
The conversion matrix between uniform

B-spline and Bézier representations

L. Romani a,1,∗, M.A. Sabin b

a University of Cambridge, Computer Laboratory,
William Gates Building, JJ Thomson Avenue, Cambridge, CB3 0FD, England

bNumerical Geometry Ltd, 26 Abbey Lane, Lode, CB5 9EP, England

Abstract

In computer-aided-design it is both convenient and practical to use the matrix form
in representing parametric curves and surfaces. One of the reasons is that the ma-
trix notation allows an easy conversion between different shape representations and
provides a convenient implementation in either hardware or software with available
matrix facilities.

In this work we propose a very simple and efficient procedure for computing in
a recursive way the conversion matrices which provide the direct transformation
between uniform B-spline and Bézier representations of arbitrary degrees.

Key words: matrix representation, direct transformations, uniform B-spline basis
functions, explicit multi-Bézier form.

1 Introduction

This paper is essentially in two parts. In the first part (section 2) we consider the

problem of converting a piecewise polynomial curve from a B-spline representation

with equidistant knots to the corresponding multi-Bézier form; in the second one

(section 3) we address our attention to the investigation of the inverse conversion.

∗ Corresponding author.
Email addresses: romani@dm.unibo.it (L. Romani),

malcolm@geometry.demon.co.uk (M.A. Sabin).
1 Present address: Dipartimento di Matematica, Universitá di Bologna, P.zza di
Porta San Donato 5, 40127 Bologna, Italy.

During the last two decades several algorithms were developed for computing the

transformation from B-spline to Bézier representation: these include Boehm’s knot-

insertion algorithm [1], the Oslo algorithm [5], Chui’s scheme [2,3] and Grabowski’s

matrix procedure through monomials [7]. There is also the tetrahedral algorithm (see

[9], page 72), based on the blossoming principle by Ramshaw [10] and de Casteljau

[6], which allows us to convert a B-spline representation into a Bézier representation

and vice versa. However, to our knowledge no author in the literature has consid-

ered a direct matrix transformation between B-spline and Bézier representations of

arbitrary degrees.

The novelty of our proposal is therefore the idea of reducing the computation of

the Bézier representation of each non-vanishing B-spline curve segment to a simple

matrix multiplication with the column vector of the spline control points and com-

puting the inverse transformation by multiplication of the inverse conversion matrix

with the column vector of the Bézier control points. Hence the following sections

are devoted to the recursive computation (with respect to the polynomial degree) of

the entries of the B-spline-to-Bézier and the Bézier-to-B-spline conversion matrices.

In particular, in section 2 two recursive computations of the B-spline-to-Bézier ma-

trix entries, one derived from the Cox-de Boor recursion for uniform B-splines and

the other (more efficient one) using the convolution formula for these functions, are

presented. Since the convolution formula for uniform B-splines corresponds to the

differentiation-integration formula on these functions, the matrix entries we derive

via this approach will be described by a formula that is related to the computational

scheme presented by Chui [2,3]. But, thanks to the matrix notation, our conversion

method turns out to be more efficient and also more convenient for algebraic ma-

nipulation, since it allows us to symbolize the conversion just by a simple matrix

multiplication. Additionally, thanks to the assumed notation, we are able to explain

the origin of the fairly cryptic initial conditions assumed in Chui’s algorithm and

to avoid the rather involved use of indices his scheme requires, making our formu-

lation much easier to follow. This will be of fundamental importance in the more

complicated non-uniform case where additional indices are required and where the

initial conditions are not so easy to be determined. In fact, as it appears by im-

plementing the conversion formulae given in [2,3] for B-splines with non-uniform

knots, it can be observed that such conditions are actually correct only in the case

of splines with knots chosen in geometric progression and not for completely arbi-

trary configurations. Therefore, since the general setting of non-uniform B-splines

requires a very careful investigation, we have decided to address our attention to

the univariate uniform case only. The principles used are expected to be relevant to

the multivariate Box-spline case and to the very general non-uniform case.

Although the multivariate extension turns out to be indeed very interesting, the

direct B-spline-to-Bézier transformation in the univariate case can be extremely

useful whenever we need to work out either algebraic or geometric operations on B-

spline curves, since it provides a simplification of the mathematical treatment of B-

splines allowing the use of popular Bézier techniques. Interesting applications of this

2

conversion have appeared very recently in some works concerning the computation

of inner products of B-splines (which is needed in the theory of spline wavelets [8])

and the combination of texts in Bézier-based fonts with free-form surfaces in spline

representations [12]. Applications of the Bézier-to-B-spline conversion procedure are

also related to some problems that very often appear in CAGD, like modifying the

control points of two assigned degree-n Bézier curves in order they can join Cn−1-

continuously. In fact, without using the classical formulae given in the literature for

determining the opportunely modified Bézier coefficients, we can exploit the Bézier-

to-B-spline transformation to compute the B-spline representation (Fig. 1 right) of

the two given curves (Fig. 1 left) on a common uniform knot-partition and determine

the inner n control points of the Cn−1 spline that represents their Cn−1 join (Fig.

2 left) at the common parameter value, via n linear combinations of their inner

n spline control points taken two by two. At this point, via the B-spline-to-Bézier

conversion procedure we have the possibility to determine the Bézier point sets of

the original curves opportunely modified in order they join Cn−1-continuously (Fig.

2 right).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−1

−0.5

0

0.5

1

1.5

2

Fig. 1. Two cubic Bézier curves (left) and their B-spline representation (right).

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−1

−0.5

0

0.5

1

1.5

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 2. B-spline (left) and Bézier (right) representation of the two cubics C2-joined.

This is only one of the applications that motivate the results formulated in section

3. Here the main topic is the description of the recursive computation (with respect

3

to the polynomial degree) of the entries of the Bézier-to-B-spline conversion matrix,

using both the recursion formula for Bernstein polynomials and the differentiation-

integration formula for these functions. This time, both the approaches lead to a

completely new proposal which has no comparisons in the literature.

2 The B-spline-to-Bézier conversion matrix

Let the B-spline-to-Bézier conversion matrix S(n) be the (n+1)× (n+1) matrix by

which we can multiply each consecutive (n+ 1)-long subsequence of control points

in the control polygon C of a given B-spline curve of degree n, to give the Bézier

control points D of the corresponding span.

D

S

= CS

S
0

0

Fig. 3. Stacking to convert a complete B-spline into piecewise Bézier form.

To compute the piecewise Bézier representation of a complete curve, we can build

a much larger matrix by stacking copies of S(n) and then using the related facts

that (i) two adjacent Bézier pieces share a common control point at the junction

and (ii) the bottom row of S(n) is just a shifted copy of the top row (see Fig. 3). In

this paper we take the stacking for granted and focus on the determination of the

elements of S(n) for arbitrarily large n by recurrence (we do not concern ourselves

here with the question of end-conditions).

Without any loss of generality, in order to work out the B-spline-to-Bézier conver-

sion matrix for an arbitrary degree-n representation, we can compute the Bézier

representation of every B-spline basis function Nj−n,n(u), j = 0, · · · , n over the

interval [0, 1] (see Fig. 4).

This requires expressing each Nj−n,n(u) as a linear combination of the Bernstein-

Bézier polynomials of degree n, Bi,n(u), u ∈ [0, 1] ∀i = 0, · · · , n, via a set of

4

NN N

−2 −1

−2,2 −1,2 0,2

 2 3 1 0

Fig. 4. The three quadratic uniform B-splines over the central interval [0, 1].

coefficients s
(n)
i,j , i = 0, · · · , n:

∀j = 0, · · · , n Nj−n,n(u) =
n∑

i=0

s
(n)
i,j Bi,n(u) u ∈ [0, 1]. (1)

Therefore, writing (1) in matrix form we have that

[N−n,n(u) · · · N0,n(u)] = [B0,n(u) · · · Bn,n(u)] S
(n) (2)

namely S(n) is the so-called degree-n conversion matrix from B-spline to Bézier rep-

resentation. Since both B-spline basis functions and Bernstein-Bézier polynomials

satisfy the unit partition property, it follows that the rows of the conversion matrix

S(n) sum to 1: hence, converting a B-spline curve in Bézier form, every Bézier control

point will be defined by a convex combination of the B-spline control points. The

geometric meaning of the columns of S(n) is instead related to the Bézier representa-

tion of the n+1 degree-n B-spline functions over the interval [0, 1]: the j-th column

s
(n)
j of S(n) represents the Bézier ordinates of the control polygon of the (n− j)-th

polynomial piece of a degree-n uniform B-spline (see Fig. 5 for S(2) = 1
2

 1 1 0

0 2 0

0 1 1

).

0

1/2

1

0 1

s (2)
2

0 1

s (2)
1

0 1

s
0

(2)

Fig. 5. Plot of the columns of S(2) interpreted as the Bézier control point sets for
each curve segment of a quadratic uniform B-spline.

Now, in order to work out a recursion formula for computing the conversion matrix

for an arbitrary degree-n spline curve, we substitute in the Cox-de Boor recursion

5

formula (see [9], page 61) for a uniform degree-n B-spline, the expression in (1),

obtaining

n∑
i=0

s
(n)
i,j Bi,n(u) =

n−1∑
i=0

(
u− j + n

n
s
(n−1)
i,j−1 +

j + 1− u

n
s
(n−1)
i,j

)
Bi,n−1(u). (3)

Then, if in place of Bi,n(u), u ∈ [0, 1] we substitute the recursion relation on Bern-

stein polynomials (see [9], page 10), we can impose the equality of the coefficients

in both members of equation (3), obtaining that ∀j = 0, · · · , n i = 0, · · · , n− 1:

u s
(n)
i+1,j + (1− u) s

(n)
i,j =

u− j + n

n
s
(n−1)
i,j−1 +

j + 1− u

n
s
(n−1)
i,j u ∈ [0, 1] (4)

where ∀i = 0, · · · , n− 1 s
(n−1)
i,−1 = s

(n−1)
i,n = 0. Hence evaluating (4) at u = 0 we have

that

s
(n)
i,j =

n− j

n
s
(n−1)
i,j−1 +

j + 1

n
s
(n−1)
i,j ∀j = 0, · · · , n i = 0, · · · , n− 1 (5)

while evaluating (4) at u = 1 it follows:

s
(n)
i+1,j =

n+ 1− j

n
s
(n−1)
i,j−1 +

j

n
s
(n−1)
i,j ∀j = 0, · · · , n i = 0, · · · , n− 1. (6)

Then, starting from the 1× 1 matrix S(0) = s
(0)
0,0 = 1 which relates N0,0(u) = 1 and

B0,0(u) = 1 ∀u ∈ [0, 1], the (n+1)×(n+1) conversion matrix S(n) =
{
s
(n)
i,j

}
i,j=0,···,n

with n ≥ 1, can be defined recursively ∀j = 0, · · · , n either by

s
(n)
i,j = n−j

n s
(n−1)
i,j−1 + j+1

n s
(n−1)
i,j ∀i = 0, · · · , n− 1

s
(n)
n,j = n+1−j

n s
(n−1)
n−1,j−1 + j

n s
(n−1)
n−1,j

(7)

or by

s
(n)
0,j = n−j

n s
(n−1)
0,j−1 + j+1

n s
(n−1)
0,j

s
(n)
i,j = n+1−j

n s
(n−1)
i−1,j−1 + j

n s
(n−1)
i−1,j ∀i = 1, · · · , n.

(8)

Through equations (7) and (8) the generation of the conversion matrix turns out

to be very simple, but in order to make its computation more efficient (only integer

additions and subtractions), we propose an alternative definition via the convolu-

tional relation of uniform B-splines. In this way, by substituting (1) in the recursion

6

formula of a degree-n uniform B-spline (see [9], page 109), we obtain the following

expression

Nj−n,n(u) =

u∫
−∞

n−1∑
i=0

(
s
(n−1)
i,j−1 − s

(n−1)
i,j

)
Bi,n−1(v) dv u ∈ [0, 1] (9)

where ∀i = 0, · · · , n − 1 s
(n−1)
i,−1 = s

(n−1)
i,n = 0. Equation (9) can be regarded as

the combination of two operators, each of which can be handled numerically: a

shift-and-subtraction, an integration. The shift-and-subtraction is relatively obvi-

ous: the shift merely involves applying the Bézier coefficients s
(n−1)
i,j−1 ofNj−n,n−1(v) ≡

Nj−1−(n−1),n−1(v) to the part of the parametric domain displaced by one lattice unit;

the subtraction of the basis functionsNj−n,n−1(v)−Nj−n+1,n−1(v) ≡ Nj−1−(n−1),n−1(v)−
Nj−(n−1),n−1(v), corresponds to the subtraction of the coefficients s

(n−1)
i,j−1 −s

(n−1)
i,j , ac-

cording to the fact that (1) is linear in the coefficients. Like the shift-and-subtraction,

the integration operator has a simple numerical form, involving antidifferences on

the Bézier coefficients set (see [9], page 19). Hence, by solving the Bézier integral

in (9) and by comparing the resulting expression with (1), we get that for a given

j between n and 0

s
(n)
i,j = s

(n)
i−1,j +

1

n

(
s
(n−1)
i−1,j−1 − s

(n−1)
i−1,j

)
∀i = 1, · · · , n (10)

where ∀i = 1, · · · , n s
(n−1)
i−1,−1 = s

(n−1)
i−1,n = 0 and s

(n)
0,j j = n, · · · , 0 is the integration

constant, computed through (1) in the following way: s
(n)
0,n = N0,n(0) = 0, s

(n)
0,j =

Nj−n,n(0) = Nj+1−n,n(1) = s
(n)
n,j+1 ∀j = n − 1, · · · , 0 (see Fig. 4). Therefore, the

conversion matrix S(n) =
{
s
(n)
i,j

}
i,j=0,···,n

with n ≥ 1, can be defined recursively

∀j = n, · · · , 0 by (10) choosing the integration constant in the following way:

s
(n)
0,n = 0, s

(n)
0,j = s

(n)
n,j+1 j = n− 1, · · · , 0. (11)

Note that the 1
n factors in (10) do combine into a single 1

n! which can be carried out

at the end of a sequence of operations which are indeed only integer additions and

subtractions.

The following MATLAB function takes as input the degree n and efficiently gen-

erates the conversion matrix S(n) (save for the factor 1
n!) via the shift-subtraction-

integration procedure, exploiting the symmetry of the columns:

function S=conv(n)

S=eye(n+1);

for k = n-1:-1:1

nc=round((n− k)/2);

7

1. Shift-and-Subtraction

fc = n+ 1− nc;

for j = fc : n

for i = k + 1 : n+ 1

S(i, j)=S(i, j)-S(i, j + 1);

end

end

2. Integration

for j = n : −1 : fc

S(k, j)=S(n+ 1, j + 1);

for i = k + 1 : n+ 1

S(i, j)=S(i− 1, j)+S(i, j);

end

end

if mod(n+ 1− k,2)==1

S(k : n+ 1, n− nc)=S(n+ 1 : −1 : k, fc);

end

end

3. Replication of columns

for j=1:round(n/2)

S(1:n+ 1, j)=S(n+1:-1:1,n+ 2− j);

end

Remark 1 Since the Cox-de Boor formula and the convolutional relation are equiv-

alent strategies by which the univariate uniform B-spline basis functions may be

generated, it is trivially verified that considering together two of the three recursions

proposed above in (7) , (8) and (10), the third one can be easily worked out.

Remark 2 There is also a way to formulate the recursions for the matrix entries

in (7)-(8) by means of the following matrix recursion between the matrices S(n) and

S(n−1):

S(n)u = S(n−1)L(n−1) (12)

S
(n)
d = S(n−1)M(n−1) (13)

0

0

S =

Su

(n)

(n)

S
(n)

d

where S
(n)
u = {s(n)i,j }i,j=0,···,n−1, S

(n)
d = {s(n)i,j }i,j=1,···,n and L(n−1), M(n−1) are respec-

tively the following n× n bidiagonal matrices:

8

L(n−1) =



1
n

n−1
n 0 0 0 · · · 0

0 2
n

n−2
n 0 0 · · · 0

...
. . .

. . .
...

0 0 · · · j
n

n−j
n · · · 0

...
. . .

. . .
...

0 0 · · · 0 0 n−1
n

1
n

0 0 · · · 0 0 0 1



M(n−1) =



1 0 0 0 0 0 · · · 0

1
n

n−1
n 0 0 0 0 · · · 0

...
. . .

. . .
...

0 · · · 0 n−j
n

j
n 0 · · · 0

...
. . .

. . .
...

0 · · · 0 0 0 n−2
n

2
n 0

0 · · · 0 0 0 0 n−1
n

1
n



.

3 The Bézier-to-B-spline conversion matrix

Now let the Bézier-to-B-spline conversion matrix R(n) be the (n+1)×(n+1) matrix

by which we can multiply the vector of n + 1 control points of a Bézier curve, to

give a sequence of n+ 1 control points which will be a subsequence of any B-spline

which contains that curve as a span (there is no equivalent of stacking because in

general a sequence of Bézier curves is not an equal interval B-spline).

Although the Bézier-to-B-spline conversion matrix R(n) coincides with the inverse of

the B-spline-to-Bézier conversion matrix S(n), we can compute the entries
{
r
(n)
j,i

}
j,i=0,···,n

of R(n) more efficiently, and without using the entries of S(n), repeating the process

9

described in the previous section just substituting equation (1) by

∀i = 0, · · · , n Bi,n(u) =
n∑

j=0

r
(n)
j,i Nj−n,n(u) u ∈ [0, 1]. (14)

Using matrix notation, equation (14) can be written as

[B0,n(u) · · · Bn,n(u)] = [N−n,n(u) · · · N0,n(u)] R
(n) (15)

in such a way that the columns of R(n) express the B-spline representation of the

degree-n Bernstein polynomials B0,n(u), · · · , Bn,n(u). In other words, if we plot the

n + 1 columns of the matrix R(n), we have the B-spline ordinates of the control

polygon of each degree-n Bernstein polynomial (see Fig. 6 for R(2) =

 2 −1 0

0 1 0

0 −1 2

).

−1

0

1

2

−1 0 1 2

2
r (2)

0 1−1 2

(2)
1r

0−1 21

r (2)
0

Fig. 6. Plot of the columns of R(2) interpreted as the B-spline control point sets of
each quadratic Bernstein polynomial.

This time, in order to work out a recursion formula for computing the conversion

matrix for an arbitrary degree-n Bézier curve, we substitute in the recursion formula

for Bernstein polynomials (see [9], page 10), the expression in (14), obtaining

n∑
j=0

r
(n)
j,i Nj−n,n(u) =

n−1∑
j=0

(
u r

(n−1)
j,i−1 + (1− u) r

(n−1)
j,i

)
Nj−(n−1),n−1(u). (16)

Then, if in place of Nj−n,n(u) we substitute the Cox-de Boor recursion formula for

uniform B-splines, we can impose the equality of the coefficients in both members

of equation (16), obtaining that ∀i = 0, · · · , n j = 0, · · · , n− 1:

u− j + n− 1

n
r
(n)
j+1,i +

j + 1− u

n
r
(n)
j,i = u r

(n−1)
j,i−1 + (1− u) r

(n−1)
j,i (17)

where u ∈ [0, 1] and ∀j = 0, · · · , n− 1 r
(n−1)
j,−1 = r

(n−1)
j,n = 0. But, since (17) is linear

in u and is satisfied ∀u ∈ [0, 1], we can affirm that it is satisfied ∀u ∈ R. Hence

10

evaluating (17) at u = j − n+ 1 we have that

r
(n)
j,i = (j − n+ 1) r

(n−1)
j,i−1 + (n− j) r

(n−1)
j,i ∀i = 0, · · · , n j = 0, · · · , n− 1 (18)

while evaluating (17) at u = j + 1 it follows:

r
(n)
j+1,i = (j + 1) r

(n−1)
j,i−1 − j r

(n−1)
j,i ∀i = 0, · · · , n j = 0, · · · , n− 1. (19)

Then, starting from the 1 × 1 matrix R(0) = r
(0)
0,0 = 1 which relates B0,0(u) =

N0,0(u) = 1, the (n + 1) × (n + 1) conversion matrix R(n) =
{
r
(n)
j,i

}
j,i=0,···,n

, with

n ≥ 1, can be defined recursively ∀i = 0, · · · , n either by

r
(n)
j,i = (j + 1− n) r

(n−1)
j,i−1 + (n− j) r

(n−1)
j,i ∀j = 0, · · · , n− 1

r
(n)
n,i = n r

(n−1)
n−1,i−1 + (1− n) r

(n−1)
n−1,i

(20)

or by

r
(n)
0,i = (1− n) r

(n−1)
0,i−1 + n r

(n−1)
0,i

r
(n)
j,i = j r

(n−1)
j−1,i−1 + (1− j) r

(n−1)
j−1,i ∀j = 1, · · · , n.

(21)

Through equations (20) and (21) the generation of the conversion matrix turns out

to be very simple, but in order to make its computation more efficient, we propose an

alternative definition via the integral relation of Bernstein polynomials. In this way,

by substituting (14) in the derivative formula of a degree-n Bernstein polynomial

(see [9], page 15), we obtain the following expression

Bi,n(u) =

u∫
−∞

n
n−1∑
j=0

(
r
(n−1)
j,i−1 − r

(n−1)
j,i

)
Nj−(n−1),n−1(v) dv u ∈ [0, 1] (22)

where ∀j = 0, · · · , n− 1 r
(n−1)
j,−1 = r

(n−1)
j,n = 0. Hence, by solving the integral in (22)

and by comparing the resulting expression with equation (14), we get that, for a

given i between n and 0,

r
(n)
j,i = r

(n)
j−1,i + n

(
r
(n−1)
j−1,i−1 − r

(n−1)
j−1,i

)
∀j = 1, · · · , n (23)

where ∀j = 1, · · · , n r
(n−1)
j−1,−1 = r

(n−1)
j−1,n = 0 and r

(n)
0,i i = n, · · · , 0 is the

integration constant computed through (21). Note that while in the B-spline-to-

Bézier conversion algorithm it’s easy to compute the integration constant, here we

need to exploit the first method to compute it. Therefore, the conversion matrix

R(n) =
{
r
(n)
j,i

}
j,i=0,···,n

, with n ≥ 1, can be defined recursively by (23) choosing

11

r
(n)
0,n = 0, r

(n)
0,i = (1−n)r

(n−1)
0,i−1 +nr

(n−1)
0,i ∀i = n− 1, · · · , 0 as integration constants.

Exploiting the symmetry of its columns, the (n + 1) × (n + 1) Bézier-to-B-spline

conversion matrix R(n), for an arbitrary degree n can be efficiently generated by the

following MATLAB function:

function R=invconv(n)

R=eye(n+1);

for k = n-1:-1:1

kk = n+ 1− k;

nc=round((n− k)/2);

1. Shift-and-Subtraction

fc = n+ 1− nc;

for j = fc : n

R(k, j)=kk*(R(k + 1, j)-R(k + 1, j + 1));

for i = k + 2 : n+ 1

R(i, j)=kk*(R(i, j)-R(i, j + 1));

end

end

R(n+ 1, n+ 1)=kk*R(n+ 1, n+ 1);

2. Integration

for j = n : −1 : fc

R(k, j)=R(k + 1, j)-R(k, j);

for i = k + 2 : n+ 1

R(i, j)=R(i− 1, j)+R(i, j);

end

end

if mod(kk,2)==1

R(k : n+ 1, n− nc)=R(n+ 1 : −1 : k, fc);

end

end

3. Replication of columns

for j=1:round(n/2)

R(1:n+ 1, j)=R(n+1:-1:1,n+ 2− j);

end

Remark 3 As for the recursive computations of the B-spline-to-Bézier matrix en-

tries, it is trivially verified that considering together two of the three recursions

proposed in (20), (21) and (23) for computing the entries of the Bézier-to-B-spline

conversion matrix, the third one can be easily worked out.

Conversely, this time there is no way to formulate the recursions for the matrix

entries in (20)-(21) by means of a matrix recursion between the matrices R(n) and

12

R(n−1).

4 Conclusions and future work

In this work we have proposed a simple and efficient procedure for generating re-

cursively the B-spline-to-Bézier and Bézier-to-B-spline conversion matrices in the

uniform univariate case. They give us a practical direct transformation between ar-

bitrary degree-n B-spline and Bézier representations just multiplying the conversion

matrix by the column vector of control points. Since the tensor-product bivariate

case is just a tensor-product of the univariate results, the next step will be extending

our matrix conversion formulae to three- and four- directional Box-splines, provid-

ing an algorithm competitive with those proposed in [4] and [11] for computing the

Bézier coefficients of each polynomial piece of a Box-spline.

Additionally we would like to propose an analogous matrix conversion procedure

for transforming Bézier patches into Box-splines: in fact, while the possibility of

representing a Box-spline surface by its multi-Bézier representation provides an

acceleration in rendering processes and facilitates the analysis around extraordinary

points of all Box-spline subdivision schemes, the inverse transformation turns out

to be very interesting in solving the problem of modifying the sets of control points

of given triangular Bézier patches in order to guarantee their maximum join (with

respect to the corresponding Box-spline order of continuity).

Acknowledgements

This research was supported by the European Union research project Multiresolu-

tion in Geometric Modelling (MINGLE for short, EU Contract No. HPRN-CT-1999-

00117) and by University of Cambridge Computer Laboratory. We like to thank

Giulio Casciola for his helpful suggestions. Special thanks also go to the referees.

References

[1] W. Boehm, Generating the Bézier points of B-spline curves and surfaces,
Computer Aided Design 13(6) (1981), 365-366

[2] C.K. Chui, M.J. Lai, Computation of box-splines and B-splines on triangulations
of nonuniform rectangular partitions, Approximation Theory & its Applications
3 (1987), 37-62

13

[3] C.K. Chui, Multivariate Splines, CBMS Lectures Series 54, SIAM, Philadelphia
(1988)

[4] C.K. Chui, M.J. Lai, Algorithms for generating B-nets and graphically
displaying spline surfaces on three- and four- directional meshes, Computer
Aided Geometric Design 8 (1991), 479-493

[5] E. Cohen, T. Lyche, R. Riesenfeld, Discrete B-splines and subdivision tecniques
in computer aided geometric design and computer graphics, Computer Graphics
and Image Processing 14(2) (1980), 87-111

[6] P. de Casteljau, Formes á pôles, in: Mathematiques et CAO 2 (Hermés
Publishing, Paris, 1985)

[7] H. Grabowski, X. Li, General matrix representation for NURBS curves and
surfaces for interfaces, in: J. Hoschek (Ed.), Freeform Tools in CAD Systems -
A Comparison (Teubner, 1991), 219-232

[8] T. Lyche, K. Mørken, E. Quak, Theory and Algorithms for non-uniform spline
wavelets, in: N. Dyn, D. Leviatan, D. Levin and A. Pinkus (Eds.), Multivariate
Approximation and Applications (Cambridge University Press, 2001), 152-187

[9] H. Prautzsch, W. Boehm, M. Paluszny, Bézier and B-spline techniques
(Springer, Berlin, 2002)

[10] L. Ramshaw, Blossoming: A Connect-the-Dots Approach to Splines, Technical
Report 19, Digital System Research Center (Palo Alto, 1987)

[11] M.A. Sabin, The use of piecewise forms for the numerical representation
of shape, Tanulmanyok 60/1977, MTA Szamitastechnikai es Automatizalasi
Kutato Intezet (Budapest, 1976)

[12] T. Surazhsky, G. Elber, Arbitrary Precise Orientation Specification for Layout
of Text, Proceedings of the Eighth Pacific Conference on Computer Graphics
and Applications (2000), 80-86

14

