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Abstract

In this work we construct three novel families of approximating subdivision schemes
that generate piecewise exponential polynomials and we show how to convert these
into interpolating schemes of great interest in curve design for their ability to repro-
duce important analytical shapes and to provide highly smooth limit curves with a
controllable tension.
In particular, throughout this paper we will focus on the derivation of 6-point

interpolating schemes that turn out to be unique in combining vital ingredients like
C2-continuity, simplicity of definition, ease of implementation, user independency,
tension control and ability to reproduce salient trigonometric and transcendental
curves.
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1 Introduction

The main interest in the study of curve subdivision has always been the development

of easy-to-use techniques that can make the construction of curves more flexible and

efficient.

Starting from the idea that interpolatory methods have the ability to generate curves

in a very predictable manner (due to the fact that the produced limit shapes pass
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through the given control points), research is continually moving toward the inves-

tigation of interpolatory refinement rules able to combine the greatest number of

features considered vital or simply desirable in curve design. However, although the

recent burgeoning literature in the field, there are still no available proposals able

to guarantee curvature-continuous limit shapes possessing properties like tension

control and important analytical curves reproduction. In fact, while the interpola-

tory schemes presented in [2] and [19] are C2-continuous, they cannot represent any

kind of fundamental shapes except cubic polynomials, and while the schemes in [8]

and [1], [20], [21] can respectively reproduce circles and conic sections, they are only

C1-continuous.

In this paper we will therefore address the definition of interpolating 6-point C2

schemes including in the refinement equations a non-stationary parameter that, be-

sides offering the possibility of intuitively modifying the tension of the limit shape,

allows reproducing several trigonometric and transcendental curves often needed in

CAGD and its applications.

To come to their rules, in Section 2 we will introduce non-stationary approxima-

ting schemes that allow an exact representation of functions from spaces combining

algebraic and exponential polynomials. Then, in Section 3 we will show how these

new proposals can be converted into 2ℓ-point interpolating schemes reproducing the

same function spaces, and finally, in Section 4 we will exploit this constructive ap-

proach to derive high-performance interpolating 6-point schemes with outstanding

reproducing properties. Some examples aimed at illustrating the main features of

the proposed algorithms will be shown in Section 5.

2 Non-stationary approximating schemes for exponential splines

In curve subdivision we start with an initial polyline P 0 = {p0j}j∈Z+ , and in each step

we insert new vertices calculated as linear combinations of the existing ones and we

connect them with edges, producing a refined polyline P k+1 = {pk+1
j }j∈Z+ , k ≥ 0.

In approximating schemes, in each step we also adjust the old vertices, again as

linear combinations of the existing points. If the weights of the linear combinations

change at each round of refinement, the subdivision scheme is called non-stationary,

and a superscript k is added to denote the dependence on the subdivision level. The

information about these linear combinations is generally coded in the mask of the

scheme. In the following we will denote by σk the non-stationary mask with coeffi-

cients {σk
j }j∈Z+ and by σk(z) =

∑
j∈Z+ σk

j z
j the generating function (or Laurent

polynomial) of the respective sequence. In this way, using the generating function of

pkj and pk+1
j , the formal relation between points at two successive refinement levels

can be written in the generating function form as P k+1(z) = σk(z)P k(z2), with

P k(z) =
∑

j∈Z+ pkj z
j , k ≥ 0.

The purpose of this section is to introduce the Laurent polynomial representations

of non-stationary approximating schemes characterized by the property of reprodu-
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cing functions from spaces combining algebraic and exponential polynomials.

To this aim we will start out defining the general finite-dimensional space of expo-

nential polynomials and then we will focus on the Laurent polynomial formalism of

approximating schemes whose limit functions belong to subclasses of L-splines [16]

that allow an exact representation of the considered spaces.

Definition 1 Let {γj}Mj=0 with γM ̸= 0, M ∈ Z+, be a finite set of real or imaginary

numbers, and let Dj be the j-th order differentiation operator. We denote by VM

the subspace

VM =

ϕ : R → C, ϕ ∈ CM (R) :
M∑
j=0

γjD
jϕ = 0

 .

Define γ(z) =
∑M

j=0 γjz
j and let {(θi, ϱi)}i=1,...,N be the set of zeros with multiplic-

ities of γ(z) = 0,

γ(ri)(θi) = 0, ∀ri = 0, ..., ϱi − 1, i = 1, ..., N (1)

ϱi ∈ N, M =
N∑
i=1

ϱi.

Then VM is the subspace of dimension M of exponential polynomials of the form

VM = span{xrieθix : ri = 0, ..., ϱi − 1, i = 1, ..., N}.

In [18] it was proved that any non-stationary approximating scheme with a symbol

of the form

σk(z) = 2
N∏
i=1

ϱi−1∏
ri=0

e
θi

2k+1 z + 1

e
θi

2k+1 + 1
, k ≥ 0, (2)

generates limit functions belonging to the subclass of CM−2 L-splines whose pieces

are exponentials of the space VM .

In the following subsections we construct three novel families of non-stationary

approximating schemes whose symbols can be written in the form (2), thus allowing

the reproduction of piecewise exponential polynomials.
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2.1 A family of approximating subdivision schemes reproducing functions in the

space {1, x, ..., xn−1, xn, etx, e−tx}

We start out focussing our attention on the family of approximating schemes iden-

tified by the Laurent representation

σk(z) =
1

2n
(z + 1)n+1 z2 + 2vk+1z + 1

2(vk+1 + 1)
. (3)

Assuming that n is an arbitrary integer larger than or equal to 1, and vk+1 a

parameter updated at each step k ≥ 0 through the recurrence

vk+1 =

√
1 + vk

2
, (4)

the following result holds.

Proposition 2 Let t denote a non-negative real or imaginary constant, namely let

t = 0, t = s or t = is, with s > 0.

The approximating scheme with symbol (3), where n ∈ N and vk+1 is updated

through (4), reproduces functions in the space Vn+3,t ≡ {1, x, ..., xn−1, xn, etx, e−tx},
i.e. it reproduces Cn+1 exponential polynomial B-splines.

PROOF. The related proof follows by the fact that the parameter vk+1 defined

through recurrence (4) satisfies the equality

vk+1 =
1

2
(etk+1 + e−tk+1) (5)

with tk+1 = t
2k+1 (see [1]). Hence, due to (5), the Laurent polynomial σk(z) in (3)

can be rewritten in the form

σk(z) =
1

2n
(z + 1)n+1 etk+1z + 1

etk+1 + 1

e−tk+1z + 1

e−tk+1 + 1
. (6)

We now observe that, denoted with {θi}i=1,2,3 the set of values θ1 = 0, θ2 = t,

θ3 = −t, with multiplicities ϱ1 = n + 1, ϱ2 = ϱ3 = 1, we can further rewrite (6) as

in (2), thus obtaining

σk(z) = 2
3∏

i=1

ϱi−1∏
ri=0

e
θi

2k+1 z + 1

e
θi

2k+1 + 1
. (7)
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Since {(θi, ϱi)}i=1,2,3 identifies the set of zeros with multiplicities of the polynomial

equation zn+3 − t2zn+1 = 0 associated with the differential equation ϕ(n+3)(z) −
t2ϕ(n+1)(z) = 0, it follows that the limit functions for the scheme (3)-(4) are Cn+1

exponential polynomial B-splines whose pieces are functions of the space Vn+3,t. �

Corollary 3 Directly from Proposition 2 we thus know that the subdivision scheme

(3)-(4)

• reproduces functions in the space

Vn+3,is ≡ {1, x, ..., xn−1, xn, cos(sx), sin(sx)},

i.e. generates Cn+1 trigonometric polynomial B-splines ([3], [14]), whenever v0 ∈
(−1, 1), that is t = is, s > 0;

• reproduces functions in the space

Vn+3,0 ≡ {1, x, ..., xn+1, xn+2},

i.e. generates Cn+1 polynomial B-splines, whenever v0 = 1, that is t = 0;

• reproduces functions in the space

Vn+3,s ≡ {1, x, ..., xn−1, xn, cosh(sx), sinh(sx)},

i.e. generates Cn+1 hyperbolic polynomial B-splines ([11], [12]), whenever v0 ∈
(1,+∞), that is t = s > 0.

Remark 4 Note that the scheme with symbol in (3), if modified by replacing vk+1

with vk+1
i , defines a scheme reproducing the very general class of UE-splines recently

introduced in [17]. In fact, being the shape parameter vk+1
i updated through (4) for

all k ≥ 0 as well as variable with the choice of i, it allows representing spline

curves defined over spaces containing simultaneously polynomial, trigonometric and

hyperbolic functions, as the parameter ti, introduced in correspondence of each curve

segment, may be indifferently chosen as 0, s or is, for an arbitrary s > 0.

In the following subsections we will introduce two other novel families of approxi-

mating schemes whose symbols are still enclosed in the form (2). They are both

featured by C2n smoothness, but they allow an exact representation of functions

from spaces that differently mix algebraic and exponential polynomials.
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2.2 A family of approximating subdivision schemes reproducing functions in the

space {1, x, etx, e−tx, ..., entx, e−ntx}

Let λj(v
k+1) = det(L), where L denotes the j × j tridiagonal matrix

L =



2vk+1 1 0 0 · · · 0

2 2vk+1 1 0 · · · 0

0 1 2vk+1 1 · · ·
...

0 0 1 2vk+1 . . . 0
...

...
...

. . .
. . . 1

0 0 0 · · · 1 2vk+1


∈ Rj×j . (8)

We consider the non-stationary symbol

σk(z) =
1

2
(z + 1)2

n∏
j=1

z2 + λj(v
k+1)z + 1

λj(vk+1) + 2
(9)

where n ∈ N and vk+1 is updated at each step k ≥ 0 through the recurrence formula

(4). Hence the following result holds.

Proposition 5 Let t denote a non-negative real or imaginary constant, namely let

t = 0, t = s or t = is, with s > 0.

The approximating scheme with symbol (9), where n ∈ N and vk+1 is updated

through (4), reproduces functions in the space V2n+2,t ≡ {1, x, etx, e−tx, ..., entx,

e−ntx}, i.e. it reproduces a special subclass of C2n L-splines.

PROOF. The related proof follows by the fact that, as previously observed, the

parameter vk+1 defined as in (4) satisfies the equality (5) with tk+1 = t
2k+1 for all

k ≥ 0. Hence, due to (5), the Laurent polynomial σk(z) in (9) can be rewritten in

the form

σk(z) =
1

2
(z + 1)2

etk+1z + 1

etk+1 + 1

e−tk+1z + 1

e−tk+1 + 1
· · · entk+1z + 1

entk+1 + 1

e−ntk+1z + 1

e−ntk+1 + 1
.

(10)

We now observe that, denoted with {θi}i=1,...,2n+1 the set of values θ1 = 0, θ2j = jt,

θ2j+1 = −jt (j = 1, ..., n), with multiplicities ϱ1 = 2, ϱi = 1 (i = 2, ..., 2n + 1), we

can further rewrite (10) in the form (2), thus obtaining

σk(z) = 2
2n+1∏
i=1

ϱi−1∏
ri=0

e
θi

2k+1 z + 1

e
θi

2k+1 + 1
. (11)
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Assuming the notations µ0 = 1, νn = (1,−n2t2) and µn = {µn
h}h=1,...,n+1 ∀n ≥ 1

with

µn
h = (µn−1 ⊗ νn)h =

∑
i+j=h

µn−1
i νnj , h = 1, ..., n+ 1, (12)

it turns out that {(θi, ϱi)}i=1,...,2n+1 identifies the set of zeros with multiplicities

of the polynomial equation z2
∑n+1

h=1 µn
hz

2n+2−2h = 0 associated with the differ-

ential equation ϕ(2)(z)
∑n+1

h=1 µn
hϕ

(2n+2−2h)(z) = 0. Hence it follows that the limit

functions for the scheme (9)-(4) belong to the special subclass of C2n L-splines [16]

reproducing functions from the space V2n+2,t. �

Corollary 6 Directly from the proof of Proposition 5 we thus know that the subdi-

vision scheme (9)-(4)

• reproduces functions in the space

V2n+2,is ≡ {1, x, cos(sx), sin(sx), ..., cos(nsx), sin(nsx)},

i.e. generates C2n mixed trigonometric splines ([13], [16]) whenever v0 ∈ (−1, 1),

that is t = is, s > 0;

• reproduces functions in the space

V2n+2,0 ≡ {1, x, ..., x2n, x2n+1},

i.e. generates C2n polynomial B-splines whenever v0 = 1, that is t = 0;

• reproduces functions in the space

V2n+2,s ≡ {1, x, cosh(sx), sinh(sx), ..., cosh(nsx), sinh(nsx)},

i.e. generates C2n splines-in-tension [16] whenever v0 ∈ (1,+∞), that is t = s >

0.

2.3 A family of approximating subdivision schemes reproducing functions in the

space {1, x, etx, e−tx, ..., xn−1etx, xn−1e−tx}

We finally consider the symbol

σk(z) =
1

2
(z + 1)2

(z2 + 2vk+1z + 1)n

2n(vk+1 + 1)n
(13)

where n ∈ N and vk+1 is updated at each step k ≥ 0 through the recurrence formula

(4). Hence the following result holds.
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Proposition 7 Let t denote a non-negative real or imaginary constant, namely let

t = 0, t = s or t = is, with s > 0.

The approximating scheme with symbol (13), where n ∈ N and vk+1 is updated

through (4), reproduces functions in the space V2n+2,t ≡ {1, x, etx, e−tx, xetx, xe−tx, ...,

xn−1etx, xn−1e−tx}, i.e. it reproduces a special subclass of C2n L-splines.

PROOF. The related proof follows by the fact that, as previously observed, the

parameter vk+1 defined as in (4) satisfies the equality (5) with tk+1 = t
2k+1 for all

k ≥ 0. Hence, due to (5), the Laurent polynomial σk(z) in (13) can be rewritten in

the form

σk(z) =
1

2
(z + 1)2

(etk+1z + 1)n

(etk+1 + 1)n
(e−tk+1z + 1)n

(e−tk+1 + 1)n
. (14)

We now observe that, denoted with {θi}i=1,2,3 the set of values θ1 = 0, θ2 = t,

θ3 = −t, with multiplicities ϱ1 = 2, ϱ2 = ϱ3 = n, we can further rewrite (14) as in

(2), thus obtaining

σk(z) = 2
3∏

i=1

ϱi−1∏
ri=0

e
θi

2k+1 z + 1

e
θi

2k+1 + 1
. (15)

Since {(θi, ϱi)}i=1,2,3 identifies the set of zeros with multiplicities of the polynomial

equation z2 (z2−t2)n = 0 associated with the differential equation ϕ(2)(z) (ϕ(2)(z)−
t2)n = 0, it follows that the limit functions for the scheme (13)-(4) belong to the

special subclass of C2n L-splines [16] reproducing functions in the space V2n+2,t. �

Corollary 8 Directly from the proof of Proposition 7 we thus know that the subdi-

vision scheme (13)-(4)

• reproduces functions in the space

V2n+2,is ≡ {1, x, cos(sx), sin(sx), ..., xn−1 cos(sx), xn−1 sin(sx)},

i.e. generates C2n mixed trigonometric splines ([13], [16]), whenever v0 ∈ (−1, 1),

that is t = is, s > 0;

• reproduces functions in the space

V2n+2,0 ≡ {1, x, ..., x2n, x2n+1},

i.e. generates C2n polynomial B-splines, whenever v0 = 1, that is t = 0;

• reproduces functions in the space

V2n+2,s ≡ {1, x, cosh(sx), sinh(sx), ..., xn−1 cosh(sx), xn−1 sinh(sx)},
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i.e. generates C2n splines-in-tension [16], whenever v0 ∈ (1,+∞), that is t = s >

0.

3 From exponentials reproducing approximating schemes to 2ℓ-point

interpolating schemes with the same reproduction properties

In [10] it was observed that the Dubuc-Deslauriers interpolating 4-point scheme ([5],

[6]) can be derived from the cubic B-spline scheme through a sequence of weighted

averaging operations. In this work such a relation will be rewritten in terms of their

Laurent polynomial representations and extended to their non-stationary versions

([1] and [15]). Furthermore, we will show that, from any approximating scheme

able to reproduce functions in a given space of exponential polynomials V2ℓ,t (with

t = 0, t = s, or t = is, s > 0), a 2ℓ-point interpolating scheme with the same

reproduction properties can be derived straightforwardly via its Laurent polynomial

representation. To this aim we recall that, exploiting only non-negative powers of z,

a 2ℓ-point interpolatory scheme is defined by a Laurent polynomial of degree 4ℓ− 2

whose coefficients for the odd powers of z are all zero except that of z2ℓ−1 which is

equal to 1 ([5], [6]). Thus, taking a degree-2ℓ symbol of an approximating scheme

σk(z), it is easy to see that, if we introduce a degree-(2ℓ − 2) polynomial ωk(z) of

the form

ωk(z) =

2(ℓ−1)∑
j=0

ωk
j z

j , with ωk
j = ωk

2(ℓ−1)−j ∀j = 0, ..., ℓ− 2, (16)

whenever the coefficients {ωk
j }j=0,...,ℓ−1 are determined by solving the linear system

σk
1ω

k
0 + σk

0ω
k
1 = 0

σk
3ω

k
0 + (σk

2 + σk
0 )ω

k
1 + σk

1ω
k
2 = 0

...

σk
2ℓ−5ω

k
0 + (σk

2ℓ−6 + σk
0 )ω

k
1 + · · ·+ (σk

ℓ−2 + σk
ℓ−4)ω

k
ℓ−3 + σk

ℓ−3ω
k
ℓ−2 = 0

σk
2ℓ−3ω

k
0 + (σk

2ℓ−4 + σk
0 )ω

k
1 + · · ·+ (σk

ℓ−1 + σk
ℓ−3)ω

k
ℓ−2 + σk

ℓ−2ω
k
ℓ−1 = 0

2ωk
0 + 2ωk

1 + · · ·+ 2ωk
ℓ−2 + ωk

ℓ−1 = 1,

(17)

the polynomial

ζk(z) = σk(z)ωk(z) (18)

will define a 2ℓ-point interpolatory scheme (in fact, the first ℓ− 1 equations in (17)

correspond to conditions ζk2j−1 = ζk4ℓ−2j−1 = 0 ∀j = 1, ..., ℓ− 1, and the last one to
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∑2(ℓ−1)
j=0 ωk

j = 1, namely ζk2ℓ−1 = 1).

In the following Proposition we will show that, taken a degree-2ℓ polynomial σk(z)

featured by the property of reproducing functions from a certain space V2ℓ,t, the

2ℓ-point interpolatory scheme with symbol ζk(z) in (18) will possess the same re-

production property.

To this purpose we introduce the following Lemma.

Lemma 9 The degree-(2ℓ − 2) Laurent polynomial ωk(z) in (16) is univocally de-

fined by coefficients

ωk
j =

(−1)ℓ−j−1 det(Ŝk
ℓ,j+1)

det(Sk
ℓ )

j = 0, ..., ℓ− 1 (19)

where Sk
ℓ is the ℓ× ℓ lower Hessenberg matrix

Sk
ℓ =



σk
1 σk

0 0 0 0 · · · 0

σk
3 σk

2 + σk
0 σk

1 0 0 · · · 0

σk
5 σk

4 + σk
0 σk

3 + σk
1 σk

2 0 · · · 0

..

.
..
. · · ·

..

.
. . .

. . .
..
.

σk
2ℓ−5 σk

2ℓ−6 + σk
0 · · · σk

ℓ−1 + σk
ℓ−5 σk

ℓ−2 + σk
ℓ−4 σk

ℓ−3 0

σk
2ℓ−3 σk

2ℓ−4 + σk
0 · · · σk

ℓ+1 + σk
ℓ−5 σk

ℓ + σk
ℓ−4 σk

ℓ−1 + σk
ℓ−3 σk

ℓ−2
2 2 · · · 2 2 2 1

 (20)

and Ŝk
ℓ,j+1 denotes the (ℓ− 1)× (ℓ− 1) matrix obtained by eliminating column j+1

from the (ℓ−1)×ℓ submatrix of Sk
ℓ corresponding to its first ℓ−1 rows, here denoted

by Ŝk
ℓ .

PROOF. Since the linear system in (17) can be rewritten in the following matrix

form

Sk
ℓ



ωk
0

ωk
1
...

ωk
ℓ−2

ωk
ℓ−1

 =


0

0
...

0

1

 ,

where Sk
ℓ is the ℓ × ℓ lower Hessenberg matrix in (20), it turns out that (17) has

a unique solution due to non-singularity of the coefficients matrix. In particular, it

can be shown by induction on ℓ, that it is given by the explicit formula (19). �

Proposition 10 Let σk(z) be the degree-2ℓ Laurent polynomial of an approximating

scheme reproducing functions from the space V2ℓ,t. Then the 2ℓ-point interpolating

scheme ζk(z) with symbol in (18), reproduces functions from the same space V2ℓ,t.
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PROOF. Let zi,k+1 = e
− θi

2k+1 , i = 1, ..., N . Since by results in [18] σk(z) is a

polynomial of the form

σk(z) = 2
N∏
i=1

ϱi−1∏
ri=0

e
θi

2k+1 z + 1

e
θi

2k+1 + 1
with

N∑
i=1

ϱi = 2ℓ,

it is easy to verify that the following equalities turn out to be satisfied:

σk(−zi,k+1) = 0, ∀i = 1, ..., N (21)

dri

dzri
σk(−zi,k+1) = 0, ∀ri = 1, ..., ϱi − 1, i = 1, ..., N.

Thus, by (18), it is also

ζk(−zi,k+1) = 0, ∀i = 1, ..., N (22)

dri

dzri
ζk(−zi,k+1) = 0, ∀ri = 1, ..., ϱi − 1, i = 1, ..., N.

Now, introducing ζ̃k(z) = ζk(z) z−(2ℓ−1) and exploiting Lemma 9, it can be shown

that equations

ζ̃k(zi,k+1) = 2, ∀i = 1, ..., N (23)

dri

dzri
ζ̃k(zi,k+1) = 0, ∀ri = 1, ..., ϱi − 1, i = 1, ..., N

are satisfied for any arbitrary ℓ.

Hence, as equalities (22)-(23) turn out to be simultaneously true, recalling Theorem

2.3 in [7] we can claim that the interpolating scheme ζk(z) reproduces V2ℓ,t. �

Corollary 11 When n = 2ℓ − 3, the polynomial σk(z) in (3) turns out to have

degree 2ℓ. Hence by computing (18) with ωk(z) as in (16)-(19), we define a 2ℓ-point

interpolating scheme reproducing functions from the space

V2ℓ,t ≡ {1, x, ..., x2ℓ−4, x2ℓ−3, etx, e−tx}.

When n = ℓ − 1, the polynomial σk(z) in (9) turns out to have degree 2ℓ. Hence

by computing (18) with ωk(z) as in (16)-(19), we define a 2ℓ-point interpolating

scheme reproducing functions from the space

V2ℓ,t ≡ {1, x, etx, e−tx, ..., e(ℓ−1)tx, e−(ℓ−1)tx}.

When n = ℓ − 1, the polynomial σk(z) in (13) turns out to have degree 2ℓ. Hence

by computing (18) with ωk(z) as in (16)-(19), we define a 2ℓ-point interpolating
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scheme reproducing functions from the space

V2ℓ,t ≡ {1, x, etx, e−tx, xetx, xe−tx..., xℓ−2etx, xℓ−2e−tx}.

Corollary 12 As concerns the 2ℓ-point interpolating schemes derived in Corollary

11, whenever we take an initial polyline made of points {p0j}j∈Z+ lying equidistant

in the parameter u > 0 on a curve from the corresponding space V2ℓ,t (with t = 0,

t = s or t = is, s > 0), by setting the initial parameter v0 = 1
2(e

tu + e−tu) we are

able to reproduce the curve from which those points are sampled (see Figures 2, 3,

4, 5, 6, 7).

Corollary 13 Both as concerns the approximating schemes σk(z) in (3), (9), (13)

and the associated 2ℓ-point interpolating schemes ζk(z) derived in Corollary 11, the

starting parameter v0 ∈ (−1,+∞) affects the behaviour of the limit curve in such

a way that, the greater it is, the smaller is the distance of the resulting shape from

the starting polyline (see Figures 8, 9, 10).

4 High-performance interpolating 6-point C2 subdivision schemes

Let us start by observing that when ℓ = 2 (i.e. n = 1), the polynomial σk(z) in (3)

becomes the Laurent polynomial of the subdivision scheme reproducing C2 cubic

exponential B-splines [15]. Computing coefficients {ωk
j }j=0,1 of ωk(z) as in (19),

we get ωk
0 = − 1

2vk+1 , ω
k
1 = vk+1+1

vk+1 . Hence, assuming vk+1 to be updated at each

step by equation (4), the generating function ζk(z) turns out to be the symbol

of the 4-point interpolating scheme introduced in [1], which allows reproducing

functions from the space V4,t = {1, x, etx, e−tx} with t = 0, t = s, or t = is, for

any s > 0. Therefore, whenever t = is, s > 0, for any subdivision level k ≥ 0 the

recurrence relation in (4) defines a parameter vk+1 = cos
(

s
2k+1

)
, with s ∈ [0, π). In

this case, the generating function ζk(z) corresponds to the symbol of the 4-point

interpolating scheme described in [8] as well as in [4]. As a consequence (differently

from what claimed in the latter) such a scheme can only reproduce functions from

the space V4,is = {1, x, cos(sx), sin(sx)}, for a given angle s ∈ [0, π), namely it

allows representing only the subclass of mixed trigonometric functions containing

just a sine and a cosine with such a fixed argument. For this reason, curves like the

cardioid or the astroid, since defined by the parametric representations

(x(s), y(s)) =

(
1

2
(1 + 2 cos(s) + cos(2s)),

1

2
(2 sin(s) + sin(2s))

)
and

(x(s), y(s)) = (3 cos(s) + cos(3s), 3 sin(s)− sin(3s)) ,
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which involve trigonometric functions with different arguments, cannot be exactly

represented by such a scheme. This explanation should clarify that the exact repre-

sentation of trigonometric curves of this kind needs the definition of schemes able

to reproduce functions from the spaces

{1, x, cos(sx), sin(sx), cos(2sx), sin(2sx)} (24)

and

{1, x, cos(sx), sin(sx), cos(2sx), sin(2sx), cos(3sx), sin(3sx)} (25)

respectively.

Fig. 1. Comparisons between the cardioid and astroid reconstructions obtained by
the scheme in [4] (black lines) and the real plot of these trigonometric curves (red
lines). Dashed blue lines denote the chosen starting polygons made respectively of
12 and 6 points sampled at uniform parameter spacings equal to π

6 and π
3 . As it

appears, starting from coarser polylines the difference between the two curves is
still more evident.

The following subsections will be devoted to the construction of three novel inter-

polating 6-point schemes, the second of which turns out to be able to reproduce

functions from the space in (24). The explored schemes are all defined over spaces

combining algebraic and exponential polynomials, and give rise to different exten-

sions of the space V4,t = {1, x, etx, e−tx} with t = 0, t = s, or t = is, s > 0.

The first considered supraset is the mixed space V6,t ≡ {1, x, x2, x3, etx, e−tx},
generated by expanding the polynomial part of V4,t; the second one is V6,t ≡
{1, x, etx, e−tx, e2tx, e−2tx}, obtained by V4,t by adding higher-order exponential func-

tions; the last extension is V6,t ≡ {1, x, etx, e−tx, xetx, xe−tx}, which turns out to be

spanned by products of degree-1 algebraic polynomials 1, x and order-1 exponen-

tial polynomials 1, etx, e−tx. As will be shown in Section 5, the three schemes

can deal with both C2 free-form curves and traditional analytical shapes, includ-

ing conic sections, second-order trigonometric curves, the catenary, the helix and

some important spirals. In comparison with the space V4,t, which allows an exact

representation of standard quadratic and cubic curves only in a limiting case [1],

13



the first mentioned supraset V6,t can represent parabolas and cubics without resort-

ing to the limit. This property also holds for the second mentioned supraset V6,t,

because, given an order-1 trigonometric (hyperbolic) function u(s), then u2(s) is

an order-2 trigonometric (hyperbolic). Therefore, the order-2 trigonometric (hyper-

bolic) curve (x(s), y(s)) = (u, u2) is a parabola. Anyway, the main advantage of

the second space V6,t over V4,t, is that it encompasses order-2 trigonometric curves

which include several important shapes [9]. Finally, the third mentioned space V6,t

deserves our attention since it contains spirals of interest in engineering, such as the

circle involute, which represents the curve employed in most gear-tooth profiles.

4.1 An interpolating 6-point C2 subdivision scheme for conics reproduction

Taking the member of the family σk(z) in (3) which corresponds to ℓ = 3 (i.e. n = 3),

we get the approximating scheme for C4 exponential B-splines. It is described by

the refinement rules

pk+1
2j = σk

1 pkj−1 + σk
3 pkj + σk

1 pkj+1,

pk+1
2j+1 = σk

0 (pkj−1 + pkj+2) + σk
2 (pkj + pkj+1) (26)

with

σk
0 =

1

16(vk+1 + 1)
, σk

1 =
vk+1 + 2

8(vk+1 + 1)
,

(27)

σk
2 =

8vk+1 + 7

16(vk+1 + 1)
, σk

3 =
3vk+1 + 2

4(vk+1 + 1)

where vk+1 is updated through (4) for any k ≥ 0.

We now derive from (26) the corresponding 6-point interpolating scheme following

the results presented in Section 3.

Let ωk(z) be the degree-4 Laurent polynomial in (16) with coefficients

ωk
0 =

vk+1 + 2

4vk+1(vk+1 + 1)
,

ωk
1 =− (vk+1 + 2)2

2vk+1(vk+1 + 1)
, (28)

ωk
2 =

4(vk+1)2 + 9vk+1 + 6

2vk+1(vk+1 + 1)

14



computed through (19). Hence the associated 6-point interpolating scheme is de-

scribed by the refinement rules

pk+1
2j = pkj ,

pk+1
2j+1 = ζk0 (pkj−2 + pkj+3) + ζk2 (pkj−1 + pkj+2) + ζk4 (pkj + pkj+1) (29)

with

ζk0 =
vk+1 + 2

64vk+1(vk+1 + 1)2
,

ζk2 =−4(vk+1)3 + 8(vk+1)2 + 7vk+1 + 6

64vk+1(vk+1 + 1)2
, (30)

ζk4 =
36(vk+1)3 + 72(vk+1)2 + 38vk+1 + 4

64vk+1(vk+1 + 1)2
.

Due to Corollary 11, it turns out that this scheme can reproduce functions in the

space V6,t ≡ {1, x, x2, x3, etx, e−tx} for any non-negative real or imaginary constant

t. As a consequence, it allows an exact representation of cubics, circles and conic

sections, namely of the most important shapes in engineering (see Figures 2 and 3).

Note that the coefficients {ζk2j}j=0,1,2 in (30) are well-defined for any v0 ∈ (−1,+∞).

In addition, since when k tends to infinity, vk+1 approaches to 1 [1], it follows that

lim
k→+∞

ζk0 =
3

256
, lim

k→+∞
ζk2 = − 25

256
, lim

k→+∞
ζk4 =

75

128
, (31)

and hence the scheme (29)-(30)-(4) brings back to the stationary 6-point scheme in

[19]. By Theorem 2.5 in [7] the 6-point interpolating scheme with coefficients in (30)

is the only 6-point reproducing the space V6,t. Thus, Theorems 2.7 and 2.10 in [7] al-

low us to claim C2 smoothness of the proposed 6-point scheme for any choice of the

starting parameter v0 in the range (−1,+∞). Because such a scheme encompasses

under unified rules both C2 free-form and traditional analytical shapes, it provides

an important improvement of the existing interpolating subdivision schemes, which

are either C1 and able to reproduce such a family of curves ([1], [4], [8], [20] and

[21]), or C2 but not able to reproduce any kind of fundamental shapes except cubic

polynomials ([2], [19]).

In the following subsection we will show how to generate exactly trigonometric

curves of the second-order (i.e. described by means of parametric equations involv-

ing order-2 trigonometric functions) by an interpolating 6-point scheme derived

straightforwardly from the ℓ = 3 (i.e. n = 2) member of the approximating family

in (9).

15



4.2 An interpolating 6-point C2 subdivision scheme for second-order curves repro-

duction

Let us consider the approximating scheme described by the Laurent polynomial

σk(z) in (9) when setting ℓ = 3 (i.e. n = 2). The associated refinement rules are

given by equations (26) with

σk
0 =

1

16(vk+1)2(vk+1 + 1)
, σk

1 =
2vk+1 + 1

8vk+1(vk+1 + 1)
,

(32)

σk
2 =

8(vk+1)3 + 8(vk+1)2 − 1

16(vk+1)2(vk+1 + 1)
, σk

3 =
4(vk+1)2 + 2vk+1 − 1

4vk+1(vk+1 + 1)

where vk+1 is updated through (4) for all k ≥ 0.

Like before, we construct the degree-4 Laurent polynomial ωk(z) by computing its

coefficients

ωk
0 =

2vk+1 + 1

4(vk+1 + 1)(2vk+1 − 1)[2(vk+1)2 − 1]
,

ωk
1 =− vk+1(2vk+1 + 1)2

2(vk+1 + 1)(2vk+1 − 1)[2(vk+1)2 − 1]
, (33)

ωk
2 =

8(vk+1)4 + 12(vk+1)3 − 2vk+1 + 1

2(vk+1 + 1)(2vk+1 − 1)[2(vk+1)2 − 1]

through formula (19). Hence the associated 6-point interpolating scheme is described

by the refinement rules in (29) with

ζk0 =
2vk+1 + 1

64(vk+1)2(vk+1 + 1)2(2vk+1 − 1)[2(vk+1)2 − 1]
,

ζk2 =− [4(vk+1)2 + 2vk+1 − 1]2

64(vk+1)2(vk+1 + 1)2[2(vk+1)2 − 1]
, (34)

ζk4 =
(2vk+1 + 1)[4(vk+1)2 + 2vk+1 − 1]2

32(vk+1)2(vk+1 + 1)2(2vk+1 − 1)
.

Due to Corollary 11, it turns out that this scheme can reproduce functions from

the space V6,t ≡ {1, x, etx, e−tx, e2tx, e−2tx} for any non-negative real or imaginary

constant t. As a consequence, algebraic curves of the second-order, such as the car-

dioid, Pascal’s limacon, the deltoid, the piriform, Gerono’s lemniscate, the eight
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curve, and the 3-dimensional Viviani’s curve (see Figures 5 and 7-(b)) can be ex-

actly generated. Note that the coefficients {ζk2j}j=0,1,2 in (34) are well-defined for

any v0 ∈ (−1,+∞)\{−1
2 , 0}. In addition, since (31) still holds and by Theorem 2.5

in [7] the 6-point interpolating scheme with the so computed coefficients turns out to

be the only one reproducing the above space V6,t, C
2 smoothness of the scheme (29)-

(34)-(4) for any choice of the starting parameter v0 in the range (−1,+∞)\{−1
2 , 0},

follows from Theorems 2.7 and 2.10 in [7]. Thus the refinement rules (29)-(34)-(4)

turn out to be unique in combining the fundamental property of C2 smoothness

with the ability to reproduce such a kind of second-order algebraic curves consi-

dered of great interest in applications.

In the following subsection we will show how to exactly generate plane and space

spirals playing a relevant role in engineering, by means of an interpolating 6-point

scheme derived straightforwardly from the ℓ = 3 (i.e. n = 2) member of the appro-

ximating family in (13).

4.3 An interpolating 6-point C2 subdivision scheme for spirals reproduction

Let us consider the approximating scheme described by the Laurent polynomial

σk(z) in (13) when setting ℓ = 3 (i.e. n = 2). The associated refinement rules are

given by equations (26) with

σk
0 =

1

8(vk+1 + 1)2
, σk

1 =
2vk+1 + 1

4(vk+1 + 1)2
,

(35)

σk
2 =

4(vk+1)2 + 8vk+1 + 3

8(vk+1 + 1)2
, σk

3 =
2(vk+1)2 + 2vk+1 + 1

2(vk+1 + 1)2

where vk+1 is updated through (4) for all k ≥ 0.

Like before, we construct the degree-4 Laurent polynomial ωk(z) by computing its

coefficients

ωk
0 =

2vk+1 + 1

8(vk+1)3
,

ωk
1 =−(2vk+1 + 1)2

4(vk+1)3
, (36)

ωk
2 =

4(vk+1)3 + 8(vk+1)2 + 6vk+1 + 1

4(vk+1)3

through formula (19). Hence the associated 6-point interpolating scheme is described

by the refinement rules in (29) with
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ζk0 =
2vk+1 + 1

64(vk+1)3(vk+1 + 1)2
,

ζk2 =−(4vk+1 + 1)[4(vk+1)2 + 2vk+1 − 1]

64(vk+1)3(vk+1 + 1)2
, (37)

ζk4 =
(2vk+1 + 1)[2(vk+1)2 + 2vk+1 + 1][4(vk+1)2 + 2vk+1 − 1]

32(vk+1)3(vk+1 + 1)2
.

Due to Corollary 11, it turns out that this scheme can reproduce functions from

the space V6,t ≡ {1, x, etx, e−tx, xetx, xe−tx} for any non-negative real or imaginary

constant t. As a consequence, spirals like the circle involute, the Archimedean spi-

ral and the 3-dimensional conical spiral (see Figures 6 and 7-(c)) can be exactly

generated. Note that the coefficients {ζk2j}j=0,1,2 in (37) are well-defined for any

v0 ∈ (−1,+∞). In addition, since (31) still holds and by Theorem 2.5 in [7] the

6-point interpolating scheme with the so computed coefficients turns out to be the

only one reproducing the above space V6,t, C
2 smoothness of the scheme (29)-(37)-

(4) for any choice of the starting parameter v0 in the range (−1,+∞), follows from

Theorems 2.7 and 2.10 in [7]. Thus, the refinement rules in (29)-(37)-(4) turn out

to be unique in combining the fundamental property of C2 smoothness with the

ability to generate spirals deserving a special attention in applications as employed

in most gear-tooth profiles.

5 Numerical examples

In this section we illustrate the most important trigonometric and transcendental

curves that can be reproduced by the interpolatory 6-point schemes introduced

before.

Figures 2, 3 and 4 depict the plane curves that can be encompassed by all the three

schemes in Section 4.

Figure 5 depicts some classical second-order plane curves (such as the cardioid,

Pascal’s limacon, the deltoid, the piriform, Gerono’s lemniscate and the eight curve)

that admit an exact representation by means of the interpolating 6-point scheme in

Subsection 4.2.

Figure 6 depicts the reproduction of the circle involute and the Archimedean spiral

via the interpolating 6-point scheme in Subsection 4.3.

Figure 7 shows the exact reconstruction of trigonometric space curves through the

interpolating 6-point schemes presented in Subsections 4.1, 4.2 and 4.3. While the

helix (Figure 7-(a)) can be reproduced by all the three schemes, the Viviani’s curve
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(a) (b) (c)

Fig. 2. Reconstruction of exact circles through the interpolating 6-point schemes
presented in Subsections 4.1, 4.2 and 4.3. Dashed lines depict the regular κ-gons
(with κ = 5, 6, 7) assumed as starting polygons. The corresponding initial parameter

is respectively chosen as (a) v0 = cos
(
2π
5

)
, (b) v0 = 1

2 , (c) v
0 = cos

(
2π
7

)
.

(a) (b) (c)

Fig. 3. Exact reconstruction of conic sections through the interpolating 6-point
schemes presented in Subsections 4.1, 4.2 and 4.3. Dashed lines depict the assumed
starting polygons. The corresponding initial parameter is respectively chosen as (a)

v0 = 1, (b) v0 = 1
2 , (c) v

0 = cosh
(
3
5

)
.

Fig. 4. Exact reconstruction of the catenary through the interpolating 6-point
schemes presented in Subsections 4.1, 4.2 and 4.3. The dashed line depicts
the assumed starting polygon. The corresponding initial parameter is chosen as

v0 = cosh
(
2
5

)
.

(Figure 7-(b)) and the conical spiral (Figure 7-(c)) have been generated through the

refinement rules in Subsections 4.2 and 4.3 respectively.

Finally, in Figures 8, 9, 10 we give examples of interpolatory C2 free-form curves

exhibiting increasing tensions in correspondence of progressively increasing values

of v0 in (−1,+∞). Note how, depending on the scheme, the limit curve differently

shrinks to the starting polyline.
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(a) (c) (e)

(b) (d) (f)

Fig. 5. Exact reconstruction of the cardioid (a), Pascal’s limacon (b), the deltoid
(c), the piriform (d), the lemniscate of Gerono (e) and the eight curve (f) through
the interpolating 6-point scheme in Subsection 4.2 with starting parameter v0 = 1

2 .
Dashed lines denote the chosen starting polygons made of 6 points sampled at a
uniform parameter spacing of π

3 .

(a) (b)

Fig. 6. Exact reconstruction of the Archimedean spiral (a) and of the circle involute
(b) through the interpolating 6-point scheme in Subsection 4.3 with starting para-

meter v0 = cos
(
4π
5

)
. Dashed lines denote the chosen starting polygons made of 6

points sampled at a uniform parameter spacing of 4π
5 .

As a closing remark, we let the reader observe that, when the starting sequence

of control points is non-uniformly spaced, the non-stationary interpolatory 4-point

and 6-point schemes generate limit curves of a better quality than the ones obtained

by the Dubuc-Deslauriers 4-point and by the Weissmann 6-point schemes (Figure

11). However, they are not artifact free. In fact, when the initial control polygon
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(a) (b) (c)

Fig. 7. Exact reconstruction of trigonometric space curves through the interpolating
6-point schemes presented in Subsections 4.1, 4.2 and 4.3. Dashed lines depict the
assumed starting polygons. The corresponding initial parameter is chosen respec-

tively as: (a) v0 = cos
(
4π
5

)
, (b) v0 = cos

(
2π
5

)
, (c) v0 = cos

(
4π
5

)
.

v0 = 0.35 v0 = 2 v0 = 100

Fig. 8. The effect of subdividing the same starting polygon with the interpolating
6-point scheme in Subsection 4.1 starting from different initial tension values.

v0 = 0.35 v0 = 2 v0 = 100

Fig. 9. The effect of subdividing the same starting polygon with the interpolating
6-point scheme in Subsection 4.2 starting from different initial tension values.

v0 = 0.35 v0 = 2 v0 = 100

Fig. 10. The effect of subdividing the same starting polygon with the interpolating
6-point scheme in Subsection 4.3 starting from different initial tension values.

has edges of highly non-uniform length, undesired oscillations usually occur in the

limit curve (Figure 12).

21



Dubuc-Deslauriers 4-pt Weissmann 6-pt Non-stationary 4-pt in [1]

Non-stationary 6-pt in 4.1 Non-stationary 6-pt in 4.2 Non-stationary 6-pt in 4.3

Fig. 11. Comparison between limit curves obtained by subdividing the same se-
quence of non-uniformly spaced control points through the stationary interpolating
4-point and 6-point schemes and through the non-stationary interpolating 4-point
and 6-point schemes with parameter v0 = 4.

6 Conclusions

At present, the algorithms for producing curves which appear to be the most effi-

cient, flexible, and easy to implement, are given by subdivision schemes.

However, in spite of the numerous proposals that are continuously appearing in the

literature, none is still able to combine simplicity of definition and implementation,

with the generation of C2 limit curves featured by a user-controllable distance from

the starting polyline as well as by the potentiality of representing exactly a wide

variety of fundamental shapes of great interest in engineering and CAGD applica-

tions.

To this purpose, in this paper we have presented three different families of ap-

proximating subdivision schemes generating piecewise exponential polynomials and

we have proposed a general strategy for turning them into 2ℓ-point interpolating

schemes able to reproduce functions in the same spaces.

The interpolating 6-point schemes derived in Section 4 offer examples of how this

can be done and show how the proposed approach can generate curve subdivision

algorithms that compare favorably with all the interpolating schemes appeared in

the literature up to now. In fact, they all allow defining fully automatic interpola-

tory schemes with C2 smoothness, that turn out to be both tension-controlled and
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Dubuc-Deslauriers 4-pt Weissmann 6-pt Non-stationary 4-pt in [1]

Non-stationary 6-pt in 4.1 Non-stationary 6-pt in 4.2 Non-stationary 6-pt in 4.3

Fig. 12. Limit curves obtained by subdividing an initial control polygon with edges of
highly non-uniform length through the stationary interpolating 4-point and 6-point
schemes and through the non-stationary interpolating 4-point and 6-point schemes
with parameter v0 = 7.

able to reproduce salient trigonometric and transcendental curves often needed in

CAGD and its applications.
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