Taming Implications in Dummett Logic

Guido Fiorino

Dipartimento di Metodi Quantitativi per le Scienze Economiche ed Aziendali,
Universita di Milano-Bicocca, Piazza dell’Ateneo Nuovo, 1, 20126 Milano, Italy.
guido.fiorino@unimib.it

Abstract. This paper discusses a new strategy to decide Dummett
logic. The strategy relies on a tableau calculus whose distinguishing
features are the rules for implicative formulas. The strategy has been
implemented and the experimental results are reported.

Key words:Dummett Logic, Tableau Calculi, Automated Theorem Proving

1 Introduction

The aim of this paper is to provide some ideas to reduce the search space of
proofs in Dummett logic. Our results apply when implicative formulas have to
be handled. The results are provided in the framework of tableau proof systems
and they are explained on the basis of the Kripke semantics for Dummett logic.
The history of this logic starts with Godel, who studied the family of logics
semantically characterizable by a sequence of n-valued (n > 2) matrices ([8]). In
paper [4] Dummett studied the logic semantically characterized by an infinite
valued matrix which is included in the family of logics studied by Godel and
proved that such a logic is axiomatizable by adding to any Hilbert system for
propositional intuitionistic logic the axiom scheme (p — q) V (¢ — p).
Dummett logic has been extensively studied also in recent years for its re-
lationships with computer science ([2]) and fuzzy logics ([9]). To perform auto-
mated deduction both tableau and sequent calculi have been proposed. Paper [1]
provides tableau calculi having the distinguishing feature that a multiple premise
rule for implicative formulas signed with F is provided We recall that the sign
F comes from Smullyan ([14, 7]) and labels those formulas that in a sequent cal-
culus occur in the right-hand side of = (as it is explained in Section 2, the sign
F has a meaning also in terms of Kripke semantics). A tableau calculus derived
from those of [1] is provided in paper [5]. Its main feature is that the depth of
every deduction is linearly bounded in the length of the formula to be proved.
The approach of [1] characterizing Dummett logic by means the multiple
premise rule has been criticized because, from the worst case analysis perspec-
tive, there are simple examples of sets of formulas giving rise to a factorial
number of branches in the number of formulas in the set. Paper [3] shows how
to get rid of the multiple premise rule. New rules are provided whose correct-
ness is strictly related to the semantics of Dummett Logic. These ideas have

been further developed in [10,11], and in paper [12] a graph-theoretic decision
procedure is described and implemented. The approach introduced in [3] has
also disadvantages with respect to the multiple premise rule proposed in [1] and
these disadvantages have been considered in [6], where also a new version of the
multiple premise rule is proposed. This version from a practical point of view
can reduce the branching when compared with the original one. Paper [6] also
provides an implementation that outperforms the one of [12], thus proving that
the approach based on the multiple premise rule of [1] deserves attention also
from the practical point of view. As a matter of fact, on the one hand the rules
of [3] give rise to two branches at most, on the other hand there are cases of
formulas that multiple premise calculi decide with a number of steps lower than
the calculi based on [3].

The calculi quoted above have the same kind of rule to treat formulas of the
kind T((A — B) — (), that is formulas that in a sequent calculus would appear
in the left-hand side of =-:

S, T((A— B) — C) B-C=AA-B TIC=A
S,F(A— B), T(B— (C)|S,TC I'N'A—-B)—-C= A

Whatever system is used, it is not considered that in the (sub)deduction starting
from S,F(A — B), T(B — C), respectively starting from the premise I', B —
C = A/ A — B, if F(A — B) occurs in the set, respectively A — B occurs in
the right-hand side of =, then the completeness is preserved also if no rule is
applied to T(B — C), respectively to B — C'in the left-hand side of =-. If B is an
implicative formula this strategy avoids to introduce new branches. An analogous
remark applies to the case of a set containing FB and T(B — (), respectively
to a sequent of the kind I’ B — C = B, A. In this paper these remarks are
developed and a tableau calculus is provided. A complete strategy is presented
and the experimental results of the prolog implementation are compared with
the prolog implementation of [6].

2 Basic Definitions

We consider the propositional language based on a denumerable set of propo-
sitional variables PV and the logical connectives —, A,V, —. In the following,
formulas (respectively set of formulas and propositional variables) are denoted
by letters A, B, C...(respectively S, T, U,...and p, q, r,...) possibly with
subscripts or superscripts.

From the introduction we recall that Dummett Logic (Dum) can be axiom-
atized by adding to any axiom system for propositional intuitionistic logic the
axiom scheme (p — ¢q)V (¢ — p) and a well-known semantical characterization of
Dum is by linearly ordered Kripke models. In the paper model means a linearly
ordered Kripke model, namely a structure K = (P,<,p,I), where (P, <, p) is
a linearly ordered set with p minimum with respect to < and IF is the forcing
relation, a binary relation on P x PV such that if o IF p and a < 3, then 3 IF p.

Hereafter we denote the members of P, also called worlds or states, by means of
lowercase letters of the Greek alphabet.

The forcing relation is extended in a standard way to arbitrary formulas of
the language as follows:

1. alFAANBiff alF A and a I+ B;

2. alFAVBiffalF Aor alF B;

3. alF A — B iff, for every 8 € P such that o < 3, B I A implies 3 I+ B;
4. alF =A iff for every § € P such that a < 3, 81+ A does not hold.

We write a ¥ A when « I A does not hold. It is easy to prove that for every
formula A the persistence property holds: If a IF A and a < 3, then G IF A. An
element 0 € P is immediate successor of @ € P iff if « < v < [holds, then
a = or 3=+ holds. A formula A is valid in a model K = (P,<,p,IF) iff p I A.
It is well-known that Dum coincides with the set of formulas valid in all models.
The rules of our calculus D for Dum are in Figures 1 and 2. D works on
signed formulas, that is well-formed formulas prefixed with one of the signs
{T,F,F., T, T T} and on sets of signed formulas (hereafter we omit the word
“signed” in front of “formula” in all the contexts where no confusion arises).
Before to give the intuition behind the rules of the calculus the meaning of
the signs is provided by the relation realizability (r>) defined as follows: Let
K = (P,<,p,|F) be a model, let & € P, let H be a signed formula and let S be
a set of signed formulas. We say that a realizes H (respectively a realizes S
and K realizes S), and we write o > H (respectively a > S and K > S), if the
following conditions hold:

1. a> TAiff alF A

2. abTAiff a>TAand if A= (B — C), then a ¥ B;

3. abTAifa>TAandif A= B — C, then there exists 3 € P such that
a < [and B ¥ B;

a>FAiff a ¥ A;

a>FAIff alk—A;

ar>TqgA iff alk -—A;

a > S iff « realizes every formula in S

NS ot

By the semantical meaning of the signs it follows that F. and T are syn-
onyms respectively of T— and T—-—, thus F. and T¢-rules are the rules to
treat respectively negated and double negated forced formulas. The F. and T¢;-
rules are designed taking into account that Dum is characterized by linearly
ordered Kripke models. The signs T and T are a specialization of the sign T
for implicative formulas. The sign T in front of B — C conveys the informa-
tion that at the present state of knowledge the formulas B — C and B are
respectively forced and not forced. The sign T in front of B — C conveys both
the information that at the present state of knowledge B — C' is forced and
the information that there exists a future state of knowledge where B is not
forced. This information is available in the conclusion S,F(A — B), T(B — C)
S, T((A— B)— C)

F(A — B),T(B — C)|S, TC

of the tableau rule of the calculi [1, 5, 6], but it

is not exploited. Analogously for the sequent calculi of [3,12], where the same

information is available in the premise I'B — C = A/ A — B of the rule
I'B—-C=AA—B Ic=A
I'N'A—-B)—-C=A
The same remarks apply to sequent calculi. None of the above quoted calculi
has rules taking into account that if A — B is not forced, then B is not forced
and thus B — C is (locally) forced. The formula B — C needs to be treated
only when disappear the information about the non-forcing of B. Thus, roughly
speaking, the main idea of the calculus we are presenting can be summarized as
follows: a formula of the kind T(A — B) does not need to be treated if there is the
information that A is not forced. In this case, if A is of the kind C'— D a branch
is avoided. From a syntactical point of view, the sign T in front of A — B means
that in the set at hand A occurs as a consequent of an F —-formula. The sign
T in front of A — B means that in the set at hand the formula FA occurs. The
rules are designed to guarantee that the presence of a formula T(B — C) in a set
S implies that S also contains the formula F(A — B). Note that T —— is the
only rule of D to introduce T-formulas. The presence of the formula T(A — B)
in a set S which is a conclusion of the rule F —, implies that also FB is in the
set. The rules of the calculus behaves on T(A — B) as they were two premise
rules on the formulas FA, T(A — B). The calculus has not rules to treat the
T-formulas. These formulas are treated by the rule F — and they can be left
unchanged or turned into T-formulas. It is remarked that T and T are in front
of implicative formulas only.
From the meaning of the signs we get the conditions that make a set of
formulas inconsistent. A set S is inconsistent if one of the following conditions
holds:

. Hereafter we consider tableau calculi.

{TA,FA} C §; {TA,FA}CS; {TAFA}CS;
-{TA,F A} C S; {TA,FA} CS; -{TAF.A}CS;
{TA,T(A— B)} CS; -{F.A TqA}CS.

It is easy to prove the following

Proposition 1. If a set of formulas S is inconsistent, then for every Kripke
model K = (P,<,p,IF) and for every o € P, a # S.

A proof table (or proof tree) for S is a tree, rooted in S and obtained by the
subsequent instantiation of the rules of the calculus. The premise of the rules are
instantiated in a duplication-free style: in the application of the rules we always
consider that the formulas in evidence in the premise are not in S. We say that a
rule R applies to a set U when it is possible to instantiate the premise of R with
the set U and we say that a rule R applies to a formula H € U (respectively the
set {Hy,...,H,} CU) to mean that it is possible to instantiate the premise of
R taking S as U \ {H} (vespectively U\ {Hy,...,Hy,}).

A closed proof table is a proof table whose leaves are all inconsistent sets. A
closed proof table is a proof of the calculus and a formula A is provable iff there
exists a closed proof table for {FA}.

STANB) . SFAAB) SF(ANB) S, Tei(AA B)

S TATB S,FAS,FB S FAS,FB © S TaATaB
S, T(AV B) T S,F(AV B) F S,Fc(AV B) S, Ta(AV B)
v v eV 1V
S, TA|S, TB S.FA,FB S,FoA,F.B S, TaAlS, TaB *
ST(A) , SFCA) L SF(A) S, Ter(—A)
S, FeA ~ STaAd S, TaA S, FeA
SvavT(p*’B) S7FC(A*>B) F S7TCI(A4)B)
S, Tp, TB T S TaAF.B ° S, FAlS,TaB
ST(ANB)=C) STCA=B) S, T((AV B) — C)
—v

STA—(B-0C) STaAlS,TB = S T(A—C),T(B—C)
S, T((A— B)—C)

~

S,F(A— B),T(B — C),|s,TC
S, T((AAB) — C)

T-—

_~ — TH/\
S, T(A— (B — C))|S, T(B — (A — C))
S, T(~A — B) % S, T((AV B)—C)
—- — — —V
S, TaA S, T(A— C), T(B— C)

S, T((A— B) = C) &

S,F(A — B),T(B — C)

——

Fig. 1. The invertible rules of .

S, Ta A
Se, TA
S. = {TA|TA € S}U{F.A[F.A € S}U{TA|TaA e S}U
U{TA|TA € S} U{TA|TA € S};

Tcl-Atom

S,F(Al — Bl), .. ,F(An — Bn)
Se, TA1,FB1,Sp_|S2,Sp_, TAs, FBo|...|S¢, Sp_, TA,, FB,

.

S: ={TA|TA € SYU{F A|F:A € S}U{TauA|TaA € S}U
U{TA|TA € S} U{T(C — D)|T(C — D) € S and C = B;}U
U{T(C — D)|T(C — D) € S with C # B;};

Sp_ = {F(A, — B1),...,F(A, — By)},

Sp_ = Sp_ \{F(Ai = By}, fori=1,...,n.

Fig. 2. The non-invertible rules of D.

The set U = {T(B AC), T(AAC),F(AV B)} put in evidence that both
the rule TA (taking S = {T(AAC),F(AV B)} or S={T(BAC),F(AV B)})
and the rule FV apply to U. This gives rise to three choices to go on with the
proof. After the choice is done, if there is no way to prove the conclusion of the

application of the rule, then the question is if another choice had given a proof.
If the rule is invertible, then there is no need to backtrack on another rule: A rule
is invertible iff if there exists a proof for the premise, then there exists a proof
for the conclusion. The notion of invertible rule is also definable via semantics:
a rule is invertible iff if one of the sets in the conclusion is realizable by a model
K, then the premise is realizable by K. It is well-known that the invertibility of
the rules of the calculus is a desirable property, since it implies that every choice
is deterministic. The calculus D has two non-invertible rules, namely F — and
Tc-Atom. In Section 4 we present a complete strategy such that every choice
is deterministic. The strategy relies on respecting a particular sequence in the
application of the rules: T¢-Atom is applied if no other rule is applicable and
F — is applied if no other rule but T¢-Atom is applicable.

3 Correctness

The following proposition states that the rules in Tables 1 and 2 preserve the
realizability. This is the main step towards to prove the correctness of D.

Lemma 1. For every rule of D, if a world o of a model K = (P,<,p,IF) realizes
the premise, then there exists a world of a possibly different model realizing at
least one of the conclusions.

Proof. The proof proceeds by taking into account every rule of . Here the
proof of the correctness of rule T —— is provided. Rule T ——: by hypothesis
ar> S, T((A — B) — (). By definition of forcing of implication we have two
cases: (i) aIF C, thus a> S, TC; (ii) a ¥ (A — B). This implies that o - B — C
and there exists a world 8 € P such that o < 3, B IF Aand B B. If a < 3,

then immediately we get o> F(A — B), T(B — C). If a = (let us consider
the model K’ = (P U {a'}, <', p, IF) defined as follows:

< =< Uy,)|y e Pand y<a}U{(a,7)|]y € P and a < v};
= Ik U{(o, (e p) €+,

The model K’ is obtained from K by adding a new world o as immediate
successor of a and defining the forcing in o’ as the forcing in «. By structural
induction it is easy to prove that in K’ the worlds o and o force the same
formulas. Moreover a IF A holds iff o IF A holds. Thus the world o of K’
realizes the premise of the rule T ——. Finally, since o’ [/ B holds, we get that
a>T(B — C) holds. O

Theorem 1. If there exists a proof table for A, then A is valid in Dum.

4 Complete Strategy to Decide Dummett Logic with D

In the following we sketch the recursive procedure DuM(S) using D to decide
S: Given a set S of signed formulas, DuM(S) returns either a closed proof table

for S or NULL (if there exists a model realizing S). To describe DUM we use
the following definitions and notations. We call a-rules (respectively (-rules)
the rules of Figure 1 with one conclusion (respectively with two conclusions).
The a-formulas (respectively §-formulas) are the kind of the non-atomic signed
formulas in evidence in the premise of the a-rules (respectively S-rules). Let S be
a set of formulas, let H € S be an « or S-formula. With Rule(H) we denote the
rule corresponding to H in Figure 1. Let Sy or S; | Sz be the nodes of the proof
tree obtained by applying to S the rule Rule(H). If T'aby and Tabs are closed
proof tables for S; and Sy respectively, then %blRule(H) or mRule(H)
denote the closed proof table for S defined in the obvious way. Moreover, R;(H)
(¢ = 1,2) denotes the set containing the formulas of S; which replaces H. For
instance:

Ri(T(AANB))= {TA,TB},

Ri(T(AV B)) = {TA}, Ra(T(AV B)) = {TB}.

In the case of F — the notation above generalizes. Let Sp_, be the set of all
the F —-formulas of S. Let S1]...|S, the nodes of the proof tree obtained by
applying to S the rule F —. If Tab; ..., Tab,, are closed proof tables respectively
for S1,...,S,, then WF—» is the closed proof table for S. R;(Sg_.)
denotes the set of formulas that replace the set Sp_, in the i-th conclusion of
F —. For example, given Sp_ = {F(4; — B1),F(4y — Bs),F(A3 — Bs)},
RQ(SF_)) - {F(Al — Bl),TAQ, FBQ,F(A?, — B3)}

FuncTtiON DuM (8S)
1. If S is an inconsistent set, then DUM returns the proof S;

2. If an a-rule applies to S, then let H be a a-formula of S. If DuM((S\ {H})U
R1(H)) returns a proof w, then DUM returns the proof %Rule(H), otherwise DuM
returns NULL;

3. If a S-rule applies to S, then let H be a f-formula of S. Let my = Dum((S'\
{H})UR1(H)) and m = DuM((S \ {H}) URy(H)). If m; or mo is NULL, then

DuM returns NULL, otherwise DUM returns T s Rule(H);

4. If the rule F — applies to S, then let Sp_ = {F(A — B) € S} and let
n be the number of formulas in Sp_,. If there exists i € {1,...,n}, such that
7 = DUM((S\ Sp_,)c UR:(SE_,)) is NULL, then DUM returns NULL. Otherwise
1, .., T, are proofs and DUM returns AT T
5. If the rule T¢-Atom applies to S, then let H be a T¢-Atom formula of S.
If DuM((S \ {H}) U R1(H)) returns a proof m, then DUM returns the proof

%Tcl—Atom, otherwise DUM returns NULL;
6. If none of the previous points apply, then DUM returns NULL.
END FUNCTION DUM.

It is useful to remark the following facts: (i) when Step 4 is performed, S con-

tains atomic formulas, implicative formulas signed with F or T and implicative
formulas of the kind S(p — B), with S € {F, T}. Note that if S(p — B) € S,
then Tp ¢ S holds. As a matter of fact, if {T(p — B), Tp} C S, then S is incon-

sistent and this case is handled in Step 1; if {T(p — B), Tp} C S, then Step 2 is
applicable; (ii) when Step 5 is applied the formulas of the kind S(p — A) with
S € {T, T} are the only kind of non-atomic formulas in S and Tp ¢ S (iii)
when Step 6 is applied there is no formula signed with T¢) and formulas of the
kind S(p — B), with S € {T, T}, are the only non-atomic formulas in S and
TpeS.

The termination of FUNCTION DUM is based on the fact that the rules of
D replace the formulas in evidence in the premise with simpler formulas, where
simpler is based on a measure complexity function. In order to get the complete-
ness of FUNCTION DuM, in the following it is proved that given a set of formulas
S, if the call DuM(S) fails to return a proof for S, then from the non-closed
tableau there is enough information to build a model K = (P,<,p,I) such that
p>S.

Lemma 2 (Completeness). Let S be a set of formulas and suppose that DUM(S)
returns the NULL value. Then there exists a Kripke model K = (P,<,p,IF) such
that p> S.

Proof. By induction on the number of nested recursive calls.

Basis: There are no recursive calls. Then Step 6 has been performed and this
implies that S is not inconsistent (otherwise Step 1 would have been performed)
and S only contains atomic formulas signed with T,F and F., formulas of the
kind S(p — A) with § € {T, T}, and Tp ¢ S. Let K = (P,<,p,F), where
P=A{p},p<pand plkpiff Tp € S. K is a model. By considering every
possible kind of formula in S, it is easy to prove that p realizes S.

Step: Let us assume by induction hypothesis that the proposition holds for all
sets S’ such that DuM(S’) requires less than n recursive calls. The proposition is
proved to hold for a set S requiring n recursive calls. All the possible cases where
the procedure returns the NULL value have to be inspected. Here we provide
the case related to the NULL instruction performed at Step 4. Since the NULL
instruction in Step 4 has been performed, at least a m; is NULL. By induction
hypothesis there is a model K’ = (P, <, ¢/,) realizing (S\ Sg_)c UR(SF_,)-
We define a model K = (P U {p}, <, p,IF) as follows:

P{p} =0 <=<' U{(p.a)la € P} Ik=I" U {(p,p)|Tp € S}.

Since (P,<’,p') is a linear order, then, by construction, (P, <,p) is a linear
order (note that p’ is the only immediate successor of p). The forcing relation
is preserved since the formulas of the kind Tp € S are in (S '\ Sg_,). and by
hypothesis the minimum p’ of K’ realizes (S \ Sp_,)c. Since the world p’ of K’
realizes R;(Sp_,) it follows that the world p of K realizes Sp_.. To prove that
p realizes S the main task is to prove that T and T-formulas are realized. If
a formula of the kind T(B; — C) € S, then T(B; — C) € (S \ Sp_). By
induction hypothesis p’ > ’T‘(Bi — (), thus p' IF A — B; and p' ¥ B;, and
this implies p > T(BZ — (). If a formula of the kind T(Bj — () € S, with
i # 7, then ’T(Bj — C) € (S\ SF_,)c By induction hypothesis p’ D’T(Bj —),

thus p’ IF B; — C and p’ ¥ B; hold. By the semantical meaning of T it
follows p I T(B; — C). If T(A — B) € S, then T(A — B) € (S\ Sp_)e
with A atomic and TA ¢ S. By construction of K, p ¥ A. Since by induction
hypothesis p' F A — B we have p IF A — B and by the meaning of T we
conclude p > T(A — B) holds. O

Theorem 2 (Completeness). If A is valid in every model, then DuMm ({FA})
returns a proof.

5 The Implementation and the Performances

The ideas presented in this paper have been integrated in the implementation for
EPDL of [6], the result is a new prototype prover for Dummett logic called Dum-
mett Logic Solver for Implications (DLSI)!. Cause lack of space, in previous sec-
tions the focus has been given to the main idea. There are simple improvements
that can be applied to the presentation. Note that in the leftmost conclusion of
the rule T —— the subformula B occurs twice. This is a source of inefficiency
since there can be deduction of exponential depth. Using the well-known index-
ing technique consisting in replacing a formula with new propositional variable
(adopted also in [5,6,12]) the result is a calculus whose deductions have depth
linearly bounded in the size of the formula to be proved. In [6] a sequence of op-
timizations is described. Among them a new version of the multiple premise rule
of [1] is provided. To simplify the presentation the multiple premise rule of [1] is
adopted. DLSI and EPDL differ for the logical rules, neither new optimizations
nor code optimization has been performed. To compare EPDL and DLSI some
experiments have been carried out. The formulas of ILTP library of paper [13]
have been considered. The goal of the calculus is to treat efficiently the case of
B non-atomic when formulas of the kind T((A — B) — C') occur in the proofs.
This never happen with the formulas of ILTP library. Thus the substitution con-
sisting in replacing every propositional variable p; with ¢; — (r; — ¢;) has been
applied to every formula of the ILTP library. Experiments have been performed
on the formulas resulting by applying this substitution. Figure 3 shows those
family formulas on which the performances of EPDL and DLSI differ?. The re-
sults show that DLSI outperforms EPDL. Moreover on every family, the timings
of DLSI increase of a lower factor than EPDL. On the missing family formulas
the timings of EPDL and DLSI are comparable. Finally, Figure 4 gives an ac-
count of the comparison between EPDL and DLSI on 10000 randomly generated
formulas. It is reported the number of formulas solved respectively within 1, 10,
100, 600 and requiring more than 600 seconds and in parenthesis the seconds
required to decide all the formulas (i.e. EPDL solves 9823 formulas within 1
second and the time to decide these 9823 formulas is altogether 204 seconds).
Experiments show that the ideas on which the calculus presented in this paper
relies improve the known proofs strategies.

! Downloadable from http//www.dimequant.unimib.it/~guidofiorino/dlsi.jsp
2 Timings in seconds, experiments performed on Intel(R) Xeon(TM) 3.00GHz

ILTP Formula|EPDL|DLSI ILTP Formula|EPDL|DLSI ILTP Formula|EPDL |[DLSI
SYJ201.1 50.67 [0.10 SYJ205.2 13689 (17.30 SYJ210.5 1627]0.03
SYJ201.2 51852 [3.05 SYJ207.1 0.01 |0.01 SYJ210.6 119803|0.05
SYJ203.7 26.15 [0.17 SYJ207.2 10724 |1.18 SYJ211.1 1.67]0.02
SYJ203.8 69.97 0.20 SYJ209.7 18.05 |0.18 SYJ211.2 523 0.03
SYJ205.1 123 0.01 SYJ209.8 47.85 |0.25

Fig. 3. Timings on ILTP formulas modified with substitution X — (Y — Z).

Prover| 0-1secs. 1-10secs. | 10-100secs.| 100-600secs| >600
EPDL [9823(204s.)|134(491s.)[35(1123s.) [5(1424s.) 3(11007s.)
DLSI |9843(216s.)[116(387s.)|35(943s.) 4(1004s.) 2(6561s.)

Fig. 4. Timings on randomly generated formulas.

References

1.

11.

12.

13.

14.

A. Avellone, M. Ferrari, and P. Miglioli. Duplication-free tableau calculi and related
cut-free sequent calculi for the interpolable propositional intermediate logics. Logic
Journal of the IGPL, 7(4):447-480, 1999.

. A. Avron. Simple consequence relations. Journal of Information and Computation,

92:276-294, 1991.

A. Avron and B. Konikowska. Decomposition proof systems for Godel-Dummett
logics. Studia Logica, 69(2):197-219, 2001.

M. Dummett. A propositional calculus with a denumerable matrix. Journal of
Symbolic Logic, 24:96-107, 1959.

G. Fiorino. An O(nlogn)-SPACE decision procedure for the propositional Dummett
Logic. Journal of Automated Reasoning, 27(3):297-311, 2001.

G. Fiorino. Fast decision procedure for propositional Dummett logic based on a
multiple premise tableau calculus. T.R.164, Dip. di Metodi Quantitativi per le
Scienze Economiche ed Aziendali, Universitd degli Studi di Milano-Bicocca, 2008.
M.C. Fitting. Intuitionistic Logic, Model Theory and Forcing. North-Holland,
1969.

K. Gédel. On the intuitionistic propositional calculus. In S. Feferman et al, editor,
Collected Works, volume 1. Oxford University Press, 1986.

P. Hajek. Metamathematics of Fuzzy Logic. Kluwer, 1998.

. D. Larchey-Wendling. Combining proof-search and counter-model construction for

deciding Gédel-Dummett logic. In A. Voronkov, editor, CADE, vol. 2392 of LNCS,
pag. 94-110. Springer, 2002.

D. Larchey-Wendling. Counter-model search in Goédel-Dummett logics. In
D.A. Basin and M. Rusinowitch, editors, IJCAR, vol. 3097 of LNCS, pag. 274—
288. Springer, 2004.

D. Larchey-Wendling. Graph-based decision for Godel-Dummett logics. Journal
of Automated Reasoning, 38(1-3):201-225, 2007.

T. Raths, J. Otten, and C. Kreitz. The ILTP problem library for intuitionistic
logic. Journal of Automated Reasoning, 38(1-3):261-271, 2007.

R.M. Smullyan. First-Order Logic. Springer, Berlin, 1968.

