1997). Time out of joint: Attractors in asynchronous ran-
dom boolean networks. In Proceedings of the Fourth European Conference on Artificial
Life (ECAL97, pages 67–75. MIT Press.

177

BIBLIOGRAPHY

He, M., Pan, Q.-H., and Wang, S. (2005). Final state of ecosystem containing grass,
sheep and wolves with aging. International Journal of Modern Physics C, 16:177–190.

Hegselmann, R. and Flache, A. (1998). Understanding complex social dynamics: A
plea for cellular automata based modelling. Journal of Artificial Societies and Social
Simulation, 1(3).

Imai, K. and Morita, K. (1996). Firing squad synchronization problem in reversible
cellular automata. Theoretical Computer Science, 165(2):475 – 482.

Jaffe, M. J., Leopold, A. C., and Staples, R. C. (2002). Thigmo responses in plants and
fungi. American Journal of Botany, 89(3):375–382.

Kafeza, E. and Kafeza, I. (2009). Privacy issues in ami spaces. Int. J. Netw. Virtual
Organ., 6(6):634–650.

Kanada, Y. (1994). The effects of randomness in asynchronous 1d cellular automata
(poster). Artificial Life IV.

Kauffman, S. A. (1969). Metabolic stability and epigenesis in randomly constructed
genetic nets. Journal of Theoretical Biology, 22(3):437–467.

Kauffman, S. A. (1993). The Origins of Order: Self-Organization and Selection in Evolution.
Oxford University Press, USA.

Keenan, D. C. and O’Brien, M. (1993). Competition, collusion and chaos. Journal of
Economic Dynamics and Control, 17(3):327–353.

Kirchkamp, O. (1995). Spatial evolution of automata in the prisoners’ dilemma. Dis-
cussion Paper Serie B 330, University of Bonn, Germany.

Knospe, W., Santen, L., Schadschneider, A., and Schreckenberg, M. (2004). An empiri-
cal test for cellular automaton models of traffic flow. Physical Review E, 70(1).

Kobayashi, K. (1977). The firing squad synchronization problem for two-dimensional
arrays. Information and Control, 34(3):177 – 197.

Komatsuzaki, T. and Iwata, Y. (2006). Modeling of sound absorption by porous mate-
rials using cellular automata. In Yacoubi, S. E., Chopard, B., and Bandini, S., editors,
ACRI, volume 4173 of Lecture Notes in Computer Science, pages 357–366. Springer.

Komatsuzaki, T., Sato, H., Iwata, Y., and Morishita, S. (1999). Simulation of wave
propagation using cellular automata. Transactions of JSCES, 1999:19990017.

Langton, C. G. (1990). Computation at the edge of chaos. Physica D, 42:12–37.

178

BIBLIOGRAPHY

Lee, Y. C., Qian, S., Jones, R. D., Barnes, C. W., Flake, G. W., O’Rourke, M. K., Lee, K.,
Chen, H. H., Sun, G. Z., Zhang, Y. Q., Chen, D., and Giles, C. L. (1990). Adaptive
stochastic cellular automata: theory. Physica D, 45(1-3):159–180.

Li, W. (1992). Phenomenology of nonlocal cellular automata. Journal of Statistical
Physics, 68(5 / 6):829–882.

Li, W. and Packard, N. (1990). The structure of the elementary cellular automata rule
space. Complex Systems, 4(3):281–297.

Li, W., Packard, N., and Langton, C. G. (1990a). Transition phenomena in CA rule
space. Physica D, 45:77.

Li, W., Packard, N. H., and Langton, C. (1990b). Transition phenomena in cellular
automata rule space. Physica D, 45:77–94.

Liebrand, W. B. and Messick, D. M. (1996). Frontiers in Social Dilemmas Research.
Springer-Verlag New York, Inc., Secaucus, NJ, USA.

Lumer, E. D. and Nicolis, G. (1994). Synchronous versus asynchronous dynamics in
spatially distributed systems. Phys. D, 71(4):440–452.

Machin, C. H. C. (2002). Digital artworks: Bridging the technology gap. Eurographics
UK Conference, Annual, 0:16.

Madore, B. F. and Freedman, W. L. (1983). Computer simulations of the belousov-
zhabotinsky reaction. Science, 222:615–616.

Maerivoet, S. and De Moor, B. (2005). Cellular automata models of road traffic. Physics
Reports, 419:1–64.

Maji, P., Ganguly, N., Saha, S., Roy, A. K., and Chaudhuri, P. P. (2002). Cellular au-
tomata machine for pattern recognition. In ACRI ’01: Proceedings of the 5th Interna-
tional Conference on Cellular Automata for Research and Industry, pages 270–281, Lon-
don, UK. Springer-Verlag.

Marchese, F. T. (2006). The making of trigger and the agile engineering of artist-
scientist collaboration. In Information Visualization, 2006. IV 2006. Tenth International
Conference on, pages 839–844.

Margolus, N. (1984). Physics-like models of computation. Physica D, 10:81–95.

Mazoyer, J. (1987). A six-state minimal time solution to the firing squad synchroniza-
tion problem. Theoretical Computer Science, 50(2):183 – 238.

Mcculloch, W. and Pitts, W. (1943). A logical calculus of the ideas immanent in nervous
activity. Bulletin of Mathematical Biology, 5(4):115–133.

179

BIBLIOGRAPHY

Merrill, D., Kalanithi, J. J., and Maes, P. (2007). Siftables: towards sensor network user
interfaces. In Ullmer and Schmidt (2007), pages 75–78.

Messick, D. and Liebrand, W. (1995). Individual heuristics and the dynamics of coop-
eration in large groups. Psychological Review, 102(1):131–145.

Min, H., Yi, S., Cho, Y., and Hong, J. (2007). An efficient dynamic memory allocator
for sensor operating systems. In SAC ’07: Proceedings of the 2007 ACM symposium on
Applied computing, pages 1159–1164, New York, NY, USA. ACM.

Mitchell, M., Hraber, P. T., and Crutchfield, J. P. (1993). Revisiting the edge of chaos:
Evolving cellular automata to perform computations. Complex Systems, 7:89–130.

Moore, E. F., editor (1964). Sequential Machines: Selected Papers. Addison-Wesley Long-
man Ltd., Essex, UK, UK.

Myers, B. A. (1990). Taxonomies of visual programming and program visualization.
Journal of Visual Languages and Computing, 1(1):97–123.

Mynett, A. and Chen, I. (2004). Cellular automata in ecological and ecohydraulics
modelling. In Sloot et al. (2004), pages 502–512.

Nagel, K. (1996). Particle hopping models and traffic flow theory. Working Papers
96-04-015, Santa Fe Institute.

Nagel, K. (2002). Cellular automata models for transportation applications. In ACRI
’01: Proceedings of the 5th International Conference on Cellular Automata for Research and
Industry, pages 20–31, London, UK. Springer-Verlag.

Nagel, K. and Schreckenberg, M. (1992). A cellular automaton model for freeway
traffic. J. Phys. I France, 2:2221–2229.

Negroponte, N. (1975). Soft Architecture Machines. MIT Press, Cambridge, MA.

Nehaniv, C. L. (2003). Evolution in asynchronous cellular automata. In ICAL 2003: Pro-
ceedings of the eighth international conference on Artificial life, pages 65–73, Cambridge,
MA, USA. MIT Press.

Nowak, M. A. and May, R. M. (1992). Evolutionary games and spatial chaos. Nature
(London), 359:826–829.

Nowak, M. A. and May, R. M. (1993). The spatial dilemmas of evolution. International
Journal of Bifurcation and Chaos, 3:35–78.

Oliveira, G. M. B., de Oliveira, P. P. B., and Omar, N. (2001). Definition and applica-
tion of a five-parameter characterization of one-dimensional cellular automata rule
space. Artif. Life, 7(3):277–301.

180

BIBLIOGRAPHY

Omohundro, S. (1984). Modeling cellular automata with partial differential equations.
Physica D, 10:128–134.

Oono, Y. and Kohmoto, M. (1985). Discrete model of chemical turbulence. Phys. Rev.
Lett., 55(27):2927–2931.

Osterhout, J. K. (1994). Tcl and the Tk toolkit. Addison–Wesley, Reading, MA.

Paolo, E. A. D. (2000). Searching for rhythms in asynchronous random boolean net-
works. In Bedau, M., editor, Alife VII: Proceedings of the Seventh International Confer-
ence, pages 73–80. MIT Press.

Paolo, E. A. D. (2001). Rhythmic and non-rhythmic attractors in asynchronous random
boolean networks. Biosystems, 59(3):185 – 195.

Popovici, A. and Popovici, D. (2002). Cellular automata in image processing. In Pro-
ceedings of the 15th International Symposium on the Mathematical Theory of Networks and
Systems.

Preetham, A. J., Shirley, P., and Smits, B. (1999). A practical analytic model for day-
light. In SIGGRAPH ’99: Proceedings of the 26th annual conference on Computer graphics
and interactive techniques, pages 91–100, New York, NY, USA. ACM Press/Addison-
Wesley Publishing Co.

Puckette, M. S. (1996). Pure data: another integrated computer music environment. In
in Proceedings, International Computer Music Conference, pages 37–41.

Puckette, M. S. (1997). Pure data. Proceedings, International Computer Music Conference.
San Francisco: International Computer Music Association, pages 269–272.

Reas, C. and Fry, B. (2007). Processing - A programming Handbook for Visual Designers
and Artists. The MIT Press. ISBN 0-262-18262-9.

Resnick, M. (1997). Turtles, Termites, and Traffic Jams: Explorations in Massively Parallel
Microworlds (Complex Adaptive Systems). The MIT Press.

Robert, F. (1986). Discrete iterations: A metric study. In Series in Computational Mathe-
matics. Springer-Verlag.

Roli, A. and Zambonelli, F. (2002). Emergence of macro spatial structures in dissipative
cellular automata. In Proc. of ACRI2002: Fifth International Conference on Cellular
Automata for Research and Industry, volume 2493 of Lecture Notes in Computer Science,
pages 144–155. Springer.

Ruffo, S. and Lio, P. (2001). Dynamical Modelling in Biotechnologies. World Scientific
Publishing Company.

181

BIBLIOGRAPHY

Sakoda, J. M. (1971). The checkerboard model of social interaction. Journal of Mathe-
matical Sociology, 1:119–132.

Schadschneider, A. (2002). Cellular automaton approach to pedestrian dynamics -
theory. Pedestrian and Evacuation Dynamics, pages 75–85.

Schelling, T. C. (1969). Models of segregation (in strategic theory and its applications).
American Economic Review, 59(2):488–493.

Schelling, T. C. (1971). Dynamic models of segregation. Journal of Mathematical Sociol-
ogy, 1(2):143–186.

Schreckenberg, M. and Sharma, S. D. (2002). Pedestrian and Evacuation Dynamics.
Springer Verlag.

Settle, A. and Simon, J. (2002). Smaller solutions for the firing squad. Theor. Comput.
Sci., 276(1-2):83–109.

Shadbolt, N. (2003). Ambient Intelligence. IEEE Intelligent Systems, 18(4):2–3.

Shlesinger, M. F. (1992). New paths for random walkers. Nature (London), 355:396 –
397.

Sloot, P. M. A., Chopard, B., and Hoekstra, A. G., editors (2004). Cellular Automata,
6th International Conference on Cellular Automata for Research and Industry, ACRI 2004,
Amsterdam, The Netherlands, October 25-28, 2004, Proceedings, volume 3305 of Lecture
Notes in Computer Science. Springer.

Sperber, M. (2001). Developing a stage lighting system from scratch. In ICFP, pages
122–133.

Stankovic, J. A., Lee, I., Mok, A., and Rajkumar, R. (2005). Opportunities and obliga-
tions for physical computing systems. Computer, 38(11):23–31.

Sutner, K. (1990). Classifying circular CA. Physica D, 45:386.

Taya, M. (2003). Bio-inspired design of intelligent materials. In Society of Photo-Optical
Instrumentation Engineers (SPIE) Conference Series, volume 5051 of Society of Photo-
Optical Instrumentation Engineers (SPIE) Conference Series, pages 54–65.

Telewski, F. W. (2006). A unified hypothesis of mechanoperception in plants. American
Journal of Botany, 93(10):1466–1476.

Thomas, R. and Organization., E. M. B. (1979). Kinetic logic : a Boolean approach to the
analysis of complex regulatory systems : proceedings of the EMBO course ”Formal analysis
of genetic regulation,” held in Brussels, September 6-16, 1977 / edited by Rene Thomas.
Springer-Verlag, Berlin; New York.

182

BIBLIOGRAPHY

Toffoli, T. (1984). Cellular automata as an alternative to (rather than an approximation
of) differential equations in modeling physics. Physica D, 10:117–127.

Toguchi, S., Akamine, Y., and Endo, S. (2008). Research into the generation of sound
effects using a cellular automaton. In ACRI ’08: Proceedings of the 8th international
conference on Cellular Automata for Reseach and Industry, pages 323–328, Berlin, Hei-
delberg. Springer-Verlag.

Trifonova, A., Jaccheri, L., and Bergaust, K. (2008). Software engineering issues in
interactive installation art. International Journal of Arts and Technology, 1:43–65(23).

Ulam, S. M. (1962). On some mathematical problems connected with patterns of
growth of figures. In Proceedings of the Symposia in Applied Mathematics, pages 215–
224.

Ullmer, B. and Schmidt, A., editors (2007). Proceedings of the 1st International Conference
on Tangible and Embedded Interaction 2007, Baton Rouge, Louisiana, USA, February 15-
17, 2007. ACM.

Umeo, H., Kamikawa, N., and Yunès, J.-B. (2009). A family of smallest symmetrical
four-state firing squad synchronization protocols for ring arrays. Parallel Processing
Letters, 19(2):299–313.

Umeo, H. and Yanagihara, T. (2009). A small five-state non-optimum-time solution to
the firing squad synchronization problem - a geometrical approach. Fundam. Inform.,
91(1):161–178.

Vichniac, G. Y. (1990). Boolean derivatives on cellular automata. Physica D, 45(1–3):63–
74.

von Neumann, J. (1966). Theory of Self-Reproducting Automata. University of Illinois
Press, Urbana and London.

Waksman, A. (1966). An optimum solution to the firing squad synchronization prob-
lem. Information and Control, 9(1):66 – 78.

Weimar, J. R. (1997a). Cellular automata for reaction-diffusion systems. Parallel Com-
puting, 23(11):1699–1715.

Weimar, J. R. (1997b). Simulation with Cellular Automata. Logos Verlag Berlin. ISBN
3-89722-026-1.

Wilson, P. R., Johnstone, M. S., Neely, M., and Boles, D. (1995). Dynamic storage
allocation: A survey and critical review. pages 1–116. Springer-Verlag.

Winfree, A. T., Winfree, E. M., and Seifert, H. (1985). Organizing centers in a cellular
excitable medium. Physica D, 17:109–115.

183

BIBLIOGRAPHY

Wolfram, S. (1982). Cellular automata as simple self-organizing systems. Caltech
preprint CALT-68-938.

Wolfram, S. (1983a). Cellular automata. Los Alamos Science, 9:2–21.

Wolfram, S. (1983b). Statistical mechanics of cellular automata. Reviews of Modern
Physics, 55:601–644.

Wolfram, S. (1984a). Cellular automata as models of complexity. Nature, 311:419–424.

Wolfram, S. (1984b). Universality and complexity in cellular automata. Physica D,
10:1–35.

Wolfram, S. (1986a). Cellular automaton fluids: Basic theory. Journal of Statistical
Physics, 45:471–526.

Wolfram, S. (1986b). Theory and Applications of Cellular Automata. World Press.

Wolfram, S. (1986c). Theory and applications of cellular automata. World Scientific, Singa-
pore. ISBN 9971-50-124-4 pbk.

Wolfram, S. (1994). Cellular Automata and Complexity: collected papers. Addison-Wesley.

Wu, Q., Wang, Y., Cao, G., and Fei, Y. (2005). Locomotion control of distributed self-
reconfigurable robot based on cellular automata. In Huang, D.-S., Zhang, X.-P., and
Huang, G.-B., editors, ICIC (2), volume 3645 of Lecture Notes in Computer Science,
pages 179–188. Springer.

Wuensche, A. (1993). The ghost in the machine:basins of attraction of random boolean
networks. Cognitive Science Research Paper 281, University of Sussex, 1993. to be pub-
lished in Artificial Life III, Santa Fe Institute Studies in the Sciences of Complexity.

Wuensche, A. (1998). Discrete dynamical networks and their attractor basins. In Com-
plexity International, pages 3–21.

Wuensche, A. (1999). Classifying cellular automata automatically: Finding gliders,
filtering, and relating space-time patterns, attractor basins, and the Z parameter.
Complexity, 4(3):47–66.

Xu, Y., Luo, F., and Wang, J. (2004). A new modeling method for elevator group control
system with cellular automata. In Intelligent Control and Automation, 2004. WCICA
2004. Fifth World Congress on, volume 4, pages 3596–3599.

Yunes, J. B. (1994). Seven-state solutions to the firing squad synchronization problem.
Theoretical Computer Science, 127(2):313 – 332.

184

BIBLIOGRAPHY

Zambonelli, F., Mamei, M., and Roli, A. (2002). What can cellular automata tell us
about the behavior of large multi-agent systems? In Garcia, A. F., de Lucena, C. J. P.,
Zambonelli, F., Omicini, A., and Castro, J., editors, SELMAS, volume 2603 of Lecture
Notes in Computer Science, pages 216–231. Springer.

185

	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Outline of the thesis

	2 Adapting Lighting
	2.1 Application Scenarios
	2.1.1 Interactive Installation
	2.1.2 Stage Lighting
	2.1.3 Domotics

	2.2 Design and Implementation
	2.2.1 Programming Approaches
	2.2.1.1 Max
	2.2.1.2 Pure Data
	2.2.1.3 vvvv
	2.2.1.4 Quartz Composer
	2.2.1.5 Processing

	2.2.2 Application Software for Lighting Control
	2.2.2.1 Sunlite Suite
	2.2.2.2 Lula

	2.2.3 Enabling Communications Technologies
	2.2.3.1 DMX512-A
	2.2.3.2 ACN
	2.2.3.3 MIDI
	2.2.3.4 X10
	2.2.3.5 KNX

	3 Cellular Automata And Other Cellular System
	3.1 Cellular Automata
	3.1.1 Formal Definition
	3.1.1.1 Regular Lattice
	3.1.1.2 State set
	3.1.1.3 Neighborhood
	3.1.1.4 Boundary Conditions
	3.1.1.5 Transition Function

	3.1.2 Applications
	3.1.2.1 Games
	3.1.2.2 Physical and Biological Systems
	3.1.2.3 Social Science
	3.1.2.4 Traffic flow
	3.1.2.5 Pedestrian and Crowd Dynamics
	3.1.2.6 Other Applications

	3.1.3 Elementary Cellular Automata
	3.1.4 Stochastic Cellular Automata
	3.1.5 Asynchronous Cellular Automata
	3.1.6 Dissipative Cellular Automata
	3.1.7 Cellular Automata With Memory

	3.2 Automata Networks
	3.2.1 Formal Definition
	3.2.2 Multilayered Automata Networks

	3.3 Random Boolean Network
	3.3.1 Formal Definition
	3.3.2 Classification of Random Boolean Networks

	4 Effects of Asynchrony on Cellular Automata
	4.1 Asynchronous Cellular Automata
	4.1.1 Synchronous Scheme
	4.1.2 Random Independent
	4.1.3 Random Order
	4.1.4 Cyclic
	4.1.5 Generic Cyclic
	4.1.6 Clocked
	4.1.7 Generic Clocked
	4.1.8 CA Update Schemes Ontology

	4.2 One Neighbor Binary Cellular Automata
	4.2.1 Totalistic Rules
	4.2.2 Neighbor-Independent and Self-Independent
	4.2.3 -parameter
	4.2.4 Sensitivity
	4.2.5 Rule density
	4.2.6 Rules symmetries

	4.3 1nCA Spatiotemporal Patterns
	4.3.1 Class 0TNS
	4.3.2 Class 1T
	4.3.3 Class 2
	4.3.4 Class 3N
	4.3.5 Class 4
	4.3.6 Class 5S
	4.3.7 Class 6T
	4.3.8 Class 8T
	4.3.9 Class 10S
	4.3.10 Class 12N
	4.3.11 Synthesis of the Effects of Asynchrony on 1nCA

	5 MDCA - Multilayered Dissipative Cellular Automata
	5.1 MDCA Model
	5.1.1 Basic Cell
	5.1.2 Composite Cell
	5.1.3 Update Schemes

	5.2 MDCA Programming
	5.2.1 MDCA Language
	5.2.2 MDCA Visual Programming

	5.3 MDCA Environment
	5.3.1 Kernel
	5.3.2 Cellular Space

	6 The Indianapolis Project
	6.1 The Scenario
	6.2 A Network of Sensors and Actuators
	6.3 The Proposed Approach
	6.3.1 System Architecture
	6.3.2 Sensors Layer
	6.3.3 Diffusion Rule
	6.3.3.1 Regular neighborhood
	6.3.3.2 Irregular neighborhood

	6.3.4 Actuators Layer

	6.4 The Design Environment
	6.4.1 The Simulation Environment
	6.4.2 The Visualization Facility

	7 From Theory to Product: Digital Footprints
	7.1 Toward a Modular Adaptive Lighting System
	7.2 Hardware Prototype
	7.3 Software Implementation
	7.3.1 Body Cell
	7.3.2 Actuator Cell
	7.3.3 Edge Cell
	7.3.4 Command Shell Cell

	7.4 The Configuration Interface
	7.5 Considerations

	8 Conclusions and Future Developments
	8.1 Conclusion
	8.2 Future Developments

