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Abstract

We present a tension-controlled 2-point Hermite interpolatory subdivision scheme
that is capable of reproducing circles starting from a sequence of sample points with
any arbitrary spacing and appropriately chosen first and second derivatives.
Whenever the tension parameter is set equal to 1, the limit curve coincides with

the rational quintic Hermite interpolant to the given data and has guaranteed C2

continuity, while for other positive tension values, continuity of curvature is conjec-
tured and empirically shown by a wide range of experiments.

Key words: Rational interpolation, Hermite subdivision, curve fitting,
circle-preserving, tension control.

1 Introduction

Subdivision algorithms are iterative methods for generating smooth curves and sur-

faces starting from a given polygonal control mesh.

Due to their efficiency, flexibility and simplicity, they have found their way into

numerous applications in Computer Graphics and Computer-Aided Geometric De-

sign.

While the popular spline-based schemes produce limit shapes that are much smaller

than the starting mesh, interpolatory schemes suffer from the opposite problem:

limit shapes tend to bulge out of the polygonal control mesh and they also frequently

create undesirable oscillations. However, interpolatory schemes have attracted a lot

of attention because they generate curves/surfaces passing through the vertices

of the starting polygon/polyhedron. This is made possible by constructing rules
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that preserve the data points of the previous step. To additionally preserve other

quantities, like first and second derivatives at these points, Hermite interpolatory

subdivision schemes have been introduced (Merrien, 1992). They can be seen as a

special case of vector subdivision schemes, where the components of each vector

measure quantities with sensible geometric interpretation. Starting from an initial

sequence of Hermite elements (i.e. vectors containing function values and associated

derivatives), a Hermite subdivision scheme recursively generates finer sequences of

Hermite elements which are associated with the midpoints of each span.

This paper is devoted to the design of a 2-point Hermite subdivision algorithm that,

by simultaneously constructing points and associated derivatives, is able to produce

tension-controlled C2 interpolatory curves featured by the property of preservation

of circles even when the given samples are not uniformly spaced. All these requests,

considered of vital importance for curve design, can not be accomplished simulta-

neously by any of the existing scalar or vector interpolatory subdivision schemes. In

fact, while the algorithms by Beccari et al. (2007), Chalmovianský & Jüttler (2007)

and Sabin & Dodgson (2005) can generate exact circles, they are not C2. Instead,

although the proposals in Romani (2009) are tension-controlled C2 improvements of

the scheme in Beccari et al. (2007), they still suffer from the inability to reproduce

circles from sequences of points that are not uniformly distributed.

On the other hand, none of the proposals of C2 Hermite schemes appeared in the

literature up to now (Merrien, 1999), is circle-preserving and tension-controlled at

the same time.

Thus the subdivision scheme we are going to propose turns out to be unique in

combining all the properties enumerated above. Moreover, for a certain value of the

tension parameter, the constructed subdivision algorithm represents the first exam-

ple of an interpolatory scheme converging towards a rational spline. In fact, while

for approximating schemes there exist proposals generating rational curves (Farin

and Nasri, 2001) or piecewise polynomials (think about the univariate versions of

Doo-Sabin and Catmull-Clark subdivisions), it is not known any interpolatory sub-

division algorithm capable of producing in the limit an intepolatory piecewise ra-

tional curve.

For all the issues considered, the discussed curve scheme thus compares favorably

with the existing literature because it defines the first interpolatory model that

is able to fulfill the list of all requirements identified as important for the use of

subdivision methods in geometric modelling and engineering applications. In fact:

• it can exactly represent circles, which are considered fundamental shapes of great

interest in CAGD;

• it can take advantage of a tension parameter that allows the user to control the

shape of the limit curve;

• whenever the tension parameter is 1 it produces rational quintic splines and thus

has guaranteed C2-continuity (which is considered essential for serious design),

while for arbitrary positive tension values it is empirically evident to be the case;

• it is able to solve the problem of artifact generation, frequently appearing in

scalar interpolatory methods when dealing with a non-uniform distribution of
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the starting points.

The paper is organized as follows. In Section 2, we describe a circle-preserving piece-

wise C2 rational quintic Hermite interpolant. Then, in the two following sections,

we derive the associated circle-preserving C2 Hermite subdivision algorithm (Sec-

tion 3), and we generalize its refinement rules to incorporate also non-spline cases

(Section 4). The performed generalization is designed to enrich the scheme with the

outstanding property of tension control. Finally, in Section 5, some examples are

provided followed by further discussions and conclusions.

2 A circle-preserving piecewise C2 rational Hermite interpolant

Let {f0i }i=0,...,N , {p0
i }i=0,...,N and {r0i }i=0,...,N , denote respectively an arbitrary se-

quence of interpolation points enumerated in counterclockwise order, and the asso-

ciated first and second derivatives.

Our preliminary objective is to develop a C2 solution to the interpolation problem of

this data sequence, by means of a piecewise rational quintic made of pieces that join

together with the so-called C2 rational continuity (Hohmeyer and Barsky, 1989).

To construct our model, we need to define first a sequence of N + 1 angular

parameters σ which will be determined through the following procedure based

on the atan2 function. For the sake of generality, both the interpolation points

and the associated derivatives will be defined in the 3D space via the notation

f0i := ((f0
i )x, (f

0
i )y, (f

0
i )z), p

0
i := ((p0i )x, (p

0
i )y, (p

0
i )z) and r0i := ((r0i )x, (r

0
i )y, (r

0
i )z),

although the examples we will present in this paper are confined to the 2D case.
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Algorithm 1 (Angular parameters computation)

(S.1) Compute the set of points {qi}i=0,...,N as the intersections of

adjacent edge bisectors by exploiting the following formulas:

f0−1 ≡ f0N , f0N+1 ≡ f00

for i = 0, ..., N

if ||(f0i−1 − f0i )× (f0i − f0i+1)||22 ̸= 0

τ1 =
||f0i − f0i+1||22 [(f0i−1 − f0i ) · (f0i−1 − f0i+1)]

2||(f0i−1 − f0i )× (f0i − f0i+1)||22

τ2 =
||f0i−1 − f0i+1||22 [(f0i − f0i−1) · (f0i − f0i+1)]

2||(f0i−1 − f0i )× (f0i − f0i+1)||22

τ3 =
||f0i−1 − f0i ||22 [(f0i+1 − f0i−1) · (f0i+1 − f0i )]

2||(f0i−1 − f0i )× (f0i − f0i+1)||22

qi = τ1f
0
i−1 + τ2f

0
i + τ3f

0
i+1

else

qi = f0i

end

end

(S.2) Determine the barycenter b := ((b)x, (b)y, (b)z) of the set of points

{qi}i=0,...,N .

(S.3) Let A be a (N + 1)× 3 matrix whose ith row is given by

[(f0
i )x − (b)x, (f

0
i )y − (b)y, (f

0
i )z − (b)z], i = 0, ..., N.

Calculate the “economy size” singular value decomposition (SVD) of

A, namely in a Matlab-like notation

[U, S, V ] = svd(A, 0)

where S is a 3× 3 diagonal matrix with nonnegative diagonal elements

in decreasing order and U and V are unitary matrices (U of the same

dimension as A and V 3× 3) so that A = USV T .

In a Matlab-like notation, n := V (:, 3) is the right singular vector

corresponding to the smallest singular value in S. Thus n identifies the

direction cosines vector of the normal to the least-squares plane of the
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points {f0i }i=0,...,N , passing through b. Hence t0 and t1 with

t0 =
((n)z, 0, −(n)x)

|| ((n)z, 0, −(n)x) ||2
, t1 =

(0, (n)z, −(n)y)

|| (0, (n)z, −(n)y) ||2

are linear independent unit vectors that span such a plane.

(S.4) Let γi := (f0i − b) · t0 and gi := (f0i − b)× t0, i = 0, ..., N .

Then the sequence of angular parameters {σi}i=0,...,N is worked out as

follows:

g−1 ≡ gN , gN+1 ≡ g0
for i = 0, ..., N

if gi · n ̸= 0
σi = −atan2(gi · n, γi)

else

if gi−1 · n < 0 & gi+1 · n > 0
σi = π [with the exception σi = −π when i = 0]

else

σi = 0
end

end

end

Remark 1 Although step (S.1) solves the divide-by-zero problem arising in case

of collinear vertices f0i s, dealing with starting polylines with nearly collinear points

could lead to numerical instability in the computation of the qis. Thus it is our future

intention to address this problem in order to extend the applicability of Algorithm

1.

Additionally, another possible direction for future improvement of this procedure

concerns the fulfilment of the property of rotation invariance, which is currently lost

when one of the vertices f0i coincides with the barycenter, due to the assignment

σi = 0 or ±π in step (S.4).

Algorithm 1 provides a vector σ of angles expressed in radians, which, according

to the output of the atan2 function, are confined to the range [−π, π]. Since they

correspond to the angles ∠(f0i − b, t0), i = 0, ..., N , depending on the distribution

of the assigned points {f0i }i=0,...,N , the σi values may be in ascending order or not.

Clearly, if this is not the case, the σi values should be opportunely shifted in order

to satisfy the constraint σi < σi+1 for all i.

Once the assigned points {f0i }i=0,...,N are associated with σi values in ascending

order, we can extend the results in Casciola and Romani (2005), to define a piecewise

rational quintic Hermite interpolant to the given data. Assuming the notation
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(a) (b) (c)

(d) (e) (f)

Fig. 1. Examples of 2D interpolating points f0i (small circles) with the associated
qi (asterisks) and their barycenter b (open square). Note how some of the qis may
be coincident and the barycenter position may move from inside to outside, also
passing through one of the polyline vertices, depending on their distribution.

αi = tan

(
σi
4

)
, (1)

the key idea is thus to identify by the interval
[
1+αi
2 , 1+αi+1

2

]
⊂ [0, 1] the domain

of each rational curve segment ci(t) :
[
1+αi
2 , 1+αi+1

2

]
→ R3, that has to satisfy the

following interpolation conditions at the endpoints:

ci

(
1 + αi+j

2

)
= f0i+j , c

′
i

(
1 + αi+j

2

)
= p0

i+j , c
′′
i

(
1 + αi+j

2

)
= r0i+j , j = 0, 1.

(2)

Remark 2 Note that, for the sake of conciseness, the three interpolation conditions

to be satisfied at each endpoint have been expressed in a unified form by letting the

index j assume the value 0 or 1. Also in the sequel, whenever the notation j = 0, 1 is

used, we intend to incorporate conditions for the two endpoints in a single equation.

Since the definition of a rational Bézier representation with finite control points

relies on positive weights, the following Lemma is devoted to show positivity of the

sextuple we will assume as weight vector for each single Bézier piece.

Lemma 3 Let σi (i = 0, ..., N) be the angular parameters determined through Al-

gorithm 1 and denote by αi the tangent values computed by formula (1). Then each
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sextuple

µi
0 = 1

4(α
2
i + 1)2,

µi
1 = 1

20(α
2
i + 1)(α2

i + 4αi+1αi + 5),

µi
2 = 1

20 [α
2
i+1(3α

2
i + 1) + 2αiαi+1(α

2
i + 3) + (3α2

i + 5)],

µi
3 = 1

20 [α
2
i (3α

2
i+1 + 1) + 2αi+1αi(α

2
i+1 + 3) + (3α2

i+1 + 5)],

µi
4 = 1

20(α
2
i+1 + 1)(α2

i+1 + 4αiαi+1 + 5),

µi
5 = 1

4(α
2
i+1 + 1)2

(3)

is defined by only positive scalars.

PROOF. As computed in step (S.4), the angular parameters σi ∈ [−π, π], hence

the tangent values αi defined through (1) are in [−1, 1]. Therefore, looking at

µi
0, ..., µ

i
5 as functions of the two variables αi, αi+1 defined in the domain [−1, 1]2, it

turns out that they are all strictly positive and in particular assume the minimum

values 1
4 ,

1
5 ,

1
5 ,

1
5 ,

1
5 ,

1
4 respectively. Hence the thesis trivially follows. 2

At this point, all the requirements in (2) can be fulfilled by expressing ci(t) as in

the forthcoming definition.

Definition 4 Let f0i , p0
i , and r0i (i = 0, ..., N) be the sequence of interpolating

data and the associated first and second order derivatives. Having computed the

angular parameters σi (i = 0, ..., N) through Algorithm 1 and denoted by αi the

correspondent tangent values in (1), we define by c(t) the piecewise rational quintic

Bézier curve whose segments ci(t) :
[
1+αi
2 , 1+αi+1

2

]
→ R3 (i = 0, ..., N − 1) have the

form

ci(t) =
5∑

k=0

Qi
k Ri

k,5(t) (4)

where

Qi
0 = f0i ,

Qi
1 = f0i +

(αi+1−αi) µi
0

10µi
1

p0
i ,

Qi
2 = f0i +

(5µi
1−µi

0)(αi+1−αi)

20µi
2

p0
i +

(αi+1−αi)
2 µi

0

80µi
2

r0i ,

Qi
3 = f0i+1 −

(5µi
4−µi

5)(αi+1−αi)

20µi
3

p0
i+1 +

(αi+1−αi)
2 µi

5

80µi
3

r0i+1,

Qi
4 = f0i+1 −

(αi+1−αi) µi
5

10µi
4

p0
i+1,

Qi
5 = f0i+1,

(5)

{µi
k}k=0,...,5 are the positive weights introduced in (3) and {Ri

k,5(t)}k=0,...,5 the ra-
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tional quintic Bézier polynomials defined by the expression

Ri
k,5(t) =

µi
kB

i
k,5(t)∑5

ℓ=0 µ
i
ℓB

i
ℓ,5(t)

, (6)

with

Bi
k,5(t) =

5

k

 (1 + αi+1 − 2t)5−k (2t− αi − 1)k

(αi+1 − αi)5
. (7)

We will now show that the rational quintic Hermite segment introduced in Definition

4 can be used for precisely representing any arbitrary circle arc.

Proposition 5 Let ρ be a positive real number. The rational quintic Hermite seg-

ment ci(t) :
[
1+αi
2 , 1+αi+1

2

]
→ R2 interpolating the data

(f0
i+j)x = ρ

[(αi+j)
2+2αi+j−1][(αi+j)

2−2αi+j−1]
[(αi+j)2+1]2

(f0
i+j)y = −4ρ

αi+j(αi+j+1)(αi+j−1)
[(αi+j)2+1]2

(p0i+j)x = 32ρ
αi+j(αi+j+1)(αi+j−1)

[(αi+j)2+1]3
for j = 0, 1

(p0i+j)y = 8ρ
[(αi+j)

2+2αi+j−1][(αi+j)
2−2αi+j−1]

[(αi+j)2+1]3

(r0i+j)x = −64ρ
[3(αi+j)

4−8(αi+j)
2+1]

[(αi+j)2+1]4

(r0i+j)y = −32ρ
αi+j [(αi+j)

4−14(αi+j)
2+9]

[(αi+j)2+1]4

allows us to exactly represent any arbitrary circle arc of radius ρ and center (0, 0).

PROOF. Writing the rational quintic Hermite interpolatory model of Definition 4

by using the data above, we obtain an expression of ci(t) whose x and y components

turn out to satisfy the canonical equation [(ci(t))x]
2+[(ci(t))y]

2 = ρ2 corresponding

to a circular arc of radius ρ and center (0, 0). 2

However, like in the very general case, also the capability of representing a specific

circle arc is subject to the constraint of possessing endpoints with angular parame-

ters satisfying the condition σi, σi+1 ∈ [−π, π] and σi < σi+1.

Thus, in the forthcoming section, we will provide a more robust solution to this

Hermite-type interpolation problem that is capable of achieving circular precision

whenever the input data come from a circular arc. It will consist in a Hermite subdi-

vision algorithm that, starting from an arbitrary sequence of points and associated

derivatives ordered counterclockwise, generates a smooth limit curve interpolating
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the given data.

A necessary step for extending the applicability of the new algorithm to any set

of vertices, is the enlargement of the angular parameters range computed through

Algorithm 1 to the interval ]−2π, 2π[, in such a way that the σi values can be sorted

in ascending order without losing the ordering of the assigned data. This is done in

step (S.5), as described in the sequel.

(S.5) Extension of the angular parameters computed in step (S.4) to the

range ]− 2π, 2π[:

for i = 0, ..., N − 1
if σi > σi+1

i = i+ 1
break

else

i = N + 1
end

end

for i = i, ..., N
σi = σi + 2π

end

Note that, in case σN ≥ 2π, we have to shift back the σ vector by 2π,

namely we set σ = σ − 2π.

We further observe that, if the starting polyline is self-intersecting (see Fig. 2),

there could be more than one index i where σi > σi+1 occurs. In this case, it is

sufficient to add to the σis successive multiples of 2π in order to get an increasing

sequence of values. Then we map the σ vector into the interval [−π, π] by computing
(σi−σ0)2π
σN−σ0

− π for all i = 0, ..., N .

Fig. 2. Examples of self-intersecting polylines with the associated qis (asterisks) and
their barycenter b (open square).
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3 A circle-preserving 2-point Hermite-interpolatory subdivision algo-

rithm

The important schemes for applications are required to be sufficiently smooth (C2 is

highly desirable) and capable of reproducing curves widely used in Computer-Aided

Design, such as circles. Thus in this section we will derive the refinement rules of

a circle-preserving C2 Hermite-interpolatory subdivision algorithm that is able to

reproduce circles starting from points lying on it with any arbitrary spacing. This

novel set of refinement equations will be derived by dyadically sampling from the

piecewise rational quintic Bézier curve described in Section 2.

As it happens with any standard Hermite subdivision scheme, we start knowing the

values of a function f and of its first and second derivatives p = f ′, r = f ′′ at the

endpoints of a bounded interval I = [a, b] of R. Then, given (f(a), p(a), r(a)) and

(f(b), p(b), r(b)), to build f , p and r on I, we proceed recursively by induction on k ∈
N∪{0}. More precisely, at step k we denote by Dk = {νki = a+ i(b−a)/2k}i=0,1,...,2k

the regular partition of I in 2k subintervals and we assume that f , p, r are already

known on its points. If c and d are two consecutive points of Dk, then we compute

f , p and r at the midpoint (c+ d)/2 ∈ Dk+1\Dk according to the following scheme,

which depends on a parameter matrix Λk+1 = (λk+1
hℓ )h=0,...,2, ℓ=0,...,5:

f
(
c+d
2

)
= λk+1

00 f(c) + λk+1
01 f(d) + λk+1

02 p(c) + λk+1
03 p(d) + λk+1

04 r(c) + λk+1
05 r(d)

p
(
c+d
2

)
= λk+1

10 f(c) + λk+1
11 f(d) + λk+1

12 p(c) + λk+1
13 p(d) + λk+1

14 r(c) + λk+1
15 r(d)

r
(
c+d
2

)
= λk+1

20 f(c) + λk+1
21 f(d) + λk+1

22 p(c) + λk+1
23 p(d) + λk+1

24 r(c) + λk+1
25 r(d).

(8)

By applying these formulae on ever finer partitions, we define f , p and r on D =∪
k Dk which is a dense subset of I. We say that the scheme (8) is C2 convergent if,

for any initial data, f , p and r can be extended from D to continuous functions on

I with p = f ′ and r = f ′′.

f , defined either on I or on D, is called the HC2 interpolant to the data.

The HC2 algorithm in (8) can also be formulated as follows. We start with Hermite

data f0, p0, r0, f1, p1, r1 at the endpoints of a finite interval [a, b] and set f0
0 = f0,

p00 = p0, r
0
0 = r0, f

0
1 = f1, p

0
1 = p1, r

0
1 = r1. For k ≥ 0 and i = 0, 1, ..., 2k − 1
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fk+1
2i = fk

i

pk+1
2i = pki

rk+1
2i = rki

fk+1
2i+1 = λk+1

00 fk
i + λk+1

01 fk
i+1 + λk+1

02 pki + λk+1
03 pki+1 + λk+1

04 rki + λk+1
05 rki+1

pk+1
2i+1 = λk+1

10 fk
i + λk+1

11 fk
i+1 + λk+1

12 pki + λk+1
13 pki+1 + λk+1

14 rki + λk+1
15 rki+1

rk+1
2i+1 = λk+1

20 fk
i + λk+1

21 fk
i+1 + λk+1

22 pki + λk+1
23 pki+1 + λk+1

24 rki + λk+1
25 rki+1

(9)

and fk+1
2k+1 = fk

2k
, pk+1

2k+1 = pk
2k
, rk+1

2k+1 = rk
2k
.

If the scheme is C2 convergent with limit functions f , p and r, then

f(νki ) = fk
i , f ′(νki ) = pki , f ′′(νki ) = rki , νki = a+ i

b− a

2k
, i = 0, 1, ..., 2k.

As concerns all the 2-point Hermite subdivision schemes appeared in the literature

up to now, the parameter matrix Λk+1 is defined by coefficients which satisfy the

following relations

λk+1
01 = λk+1

00 = 1
2 , λk+1

03 = −λk+1
02 , λk+1

05 = λk+1
04

λk+1
11 = −λk+1

10 , λk+1
13 = λk+1

12 , λk+1
15 = −λk+1

14

λk+1
21 = λk+1

20 = 0, λk+1
23 = −λk+1

22 , λk+1
25 = λk+1

24 .

(10)

We will now show that it is possible to construct a Hermite subdivision scheme

HS22 whose coefficients matrix does not follow the pattern in (10).

This occurs by deriving a 2-point Hermite subdivision scheme featured by the pro-

perty of circle-preservation and by the peculiarity of converging to the rational

quintic Hermite interpolant in Definition 4, where it exists. In fact, if for such a

rational Bézier curve, we perform the insertion of a 5-fold knot at the midpoint of

the underlying knot-interval, after some algebraic manipulations we arrive at for-

mulating the new point and derivatives at the midknot in terms of the Hermite data

associated with the endpoints of the knot-interval, as expressed in formula (9). In

particular, after having introduced the following notation
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ϕ1(u, v) = [(3−5v2+8v4)u6−16v(1−2v2)u5−(2−43v2+3v4)u4+16v(1−v2)u3+
16(uv+1)5(uv−1)

+(3−43v2+2v4)u2−16v(2−v2)u−8+5v2−3v4](v2+1)
16(uv+1)5(uv−1)

ϕ2(u, v) = (u2+1)(u−v)[(5v2−3)u2+16uv−3v2+5](v2+1)2

32(uv+1)4(v−1)(v+1)(uv−1)

ϕ3(u, v) = (v2+1)4(v−u)2(u2+1)
64(uv+1)3(v−1)3(v+1)3(uv−1)

ϕ4(u, v) = [(−5v2+3)(3v4+1)u6−16v(3v4−2v2+1)u5+(9v6−39v4+43v2−5)u4+
8(uv+1)5(v−u)

+32v(v4+1)u3−(5v6−43v4+39v2−9)u2−16v(v4−2v2+3)u+(3v2−5)(v4+3)]
8(uv+1)5(v−u)

ϕ5(u, v) = [(−7u4+6u2−3)v2−16u(u2−1)v−6u2+3u4+7](v2+1)2

16(uv+1)4(v−1)(v+1)

ϕ6(u, v) = (u−1)(u+1)(v2+1)4(v−u)
32(uv+1)3(v−1)3(v+1)3

ϕ7(u, v) = 3(uv−1)3(u+v)(uv−v+u+1)(uv+v−u+1)
(uv+1)5(u−v)

ϕ8(u, v) = 3(uv−1)3(uv−v+u+1)(uv+v−u+1)(v2+1)
2(uv+1)4(v−u)(v−1)(v+1)

ϕ9(u, v) = (1−uv)3(v2+1)3

4(uv+1)3(v−1)3(v+1)3
,

(11)

for all k ≥ 0 the coefficients {λk+1
hℓ }h=0,...,2, ℓ=0,...,5 in (9) are defined by

λk+1
00 = 1− ϕ1(s

k+1
i+1 , s

k+1
i ), λk+1

01 = ϕ1(s
k+1
i+1 , s

k+1
i ),

λk+1
02 = ϕ2(s

k+1
i+1 , s

k+1
i ), λk+1

03 = ϕ2(s
k+1
i , sk+1

i+1 ),

λk+1
04 = ϕ3(s

k+1
i+1 , s

k+1
i ), λk+1

05 = ϕ3(s
k+1
i , sk+1

i+1 ),

λk+1
10 = −ϕ4(s

k+1
i+1 , s

k+1
i ), λk+1

11 = ϕ4(s
k+1
i+1 , s

k+1
i ),

λk+1
12 = ϕ5(s

k+1
i+1 , s

k+1
i ), λk+1

13 = ϕ5(s
k+1
i , sk+1

i+1 ),

λk+1
14 = ϕ6(s

k+1
i+1 , s

k+1
i ), λk+1

15 = ϕ6(s
k+1
i , sk+1

i+1 ),

λk+1
20 = −ϕ7(s

k+1
i+1 , s

k+1
i ), λk+1

21 = ϕ7(s
k+1
i+1 , s

k+1
i ),

λk+1
22 = ϕ8(s

k+1
i+1 , s

k+1
i ), λk+1

23 = ϕ8(s
k+1
i , sk+1

i+1 ),

λk+1
24 = ϕ9(s

k+1
i+1 , s

k+1
i ), λk+1

25 = ϕ9(s
k+1
i , sk+1

i+1 )

(12)

where

sk+1
i = tan(σk+1

i ) (13)

12



and

σ1
i = σi

8

σk+1
2i = σk

i , σk+1
2i+1 =

σk
i +σk

i+1

2 when k ≥ 1.
(14)

Remark 6 Whenever σk+1
i+1 = −σk+1

i (namely sk+1
i+1 = −sk+1

i ) the coefficients ma-

trix Λk+1 has the structure in (10).

3.1 Reproduction of circles

Let {f0i }i=0,...,N (N ≥ 2) be a given sequence of starting points. If they lie on a

circle, the point b = ((b)x, (b)y) computed in step (S.2) of Algorithm 1 coincides

with its center, and its radius is given by

ρ =
√
[(f0

0 )x − (b)x]2 + [(f0
0 )y − (b)y]2.

Fig. 3. Examples of sequences of interpolating points f0i lying on a circle, with
the associated set of coincident points qi (asterisks) and their barycenter b (open
square).

Once b and ρ have been determined, we can then work out the {σi}i=0,...,N vector

through Algorithm 1. Being σi and σi+1 the angular parameters for the endpoints

f0i and f0i+1, they turn out to fulfill the following equations

(f0
i+j)x = ρ

(s1i+j)
8−28(s1i+j)

6+70(s1i+j)
4−28(s1i+j)

2+1

[(s1i+j)
2+1]4

for j = 0, 1

(f0
i+j)y = −8ρ

s1i+j [(s
1
i+j)

6−7(s1i+j)
4+7(s1i+j)

2−1]

[(s1i+j)
2+1]4

with s1i given by (13) for k = 0 and σ1
i = σi

8 .

Hence, in order to reproduce the circular segment confined between the two points,

it is necessary to define the associated first and second derivatives through the

formulae

13



(p0i+j)x = 64ρ
s1i+j [(s

1
i+j)

2−1]3[(s1i+j)
2+2(s1i+j)−1][(s1i+j)

2−2(s1i+j)−1]

[(s1i+j)
2+1]6

(p0i+j)y = 8ρ
[(s1i+j)

2−1]2[(s1i+j)
4−4(s1i+j)

3−6(s1i+j)
2+4(s1i+j)+1][(s1i+j)

4+4(s1i+j)
3−6(s1i+j)

2−4(s1i+j)+1]

[(s1i+j)
2+1]6

for j = 0, 1.

(r0i+j)x = −64ρ
[(s1i+j)

2−1]4[(s1i+j)
8−36(s1i+j)

6+118(s1i+j)
4−36(s1i+j)

2+1]

[(s1i+j)
2+1]8

(r0i+j)y = 64ρ
s1i+j [(s

1
i+j)

2−1]3[9(s1i+j)
8−92(s1i+j)

6+182(s1i+j)
4−92(s1i+j)

2+9]

[(s1i+j)
2+1]8

Then, starting from these Hermite data, the refinement algorithm in (9) is able to

generate the exact circle arc confined between (f0i ,p
0
i , r

0
i ) and (f0i+1,p

0
i+1, r

0
i+1). A

simple proof of this result is given by the identity
[(
fk+1
2i+1

)
x

]2
+

[(
fk+1
2i+1

)
y

]2
= ρ2

for all k ≥ 0.

4 A tension-controlled generalization of the spline-based Hermite sub-

division algorithm

Let w > 0 be a free parameter to be chosen by the user. If, for all k ≥ 0, we replace

sk+1
i+1 by wsk+1

i+1 + (1 − w)sk+1
i in all the equations (12) identifying the coefficients

{λk+1
hℓ }h=0,...,2, ℓ=0,...,5, then the refinement rules (9) will contain the free parameter

w. Note that, whenever w = 1, the generalized Hermite scheme goes back to the

spline-based one introduced in the previous section, and therefore it converges to the

piecewise rational Hermite interpolant of Section 2; thus, if the starting points lie

on a circle, the subdivision algorithm will be able to reproduce it (Figs. 4-5). More-

over, the obtained generalization further possesses the property of tension control.

In fact, while choosing w closer and closer to 0, we get a limit curve that increas-

ingly approaches to the starting control polyline, for larger and larger values of w

we generate looser and looser shapes (Fig. 9).

An open question, that naturally arises, is if the limit curve produced by the gener-

alized scheme is C2 for any positive value of the parameter w. By construction, we

can assert that the smoothness order of the limit curve is 2 whenever w = 1, since

in this case we know that this is exactly the C2 piecewise rational quintic Bézier

curve. For any other positive value of w, a detailed smoothness analysis should be

performed. But, because the refinement equations of this Hermite scheme are not in

the same form of the ones presented and analyzed in the literature up to now (Dyn

and Levin, 1999; Dubuc et al., 2001; Yu, 2005; Dubuc, 2006), at this moment there

are not the required tools to give a precise answer. However, all our experimental

results let us conjecture that curvature continuity is preserved for any choice of
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w > 0. In fact, the discrete curvature plots obtained after a certain number of steps

of the proposed subdivision algorithm for different starting polylines and arbitrarily

chosen tension values, turn out to be always continuous (see Section 5).

5 Numerical examples

This section is devoted to the illustration of some numerical examples confirming

the effectiveness of the proposed 2-point Hermite-interpolatory subdivision scheme

(Figs. 4, 5, 6, 7, 8, 9).

Fig. 4. Exact reconstruction of the full circle from non-regular closed polylines.
From left to right: starting polyline, points at 1st and 2nd level of refinement,
refined polyline after 10 steps of the algorithm.

Fig. 5. Exact reconstruction of a circular arc from a non-regular open polyline. From
left to right: starting polyline, points at 1st and 2nd level of refinement, refined
polyline after 10 steps of the algorithm.

Due to the fact that the novel refinement rules are built upon a piecewise C2 Her-

mite interpolant, they should naturally guarantee a C2 limit curve for any positive

value of w. For the particular starting polylines in Fig. 9, curvature continuity is

demonstrated by the curvature plots in Fig. 10.
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Fig. 6. Subdivision of non-regular closed polylines. From left to right: starting poly-
line, points at 1st level of refinement, refined polyline after 10 steps of the algorithm.

Fig. 7. Subdivision of non-regular open polylines. From left to right: starting poly-
line, points at 1st level of refinement, refined polyline after 10 steps of the algorithm.

6 Conclusions and further research

Stimulated by the observation that C2 smoothness is considered essential for serious

design and piecewise polynomial reproduction is one of the very important require-

ments in geometric modelling applications, we have proposed a 2-point C2 Hermite

interpolatory subdivision scheme whose refinement rules go back to a piecewise C2

rational quintic Bézier interpolant. But although these two aspects clearly have a

decisive impact on the quality of the limit curve, they are by no means the only im-

portant factors. In fact, the preservation of relevant shapes in CAGD (like circles)

and the possibility of controlling the behaviour of the limit curve in an intuitive

way, are also considered equally significant. Thus, the refinement equations of the

proposed scheme have been conceived in such a way that exact circles can be nat-

urally reproduced starting by any arbitrarily-spaced sequence of points sampled on

it, and successively generalized to contain a free parameter w that allows the user

to manipulate tension effects. In particular, while for smaller and smaller values of
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Fig. 8. Subdivision of non-regular self-intersecting polylines. From left to right:
starting polyline, points at 1st level of refinement, refined polyline after 10 steps of
the algorithm.

(a) w = 0.3 (b) w = 0.8 (c) w = 1

(d) w = 0.2 (e) w = 0.5 (f) w = 1

(g) w = 0.6 (h) w = 1 (i) w = 1.2

Fig. 9. The effect of changing the tension parameter when interpolating the same
sequence of points and derivatives.

w the tightness of the limit curve is progressively increased, in correspondence of

the value w = 1 the constructed subdivision scheme converges exactly towards the
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Fig. 10. Discrete curvature plots for the refined polylines in Fig. 9 (a)-(b)-(c) (first
row) and in Fig. 9 (d)-(e)-(f) (second row) obtained after 10 steps of the proposed
algorithm.

piecewise rational quintic Hermite interpolant. This model thus represents the first

example of interpolatory curve subdivision that, for a certain value of the parame-

ter, generates in the limit a piecewise interpolatory rational spline.

As concerns the smoothness order of the limit curves it produces, C2 continuity

is exclusively proved for the special value w = 1. Although curvature continuity

can be conjectured for any other positive value of w (since empirically shown by a

wide range of experiments), a detailed smoothness analysis of the proposed Hermite

scheme has to be provided. This issue will be objective of our future researches since

it requires the development of more general theoretical tools not available in the

literature.
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