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Introduction

Aims and motivations

After the completion of the human genome sequencing (and of a lot of other
genomes), the main challenge for the modern biology is to understand com-
plex biological processes such as metabolic pathways, gene regulatory net-
works and cell signalling pathways, which are the basis of the functioning of
living cells. This goal can only be achieved by using mathematical modelling
tools and computer simulation techniques, to integrate experimental data
and to make predictions on the system behaviour that will be then exper-
imentally checked, so as to gain insights into the working and the general
principles of organization of biological systems.

In fact, the formal modelling of biological systems allows the develop-
ment of simulators, which can be used to understand how the described sys-
tem behaves in normal conditions, and how it reacts to (simulated) changes
in the environment or to alterations of some of its components. Simulations
present many advantages over conventional experimental biology in terms
of cost, ease to use and speed. For instance, some experiments that are
infeasible in vivo can be conducted in silico, e.g. it is possible to knock out
many vital genes from the cells and monitor their individual and collective
impact on cellular metabolism. Evidently such experiments cannot be done
in vivo because the cell may not survive. Therefore, the development of pre-
dictive in silico models offers opportunities for unprecedented control over
the system.

In the last few years a wide variety of models of cellular processes have
been proposed, based on different formalisms. For example, chemical kinetic
models attempt to represent a cellular process as a system of distinct chemi-
cal reactions. In this case, the network state is defined by the instantaneous
quantity (or concentration) of each molecular species of interest in the cell,
and different molecular species may interact via one or more reactions. Usu-
ally, reactions are represented by a system of coupled differential equations
that relate the quantity of reactants to the quantity of products, according
to a reaction rate and other parameters.

Recently, it has been pointed out that transcription, translation and
other cellular processes may not behave deterministically but instead are
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Introduction: aims and motivations

better modelled as random events [123]. Several models address this concern
by abandoning differential equations in favour of stochastic relations that
describe each chemical reaction in terms of molecular collisions [6, 74].

The use of stochastic methods for the study of biological systems is
motivated by the fact that these systems are usually composed by many
chemical interactions among a large number of chemical species, whereby
the molecular quantities involved can be small (few tens of molecules). In
systems having these characteristics, noise plays a major role in the system’s
dynamics [128].

Two different kind of noise can be identified in biological systems: ex-
trinsic and intrinsic [59, 176]. The first one is related to the experimental
conditions; for instance, the variation of temperature, pressure, light, or
fluctuations of other cellular factors, are all sources of extrinsic noise. On
the other hand, there are stochastic events occurring during the processes of
gene expression, at the level of transcription, translation and protein degra-
dation, which result in intrinsic noise.

The role of noise in biological systems has been studied and quantified
[59, 176, 192], proving that the classic deterministic and continuous ap-
proach (like, for instance, ordinary differential equations) is unsuitable for
the modelling, simulation and analysis of phenomena like cellular pathways,
especially when the gene transcription and translation machinery is involved.

The deterministic approach is based on the law of mass action, an empir-
ical law which provides a simple relation between reaction rates and molec-
ular species concentrations. Given the initial molecular concentrations, by
using the law of mass action, a temporal description of the component con-
centrations can be obtained. The law of mass action considers chemical
reactions to be macroscopic, continuous and deterministic. However, in the
study of “small” systems, the law of mass action becomes inadequate, and
it more is suitable to apply stochastic approaches, since (1) they take into
account the discreteness of the quantity of the molecular species and the
inherently random character of the phenomena; (2) they are in accordance
with the theories of thermodynamics and stochastic processes; and (3) they
are appropriate for the description of systems characterised by instability
phenomena [198].

On the other hand, one major problem related to stochastic methods
is that they are difficult to implement analytically; hence, they are im-
plemented by means of numerical simulations whose computation time is
usually very expensive.

In this thesis we provide a discrete and stochastic framework for the
modelling, simulation and analysis of biological and chemical systems. To
this aim, we will start from the description of other techniques and meth-
ods that are present in literature, as the basis to build and compare our
approach.

At a different level of abstraction many formalisms have been employed
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to model biological systems. Some of these have been originally developed
by computer scientists to model systems of interacting components, such as
Petri Nets [165] or π-calculus [133], while others have been proposed for the
study of biochemical systems, like κ-calculus [43] and Bio-PEPA [36]. More-
over, formalisms such as membrane systems [154], originally proposed as a
model of computation inspired by biology, have recently found application
to the formal description and modelling of biological phenomena.

Starting from the notion of membrane systems (or P systems), we provide
the definition of one of their particular variant called dynamical probabilis-
tic P systems (DPPs) [162]. P systems, and in particular DPPs, represent
an appropriate tool for the modelling of biochemical systems, they provide
a suitable structure (called membrane structure) which can be used to de-
scribe the spatial arrangement of the compartments involved in a system.
Moreover, inside each compartment, a set of chemical reactions written as
multiset rewriting rules can be specified, together with a set of molecular
species specified as multisets of objects. The evolution of a system is ob-
tained by means of the application of the rules on the objects currently
present inside the membranes. In the basic definition of P systems, the
rules are applied in a nondeterministic and maximally parallel manner, and
at each step all the objects which can evolve should evolve. In DPPs, the
maximal parallelism has been mitigated by assigning probabilities to the
rules, and these values vary according to the system state. By exploiting
these values, it is possible to provide a description of the system’s dynamics,
that is, DPPs allow to reproduce the stochastic variations of the elements
(i.e. chemical species) occurring in the system. However, this description
is only qualitative, in the sense that an effective (physical) time streamline
cannot be directly associated to the evolution steps of the system.

The temporal dynamics of a biochemical system composed by many
volumes can be simulated by integrating a stochastic algorithm with the
framework of DDPs. The stochastic simulation algorithm [74] represents
the seminal procedure used for reproducing the exact dynamics of a sys-
tem that is enclosed in a single volume, which is assumed to be well stirred
(i.e. homogeneous, in the sense that molecules are considered uniformly
distributed) and at constant temperature. One of the main drawbacks of
this procedure is the computational time required to obtain the behaviour
of a system, because this task is achieved by simulating one reaction per
step. More recently, several algorithms have been proposed in order to over-
come this limitation; among others, in this thesis we recall the next reaction
method [72] – a procedure that executes reactions in a sequential manner,
but exploits suitable data structure to update the system’s state and to han-
dle the additional information required during the simulation, thus speeding
up the computation – and the tau-leaping algorithm [77], a method based
on a strategy that allows to select and execute in parallel several reactions
per step. Tau-leaping represents one of the most efficient algorithms for the
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Introduction: aims and motivations

description of the dynamics of biochemical systems. However, these algo-
rithms share the same limitation: they are only applicable to homogeneous
systems enclosed in a single volume.

Nevertheless, many cellular processes are characterised by a spatial het-
erogeneity [182], where diffusion plays an important role for the system
dynamics, e.g. the living cell. In order to describe the spatial heterogeneity,
there exist methods that divide the reaction volume in a number of subvol-
umes ,and then consider both reaction and diffusion processes to describe
the behaviour of the entire system.

For instance, the next subvolume method [57] provides the dynamics of a
heterogeneous system composed by many subvolumes, by sequentially sim-
ulating a single reaction or diffusion event inside one subvolume selected
at the beginning of each iteration. The computation time required to exe-
cute this procedure is usually high, hence, to speed up the computation the
same data structures used in the next reaction method are exploited here
to manage the information of the subvolumes. Another example of stochas-
tic algorithm for the simulation of heterogeneous systems is the binomial
tau-leap spatial stochastic simulation algorithm [117] which is based on the
next subvolume method, but exploits a particular version of the tau-leaping
algorithm to describe the dynamics of the subvolumes, resulting in a more
efficient simulation procedure (with respect to the next subvolume method).
The main drawback of these two procedures concerns the high computation
time required to run a simulation, since both algorithms update the internal
state of a single subvolume during each iteration.

In order to overcome the limitations of DPPs and of the stochastic algo-
rithms cited here, in this thesis we introduce a novel method for the mod-
elling and simulation of biochemical systems, which combines the descriptive
power of DPPs with the efficiency of tau-leaping algorithm. This approach,
called τ -DPP [30], exploits the membrane structure and the system defini-
tion of DPPs, with the aim of describing multiple volume systems, and uses
a modified version of the tau-leaping algorithm for the description of the
system behaviour. Differently from DPPs, where the obtained dynamics is
only qualitative, with τ -DPP it is possible to provide the quantitative be-
haviour, by assigning a time increment to each simulation step. In order
to investigate systems consisting of many volume, the tau-leaping algorithm
has been modified to handle the communication between volumes. The pro-
posed strategy allows to synchronise volumes by computing a common time
increment and using it to select the set of reactions to apply (at each step),
inside every membrane, thus resulting in a parallel evolution of the entire
system.

A different version of τ -DPP, called Sτ -DPP [29], is also presented. In
Sτ -DPP, we allow the communication between non-adjacent membranes,
and we associate a measure to membranes and objects, representing the
“size” of the volumes where the computation occurs and the volume of each
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object, respectively. Both the sizes of membranes and objects are useful to
describe any real system where it is important to avoid the infinite accumu-
lation of objects inside a membrane, which is very important in chemical and
biological systems, and cannot be achieved by simply bounding the “capac-
ity” of the membranes or by limiting the maximum number objects allowed
inside a particular volume.

The frameworks presented in this thesis have been used for the mod-
elling, simulation and analysis of ecological, biological and chemical sys-
tems. In particular, we present an application of DPPs for the investigation
of metapopulations, also called multi-patch systems, which are ecological
models used to analyse the behaviour of interacting populations, to the aim
of determining how a fragmented habitat influences local and global popu-
lation persistence.

Then, the framework of τ -DPP has been applied to an extensive study of
different biological systems. For instance, we present a discrete mathemat-
ical model for the Ras/cAMP/PKA pathway in the yeast Saccharomyces
cerevisiae, which is involved in the regulation of metabolism and cell cycle
progression [31]. We investigate this system under various conditions, and
we test how different values of several stochastic reaction constants affect
the pathway behaviour.

A model of a genetic oscillator coupled with a quorum sensing inter-
cellular mechanism is also considered as a case study [18]. This intercellu-
lar communication mechanism is able to lead the local genetic oscillators,
within a noisy and nonidentical population, to global oscillatory rhythms.
In particular, it was shown that individual repressilator systems can self-
synchronize, even when their periods are broadly distributed [67]. The mul-
tivolume model of this system consists of n volumes, each one corresponding
to a cell, enclosed inside an additional volume representing the environment.

Then, the modelling and stochastic simulations of the chemotactic sig-
nal transduction pathway in bacteria, are presented [14]. This particular
pathway allows bacteria to respond and adapt to environmental changes, by
tuning their tumbling and running motions that are due to clockwise and
counterclockwise rotations of their flagella. By exploiting the model and
the results of simulations obtained with τ -DPP, we investigate the interplay
between the stochastic fluctuations of the amount of a particular protein
of this pathway and the number of cellular flagella as the core component
that stands at the basis of chemotactic motions. The aim of this analysis
is to devise the mean time periods during which the cell either performs a
running or a tumbling motion, considering both the coordination of flagella
and the randomness that is intrinsic in the chemotactic pathway.

A simple biochemical system has been simulated by means of Sτ -DPP.
The system describes the transport of molecules from the cytoplasm (mod-
elled as a set of nested membranes) to the nucleus. This task can be accom-
plished by using simple communication rules or by means of a microtubule
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Introduction: aims and motivations

[167], which is a sort of intracellular “highway” that efficiently transport
molecules towards the nucleus. Here, by changing the size associated to the
membranes representing the microtubule, we highlight the role played by
the “space” and its effects on the system’s dynamics.

We consider also a different issue, that is related to a possible implemen-
tation of τ -DPP by means of chemical systems. To this aim, we introduce the
framework of chemical computing, in order to show how to describe “com-
putations” performed with τ -DPP, by means of chemical reactions [164].
In particular, we present the encoding of simple boolean functions, of the
Fredkin gate and an instance of Fredkin circuit. The encoding of simple
logic gates is useful because by composing them in particular circuits, it is
possible to encode any boolean function. Besides this, we also present en-
codings for register machines instructions, and we give some insights about
the construction of a complete register machine with n registers, with the
aim to obtain a “parallel device” that can be used, for instance, in the field
of computational complexity theory.

Another key issue related to the modelling of biochemical systems re-
gards the calibration of the parameters. For instance, in the τ -DPP appli-
cations presented in this thesis, the values of stochastic constants associated
to the chemical reaction have been obtained by first assuming plausible rel-
ative magnitudes for their values, and then by adjusting them one by one,
until a good reproduction of the expected behaviour has been obtained.

In general, many numerical factors are needed for a complete and accu-
rate description of biological systems, like molecular species quantities and
reaction rates, which represent an indispensable quantitative information
to perform computational investigations of the system behaviour. Unfortu-
nately, the experimental values of these factors are often not available or
inaccurate, since carrying out their measurements in vivo can be tangling
or even impossible [173]. In a few cases, the values of some parameters of a
given system can be estimated either from in vitro experiments (by fitting
the dynamics derived through equations based on mass-action law against
the concentration time series that result from these measurements), or by
assuming some analogies with similar processes or organisms for which more
experimental data are available.

The lack and the inaccuracy of these information bring about the chal-
lenging problem of developing suitable techniques to automatically estimate
the correct values to all parameters in order to reproduce the expected dy-
namics in the best possible way.

Optimization methods can be used to tackle the calibration problem of
parameter estimation of biochemical systems by minimizing a cost func-
tion (e.g. a distance measure) which quantitatively defines how good is the
system behaviour, using the predicted values, with respect to the experi-
mental dynamics. Several global optimization techniques have already been
adopted for parameter estimation of biochemical and biological systems.
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In this thesis, we consider the application of two optimisation techniques,
genetic algorithms and particle swarm optimizer, to tackle this problem.
To this aim, we provide the definition of a fitness function that is suitable
to quantify the quality of a particular set of parameters used during the
stochastic simulation of a system. Working in the field of stochastic mod-
elling and simulation, the fitness definition is based on the idea that we have
to compare the observed dynamics with the dynamics generated by using a
stochastic simulation algorithm, which will run using a particular set of pa-
rameter values. Therefore, we have to manage some troublesome properties
that are inherent to stochastic simulations like, for instance, the irregular
time sampling of the resulting outcome.

In this thesis, in particular, we test and compare the performances of
genetic algorithms and particle swarm optimization to the aim of identify the
most suitable optimisation technique for the parameter estimation. To this
aim, these methods are applied to two simple biochemical schemes, which
have been chosen since they are well representative of the dynamics of many
other biological systems: a basic catalytic kinetics (the Michaelis-Menten
system) and an oscillating behaviour (based on the Belousov-Zhabotinskii
reaction) [15]. The oscillating systems has been considered with two different
set of parameters which provide two distinct dynamics, characterised by
sustained oscillations and a dynamics with damped oscillations, respectively.

Finally, the problem related to the exploration of the parameters space of
a biochemical system is described. Usually, this kind of analysis is achieved
by means of large numbers of independent simulations where each execu-
tion is performed with a particular parametrisation. To efficiently tackle
this problem, we present the implementation of a parameter sweep appli-
cation on a grid framework [140], obtained by distributing large numbers
of simulations performed by means of τ -DPP. This grid implementation is
used in 4 different parameter sweep applications executed on a model of
the chemotactic signal transduction pathway in bacteria composed by 59
chemical reactions, and their performances are analysed and compared.

Overview

This thesis is structured as follows. In the first part (Chapters 1–3) we
introduce the prerequisite notions that are necessary for the development of
our work. In the second part (Chapter 4–6) we present our approach for
the modelling and simulation of biochemical systems, together with some
applications, as well as the tool for the analysis of the parameter space of a
system.

In Chapter 1, the main stochastic algorithms for the description of the
dynamics of biochemical systems are presented. We start by introducing
the basic notions and the fundamental hypothesis needed for the develop-
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Introduction: aims and motivations

ment and the application of these algorithms. The reference procedure is the
stochastic simulation algorithm (SSA), whose theoretical basis is exploited in
most of the other stochastic algorithms. Afterwards, we present (1) the next
reaction method, which is faster than SSA since it uses suitable data struc-
ture to efficiently handle the computation and re-uses (previously drawn)
random numbers; (2) the tau-leaping algorithm, an approximate procedure
in which reactions are applied in parallel to achieve fast simulations; (3) the
next subvolume method ; (4) the Binomial tau leap spatial stochastic simula-
tion algorithm for the simulation of heterogeneous systems composed by a
number of sub-volumes.

In Chapter 2, two optimisation techniques are presented: genetic algo-
rithms and particle swarm optimizer. Genetic algorithms are a population
based heuristic which select the individuals for the next generation according
to their quality, and evolve them by means of variation operators. Particle
swarm optimizer moves a swarm of particles through a n-dimensional space,
towards the best position found so far by each particle and by the entire
swarm. In the investigation of biochemical systems, both techniques can be
applied to tackle the parameter estimation issue, which consists in the cali-
bration of the system’s parameters (this particular application is presented
in Chapter 6).

In Chapter 3, the framework of membrane systems, or P systems, is
described. First, the basic notions and definitions of P systems are pro-
vided. Then, the variant of dynamical probabilistic P systems (DPP) is
introduced. DPPs propose a new approach for the application of P systems,
which consists in interpreting them as stochastic tools for the description
of the dynamics of complex systems. The key feature is that, unlike the
basic version of P systems, in DPPs probabilities are associated with the
rules (following a method similar to that used in SSA), and these values
vary during the evolution of the system according to a prescribed strategy.
The “evolution” of a system described by DPPs is therefore governed by a
stochastic process. We present an application of DPPs for the modelling
and simulation of a multivolume system, called metapopulations, which are
ecological models that describe the behaviour of interacting populations, to
the aim of determining how a fragmented habitat influences local and global
population persistence.

In Chapter 4 we present a novel technique for the simulation of complex
biochemical systems, which combines the descriptive power of membrane
systems with the efficiency of tau-leaping procedure. This method is called
τ -DPP, it represents an extension of the DPP variant of membrane sys-
tems, since it introduces a strategy for providing quantitative descriptions
of a system’s dynamics. τ -DPP also extends the applicability of tau-leaping
simulation algorithm, as it provides a novel procedure to simulate systems
consisting of many volumes, but still relying on the efficiency of the original
simulation procedure. A further version of τ -DPP, called Sτ -DPP, is then
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presented. It represents an improvement of the previous version since it con-
siders the size of objects (molecules) and compartments (volumes) involved
in the system. In this case, the application of a set of rules is enabled only
if the compartment where they are applied contains enough free space for
the freshly produced (or communicated) objects.

In Chapter 5 different applications of τ -DPP are provided. For each ap-
plication, the model described by means of τ -DPP framework is presented,
along with the results obtained by simulating the system. The first applica-
tion regards the Ras/cAMP/PKA signalling pathway in the yeast Saccha-
romyces cerevisiae, which is involved in the regulation of metabolism and cell
cycle progression. The second application is a model of a genetic oscillator
called repressilator, coupled with a quorum sensing intercellular mechanism.
The third application is related to a model of the chemotactic signal trans-
duction pathway in bacteria. Finally, the implementation of boolean gates,
circuits and register machine instructions, exploiting the chemical comput-
ing theory, is also presented within the framework of τ -DPP.

In Chapter 6 we give a detailed description of the role played by the
parameters of a biochemical system, focusing on the stochastic constants
associated to the chemical reactions. We present the parameter estimation
issue, that is, the problem related to the calibration of the system’s param-
eters, and the parameter sweep application, a method suitable to explore
the space defined by the system’s parameters. In particular, we provide the
definition of the fitness functions that we use both in parameter estimation
to evaluate the quality of a particular set of parameters, and in the param-
eter sweep to quantify the difference between the “wild type” dynamics and
those obtained by using different parametrisations. In particular, we present
an implementation of genetic algorithms and particle swarm optimizer to
tackle the parameter estimation issue, and we compare their performance
by applying them to simple biochemical networks. Then, we propose a grid
implementation of the parameter sweep application, obtained by distribut-
ing a large number of simulations performed by means of τ -DPP, to the aim
of efficiently exploring the parameter space of a biochemical system.

Finally, in Chapter 7 conclusive remarks and a discussion about the pre-
sented work are proposed. Insights concerning some possible improvements
and future directions for research are also briefly described.
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Chapter 1

Stochastic algorithms for the
simulation of biochemical
systems

In this chapter, some of the most used and well known stochastic simulation
techniques will be presented. These techniques can be used to describe
the dynamics of biochemical systems with fixed conditions (i.e. pressure,
temperature, etc.), in which the set of molecular species involved, and the
possible interactions between species (chemical reactions) are known. In
particular two exact procedures, the stochastic simulation algorithm [74] and
the next reaction method [72] will be presented. These two algorithms can
be applied to homogeneous systems, that is, systems in which the molecules
are considered well mixed, and they provide a sequential description of the
system’s dynamics, by executing one reaction during each simulation step.
The former is Gillespie’s seminal work, which represents the basis of most
of the stochastic algorithms for the simulation of chemical systems; the
latter has been introduced by Gibson and Bruck as a faster version of the
stochastic simulation algorithm. The exactness of these two methods refers
to the simulated evolution of the analysed system, which corresponds to an
“exact” numerical realisation of the actual dynamics of the system.

An approximate simulation technique called tau-leaping, firstly presented
in [77], will be then described. This method has been developed in order
to speed up stochastic simulations, in fact, many reactions are executed
during each iteration. On the other hand, with this method there is a loss
in the accuracy of the simulated dynamics with respect to the stochastic
simulation algorithm. In the following, we will refer in particular to the
tau-leaping version presented in [26].

Finally, two stochastic algorithms used to simulate heterogeneous sys-
tems will be illustrated. These procedures are called next subvolume method
[57] and binomial tau-leap spatial stochastic simulation algorithm [117]. The-
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Chapter 1. Stochastic algorithms for the simulation of biochemical systems

se procedures consider both reactive and diffusive processes, which occur
inside the adjacent subvolumes constituting the analysed system. In par-
ticular, the former method is based on the stochastic simulation algorithm,
and simulates one event for each iteration step; the latter is based on the
tau-leaping, hence many reaction and diffusive events are simulated during
each step.

1.1 Gillespie’s stochastic simulation algorithm

In this section, the stochastic simulation algorithm (SSA) will be presented.
This simulation technique has been introduced by Gillespie [73, 74] in order
to reproduce the exact behaviour of chemical systems. SSA represents the
reference point for the development of new procedures, and it is one of the
most used algorithms for the description of the dynamics of chemical and
biological systems. As a matter of fact, SSA has been implemented within
many software tools [188, 41, 50, 33].

SSA can be applied to chemical systems defined within a single volume
Ω, which is assumed to be well stirred and at constant temperature. This is
the fundamental assumption that leads to the possibility of describing the
system behaviour, without considering the position and velocity of every sin-
gle molecule occurring inside the system. Inside Ω, a set of chemical species
{S1, . . . , SN}, whose interactions are governed by a set of chemical reactions
{R1, . . . , RM}, is considered. A stochastic constant cj (j = 1, . . . ,M), which
depends only on the chemical and physical properties of the molecules and
on the temperature of the system, is associated to each reaction Rj . The
number of molecules of species Si (i = 1, . . . , N) at a given time t is de-
noted by Xi(t), and the state of the system at time t is defined as the vector
X(t) ≡ (X1(t), . . . ,XN (t)).

It is clear that the changes in the molecular numbers of the species in-
volved in the systems are a consequence of the application of the chemical
reactions. A chemical reaction Rj has the general form α1S1+· · ·+αNSN

c
→

β1S1+· · ·+βNSN where the stoichiometric coefficients αi denote the number
of molecules Si consumed by reaction Rj (i.e. reagents), while the stoichio-
metric coefficients βi denote the number of molecules Si produced by Rj

(i.e. products).

The effects of the application of a chemical reaction are summarized by
means of the state-change vector vj ≡ (v1j , . . . , vNj) (j = 1, . . . ,M). The
element vij of vj represents the multiplicity change of the species Si due to
reaction Rj.

Given the system state of the system X(t) = x, the propensity function
aj(x) of the reaction Rj is defined as the probability that one application of
such reaction will occur inside Ω in the infinitesimal time interval [t, t + dt).
The propensity functions represent the stochastic “rates” of the reactions
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1.1. Gillespie’s stochastic simulation algorithm

involved in a system, and they are used to select the time increment and the
reaction to execute in order to describe the system’s dynamics, as it will be
explained in the following.

The definition of the propensity function aj is derived by considering
the existence of a constant cj such that cjdt gives the probability that a
particular molecule (in the case of unimolecular reactions) or a randomly
chosen combination of molecules (in the case of reactions of higher order)
will react in the next infinitesimal time interval.

Starting from this consideration, in the case of a first order reaction

Rj : Si

cj
→ products, having Xi molecules of species Si, the probability that

one of them will be transformed by means of the Rj , in the infinitesimal
time interval dt, is given by the product of Xi by the stochastic constant cj ,
that is, aj(x) = Xicjdt.

If the considered reaction Rj is bimolecular, having the form Rj : Si +

Sl

cj
→ products, the probability that one pair of molecules of the species Si, Sl

will react in the next time interval is given by aj(x) = XiXlcjdt, because
each possible combination of molecules of the species which undergo to Rj

has to be considered.

In the case of a reaction Rj : Si + Si
cj
→ products, that is, a bimolecular

reaction which involves two molecules of the same species Si, then the total
number of possible pairs is 1

2Xi(Xi −1) and the propensity function is given
by aj(x) = 1

2Xi(Xi − 1) · cjdt.

The aim of the SSA is to evaluate the value of X(t) = x, given an initial
state X(t0) = x0 at time t0. This could be done through the estimation of
P (x, t|x0, t0), which represents the probability that the system will be in the
state X(t) = x, starting from X(t0) = x0. From this probability value, a
time evolution equation can be derived, exploiting the notion of propensity
function and of the state-change vectors:

∂P (x, t|x0, t0)

∂t
=

M∑

j=1

[aj(x − vj)P (x − vj , t|x0, t0) − aj(x)P (x, t|x0, t0)] .

(1.1)

This equation, which completely determines the function P (x, t|x0, t0), is
called the Chemical Master Equation (CME). The problem is that the CME
is composed by a set of coupled ordinary differential equations (ODEs), with
one equation for each possible combination of reactant molecules occurring
in the system. Therefore, the CME can be analytically solved only for sim-
ple cases, while for others, the computational burden makes the numerical
solution impossible to compute.

The impracticability of finding a solution for the CME, which consists in
computing the probability density function X(t), has led to the development
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of a procedure that allows to generate a numerical realization of the system’s
evolution, namely, a simulated trajectory of X(t) in time. Note that, this
is different from determining the solution of the CME because, instead of
computing the probability density function, a random sample of X(t) will
be found.

In fact, the trajectory X(t) of the system can be generated starting from
another probability function, p(τ, j|x, t), which represents the probability
that, given the state X(t) = x, the next reaction occurring in the system
will be Rj , and the time interval for its execution will be [t + τ, t + τ + dτ).

Given the current system state x, the function p is the joint probability
density function of the two random variables τ and j which denote the
occurrence time to the next reaction and the index of the next reaction
that will be executed, respectively. Applying the laws of probability to the
propensity function defined above, an exact formula for the function p can
be derived as:

p(τ, j|x, t) = aj(x) e(−a0(x)τ) (1.2)

where a0 is the sum of all the propensity functions of the reactions Rm

(m = 1, . . . ,M), defined as a0(x) =
∑M

m=1 am(x). Equation 1.2 states
that τ is an exponential random variable with mean and standard deviation
equal to 1/a0(x), and j is a statistically independent integer random variable
with point probabilities aj(x)/a0(x). Note that, this is the starting point
for a stochastic simulation, and using an exact Monte Carlo procedure for
generating samples of τ and j according to their distributions, an exact
trajectory of x can be generated [75].

The simplest procedure with the aim to generate a numerical realisation
of the system is the so-called direct method, in which two random numbers
(r1 and r2) are tossed from a uniform distribution in the unit interval [0, 1]
and the values of τ and j are computed as follows:

τ =
1

a0(x)
ln

(
1

r1

)
, (1.3)

j−1∑

m=1

am(x) < r2a0(x) ≤

j∑

m=1

am(x). (1.4)

Equation 1.3 generates a random number τ according to the probability
density function p1(τ) = a0(x) exp(−a0(x)τ), while Equation 1.4 generates
a random integer j according to the probability density function p2(j) =
aj(x)/a0(x) (considering that p1(τ) · p2(j) = p(τ, j)), as explained in [74].

Following this method for the generation of the values of τ and j, the
functioning of the SSA - describing an exact numerical realization of the
process X(t) - can be formalised as follows [73, 74]:

4



1.1. Gillespie’s stochastic simulation algorithm

1. Initialize the system time, t = t0, and set the initial amount of the
molecular species, x = x0. Load the reactions involved in the system
along with their stochastic constants;

2. Evaluate the propensity functions aj(x) of the reactions, according to
the system state x, and their sum a0(x);

3. Generate the values for τ and j using Equations 1.3 and 1.4;

4. Execute reaction j by updating the system state as x = x + vj, and
update the system time as t = t + τ ;

5. If the termination criterion is satisfied, then end the simulation. Oth-
erwise go back to Step 2.

During each iteration, this procedure computes the values of the propen-
sity functions of the reactions, according to the current system state. Then,
the values of τ and j are computed as described by Equations 1.3 and 1.4.
The final step consists in the system update according to the state-change
vector of the selected rule. The termination criterion usually used in this
kind of procedure regards the number of executed iterations or the simulated
time.

The method is called “direct”, because it generates directly the values
of τ and j.

There exists an alternative procedure to implement the SSA, which is
equivalent to the direct method, that can be formalised by the following
iterative steps [73, 74]:

1. Initialize the system time, t = t0, and set the initial amount of the
molecular species, x = x0. Load the reactions involved in the system
along with their stochastic constants;

2. Evaluate the propensity functions aj(x) of the reactions, according to
the system state x;

3. Generate a candidate τj , for each reaction Rj, according to an expo-
nential distribution based on aj, such that τj = 1/aj(x) ln(1/rj);

4. Select j with the smallest candidate τj, and let τ = τj;

5. Execute reaction j by updating the system state as x = x + vj, and
update the system time as t = t + τ ;

6. If the termination criterion is satisfied, then end the simulation. Oth-
erwise go back to Step 2.
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Chapter 1. Stochastic algorithms for the simulation of biochemical systems

This procedure is called first reaction method, the main difference from
the direct method is that here M different random numbers, where M is the
number of reactions, are needed at each iteration, in order to compute the
value of τ .

In general, SSA has many advantages with respect to other (standard)
simulation algorithms, such as: (1) the procedure, that is logically equivalent
to the CME, is exact and takes full account of the stochastic fluctuations
of the system; (2) the length of the step τ is exact and not a finite ap-
proximation of some infinitesimal dt, as the time step increment used, for
instance, by ODEs solvers; (3) the procedure is very easy to codify, and it
does not depend on the set of reactions involved in the system. The amount
memory required for a simulation is typically small, i.e., it is proportional
to the number of molecular species and chemical reactions; (4) while the
CME tries to solve the system simultaneously for the probability of all pos-
sible trajectories, SSA generates a single trajectory, therefore it can easier
describe the dynamics of a system; (5) by using a number of independent
runs of SSA, it is easy to calculate means, variances, correlations, etc. of the
species involved in the system. Note that, these ensemble averages cannot
be readily computed using the CME.

On the other hand, SSA also presents weaknesses: (1) the computational
time required to run a single simulation, which is proportional to the number
of reactions M , is usually high because of the sequential execution of a
single reaction at each iterative step; (2) the computational time is also
proportional to the number of molecules involved in a system, hence, there
is a limitation either in the molecular amounts which can be considered, or in
the total simulation time which can be considered during each execution; (3)
the ensemble averages that can be computed from a number of independent
simulations is typically very time consuming. Hence, the statistical accuracy
is directly dependent on the time required to execute the simulations.

SSA has been used for the simulation of many biological and chemical
systems. The earliest application of the SSA to a real biological system
demonstrating that stochasticity can play a critically important role has
been presented in [123], where a model of the mechanism controlling gene
transcript and translation has been analysed. Another SSA application re-
gards the study of the effect of fluctuations in gene expression rates and other
molecular–level fluctuations on lysis or lysogeny pathway selection statistics
by phage λ–infected Escherichia coli cells [6].

1.2 The next reaction method

In this section, a procedure developed by Gibson and Bruck [72] for the
optimisation of the SSA, will be presented. This algorithm, called next
reaction method (NRM), overcomes one of the main limitations of SSA,
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1.2. The next reaction method

that is, its applicability to systems with a large number of molecular species
and chemical reactions. In fact, in such cases the computational time of
SSA usually becomes prohibitively long.

The NRM is based on the method introduced by Gillespie and it is exact
as the SSA, though it is more efficient than SSA. NRM exploits the first
reaction method, however, instead of using a random number for each re-
action (at each iteration), it assigns a single random number per reaction
event. Moreover, the efficiency of the method relies both on the data struc-
tures used to store the propensity function values and the drawn random
numbers, and on the way they are updated, when needed. Note that, the
improvements due to the use of these data structures can be also extended
to the Gillespie’s direct method.

The aim of NRM is to avoid the execution of three particular operations
repeated at each iteration of the first reaction method: the update of the
random numbers associated to the reaction events, the computation of the
candidate τi related to each reaction, and the identification of the smallest
value, among τi’s, which represents the actual τ .

The main idea is to store the values of τi along with the values of the
propensity functions ai of the reactions, and to recalculate the values of ai

(and of the corresponding τi) only if they change. To realise this optimised
update operation, a dependency graph is used. This data structure indicates
which is the relation between reactions and propensity functions, namely,
it indicates which propensity functions are affected by the execution of a
reaction.

The values of τi which are not affected by the reaction executed during an
iteration are not modified and re-used at the next iteration. In general, the
random numbers used during Monte Carlo simulations cannot be re-used;
nevertheless, in this particular case it is legitimate, as proved in [72]. Hence,
all the τi, except for τj (used for the selected reaction), will be re-used. Note
that, so doing, only a few values of both ai and τi will be updated at each
iteration, therefore it is suitable to use an efficient data structure to store the
values and to update them (when needed). This structure is called indexed
priority queue.

Hereafter, the definitions of dependency graph and indexed priority que-
ue will be provided.

In order to define the dependency graph of a chemical system, the iden-
tification of reactants and products, of a given reaction, is needed. Given the
reaction Ri, these two sets of molecular species will be called reactants(Ri)
and products(Ri), respectively. For instance, let us consider the reaction
Ri : A + B → C, then reactants(Ri) = {A,B} and products(Ri) = {C}.
Moreover, the set of molecular species which affect the value of ai is called
dependsOn(ai). Note that, usually dependsOn(ai) = reactants(Ri), but
there are cases in which some additional information can be added. Fi-
nally, the set of molecular species whose quantities are changed after a rule
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Table 1.1: A simple chemical system.

Reaction dependsOn(ar) affects(r)

A + B → C A,B A,B,C
C → A + B C A,B,C
B + C → D B,C B,C,D
D + E → F + E D,E D,F
A + E → D A,E A,D,E

execution is called affects(Ri). In general, affects(Ri) = reactants(Ri) ∪
products(Ri), however, there exist particular kinds of reactions, like cat-
alytic processes, where the set of affected molecular species is defined differ-
ently. For instance, given Ri : D + E → F + E, then affects(Ri) = {D,F}
(while reactants(Ri) ∪ products(Ri) = {D,E,F}).

Starting from the sets listed above, the dependency graph associated to
a biochemical system can be defined as follows. Let G(V,E) be a graph
where V = {v1, . . . , vM} is a set of vertices whose elements corresponds to
the chemical reactions of the given system (i.e. V ≡ R), and there exists an
edge in E, connecting vi to vj , if and only if affects(vi)∩dependsOn(avj

) 6= ∅.
Moreover, the self-edge of each vertex have to be added to E.

The dependency graph is a suitable data structure used to indicate the
propensity functions which have to be recalculated after a reaction execu-
tion. For instance, given the set of reactions listed in Table 1.1, the corre-
sponding dependency graph is shown in Figure 1.1.

In general, the number of edges of a dependency graph is small, meaning
that only a limited number of propensity functions and τ ’s need to be recal-
culated, at each iteration. A data structure suitable to efficiently handle the
operations on the stored values is the indexed priority queue. In particular,
regarding the ai values, the only operations needed are read and update,
hence, they can be stored in an array. On the other hand, the τ values
require a find min operation, to find the smallest value currently stored,
and an update operation. Note that, find min represents one of the stan-
dard operation involved in the priority queues [42] (typically implemented
as heap), and also the update operation can be implemented using standard
operations of priority queues like add element and delete element. How-
ever, in this context, a more efficient update operation can be implemented
by exploiting a particular indexing scheme.

The indexed priority queue is defined using two data structures. The first
one is a tree structure whose nodes consist in ordered pairs (i, τi), where i
is the reaction index and τi is the candidate τ associated to the reaction
Ri. Note that, the nodes of the tree have the property that each parent has
a τ value smaller than the values stored in its children nodes. The second
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Figure 1.1: Dependency graph corresponding to the set of reactions listed
in Table 1.1.

data structure is an index structure P where each element i is a pointer to
the node of the tree where the pair (i, τi) is stored. An example of indexed
priority queue is reported in Figure 1.2.

The advantages of the indexed priority queue are the following: (1) the
time needed to retrieve the smallest τ value is constant, because this value is
always in the root of the tree; (2) the ordering of the nodes of the tree is only
vertical and not horizontal; (3) the number of nodes is equal to the number
of reactions; (4) thanks to the indexing scheme, any reaction is identified in
constant time.

Using the data structures previously explained, the NRM can be for-
malised as follows:

1. System initialization. Set the initial amounts for the molecular species,
set the time t = t0, and generate the dependency graph G. Compute
the propensity function ai, for all reactions i. For each reaction i,
generate a candidate time τi, according to an exponential distribution
with parameter ai. Store the τi values in an indexed priority queue P;

2. Identify the reaction j with the least value τj;

3. Set the time to next reaction τ = τj;

4. Update the state of the system according to the selected reaction, mod-
ifying the amounts of the molecular species involved in the reaction.
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Figure 1.2: The tree structure containing the pairs (i, τi) related to the
reactions (above), and the indexing scheme (below).

5. For each edge (j, l) in the dependency graph G do:

• update the value of al;

• if l 6= j, then set τl = (al,old/al,new)(τj − t) + t;

• if l = j, then generate a random number rndj, according to an
exponential distribution with parameter aj and set τj = rndj + t;

• replace the old value in P, with the new value of τ ;

6. If the termination criterion is satisfied, then end the simulation. Oth-
erwise go back to Step 2.

The NRM algorithm needs a computational time proportional to logM ,
where M is the number of reactions occurring in the system. As in the
case of SSA, the usual termination criteria are related to the number of
reactions executed and to the total time simulated. Note that, a more
efficient computation is achieved if the dependency graph is sparse, namely,
the number of edges is small with respect to the number of nodes. In Table
1.2, the comparison of the number of operations executed by SSA and NRM,
during the simulation of a test case model composed by 10 reactions, is
reported to show the gain of efficiency given by NRM (data taken from
[72]).
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Table 1.2: Comparison of SSA and NRM in terms of number of operation
executed (all numbers are in millions).

Operation SSA NRM

ai computation 2700 210
× and ÷ ops 0 340
+, − and comparisons 2900 1100
exp rnd numbers 35 35
uni rnd numbers 35 0

An example of application of the NRM has been presented in [71], where
a Lambda model related to gene transcription and translation, protein–
protein interactions and feedback via protein–DNA binding has been simu-
lated and analysed.

1.3 The tau-leaping algorithm

The tau-leaping algorithm was first introduced in [77] to the aim of speeding
up stochastic simulations of biochemical systems. Instead of simulating the
dynamics of the system by tracing every single reaction event occurring
inside the volume Ω, with tau-leaping a time increment τ is computed and a
certain number of reactions are selected and executed in parallel. So doing,
faster simulations can be performed, though the obtained dynamics of the
chemical system is not exact, as in SSA, but it is approximated.

Several different versions of the tau-leaping algorithm have been pro-
posed, aimed at improving the procedure to compute the τ value and to
select the reactions to be applied in the current step, avoiding the possibility
to obtain negative population of chemical species (we refer to [78, 35, 25] for
more details). Despite the improvements in the simulation method achieved
by these techniques, they all present a problem related to the description of
the system dynamics: though an error control parameter is used, they do
not allow to uniformly bound the changes of the species quantities during
the τ selection procedure, therefore resulting in a poor approximation of
the system dynamics. Moreover, in order to compute the time increment
at each step, they require the evaluation of a quadratic number of auxiliary
quantities (relative to the number of chemical reactions).

These problems have been worked out in the tau-leaping version pre-
sented in [26], which will be considered hereafter. As already said, the aim
of this procedure is to fire more than one reaction for each time increment
[t, t + τ) in order to speed up the simulations. The determination of the
exact probability distribution of the reactions applications, within a generic
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step of length τ , is a hard task to solve. Therefore, in order to obtain an
efficient numerical realisation of the system’s trajectory, the exact dynamics
of the system has to be approximated.

Given the state x of the system, let Kj(τ,x, t) be the exact number of
times that a reaction Rj will be fired in the time interval [t, t + τ), so that
K(τ,x, t) is the exact probability distribution vector (having Kj(τ,x, t) as
elements). For arbitrary values of τ , it is difficult to compute the values of
Kj(τ,x, t). On the contrary, if τ is small enough that the change in the sys-
tem’s state during [t, t+τ) is so slight that no propensity function will suffer
an appreciable change in its value (this is called the leap condition), then
we can evaluate a good approximation of Kj(τ,x, t) by using the Poisson
random variable with mean and variance aj(x)τ .

So, after the computation of a τ value that satisfies the leap condition,
it is possible to update the state of the system at time t + τ according to:

X(t + τ) = x +
M∑

j=1

vjPj(aj(x), τ) (1.5)

where Pj(aj(x), τ), with j = 1, . . . ,M , denotes an independent sample of
the Poisson random variable with mean and variance aj(x)τ .

Each iterative step of the tau-leaping procedure is based on four main
stages:

1. Generate the maximum changes of each species that satisfy the leap
condition.

2. Compute the mean and variance of the changes of the propensity func-
tions.

3. Calculate the τ value.

4. Sample the reactions numbers to apply.

Hereafter, we describe in detail the motivations and the aims of each of
the four stages.
1. Satisfying the leap condition. The procedure for the selection of
τ is accomplished in order to bound the relative changes in the molecular
amounts, in such a way that the relative changes in the propensity functions
will be all bounded - during the τ interval - by a small value ε (0 ≤ ε ≤ 1).

Let ∆τXi be the change in the amount Xi of species Si, during the time
interval [t, t + τ). Given the state x and its projections xi = Xi(t), the leap
condition can be formalised as:

|∆τXi| ≤ max{εixi, 1} with i = 1, . . . , N , (1.6)

where the values εi = εi(ε, xi) are chosen so that the relative changes in the
propensity functions will be all bounded, at least, by ε.
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To do that, we first determine the highest order of reaction in which each
species Si (i = 1, . . . , N) appears as a reactant (denoted by HOR(i)). Then
compute:

εi =
ε

gi
(1.7)

where gi = gi(xi) is defined as follows:

1. if HOR(i) = 1 then gi = 1

2. if HOR(i) = 2 then

gi =






2 if Ri : Si + Sk → . . . with i 6= k
(

2 +
1

xi − 1

)
if Ri : Si + Si → . . .

3. if HOR(i) = 3 then

gi =






3 if Ri : Si + Sk + Sl → . . . with i 6= k 6= l

3

2

(
2 +

1

xi − 1

)
if Ri : Si + Si + Sk → . . . with i 6= k

(
3 +

1

xi − 1
+

2

xi − 2

)
if Ri : Si + Si + Si → . . .

The gi values corresponding to reactions having HOR > 3 can be easily
computed by taking into account the combinatoric of the reactant species
involved in the reactions.

2. Compute mean and variance. To compute the largest value of
τ that satisfies the leap condition (Equation 1.6), we need to evaluate two
auxiliary quantities: the mean and the variance of the expected changes in
the propensity functions.

Referring to the basic tau-leaping formula (Equation 1.5), it is possible
to consider the quantity defined in Equation 1.6 to be:

∆τXi =
∑

j∈Jncr

vijPj(aj(x), τ) with i = 1, . . . , N, (1.8)

where Jncr denotes the set of noncritical reactions.
A critical reaction is a reaction with positive propensity function such

that a small number of firings is currently left before exhausting one of its
reactants. All the other reactions are named, instead, noncritical reactions.
It is clear that the set of reactions of the system is the direct sum of the crit-
ical Jcr and noncritical Jncr reactions sets. The motivations of this partition
and the choice of j ∈ Jncr in Equation 1.8, can be found in [26].

As previously said, the Poisson random variables Pj(aj(x), τ) on the
right-hand side of Equation 1.8 are statistically independent and have mean
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and variance aj(x)τ . Hence, the mean and variance of their linear combina-
tion can be computed as follows:

〈∆τXi〉 =
∑

j∈Jncr

vij[aj(x)τ ], var{∆τXi} =
∑

j∈Jncr

v2
ij[aj(x)τ ] (1.9)

for i = 1, . . . , N . Hence, following the same reasoning that was used in the
τ selection introduced in [78], it is possible to consider the bound given in
Equation 1.5 as substantially satisfied if it is simultaneously satisfied by the
absolute mean and the standard deviation of ∆τXi:

|∆τXi| ≤ max{εixi, 1},
√

var{∆τXi} ≤ max{εixi, 1}, (1.10)

for i = 1, . . . , N .
Now, substituting formulas 1.9 into conditions 1.10, the following bounds
on τ can be derived:

τ ≤
max{εixi, 1}

|
∑

j∈Jncr
vijaj(x)|

, τ ≤
max{εixi, 1}

2

∑
j∈Jncr

v2
ijaj(x)

(1.11)

for i = 1, . . . , N .
Finally, it is possible to compute, as described in [78], the two quantities:

µi(x) =
∑

j∈Jncr

vijaj(x), ∀i ∈ I, (1.12)

σ2
i (x) =

∑

j∈Jncr

v2
ijaj(x), ∀i ∈ I, (1.13)

where the restriction on the set of noncritical reactions Jncr is still present,
due to the conditions of the modified non-negative Poisson τ -leaping [26].
3. Compute the τ value. The leap length is obtained substituting Equa-
tions 1.12 and 1.13 into Equation 1.11:

τ = min
i∈I

{
max{εxi/gi, 1}

|µi(x)|
,
max{εxi/gi, 1}

2

σ2
i (x)

}
, (1.14)

where gi is given by Equation 1.7.
It is also possible to estimate the mean µj(x)τ , and the standard devia-

tion
√

σ2
j (x)τ of the expected change in the propensity function aj(x) in

the time increment τ . Formula 1.14 requires that these quantities would be
bounded by εaj(x) for j = 1, . . . ,M , thus satisfying the leap condition.
4. Sampling the reactions numbers. The last stage consists in sam-
pling the numbers of firings of each reaction Rj according to the Poissonian
distributions P (aj(x), τ) with mean and variance aj(x) τ .

Following the four stages explained above, the tau-leaping algorithm
can be formalised as follows (in the description, the algorithm execution
naturally proceeds according to the order of instructions, when not otherwise
specified by means of “go to” commands).
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1.3. The tau-leaping algorithm

1. Initialize the system time, t = t0, and set the initial amount of the
molecular species, x = x0. Load the reactions involved in the system
along with their stochastic constants;

2. Locate the set of all critical reactions;

3. Compute the quantities µi and σi
2;

4. Select the value of τ ′ as indicated in Equation 1.14;

5. If τ ′ < n/a0 (where a0 =
∑M

j=1 aj(x) and the factor n is usually set to
10), then go to Step 6. Otherwise go to Step 7 ;

6. Execute an SSA step, exploiting the direct method, as described in
Section 1.1; then go to Step 12 ;

7. Compute the sum of the propensity functions of all critical reactions,
denoted by ac

0(x);

8. Generate τ ′′ = 1/ac
0(x)·1/rnd, where rnd is a random number sampled

from the uniform distribution in the unit interval [0, 1];

9. If τ ′ < τ ′′ then go to Step 10. Otherwise go to Step 11 ;

10. Set τ = τ ′ and do:

- for all critical reactions Rj set the number of firings kj = 0;

- for all noncritical reactions Rj generate kj as a sample of the
Poisson random variable P (aj(x), τ) with mean aj(x)τ ;

- go to Step 12 ;

11. Set τ = τ ′′, and do:

- select one critical reaction Rj to be fired during this step and set
kj = 1; for all other critical reactions Rj set kj = 0;

- for all noncritical reactions Rj generate kj as a sample of the
Poisson random variable P (aj(x), τ) with mean aj(x)τ ;

12. Update the state of the system: X(t + τ) = X(t) +
∑M

j=1 kj · vj;

13. If the termination criterion is satisfied, then end the simulation. Oth-
erwise go back to Step 2.

After the system initialisation, the iterative part of the algorithm starts.
During Step 2, the set of reactions is divided into two subsets containing
critical and non critical reactions. In Step 3 the procedure calculates the
auxiliary quantities needed for the evaluation of the first candidate for the
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length of the leap τ ′ (performed in Step 4 ), which is the largest value that
satisfies the leap condition.

During Step 5, the algorithm checks if the execution of a tau-leaping step
is allowed. In fact, if τ ′ is less than a multiple of 1/a0, then an SSA step
is executed because, given the actual state of the system, it will be more
accurate and efficient than a tau-leaping step.

In case of the execution of a tau-leaping step, the algorithm proceeds to
Step 7 for the computation of the sum of the propensity functions of the
critical reactions, and then to Step 8 to evaluate the second candidate for
the length of the leap τ ′′.

During Step 9 the procedure compares the values of τ ′ and τ ′′. If τ ′

is the smallest one, than only non critical reactions will be selected for
this iteration (Step 10 ). Otherwise, besides non critical reactions, also one
critical reaction will be randomly extracted during the current iteration
(Step 11 ).

Finally, in Step 12 the system state is updated and in Step 13 the termi-
nation criterion is checked, and if the condition holds, then the execution is
terminated. Usually, the termination criteria regards the number of iteration
executed or the total time simulated.

This version of the tau-leaping algorithm requires a computational time
proportional to 2M (where M is the number of reactions of the system),
which corresponds to the number of auxiliary quantities needed for the com-
putation of the τ value. Note that, this τ selection strategy is faster than
that of the original tau-leaping algorithm [77], whereby M2 auxiliary quanti-
ties needed to be computed. Moreover, the tau-leaping procedure presented
in this section is also faster than the SSA and the NRM, because it executes
larger steps in which several reactions are applied, thus speeding up the
simulations (as reported in [77, 26, 76]).

The tau-leaping algorithm has been used, for instance, to investigate the
cell cycle of the unicellular budding yeast Saccharomyces cerevisiae [1], and
to study a model that describes the expression of LacZ and LacY genes and
activity of LacZ and LacY proteins in E. coli.

1.4 The next subvolume method

In this section, an algorithm called next subvolume method (NSM) [57], will
be introduced. This procedure is suitable for the description of the dynamics
of systems whose geometry is taken into account, and both reactive and
diffusive processes are modelled.

This algorithm has been developed starting from the basic procedures
introduced to give an exact Monte Carlo realisation of the CME describing
homogeneous systems enclosed in a single volume (in particular, the NRM).
Note that, a system can be considered homogeneous (that is, the well stirred
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assumption in SSA, presented in Section 1.1), only if the time scale of the
diffusive processes is much more faster than the time scale of the reactive
processes.

The aim of the NSM is to propose an algorithm for the description of
systems where the diffusion plays an important role for the system dynam-
ics, e.g. the living cell. As a matter of fact, many cellular processes depend
on the spatial heterogeneity [182], as, for instance, the cell division [90]. In
order to describe the spatial heterogeneity, the NSM divides the reaction vol-
ume in a number of subvolumes and exploits the reaction-diffusion master
equation (RDME) to describe the behaviour of the entire system [68]. The
state of the system is characterised by the amounts of the molecular species
occurring within each subvolume, whose dimension is chosen small enough
to be considered homogeneous (well stirred). The diffusive processes among
subvolumes are described by means of first-order reactions which represent
the “movement” of molecules between adjacent subvolumes. The rate con-
stant associated to these processes is D/l2, where D is the diffusion constant
of a particular molecular species, and l is the side length of the subvolume
(whose shape is considered cubic).

Note that, in the case of biochemical systems modelled using a 3D struc-
ture, in which chemical processes are faster than diffusive ones, even if the
subvolumes used in the RDME are small, the number of molecules occurring
within them is usually high, in order to ensure the homogeneity. Therefore,
it is not possible to use the SSA inside each subvolume, in order to apply
a reaction within a single volume, at each iteration. Indeed, the computa-
tional time required for the simulation would be prohibitive, as it increases
linearly with the number of subvolumes used in the system description.

On the other hand, the NSM is an efficient algorithm for the description
of 3D biochemical systems, as it can sample trajectories of the Markov
process associated to the RDME. Moreover, the equivalence between the
trajectories obtained by means of NSM and those sampled by SSA, has been
proven [57]. Hence, the NSM is an exact algorithm capable of describing
the dynamics of heterogeneous systems, designed according to the RDME,
and its efficiency (with respect to SSA) is due to the time needed for a
computation, which increases logarithmically, rather than linearly, with the
number of subvolumes.

The improvements in the performance of this algorithm rely entirely
on the application of the direct method [74], to compute the time for the
next reaction or diffusion event within each subvolume, combined with the
strategy used in the NRM to keep track of the subvolume where the next
event will occur. Stated in other words, the direct method is used to manage
the internal state of the subvolume and to compute the auxiliary values
needed for the computation of the time step τ , and to identify the reaction
or the diffusion event to execute. On the other hand, the queue of the
subvolumes, the ordering and the update processes are managed using the
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same data structures and operations introduced in the NRM (the indexed
priority queue implemented as a binary tree together with the indexing
scheme, see Section 1.2 and [72] for additional details). Note that, during
each iteration of the NSM, only one subvolume (for reaction events) or two
subvolumes (for diffusion events) need to be updated, because their internal
state changes.

Exploiting the strategy briefly presented above, the NSM, describing an
exact numerical realization of heterogeneous systems composed by a number
of subvolumes, can be formalised as follows [57]. In the following descrip-
tion, the algorithm execution naturally proceeds according to the order of
instructions, when not otherwise specified by means of “go to” commands.

Initialisation:

1. Load the information about the geometry of the system, i.e., the num-
ber of subvolumes and their connections. Clearly, if the subvolumes
have cubic shape, then they can have at most six connections to the
other subvolumes;

2. Set the initial amounts for the molecular species inside each subvolume.
Note that, the initial state can be assigned to the subvolumes either
randomly or by using any initial distribution;

3. Compute the sum of the reaction rates ri for each subvolume i. The
rates of the reactions are calculated according to the size of the sub-
volume, as stated in the RDME;

4. Compute the sum of the diffusion rates for each subvolume i as si = fi ·∑N
n=1(dn ·Xn,i), where dn = Dn/l2 is the diffusion constant associated

to the species Sn, and Xn,i is the molecular amount of the species Sn

occurring inside the subvolume i. fi is the number of connections of
the subvolume i, that is, the number of directions where the molecule
can diffuse to;

5. For each subvolume i:

a. Compute the sum of reaction and diffusion rates: ri + si,

b. Draw a random number rndi1 from the unit uniform distribution
[0, 1],

c. Calculate the time for the next reaction as τi = 1/(ri+si)·1/rndi1 ;

6. Order the subvolumes according to the values of τi. In a similar manner
to the NRM, the subvolume queue is stored in a binary tree, indeed
the subvolume with the least time associated is in the root of the tree
and the branches have increasing τ value;
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Iteration:

7. Select the subvolume i with the least time τi, the next event will occur
at time t = τi. Generate a random number rndi2 from the unit uniform
distribution [0, 1], if rndi2 < ri/(ri + si), then go to Step 8 to handle
a reaction event, else go to Step 9 to handle a diffusion event;

8. Reaction event:

a. Using the random number rndi2 extracted during Step 7, deter-
mine the reaction to execute (as in Gillespie’s direct method),

b. Update the internal state of the subvolume i by changing the
amounts of the molecular species involved in the reaction,

c. Calculate the new values of ri, si and their sum (inside the sub-
volume i), and compute the new value of the time for the next
event τi = 1/(ri + si) · 1/rndi2 + t,

d. Insert the new τi value in the subvolume queue and reorder it;

9. Diffusion event:

a. Using the random number rndi2 extracted during Step 7, deter-
mine the type of molecule that will diffuse. Clearly, the number
of molecules that diffuse depends on the amounts of molecules
(currently present within the subvolume) and on the diffusion
rate constants,

b. Choose (randomly) the direction of the diffusion event among
the connection of the subvolume (and using again the random
number rndi2),

c. Update the internal state of both the subvolume i and its neigh-
bour j (where the molecule is sent), by changing the amounts of
the molecular species involved in the diffusion event,

d. Calculate the new values of ri, si and rj , sj and their sum (inside
the subvolume i and j), and compute the new value of the time
for the next events as in Step 8c,

e. Insert the new τ values in the subvolume queue and reorder it;

10. If the termination criterion is satisfied, then end the simulation. Oth-
erwise go back to Step 7.

The algorithm presented above takes a computational time that is pro-
portional to the number of reactions, to identify the time and the event
which will occur next inside every subvolume (this is due to the application
of the direct method). On the other hand, the subvolume queue is managed
with a time proportional to the logarithm of the number of subvolumes, i.e.,
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the time needed to re-order the queue is proportional to the logarithm of
the number of subvolumes.

A different implementation of the NSM could be used to speed up the
procedure, at the cost of using a larger amount of memory. The idea is to
execute the operations within the subvolumes by exploiting the NRM. So
doing, the computational time needed to handle each subvolume is propor-
tional to the logarithm of the number of reactions. On the contrary, instead
of storing only the time τ for the next event, all the candidate values of τ
need to be stored. Therefore, the amount of memory required for this al-
ternative implementation is proportional to the number of events (for each
subvolume).

The NSM has been used, for instance, for the simulation of the stochas-
tic reaction–diffusion kinetics of a double–negative feedback system, and a
MAPK phosphorylation–dephosphorylation system [57].

1.5 The binomial tau-leap spatial stochastic sim-
ulation algorithm

The binomial tau-leap spatial stochastic simulation algorithm (Bτ -SSSA)
has been introduced in [117], as an alternative procedure to the next sub-
volume method for the simulation of heterogeneous systems. The Bτ -SSSA
follows the principles introduced in the NSM, but the algorithm has been
modified in order to simulate the behaviour of the subvolumes following the
the binomial tau-leap algorithm [196].

In this section, the binomial tau-leap will be briefly recalled, empha-
sizing the differences with Gillespie’s tau-leaping (in particular, the version
introduced in [77] will be considered here); afterwards, the Bτ -SSSA will be
described.

One of the main problems of the first version of tau-leaping algorithm,
as proposed in [77], concerns the robustness of the method, because the
selection and execution of a number of reactions could lead to negative
amounts of the molecular species occurring inside the system. To be more
precise, during a tau-leaping step (which is usually larger than a SSA step), if
the number of reactions to fire is greater than the number of molecules of the
current system configuration, then negative populations are generated, and
the simulation step cannot be executed. The solution proposed to avoid this
possibility consists in undoing the last step, reducing the length of the step
by half, and selecting a new set of reactions to execute. It is clear that such
kind of solution increases the computational cost of the algorithm, hence
different but less expensive methods are needed (note that, the tau-leaping
version presented in Section 1.3 uses a different strategy to efficiently select
both the time step and the rules, avoiding the negative population problem).

The method proposed in the binomial tau-leap to select the leap length

20



1.5. The binomial tau-leap spatial stochastic simulation algorithm

and reactions consists in the exploitation of binomial random variables
rather than Poisson random variables. This different sampling is suitable for
the tau-leaping because, while samples from Poisson random variables range
from zero to infinity, binomial random variables have a finite range. The bi-
nomial tau-leap method, besides providing a different sampling, implements
a robust control strategy to avoid negative molecular amounts.

The procedure used to tackle the problem related to negative numbers
consists in bounding the sampling range of the binomial random variables
according to the system state. In particular, the number of execution of
a given reaction Rj , during the current iteration, is defined by a sample
value of the binomial random variable B(Nj , aj(x)/Nj) under the following
condition:

0 ≤
aj(x)τ

Nj
≤ 1,

where the value Nj is computed according to the kind of reaction. For in-

stance, given a first-order reaction R1 : S1
c1→ S2 (whose propensity function

is a1(x) = c1 ·X1), the value N1 = X1. Dealing with second-order reactions,

in the heterologous case, R2 : S1 + S2
c2→ S3 (where a2(x) = c2 ·X1 ·X2) the

value N2 = min{X1,X2}. In the homologous case of second-order reactions,

such as R3 : S1 + S1
c3→ S2 (having a3(x) = c3 · X1(X1−1)

2 ), the reaction is
executable if X1 ≥ 2 and N3 = ⌊X1/2⌋. It is clear that, for each reaction
Rj , the number Nj is used to ensure the applicability of the reaction itself,
given the current system state x.

The limitation on the number of reactions execution explained above is
not enough to avoid the problem related to the negative molecular numbers
if a species is involved in more than one reaction. Therefore, a different
sampling method (based on binomial random variables), has been proposed.
This novel strategy is founded on two properties of the Poisson and binomial
random variables [196], which are exploited to limit the total number of
executions of the reactions that modify the molecular quantity of a particular
species. This sampling method can be explained considering two reactions
Rj and Rk which modify the amount of species Si (note that, this procedure
can be easily extended to higher numbers of simultaneous reactions).

Following the (Poisson) tau-leaping procedure [77], the number of execu-
tions for reactions Rj and Rk in [t, t+τ) would be sampled from the Poisson
random variables Pj = P (aj(x)τ) and Pk = P (ak(x)τ), respectively. On the
other hand, using the binomial tau-leap, and exploiting the first property
of Poisson and binomial random variables, the total number of reactions
Rj and Rk to execute during the leap is first generated from the binomial
random variable:
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B

(
Ni,

aj(x)

aj(x) + ak(x)
τ

)
(1.15)

under the following conditions:

Ni = min{Nj, Nk}, 0 ≤
aj(x) + ak(x)

Ni
τ ≤ 1,

where the values Nj and Nk are computed as illustrated above, according
to the Xi quantity in the state x.

Afterwards, a second sample Kj , which corresponds to the number of
executions of reaction Rj can be generated, exploiting the second property
of Poisson and binomial random variables, from a distribution which depends
on the value Kjk, that is, the total number of executions of reactions Rj and
Rk:

B

(
Kjk,

aj(x)

aj(x) + ak(x)

)
.

Finally, the number of executions of reaction Rk is computed as Kk =
Kjk − Kj .

This strategy is exploited in the Bτ -SSSA procedure, whenever a tau-
leaping step is executed in one of the subvolumes of the system.

The Bτ -SSSA has been developed in order to speed up the NSM, apply-
ing several reaction and diffusive events at each step. During each iteration
of the algorithm, a subvolume is selected according to its state (hence, to
the probability values of the corresponding reactions) and the procedure to
evolve its state is executed. The first operation consists in computing τ : if
this value is greater than a specified threshold, then the Bτ -SSSA procedure
is applied; otherwise, a modified version of the NSM is performed (executing
a single event).

The Bτ -SSSA, where the probabilities associated to both reaction and
diffusion events are calculated as described in Section 1.4, can be formalised
as follows [117]. In the following description, the algorithm execution nat-
urally proceeds according to the order of instructions, when not otherwise
specified by means of “go to” commands.

Initialisation:

1. Load the information about the geometry of the system, i.e., the num-
ber of subvolumes and their connections;

2. Set the initial amounts for the molecular species inside each subvolume;
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3. Compute the sum of the reaction rates ri and the sum of the diffusion
rates si within each subvolume i;

4. For each subvolume i, compute the value τi in which the next set of
events will be executed;

5. Order the subvolumes according to the values of τi;

Iteration:

6. Select the subvolume i with the least τi value;

7. If the total number of molecules occurring inside the subvolume is
larger than 2, then go to Step 8. Otherwise proceed with a single
event iteration step:

a. If ri = 0, then go to Step 11 to execute a single diffusion event;

b. If ri > 0, then draw a random number rnd1. If rnd1 < ri/(ri+si),
then go to Step 10 to execute a reaction event. Otherwise go to
Step 11 to execute a diffusion event;

8. Calculate an initial τi for the subvolume, as described in [196];

9. Determine whether the step consists of one event or a set of events.
In the case of ri > 0, if τi is smaller than a specified threshold, then
go to Step 7b. Otherwise go to Step 12 ;

10. Single chemical reaction event:

a. Draw a random number from the uniform interval [0, 1] to select
which reaction will be executed (following the Gillespie’s method
[74]);

b. Update the molecular quantities inside the subvolume i according
to the stoichiometry of the reaction executed, and increase the
simulation time;

c. Update the values of ri and si inside the subvolume i;

d. Generate a new τi value for the next event inside volume i and
sort the subvolume queue;

e. If the termination criterion is satisfied, then end the simulation.
Otherwise go back to Step 6.

11. Single diffusion event:

a. Draw a random number from the uniform interval [0, 1] to select
which species will diffuse to a neighbour subvolume (following the
NSM method [57]);
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b. Draw a random number from the uniform interval [0, 1] to select
the neighbour subvolume j where the molecule will diffuse;

c. Update the molecular quantities inside the subvolumes i and j
according to the executed diffusion event, and increase the simu-
lation time;

d. Update the values of the reaction and diffusion events probabili-
ties inside the subvolumes i and j;

e. Generate new τi and τj values for the next event inside volume i
and j and sort the subvolume queue;

f. If the termination criterion is satisfied, then end the simulation.
Otherwise go back to Step 6.

12. τ -leap step:

a. Select the reaction and diffusion events according to the strategy
of the binomial tau-leap presented above [196];

b. Update the system state according to the set of selected reaction
and diffusion events, and update the system time;

c. Calculate the new values of the propensity functions in the sub-
volumes affected by the executed events;

d. Generate new τ values and sort the subvolume queue;

e. If the termination criterion is satisfied, then end the simulation.
Otherwise go back to Step 6.

As in the first version of Gillespie’s tau-leaping algorithm [77], the Bτ -
SSSA needs the evaluation of M2 auxiliary quantities to compute the length
of the step τ , inside the selected subvolume. Exploiting a modified version of
the NSM to manage the subvolumes, the algorithm presented here inherits
the same computational time (described in Section 1.4). Comparing the
number of operations needed to execute one iteration of the NSM and the
Bτ -SSSA, it turns out that the latter has a higher complexity. On the other
hand, the Bτ -SSSA executes a set of reaction and diffusion events (at each
step), instead of a single event, increasing the efficiency of the simulations.
In particular, in [117] it is reported that the Bτ -SSSA is from 2 to 100 times
faster than NSM (depending on the number of subvolumes involved in the
modelled system), in the examples presented by the authors.

The Bτ -SSSA has been exploited for simulating a simplified model of
progesterone transcription factor formation in the epidermal growth factor
receptor pathway using different numbers of subvolumes in the system’s
definition [117].
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1.6 Other algorithms

In the last years, many other stochastic algorithms have been proposed for
the simulation of biochemical systems. In this section, we recall some of
these works giving a brief explanation of their features.

R-leaping. An algorithm called R-leaping [7] has been proposed for the
acceleration of the SSA, by executing a predefined number of reaction firings
which may occur across several reactions, with the aim to avoid the prob-
lem related to the possible occurrence of negative populations of molecules
(which is present in most of the tau-leaping methods [77, 35, 196]). At each
iteration of the R-leaping algorithm, assuming that the values of the propen-
sity functions remain constant during the leap (as for tau-leaping [77]), a
value representing the total number of reactions firings is computed. This
value is used to extract the number of execution of each reaction by means
of binomial distribution samples.

The authors demonstrate that, by periodically sorting the reactions, such
that the propensity functions result in decreasing order, it is possible to
minimize the number of sampling from the binomial distributions, without
affecting the accuracy of dynamics described by the algorithm.

The bound on the total number of reaction executions is given as a
parameter of the algorithm. Anyway, the strict limit can be relaxed in
order to simulate larger steps, allowing the occurrence of negative amounts
according to a controlled probability value. This relaxation strategy offers
a tuning mechanism to balance accuracy and efficiency of the R-leaping
according to the system state.

The R-leaping algorithm is approximately 10 times faster than SSA [74],
and has the same accuracy level of tau-leaping [26], as reported in [7]; how-
ever, the computation time required for the execution of the R-leaping is
greater than that needed by the tau-leaping.

The R-leaping has been applied to a LacZ/LacY model composed by 22
reactions providing good results from the simulations.

Stochastic simulation of coupled reaction–diffusion processes. The
classic stochastic algorithms have been developed for the simulation of non
linear chemical reaction processes in well stirred homogeneous systems. In
[189], one of the first stochastic approaches which consider diffusion for non
linear reaction–diffusion processes has been introduced. In order to handle
diffusion processes, mesoscopic rates used to describe the transition proba-
bility associated to diffusive events have been added to the described system.

Exploiting the mesoscopic rates associated to diffusion, the algorithm
provides a numerical simulation, by means of a Monte Carlo technique, of
the reaction-diffusion master equation. The described dynamics considers
both the spatial and temporal evolution of the molecular species occurring
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inside the system. As in other methods like NSM and Bτ -SSSA, here the
reaction volume is divided in subvolumes, called voxels, which are supposed
to be homogeneous.

This algorithm is limited to reaction–diffusion processes where collisions
between inert and reacting species occur more frequently than collisions be-
tween reacting species. Moreover, the authors do not give any insight about
the computational cost of the algorithm, which seems to have a higher com-
plexity with respect to the NSM or the Bτ -SSSA, because of the auxiliary
quantities needed to compute the value of the time step τ .

This method has been applied, for instance, to the nonlinear reaction–
diffusion process of calcium wave propagation through the cell, the devel-
oped model consists in 100 sequential cubic voxels since diffusion has been
considered in one dimension only [189].

Next reaction hybrid algorithm. In [179], a stochastic algorithm suit-
able for the description of chemical systems having one or more “fast” re-
actions, is presented. Such kind of systems, called stiff systems, cannot be
efficiently described by means of SSA, because the average length of the step
τ might be very small, slowing down the simulation. The paper describes a
hybrid stochastic method that partitions the system into subsets of fast and
slow reactions. The dynamics of fast reactions can be accurately approx-
imated as a continuous Markov process when two conditions are satisfied:
(1) reactions occur many time in a small time interval, and (2) the effect of
each reaction execution on the number of reactants and products is small,
that is, the total amounts of those molecular species have to be large. On
the other hand, the slow dynamics governed by slow reactions is described
by using the next reaction method. There exists other approaches with the
aim to efficiently simulate stiff systems: the slow scale SSA and the implicit
tau-leaping [76].

The next reaction hybrid method has been successfully applied to several
biochemical systems, such as the pulse generator, a simplified model of the
molecular mechanisms responsible for the circadian rhythm in Drosophila
fruit flies. However, there are two main sources of inaccuracy for this al-
gorithm: the first one is due to the approximation of fast reactions as a
continuous Markov process, in particular, this is related to the inaccuracy of
the numerical integration method used (here, the Euler-Maruyama method).
The authors propose the application of a more advanced stochastic numer-
ical integrator to reduce this source of the error.

The second source of inaccuracy appears when a slow reaction is influ-
enced by some changes in the molecular quantities of species involved in
a fast reaction. In this case the source of error is related to the stochastic
numerical integrator used to generate the times associated to slow reactions;
again, by using more advanced methods the accuracy of the algorithm might
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be improved.

Multicompartmental Gillespie’s algorithm. This algorithm has been
introduced in [159] to simulate systems composed by many volumes (also
called compartments), exploiting the Gillespie’s procedure. In particular,
the direct method is used for the computation of the time τ and the index
of the next reaction to execute within each compartment. This information
is stored in a list which is updated at each iteration, modifying the values
related to the compartments affected by the executed reaction. This strat-
egy is very similar to that of the NSM, presented in Section 1.4, with the
difference that the multicompartmental Gillespie’s algorithm does not use a
particular data structure such as a heap or an indexed queue to efficiently
handle compartments information.

In the description of biochemical systems modelled by means of this
method, the so called boundary rules are exploited. Such kind of reactions
are used to capture the features of the communication and the transfor-
mation of molecules. In particular, the authors consider special cases of
boundary rules which involve molecules occurring in different compartments,
though it is not very clear how Gillespie’s theory for single volume systems
can be used to describe the propensity functions of reactions that are si-
multaneously active in two compartments, nor in which compartment this
information is used to compute the value of τ .
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Chapter 2

Optimization algorithms

In this chapter two optimization techniques will be presented: genetic al-
gorithms and particle swarm optimizer. These optimisation methods can
be applied in the field of modelling and simulation of biological and chem-
ical systems since many numerical factors, like molecular quantities and
reaction rates, which represent an indispensable quantitative information to
perform computational investigations of the system’s behaviour, are often
not available or inaccurate. Optimization methods can be used to tackle the
calibration problem of parameter estimation of these systems by minimizing
a cost function (e.g. a distance measure) which quantitatively defines how
good is the system behaviour using the predicted values, with respect to the
experimental dynamics. In Chapter 6 the parameter estimation issue, and
the application of genetic algorithms and particle swarm optimizer to this
particular problem will be described.

Genetic Algorithms (GAs) [89] are one of the oldest and mostly used
versions of evolutionary algorithms. The most commonly used GAs formu-
lation evolves fixed length strings of characters from a limited alphabet, but
there exists other versions where each allele contains any floating point value
from a limited range. This GAs version is often called real valued or real
coded GAs [204].

In Section 2.1, an introduction to the basic features of GAs is given. Af-
terwards, binary coded GAs and real coded GAs, along with their commonly
used variation operators, are presented.

Particle swarm optimizer (PSO) [99] is a population based optimisation
heuristic, inspired by the social behaviour of bird flocking or fish school-
ing. In PSO the potential solutions, called particles, are identified by their
coordinates in the problem space and are characterized by a velocity that
allows them to update their current positions. The PSO concept consists
in changing, at each iteration, the velocity of each particle towards some
attractors, in order to reach optimal positions in the search space.

In Section 2.2, the basic notions of PSO are explained. Moreover, an
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analysis of the role of the algorithm’s parameters involved in the velocity
update operation is given.

2.1 Genetic algorithms

Genetic algorithms are search methods which exploit principles inspired by
evolutionary theories, to the aim of evolving candidate solutions for a given
problem and finding optimal solution [89, 79]. Solutions are arranged in a
populations of individuals which evolve by means of competition and con-
trolled variation. The individuals compete in a process called selection,
which is executed according to a quality measure (fitness). Hence, indi-
viduals with higher fitness will be selected with higher probability. New
individuals are then generated starting from the selected ones, by apply-
ing genetic operators called crossover and mutation, which mix the parents
characteristics, and introduce new genetic material, respectively.

One of the reasons why GAs succeed in optimization problems is due to
their capability to exploit the information accumulated about an initially
unknown search space, and adapt the individuals in order to conduct suc-
cessive explorations within useful subspaces. GAs are therefore suitable for
large and complex search spaces, where other “classical” search approaches
are inappropriate. GAs offer a valid method to optimize problems that
require (computationally) efficient and effective techniques.

In this section, two GAs version will be presented: binary-coded GAs and
real-coded GAs. We start with a brief overview about GAs, explaining the
common features of the two versions. GAs are initialised with a population
of individuals that are usually randomly generated, each one correspond-
ing to a potential solution of the given problem. During each iteration,
also called generation, the quality of the individuals is evaluated through
a fitness function, and the individuals for the next generations are finally
selected, recombined and variated. A general implementation for GAs can
be formalised as follows:

1. Initialise the system by randomly generating an initial population of
individuals;

2. Evaluate the fitness function for each individual;

3. Select the individuals for the next generation;

4. Recombine and vary the selected individuals;

5. If the termination criterion is satisfied, then end the procedure. Oth-
erwise go back to Step 2.

The algorithm reported above represents one possible variants of GAs,
however, all the implementations for these algorithms are based on the same
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fundamental mechanism for the evolution of the individuals, which consists
in three operations: evaluation of the fitness function, selection of the best
performing individuals, and recombination of the characteristics of the se-
lected individuals. Clearly, the execution of a GA terminates when some
criterion is satisfied. For instance, a termination criterion can be related to
the number of iteration executed, or to the best value of the fitness function
obtained from an individual.

Evaluation of the fitness function. The fitness function used to evalu-
ate the quality of each individual is independent from the implemented GAs
version. On the other hand, the fitness evaluation strongly depends on the
optimization problem to which the GAs are applied, and on the representa-
tion used for the individuals.

GAs are commonly applied to function optimisation problems, in which
the aim is to find a set of parameter values that maximise a complex mul-
tiparameter function. Hereafter, we report a simple example where the aim
is to maximise the real–values one–dimensional function

f(y) = y + |sin(32y)|, 0 ≤ y < π.

The candidate solutions of this problem are the values of y, which can be
encoded by means of binary strings representing real numbers. The fitness
function can be defined in order to translate a given binary string x (an
individual) into a real number y, and then to evaluate the function at that
value. Clearly, in this case the fitness value of x corresponds to the function
value evaluated at the point y.

In Section 6.3, a fitness function developed and applied to the problem
of parameter estimation of biochemical systems will be described.

Selection of the best performing individuals. Given a population P
of N individuals i, i = 1, . . . , N , (N is also called the size of P ), the selection
procedure is used to obtain an intermediate population P ′ which is composed
by copies of individuals from P . The number of copies of an individual added
to P ′ is directly dependent on its fitness value. Individuals with higher
fitness generally have greater chance to be selected for the intermediate
population.

There exist different selection strategies, the first we present here is called
roulette wheel selection [89, 79], a procedure where the selection of individ-
uals is proportional to their fitness values. For each individual i in P , the
probability pi of including a copy of i to P ′ is computed as:

pi =
fi∑N

j=1 fj

.
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The selection procedure can be imagined as the spinning of a roulette
wheel a number of times equal to the size of the population; clearly, the
number of fittest individuals added to P ′ will be higher than the number
of the weakest individuals. So doing, individuals with fitness values above
average will be more represented in the next generations, while individuals
below average fitness tend to extinct.

The second selection approach recalled here is the ranking selection [8].
The individuals are first sorted according to their fitness values, and then the
computation of pi is based on the rank of i (rather than on its fitness value),
by using a non-increasing assignment function. The ranking selection is used
when a balancing (or unbalancing) between strong and weak individuals is
required.

The last selection procedure here described is called tournament selection
[131]. This kind of selection is performed by executing a number of “tour-
naments” equal to the size of the population. During each tournament, a
few individuals are randomly selected from P , and the winner, that is, the
individual with the best fitness among them, is added to the intermediate
population P ′. The number of participants to the tournament (k) is directly
related to the selection pressure. In fact, if k is large, then weak individuals
have a smaller probability to be selected for P ′. Note that, if k = 1, the
tournament selection is equivalent to a random selection of the individuals,
where each individual has the same probability to be included in P ′. The in-
dividuals selected by means of a tournament can be removed from P , unless
it is feasible that the same individuals is allowed to participate to distinct
tournaments and be selected many times for the intermediate population.
The tournament selection has several advantages: (1) the fitness evaluation
of the entire population is not required, indeed, only the individuals selected
for the tournaments are evaluated; (2) it is easy to code and can be executed
on parallel architectures; (3) the selection pressure can be easily adjusted
(by changing the value of k).

Recombination of the characteristics of the selected individuals.
After the construction of the intermediate population P ′ by means of any
selection procedure, the variation operators can be applied in order to obtain
new individuals (offspring) for the next generation.

The first operator applied is called crossover, it is used to mix the infor-
mation between individuals. Crossover combines the features of two parent
individuals, with the aim to obtain two offspring with better characteristics.
This operator plays a central role in GAs, and is considered one of the most
characterising feature of this optimization technique. In general, crossover
is not applied to all selected pairs of individuals: its application depends
on a probability value pc, called crossover rate. Moreover, different versions
of crossover can be defined according to the representation chosen for the
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individuals.

The second operator is called mutation, whose aim is to arbitrarily alter
one or more components (allele) of a selected individual, in order to increase
the variability inside the new generation. Mutation introduces new genetic
material into the population, preventing the convergence of the individuals
to local optimal solutions, and it ensures that the probability to reach every
point in the search space is always greater than zero. Similarly to crossover,
the mutation operator is applied with a probability pm, called mutation rate;
hence, a randomly selected allele of each individual undergoes a change of
its value according to pm.

Typically, the parameter setting for these operators is chosen such that
crossover is applied with high probability values (for instance, 0.95), and
mutation is executed with very low rates (like 0.05), in order to reflect the
natural evolution process where usually the characteristics of two individuals
are mixed through, e.g., sexual reproduction, while mutations happen with
very low probability.

The application of these variation operators might lead to the extinction
of the best individual of the population, either because it gets mixed with
another individual or because of the mutation of one of its allele. Hence,
after the construction of the intermediate population P ′, it is possible to
apply an additional selection strategy, called elitism [46], to “copy” the best
individual (or a subset of best individuals) into the population of the next
generation without modifying it.

Binary–coded GAs

The first version of GAs, which we present now, exploits a binary coding to
represent the individuals of the population. Given the search space S, the
points in S are codified by means of strings over the alphabet V = {0, 1},
having fixed-length L. For instance, a GA with population size equal to 5
and individual length equal to 7, can be randomly initialised as:

i1 = 0100101
i2 = 1101010
i3 = 1111000
i4 = 0100110
i5 = 1000000

As previously explained, after the fitness evaluation of the individu-
als and the selection procedure to obtain the intermediate population P ′,
crossover and mutation are applied.

The classical crossover operator for binary coded GAs is named sim-
ple crossover [89, 79]. Given two individuals ij = (a1

j , . . . , a
L
j ) and ik =

(a1
k, . . . , a

L
k ) randomly chosen from P ′, two offspring i′j = (a1

j , . . . , a
c
j , ac+1

k ,

. . . , aL
k ) and i′k = (a1

k, . . . , a
c
k, a

c+1
j , . . . , aL

j ) are generated. The crossover
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point c is randomly selected from the uniform interval [1, . . . , L − 1].

There exist different kinds of crossover. Among the most important ones,
we recall: (1) n-points crossover [60], which represents a generalisation of
simple crossover, since n different crossover points are randomly selected and
the resulting segments of the parents individuals are exchanged to generate
the offspring; (2) uniform crossover [190], where the value of each allele in
the offspring is determined by the uniform random choice between the values
of the corresponding allele in the parents.

The mutation operator [89, 79] is applied to an individual by randomly
choosing an allele and swapping its value (from 1 to 0 or vice versa).

Many advantages are given by the use of binary alphabets in GAs. First
of all, this alphabet maximizes the level of implicit parallelism, as explained
in [80]. This property is related to the useful implicit information processed
“in parallel” by GAs, such as schemata (besides the explicit information
represented by the individuals). Moreover, the use of a binary alphabet
provides a benefit in terms of computational cost. Indeed, when alphabets
with higher cardinality are used, a larger population size is often needed
in order to well represent every character [172], thus resulting in a loss of
efficiency (especially when the fitness function computation is expensive).

On the other hand, the binary representation of individuals is not suit-
able when dealing with a continuous complex search space with large di-
mensions, and when a high numerical precision is required. Furthermore,
when an individual can only assume a finite number of discrete valid values
(which is not a power of 2), some of the binary values are redundant.

Real–coded GAs

The second version of GAs briefly described here utilises a real coding for
the individuals. In this case, each allele is codified as a real number which
represents a variable of an optimization problem with values in continuous
domains. Therefore, the individual is implemented as a vector of floating
point numbers, whose precision is related to that of the computer with which
the execution of the algorithm is performed. The size of the individuals is
equal to the length of the vector representing a candidate solution to the
analysed problem, hence each allele codifies a variable. The values of the
allele are forced to range in the intervals of the corresponding variables, and
also the the values resulting from the application of variation operators have
to follow this requirement.

Given two individuals ij = (a1
j , . . . , a

L
j ) and ik = (a1

k, . . . , a
L
k ), which have

been randomly selected from the intermediate population P ′, the effect of the
most used kinds of crossover will be described in the following. Note that,
each crossover operator generates a different number of offspring, therefore
a strategy called offspring selection mechanism, for deciding which ones will
be included in the next generation, is used in some cases.
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The first operator is called flat crossover [169], it generates an offspring
io = (a1

o, . . . , aL
o ) where the values al

o (l = 1, . . . , L) are randomly chosen
from the uniform interval [al

j , a
l
k].

Using the simple crossover [204, 129], a position c ∈ {1, 2, . . . , L − 1}
is randomly chosen and two offspring io1

= (a1
o1

, . . . , ac
o1

, ac+1
o2

, . . . , aL
o2

) and
io2

= (a1
o2

, . . . , ac
o2

, ac+1
o1

, . . . , aL
o1

) are obtained.

With the arithmetical crossover [129], two offspring ioh
= (a1

oh
, . . . , aL

oh
)

(h = 1, 2) are generated, by computing the values of the allele as al
o1

=
λal

j +(1−λ)al
k and al

o2
= λal

k +(1−λ)al
j (l = 1, . . . , L). λ is a used–defined

constant (uniform arithmetical crossover) or is updated according to the
current generation (non-uniform arithmetical crossover).

Applying the BLX-α crossover [61], an offspring io = (a1
o, . . . , a

c
o, . . . , a

L
o )

is generated; the value ac
o is a random number sampled from the uniform

interval [amin − I · α, amax + I · α], where amax = max{ac
j , a

c
k}, amin =

min{ac
j , a

c
k} and I = amax − amin.

In the linear crossover [204], three offspring ioh
= (a1

oh
, . . . , aL

oh
) (h =

1, 2, 3) are obtained, where al
o1

= 1
2al

j + 1
2al

k, al
o2

= 3
2al

j −
1
2al

k and al
o3

=

−1
2al

j + 3
2al

k. In this case, the offspring selection mechanism is applied with
the aim to select the two most promising offspring.

The operator called discrete crossover [143] generates an offspring io =
(a1

o, . . . , aL
o ) whose elements al

o are randomly chosen from the set {al
j , a

l
k}.

Using the extended line crossover [143], an offspring io = (a1
o, . . . , a

c
o, . . . ,

aL
o ) having elements al

o = al
j + α(al

k − al
j), is generated. The value of α is

randomly chosen from the uniform interval [−0.25, 1.25].

The extended intermediate crossover [143] is slightly different from the
previous one, here an offspring io = (a1

o, . . . , a
c
o, . . . , a

L
o ) having elements

al
o = al

j + αl(al
k − al

j), is generated. The value of αl is randomly chosen (for
each allele) from the uniform interval [−0.25, 1.25].

The last crossover operator we recall here is the Wright’s heuristic cross-
over [204]. Supposing that ij is the parent with the best fitness value, then
the values of the offspring are computed as al

o = r · (ilj − ilk) + ilj , where r is
a random number sampled from the interval [0, 1].

After the application of the crossover operator on the intermediate pop-
ulation P ′, the mutation operator is applied. Given an individual i =
(a1, . . . , aL), the allele al (whose value ranges in the interval [al

min, al
max])

is the value randomly selected that will be mutated, and āl is the value of
the allele after the application of a mutation operator. In what follows, the
effect of different mutation operators will be shown.

Using random mutation [129], āl is obtained as a random number drawn
from the uniform interval [al

min, al
max].

Applying the non-uniform mutation [129] in the generation t, with tmax

as the maximum number of generations, then:
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āl =

{
al + ∆(t, al

max − al) if τ = 0
al − ∆(t, al − al

min) if τ = 1

where τ is a random number whose value can be either 0 or 1, and

∆(t, y) = y(1 − r(1− t
tmax

)b

),

where r is a random number sampled from the interval [0, 1], and b is a user–
defined parameter which determines how much mutation is dependent on the
number of iterations. The ∆ function gives a number in the range [0, y] such
that the probability of returning a number close to zero increases with the
number of iterations. Therefore, using this operator the mutation is “strong”
during the first iterations, achieving a wide range search; conversely, in the
later stage of the algorithm, the mutation is “weak”, resulting in a local
tuning of the value.

Another mutation operator is called real number creep [44]. This strat-
egy is applied when an individual is in a “good” local maximum, and the
exploration of its neighbourhood might be interesting. In order to achieve
this, the allele is increased or decreased by a small random quantity sampled
from a user defined range.

The Mühlenbein’s mutation [143] changes the value of the allele as āl =
al ± rangl · γ, where rangl indicates the mutation range (and it is usually
set to 0.1 · (al

max − al
min)), and γ =

∑15
j=0 αj · 2

−j (where 15 represent the
precision of the operator). The value of α ∈ {0, 1} is randomly generated
with p(α = 1) = 1

16 . The value of the allele is increased or decreased with
probability 0.5, and ranges in the interval [al − rangl, al + rangl] with a
precision of rangl · 2−15 for the smallest variation.

There exist other crossover and mutation operators for real coded GAs,
which are generalisations of the operators presented above or other novel
strategies suitable for convex search spaces. An overview of these methods
can be found in [88].

The advantages of using real coded GAs are many, for instance, they
allow to handle large domains for the involved variables, which is instead
difficult to achieve by using a binary implementation, where increasing the
domains results in a loss of precision (assuming fixed length individuals).
Moreover, the real coding allows a local tuning of the solutions, since small
variations in the variable values result in slight changes in the (entire) in-
dividual. On the contrary, in the binary coding, a swap of a single allele
can produce a completely different individual. Finally, the real coding rep-
resentation of the solution is close to the “natural” formulation of many
problems, hence the encoding and decoding processes, which are necessary
for binary GAs versions, can be avoided, increasing the algorithm efficiency.
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GAs have been successfully applied to a wide variety of applications.
For instance, GAs can be applied to the field of control systems engineering;
indeed, in most of the controller designs, some parameters are required to
be optimized in order to give a better overall control performance. Fur-
thermore, the configuration or the order of the controller can be optimized
to reduce the system’s complexity. Another example of GAs application
regards the patterns recognition. GAs can be applied to generate the im-
age filters for a two–stage target recognition system in such a way that the
target image from background clutter is vividly classified from the imaging
data. GAs can be used in automatic speech recognition systems where the
spoken speech patterns (test pattern) are usually identified by using the
pre-stored speech patterns (reference patterns). The comparison of speech
signals has a number of difficulties as variations in time and the time scales
among them are not fixed. Therefore, time registration of the test and the
reference patterns is one of the fundamental problems in the area of au-
tomatic isolated word recognition. Finally, GAs can be applied to protein
folding simulations problem. Here, the population consists in conformations
of the polypeptide chain. Then, conformations are changed by mutation, in
the form of conventional Monte Carlo steps, and crossover is executed by
interchanging parts of the polypeptide chain between conformations.

We refer the reader to [113, 200] (and references therein) for additional
information about GAs applications.

2.2 Particle swarm optimizer

Particle swarm optimizer (PSO) [99] is a method for the optimization of
continuous nonlinear functions, which has been developed simulating sim-
plified social behaviours [174], taking inspiration from herds, schools and
flocks. The theory behind PSO states that individual members of a school
can profit from the discoveries and previous experience of all other members
during the search of food. This advantage can become decisive, outweighing
the disadvantages of competition for food items, whenever the resource is
unpredictably distributed in patches. In other words, this statement indi-
cates that social sharing of useful knowledge among members of the same
species represents a fundamental evolutionary advantage.

In order to simulate the search for food, the members of the swarm (called
particles) need to be moved within the search space. The movement is ac-
complished according to two properties: nearest-neighbour velocity match-
ing and “craziness”. The velocity of each member is updated according to
its nearest neighbour, resulting in a coordinated movement. So doing, the
swarm quickly settles on an unchanging direction. Therefore, a stochastic
factor called “craziness” is used to add a sort of noise to the movement of
the swarm members.
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PSO has the advantage of relying on very simple concepts, making it
easy to implement and computationally inexpensive. Moreover, the perfor-
mances of PSO on test functions are comparable to that of GAs, but this
optimization technique does not suffer from some of the difficulties of GAs:
first, the interaction of the group enhances the progress towards the opti-
mum solution (while in GAs, interaction by means of crossover can have the
opposite effect). PSO has memory, in fact, particles are always attracted
by the best positions found so far, because good solutions are stored. On
the contrary, in GAs, changes result in destruction of previous knowledge,
except when “elitism” is applied to the population.

In both PSO and GAs, the initialisation consists in a population of ran-
dom solutions to the considered problem. However, PSO’s particles are also
characterised by a random velocity, and they can “fly” through the search
space. As previously said, the particles have memory, since they keep track
of the best solution they have achieved so far; this particular value is called
personal best. Another “best” value is traced, according to the PSO version
used, which can be a global best, that is, the best position found so far by the
entire swarm, or a local best, namely, the best position found by the neigh-
bourhood of the particle. The difference between the “global” and “local”
version of PSO, as reported in [54], consists in the fact that using a global
best information shared among the particles, the average number of itera-
tions needed by the swarm to converge to an optimum solution is smaller.
Conversely, using a local best strategy, neighbour particles groups sponta-
neously separate and explore different regions of the search space, making
the method more resistant to local optima. The evaluation of the quality
of the particles position is measured by means of a fitness function. This
function is independent from the different PSO versions, but it is strictly
associated to the optimisation problem to which PSO is applied.

Thanks to the information carried on by particles, PSO (and in general,
swarm intelligence) follows five basic principles. First, the proximity prin-
ciple, which states that the population should be able to accomplish simple
space and time computations. Second, the quality principle: the population
should respond to quality factors in the environment. Third, the diverse
response principle: the population should not behave in a completely coor-
dinated manner. Fourth, the stability principle: the behaviour of the pop-
ulation should not change every time the environment changes. Fifth, the
adaptability principle: the population must change behaviour mode when it
is advantageous.

To be more precise, PSO meets the five principles because, first, it
consists of a series of time steps in which n–dimensional computations
are accomplished. Second, the population responds to the personal and
global/local best quality factors. Third, different influences from the qual-
ity factors lead to diverse responses among particles. Fourth, the population
behaviour changes only when the best position changes. Fifth, the popula-
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tion is adaptive, in the sense that it does change its behaviour when the best
positions changes. PSO is defined as a set of N particles, which are placed

in a n–dimensional space. Each coordinate of the particle −→xi (i = 1, . . . , N)
is denoted by means of the element xi,d (d = 1, . . . , n). −→pi and −→pg represent
the personal best and the global best found so far by the particle −→xi , respec-
tively. The vector −→vi denotes the velocity of the particle −→xi and it can range
within the interval [−VMax, VMax]. rnd1 and rnd2 are two random numbers.

The basic version of the PSO can be formalised as follows:

1. Initialise the system assigning to each particle a random position and
velocity;

2. For each particle i and for each dimension d do:

• if fitness(i) < besti then pi,d = xi,d;

• vi,d = vi,d + rnd1(pi,d − xi,d) + rnd2(pg,d − xi,d);

• if vi,d > VMax then vi,d = VMax

else if vi,d < −VMax then vi,d = −VMax;

• xi,d = xi,d + vi,d;

3. If the termination criterion is satisfied, then end the procedure. Oth-
erwise go back to Step 2.

During the first step, as already stated above, the population is randomly
initialised in the n–dimensional search space, by assigning a random value
to each coordinate xi,1, . . . , xi,n of the particle −→xi . Moreover, also the initial
velocity −→vi is randomly assigned to the particles.

During each iteration of the algorithm, the position of the particle i is
tested, in order to quantify its quality by means of a fitness function. If the
current position is better than the previous personal best position (−→pi ), then
the position −→xi is stored in the vector −→pi .

By evaluating all the particles of the swarm, it is also possible to identify
the global or local best position (−→pg). The global best position corresponds
to the best performing particle of the entire population, while the local best
position regards the neighbourhood of a particle. One of the most used
concept of neighbourhood consists in considering the particles i−1 and i+1
for each particle i in the swarm.

The values rnd1 and rnd2 are positive random numbers drawn from the
interval [0, c1] and [0, c2], respectively, which are used to update the particle
velocity. c1 and c2 are system’s parameters, whose value is fixes a priori of
can vary during the execution, according to the implemented PSO version.
The values of the velocity −→vi of the particle −→xi is limited by the value VMax.
VMax is used because there are cases in which the particle’s velocity −→vi can
increase without limits, at each iterative step of the algorithm. The value of
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VMax can be arbitrarily selected, though it is usually set according to some
knowledge of the problem. Otherwise, the value of VMax can be the same of
XMax, which is the search space limit of the particles.

The velocity of a particle is directly influenced by the distance from its
personal best (−→pi −

−→xi) and from the local/global best (−→pg − −→xi), and the
updated value of −→vi is used during the final stage of step 3 of the algorithm,
to change the particle position such that −→xi(t) = −→xi(t − 1) + −→vi (t), thus
simulating the movement in the search space toward the best positions found
so far.

During the iterations of the PSO algorithm, better positions found by
particles are substituted into −→p vectors, hence, the population converges
towards optimal regions of the search space. The success of PSO is mainly
due to the interactions among the particles, which influence the trajectories
during the exploration of the solutions space.

It is worth noticing that the algorithm works on the values −→vi used to
update the position of the particles, rather than modifying the positions −→xi

of the particles. In particular, a particle does not move directly towards the
best position, but it will tend to circle around it, because its direction is
only in part influenced by the two system’s attractors, namely, the personal
and local/global best positions.

The execution of the PSO terminates when some criterion is satisfied.
For instance, a termination criterion can be related to the number of iter-
ation executed, or to the best value of the fitness function obtained from a
particle’s position.

The parameters c1 and c2. The trajectory of a particle depends on the
c1 and c2 values used during the velocity update process.

As shown in [98], the trajectories that the particles will undertake dur-
ing PSO iterations, can be described by analysing the following simplified
system, changing the value of c:

−→vi (t) = −→vi (t − 1) + c(−→pi + −→vi (t − 1))
−→xi(t) = −→xi(t − 1) + −→vi (t)

The initial values of −→vi ,
−→pi , and −→xi can be arbitrarily set (with −→vi 6= 0).

In the examples below, the system will be initialised with −→xi(0) = −→pi = 0
and −→vi (0) = 2.

The value of c has been varied within the range [0, 4]. With c = 0, the
trajectory becomes −→vi (t) = −→vi (t−1), thus the particle continues on its initial
direction in each iteration. Changing the c value in the interval (0, 0.5], the
particle trajectory has a sort of sinusoidal form, as shown in Figure 2.1 (left)
where c = 0.1. Increasing the value of the parameter c, the amplitude of the
trajectory decreases, and exceeding the value 0.5, some irregularity in the
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sinusoidal pattern appears (Figure 2.1 (right)). When the value of c is set to
1, the amplitude of the oscillations is equal to the initial value of −→vi , while,
in general, in the interval (0, 1) the amplitude is greater than the value of
−→vi (0).
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Figure 2.1: Particle trajectory with parameter c = 0.1 (left) and c = 0.96
(right).

Increasing c above 1.0 results in higher frequencies of the oscillations, and
a quasi periodic pattern is visible within each oscillation of the trajectory
(intra oscillation pattern, in what follows), as shown in both graphs of Figure
2.2, where c was set to 1.35 (left) and 1.9 (right). Moreover, as c increases,
the length of the pattern decreases (approximatively, from 6 to 4 points per
oscillation).
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Figure 2.2: Particle trajectory with parameter c = 1.35 (left) and c = 1.9
(right).

In the interval [2, 3], the length of the intra oscillation pattern becomes
3, and we pass from trajectories characterised by irregular behaviours, for
instance with c = 2.46, as shown in Figure 2.3 (left), to quasi periodic
oscillations, increasing c above 2.8. In Figure 2.3 (right), the quasi periodic
trajectory of the particle with c = 2.9, is depicted. Note that, in the interval
[1, 3], the amplitude of the oscillations is always equal to the initial value of
the velocity.

Increasing c over the value 3, the pattern which characterises the oscil-
lation in the interval [2, 3] is still visible. However, above c = 3.3 a differ-
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Figure 2.3: Particle trajectory with parameter c = 2.46 (left) and c = 2.91
(right).

ent pattern appears in the trajectory, as shown in Figure 2.4 (left), where
c = 3.66. Again, over the value 3.9, a different shape of the oscillation ap-
pears, as plotted in Figure 2.4 (right), for c = 3.99. In general, for values of
c > 3, the amplitude of the oscillation is greater than the value of v(0).
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Figure 2.4: Particle trajectory with parameter c = 3.66 (left) and c = 3.99
(right).

When c reaches the value 4, the trajectory explodes linearly (Figure 2.5
(left)), while for c > 4, the explosion is exponential (Figure 2.5 (right)).

Summarising, the trajectory of the particles is deeply influenced by the
settings of parameter c, anyhow, in [98] has been reported that the best
performances of PSO can be obtained using c values around 2.

It is also possible to add a stochastic factor to the deterministic tra-
jectories presented above. This factor is represented by a random number
drawn from the unit uniform distribution [0, 1], which makes the system less
predictable and more flexible (Figure 2.6 (left)). In this particular case, the
upper limit on the velocity value (VMax) must be used because very small
amounts of randomness can result in rapid explosion (Figure 2.6 (right)).

The inertia weight w. The problem of the unlimited increase of the
particles velocity has been tackled introducing an additional parameter in
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Figure 2.5: Particle trajectory with parameter c = 4 (left) and c = 4.03
(right).
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Figure 2.6: Particle trajectory with parameter c randomly drawn from the
uniform interval [0, 1] (left) and c randomly drawn from the uniform interval
[0, 1.95] (right).

the update equation used by PSO. This new term is called inertia weight,
denoted by w, and it is used to influence the impact of the previous velocity
of the particle [183]:

vid = w · vid + c1(pid − xid) + c2(pgd − xid)

It is worth noticing that the value of the inertia w controls the balancing
between the global and local exploration ability of the particles. In fact,
large inertia values lead to global exploration of the search space, meaning
that the particle “flies” to new areas; on the contrary, small inertia weight
values tend to facilitate local exploration, constraining the particle to the
current search area (which is, therefore, better explored).

A good solution for the inertia weight setting consists in starting from
a (relatively) large value and then decreasing it, at each iteration. This
strategy permits the global exploration of the search space, at the beginning
of the computation, and then, when the inertia weight value becomes small,
the particles will focus on a small area where the current best position have
been found.
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In [183], the PSO algorithm has been executed on a number of test
functions with different settings, the best results obtained by the authors
regard a configuration in which the inertia weight has been decreased from
0.9 to 0.4 during the first 1500 iterations, and then kept constant until the
end of the simulation.

Instead of a simple linear variation for inertia weight, in [34] a different
approach, which consists in a non-linear decrease of the inertia weight, has
been proposed. Using this strategy, the value of w is updated, at each
iteration, according to the following equation:

w(t) =

(
(tmax − t)n

tnmax

)
(winitial − wfinal) + wfinal

where tmax is the given maximum number of iterations of the PSO exe-
cution, winitial and wfinal are the initial and final value of the inertia weight,
respectively, and n is the nonlinear modulation index. Note that, if n = 1,
then the inertia weight value is decreased linearly.

The last PSO version that we recall here, has been introduced in [135].
In this work the authors present a novel update strategy. In particular, they
add “noise” to the c parameters and to the global best position used to
update the particles velocity. At each iteration, the parameters undergo a
“mutation” of their values, namely, a random number drawn from a Gaus-
sian distribution N(0, 1) with mean 0 and standard deviation 1 is added to
their current values.

PSO has been successfully applied to a wide range of applications. For
instance, this technique has been used to evolve artificial neural networks, by
optimising both the weights and the network structure. An example of PSO
applied to a neural network training is related to the analysis of human
tremor. The diagnosis of human tremor (such as Parkinson’s disease) is
a very challenging area; PSO has been used to evolve a neural network
used to distinguish between normal subjects and those affected by tremor.
Another example of PSO application regards the optimisation of reactive
power and voltage control systems. Here, PSO has been used to determine a
control strategy with continuous and discrete variables, resulting in a hybrid
version of the algorithm. Finally, PSO has been employed to optimise the
ingredients mixture used to grow production strains of microorganisms. In
particular, PSO was used together with other classic optimisation methods,
but the fitness values obtained by using PSO were twice the values provided
by classic methods.

We refer the reader to [55] (and references therein) for additional details
about PSO applications.
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Membrane systems

In this chapter some prerequisites and basic notions of membrane systems
will be recalled. Membrane systems, also called P systems, have been in-
troduced as a class of parallel, distributed and nondeterministic comput-
ing devices, inspired by the architecture and the functioning of living cells.
Many variants of membrane systems have been presented to provide a suit-
able modelling framework for chemical, biological and ecological systems
[164, 31, 16, 17]. P systems provide a suitable modelling framework for
biological and chemical systems composed of many volumes. Within the
membrane defined in the structure of a P system, the set of reaction of
a system can be written by means of rewriting rules, moreover, the com-
munication of objects between adjacent volumes can be easily managed by
using special kind of rewriting rules which send objects from one volume to
another one.

A variant of membrane systems, called dynamical probabilistic P systems
(DPPs), will be described in this chapter. Differently from the basic def-
inition of P systems, in DPPs, probabilities are associated with the rules,
and such values vary during the evolution of the system, according to a pre-
scribed strategy. Thanks to the probability values, the rules are not applied
in a maximal parallel way, but different level of parallelism can be used,
thus allowing a qualitative description of the systems dynamics. DPPs rep-
resent the starting point of the development of a novel simulation strategy
which allows the quantitative description of biological and chemical systems
(that will be presented in Chapter 4). We present an application of DPPs
for the modelling and simulation of metapopulations, also called multi-patch
systems, which are ecological models used to analyse the behaviour of in-
teracting populations, to the aim of determining how a fragmented habitat
influences local and global population persistence.
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3.1 Basic notions of membrane systems

Membrane systems, or P systems, were introduced in [153] as a class of
parallel, distributed and nondeterministic computing devices, inspired by
the architecture and the functioning of living cells. The fundamental features
defined in membrane systems are the membrane structure, which identifies a
(topologically) compartmentalised space, where objects can evolve according
to specified evolution rules, which determine both the modification of the
objects and their communication among membranes.

More precisely, the membrane structure consists of membrane-delimited
compartments, hierarchically arranged and embedded inside a main com-
partment, whose delimiting membrane is called the skin membrane. A
graphical representation of a membrane structures is given in Figure 3.1.
The space of a compartment delimited by its membrane and the membranes
of the other compartments (if any) placed immediately inside it, is called a
region.
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Figure 3.1: A membrane structure

With each region of the membrane structure we can associate a set (or a
multiset) of objects, which can be symbols or strings over a given alphabet,
and a set of evolution rules, which determine the transformation of objects,
as well as their communication between adjacent compartments. So doing,
different regions in the membrane structure can communicate with each
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other by sending or receiving objects. Usually, the evolution rules are applied
in a nondeterministic and maximally parallel way: all the objects which can
evolve should evolve. Moreover, a strict partial order relation can be defined
over the set of evolution rules present inside a compartment, indicating a
priority relation among them. Due to the application of evolution rules, a
membrane can also be dissolved: it disappears from the membrane structure,
the set of rules inside that membrane is removed, the set of objects pass to
the outer membrane (which contained the disappeared one). Hence, the
evolution rules do not only modify the objects and their placing, but can
also intervene in changing the membrane structure.

An “abstract” interpretation of a P system in biological terms can be
given as follows. The membrane structure corresponds to the organisation
of a living cell, of eukaryotic or prokaryotic type (see, e.g., [3]), where there
exists an external membrane (the plasma membrane) and, possibly, some or-
ganelles inside the cell, each delimited by a membrane. In each organelle, as
well as inside the cytoplasm, there exist different types of substances (ions,
proteins, nucleic acids, etc.) which can be described by means of (multisets
of) symbols or strings. Under specific conditions, these substances are mod-
ified by biochemical reactions and they can remain in the same organelle
where they are placed, or selectively cross the membrane which delimits the
organelle. These processes correspond to the way evolution rules are defined
and work in P systems: they modify the formal objects (symbols or strings)
and also indicate where the modified objects should be at the next step. The
priority relations above rules can be interpreted as different “reactivities” of
the biochemical reactions. Moreover, we can also assume that reactions not
only modify chemicals, but also “consumes energy”, thus when a rule with
a higher priority is applied, no rule with a lower priority can be used too,
because no more energy is available. Some biochemical reactions need the
cooperation of catalytic substances, other may be so powerful to cause the
membrane lysis. Both events have a natural correspondence in P systems:
the use of catalyst objects, and in the dissolving action of rules. When an
internal membrane is “broken” inside a cell, its content is left free in the
cytoplasmic space, though the biochemical reactions previously occurring in
that organelle might not take place in the cytoplasm, due to possibly differ-
ent chemical and physical conditions (e.g., the pH value). Similarly, when
a membrane is dissolved in a P system, its set of rules is removed, but its
objects still remain in the membrane structure of the system.

A P system is a computing device obtained starting from an initial con-
figuration (described by a fixed membrane structure containing a certain
number of objects and rules) and letting the system evolve. A universal
clock is assumed to exist: at each step, all rules from all regions are simulta-
neously applied to all objects which can be the subject of an evolution rule.
When no further rule can be applied, the computation halts and we get the
result in a prescribed way. On the contrary, if there is at least one rule that
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can be applied forever, then the computation is said to be unsuccessful and
no output is obtained.

In the following, the basic definitions of P systems, is given. For further
details and for more information, examples and other variants, we refer to
[153, 154, 156, 168].

Formally, the membrane structure can be represented by a string of cor-
rectly matching square parentheses, placed in a unique pair of matching
parentheses. Each pair of matching parentheses corresponds to a membrane
and, usually, membranes are univocally labelled with distinct numbers. For
instance, the string µ = [0 [1 ]1 [2 [3 ]3 [4 ]4 ]2 ]0 corresponds to a mem-
brane structure consisting of 4 membranes placed at three hierarchical lev-
els. Moreover, the same membrane structure can be also represented by the
string µ′ = [0 [2 [4 ]4 [3 ]3 ]2[1 ]1 ]0, that is, any pair of matching parenthe-
ses at the same hierarchical level can be interchanged, together with their
contents; this means that the order of pairs of parentheses is irrelevant, what
matters is their respective relationship.

Each pair of matching parentheses [ ] appearing in a membrane structure
µ is called a membrane. The external membrane of a membrane structure is
called the skin membrane, while a membrane without any other membrane
inside (appearing in a membrane structure in the form [ ]) is called an
elementary membrane.

The number of membranes in µ is called the degree of µ and it is denoted
by deg(µ). The depth of a membrane structure µ, dep(µ), is recurrently
defined as:

1. if µ = [ ], then dep(µ) = 1;

2. if µ = [µ1 . . . µn], for some membrane structures µ1, . . . , µn, then
dep(µ) = 1 + max{dep(µi) | 1 ≤ i ≤ n}.

A region is the closed space delimited by a membrane and by the mem-
branes immediately inside it (if any). Note that a membrane structure of
degree n contains exactly n regions, each one associated with a membrane
and labelled with the same integer of that membrane. The whole space
outside the skin membrane is called the outer region or environment.

Given a finite alphabet V , we can provide a membrane structure µ with
some multisets Mi : V → N, one for each membrane i ∈ {0, . . . , n − 1}.

The elements of a multiset are called objects, the multiset present in a
region is called the contents of this region. The total number of objects in
an elementary membrane i is called the size of i, denoted by size(i). If a
membrane j is placed inside a membrane i and they contribute to identify the
same region (namely, the one delimited by the membrane i), then the objects
inside the region associated with i are said to be adjacent to membrane j.

Finally, the objects occurring inside the regions of a P system can evolve,
according to certain specified rules. An evolution rule over an alphabet V
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is a pair (u, v), which can be written as u → v, where u is a (non empty)
string over the alphabet V and v = v′ or v = v′δ, where v′ is a string over
V × ({here, out} ∪ {inj | 0 ≤ j ≤ n − 1}), and δ is a special symbol not in
V . The length of the string u is called the radius of the rule u → v. Note
that the strings u, v are understood as representations of multisets over V ,
in a natural sense.

Given a membrane structure together with multisets and evolution rules,
the formal definition [153] of the basic variant of P systems can be given as
follows: a transition P system of degree n, n ≥ 1, is a construction

Π = (V, T,C, µ,M0, . . . ,Mn−1, (R0, ρ0), . . . , (Rn−1, ρn−1), io)

where:

• V is the alphabet of the system;

• T ⊆ V is the terminal (or output) alphabet;

• C ⊆ V,C ∩ T = ∅ is the alphabet of catalysts;

• µ is a membrane structure consisting of n membranes, which are in-
jectively labelled by numbers in the set {0, . . . , n − 1};

• M0, . . . ,Mn−1 are multisets over V , representing the objects initially
present in the regions 0, . . . , n − 1 of the system;

• R0, . . . , Rn−1 are finite sets of evolution rules associated with the re-
gions 0, . . . , n − 1 of µ;

• ρ0, . . . , ρn−1 are strict partial order relations defined over R0, . . . , Rn−1

respectively, specifying a priority relation among the evolution rules;

• io is a number in the set {0, . . . , n − 1} ∪ {∞}, indicating the output
region.

Some more remarks about the definition of a P system are to be given, be-
fore explaining its functioning as a computing device. Any multiset M0, . . . ,
Mn−1 can be empty, as well as any set of evolution rules R0, . . . , Rn−1, or
any strict partial order relation ρ0, . . . , ρn−1.

If Π contains evolution rules whose radius is greater than 1, then it is
said to be cooperative, otherwise it is a non-cooperative system. A particular
class of cooperative systems is that of catalytic systems: whenever the radius
of an evolution rule is strictly greater than 1, then such rule is of the form
ca → cv, where c ∈ C, a ∈ V \ C, v ∈ (V \ C)∗; moreover, no other rule
contains any catalytic symbols. If C = ∅, then the system is non-catalytic.

According to the strict partial order relation ρi, 0 ≤ i ≤ n − 1, a rule
r ∈ Ri is said to be with priority if there exists another rule r′ ∈ Ri such
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that r > r′ or r′ > r. If r is a rule with priority and there is no other rule
r′ such that r′ > r, then r is a rule of highest priority. Note that, as ρi is a
(strict) partial order relation, there can be more than one rule with highest
priority. A rule r is said to be without priority if it does not appear in ρi.

The (n+1)-tuple (µ,M0, . . . ,Mn−1) constitutes the initial configuration
of the system. In general, any sequence of the form (µ′,M ′

i1
, . . . ,M ′

ik
) con-

stitutes a configuration of Π, where M ′
i1

, . . . ,M ′
ik

are multisets over V and µ′

is a membrane structure obtained by removing from the original membrane
structure µ all membranes different from i1, . . . , ik (and not equal to the skin
membrane), according to the dissolving action which will be explained later
on. The labels i1, . . . , ik of the membranes in µ′ are always numbers in the
set {0, . . . , n − 1}, corresponding to the initial labels of the membranes in
µ, that is, in successive configurations the initial labelling of the membranes
(which have not been removed from µ) is never modified.

Given two configurations C1 = (µ′,M ′
i1

, . . . ,M ′
ik

), C2 = (µ′′,M ′′
j1

, . . . ,
M ′′

jl
) of Π, we write C1 =⇒ C2 and we say that there is a transition from C1

to C2 if we can pass from C1 to C2 by using the evolution rules in R′
i1

, . . . , R′
ik

using the following prescriptions.
All rules are simultaneously examined, in the decreasing order of their

priority (if any), and objects are accordingly assigned to rules. A rule r can
be applied only when there are enough copies of the objects whose evolution
it describes, and which were not “consumed” by rules of higher priority.
That is, objects are assigned to the rules which have the highest priority
and, in the case that two or more rules of this type compete for the same
objects, then the rule to be applied is nondeterministically chosen among
them. Then, when no more rules with the highest priority can be applied
(irrespectively of the objects they involve), the rules with a lower priority
are considered. Again, if there are many rules with the same priority which
compete for some objects, then the rule to be applied is nondeterministically
chosen among them.

All the objects which can be the subject of evolution rules must be in-
volved in the rule application. This use of the priority relations corresponds
to the strong interpretation: if a rule with a higher priority is used, then no
other rules with less priority can be applied, even if they do not compete
for the same objects. Nonetheless, also a weak interpretation of the priority
rules can be considered: a rule with less priority can be applied at the same
time with the rule of higher priority if there are “free” objects which are not
involved by the rule with the higher priority. The rules without priorities
can be applied at any time, even together with rules with priorities.

The result of the application of the rule (r : u → v) ∈ R′
is

is determined
by v:

• if an object appears in v in the form (a, here), then it remains in the
same region is (the indication here will often be omitted);
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• if an object appears in v in the form (a, out), then it exits the mem-
brane is and becomes an element of the region immediately outside it.
If the membrane is is the skin membrane, then the object leaves the
system and it will never come back;

• if an object appears in v in the form (a, int) and it is a membrane
immediately inside is, then the object is added to the multiset Mit .
If it is not a membrane immediately inside is, then the application of
the rule is not allowed;

• if the symbol δ appears in v, then membrane is is removed (we say
it is dissolved) from µ′ and, at the same time, the couple (R′

is
, ρis) is

erased, the multiset M ′
is

is added to the region immediately outside
membrane is. The dissolving of the skin membrane is never allowed.

All these operations are performed in a maximal parallel mode: in one
step, inside each region all applicable rules u → v are used over all occur-
rences of multisets u, and all regions are processed at the same time. Hence,
the parallelism is maximal at both a global and a local level: the global
level involves all membranes at the same time, the local level involves all
evolution rules and all objects inside each region.

The functioning of the system as just described defines its nature as a
computing device. Starting from the initial configuration and applying the
rules in the way described above, we obtain a sequence of transition among
configurations: such a sequence is called a computation with respect to Π.
A computation is successful if and only if it halts, that is, no rule is further
applicable to the objects appearing in any membrane of the system and,
if an internal membrane io is specified as the output membrane, then it
must appear in the halting configuration as an elementary membrane. If
io ∈ {0, . . . , n − 1}, then the system is said to work in the internal mode, ,
and the result of a successful computation can be read in one of the following
ways:

1. if we consider the multiset which is present in the output membrane,
then the system is said to generate multisets;

2. if we consider the size of the output membrane, then the system is
said to generate numbers;

3. if certain initial objects ai1 , . . . , aik are specified in advance, and we
consider this occurrences n1, . . . , nk in the output membrane at the
end of the computation, then the system is said to generate relations;

4. if a fixed elementary membrane is specified as the input membrane,
the system is said to recognise a multiset (the initial contents of the
input membrane), a number (the size of the input membrane) or a
relation (the occurrences of certain symbols in the input membrane).
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otherwise, the indication io for the output membrane can be omitted if
io = ∞, in such a case the P system is said to be with external output,
the objects which constitute the output of the system are collected outside
the skin membrane, in the order they are ejected. Using these objects, a
string is formed. When several objects are ejected at the same time, any
permutation of them is considered. So doing, a language L(Π) is generated
by the system.

There exist several different variants of membrane systems; for instance,
there are tissue P systems [121] which process symbols by means of multiset
rewriting rules, within a net of cells (membranes). Each cell, having a
finite state memory, processes multisets of symbol-impulses, and can send
impulses to the neighbouring cells. This variant of membrane systems has
been demonstrated to be rather powerful, indeed, it can simulate a Turing
machine by using a small number of cells with a small number of states.
There is another variant called spiking neural P systems [92] in which the
idea of spiking neurons has been combined with the notions of membrane
systems. Here, the computation depends upon the time when neurons fire
or spike; indeed, the result of a computation is represented by the time
elapsed before a specified neuron spikes. Both variants are mainly used as
computing devices to study the complexity theory.

There exist other variants of membrane systems used to investigate bi-
ological systems; among others, there are metabolic P systems [114], which
have been introduced for expressing the biological metabolism. Their evo-
lution is given by a metabolic algorithm, a deterministic strategy where the
classical viewpoint on metabolic dynamics in terms of ordinary differential
equations, is replaced by generalised chemical principles. Another variant
of membrane systems, called conformon P systems [66], has been introduce
for the investigation of biological systems. Conformon P systems are based
on simple and basic concepts inspired by a theoretical model of the living
cell centred around conformons. A conformon is an object defined as a pair
(name–value) and can be used to define modules that accomplish specific
tasks. In [162], the class of dynamical probabilistic P Systems has been de-
fined. The aim of this membrane systems variant is to provide a stochastic
framework for the analysis and simulation of complex systems. This class of
P systems represent a suitable framework which can be combined with the
efficient stochastic simulation algorithms in order to define a novel tool for
the study and analysis of biological systems (as described in Chapter 4).

3.2 Dynamical probabilistic P systems

In this section we recall the basic definitions of dynamical probabilistic P
systems (DPPs), presented in [163, 162]. DPPs propose a new approach for
the investigation and the application of P systems, which consists in inter-
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preting them as stochastic tools for the description and the analysis of the
dynamics of complex systems. In DPPs, probabilities are associated with
the rules, and such values vary during the evolution of the system accord-
ing to a prescribed strategy. The method for evaluating probabilities, the
way the system works, the rule application method, and the correspond-
ing software simulators are hereby explained. A complete and extensive
description of DPPs, examples of simulated systems, and tools to analysed
the properties of systems described by means of DPPs can be found in
[163, 162, 161, 17, 16, 160].

Definition 3.2.1 A dynamical probabilistic P system of degree n is a con-
struct Π = (V,O, µ,M0, . . . ,Mn−1, R0, . . . , Rn−1, E, I) where:

• V is the alphabet of the system, O ⊆ V is the set of analysed symbols.

• µ is a membrane structure consisting of n membranes labelled with the
numbers 0, . . . , n − 1. The skin membrane is labelled with 0.

• Mi, i = 0, . . . , n− 1, is the initial multiset over V inside membrane i.

• Ri, i = 0, . . . , n − 1, is a finite set of evolution rules associated with

membrane i. An evolution rule is of the form r : u
k

−→ v, where u is
a multiset over V , v is a string over V × ({here, out} ∪ {inj | 1 ≤ j ≤
n − 1}) and k ∈ R

+ is a constant associated with the rule.

• E = {VE ,ME , RE} is called the environment, and consists of an al-
phabet VE ⊆ V , a feeding multiset ME over VE, and a finite set of
feeding rules RE of the type r : u → (v, in0), for u, v multisets over
VE.

• I ⊆ {0, . . . , n − 1} ∪ {∞} is the set of labels of the analysed regions
(the label ∞ corresponds to the environment).

The alphabet O and the set I specify which symbols and regions are of
peculiar importance in Π, namely those elements whose evolution will be
actually considered during the analysis and the simulation of the system.

The set of parameters P of a dynamical probabilistic P system Π consists
of:

1. the multiplicities of all symbols appearing in the multisets M0, . . . ,
Mn−1 initially present in µ, and of those appearing in the feeding
multiset ME ;

2. the constants associated to all rules in R0, . . . , Rn−1.

The alphabets V,O, VE , the membrane structure µ, the form of the rules
in R0, . . . , Rn−1, RE , and the set I of analysed regions do not belong to the
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set of parameters of Π: these components are called the main structure of
Π.

A family of DPPs is defined as F = {(Π,Pi) | Π is a DPP and Pi

is the set of parameters of Π, i ≥ 1}, which represents a class of DPPs
where all members have the same main structure, but the parameters can
change from member to member. We assume that, given any two elements
(Π,P1), (Π,P2) ∈ F , it holds P1 6= P2 for the choice of at least one value
in P1 and P2. This is useful if one wants to analyse the same DPP with
some different settings of initial conditions, such as different initial multi-
sets and/or different rule constants (for instance, when not all of them are
previously known and one needs to reproduce a known behaviour) and/or
different feeding multisets. In other words, the family F describes a gen-
eral model of the biological, chemical or ecological system of interest and,
for any choice of the parameters, we can investigate the evolution of the
corresponding fixed DPP.

Let us now describe the role played by stochasticity in DPPs. The prob-
ability associated with each rule in the set Ri, for all i = 0, . . . , n − 1,
is a function of the rule constant and of the current multiset occurring in
membrane i, and it is evaluated as follows. Let V = {a1, . . . , al}, Mi be

the multiset inside membrane i and r : u
k

−→ v a rule in Ri. Let also be
u = aα1

1 . . . aαs
s , alph(u) = {a1, . . . , as} ⊆ {a1, . . . , al} and H = {1, . . . , s}.

To obtain the actual normalized probability pi of applying r with respect to
all other rules that are applicable in membrane i at the same step, we first
need to evaluate the (non-normalized) pseudo-probability p̃i(r) of r, which
depends on the constant associated with r and on the left-hand side of r,
and is defined as:

p̃i(r) =





0 if Mi(ah) < αh for some h ∈ H,

k ·
∏

h∈H

Mi(ah)!

αh!(Mi(ah) − αh)!
if Mi(ah) ≥ αh for all h ∈ H.

(3.1)

Therefore, whenever the current multiset inside membrane i contains a suf-
ficient number of each symbol appearing in the left-hand side of the rule
(second case in Equation 3.1), then p̃i(r) is dynamically computed accord-
ing to the current multiset inside membrane i: for each symbol ah appearing
in u, we choose αh copies of ah among all its Mi(ah) copies currently avail-
able in the membrane, that is, we consider all possible distinct combinations
of the symbols appearing in alph(u). Thus, p̃i(r) corresponds to the prob-
ability of having an interaction among the objects (placed on the left-hand
side of the rule), which are considered undistinguishable.

A different probability distribution over rules could be used instead of
Equation 3.1; the approach used here can be seen as an adaptation of the
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Stochastic Simulation Algorithm, introduced in [74], to include and preserve
the maximal parallelism of rule application. Nonetheless, to the aim of
having the highest closeness to the biological system that one needs to model,
other approaches could be investigated and compared as well. We also refer
to [19], for a method with real-valued reaction maps, and to [32], where some
stochastic approaches for biological modelling are reviewed and compared.

Definition 3.2.2 An evolution rule is mute, if it is of the form u →
(u, here), for some multiset u over V .

Mute rules, which do not change the current multiset in any way, can
be used as a trick to maintain the maximal parallelism at the level of rule
application, but not at the level of object consumption. In other words,
assume to have a membrane with two rules a → (b, out), a → (c, here) and
a multiset consisting of 10 copies of the symbol a. By using the maximal
parallelism and the nondeterminism, in one step we would have α copies of c
in the membrane, for some α ≥ 0, 10−α copies of b outside the membrane,
and no more copies of a, since all occurrences had to be consumed. If the
mute rule a → (a, here) is added inside this membrane, then in one step –
and still using the maximal parallelism and the nondeterminism – we would
obtain α′ copies of c in the membrane, β copies of b outside the membrane,
for some α′, β ≥ 0, and 10 − α′ − β copies of a in the membrane. So doing,
not all occurrences of a are consumed (to be more precise, they are actually
consumed but also reproduced in the same form, in the same step), and
thus the parallelism at the level of object consumption is no more maximal.
Now, if we also associate stochastic constants to the rules, we can modulate
the reduced parallelism by intervening on (the value of) the constant of the
mute rule1.

When adding mute rules to a membrane, we do not want to change the
dynamical conditions which are determined inside that membrane by the
constants associated to the other rules, and their respective mutual ratios.
To this aim, we choose to apply the following strategy inside each membrane
to compute the constant of any added mute rule, as well as the new constants

of its corresponding rules. Let S = {r1 : u
k1−→ v1, r2 : u

k2−→ v2, . . . , rh :

u
kh−→ vh} ⊆ Rj be a maximal subset of rules appearing inside a membrane

j and having the same left-hand side, for some u, v1, . . . , vh multisets over
V , with vi 6= u for all i = 1, . . . , h, h ≥ 1. Let us also define KS =

∑h
i=1 ki.

For any maximal set S of this type (with different sets having different left-

hand side multisets in the rules), we add the mute rule rh+1 : u
kh+1
−→ u

to S, and we call S′ = S ∪ {rh+1}. Since we want to preserve in S′ the
relative dynamics of the rules initially present in S, we have to associate

1We remark that the analogous concept of tuning the “activity” of rules is also used
in the Metabolic Algorithm [19] with the name of transparent rules.
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to the rules in S′ new constants, whose values have to be chosen in order
to satisfy the previous prescriptions about the dynamics and the mutual
ratios of constants. So, let us denote by k′

1, . . . , k
′
h the new constants of

rules r1, . . . , rh in S′, respectively, and let also be K ′
S =

∑h
i=1 k′

i.
It is easy to verify that, by choosing

k′
i =

(
1

1 + ρ

)
ki for all i = 1, . . . , h, (3.2)

and

kh+1 =

(
ρ

1 + ρ

)
KS , (3.3)

we obtain that

1. the mute rule rh+1 will be applied with a certain proportionality with
respect to the rules in S, that is, for some arbitrarily fixed ρ ∈ [0,∞)
the following ratio holds:

ρ =
kh+1

K ′
S

(3.4)

2. the addition of the mute rule to the set S does not modify the under-
lying dynamics, that is, it still holds

K ′
S + kh+1 = KS . (3.5)

Once all necessary additional mute rules have been included in each
membrane, the last step consists in the evaluation of the normalized prob-
abilities for the rules. Hence, given the final set of rules R′

i = {r1, . . . , rm}
appearing inside membrane i (possibly obtained from the initial set Ri by
adding some mute rules), the normalized probability for any rule rj ∈ R′

i is

pi(rj) =
p̃i(rj)∑m

j=1 p̃i(rj)
. (3.6)

A DPP works as follows. A fixed initial configuration of Π depends on
the choice of P, hence, it consists of the multisets initially present inside
the membrane structure, the chosen rule constants and the feeding multiset,
which is given as an input to the skin membrane from the environment
at each step of the evolution (by applying the feeding rules). Different
strategies in the feeding process can be used; for instance, in Section 3.3.1
we will show how to substitute the role played by the environment with some
new feeding rules, of a stochastic type, which are directly defined inside the
internal membranes.
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At each step of the evolution, all applicable rules are simultaneously
applied and all occurrences of the left-hand sides of the rules are consumed.
We assume that the system evolves according to a universal clock (as in the
basic definition of P systems), that is, all membranes and the application
of all rules are synchronized. The applied rules are chosen according to
the probability values dynamically assigned to them; clearly, the rules with
the highest normalized probability values will be more frequently tossed. If
some rules compete for objects and have the same probability value, then
objects are nondeterministically assigned to them.

The simulation of the evolution of DPPs can be performed by means
of a software written in C language, which has been developed for single
processor PCs. In the simulations, the stochastic and parallel application
of the rules is done by splitting each parallel step into several sequential
sub-steps. By exploiting the fact that the probability distribution and the
applicability of the rules are functions only of the left-hand side of the rules
and their constants, each single parallel step is separated into three stages:
in the first one, the probabilities of rules are evaluated; in the second one,
a random number generator is used to choose the rule to be applied and
to correspondingly consume the objects appearing in its left-hand side; in
the third one, the multisets are updated using a stored trace of the rules
previously tossed. Each stage starts only when the previous one has been
applied to all the membranes in the DPP, and the same process is repeated
for all evolution steps. A detailed description of the algorithm used for the
simulation of DPPs, and of its complexity, can be found in [162].

The simulations reported in Section 3.3.2 have been run using an imple-
mentation of DPPs which exploit the MPI (Message Passing Interface) C
libraries in order to: (i) distribute the computation over a cluster of proces-
sors to achieve scalability, (ii) have a direct mapping of the communications
among the membranes, and (iii) speed up the computation.

Using this “parallel” version of the simulator for DPPs, each membrane
evolves independently from the others for everything but the communica-
tion, such that it can reside on an independent MPI process. All the mem-
branes of a DPP simultaneously evolve, and require to be synchronized at
the end of each step to allow the communication process. Since the rules are
applied in a maximal parallel way, in each membrane we can divide a step
into three stages: (1) the computation of the probability distribution for the
rules, (2) the assignment to the rules of all objects which can be modified
by rules, (3) the communication and multisets updating. Further details on
the MPI implementation of the DPPs simulation algorithm can be found in
[32].
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3.3 A DPP application: metapopulation systems

Metapopulations, also called multi-patch systems, are extensively investi-
gated in Ecology to analyse the behaviour of interacting populations, to the
aim of determining how a fragmented habitat influences local and global
population persistence. A metapopulation consists of local populations, liv-
ing in spatially separated habitat patches which can have different areas,
quality or isolation, and a dispersal pool, which is the spatial place where
individuals from a population spend some lifetime during the migration
among patches. The dispersal of individuals is distance-dependent, it may
reduce the local population growth and lead to an increase in extinction risk
due also to environmental and demographical stochasticity, thus the persis-
tence of populations is assumed to be balanced between local extinctions
and establishment of new populations in empty patches [85]. In multi-patch
systems, it is possible to distinguish between two principal classes of dynam-
ics: the populations can locally interact inside a patch according to, e.g.,
the Lotka-Volterra model of preys and predators [145], while the dispersal
of individuals among patches can have effects on the global behaviour of the
whole system [93, 94, 191, 203].

The term “metapopulation” was introduced in [107], where a determin-
istic model for population dynamics of insect pests in agriculture has been
developed. Lately, the topic has been largely applied to various populations
species in natural or artificial/theoretical fragmented habitat landscapes.
Among the various modelling methods used so far to investigate metapopu-
lation dynamics, we here recall stochastic patch occupancy models, population
viability analysis and spatially explicit population models.

Stochastic patch occupancy models (SPOMs) are based on the so-called
presence/absence assumption, that is, they only model the occupancy state
of habitat patches, without considering any local population dynamics, and
neither the populations sizes are requested. Discrete-time SPOMs are ho-
mogeneous first-order Markov chains in which the occupancy pattern at any
time t + 1 depends only on the pattern at time t; as a consequence, these
models are well applied to organisms which have one generation per year,
such as insects. Recently, a software for SPOMs, namely SPOMSIM, has
also been developed for the automatic inclusion and analysis of several pa-
rameters and features (see [136]).

Population viability analysis (PVA) models are used in conservation
assessment issues, well applied to single-species (e.g., rare or threatened
species) populations analysis with respect to their risk – or expected time
– of extinction, or their chance of recovery, thus measuring the viability
requirements of the species and how likely it is for that species to persist
along a certain future time. The reliability of these models and the pa-
rameter estimation are usually based on a large set of demographic, habitat
and individual-based data, specific for the species under investigation. PVA
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methods usually address aspects of management, such as impact of human
activities, responses of species to reintroduction, captive breeding or nature
reserves, and more. For additional information about this methodology and
alternative ones for conservation assessment studies, see [2].

Spatially explicit population models (SEPMs) are individual-based or
population-based models, that combine a simulator for the populations with
a map of the landscape, such that landscape features can be explicitly in-
corporated into the model, to analyse how population dynamics is affected
by any change in landscape (e.g., climate change, regional land-use, impact
of fire or other global phenomena). Complex real-world landscape and the
response of population to habitat changes can thus be investigated within
these models. SEPMs require to know life history, demographic informa-
tion and several habitat-specific data about the behaviours of dispersal and
habitat-selection of the studied populations. Temporal or spatial variation
of the landscape can also be incorporated, thus creating dynamical land-
scape where the distribution of suitable and unsuitable patches changes in
time. Sensitivity analysis can be used within SEPMs for the estimation of
parameters which are not available from ecological studies, e.g., for habitat
selection or for dispersal behaviours, and to gain insights about the optimal
and adaptive management strategies in varying contexts [40]. For further
notions about SEPMs we refer to the review work by [52].

Whichever the modelling method is chosen for analysing a peculiar (e-
mergent) behaviour of interacting populations in fragmented habitat, spe-
cific properties of the system can be, or even have to be, explicitly or implic-
itly considered, as the ones that we remark in the following (see [85, 136, 86]
for further details).

Referring to the landscape, most models take care of the spatial struc-
ture, the local environmental quality, the patch area and connectivity (iso-
lation), to grasp the effect of habitat fragmentation on species persistence,
since high connectivity decreases local extinction risk (this is called the “res-
cue effect”) and local conditions determines the growth and survival of patch
populations. Moreover, dispersal and colonization are distance-dependent
elements which give meaning to landscape structure in a spatial model. As
for population interactions and dynamics, colonization can be related or not
to cooperation of immigrating individuals (in the first case, it is called “Allee
effect”). Within-patch dynamics is claimed to improve the understanding
of natural systems; models which do not take care of it, thus only assuming
whether a patch is occupied or not, usually consider local dynamics on a
faster time scale with respect to the global dynamics, and also neglect the
dependence of colonization and extinction rates on population sizes. Finally,
regional stochasticity takes care of “bad” or “good” years over the local en-
vironmental quality. As we will explain later on, some of these issues will be
explicitly considered in the next section for defining the membrane system
model for metapopulations.
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In what follows, we define a model of metapopulations with predator-
prey dynamics by means of DPPs, where additional features are used in
order to catch and better describe relevant properties of the modelled sys-
tem. Namely, we will use a membrane structure of a novel type, where
the spatial arrangement and the dimension of regions matter. With this
choice we can give a proper description of a real (or artificial laboratory)
landscape, and thus correctly analyse the dynamics of species interactions,
via the definition of appropriate rule constants related to the fixed geom-
etry. We then apply the generic model to some test case studies, and we
investigate some emergent metapopulation behaviours, such as the effects of
stochastic breeding, migration and colonization, isolation of patches, etc.

3.3.1 The modelling framework

Let µ be a membrane structure with degree n+1 and depth 2, with the skin
membrane labelled with 0 and the internal membranes labelled with num-
bers 1, . . . , n. In the following, we will refer without distinction to the skin
membrane or the dispersal pool, and to the internal membranes or regions
or patches. For the modelling of a metapopulation, the membrane structure
has to be intended as a set of spatially distributed regions, each one com-
pleted with a “size”, which represent the area of the 2-dimensional patch,
and with a fixed “distance” with respect to all other regions. Since the
membrane structure is assumed to have here a precise spatial arrangement,
we will not represent it as a string of well-matching square brackets where,
as usual, any permutation of internal membranes would give rise to topo-
logically equivalent structures (which is something that we want to avoid).
Instead, to describe the set of internal membranes, we will use an undirected
weighted graph with node attributes, thus outlining both the spatial distri-
bution of patches and the relevant additional features associated to them:
the area of a patch is needed to define the density of the populations living
inside the patch (and thus to provide a better description of the dynamics),
while the distance is needed to identify isolated patches, as well as to define
the dispersal rates inside the pool. The distance among patches is not to
be necessarily intended as a physical measure of how far a patch is from
another one, but it can also represent a measure of how hard it is to move
from one patch to another one due to, e.g., the geographical morphology of
the landscape (presence of mountain chains, deep rivers or sea among the
patches) or to other general local conditions (zones in the pool which cause
high risks for survival). Hence, we will more generally call this distance the
cost.

We also remark that, for metapopulation models, each region has to be
considered as part of a 2-dimensional space, and not as a closed surface in
a 3-dimensional space as it is usually implicit in P systems.

The membrane structure, the areas and the patch mutual costs are as-

60



3.3. A DPP application: metapopulation systems

sumed to be fixed in the model we propose here. The modification of these
elements could be forced, and would indeed be necessary, in the analysis of
landscapes whose main structure changes during time, such as patches dis-
appearing or reducing their dimension (e.g., a fire burning a forest), patches
increasing their dimension (e.g., new borders built around a protected park),
or even patches in different positions in the pool (e.g., in laboratory experi-
ments where patches are glass boxes that can be freely moved around).

Formally, to associate a spatial structure to the membrane structure, we
define a weighted undirected graph G = (N∆, E,w) where:

• N∆ is the set of nodes, or vertices, such that, to each node x ∈ N∆,
there is associated a value a ∈ ∆, being ∆ a set of attributes of some
kind;

• E ⊆ {(x, y) | x, y ∈ N∆} is the set of (undirected) edges between
nodes;

• w : E → R
+ is the weight function associating a cost to each edge.

In our case, the set of nodes N∆ coincides with the set {m1, . . . ,mn}
of internal membranes, the attribute of a patch represents the area of the
patch, the edges characterize which patch is directly reachable from any
other patch (self-edges of the type (mi,mi) might exist as well), and the
weight wi,j of an edge (mi,mj) represent a cost to measure the effort that
individuals have to face when moving from patch mi to mj through the
dispersal pool.

Note that, if a patch mi is directly reachable from patch mj, then the
individuals exiting from patch mi will (possibly) enter patch mj after some
time spent in the pool (and vice versa), thus we are not interested in finding
whether there exists a path in the graph such that individuals exiting from
mi will enter and leave other patches in the graph path before finally arriv-
ing in mj. Self-edges obviously represent the possible action of individuals
exiting a patch and then entering it again. Moreover, we consider the case
of undirected graphs, though also directed graphs with two possibly edges
between any couple of patches can be used, and their relative costs can be
different, thus better characterizing the landscape nature (e.g., the cost of
climbing a mountain can be different from the cost of descending from it).

The area of a patch mi, i = 1, . . . , n, is a value σi ∈ R
+. We will not

define the area of the pool, we implicitly assume that it is large enough
to contain all patches and to allow the dispersal of individuals, that is,
σ0 ≫

∑n
i=1 σi.

Definition 3.3.1 Let V be the alphabet of population species. The density
of patch mi, i = 0, 1, . . . , n, with respect to population species X ∈ V , is

δX(mi) =
|X|mi

σi
, (3.7)
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where |X|mi
denotes the number of individuals of species X inside patch mi.

The total density of patch mi with respect to all population species is defined
as

δV (mi) =
1

σi

∑

X∈V

|X|mi
. (3.8)

Definition 3.3.2 The mean cost of the graph G associated to the membrane
structure µ is the value

wG =

∑n
i,j=1 wi,j

∑n−1
k=1 n − k

. (3.9)

Definition 3.3.3 A patch mi, for some i = 1, . . . , n, is said to be isolated
if wi,j ≫ wG, for all j = 1, . . . , n.

In other words, a patch can be considered isolated if its distance from any
other patch is very high, or if the cost to reach it (or to reach another patch
when migrating from it) is much higher than the mean cost for reaching any
other patch. As a consequence, the probability of the population individuals
migrating from, or moving to, an isolated patch will be accordingly defined,
in order to capture this characteristic of metapopulations.

Given all the necessary definitions, we can now introduce our DPP model
Π for a generic metapopulation consisting on n patches, a dispersal pool,
and two population species, one for preys and one for predators. We will
assume that the populations dynamics inside each patch follows the Lotka-
Volterra model (see [162] for a previous description with DPPs) and that,
without loosing in generality, the sustenance resources are identical for all
species. Hence, let

Π = (V,O, µ, I,G,M0 , . . . ,Mn, R0, . . . , Rn)

be such that

• V = {A,A′,X, Y, Y1, . . . , Yn} consists of the symbol A for sustenance
resources, X for the species of preys, Y for the species of predators. A′

is used to simulate the stochastic feeding of resources, while Y1, . . . , Yn

are used for denoting, via the subscripts 1, . . . , n, which is the origi-
nating patch of the predators occurring in the pool, as it will be clear
below.

• O = {X,Y } is the set of analysed symbols.

• µ is a membrane structure with n elementary membranes, each cor-
responding to a patch in the metapopulation system. The skin mem-
brane plays the role of the dispersal pool.
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• I = {1, . . . , n} is the set of analysed regions.

• G is the graph associated to the internal membranes, where we specify
the set of area attributes for patches, ∆ = {σ1, . . . , σn}, and the set of
costs associated to the edges, Ω = {wi,j | (mi,mj) ∈ E, for all i, j =
1, . . . , n};

• M0 = ∅ and Mi = {A′XpiY qi}, for some pi, qi ∈ N, i = 1, . . . , n, are
the multisets initially present inside the regions.

• For each i = 1, . . . , n, Ri contains the following rules:

ri
(feeding) : A′

ki
f

−→ (A′Aαi , here), αi ∈ [Ni1 , Ni2 ], Ni1, Ni2 ∈ N,

ri
(Xgrowth) : AX

ki
Xg

−→ (XX,here),

ri
(Y growth) : XY

ki
Y g

−→ (Y Y, here),

ri
(Xdeath) : X

ki
Xd−→ (λ, here),

ri
(Y death) : Y

ki
Y d−→ (λ, here),

ri
(dispersal) : Y Y

ki
d−→ (Y, here)(Yi, out),

and the corresponding mute rules:

ri
1 : AX

ki
1−→ (AX,here), for some ρi

1 ∈ [0,∞),

ri
2 : XY

ki
2−→ (XY, here), for some ρi

2 ∈ [0,∞),

ri
3 : X

ki
3−→ (X,here), for some ρi

3 ∈ [0,∞),

ri
4 : Y

ki
4−→ (Y, here), for some ρi

4 ∈ [0,∞),

ri
5 : Y Y

ki
5−→ (Y Y, here), for some ρi

5 ∈ [0,∞),

with ki
f , ki

Xg, k
i
Y g, k

i
Xd, k

i
Y d, k

i
d, k

i
1, . . . , k

i
5 ∈ R+, i = 1, . . . , n. Rule

ri
(feeding) describes the stochastic feeding of sustenance resources, that

is, at each time step αi copies of symbol A are created in region i,
for some αi randomly chosen in a previously fixed range [Ni1 , Ni2 ].
These available resources then allow the growth of preys by means of
rule ri

(Xgrowth). Rule ri
(Y growth) governs the direct interactions among

preys and predators, and the consequent growth of predators, while
rule ri

(dispersal) describes the action of predators migrating from patch
mi into the dispersal pool. The use of the multiset Y Y in the left-hand
side of this rule allows to account for the predator density in the patch
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during the process of migration, as will be better explained below.
Note that, when a predator Y exits patch mi, it arrives in the pool
denoted as Yi: the subscript is needed in order to distinguish, inside
the pool, among predators migrating from different patches, who then
colonize (see rules R0

(colonization) in the set R0) other patches according
to the mutual distance of its originating patch with respect to the
others placed inside µ. Rules ri

(Xdeath), r
i
(Y death) describe the death of

individuals for causes which are not dependent to direct inter-species
interactions. Finally, ri

1, . . . , r
i
5 are the mute rules allowing the non-

maximal consumption of individuals, as explained in Section 3.2. Note
that we do not add the mute rule corresponding to ri

(feeding), since the

net effect of this rule (creation of a certain number of A’s) is already
non “maximally parallel”, by construction.

• R0 contains the subsets of rules

R0
(colonization) : {Yi

k0
c,i,j
−→ (Y, inj) | (mi,mj) ∈ E, i, j = 1, . . . , n},

R0
(death) : {Yi

k0
d,i

−→ (λ, here) | i = 1, . . . , n},

R0
(wandering) : {Yi

k0
w,i

−→ (Yi, here) | i = 1, . . . , n},

with k0
c,i,j, k

0
d,i, k

0
w,i ∈ R+. The rules in the subset R0

(colonization) de-
scribe the process of colonization of patches mj by predators Yi which
migrated from patch mi. Note that, when entering a patch, a preda-
tor Yi looses its subscript and is again denoted by Y , since now it
is no more necessary to know from which patch it was coming from
(remember that only one species of predators is considered, so the
symbols Y1, . . . , Yn represent only a trick and do not correspond to
different predator species). Rules in R0

(wandering) describe the life spent
by predators inside the dispersal pool during the migration, and might
be seen (but we will not consider them as such) as the respective mute
rules of the rules in R0

(death), which describe the death of predators
during the migration.

With respect to the definition of a DPP as given in Section 3.2, one can
note that there are two main differences: here we do not consider the envi-
ronment, whose role is somehow played by the dispersal pool, and the feed-
ing rules that were defined inside the environment are here substituted with
“resource creating” rules, which are active inside the patches. Moreover,
the new feeding rules are of a stochastic type, thus we can more precisely
describe different real situations where the amount of resources changes in
time (due to, e.g., different weather conditions or environmental quality).
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3.3. A DPP application: metapopulation systems

We describe in the following how to evaluate the probabilities of some
rules, in order to let the dynamics of the system depend upon the geometri-
cal structure of the patches, the initial population multisets and the patch
densities (thus implicitly considering also the patch areas). Namely, for
these rules, the expression given in Equation 3.1 will have some additional
term.

Let us consider first the rules R0
(colonization) in the pool, governing the

colonization of patches. The application of these rules has to depend upon
the cost between the patch from which the individual migrated and the patch
that the individual will colonize, meaning that the higher the cost between
two patches, the lower the probability for reaching one of them once the

other has been left. Thus, let r : Yi

k0
c,i,j
−→ (Y, inj) be a rule in R0

(colonization),

and let wi,j be the cost associated to the edge (mi,mj) ∈ E, then

p(r) =
1

wi,j
· p̃(r) (3.10)

where p̃(r), given by Equation 3.1, is the usual term that takes care of
the rule constant k0

c,i,j and of the combinatorial part, analogously to the
Stochastic Simulation Algorithm [74].

Then, the rules inside the patches governing the growth and dispersal
have to depend on the local populations densities. Hence, the probabilities
of these rules will be evaluated as follows:

• for ri
(Xgrowth) : AX

ki
Xg

−→ (XX,here) we use

p(ri
(Xgrowth)) =

1

σi
ki

Xg|A|mi
|X|mi

(3.11)

meaning that the higher the number of preys inside the patch, the
higher the competition for food resources among them, hence the lower
their growth;

• for ri
(Y growth) : XY

ki
Y g

−→ (Y Y, here) we use

p(ri
(Y growth)) =

1

σi
ki

Y g|X|mi
|Y |mi

(3.12)

meaning that the higher the number of preys, the higher the growth
of predators but, at the same time, if too many predators are present
inside the patch, then their growth is reduced;

• for ri
(dispersal) : Y Y

ki
d−→ (Y, here)(Yi, out) we use

p(ri
(dispersal)) =

1

σi
ki

d

|Y |mi
(|Y |mi

− 1)

2
(3.13)
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meaning that the higher the number of predators, the higher the proba-
bility that they will leave the patch in search of new colonizable patches
for better survival chances.

Finally, the constant of each mute rule is evaluated according to the
strategy described in Section 3.2, by specifying its chosen proportionality
value ρi

j ∈ [0,∞), for all i = 1, . . . , n, j = 1, . . . , 5.

The set of parameters of Π is P = {pi, qi, Ni1 , Ni2} ∪ {ki
f , ki

Xg, ki
Y g, ki

Xd,

ki
Y d, ki

d, ki
1, . . . , ki

5, k
0
c,i,j, k

0
d,i, k

0
w,i} ∪ {ρi

1, . . . , ρ
i
5}, i, j = 1, . . . , n. A family

of DPPs for metapopulations consists of a set of DPPs of type Π having the
same underlying graph-membrane structure, but different choices of initial
multisets, resource feeding range and rule constants.

3.3.2 Simulations and results

Several different simulations have been run to the aim of outlining the role
of the various features of the DPP model for metapopulations [16, 17]. We
stress the fact that we are not considering real data about a fragmented
habitat or interpopulation dynamics of a specific ecological metapopulation,
but we would rather show the effectiveness of our proposed framework in
the investigation of the relevant characteristic of metapopulations. In this
section we firstly describe how each feature of the model independently
influences the dynamics of the system, then some interactions between these
features will be shown.

In all the following examples we consider the spatially arranged mem-
brane structure given by µ = [0 [1 ]1 [2 ]2 [3 ]3 [4 ]4 ]0 and by a complete
underlying graph without self-edges. The initial multisets, unless otherwise
specified, correspond to pi = qi = 1000 for all i = 1, . . . , 4.

In the first group of simulations, the investigation of the effect of each
characteristic is organized in such a way that – among the four patches,
when possible – patch 1 is used as the reference one and its behaviour is left
unaltered with respect to the Lotka-Volterra model, while the other three
patches show a range of application of the feature in exam.

We begin focusing on the role of the patch area; in order to isolate this
effect, we choose to apply a constant feeding (αi = 200 for all i = 1, . . . , 4)
inside each patch and to deny the dispersal of the predators, such that
each patch evolves independently (that is, all constants of rules in R0 are
null). The area of patch 1 is σ1 = 1, while the other three values are
σ2 = 0.35, σ3 = 1.5, σ4 = 2.5. The chosen rule constants inside the patches
are C1 = {ki

Xg = 0.1, ki
Y g = 0.01, ki

Xd = 0, ki
Y d = 10, ki

d = 0 | i = 1, . . . , 4},

ρi
j = 0, for all i = 1, . . . , 4, j = 1, . . . , 5 (that is, mute rules are not applied).

In Figure 3.2 (left), the dynamics in the phase space of the relative model
is presented. Clearly, as the area of patches increases from patch 2 to patch
4, also the probability of extinction of the populations increases (Figure
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3.3. A DPP application: metapopulation systems

3.2, right). Moreover, we have noticed that the dynamics of the smallest
patch, namely patch 2, does not obeys to a pure Lotka-Volterra behaviour,
but only a minimal stochastic variation around the value of 400 individuals
occurs (graphic not shown). It can also be seen that patch 4 undergoes the
extinction of predators, which allows the consequent uncontrolled increase
of preys (Figure 3.2, right).
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Figure 3.2: The role of patch areas.

In Figure 3.3 we start investigating the role of mute rules: in a structure
with equal areas and where no dispersal occurs, inside patches 2, 3 and 4
we define different ratios for mute rules, namely ρ2

i = 1/3, ρ3
i = 1, ρ4

i = 3,
for all i = 1, . . . , 5. Patch 1 is still used as the reference one, so mute rules
are not applied there. The initial rule constants of all patches are equal to
those defined in the set C1, the actual constants of initial and mute rules
used during simulations have then been evaluated as described in Section
3.2. What turns out in this case is that the highest the chance of executing
mute rules is (patch 4), the lowest the variation in the numbers of preys
and predators is. This is easily explained by the fact that the application of
mute rules diminishes the number of modified objects inside membranes.
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Figure 3.3: The role of mute rules.

The role of different stochastic feeding is analysed for patches having
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all area values equal to 1 and where the dispersal of predators is still not
allowed (hence no rules inside the pool are used). Once more, the constants
of rules inside the patches are those in the set C1, mute rules are not active
and α1 ∈ [0, 200], α2 ∈ [50, 200], α3 ∈ [100, 200], α4 ∈ [150, 250]. It is
possible to see that inside patch 1, which has the lowest feeding range, the
extinction of predators is immediate (red line in Figure 3.4, top), in patch 2
the extinction of predators happens approximately at step 600 (Figure 3.4,
bottom left), while in patches 3 (Figure 3.4, bottom right) and 4 (data not
shown, but similar to patch 3), which have the highest feeding ranges, there
still exists persistence of oscillating behaviour among preys and predators.
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Figure 3.4: The role of stochastic feeding.

Then, in Figure 3.5 we focus on the role of edge costs, which directly
affect the migration of predators among (connected) patches. Therefore,
now it is not possible to have a reference patch since any patch is no more
independent from the others. All patches have the same area, a constant
identical feeding (σi = 1 and αi = 200, for all i = 1, . . . , 4), and cost equal
to 1 for all edges but ω2,3 = 0.01. The rule constants are the same as those
used in the first simulation, that is C1, but ki

d = 0.01 for all i = 1, . . . , 4.
In this case, it is possible to see that the dynamics inside patch 3, which
is more easily reachable from patch 2, is different from the dynamics of the
other patches: a larger number of predators enter this patch, thus the rate
of growth of preys is correspondingly reduced.

In what follows we present some examples where the interaction between
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Figure 3.5: The role of costs.

different features of the model is analysed.

We consider the case of an isolated patch (patch 4), modelled by having
an high reachability/escape cost (ω4,j = 1000, j = 1, 2, 3) and a slightly
lower constant for predators dispersal (k4

d = 0.001) than the value defined
in the other patches (ki

d = 0.01, i = 1, 2, 3). All other rule constants inside
the patches are equal to those in set C1, while the constants in R0 are
C2 = {k0

d,i = k0
w,i = 0, k0

c,i,j = 1 | i, j = 1, . . . , 4}. Patch 4 has also a
small area (σ4 = 0.4, while σ1 = σ3 = 1.5, σ2 = 1) and no predators are
initially present inside it. The costs among all other patches are ω1,2 =
100, ω1,3 = ω2,3 = 1, mute rules are not applied and the same range of
stochastic feeding (αi = [150, 250], i = 1, . . . , 4) is defined inside all patches.
We can see from simulations in Figure 3.6 (left) that inside the isolated
patch there is an initial explosion in preys growth but, as soon as predators
manage to reach this patch, then the oscillations in the numbers of preys
and predators remains inside a reduced range (around 200-800 individuals
for each species), due to the small patch area. On the contrary, the dynamics
of the other patches are similar but balanced by the different areas (Figure
3.6, right).

We extend the previous simulation by considering a landscape with an
isolated patch and another patch (we call it the “desert”) where the natural
death of preys can happen. The additional feature is obtained by setting
k3

Xd = 0.01, while ki
Xd = 0 for i = 1, 2, 4. Again, no mute rules are applied.

In Figure 3.7 (left) we see that the behaviour of the isolated patch 4 is
similar to the previous one, while the dynamics of the desert, patch 3, is
very different from the other ones: even if its area is larger than the others,
no real oscillating behaviour emerges. The rapid variation in the number of
preys and predators that can be seen in Figure 3.7 (right) mainly correspond
to stochastic noise.
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Figure 3.6: An isolated patch.
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Figure 3.7: An isolated patch and a desert.

We now pass to analyse the behaviour of a system where patches have
different areas (σ1 = 0.5, σ2 = 0.7, σ3 = 1.4, σ4 = 2.1), a stochastic feeding
in the range [150, 250] is defined inside all patches, all edges have the same
cost equal to 1 and the ratios of mute rules are ρi

j = 1/3, for i = 1, . . . , 4, j =

1, 2, 4, 5, ρi
3 = 9, for i = 1, . . . , 4. The initial constants in the patches are

the same as in set C1. Here we can see (Figure 3.8, left and right) how the
dynamics of patches 3 and 4 vary with respect to patches 1 and 2 due both
to their bigger areas and to the rules that govern the life/death of preys.

Analysing the role of different costs (ω1,2 = 10, ω1,3 = ω1,4 = 50, ω2,3 =
1, ω2,4 = ω3,4 = 30) and different areas (σ1 = 0.5, σ2 = 0.7, σ3 = 1.4, σ4 =
2.1), while the ratios of mute rules are fixed at a same value inside all
membranes (as in the previous simulation), we can see from Figure 3.9 (left)
that the dynamics of patches 3,4 are different from patches 1,2 since the
former have higher reachability costs and bigger areas. In Figure 3.9 (right)
the species behaviours of patches 1 and 4 are directly compared.

Finally, in Figure 3.10 we present the role of poor stochastic feeding
inside patch 4 (α4 ∈ [50, 100], with respect to αi ∈ [150, 250], i = 1, 2, 3),
where all areas and costs are equally set to 1, and mute rules are not applied.
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Figure 3.8: Mixed features: different areas, stochastic feeding, mute rules,
equal costs.
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Figure 3.9: Mixed features: different areas and costs, stochastic feeding,
mute rules.

We can thus see that the lower feeding causes a decrease in the number of
preys and, above all, in the number of predators, with respect to all other
patches.
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Figure 3.10: Reduced stochastic feeding.
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3.3.3 Discussion

In Section 3.3.1 a metapopulation system with 2-species predator-prey dy-
namics has been considered. The proposed DPP model can be easily ex-
tended to cases where interaction of more species occur, as well as to repre-
sent other metapopulation dynamics. For instance, we have only considered
the case of predator’s dispersal, though also prey’s dispersal can be eas-
ily added in a more general framework. Moreover, the type of membrane
structure with the additional features we introduced for modelling metapop-
ulations, which allows to define regions with a specific area and disposition
in space, might also be useful for the analysis of epidemiologic systems.

In the work presented in [16], the influence of different resource feeding
strategies on the metapopulations dynamics has been analysed. In particu-
lar, the comparison between systems where increasing, decreasing, station-
ary of purely feeding stochastic phases defined inside the patches, has been
presented. The obtained results have shown how the seasonal variance of
the resources feeding can transform the basic (stochastic) Lotka–Volterra
dynamics inside each patch into a more complex dynamics, where different
phases of a feeding cycle can be identified.

Some other relevant characteristics of ecological metapopulations, which
can be included in DPP model, are: (a) the classification of species indi-
viduals as strong/weak colonizer, or strong/weak rescuer [171]; (b) the use
of clusters of patches [86]; (c) the role of “synchrony” on metapopulation
extinction (where synchrony means that the population dimensions in close
patches tend to have similar fluctuations), in such a way that the presence of
synchrony causes local extinction to determine also global extinction, while
in the absence of synchrony the metapopulation has higher chances of per-
sistence [109]; (d) the roles of “predator pursuit” and “prey evasion” on the
(predators and preys) migration and colonization, both depending on the
densities of patches [109].

Moreover, the application of this modelling framework to real available
data might contribute to a further investigation of metapopulations, allowing
a direct comparison between this stochastic discrete approach and the other
modelling frameworks in Ecology, such as those reviewed in Section 3.3.
Here we just outline that, for example, one of the limits of SEPMs is that,
within this model, quantitative data such as the size of a population inside
patches cannot be determined, but only qualitative analysis can be done.
The P systems-based model proposed here allows to know, instead, the
exact number of individuals of any species in any region (patches or pool)
of the system – a very relevant aspect when dealing with populations with
a high risk of extinction or severely damaged. On the other hand, with
SEPMs one can account for the real passing of time and thus investigating
the population dynamics over time ranges from days to years; in the current
membrane system model we developed for metapopulation, it is not possible
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to include such feature yet, though accounting for real evolution time is a
hot topic in P systems and already a work in progress [30, 20].
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Chapter 4

τ–DPP

In this chapter, a novel algorithm for the simulation of chemical and biolog-
ical systems composed by many volumes will be described. This approach,
called τ–DPP, has been first presented in [30]; it combines some features of
membrane systems, in particular of the DPP variant (see Section 3.2) with
the simulation strategy used in the tau-leaping algorithm (see Section 1.3).
τ -DPP exploits a particular kind of reactions, called communication rules,
to move objects between volumes, rather than considering diffusive processes
(as, for instance, in the NSM [57] and in the Bτ -SSSA [117]). Therefore,
both “classic” reactions and communication rules will be selected using the
same strategy.

τ -DPP has been introduced to the aim of extending the single-volume
algorithm of tau-leaping [26], in order to handle multi-volume systems where
distinct volumes are arranged according to a specified hierarchy, and with
the additional assumption that the topological structure and the size of the
volumes do not change during the system evolution. As already seen in
Chapter 3, this condition is well satisfied by the membrane structure of a P
system, which is also the underlying spatial arrangement used within τ -DPP.
Indeed, τ -DPP presents a close correspondence to DPP, but the first allows
a quantitative description of the system’s dynamics, while in the second the
obtained behaviour is only qualitative.

In order to correctly describe the behaviour of a system, τ -DPP runs in
parallel inside each volume. A modified version of the tau-leaping proce-
dure presented in [26] is exploited for the computation of the length of the
step τ . In this novel version of the simulation algorithm, the least value for
the time increment, among those computed inside each volume, is used to
sample the number of reactions to execute (as in the original tau-leaping al-
gorithm). Thanks to this “common” time increment, shared by all volumes,
the simulation is synchronized at each step, allowing the correct passage of
the molecules involved in communication rules.

The computational cost of the τ -DPP algorithm is the same as the tau-
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leaping strategy, for a single volume. Clearly, the time needed for a simula-
tion increases with the number of volumes composing the system. Neverthe-
less, it is very easy to distribute the computation over a parallel architecture,
where volumes are simulated on different nodes which communicate at the
end of each iterative step to synchronize their dynamics.

In the second part of the chapter, a recently presented variant of τ -DPP
will be described [29]. Using this approach, the size of volumes and objects
is considered, in order to better describe systems where the “space” play
an important role in the dynamics (such as, for instance, reaction–diffusion
systems).

We conclude with some discussion about the modelling power of τ -DPP,
and future developments for this approach, which consist, among others,
in the development of different strategies for the selection of the reactions,
and the inclusion of the “membrane potential” in the computation of the
propensity functions of particular cellular processes.

4.1 Tau-leaping procedure in DPPs

The introduction of τ -DPP [30] for the simulation of chemical and biological
systems has been motivated by two main problems. The first consists in the
fact that the tau-leaping method [26], which is one of the finest stochastic
simulation algorithms, is only applicable to well stirred chemical reaction
systems contained inside a single fixed volume. The second problem con-
cerns DPPs, which can only allow qualitative simulations of a system’s dy-
namics; moreover, in DPPs the rules are applied according to a universal
clock in a parallel manner.

A solution to the first problem can be proposed by exploiting the frame-
work of P systems (in particular, by using DPPs), since the membrane
structure is suitable to represent systems consisting of many regions. Details
about DPPs can be found in Section 3.2, and several examples of simulated
systems can be found in Section 3.3 and [161, 163, 162].

The second problem can be solved by extending the tau-leaping simula-
tion algorithm to the modelling framework provided by DPPs. Hence, this
new stochastic approach within the framework of P systems, which exploits
their topological structure and other features, represents a novel tool for the
modelling of multi-volume systems able to provide a quantitative description
of the system’s dynamics. Here, instead of assuming a global clock for the
instantaneous and parallel application of the rules, we will select a different
length for each step according to the current system state; then, during the
time step, a certain number of rules will be selected and executed.

τ -DPP is a computational method which can be used to describe and
perform stochastic simulations of complex biological or chemical systems.
For instance, cellular pathways involving several spatial compartments (as
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the extracellular ambient, the cytoplasm, the nucleus, etc.), or multicellu-
lar systems like bacterial colonies, or multi-patched ecological systems as
metapopulations, are all examples of complex systems that could be investi-
gated with τ -DPP. Since τ -DPP represents a general simulating framework
for a broad range of complex systems, in the following we will use the generic
terms volume, object and rule, to denote the compartment, or region, where
the molecular species, or any other elemental “species”, can be modified in
some way by a biochemical or, more generally, an interspecies reaction.

The correct behaviour of the whole system is achieved by letting all vol-
umes evolve in parallel, and by using the following strategy for the choice
of time increments. At each iteration of τ -DPP, we consider the current
state of each volume (determined by the current number of objects), and
we calculate a time increment independently in each volume (according to
the standard tau-leaping algorithm). Then, the smallest time increment is
selected and used to evaluate the next-step evolution of the entire system.
Since all volumes locally evolve according to the same time increment, τ -
DPP is able to correctly work out the global dynamics of the system. More-
over, by adopting this procedure, the simulated evolutions of all volumes
get naturally synchronized at the end of each iterative step. The synchro-
nization is also necessary – and exploited together with a parallel update
of all volumes – to manage the communication of objects among volumes,
whenever prescribed by specific (communication) rules.

Besides the length of the local and global time increments, we need to
check which kind of evolution will take place inside each volume, during
the current iteration, by looking only at the volume internal state. The
types of evolutionary step are those defined in the tau-leaping procedure
and described in Section 1.3: a volume can evolve executing either (1) a
SSA-like step, or (2) non-critical reactions only, or (3) a set of non-critical
reactions plus one critical reaction.

The τ -DPP selection procedure has to consider how every volume is
evolving during the actual step; then, the smallest τ generated by all volume
is used to update the system.

For instance, if a volume is evolving executing only non critical reactions,
but the τ generated inside it is not the smallest one of the system, then -
after receiving the minimal τ from some other volume - this volume has to
sample the next reaction from the set of non critical reactions.

Once the τ -DPP procedure generates a local τ , two different scenarios
are possible: no volumes are evolving like SSA, or at least one volume is
evolving according to SSA.

If no volumes are evolving like SSA, then the smallest τ (τmin) generated
inside the volumes during the current step is chosen. Then, the number of
firings of the rules is sampled as the Poisson random variable P (aj , τmin).

On the contrary, if there is at least one volume evolving in the SSA
manner - which generates a value τSSA - then the procedure has to check
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if τmin = τSSA. If this is true, then τmin was generated by the volume
evolving according to the SSA, and the execution of the selected rule is
allowed. Otherwise, if τSSA is greater than τmin, then it is not possible to
apply the reaction selected inside that volume, because the time required for
the execution of this reaction (τSSA) is longer than the length of the current
step (τmin).

Formally, a τ -DPP Υ is defined as

Υ = (V0, . . . , Vn−1, µ,S,M0, . . . ,Mn−1, R0, . . . , Rn−1, C0 . . . Cn−1),

where:

• V0, . . . , Vn−1 are the volumes of the system, n ∈ N, n > 1;

• µ is a membrane structure representing the topological arrangement
of the volumes;

• S = {X1, . . . ,Xm} is the set of objects, m ∈ N, that is, the alphabet
of the system;

• M0, . . . ,Mn−1 are the multisets over S occurring inside the volumes
V0, . . . , Vn−1, representing the internal state of the volumes;

• R0, . . . , Rn−1 are the sets of rules defined in volumes V0, . . . , Vn−1,
respectively. A rule can be of internal or of communication type (as
described below);

• C0, . . . , Cn−1 are the sets of stochastic constants associated to the rules
defined in volumes V0, . . . , Vn−1.

The system Υ is defined by means of a set of n volumes organised ac-
cording to the hierarchy specified by the membrane structure µ. The state
of the whole system is characterised by all multisets Mi occurring inside
each volume Vi (0 ≤ i ≤ n − 1).

Inside the volumes, the set of rules R0, . . . , Rn−1 are defined along with
the sets of stochastic constants C0, . . . , Cn−1. The stochastic constants are
needed, along with a combinatorial function depending on the left-hand side
of the rule (as explained in Section 1.1), to compute the probabilities of the
rule applications (i.e., their propensity functions).

Each volume Vi can contain two different kinds of rules, termed internal
and communication rules. An internal rule describes the modification, or
evolution, of the objects inside the single volume where it is applied, while
a communication rule sends the objects from the volume where it is applied
to an adjacent volume (possibly modifying the form of these objects during
the communication step).

More precisely, internal rules have the general form α1X1 +α2X2 + · · ·+
αmXm → β1X1 + β2X2 + · · · + βmXm, where X1, . . . ,Xm ∈ S are distinct
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object types and α1, . . . , αm, β1, . . . , βm ∈ N. For instance, X1, . . . ,Xm can
correspond to molecular species, and, in this case, α1, . . . , αm, β1, . . . , βm

represent stoichiometric coefficients. The objects appearing in the left-hand
side of the rule are called reagents, while the objects on the right-hand side
are called products. Note that, usually, we will consider the case where
(at most) three objects appear in the reagents group. The rational behind
this is that we require biochemical reactions to be (at most) of the third-
order, since the simultaneous collision and chemical interaction of more than
three molecules at a time, has a probability to occur close to zero in real
biochemical systems. Moreover, the interaction among more than three
molecules can be modelled by using a set of successive reactions with lower
order.

When dealing with communication rules inside a volume, besides defining
the sets of reagents and products, it is necessary to specify the target volume
where the products of this rule will be sent1. Formally, a communication rule
has the form2 α1S1 +α2S2 + · · ·+αmSm → (β1S1 +β2S2 + · · ·+βmSm, tar),
where S1, . . . , Sm ∈ S are distinct object types, α1, . . . , αm, β1, . . . , βm ∈ N,
and tar can be equal to:

• out: this means that the products of the rule are “sent outside” the
source volume (that is, the region where the rule is applied), to the
adjacent outer volume;

• inlabel: this means that the products of the rule are “sent inside” the
volume with the label specified by the target. These rules are only
allowed if the target volume is placed inside the source membrane,
and the two volumes are adjacent (that is, there exists no other volume
placed between the source and the target volume).

• in: this means that the products of the rule are nondeterministically
sent to any of the volumes placed inside the source membrane. This
kind of rule can be used instead of a set of rules with specific targets
inlabel (one rule for each inner volume).

Communication rules are considered special rules for what concerns the
time increment (τ) selection procedure, applied in the first stage of the τ -
DPP algorithm. For internal rules, indeed, this procedure is exactly the same
as the tau-leaping algorithm [26], where the length of the step is computed
by bounding the variation of the molecular quantities. Namely, in order
to correctly evaluate the simulation time increment and to describe the
behaviour of the system with a good approximation, we need to choose the
“largest” value of τ that also satisfies the leap condition [26].

1This definition can be easily extended in order to assign a different target volume to
each object appearing in the set of products.

2The condition that at most three objects appear as reagents is usually required also
for communication rules.
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On the contrary, the variation due to communication rules implies a
change in the quantities of objects inside two different volumes: the reagents
inside the source volume, and the products sent to the destination volume.
To correctly estimate the value of τ when dealing with communication rules,
instead of limiting the variation of both reagents and products (as it is done
for internal rules), we only consider the variation of the reagents inside the
source volume (that is, we only look at the left-hand side of the communi-
cation rule). Indeed, the value of τ is independent from any objects that
has to be communicated, since these products will be received in the target
volume only at the end of the iteration step (see Section 4.2). For this rea-
son, for the τ selection procedure, the right-hand side of a communication
rule is neither considered in the source, nor in the target volume. Obviously,
the communicated objects will contribute to the update of the system state,
which takes place at the end of the iteration step, and will be therefore con-
sidered to determine the state of the target volume for the next iteration
step.

4.2 τ-DPP algorithm

The τ -DPP algorithm proceeds by executing iterative steps to simulate the
evolution of the entire system. Each step consists of several substeps that
are executed independently and in parallel for each single volume Vi, 0 ≤ i ≤
n − 1, of the system. In the following description, the algorithm execution
naturally proceeds according to the order of instructions, when not otherwise
specified by means of “go to” commands.

1. Initialization: load the description of each volume Vi, given by the
multiset Mi, the set of internal and communication rules and their
respective stochastic constants, the set of targets for each communi-
cation rule;

2. Compute the propensity function aj of each rule Rj , 0 ≤ j ≤ m−1, and
evaluate the sum of all the propensity functions in Vi, a0 =

∑m−1
j=0 aj.

If a0 = 0, then go to Step 3, otherwise go to Step 5 ;

3. Set τi, the length of the step increment in volume Vi, to ∞;

4. Wait for the communication of the smallest time increment τmin =
min{τ0, . . . , τn−1} among those generated independently inside all vol-
umes V0, . . . , Vn−1, during the current iteration, then go to Step 13 ;

5. Generate the step size τi according to the internal state, and select
the way to proceed in the current iteration (i.e. SSA-like evolution, or
tau-leaping evolution with non-critical reactions only, or tau-leaping
evolution with non-critical reactions and one critical reaction), using
the selection procedure defined in [26];
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6. Wait for the communication of the smallest time increment τmin =
min{τ0, . . . , τn−1} among those generated independently inside all vol-
umes, during the current iteration. Then:

- if the evolution is SSA-like and the value τi = τSSA generated
inside the volume is greater than τmin, then go to Step 7,

- if the evolution is SSA-like and the value τi = τSSA is equal to
τmin, then go to Step 10,

- if the evolution is tau-leaping with non-critical reactions plus one
critical reaction, and the value τi = τnc1c is equal to τmin, then
go to Step 11,

- if the evolution is tau-leaping with non-critical reactions plus one
critical reaction, and the value τi = τnc1c is greater than τmin,
then go to Step 12,

- if the evolution is tau-leaping with non-critical reactions only
(τi = τnc), then go to Step 12 ;

7. Compute τSSA = τSSA − τmin;

8. Wait for possible communication of objects from other volumes, by
means of communication rules. If some object is received, then go
back to Step 2, otherwise go to Step 9 ;

9. Set τi = τSSA for the next iteration, then go back to Step 6 ;

10. Using the SSA strategy [74], extract the rule that will be applied in
the current iteration, then go to Step 13 ;

11. Extract the critical rule that will be applied in the current iteration;

12. Extract the set of non-critical rules that will be applied in the current
iteration;

13. Check if the execution of the selected rules leads to an unfeasible state,
namely, there are negative amounts of molecules inside the volume. If
this is the case, then reduce τmin by half and go to step 6. Otherwise
go to step 14 ;

14. Update the internal state by applying the extracted rules (both inter-
nal and communication) to modify the current number of objects, and
then check for objects (possibly) received from the other volumes.

15. If the termination criterion is satisfied, then end the simulation. Oth-
erwise go back to Step 2.

81



Chapter 4. τ–DPP

The initialization phase of the algorithm is executed in parallel inside
every single volume of the system, where distinct rules and amounts of
objects may appear. The computation of the propensity functions aj of the
rules Rj is performed exploiting the expression presented in [74]. In step 2,
we check whether the sum a0 of all the propensity functions of the volume
is equal to zero. If so, then no rule can be executed inside this volume; in
this case, we set τi = ∞ and let the volume wait for the current τmin value,
chosen among the time increments computed inside the other volumes. This
step is necessary for the synchronization between this volume and the other
ones where, possibly, some rules will be applied. So doing, during the update
at the final step of the algorithm, it will also be possible to check whether the
volume is the target of some communication rules applied in other volumes
(that is, whether it will receive new objects), and hence properly update its
internal state.

On the other hand, if a0 > 0, the value of τi is computed inside the
volume considering only its internal state (this is done exploiting the first
part of the tau-leaping procedure presented in [26]). The τi computation
also implies the selection of the kind of evolution for the current iteration
inside each volume Vi, independently from the kind of evolution selected in
the other volumes.

Once every volume of the system has computed its τi value, the smallest
one is selected and used to generate the evolution of the whole system (step 6
of the algorithm) during the current iteration. This means that each volume
will not evolve according to the internally computed τi, but according to
the common value τmin. The rational behind this is that, we let all volumes
proceed along a common time line, therefore avoiding paradoxical situations
where one volume will execute rules that take place in the future or in the
past time of another volume.

When every volume has received the common value τmin, according to
the evolution strategy selected at step 5 of the algorithm, it extracts the
rules that will be applied in the final stage of the iteration. If the evolution
of the volume is governed by the SSA strategy, we have to check if τmin is
equal to τi (here called τSSA). If so, it means that the chosen τmin value
was actually generated inside this volume, and that the current iteration is
“long enough” to allow the application of one rule inside this volume. On
the other hand, if τmin < τSSA, then it is not possible to apply any rule
inside this volume. For this reason we only have to update the value of τi

(step 7 of the algorithm).
Afterwards, the volume verifies for possible incoming objects: if some-

thing is received from other volumes, then the internal state of the volume
is changed, and in the next iteration the volume will compute new values of
the propensity functions and a new τi value. On the contrary, if the volume
does not receive anything from its adjacent volumes, then its internal state
remains unchanged. For this reason, the τi value used in the next iteration
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will be the current τSSA value (updated during the step 7 of the algorithm).
Notice that the value τi = τSSA − τmin is used again in the next iteration
because, in the case τi is the smallest time increment of the whole system,
then the volume will be able to complete the execution of one rule.

The situation is easier for the other kinds of evolution. If the volume
is executing a tau-leaping step with the application of a set of non-critical
reactions and one critical reaction, we have to check if τi = τmin. If this
is true, besides the execution of the non-critical reactions extracted from
the poissonian distributions (we refer to [26] for details), it is possible to
execute one critical reaction. Indeed, the value τi computed inside the vol-
ume corresponds to the time needed to execute such critical reaction (this
is the reason why its execution is allowed). On the contrary, if τi > τmin,
the volume will execute non-critical reactions only. Finally, if the volume is
evolving according to the tau-leaping procedure with the execution of non-
critical reactions only, we use τmin for the sampling of the number of rules
that will be executed (according to the strategy described in [26]).

During step 13, the algorithm checks if the execution of the selected
reactions (both internal and communication) leads to an unfeasible system
state, where negative amounts of objects appear. In this case, the strategy
to avoid this problem consists in reducing the value of τmin by half and go
back to step 6 of the algorithm. So doing, a new set of reactions (possibly
smaller than the previous one) will be selected. The condition about negative
population is checked until an appropriate set of reactions is selected, halving
each time the length of the time step.

Finally, the state of the system is updated. Every volume executes the
selected reactions, both internal and communication, hence the number of
objects is properly updated also by means of the objects (possibly) received
from the other volumes. Note that the internal states of all volumes are
updated in parallel and, thanks to the choice of the common time increment
τmin, also in a synchronized fashion.

The algorithm takes a computational time equal to that of the original
tau-leaping procedure for the simulation of a single volume, since the τ
calculation strategy is the same. Hence, the time required to execute each
iteration is proportional to 2M (where M is the number of reactions of the
system). For a generic system composed by N volumes, the computational
time becomes 2MN , because it increases with the number of volumes itself.
The complexity of τ -DPP is different from other algorithms, like the NSM,
where a single volume evolves during each iteration. Indeed, in τ -DPP the
internal state of each volume has to be updated and, in order to compute
the length of the time step, the contribution of the entire system is required.

On the other hand, the τ -DPP strategy can be easily coded for parallel
architectures, where a one-to-one correspondence between volumes and pro-
cesses or threads, can be obtained. In this case, the computational time of
the algorithm scales with the number of “parallel processes” executed, with
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a little overhead due to the communication among volumes.

4.3 A test case for τ-DPP

In this section we present a simple chemical system used to test the accuracy
and the correctness of the τ selection procedure and of the communication
and synchronisation between volumes of τ -DPP. This test case consists of
two consecutive reactions, where the product of the first one is the reactant
of the second one:

r1 : A
0.1
−−→ B

r2 : B
0.025
−−−→ C

The consecutive reactions systems has been implemented by using two
different configurations: one consisting in a single volume where both reac-
tions appear, which has been simulated by means of tau-leaping algorithm.
The other configuration is composed by two volumes V1 and V2, each volume
containing a single reaction (r1 in V1, r2 in V2), and it has been simulated
by using the τ -DPP algorithm. In this last configuration, the reactions have
been adapted to the new structure, hence they are both defined as commu-
nication reactions. In particular, reaction r1 has now the form A → B, in2

and r2 is B → C, in1; moreover, in both configurations of the consecutive
reaction system we use the same set of stochastic constants.

Figure 4.1 shows the two dynamics obtained using the tau-leaping and
the τ -DPP algorithms. The comparable results prove the correctness and
reliability of τ -DPP.

4.4 τ-DPP with size associated to volumes and ob-

jects

The current variants of membrane systems used for the modelling of bio-
chemical systems provide a description where volumes can contain up to an
infinite number of molecules, since the sizes of the structure components and
of the objects contained within the volumes are not considered.

Moreover, communication channels are limited to adjacent volumes, that
is, it is possible to define rules that send objects between adjacent volumes.
In particular, in P systems with a tree–like membrane structure, the commu-
nication is usually permitted only from a volume to another one immediately
inside or outside the first one and vice–versa. On the other hand, also in the
case of tissue P systems [121] (or tP systems), the communication of objects
is allowed only between adjacent membranes, and it is achieved by using the
“synapses” defined between nodes (recently, different variants on P systems
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Figure 4.1: Comparison between the dynamics of the consecutive reaction
system obtained by means of tau-leaping (dashed lines) and τ -DPP (solid
lines).

have been introduced to better model economic or socio-economic processes,
databases, operating systems, etc., in which different communication strate-
gies are used, like Hyperdag P systems [148], or variants like that presented
in [155]).

For what concerns the membrane structure, either variant of P systems
use only a tree–like or a tissue–like structure, while hybrid structures are
not considered. For instance, the description of tissues where nodes can
have a complex internal structure, or tree–like systems where membranes
can enclose a tissue, have never been defined.

We briefly report here the basic notions of tP systems [121]. tP sys-
tems have been defined to describe a tissue–like architecture, where cells are
placed in the nodes of a (directed) graph, and objects are communicated
along the edges of the graph. These communication channels are called
synapses. Moreover, the communication of objects can be achieved both in
a replicative and non–replicative manner, that is, objects can be sent to all
adjacent cells or to one adjacent cell only, respectively.

In general, the structure of a tP system is composed by elementary mem-
branes, namely, each node of the system is represented by a membrane that
does not contain other membranes. Furthermore, the communication of
objects is allowed, as in standard P systems, only to/from adjacent mem-
branes. We refer the interested reader to [65, 157, 4, 116, 120] for further
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information and examples about tP systems.

Hereafter, we present a different variant of τ -DPP, called Sτ -DPP [29],
where we associate “measures” which represent the size of volumes and
objects, we use tP systems [121] to describe the topological organisation of
the membranes and to denote the possible communication channels of the
system, and we exploit the simulation strategy described in Section 4.1 to
describe the behaviour of the system. In the following, we will refer without
distinction to membranes or volumes.

To be more precise, in Sτ -DPP we associate a measure to membranes
and objects, representing the “size” of the volumes where the computa-
tion occurs and the volume of each object, respectively. Both the sizes of
membranes and objects are useful to describe any real system where it is im-
portant to avoid the infinite accumulation of objects inside a compartment,
which is very important in chemical system and cannot be achieved by sim-
ply bounding the “capacity” of the membranes or by limiting the maximum
number of each kind object allowed inside a particular volume, since each
object can have a different size. Moreover, in the framework of Sτ -DPP,
the system’s structure is independent from the communication channels be-
tween membranes, hence, two different graphs are used in the description:
the first one denotes the membrane structure, while the second graph speci-
fies the connections between membranes which allow the communication of
objects. Furthermore, the membrane structure can be hybrid (since it com-
bines tree-like P systems with tissue P systems), and the communication
can be performed between non adjacent membranes, to denote privileged
pathways between membranes. This characteristic of Sτ -DPP takes inspira-
tion from a specific component of living cells, called microtubule [167], with
the aim of reproducing its role as intracellular “highway” for the transport
of other cellular components, such as vesicles and proteins.

Sτ-DPP

In this section we will give a detailed description of Sτ -DPP, providing a
basic definition and the algorithm used to simulate a system’s dynamics.
As already said, Sτ -DPP is obtained combining the structure definition of
tP systems with the simulation strategy used in τ -DPP. Here, nodes are
arranged in a tissue–like fashion, but each of them can have a complex in-
ternal hierarchy, organised in a tree–like structure. Moreover, in this new
variant we consider sizes for both membranes and objects, and the rules
defined inside each membrane will be enabled only in the case there is suf-
ficient free space in the membrane where the rule is applied, for instance,
to “create” new objects or to receive objects from other volumes. The size
considered here can be used in the modelling and simulation of biochemical
systems where diffusive processes play an important role, and it is necessary
to avoid the unlimited accumulation of objects in a region of finite size.
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In order to correctly describe the hierarchy of complex nodes of the
system we first need a graph representing the topology of the membranes.
In particular, this graph can have undirected edges to indicate that two
membranes are placed at the same hierarchical level (as in the standard
definition of tP systems [121]). On the other hand, directed edges of the
graph are used to denote that the “source” membrane contains the “target”
membrane.

A second directed graph is needed to represent the communication chan-
nels among membranes. Clearly, the arrows of the edges indicate the direc-
tion of the (permitted) flow of objects between different compartments. Note
that, this communication graph can contain edges that are not indicated in
the graph which describes the membrane structure. The meaning of these
particular edges is to represent communication channels that connect non
adjacent membranes. Using these arcs, it is then possible to create privileged
pathways of communication between membranes.

The features of Sτ -DPP can be exploited to represent (among other real
life systems) reaction–diffusion systems [47], namely, mathematical models
which capture the dynamics of a set of substances involved in a number of
chemical reactions, considering both the temporal and spatial dimension.
In this case, the membrane structure can be used to represent a reaction
volume as the composition of a number of finite size subvolumes, and the
communication graph will describe the diffusion directions through the sys-
tem.

Definition

A Sτ -DPP with sizes associated with membranes and objects is defined as

Υ = (V,TG, CG,S,M,R, C,DX ,DV ),

where:

• V = {V0, . . . , Vn−1} is the set of the volumes Vi of the system;

• TG = (V, AT ) is a graph representing the topological arrangement of
the volumes in V and AT = Au

T ∪Ad
T is the set of the arcs (Vl, Vk) which

describes the arrangement of volumes. In particular, Au
T is the subset

of undirected arcs representing the connections between membranes
placed at the same level in the membrane structure. On the contrary,
Ad

T is the set of directed arcs (Vl, Vk) (where Vk ∈ Vl) which specifies
the inclusion relations between volumes. We also define the set of the
volumes enclosed in Vi as aT (Vi) = {Vl | Vl ∈ V, (Vi, Vl) ∈ Ad

T };

• CG = (V, AC) is a directed graph representing the connections (commu-
nication channels) among the volumes in V. AC is the set of directed
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arcs (Vl, Vk) (from Vl to Vk) which denote the presence of communi-
cation channels between volumes and specify in which directions the
flow of objects is allowed;

• S = {X1, . . . ,XM} is the set of molecular species, that is, the alphabet
of the system;

• M = {M0, . . . ,Mn−1}, is the set of the multisets occurring inside
the membranes V0, . . . , Vn−1, representing the internal state of the
volumes. Each multiset Mi (0 ≤ i ≤ n − 1) is defined over S;

• R = {R0, . . . , Rn−1} is the set of the sets of rules defined in volumes
V0, . . . , Vn−1, respectively. A rule can be of internal or of communica-
tion type (as described below);

• C = {C0, . . . , Cn−1} is the set of the sets of stochastic constants asso-
ciated to the rules defined in volumes V0, . . . , Vn−1;

• DX = {DX1
, . . . ,DXM

}, with DXj
∈ R

+, is the set of the sizes of the
molecular species X1, . . . ,XM , respectively;

• DV = {DV0
, . . . ,DVn−1

}, with DVi
∈ R

+, is the set of the sizes of the
volume V0, . . . , VN , respectively.

The multiset Mi, describing the state of volume Vi (i = 0, . . . , n − 1), is
defined as Mi = (m0, . . . ,mM ) where mj denotes the number of molecules
of the species Xj occurring inside Vi (j = 1, . . . ,M).

Given the internal state Mi of a membrane Vi together with the species
sizes in DX , it is possible to define the occupied volume in Vi as:

O(Vi) =
M∑

j=1

(mj · DXj
) +

∑

Vl∈aT (Vi)

DVl
, (4.1)

O(Vi) denotes the volume occupied by the objects currently present inside
volume Vi.

Hence, it is possible to define the value of the free space in Vi as:

F (Vi) = DVi
− O(Vi) (4.2)

Note that, at each rule execution (internal or communication), the free
space value has to be updated. The update operation adds to the free
space value the “volume” of the objects consumed or sent by the rule and
subtracts the “volume” of the objects produced by the rule or received from
other membranes. Internal rules have the general form α1X1 +α2X2 + · · ·+
αMXM → β1X1 + β2X2 + · · · + βMXM , after the execution of this kind
of rules, the free space in Vi is updated as F (Vi) = F (Vi) −

∑M
j=1(βj −

αj) · DXj
. On the contrary, a communication rule, have the generic form
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α1X1 + α2X2 + · · · + αMXM → (β1,1X1 + · · · + βM,1XM , tgt1) + (β1,2X1 +
· · ·+ βM,2XM , tgt2) + · · ·+ (β1,NX1 + · · ·+ βM,NXM , tgtN ). In this case we
need to update the free space of Vi (i.e., the membrane where the reaction is
applied) as F (Vi) = F (Vi)+

∑M
j=1 αj ·DXj

and the free space of each target

volume Vtgtk indicated by the rule: F (Vtgtk ) = F (Vtgtk )−
∑M

j=1 βj,kDXj
≥ 0.

In order to obtain a correct description of the system’s dynamics, we need
to check if a rule rµ (internal or communication) is applicable. Therefore, we
need to compute the effect of a rule on the free space of the volume affected
by the rule. It is clear that a rule can be executed only if the free space of
the volume, after the rule application, is greater or equal to zero. The rule
applicability is computed differently for internal and communication rules.
Given an internal rule occurring inside volume Vi, we need to check if, after
the rule execution, F (Vi) ≥ 0. For what concerns a communication rule rµ,
we need to check all the free space of the target volumes indicated by the
rule: ∀ tgtl of rµ, F (Vtgtl) ≥ 0, where the values βj are the stoichiometric
coefficients of the molecular species associated with Vtgtl .

Note that, using a strategy based on the tau-leaping algorithm to de-
scribe the behaviour of the system, at each iteration step, a certain number
of rules is applied in parallel. Hence, the applicability of the entire set of se-
lected rules need to be verified. This operation is realised by computing the
free values of each volume Vi considering the contribution of all the selected
rules; if the values of F (Vi) is greater or equal to zero (for each volume), then
the execution is allowed; otherwise a new set of rules need to be selected.

The algorithm

The Sτ -DPP algorithm is based on the original τ -DPP procedure presented
in Section 4.2. The differences between the two algorithms regard the specific
operations defined in order to handle the size of membrane and objects, to
compute the free space of each membrane and to check the applicability of
the selected rules.

In particular, at the beginning of the computation the Sτ -DPP algo-
rithms needs to initialise the volume by loading all the information related
to the size of membranes and objects in order to compute the initial value
of the free space. The other step of the iterative cycle are the same as in τ -
DPP, since the “sizes” are not involved in the computation of the propensity
functions and in the rules selection.

On the other hand, in the final step of Sτ -DPP, we need to verify if
the execution of the selected set of rules leads to an unfeasible state of the
system, with negative values of the free spaces of the membranes. This phase
of the algorithm is realised by computing, inside each volume, the new value
of the free space considering the contribution of the selected rules, both
internal and communication. If there is at least one volume whose free
space value is negative, then the execution of the rules is not allowed. In
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this case, the value of the length of the step τ is reduced by half, and a
new (possibly smaller) set of rules is selected. This operations are repeated
until the condition on the free space is satisfied (i.e., no negative free space
values are present). Note that this strategy is the same used when negative
amounts of objects appear in the system.

Finally, the system is updated according to the selected rules by modi-
fying the objects amounts and the values of the free space of each volume.

The other features introduced in Sτ -DPP regarding the possibility to
send objects to non-adjacent membranes and the definition of hybrid mem-
brane structure do not affect the simulation procedure, since they are im-
plicitly considered in the algorithm.

4.5 A test case for Sτ-DPP

In this section we present a system with preferential communication path-
ways. In particular, we define a model in which it is present a so called
microtubule [167]. The microtubule is a sort of intracellular “highway” for
the transport of other cellular components, such as vesicles and proteins.
In order to define a preferential pathway, we exploit the communication be-
tween non adjacent membranes to move objects in particular directions. We
consider the membrane system Υ represented in Figure 4.2, where:

• V = {V0, . . . , V7};

• TG = (V, AT ), where Au
T = {(V2, V3), (V4, V5), (V6, V7)}, and Ad

T =
{(V0, V1), (V1, V2), (V1, V3), (V3, V4), (V3, V5), (V5, V6), (V5, V7)};

• CG = (V, AC), AC = {(V0, V1), (V1, V0), (V1, V2), (V1, V3), (V3, V1),
(V3, V2), (V3, V4), (V3, V5), (V5, V3), (V5, V4), (V5, V6), (V5, V7), (V7, V5),
(V6, V7)};

• S = {X1,X2};

• M = {M0, . . . ,M7}, M0 = {X105

1 ,X105

2 }, M3 = M4 = . . . = M7 = ∅;

• R = {R0, . . . , R7}, R0 = {r0,0, r0,1}, R1 = {r1,0, . . . , r1,4}, R2 = {r2,0},
R3 = {r3,0, . . . , r3,2, . . . , r3,4}, R4 = {r4,0}, R5 = {r5,0, . . . , r5,4}, R6 =
{r6,0}, R7 = {r7,0, . . . , r7,4};

• C = {C0, . . . , C7}, where the value of all the stochastic constants is set
to 1;

• DX = {1, 1};

• DV = {106, 11 · 104, 104, 106, 8 · 104, 5 · 104, 104, 2 · 104}.
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Figure 4.2: The membrane system Υ with communication channels between
non adjacent membranes, in the graphical representation (left side), the
molecular species X1 is indicated as a dot, while X2 is denoted as a star, the
arrows indicate the allowed flow of information of the two molecular species.
On the right side, the communication graph CG, is reported.

Table 4.1: Rules of the membrane system Υ. The stochastic constants
associated to the rules are all set to 1.

Reaction

r0,0 : X1 → (X1, 1)
r0,1 : X2 → (X2, 1)
r1,0 : X1 → (X1, 0)
r1,1 : X2 → (X2, 0)
r1,2 : X1 → (X1, 2)
r1,3 : X1 → (X1, 3)
r1,4 : X2 → (X2, 3)
r2,0 : X1 → (X1, 4)
r3,0 : X1 → (X1, 1)
r3,1 : X2 → (X2, 1)

Reaction

r3,2 : X1 → (X1, 4)
r3,3 : X1 → (X1, 5)
r3,4 : X2 → (X2, 5)
r4,0 : X1 → (X1, 6)
r5,1 : X1 → (X1, 3)
r5,2 : X2 → (X2, 3)
r5,3 : X1 → (X1, 6)
r5,4 : X1 → (X1, 7)
r55

: X2 → (X2, 7)
r6,0 : X1 → (X1, 7)

Υ represents a simplified version of a “cellular” system which describes
the “movement” of molecules X1 and X2 from the “extracellular space”
(membrane V0) to the “nucleus” (membrane V7), passing through nested
regions of the “cytoplasm”, (membranes V1, V3, V5), or through a “micro-
tubule” (membranes V2, V4, V6). The rules listed in Table 4.1 describe the
diffusive processes (through the membranes of the system) related to X1 and
X2. Note that, only X1 molecules can “enter” into the microtubule regions,
and then, they can move only towards membrane V7 (the nucleus). On the
contrary, in the other regions, that is, outside the microtubule, the diffusion
is enabled in every direction for both molecules X1 and X2.
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Hereafter we report the results obtained by simulating the membrane
system Υ. In the first set of simulations we compared the behaviour of
the system as reported in Figure 4.2 with the behaviour obtained with a
different configuration (Figure 4.3), namely, we “sealed” the microtubule in
such a way that the molecules X1 can enter into it only from membrane V1

(into membrane V2).

Figure 4.3: The membrane system Υ with “sealed” microtubule. This con-
figuration allows the movement of molecules X1 into the microtubule only
from membrane V1.

In Figure 4.4, the dynamics of membrane V0 and V7 is shown. As ex-
pected, the diffusion of molecules X2 (black line) is slower than that of
molecules X1 in both configurations: with the microtubule accessible from
any membrane (blue line) or with the “sealed” microtubule (red line).
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Figure 4.4: Dynamics of membrane V0 (left) and V7 (right). In both graphs,
the dynamics of X2 (black line) and X1 with the completely open micro-
tubule (blue line) and the sealed microtubule (red line), is reported.

Figure 4.5 shows the dynamics of membranes V1, V2, V3 and V6 of the
system Υ. Inside membrane V1 and V3 (top left and right of Figure 4.5)
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4.5. A test case for Sτ -DPP

there is a greater amount of X2 with respect to molecules X1, since the
latter can diffuse towards membrane V7 passing through the microtubule.
On the other hand, inside the membranes which compose the microtubule,
the dynamics obtained with the two different configurations are comparable
for what concerns membrane V2; in the other membranes, and in the config-
uration with sealed microtubule, the quantity of X1 is lower, since this kind
of molecules cannot enter into the microtubule from any membrane of the
cytoplasm and they therefore move through membranes V3 and V5, resulting
in a slower diffusion towards membrane V7.
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Figure 4.5: Dynamics of membrane V1 and V3 (top left and right) and
membrane V2 and V6 (bottom left and right). In the graphs, the dynamics
of X2 (black line) and X1 with the completely open microtubule (blue line)
and the sealed microtubule (red line), is reported. Clearly, the quantity of
X2 inside membranes V2 and V6 is always zero because this molecular species
cannot enter into the microtubule.

In the second set of simulations, we considered a configuration where the
size of one membrane of the microtubule (namely, membrane V4) is much
more smaller than the size used in the initial configuration. In particular
the size of membrane V4 has been modified from 8 · 104 to 100.

The results of the simulations show that the diffusion towards the nucleus
V7 of the cell is slower in the configuration with the bottleneck represented
by the reduced size of membrane V4 (Figure 4.6).
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Figure 4.6: Dynamics of membrane V0 (left) and V7 (right). In both graphs,
the dynamics of X2 (black line) and X1 with the completely open micro-
tubule (blue line) and the “reduced” microtubule (red line), is reported.

Figure 4.7 shows the dynamics of the membranes representing the micro-
tubule: V2 (top), V4 (bottom left) and V6 (bottom right). As expected, the
reduced size of membrane V4 leads to an accumulation of X1 inside mem-
brane V2 since the molecules enter into this membrane but they cannot move
because membrane V4 is full. As a result, also the quantity of molecules X1

inside membrane V6 is low, because of the slower communication of molecules
from membrane V4.

4.6 Implementation of the algorithms

In the implementation of this kind of stochastic algorithms, the use of suit-
able data structures to encode the information of the system to simulate is
very important because it directly affects the computation time required for
the simulations.

The set of chemical reactions can be represented by means of matrices,
one for the left-hand side and one for the right-hand side of the reactions
(which encode the stoichiometric matrix of the system). Two different ma-
trices are required because only the left-hand side of each reaction is used to
compute the corresponding propensity function, while the right-hand side is
considered during the update operations.

In general, biochemical systems are composed of unimolecular and bi-
molecular reactions over a large set of molecular species, hence, the result-
ing matrices are sparse. If these data structure are codified by means of
multi–dimensional arrays, then the reading operations might be very time
consuming (proportional to MN , with M as number of reactions and N
number of chemical species). Therefore, the set of reactions has to be codi-
fied through linked lists, resulting in faster reading operations (proportional
to M). The other information of the system, such as the set of molecular
species, the set of stochastic constants, the targets of the rules and the size
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Figure 4.7: Dynamics of membrane V2 (top) and membrane V4 and V6 (bot-
tom left and right). In the graphs, the dynamics of X1 with the completely
open microtubule (blue line) and the “reduced” microtubule (red line), is
reported.

of volumes and objects (in the case of Sτ -DPP), can be encoded as vectors,
since all the reading operations related to these data are usually codified by
means of iterative cycles which sequentially read all the values.

Besides the definition of the data structure needed to handle the infor-
mation about the system to simulate, another important issue regards the
programming language which can be used to implement the algorithms. For
what concerns τ -DPP and Sτ -DPP, the most important feature required is
the efficiency; among the well-known and most used programming language,
C [100] represents the best choice. C is a relatively “low–level” language,
and it is suitable for small projects where efficiency and performance are
important.

The algorithms for the simulation of multi-volume systems can be easily
parallelised because most of the operations are executed considering only the
internal state of each volume, hence, a systems composed of n volumes can
be simulated by means of n different (parallel) processes which communicate
during each iterative cycle to identify the time increment which is used to
select the set of rules and, in the final step of the algorithm, during the
update operations, to send objects to other volumes and to (possibly) receive
objects due to the execution of communication rules within other volumes.
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The coding of the τ -DPP and Sτ -DPP has been realised exploiting the
message passing interface (MPI) [142]. MPI represents a standard for com-
munication among processes that model a parallel program running on a
distributed memory system. Among others, actual distributed memory su-
percomputers, such as clusters, are suitable for the execution of these pro-
grams.

4.7 Discussion and future developments

In this chapter we have shown how the stochastic method based on the tau-
leaping procedure can be implemented within the framework of P systems,
for the simulation of complex biological systems. In particular, we have
considered the class of dynamical probabilistic P systems, to exploit the
possibility of modelling systems composed by several volumes.

The new τ selection procedure here introduced works by selecting the
smallest τ taken from the set of τs generated inside the membranes during
the current iteration; then, an evolution step is performed executing several
rules, which are selected following the procedure presented in Section 4.1.

The advantage of introducing the tau-leaping method inside DPPs is
that we can choose the same leap of length τ for all the volumes in order
to communicate objects in the right way (assuming that they are sent to
the other volumes just at the end of each step, because the execution order
does not matter); this strategy results in a synchronisation of the volumes
and allows to obtain a good approximation of the behaviour of the entire
system.

An important aspect is that we can trace the simulated time of the
whole system, since every membrane evolves according to the chosen com-
mon τ value. Moreover, the time needed to run the simulation with the new
procedure is the same as the original tau-leaping algorithm [26] for a single
volume. Increasing the number of volumes, the computational time required
increases linearly; however, it is very easy to run a simulation on a parallel
architecture, simulating one compartment as one process.

In the second part of this chapter we presented a new version of τ -DPP,
called Sτ -DPP. The novel properties of Sτ -DPP consist in the representation
of the membranes structure and the communication within the system’s vol-
umes using two distinct directed graphs, the possibility to define tissue–like
structure where nodes have a complex internal architecture, the association
of a size to objects and membranes and the consequent handling of the free
space during the system evolution.

This new features are suitable for the modelling of a number of real
systems in which, first of all, the unlimited accumulation of objects within
membranes is not possible or, in other words, where the free space within
regions is a critical resource for the system dynamics. Second, the use of two
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distinct graphs to describe the membranes structure and the communication
within the system provides a formalism with a strong expressive power:
indeed it is possible to have communication channels between membranes
that are non adjacent and, conversely, it is possible that adjacent membranes
do not communicate. The first possibility allows the creation of preferential
paths of communication, and can be used, for instance, to reproduce the
role of microtubules in the protein transport within cells.

The approaches proposed in this chapter open several interesting re-
search lines, ranging from the modelling of real cellular processes or complex
biological systems in general, to the algorithmic improvements of the pro-
cedure, and the development of other relevant (modelling and simulating)
features in the area of Membrane Computing.

As a possible future development, we can better characterise and study
the role of space occupation and diffusion of molecules among the volumes
of the modelled systems. Furthermore, the simulation algorithm can be op-
timised in order to obtain a more efficient procedure and, otherwise, alterna-
tive strategies to select the reactions and to handle the reaction applicabil-
ity can be tested. For instance, we believe that more accurate simulations
might be achieved by considering the right–hand sides of communication
rules, during the computation of the time step τ , within the target volumes.

In addition, the problem of the size of volumes changing in time should
also be addressed, especially when dealing with cellular processes spanning
the cell cycle period. In fact, in this case the dimensions of volume can
increase, and also its internal conditions can be modified, therefore the req-
uisite condition of fixed volume for the applicability of standard stochastic
algorithms fails.

Finally, another possible extension is represented by the consideration
of the membrane potential that influences the dynamics of some biological
systems [45, 62]. We presented a first study about this topic in [141], where a
model for the simulation of the action potential in nervous systems, has been
described. Moreover, the τ -DPP algorithm has been modified in order to
consider, during the computation of the propensity functions, the influence
of the membrane potential on the probability to fire a reaction.
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Chapter 5

Modelling chemical and
biological systems

Cellular processes are characterized by peculiar features which make them
both fascinating and challenging to be studied, either with experimental
or computational approaches. To the aim of understanding the complex
topology of a biological system and its dynamics, mathematical modeling
has extensively proven to represent an indispensable tool [128, 198]. Math-
ematical modeling can be broadly classified into deterministic continuous
approaches, based on the laws of mass action, and into stochastic discrete
approaches, which take into consideration the discrete character of the bio-
chemical components and the intrinsic randomness of biological phenomena.
Indeed, biological systems can involve a huge number of processes, but the
amount of many molecular species can be very low. Under these conditions,
deterministic approaches are pushed to their limits and cannot always be
relied on, while stochastic methods are able to account for the randomness
that emerges and dominates the global behaviour of the system, thus in-
ducing substantial cell–cell phenotypic variations and cellular heterogeneity
[59, 111].

In this chapter, different applications of τ -DPP related to the modelling,
simulation and analysis of biological and chemical systems will be presented.

In Section 5.1, we present a discrete mathematical model for the Ras/-
cAMP/PKA pathway in the yeast Saccharomyces cerevisiae, which is in-
volved in the regulation of metabolism and cell cycle progression. The
pathway is tightly regulated by several control mechanisms, acting through
feedback cycles on the proteins that initiate the cascade events of signal
transduction. This system is investigated under various conditions, in order
to test how different values of several stochastic reaction constants affect the
pathway behaviour. In particular, we show that the level of two elements
of this pathway, the guanine nucleotides GTP and GDP, could be relevant
metabolic signals for the regulation of the whole system.
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In Section 5.2, a model of a genetic oscillator coupled with a quorum
sensing intercellular mechanism [58, 67] will be considered. The results of
simulations will be presented; some further issues concerning future exten-
sions of the model, as well as different strategies to work out the problems
of modelling a genetic oscillator, will be discussed.

In Section 5.3 we introduce the framework of chemical computing, in
order to show how to describe computations by means of chemical reaction
systems. We will present the encoding of simple boolean functions, of the
Fredkin gate and of Fredkin circuits, we also propose an encoding for register
machines instructions, and we give some insights about the construction of
a complete register machine with n registers. Finally, we will discuss some
improvements of this work, with the final aim of arriving at a possible wet
implementation of τ–DPP using the micro reactors technology.

Finally, in Section 5.4, the modelling and stochastic simulations of the
chemotactic signal transduction pathway in bacteria, are presented. This
particular pathway allows bacteria to respond and adapt to environmen-
tal changes, by tuning the tumbling and running motions that are due to
clockwise and counterclockwise rotations of their flagella.

By exploiting τ–DPP, we analyse this system to consider the interplay
between the stochastic fluctuations of a pivotal protein amount and the
number of cellular flagella. This approach suggests that the combination of
these factors might represent a relevant component for this pathway. Some
issues for future extension of this work are finally discussed.
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cerevisiae

5.1 The Ras/cAMP/PKA signalling pathway in
the yeast Saccharomyces cerevisiae

In this section, we propose the application of the τ -DPP algorithm for inves-
tigating some regulatory mechanisms in the Ras/cAMP/PKA signal trans-
duction pathway in yeast. The outcome of this work gives evidence that
τ -DPP represents an efficient strategy to perform stochastic simulations of
noisy biological systems. Indeed, a large–scale study has been recently per-
formed to measure the relationship between noise and protein abundance
in Saccharomyces cerevisiae [147], suggesting that the “intrinsic noise” can
dominate the noise in gene expression. Other similar works have corrobo-
rated the experimental evidence of noise at single–cell level in yeast, as well
as in other microorganisms (reviewed in [111]).

In S. cerevisiae, the intracellular signalling molecule (second messenger)
cyclic adenosine monophosphate (cAMP) is synthesized by the adenylate
cyclase protein, and induces the activation of the cAMP–dependent protein
kinase A (PKA). In turn, PKA is able to phosphorylate a variety of proteins
involved in transcription, energy metabolism and cell cycle progression ([194,
144]). The Ras/cAMP/PKA pathway plays an important role in the control
of yeast cell metabolism, stress resistance and proliferation, in relation to the
available nutrients ([193, 194]) and the comprehension of the mechanisms
that control this pathway is a relevant question either for basic science or
for biotechnological application. The whole signalling cascade is tightly
regulated, and the complex interplay between cascade components naturally
determines the challenging aspects of the (computational and experimental)
investigations on this pathway. Here, we present some results obtained from
stochastic simulations of the Ras/cAMP/PKA signalling pathway in a single
yeast cell, proving that the model we propose is able to simulate properly
the Ras protein cycle, the activation of adenylate cyclase, the synthesis
of cAMP, the activation of cAMP–dependent protein kinase PKA and the
main feedback. The results have been compared with the experimental data
([175, 38]), and provide information on the key regulatory elements of this
signalling network.

5.1.1 The Ras/cAMP/PKA pathway description

In yeast, Ras and cAMP signalling coordinates cell growth and prolifera-
tion with nutritional sensing (reviewed in [195]). During the exponential
growth phase, the cAMP/PKA pathway downregulates glycogen and tre-
halose content, stress tolerance, cell–wall resistance to lyticase digestion,
and expression of the genes that are controlled by STRE–boxes in their pro-
moters. Moreover, the cAMP/PKA pathway is involved in the control of
cell-cycle progression at phases G1 or G0, with a modulation of the critical
cell size, required both for budding and for mitosis [12]. Different compo-
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nents of the Ras/cAMP/PKA signalling pathway can be affected by stress,
and contribute to the control of the cellular response. The feeding of glucose
(or a related fermentable sugar) to starved S. cerevisiae cells, or the induc-
tion of intracellular acidification, increase the activity of adenylate cyclase
protein, which then triggers a rapid and transient increase in cAMP levels
[193].

In yeast, this pathway is tightly regulated (Figure 5.1). The synthesis
of cAMP by adenylate cyclase, CYR1, requires the activation of the small
GTPases Ras1 and Ras2, two monomeric G proteins which are inactive in
the GDP–bound state and active when GTP is bound. Ras proteins are pos-
itively controlled by the guanine nucleotide exchange factor (GEFs), Cdc25
and Sdc25, which stimulate the GDP-GTP exchange on Ras, and nega-
tively regulated by the two GTPase activating proteins (GAPs), Ira1 and
Ira2, which promote the intrinsically low Ras GTPase activity. Additionally,
adenylate cyclase activity is also positively modulated by the heterotrimeric
GTPase subunit Gpa2 and by the cognate receptor Gpr1, in response to
glucose addition ([37, 175]) (see Figure 5.1).

Figure 5.1: The cAMP pathway in yeast.

The protein kinase A (PKA) is the regulatory target of cAMP, which
activates the two catalytic subunits of PKA encoded redundantly by TPK1,
TPK2 and TPK3 genes ([197, 144]) by binding to its two regulatory subunits
(encoded by BCY1 gene). The active PKA operates in downstream intracel-
lular signalling, through the phosphorylation of a variety of proteins involved
in transcription, energy metabolism and cell cycle progression ([194, 144])
(Figure 5.1).

The inactivation of cAMP (i.e., the conversion to the form AMP) is gov-
erned by the phosphodiesterases Pde1 and Pde2, two enzymes which act as
antagonists in signalling in yeast and which constitute the major feedback
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control in the Ras/cAMP/PKA pathway ([112, 180]). This strong mecha-
nism operates to rapidly downregulate the pathway, and S. cerevisiae mu-
tant cells in which this feedback is inactivated can accumulate large amounts
of cAMP ([150]). The cAMP phosphodiesterase Pde1, that is activated by
PKA via phosphorylation ([112]), is one of the known target of this feedback,
though there are indications that the feedback operates at multiple levels,
also modulating the activity of Cdc25 ([81]), Ras or Ira proteins ([38]) in a
not clarified manner.

The experimental studies on the Ras/cAMP/PKA pathway are compli-
cated by the fact that both Ras and Cdc25 proteins are not only required
for glucose activation of cAMP synthesis, but they are also essential for
basal adenylate cyclase activity and for cell viability. Therefore, suppress-
ing mutations, or multicopy suppressor genes restoring viability, have to be
present in cells deleted for Ras or Cdc25. These suppressors might affect
cAMP accumulation by causing enhanced feedback inhibition or by other
unknown means, causing the occurrence of some contradictory results. Re-
cently, Cdc25 has been shown to be essential for Ras2 activation upon glu-
cose addition ([38]) and consequent PKA activation. However, the signals
that activate Cdc25 remain elusive, although there are some indications that
the level of guanine nucleotides (GTP and GDP) could be a relevant input
signal for this pathway ([177]).

5.1.2 The stochastic model

The model represents the Ras/cAMP/PKA pathway in a single yeast cell, it
consists of 30 molecular species and is described by the 34 reactions of Table
5.1, where the following notation is used to describe biochemical reactions:
Xp means that the molecular species X is phosphorylated, X + Y denotes
an interaction between species X and Y , while X • Y denotes that species
X and Y are chemically bound in the formation of a complex.

In order to decrease the total number of molecular species, and hence
to lower the computational time, we consider only one Ras protein, Ras2
(the most abundant in yeast), and only one GAP, Ira2. The regulatory and
catalytic subunits of PKA are denoted by symbols R and C, respectively.

Four main logical modules can be identified in the model:

(1) The switch cycle of Ras2 protein, involving the GEF Cdc25 and the
GAP Ira2, described by reactions r1, . . . , r10.

Ras2 • GDP + Cdc25 ⇄ Ras2 • GDP • Cdc25 ⇄ Ras2 • Cdc25 + GDP

↓↑
Ras2 • GTP + Cdc25 ⇄ Ras2 • GTP • Cdc25 ⇄ Ras2 • Cdc25 + GTP

The nucleotide exchange cycle has been derived by using the data
provided in [84, 104, 177], which show the existence of a nucleotide
free Ras • Cdc25 complex that can generate either Ras • GDP or
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Ras • GTP with similar kinetics, suggesting that the “exchange” is
dependent on the concentration of available nucleotides and is not
“directional” toward the generation of Ras • GTP .

(2) The synthesis of cAMP, via activation of adenylate cyclase CYR1,
described by reactions r11, . . . , r13. This is modeled assuming that
adenylate cyclase (CYR1) is active only in a complex with Ras2 •
GTP . The reaction r13 is optional and include a cyclase–dependent
interaction of Ras2 with Ira, as suggested by some experiments [119].

(3) The activation of PKA, via the reversible binding between its regu-
latory subunits R and cAMP, and the subsequent dissociation of the
tetramer PKA, described by reactions r14, . . . , r24.

(4) The activity of phosphodiesterases Pde1 and Pde2 (the latter is active
in the basal level regulation of cAMP), which determines the feedback
mechanisms for cAMP degradation, described by reactions r25, . . . , r32.
A Michaelis–Menten kinetics is simulated for Pde1 and Pde2. A phos-
phatase activity (PPA2) is also introduced to reset the system. In
addition, reactions r33 and r34 include an additional feedback mech-
anism based on the phosphorylation/dephosphorylation of Cdc25, as
suggested in [81].

The number of molecules for Ras2, Cdc25, PKA, Pde1, Pde2 and PPA2
was obtained by using the data of [70] (available online at [205]).

The number for Ira2 and CYR1 was estimated by comparing the fluores-
cence of yeast cells expressing fusion with eGFP (obtained by [205]) using
Cdc25–eGFP as a standard (300 molecules/cell).

The number of ATP, GTP and GDP was calculated by data of [177],
considering an average cell volume of 45fL [27, 96]. Taking into account
that part of the volume is given by cell wall and by internal structures, we
estimated an internal free water volume V of about 30fL (3 × 10−14L).

Therefore, for ATP (considering a concentration of 1mM) we obtained
about 2 × 107 molecules/cell, while for GTP and GDP we estimated 5 ×
106 and 1.5 × 106 molecules/cell, respectively, for yeast cells growing in
minimal glucose medium. In a similar way we calculated the number of
cAMP molecules using either literature [175] or experimental data.

The amount of different molecular species, that is, the discrete number
of molecules per cell, are listed in Table 5.2.

The estimation of the stochastic reaction constants of the model was
achieved by testing both the effect of a range of values for each constant
within any module, and the response of each and every module. More specif-
ically, starting from the simulation of the Ras2 switching cycle (module 1),
we assumed plausible relative magnitudes of the stochastic constants for
reactions r1, . . . , r10, and we adjusted them one by one, till we obtained a
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Table 5.1: The model for the Ras/cAMP/PKA pathway consisting of 34
reactions, given in the form “reagents → products”, and the corresponding
stochastic reaction constants.

Reaction Reagents Products Constant
r1 Ras2 • GDP + Cdc25 Ras2 • GDP • Cdc25 1.0
r2 Ras2 • GDP • Cdc25 Ras2 • GDP + Cdc25 1.0
r3 Ras2 • GDP • Cdc25 Ras2 • Cdc25 + GDP 1.5
r4 Ras2 • Cdc25 + GDP Ras2 • GDP • Cdc25 1.0
r5 Ras2 • Cdc25 + GTP Ras2 • GTP • Cdc25 1.0
r6 Ras2 • GTP • Cdc25 Ras2 • Cdc25 + GTP 1.0
r7 Ras2 • GTP • Cdc25 Ras2 • GTP + Cdc25 1.0
r8 Ras2 • GTP + Cdc25 Ras2 • GTP • Cdc25 1.0
r9 Ras2 • GTP + Ira2 Ras2 • GTP • Ira2 3.0 × 10−2

r10 Ras2 • GTP • Ira2 Ras2 • GDP + Ira2 7.0 × 10−1

r11 Ras2 • GTP + CY R1 Ras2 • GTP • CY R1 1.0 × 10−3

r12 Ras2 • GTP • CY R1 + ATP Ras2 • GTP • CY R1 + cAMP 2.1 × 10−6

r13 Ras2 • GTP • CY R1 + Ira2 Ras2 • GDP + CY R1 + Ira2 1.0 × 10−3

r14 cAMP + PKA cAMP • PKA 1.0 × 10−5

r15 cAMP + cAMP • PKA (2cAMP ) • PKA 1.0 × 10−5

r16 cAMP + (2cAMP ) • PKA (3cAMP ) • PKA 1.0 × 10−5

r17 cAMP + (3cAMP ) • PKA (4cAMP ) • PKA 1.0 × 10−5

r18 (4cAMP ) • PKA cAMP + (3cAMP ) • PKA 1.0 × 10−1

r19 (3cAMP ) • PKA cAMP + (2cAMP ) • PKA 1.0 × 10−1

r20 (2cAMP ) • PKA cAMP + cAMP • PKA 1.0 × 10−1

r21 cAMP • PKA cAMP + PKA 1.0 × 10−1

r22 (4cAMP ) • PKA 2C + 2(R • 2cAMP ) 1.0
r23 R • 2cAMP R + 2cAMP 1.0
r24 2R + 2C PKA 1.0
r25 C + Pde1 C + Pde1p 1.0 × 10−6

r26 cAMP + Pde1p cAMP • Pde1p 1.0 × 10−1

r27 cAMP • Pde1p cAMP + Pde1p 1.0 × 10−1

r28 cAMP • Pde1p AMP + Pde1p 7.5
r29 Pde1p + PPA2 Pde1 + PPA2 1.0 × 10−4

r30 cAMP + Pde2 cAMP • Pde2 1.0 × 10−4

r31 cAMP • Pde2 cAMP + Pde2 1.0
r32 cAMP • Pde2 AMP + Pde2 1.7
r33 C + Cdc25 C + Cdc25p 10.0
r34 Cdc25p + PPA2 Cdc25 + PPA2 1.0 × 10−2

good reproduction of the expected behaviour of the subsystem described by
this module. Then, every other module has been sequentially added to the
first one, following the same iterative process, and tested together to finally
perform a comprehensive and correct simulation of the whole pathway. Our
set of derived stochastic constants is listed in Table 5.1; the values corre-
spond to those used in the simulations of the following sections, when not
otherwise specified. In Table 5.1, all stochastic constants are expressed in
arbitrary units (time−1).

For the simulations of the model we used the τ -DPP stochastic algo-
rithm, described in Chapter 4. In our simulations, the value of error control
parameter ǫ (which is related to the accuracy level of the algorithm) has
been set to 0.03, as suggested in [26].
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Table 5.2: The copy number for Cdc25, Pde1, PKA, PPA2, Pde2 and Ras2
were taken by [70], we assumed that at the beginning of simulations all Ras2
is associated with GDP (Ras2 • GDP); the number of CYR1 and Ira2 was
estimated by the fluorescence of GFP fusions; the number of molecule per
cell of GDP, GTP and ATP were derived by data reported in [177].

Molecular species Copy numbers

CY R1 200
Cdc25 300
Ira2 200
Pde1 1400
PKA 2500
PPA2 4000
Pde2 6500
Ras2 • GDP 20000
GDP 1.5 × 106

GTP 5.0 × 106

ATP 2.4 × 107

5.1.3 The Ras2 • GTP generation module

The starting point of our stochastic simulations is the module corresponding
to the switching (activation/inactivation) cycle of protein Ras2, that is,
reactions r1, . . . , r10 in Table 5.1. The generation of the complex Ras2 • GTP
turns out to be very sensitive to the concentration of guanine nucleotides
(GTP).

The system starts with only Ras2 • GDP complex (20000 molecules),
and with GTP and GDP amounts equal to 5× 106 and 1.5× 106 molecules,
respectively. This situation is comparable with that found during yeast
growth on minimal media, where the Ras2 • GTP level increases to a value
corresponding to 4% of the total Ras2 value [177, 38]. When the GTP level
is decreased from 5 × 106 to 1.5 × 106 - a level that mimics a situation of
starved cells [177] - the amount of Ras2 • GTP drops to a very low level
(less than 0.5%) (Figure 5.2).

As expected, the Ras2 • GTP complex is greatly influenced by the rate
of dissociation of Cdc25 (stochastic constant c7) and by the activity of Ira2
(stochastic constant c10), as shown in Figure 5.3.

The remaining stochastic reaction constants of this module give only a
lower contribution, as summarized in Figure 5.4, where we show the para-
metric sensitivity of the free Ras2 • GTP level. The variation of the stochas-
tic constants c4, c5, c6, c9 did not result in significant Ras2 • GTP response,
hence we report only the outcome due to the changes in c1, c2, c3, c7, c8,
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Figure 5.2: Variation of Ras2 • GTP dependent on a step decrease of GTP
amount (from 5 × 106 to 1.5 × 106 molecules) taking place at time 1500.
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Figure 5.3: Sensitivity of Ras2 • GTP. (Left figure) Dependence on the
rate of dissociation of Cdc25: (a) c7 = 0.2; (b) c7 = 0.5; (c) c7 = 1.0; (d)
c7 = 1.5 and (e) c7 = 2.0.(Right figure) Dependence on the activity of Ira2:
(a) c10 = 0.25; (b) c10 = 0.5; (c) c10 = 0.7; (d) c10 = 0.9 and (e) c10 = 1.1.

c10 values.

5.1.4 Generation of cAMP, coupling with PKA and feedback
loops

The coupling of Ras2 cycle (reactions r1, . . . , r10) with adenylate cyclase ac-
tivity (reactions r11, r12, r13) allows the accumulation of cAMP in response
to Ras2 • GTP. On the other hand, the reactions r30, r31 and r32 cause
a degradation of cAMP to AMP by the cAMP–high–affinity phosphodi-
esterase, Pde2 (a Michaelis–Menten kinetics is used to describe this inter-
action). This allows the accumulation of cAMP (Figure 5.5) to very high
levels, comparable to those experimentally observed in mutant yeast cells
where the feedback mechanism is attenuated or inactivated (that is, in cells

107



Chapter 5. Modelling chemical and biological systems

0.0 10
0

2.0 10
3

4.0 10
3

6.0 10
3

8.0 10
3

1.0 10
4

1.2 10
4

0 0.5 1 1.5 2 2.5 3

R
a
s2

-G
T

P
 [

m
o
le

c
u
le

s]

Time
-1

 [a.u.]

c1
c2
c3
c7 
c8

c10

Figure 5.4: Sensitivity of Ras2 • GTP module.

where phosphodiesterase Pde1 is not fully working) [150]. In this simulation,
in order to switch off the activity of Pde1, we set to zero the values of rule
constants c25, . . . , c29. As expected, the steady–state cAMP level depends
upon the activity of Pde2 (Figure 5.5).
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Figure 5.5: Effect of Pde2 activity on cAMP accumulation: (a) c32 = 1.6;
(b) c32 = 1.7; (c) c32 = 1.8; (d) c32 = 1.9 and (e) c32 = 2.0.

If we add the basic feedback mechanism (reactions r25, . . . , r29) based
on the activity of the cAMP low affinity phosphodiesterase Pde1 [112], we
obtain a transient accumulation of cAMP (Figure 5.6). Moreover, the cat-
alytic subunits of PKA are clearly modulated by the level of cAMP (data
not shown).

In Figure 5.7 we also show how the variation of affinity between cAMP
and PKA modifies the PKA activity, as well as the cAMP level (reactions
r14, . . . , r24).
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Figure 5.6: Effect of Pde1 activity on cAMP accumulation: (a) c28 = 1.7;
(b) c28 = 2.0; (c) c28 = 3.0; (d) c28 = 4.0 and (e) c28 = 5.0.
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Figure 5.7: Variation of the catalytic subunit of PKA (left) and
cAMP (right) dependent on the affinity between PKA and cAMP (rules
r14, . . . , r21). Values of reaction constants: (a) ci = 10−4, cj = 0.1; (b)
ci = 10−5, cj = 0.1; (c) ci = 5 × 10−6, cj = 0.1 and (d) ci = 10−6, cj = 0.1,
where i = 14, 15, 16, 17; j = 18, 19, 20, 21.

We then simulate a transition in GTP amount by means of one step
increase, which mimics the glucose induced increase of intracellular GTP
[177]. As shown in Figure 5.8, a response close to the one observed in vivo
is achieved (for a comparison see Figure 2A of [175]).

This can be considered as an additional proof that our model simulates
in a reasonable quantitative way the cAMP pathway in a single yeast cell.

Finally, in Figure 5.9 we show how different values of GTP amount
affect both the peak and the basal level of cAMP (left), and PKA activ-
ity and Ras2 • GTP level (right). Hence, we can demonstrate the strong
dependence of the signalling pathway on GTP levels, indicating that the
intracellular GTP/GDP ratio, that is modulated by nutrients availability,
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Figure 5.8: Variation of C (left) and of cAMP (right) dependent on a step
increase of GTP amount (from 1.5 × 106 to 5× 106 molecules) taking place
at time 1500.

may be a relevant signal for this pathway as also suggested in [84, 177].
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Figure 5.9: Effect of different GTP input values on cAMP accumulation
(left) and on Ras2 • GTP and PKA activity (right).

5.1.5 Discussion

In mathematical modeling of biological or biochemical systems, sensitivity
analysis is used to quantify how the parameters of the model can affect the
system behaviour, e.g., to help in recognizing the fragilities or the robustness
of the system. Though it has been traditionally applied to deterministic
continuous models, theories and tools for parametric sensitivity of discrete
stochastic systems have recently been defined [82, 166], also with the aim of
capturing the relevant stochastic effects which can occur in small systems.
Through the simulations presented before, we determined - by manually
changing the values one by one - how small variations in some stochastic
constants of the Ras2 switching cycle (the first module of our model) result
in relative high variations of Ras2 • GTP level in the yeast cell (Figure 5.4).
Further analysis of this type, via appropriate algorithmic methods, is an
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ongoing work and will be elaborated for the whole pathway.
Indeed, a crucial point in understanding the dynamics of biological sys-

tems through computer simulations is related to the evaluation of the pa-
rameters involved in the system, such as molecular concentrations (or copy
numbers), binding constants, transcription or translation rates, etc. Except
for few special cases where the values can be found in literature, these con-
stants are not available or else ambiguous. The lack of information and the
inaccuracy about these data are often due to the difficulty, or the impossi-
bility, to perform correct measures during in vivo or in vitro experiments.

This fact then results in the challenging problem of assigning a reasonable
temporal dimension to the (stochastic) simulation results. The problem of
calibrating the system’s parameters can be tackled by using optimisation
techniques in order to find a set of optimal parameter values which can
be used to reproduce the observed dynamics of a system, as explained in
Chapter 6.

For the simulations of the Ras/cAMP/PKA pathway, we were able to
make a direct comparison between the simulations and the experimental
results. In yeast, cAMP was experimentally found to be around 2 × 105

molecules after stimulation, while basal levels were around 2-5 × 104 mole-
cules/cell. In addition, after stimulation, a cAMP peak was observed after
45-60 s, then a decrease was observed and a new steady–state reached in
3-5 min (for a direct comparison see the paper [175], Figure 2). These
experimental data fit very well with our stochastic simulations, hence, we
are in the condition to assign a reasonable temporal scale to our simulations.
A similar quantitative comparison can be done for Ras2 • GTP, which was
experimentally found to be in the range of 2-4% of total Ras2 in growing
cells (equivalent to 400-800 molecules/cell).

In addition, after stimulation of starved cells with glucose, Ras2 • GTP
increased from 0.5 to 4% of total Ras2 in about 1 min [177], and again these
data fit very well with our simulations.

In this work, we focused on the cytoplasmic regulators of the Ras/-
cAMP/PKA pathway, and provided stochastic simulations of the synthesis
of cAMP and of the cytoplasmic quantities of the pivotal complexes. As a
future development, we will construct an accurate map of related cellular
phenomena, such as the response of this pathway to nutrients and to in-
tracellular acidification, its connections with other pathways co–involved in
glucose signalling, and the downhill nuclear expression of target genes. Here,
we have used the level of intracellular GTP as input, that was experimen-
tally found to quickly respond to nutrients availability [177], but we could
also simulate the effect of a decrease of intracellular pH (that likely causes
an inhibition of GAP activity of the Ira proteins [37], or a fast increase of
Cdc25 activity [38]). In order to gain a higher biological relevance of our
model, we will include the Gpr1/Gpa2 pathway, which is a specific signalling
mechanism that responds only to high glucose concentration, and operates
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together with Ras2 • GTP to activate adenylate cyclase [37, 175]. Finally,
we will also test the effect of additional feedback mechanisms, such as the
inactivation of Cdc25, the activation of Ira, etc.

We also expect that our computational studies will support the experi-
mental work aimed at characterizing the actual localizations (that is, either
bound to plasma membrane or to internal membranes, or diffused within
the cell) of the central components of this pathway, since there exists evi-
dence that most of the Cdc25, CYR1, Ira2, Ras2 proteins localize in internal
membranes, suggesting the presence of large signalling complexes inside the
yeast cells [119].

The τ -DPP algorithm [30, 118] will be exploited in order to investigate
the topological distribution of the molecular species in distinct cellular re-
gions, and to introduce additional components and other external inputs.

Finally, we believe that establishing the pivotal roles of the different
components in the Ras/cAMP/PKA pathway in yeast might have a posi-
tive outcome for the elucidation of similar components in higher eukaryotes.
For instance, it is well known that the protein neurofibromin 1 (NF1), act-
ing as tumor suppressor in human cells, is homologous to the proteins of the
Ira family, and it has been shown to contain a GAP related domain which
regulates Ras [10]. Though its evident importance, biochemical and cellular
characterizations of NF1 are still on the way, and very few knowledge is cur-
rently available about NF1-interacting proteins. Therefore, the synergistic
integration of pathway modeling and of deletion experiments about Ira pro-
teins in yeast could probably provide useful hints for further interdisciplinary
investigations of NF1.
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5.2 The repressilator: a genetic oscillators coupled
with a quorum sensing mechanism

The control of gene expression in living cells can occur through distinct
mechanisms, such as positive or negative regulation, which enhances (or
inhibits, respectively) the binding between the RNA polymerase and the
promoter site of a gene. One goal in gene regulation analysis is to understand
how functional oscillations (e.g., in the circadian clock) can emerge in a
complex system as the macroscopic effect of the interactions and the coupling
of basic and microscopic elements.

In particular, the capability to construct and control synthetic gene cir-
cuits in laboratory experiments, allows to investigate the issue of gene regula-
tion in simplified systems. An example of such systems is the repressilator, a
synthetic oscillator implemented in Escherichia coli cells by means of specif-
ically constructed plasmids [58]. It consists of a network of three genes, lacI
(from E. coli), tetR (from the tetracycline-resistant transposon Tn10), and
cI (from λ phage), whose codified proteins act as repressors of each other’s
gene, in a cyclic way. Namely, the product of lacI inhibits the transcription
of tetR, the product of tetR inhibits the transcription of cI, whose product
in turn inhibits the transcription of lacI, thus closing the repression cycle.
To detect and readout the network behaviour, a green fluorescent protein
– whose synthesis is periodically triggered by the tetR product – has been
used as the reporter part of this system. Observations on a growing E. coli
culture evidenced the emergence of spontaneous oscillations in individual
cells, as well as the effect of noise through the variability between different
cells, probably due to the stochastic fluctuations of the network components
[58].

Another important aspect of bacteria is that they are able to synthesize a
diffusive molecule, called autoinducer, which is used to perform intercellular
signalling. This communication mechanism, termed quorum sensing, allows
bacterial cells to sense whether a critical cell density has been reached in their
surrounding, thereby switching on whole-population behaviours through the
synchronization of all individuals.

Gram-positive and Gram-negative bacteria synthesize different signalling
molecules. In general, the first use olipeptides as autoinducers, while the
latter (e.g. E. coli) use acyl-homoserine lactone (acyl-HSL) molecules. The
quorum sensing circuits in Gram-negative bacteria usually contain two main
families of proteins, which have been found to be homologous to two well-
characterized protein in the bioluminescent bacterium V. fischeri : the LuxI
and LuxR families. LuxI-like proteins are needed for the synthesis of the
autoinducers (they acts as acyl-HSL synthases when provided with an amino
donor and an appropriate acyl donor [152]), while LuxR-like proteins form
complexes with the autoinducer, which then regulate the transcription of
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target genes [132].

In [67], a synthetic multicellular clock has been investigated, by coupling
the repressilator system with bacterial quorum sensing. This intercellular
communication mechanism is able to lead the local genetic oscillators, within
a noisy and nonidentical population, to global oscillatory rhythms. In partic-
ular, it was shown that individual repressilator systems can self-synchronize,
even when their periods are broadly distributed [67].

In this section, we propose a multivolume model based on τ -DPP that
considers a repressilator-like system (RL) coupled with a quorum sensing-
like circuit (QSL). Namely, the RL consists of three genes (G1, G2, G3) which
cyclically inhibit each other’s expression, while the QSL consists of a genetic
component that triggers the production of the autoinducer (through the syn-
thesis of the intermediate autoinducer-synthases), plus a “control” molecule
that mimics the role of the protein in the LuxR family. The two systems are
interlaced through one positive feedback and one negative feedforward loop:
the first operates on the promotion of gene G1 in the RL by means of the
QSL autoinducer molecule, while the second operates on the inhibition of
the QSL gene by means of G1 product (see Figure 5.10).

Figure 5.10: The (single volume) network of the genetic oscillator system
coupled with quorum sensing mechanism.

5.2.1 A multivolume model for coupled genetic oscillators

The multivolume model for RL + QSL system consists of n volumes, each
one corresponding to a cell, a set of 34 reactions defined within each cell (Ta-
ble 5.3), 1 communication reaction defined in the environment (Table 5.4),
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and an alphabet of 21 molecular species. Among these, we can recognize 14
elementary species, and 7 complex species.

The set S of elementary species consists of Gi, Ri, Pi, which denote,
respectively, the i-th gene, mRNA and protein in the RL, for each i = 1, 2, 3;
GQS , RQS, PQS which denote, respectively, the gene, mRNA and protein in
the QLS; A, the autoinducer molecule; C, the control molecule used to
trigger on, along with A, the overexpression of gene G1. The set of complex
species is denoted by C, and consists of the species G1 · P3, G2 · P1, G3 ·
P2, A ·C,A ·C ·G1, A ·GQS, GQS ·P1. Each complex species is formed when
two elementary species interact and get bound. Formally, this process is
represented by means of rules of the form X + Y → X · Y , where X,Y ∈ S.
We also consider the possibility to have complex species consisting of more
than two elementary species; in this case the complex is formed in two
sequential steps, that is, X +Y → X ·Y , followed by X ·Y +Z → X ·Y ·Z,
where X,Y,Z ∈ S.

The rules in each cell work as follows. Rules r1 and r2 describe, respec-
tively, the transcription of gene G1 into one molecule of mRNA, R1, and its
translation into one copy of protein P1. Rules r3, r4 describe the degradation
of R1 and P1, respectively. The same holds for the sets of rules r5, . . . , r8

and r9, . . . , r12, defined for the other two genetic elements in the RL1.

Rules r13, r15, r17 describe the cyclic repression relation between the 3
genes in the RL: namely, the protein synthesized by gene G1, G2, G3, acts
as repressor for the expression of gene G2, G3, G1, respectively. When the
protein binds to the gene (e.g., rule r13 forms the complex G1 ·P3), it blocks
gene expression by avoiding the application of the respective transcription
rule (e.g., rule r1). The gene repression ends whenever the repressor is
released from the complex and the gene returns in an unbound form, that
is, by the application of the inverse rules r14, r16, r18.

The other rules consider the coupling between the RL and the QSL,
which allows cells to communicate each other; as a consequence, their be-
haviour can get synchronized. Rules r19, . . . , r22 describe the transcription
and translation of the quorum sensing gene GQS , and the degradation of
the respective synthesized mRNA and protein, RQS and PQS. Rule r23 de-
scribes the synthesis of the autoinducer molecule A, by means of the quorum
sensing protein PQS

2. When the autoinducer is present in the membrane,
it can undergo three different processes. First, it can bind to the quorum
sensing gene (rule r24, and its inverse r25) and promote its expression (rule
r26); note that the expression of GQS can also be inhibited, if protein P1

1Note that we do not explicitly describe the presence and the role played by transcrip-
tional, translational and degradation machineries occurring in real cells, tacitly assuming
their constant availability.

2In bacteria, the synthesis of these molecules require the additional components de-
scribed in Section 5.2. We assume that these components are always available and we do
not explicitly include them in the model.
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Figure 5.11: Stochastic oscillations of the repressor proteins P1, P2, P3 in the
single cell.

binds to it (rule r27, and its inverse r28). Second, the autoinducer can form
a complex with the control molecules C (rule r29, and its inverse r30). In
this case, the complex A · C can bind to gene G1 (rules r31 and r32) and
enhance its expression (rule r33). Third, the autoinducer can exit the cell
(rule r34) and diffuse into the environment, from where it can enter again
any cell, by the application of the non deterministic environmental rule rE.

5.2.2 Results of simulations

In the following, we report the results of the simulations performed with
τ -DPP using, when not otherwise specified, the stochastic constant values
given in Tables 5.3 and 5.4.

We start by presenting in Figure 5.11 the oscillatory dynamics of the
repressor proteins P1, P2, P3 in the single cell, when the quorum sensing
circuit is silenced (that is, only rules r1, . . . , r18 are active inside the cell).
The expected outcome resembles the behaviour obtained in [58], where the
order of oscillations of the three proteins proceeds in a sequential, cyclic
manner, dictated by the structure of the genetic repressor systems.

In Figure 5.12 we show the variation of dynamics of the quorum sensing
protein, PQS. On the left side, we show the situation where only rules
r1, . . . , r22 are active, hence the RL and the QSL are not interlaced. In this
case, PQS reaches a steady state (top part), and the complex GQS · P1 is
never formed (bottom part). On the contrary, if also rules r27, r28 are active,
that is, the negative feedforward occurs, then PQS undergoes controlled
oscillations (right side, top part). The right bottom part indicates how
frequently protein P1 regulates the expression of GQS (the complex GQS ·P1

is formed).
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Table 5.3: Reactions inside the single cell.
Reaction Reagents → products Constant

r1 G1 → G1 + R1 c1 = 1 · 10−2

r2 R1 → R1 + P1 c2 = 1 · 10−1

r3 R1 → λ c3 = 1 · 10−4

r4 P1 → λ c4 = 1 · 10−2

r5 G2 → G2 + R2 c5 = 1 · 10−2

r6 R2 → R2 + P2 c6 = 1 · 10−1

r7 R2 → λ c7 = 1 · 10−4

r8 P2 → λ c8 = 1 · 10−2

r9 G3 → G3 + R3 c9 = 1 · 10−2

r10 R3 → R3 + P3 c10 = 1 · 10−1

r11 R3 → λ c11 = 1 · 10−4

r12 P3 → λ c12 = 1 · 10−2

r13 G1 + P3 → G1 · P3 c13 = 1 · 10−1

r14 G1 · P3 → G1 + P3 c14 = 1 · 10−3

r15 G2 + P1 → G2 · P1 c15 = 1 · 10−1

r16 G2 · P1 → G2 + P1 c16 = 1 · 10−3

r17 G3 + P2 → G3 · P2 c17 = 1 · 10−1

r18 G3 · P2 → G3 + P2 c18 = 1 · 10−3

r19 GQS → GQS + RQS c19 = 1 · 10−2

r20 RQS → RQS + PQS c20 = 1 · 10−1

r21 RQS → λ c21 = 1 · 10−4

r22 PQS → λ c22 = 1 · 10−2

r23 PQS → PQS + A c23 = 5 · 10−3

r24 GQS + A → GQS · A c24 = 1 · 10−7

r25 GQS · A → GQS + A c25 = 1 · 10−3

r26 GQS · A → GQS · A + RQS c26 = 3 · 10−2

r27 GQS + P1 → GQS · P1 c27 = 1 · 10−2

r28 GQS · P1 → GQS + P1 c28 = 1 · 10−3

r29 A + C → A · C c29 = 1 · 10−3

r30 A · C → A + C c30 = 1 · 10−2

r31 G1 + A · C → G1 · A · C c31 = 1 · 10−6

r32 G1 · A · C → G1 + A · C c32 = 1 · 10−3

r33 G1 · A · C → G1 · A · C + R1 c33 = 5 · 10−2

r34 A → (A, out) c34 = 1

Table 5.4: Reaction in the environment.
Reaction Reagents → products Constant

rE A → (A, in) cE = 1

117



Chapter 5. Modelling chemical and biological systems

 0

 200

 400

 600

 800

 1000

 1200

 1400

m
ol

ec
ul

es

P1
P2
P3

PQS

    0

    1

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05 6e+05 7e+05 8e+05 9e+05 1e+06

m
ol

ec
ul

es

time [a.u.]

GQSP1
 0

 200

 400

 600

 800

 1000

 1200

 1400

m
ol

ec
ul

es

P1
P2
P3

PQS

    0

    1

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05 6e+05 7e+05 8e+05 9e+05 1e+06

m
ol

ec
ul

es

time [a.u.]

GQSP1

Figure 5.12: Dynamics of quorum sensing protein PQS . Left side: steady
state. Right side: controlled oscillations.

Then, we consider the communication between the single cell and the en-
vironment, and investigate the oscillatory dynamics within the cell through
the activation, from time to time, of different subsets of rules.

In Figure 5.13 we show the situation within the single cell when the
quorum sensing circuit is activated and interlaced with the genetic oscillator.
On the left side, all rules r1, . . . , r26, r34, rE are active, but the control of
P1 over GQS is silenced. In this case, PQS reaches again a steady state
(top part), and the autoinducer molecule is constantly accumulated inside
the cell (bottom part), thus promoting the expression of GQS though the
formation of the complex GQS · A (middle part). If also rules r27, r28 are
activated (right side), then PQS starts oscillating (top part), thanks to the
positive regulation of the autoinducer (through more frequent formations of
the complex GQS · A, middle part), whose amount, in this case, does not
increase in a linear way (bottom part).

Finally, in Figure 5.14 we show the dynamics within the single cell when
all rules (left side), and all rules but the environmental one (right side),
are activated. Therefore, in this case, we are also considering the positive
regulation of gene G1 by means of the autoinducer (controlled, in turn, by
C, which is assumed to be initially present in 1000 copies inside the cell).
On the left side, we show how the amount of P1 gets notably increased,
together with PQS (top part), since there is a high autoinduction of GQS

(middle part). The autoinducer shows the same behaviour of the previous
figure. On the right side, where the communication of the autoinducer from
the environment towards the cell is silenced, we see that the autoinductive
regulation of GQS is not triggered (middle part), since few molecules A
remain inside the cell (bottom part). Therefore, the dynamics of proteins
P1, P2, P3, PQS resembles the normal oscillations of Figure 5.12.
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Figure 5.13: Dynamics of quorum sensing protein PQS and autoinducer.
Left side: steady state. Right side: controlled oscillations.
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Figure 5.14: Genetic oscillator interlaced with quorum sensing circuit inside
the single cell. Left side: active autoinduction. Right side: no autoinduction.
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In order to better validate the effective application of communication
rules in τ -DPP, and to investigate the role of the intercellular signalling
mechanism, we consider a simple example where two cells (plus the environ-
ment) are coupled together. In particular, we analyse the case where one
cell, say C1, is unable to produce the autoinducer (that is, rule r23 is silenced
by setting c23 = 0), while the other cell (C2) is fully functional. Note that, if
C1 is placed in an empty environment (where neither cells nor autoinducer
molecules are present) under these conditions, then all its internal rules
triggered by the autoinducer (namely, r24, . . . , r34) cannot be switched on.
Instead, by placing C1 together with C2, we show how the correct applica-
tion of the communication of the autoinducer from C2 to the environment,
and from here to C1, is able to activate all other rules r24, . . . , r34 in C1.
Therefore, the intercellular (quorum sensing like) mechanism is effectively
working in a proper way. The results of this simulation are shown in Figure
5.15 where, on the left side, we present the oscillations occurring along a
common time line in cells C1 (top part, where PQS is not as high as P1) and
C2 (bottom part, where both PQS and P1 are elicited). On the right side,
instead, we show how frequently the gene GQS gets negatively regulated by
P1 and positively regulated by A (note that the value of GQS ·A is multiplied
by 1.1 in order to make the graphic more readable).
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Figure 5.15: Comparison of dynamics between two coupled cells. Left side:
oscillations in C1 (top) and C2 (bottom). Right side: gene regulation in C1

(top) and C2 (bottom).
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5.2.3 Discussion and future developments

The investigation of this system allows us to make some considerations on
one of the key issues that are related to the simulation of biological systems
by means of τ -DPP, that is, the role of stochastic constants associated with
communication rules. Usually, in τ -DPP application of a communication
rule means that an object (or a set of objects) is instantaneously sent to the
target volume, without considering the “time” that the objects could need
to move from one volume to another one. For instance, a communication
rule might represent the passage of a solute through a cellular membrane
mediated by a transport protein. This biological process can require a con-
formational change in the transport protein structure, which necessarily
prolong the time the solute would take to virtually cross the membrane in a
direct way [146]. Since in τ -DPP we are not considering intermediate “pas-
sage structures”, a tuning of the stochastic constants of the communication
rules is necessary, in order to better represent the behaviour of the objects
that move between adjacent volumes.

Furthermore, it would be interesting to check whether a more complex
system, consisting of a population of many coupled cells, can show (emer-
gent) synchronization events with respect to the oscillations of the three
repressor proteins and the quorum sensing protein. Since the modelling and
simulation approach we use here is stochastic, the gain of such a synchro-
nized behaviour in a noisy system is harder than doing this with a deter-
ministic approach (see, e.g., [67]). We will deal with this issue in a future
development of this work.

Another extension of this work might consist in considering more com-
plex systems, with populations of different kind of bacteria which oscillate
according to a predator–prey dynamics. An example of such kind of systems
has been introduced in [9], where the authors presented a synthetic ecosys-
tem composed by two (different) E. coli populations, able to communicate
by means of a quorum sensing mechanism. In particular, the interactions
between the two species regulate each other’s gene expression and survival.
Indeed, the predator bacteria can kill the prey by inducing the expression
of a killer protein in the prey, while preys save predators from committing
“suicide” by eliciting the expression of an antidote protein in the predators.

These features might be considered also in a more structured system, i.e.
a metapopulation (see Section 3.3), in order to investigate the different dy-
namics of the bacterial populations with respect to the topological structure
of the environment where they interact.
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5.3 First steps toward a wet implementation for
τ-DPP

The aim of this section is to propose a correspondence between τ -DPP and
chemical reacting systems occurring inside micro reactors. Micro reactors
[87] are laboratory devices consisting of several reacting volumes (reactors)
with a size at the scale of the µl, connected by channels used to transport
molecules. Indeed, there is a close relation between the topological descrip-
tion of these two systems: they are both composed by several volumes, and
among these volumes it is possible to communicate molecules. Moreover,
the approach based on multiset rewriting rules, that characterises τ -DPP,
is similar to the chemical reacting process occurring within a micro reactor.
Furthermore, both τ -DPP and chemical reacting systems emphasise the in-
trinsic stochasticity of chemical processes. The “noise”, associated to the
stochastic behaviour, rules the system dynamics at the micro-scales. At this
scale, the small volumes and the high dilutions result in a system where
particles interaction should be described in a discrete fashion. Finally, the
communication processes described by means of communication rules within
τ -DPP, are strictly related to the channels interconnecting the reactors.

In this section, we show how these analogies can be exploited to propose
a feasible wet implementation of τ -DPP. To obtain a description of τ -DPP
that can be implemented using micro reactors in a straightforward way,
we consider the encoding of boolean functions, Fredkin gates and circuits
through chemical reactions, following the chemical computing principles.

Chemical computing [49] is a technique used to process information by
means of real molecules, modified by chemical reactions, or by using elec-
tronic devices that are programmed following some principles coming from
chemistry. Moreover, in chemical computing, the result of a computation is
represented by the emergent global behaviour, obtained from the application
of small systems characterised by chemical reactions.

Exploiting the chemical organisation theory [122], we can define a chemi-
cal network in order to describe a system as a collection of reactions applied
to a given set of molecular species. Moreover, we can identify the set of
(so called) organisations, in the set of molecular species, to describe the
behaviour of such system. So doing, the behaviour is traced by means of
“movement” between organisations.

Furthermore, a different kind of problem encoding will be presented,
that is based on the instructions of register machines [134]. This approach is
similar to the one related to the chemical computing field. The idea is to use
a set of chemical reactions to realize the instructions of the register machines.
For instance, in Section 5.3.2, the formalisation and the simulation of a
decrement instruction by means of τ -DPP, is presented.
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5.3.1 Chemical computing

Here we introduce the basic notions of chemical computing, a novel compu-
tational paradigm where the information is processed by means of chemical
reactions. Then, we recall the basic definitions of chemical organisation the-
ory, that can be used gain additional knowledge on a chemical computing
system, such as its emergent behaviour.

In any generic biochemical system, information is processed by means of
chemical reactions occurring between “elementary” components (i.e. mole-
cules); by exploiting this metaphor, chemical reactions can be used to build
a novel computational paradigm [49]. This approach is called chemical com-
puting, and it is related to the ways of performing computations with both
real molecules and electronic devices, which are programmed using principles
taken from chemistry.

In general, the analysis of the outcome of chemical reaction processes
is hard because of their nonlinearity. The same problems are related to
the analysis of biological systems, since the global behaviour can be very
different from behaviour of their local components.

In order to work out this problem, the notions of chemical organisation
theory can be used to analyse the emergent behaviour of the system, starting
from its smaller components; so doing, it is possible to link the evolution
governed by the set of all single reactions to the global dynamics of the
system.

Chemical organisation theory [122] is used to identify a hierarchy of self
maintaining sub-networks, belonging to a chemical reaction network. These
sub-networks are called organisations. In particular, a chemical organisa-
tion is a set of molecular species that satisfies two properties, that is, it is
algebraically closed and stoichiometrically self-maintaining. Here we report
an informal definition of these concepts, and refer the reader to [122] for
formal definitions and further details.

A reaction network is a tuple 〈M,R〉, where M is a set of molecular
species and R is a set of reactions (also called rules). The rules in R are
given by the relation R : PM(M)×PM(M), where PM(M) denotes the set
of all the multisets of elements in M. The general form of a rule is α1m1 +
α2m2 + · · · + αkmk → β1m1 + β2m2 + · · · + βkmk, where m1, . . . ,mk ∈ M
are the molecular species involved in the rule and α1, . . . , αk, β1, . . . , βk ∈ N

are the coefficients associated to the molecules.

A set of molecular species C ∈ R is closed, if its elements are involved
in reactions that produce only molecular species occurring in C. The self-
maintenance property is satisfied when the molecules in C consumed by
some reaction, can also be produced by some other rule involving molecular
species occurring in the set C. Note that, in order to find the organisations of
a chemical network, only stoichiometric information (set of rules) is needed.

The set of organisations of a chemical network can be exploited to de-
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scribe the dynamics of the system, by means of the movement among dif-
ferent organisations. Namely, the dynamics is traced looking at the system
state and at the organisations “represented” by the molecules occurring in
the system. Therefore, this analysis consists in the study of processes where
molecular species appear or disappear from the system (that is, when their
amount become positive or go to zero). Note that, only the algebraic anal-
ysis of chemical organisations is sufficient in order to obtain this behaviour,
and that the evolution of the system can either take place spontaneously or
can be induced by means of external events, such as the addition of input
molecules.

If we want to use reaction networks to perform computations, we need
to assume that a computational problem can be described as a boolean
function, which in turn can be computed as a composition of many simple
functions (e.g. the binary NAND). Therefore, we will create a reaction
network (called boolean network), based on a set of boolean functions and
boolean variables.

Consider a set of M boolean functions F1, . . . , FM and a set of N (with
N ≥ M) boolean variables b1, . . . , bM , . . . , bN . The variables bj , 1 ≤ j ≤
M , are determined by the boolean functions (they are also called internal
variables). The remaining variables (bj such that M < j ≤ N) represent
the input variables of the boolean network. The values computed by the
M boolean functions, are defined as bi = Fi(bq(i,1), . . . , bq(i,ni)), where i =
1, . . . ,M and bq(i,k) is the value of the boolean variable corresponding to
the k-th argument of the i-th function. In general, the function Fi has ni

arguments, therefore, there are 2ni different input combinations.
Given a boolean network of this type, the associated reaction network

〈M,R〉, as presented in [122], is defined as follows. For each boolean vari-
able bj , two different molecular species, representing the values 0 and 1
of the variable, are added to M. In particular, lowercase letters are used
for the molecular species representing the value 0 and uppercase letters for
the value 1 of the variables. Therefore, the set M contains 2N molecular
species. The set R of rules is composed by two kinds of reactions: logical
and destructive. Logical reactions are related to the rows of the truth tables
of the functions involved in the boolean network; hence, the left-hand side
of the rule represents the input values of the boolean function, while the
right-hand side is the output value. The destructive reactions are needed
to avoid the possibility to have, inside the system, two molecular species
representing both states of the same variable at the same time (i.e. two
molecules representing the state 0 and 1 of the same boolean variable).

The resulting chemical network 〈M,R〉 implements the boolean network
without any specified input. The input variables of the boolean network
must be externally initialised because they are not set by the boolean func-
tions. The initialisation is encoded by means of inflow reactions. These
reactions are zero-order reactions producing molecules from the empty set.
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5.3.2 Definition and simulation of component reaction net-

works using τ-DPP

To lay out our path from a model of computation to a chemical computing
device, we define and simulate some test case systems using techniques in-
spired by the literature on reaction systems [49, 122]. These simple systems
must be powerful enough to compute, when assembled in more complex
combination, any computable (boolean) function. Hence, we first present
the implementations and the simulations of the NAND and XOR logic cir-
cuits through sets of chemical reactions, and then more complex systems
realised by means of Fredkin gates and circuits.

Finally, we show how we can implement two instructions of register ma-
chines by means of chemical reactions: SUB and ADD (note that, the add
instruction will be modelled with in the SUBADD module). We recall that
register machines [134] are universal abstract computing devices, where a fi-
nite set of uniquely labelled instructions is given, and which keep updated a
finite set of registers (holding integer numbers) at any time by performing a
sequence of instructions, chosen according to their labels. Every instruction
can be of one of the following type, here informally described:

• ADD: a specified register is increased by 1, and the label of the next
instruction is nondeterministically chosen between two labels specified
in the last instruction applied;

• SUB: a specified register is checked, and if it is non-empty, then it is
decreased by 1, otherwise it will not be changed; the next label will
be differently chosen in the two cases;

• HALT: the machine stops.

A boolean logic gate can be described through an appropriate set of
molecular species manipulated by some chemical reactions. The molecular
species are used to codify the 0/1 values of the logical variables; therefore, at
least two species are needed for each gate line, plus some possible auxiliary
species that are necessary to control the gate’s functioning. The chemical
reactions, by consuming and producing the chemicals in a specified way, are
used to implement the boolean function that transforms each input into the
correct output of the gate. The network of molecular species and chemical
reactions implementing a single logic gate can then be extended to describe
logic circuits. This extension necessarily requires to manipulate in a coherent
way the output and input species of all interconnected gates, in such a
way that the functioning of each single gate is properly simulated and, at
the same time, the correct flow of information through the whole circuit is
guaranteed.

To simulate the functioning of the logic gate by means of chemical re-
actions, three types of internal reactions are used. The so called input re-
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actions are needed to produce the input chemicals inside the volume, thus
simulating the input bits that are given to the gate. The logical reactions
are related to the rows of the truth table of the gate: they describe how the
output chemicals are produced whenever the corresponding input chemicals
appear inside the reaction volume. The degradation reactions are needed
to avoid the simultaneous presence of two conflicting species inside the vol-
ume, representing both the states 0 and 1 on the same gate line (as discussed
hereby).

When two or more logic gates are connected in a logic circuits, some
communication reactions are needed in order to simulate the lines that ac-
tually connect the gates. Communication reactions send output molecules
from one volume to the next one to simulate the information propagated
through the circuit.

We believe that τ -DPP represents a feasible framework for this task, as
it can be used to describe the chemical network underlying single logic gates
– as well as the more complex structure of a circuit – and to simulate their
functioning by following the temporal evolution of the input and output
molecular species.

5.3.2.1 The NAND and XOR logic circuits

The NAND logic circuit has been implemented with the sequential compo-
sition of an AND and a NOT gate as shown in Figure 5.16 (left). Following
the chemical computing guidelines described in Section 5.3.1, we define the
logic circuit with the rules listed in Figure 5.16 (right). Rules r1, . . . , r4 com-
pute the AND function, rules r5, . . . , r6 compute the NOT function and rules
r7, . . . , r10 “clean” the system when both values of a variable are present at
the same time, as described in Section 5.3.1. Finally, rules r11, . . . , r14 rep-
resent the inputs of the gate because they produce the molecules a, A, b and
B, representing the inputs A = 0, A = 1, B = 0 and B = 1 of the NAND
logic circuit, respectively. For instance, when the constants of the rules r11

and r13 are set to 1, the input given to the NAND gate is 0 for both the
input lines because molecules a and b are produced. The rationale behind
this, is that the different inputs for the system are obtained producing the
molecular species used to represent that particular values. The values of the
constants reported in the table have been used to perform the simulation of
the NAND behaviour by means of τ -DPP.

Starting from the set of rules presented above for the NAND logic circuit,
it is possible to define the τ -DPP which encodes the logic circuit. Formally,
the τ -DPP ΥNAND is defined as

ΥNAND = (V0, µ,S,M0, R0, C0),

where:
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Reaction Constant

r1 : a + b → c c1 = 1 · 10−3

r2 : a + B → c c2 = 1 · 10−3

r3 : A + b → c c3 = 1 · 10−3

r4 : A + B → C c4 = 1 · 10−3

r5 : c → D c5 = 1 · 10−2

r6 : C → d c6 = 1 · 10−2

r7 : a + A → λ c7 = 1 · 10−1

r8 : b + B → λ c8 = 1 · 10−1

r9 : c + C → λ c9 = 1 · 10−1

r10 : d + D → λ c10 = 1 · 10−1

r11 : λ → a c11 ∈ {1, 0}
r12 : λ → A c12 ∈ {1, 0}
r13 : λ → b c13 ∈ {1, 0}
r14 : λ → B c14 ∈ {1, 0}

Figure 5.16: The NAND logic circuit (left) and the set of reactions used to
implement it (right).

• V0 is the unique volume of the NAND logic circuit;

• µ is the membrane structure [0 ]0;

• S = {a,A, b,B, c, C, d,D} is the set of molecular species;

• M0 = ∅ is the initial multiset occurring inside the volume V0;

• R0 = {r1, . . . , r14} is the set of rules defined in volume V0 and reported
in Figure 5.16. Due to the membrane structure µ, all the rules here
involved are internal.

• C0 = {c1, . . . , c14} is the set of stochastic constants associated to the
rules defined in R0, and reported in Figure 5.16.

In Figure 5.17, the result of the simulation of the NAND gate is reported.
In the initial configuration of the system, the multiset is empty, that is, the
amounts of all molecular species are set to zero. At time t = 0, we simulate
that the system receives the molecules a, B as input, which corresponds
to setting the first input line to zero and the second line to one. This is
formulated as a τ -DPP configuration where the constants of rules r11 and
r14 are equal to 1, while the constants of rules r12 and r13 are equal to 0. The
output obtained with this configuration is 1: the system starts producing the
molecules D corresponding to the expected output value. At time t = 400,
the input values of the system are changed from a, B to A, B, setting c11

and c14 to 0 and c12 and c13 to 1. Now the system starts producing d
molecules, but the output of the system actually changes only when all the
D molecules have been degraded (by means of rule r10) and the molecules
d are then accumulated inside the membrane.

The XOR logic circuit (left side of Figure 5.18) has been implemented
using the set of rules listed in Figure 5.18 (right). The rules r1, . . . , r4
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Figure 5.17: Plot of the dynamics of the NAND unit with two inputs given
at time t = 0 and t = 400.

Reaction Constant

r1 : a + b → c c1 = 1 · 10−3

r2 : a + B → C c2 = 1 · 10−3

r3 : A + b → C c3 = 1 · 10−3

r4 : A + B → c c4 = 1 · 10−3

r5 : a + A → λ c5 = 1 · 10−1

r6 : b + B → λ c6 = 1 · 10−1

r7 : c + C → λ c7 = 1 · 10−1

r8 : λ → a c8 ∈ {1, 0}
r9 : λ → A c9 ∈ {1, 0}
r10 : λ → b c10 ∈ {1, 0}
r11 : λ → B c11 ∈ {1, 0}

Figure 5.18: The XOR logic circuit (left), and set of reactions used to im-
plement it (right).

compute the XOR function and r5, . . . , r7 “clean” the system when both
values of a variable are present at the same time, as described in Section
5.3.1. Finally, the rules r8, . . . , r11 represent the inputs of the gate. For
instance, when the constants of the rules r8 and r10 are set to 1, the input
given to the XOR gate is 0 for both the input lines. The values of the
constant reported in the table have been used to perform the simulation by
means of τ -DPP.

Formally, the τ -DPP ΥXOR, corresponding to the XOR logic circuit, is
defined as

ΥXOR = (V0, µ,S,M0, R0, C0),

where:

• V0 is the unique volume of the XOR logic circuit;

• µ is the membrane structure [0 ]0;
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Figure 5.19: Plot of the dynamics of the XOR unit with two inputs given
at time t = 0 and t = 200.

• S = {a,A, b,B, c, C, d,D} is the set of molecular species;

• M0 = ∅ is the initial multiset occurring inside the volume V0;

• R0 = {r1, . . . , r11} is the set of rules defined in volumes V0 and reported
in Figure 5.18. Due to the membrane structure µ, all the rules here
involved are internal.

• C0 = {c1, . . . , c11} is the set of stochastic constants associated to the
rules defined in V0 and reported in Figure 5.18.

In Figure 5.19, the result of the simulation of the XOR gate is reported.
In the initial configuration of the system, the multiset is empty, that is, the
amounts of all molecular species are set to zero. At time t = 0, we simulated
that the system receives the molecules a, B as input, which corresponds
to setting the first input line to zero and the second one to one. This is
formulated as a τ -DPP configuration where the constants of rules r8 and
r11 are equal to 1, while the constants of rules r9 and r10 are equal to 0.
The output obtained with this configuration is 1: the system producing the
molecules C corresponding to the expected output value. At time t = 200
the input values of the system are changed from a, B to A, B, setting c8 to
0 and c9 to 1. Now the system starts producing c molecules, but the output
of the system actually changes only when all the C molecules have been
degraded (by means of rule r7) and the molecules c are then accumulated
inside the membrane.
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5.3.2.2 Fredkin gates and circuits

The Fredkin gate is a three–input/three–output boolean gate, whose in-
put/output map FG : {0, 1}3 → {0, 1}3 is logically reversible (that is, its
inputs can always be deduced from its outputs) and preserves the number
of 1’s given in input. The map FG associates any input triple (αi, βi, γi)
with its corresponding output triple (αo, βo, γo) according to the formula
αo = αi, βo = (¬αi ∧ βi) ∨ (αi ∧ γi), γo = (αi ∧ βi) ∨ (¬αi ∧ γi) (see the
truth table in Figure 5.20). It is worth noting that the Fredkin gate behaves
as a conditional switch, since αi can be considered as a control line whose
value determines whether the input values βi and γi have to be exchanged
or not: FG(1, βi, γi) = (1, γi, βi) and FG(0, βi, γi) = (0, βi, γi) for every
βi, γi ∈ {0, 1}.

αi βi γi 7→ αo βo γo

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 1 0
1 1 0 1 0 1
1 1 1 1 1 1

Figure 5.20: The Fredkin gate: its behaviour as a conditional switch (left)
and its truth table (right).

The Fredkin gate is functionally complete for boolean logic: by fixing
γi = 0 we obtain γo = αi ∧ βi, whereas by fixing βi = 1 and γi = 0 we
obtain βo = ¬αi. By inspecting the truth table, we can see that the Fredkin
gate is also logically reversible, since the map FG is a bijection on {0, 1}3.
Moreover, it is conservative: for every input/output pair the number of 1’s
in the input triple is the same as the number of 1’s in the output triple.
In other words, the output triple is obtained by applying an appropriate
(input–dependent) permutation to the input triple.

The Fredkin gate is at the basis of the model of conservative logic in-
troduced in [64], which describes computations by considering some notable
properties of microdynamical laws of physics, such as reversibility and the
conservation of the internal energy of the physical system by which compu-
tations are performed. Within that model, computations are performed by
reversible Fredkin circuits, which are obtained by putting together Fredkin
gates. The evaluation of a Fredkin circuit in topological order (i.e. layer by
layer) defines the boolean function computed by the circuit, which is given by
the composition of the functions computed by each layer of Fredkin gates.
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The conservativeness of the circuit (preservation of the number of 1’s) is
equivalent to the requirement that the output n-tuple is obtained by ap-
plying an appropriate (input–dependent) permutation to the corresponding
input n-tuple.

Simulations results In this section, we first show how we can simulate a
Fredkin gate by means of chemical reactions; then, we present an example
of a Fredkin circuit, consisting of three gates arranged into two layers, and
describe how it can be implemented by means of a tissue-like membrane
structure.

Concerning the Fredkin gate, we define two different types of molecular
species for each of its lines; as previously stated, we will denote by means
of lowercase letters the chemicals representing the value 0, while uppercase
letters will be used for the chemicals representing the value 1. In particular,
in the following we use: the symbols a,A for both the input αi and output
αo on the first line of the gate; b,B for the input βi and d,D for the output
βo on the second line; c, C for the input γi and e,E for the output γo on
the third line. The rationale behind this choice is that, for the first line –
where the output bit is always equal to the input bit – two different chemical
species suffice, while for the second and the third lines of the gate – where
the logic switch is implemented – we will need to distinguish among the 0
and 1 bits given as input or generated as output. All these chemicals will
be manipulated inside a single volume of a τ -DPP.

To simulate the functioning of the logic gate by means of chemical re-
actions, we use input, logical and degradation reactions (no communication
rule is needed here).

According to the definition of τ -DPP [30], for each chemical reaction
there exists a corresponding stochastic constant that is used to evaluate the
probability of applying that reaction, at each time step, according to the
current configuration of the system. In the case of the Fredkin gate, we
have the additional peculiarity that the constants associated to the input
reactions can be modified – actually, turned on and off – at chosen time
instants during the system evolution (while the constants of logical and
degradation reactions have a value that is fixed during the system evolution,
as usual in τ -DPP). So doing, we can simulate the possibility that the input
lines αi, βi, γi of the Fredkin gate can receive a different bit at any chosen
time instant. The process can then be repeated at successive time instants,
thus allowing the gate to receive any sequence of input bits. Nevertheless,
constraints for the activation of input reactions are to be given, in order
to avoid the presence of conflicting input species inside the volume, which
would correspond to have the two opposite bits on the same input line
simultaneously. The constraints are the following: if an input reaction ri=0

for bit 0 is turned on for one of the three lines of the gate (that is, if species x
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Table 5.5: Chemical reactions for the Fredkin gate.

Reaction Constant

r1 : a + b → a + d c1 = 1 · 10−3

r2 : a + c → a + e c2 = 1 · 10−3

r3 : a + B → a + D c3 = 1 · 10−3

r4 : a + C → a + E c4 = 1 · 10−3

r5 : A + b → A′ c5 = 1 · 10−3

r6 : A′ + c → A + d + e c6 = 1 · 10−1

r7 : A′ + C → A + D + e c7 = 1 · 10−1

r8 : A + B → A′′ c8 = 1 · 10−3

r9 : A′′ + c → A + d + E c9 = 1 · 10−1

r10 : A′′ + C → A + D + E c10 = 1 · 10−1

Reaction Constant

r11 : a + A → λ c11 = 1 · 10−1

r12 : b + B → λ c12 = 1 · 10−1

r13 : c + C → λ c13 = 1 · 10−1

r14 : d + D → λ c14 = 1 · 10−1

r15 : e + E → λ c15 = 1 · 10−1

r16 : λ → a c16 ∈ {0, 1}
r17 : λ → A c17 ∈ {0, 1}
r18 : λ → b c18 ∈ {0, 1}
r19 : λ → B c19 ∈ {0, 1}
r20 : λ → c c20 ∈ {0, 1}
r21 : λ → C c21 ∈ {0, 1}

is produced inside the volume, where x = a, b or c), then the input reaction
ri=1 for bit 1 of the same line has to be turned off (that is, species X cannot
be produced inside the volume, where X = A,B or C, respectively). In
terms of constants, this means that, in general, if cri=0

= k, for some k > 0,
then cri=1

= 0; on the contrary, if cri=0
= 0 then cri=1

= k (in the following,
we always assume k = 1).

We stress the fact that straight after the time instant when the inputs are
changed, the system is usually in a configuration where some copies of both
species x,X (for x = a, b, c, d or e and, correspondingly, X = A,B,C,D or
E) occur inside the reaction volume. To solve this contradiction, degradation
reactions are expressly defined inside each volume in order to remove the
conflicting species.

Formally, we present the τ -DPP specification for simulating a single
Fredkin gate. We consider the construct ΥFG = (V,S,M,R,C) where:

• V is the single reaction volume corresponding to the Fredkin gate;

• S = {a,A, b,B, c, C, d,D, e,E,A′ , A′′} is the set of molecular species;

• M = ∅ is the initial multiset inside V ;

• R = {r1, . . . , r21} is the set of chemical reactions defined inside V , and
reported in Table 5.5;

• C = {c1, . . . , c21} is the set of stochastic constants associated to the
reactions in R, and reported in Table 5.5.

Reactions r1, . . . , r10 are the logical chemical reactions which specify how
the output chemicals are produced, and which simulate that a given input
triple occurs on the lines αi, βi, γi of the Fredkin gate. In particular, reac-
tions r1, . . . , r4 produce the output chemicals d,D and e,E when the input
chemical on αi is equal to a = 0, thus simulating bits 0 and 1 maintained on
βo and γo, respectively (that is, when no switch has to take place). On the
contrary, when the input on αi is equal to 1 (this case is simulated through
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the chemical A) a switch must be performed on the output values of the
second and the third line. In this case, we need to exploit two auxiliary
chemicals, denoted by A′ and A′′, in order to correctly generate the output
chemicals for βo and γo. In particular, A′ is used to simulate the presence of
bit 0 on βi (thus allowing to produce the output chemicals corresponding to
the input triple (1, 0, γi), for any γi ∈ {0, 1}), while A′′ is used to simulate
the presence of bit 1 on βi (thus allowing to produce the output chemicals
corresponding to the input triple (1, 1, γi), for any γi ∈ {0, 1}). As soon as
these auxiliary symbols are produced inside the reaction volume, the reac-
tions r6 and r9 (r7 and r10) generate the correct output chemicals when the
input of γi is equal to 0 (1, respectively).

Reactions r11, . . . , r15 are the degradation reactions that can only be
applied whenever at least one copy of each conflicting (couple of) chemicals
x and X occur inside the reaction volume. In other words, these reactions
are applied when the input values of the Fredkin gate are changed.

Reactions r16, . . . , r21 are the input reactions that produce the input
chemicals inside the volume, by mimicking the addition of a chemical so-
lution into the reaction volume. At any time step, exactly three of these
reactions are turned on, such that if ci 6= 0 then ci+1 = 0, and if ci = 0 then
ci+1 6= 0, for any i ∈ {16, 18, 20}.
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Figure 5.21: Simulations of the Fredkin gate: output results for the first
input (αi, βi, γi) = (0, 0, 1) at t = 0, and the second input (αi, βi, γi) =
(0, 1, 1) at t = 500.

In Figures 5.21 and 5.22 we present two independent simulations of the
Fredkin gate; in each one, two different input triples have been given at
distinct time instants. Namely, in Figure 5.21 we show the simulation
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Figure 5.22: Simulations of the Fredkin gate: output results for the first
input (αi, βi, γi) = (0, 0, 1) at t = 0, and the second input (αi, βi, γi) =
(1, 0, 1) at t = 400.

results of a Fredkin gate where the first input corresponds to the triple
(αi, βi, γi) = (0, 0, 1) given at the initial time t = 0, while the second in-
put is given at the time instant t = 500 and corresponds to the triple
(αi, βi, γi) = (0, 1, 1). According to the truth table of the Fredkin gate
(Figure 5.20), when the first input is received, the corresponding output
triple has to be (αo, βo, γo) = (0, 0, 1); translated into molecular species, this
output corresponds to the chemicals d and E produced inside the volume.
This behaviour is apparent from the linear growth of these two species in the
time interval t ∈ [0, 500]. At t = 500, when the input value on the second
line is changed by turning on reaction r19 (and turning off the conflicting
reaction r18), the molecular species D starts to be produced by means of
rule r3. Therefore, the system generates a configuration where some copies
of both species d and D (values 0 and 1 on βo) simultaneously occur inside
the volume. To solve this contradiction, the output species d and D for βo

are degraded by applying reaction r14, along with the corresponding input
species b and B for βi, which are degraded by applying reaction r12. Once
all copies of species d are erased from the volume (around t = 1000), the
number of copies of species D increases, thus generating the correct second
output for the second line. We outline that, though not explicitly evident
from the figure, in the time interval t ∈ [500, 1000] the number of copies
of D are not exactly equal to zero but are characterized by small positive
fluctuations (of the order of 2-3 molecules per time step). This behaviour is
due to the choice of the stochastic constants, as given in Table 5.5, whereby
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the degradation reaction r14 (for species d and D) has a higher probability
of being applied with respect to the input reaction r3 (which produces the
output species D). Therefore, as soon as a molecule of species D appears
inside the volume, it is almost immediately consumed by reaction r14. So
doing, we allow a more rapid decrease of the first output species d and the
consecutive increase of the second output species D.

In Figure 5.22 we show the simulation results of the Fredkin gate with
first input triple equal to (αi, βi, γi) = (0, 0, 1), given at the time instant
t = 0, and with second input triple equal to (αi, βi, γi) = (1, 0, 1), given at
time instant t = 400. Since in this case we are changing the input bit on the
first line of the gate, the switch between the second and the third line will
be implemented; therefore, all the three output molecular species A, D and
e generated after the second input will be different from the output species
a, d and E generated after the initial input. In the picture we represent
the temporal evolution of all these six chemicals. During the time interval
t ∈ [0, 400], we can observe the linear growth of species a, d, and E. At time
t = 400, when the bit on αi is changed from 0 to 1 (reaction r17 is turned
on, and r16 is turned off), we see that the amount of a starts to decrease due
to the application of reaction r11, until it is completely exhausted (around
t = 800), and the amount of chemical A can now increase. At this time, also
the production of output species d and E stops since, due to the presence
of the species A inside the volume, reactions r1 and r4 cannot be applied
anymore, and the copies of d and E still present in the volume start to get
erased by applying reactions r14 and r15. When all the copies of species d
and E are degraded (around t = 1600), the actual output species D and
e, corresponding to the second output, start to grow. Therefore, we can
correctly simulate the functioning of the Fredkin gate.

The chemical behaviour of the Fredkin gate highlights one of the biggest
drawbacks of simulating logic gates with chemical reactions: whenever the
input is changed, a time delay elapses before the corresponding output can
be effectively generated. Anyway, this delay can be reduced and modulated
by appropriately adjusting the stochastic constants of the chemical reac-
tions and, in particular, of the degradation reactions with respect to the
input reactions. Stated in other words, when a new input is provided to the
gate, in molecular terms there exists an average degradation time before the
reaction volume can be cleared out of the old output chemicals, in order for
the new output chemicals to increase and hence produce the expected out-
come. In principle, we can give an average measure of this delay according
to the stochastic constants chosen for all reactions, therefore deriving and
controlling the average time interval that has to elapse before the expected
output can be read.

We now present some simulations of the circuit depicted on the left side
of Figure 5.23, consisting of three Fredkin gates, structured into two layers
(where we denote by x1, . . . , x7 and y1, . . . , y7 the input and output lines of
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Figure 5.23: A Fredkin circuit with three gates and two layers (left) and its
tissue-like representation (right).

the circuit, respectively). On the right side of this figure, we also represent
the tissue-like structure of τ -DPP that is used here to simulate the entire
circuit: we connect three reaction volumes (called FG1, FG2, FG3) in such
a way that the output chemicals of lines γ1

o and α2
o of gates 1 and 2 in the

first circuit layer correspond to the input chemicals of lines α3
i and γ3

i of
gate 3, respectively (here, the superscripts on line names clearly denote the
number of the gate). Moreover, we consider an additional reaction volume
whose function is to collect all output species of each gate. Each reaction
volume FGi corresponds to the definition of τ -DPP ΥFG describing a single
Fredkin gate, with the following differences:

• in ΥFG1
, communication rules are used to send the output chemicals

a,A and d,D of lines y1, y2 to the output volume, and the output
chemicals e,E of the third line (that represents the first input line for
FG3) to volume FG3;

• in ΥFG2
, communication rules are used to send the output chemicals

d,D and e,E of lines y6, y7 to the output volume, and the output
chemicals a,A of the fifth line (that represents the third input line for
FG3) to volume FG3;

• in ΥFG3
, communication rules are used to send all output chemicals

to the output volume, and only the input reactions of the second line
can be turned on (since the first and third lines receive the input from
FG1 and FG2, respectively).

The output volume, instead, contains only the degradation reactions defined
in the standard definition of ΥFG, which are needed to erase the conflicting
output chemicals whenever the input to the circuit is changed. So doing,
we guarantee that the correct result of the entire circuit can be read inside
a unique volume.

In Figure 5.24 we show a simulation of this Fredkin circuit, by split-
ting all output chemicals in three distinct panels for a better comprehension
of their temporal evolution. During the simulation, the circuit receives a
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Figure 5.24: Simulation of the Fredkin circuit given in Figure 5.23. Output
results with first input (x1, x2, x3, x4, x5, x6, x7) = (1, 1, 0, 0, 1, 0, 1) at t = 0,
and second input (x1, x2, x3, x4, x5, x6, x7) = (1, 0, 1, 1, 0, 1, 0) at t = 500.

first input (x1, x2, x3, x4, x5, x6, x7) = (1, 1, 0, 0, 1, 0, 1) at time t = 0, and
then a second input (x1, x2, x3, x4, x5, x6, x7) = (1, 0, 1, 1, 0, 1, 0) at time t =
500. These two inputs generate the two outputs (y1, y2, y3, y4, y5, y6, y7) =
(1, 0, 1, 1, 0, 1, 0) and (y1, y2, y3, y4, y5, y6, y7) = (1, 1, 0, 1, 0, 1, 0), respective-
ly. Note that in the latter case only the bits on lines y2 and y3 are changed.
During the first time interval t ∈ [0, 500], the output chemicals correspond-
ing to the first input are first generated inside the three reaction volumes
FG1, FG2 and FG3 and then, by using the communication rules defined
in ΥFG1

,ΥFG2
,ΥFG3

, all these output chemicals are collected in the output
volume. At time t = 500 all lines of the circuit, except the first one, receive
a different bit: this change results in the variation of two output bits on
the lines y2 and y3, and the corresponding production of two new output
chemicals in reaction volumes FG1 and FG3. The dynamics of these two
output chemicals can be seen in the top and central panels of Figure 5.24,
respectively, where it is apparent how the chemicals corresponding to the
output bits y2 = 1 and y3 = 0 start to increase as soon as their conflicting
chemicals (corresponding to the old output bits y2 = 0 and y3 = 1) are com-
pletely degraded. We also highlight the behaviour of the output chemicals
associated to lines y4, . . . , y7 in the central and bottom panels of Figure 5.24:
even if the values of these bits are not affected by the second input, their
temporal evolution does not follow the expected linear growth. This is due
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to the fact that, when changing the value of x5 from the first to the second
input, the degradation delay required to consume all conflicting species is
now impacting on the dynamics of the output lines y6 and y7 in a weak way
(they just show a smooth and fast decrease before they can start to grow
again, as shown in the bottom panel), and of the output lines y4 and y5 in a
sharper way (they follow a dynamics similar to that of y3, as shown in the
central panel).

It is thus clear that, similarly to the single Fredkin gate, when simulating
a change of the input value in a circuit, we have to wait for species degra-
dation before the effective new output is generated. This time, however,
the topology of the circuit (number of layers and gates, and their inter-
connections) brings about an additional “noise” on the temporal evolution
of chemicals. This is due to an imbalance of the quantity of the chemical
species corresponding to the lines that are not connected to other gates in
a successive layer (e.g. the first and second lines of FG1, and the second
and third lines of FG2 in Figure 5.23), with respect to the quantity of the
species corresponding to the lines that become input for some other gate in
a successive layer (e.g. the third line of FG1 and the first line of FG2 in
Figure 5.23). Such imbalance could be avoided by providing a different form
of the circuit. In fact, in [105] it is shown how to transform any Fredkin cir-
cuit, consisting of a given number of gates arranged in a fixed configuration
of layers, into an equivalent (normalized) Fredkin circuit, where each layer
contains the same number of gates (to this aim, auxiliary gates and lines are
used). By considering this kind of normalized circuits, it is possible to sim-
ulate their functioning through chemical reaction systems without having
to deal with the aforementioned problems of degradation delays. However,
in this case we would have to handle more complex systems, consisting of
more volumes and many more chemical species and reactions.

5.3.2.3 The SUB instruction

We now describe and simulate a τ -DPP composed by 2 volumes reproduc-
ing the behaviour of a SUB instruction of a register machine. This type of
instruction is important because it hides a conditional behaviour, checking
whether a register is zero or not, and can be implemented by choosing a
different label for the next instruction according to the register value. The
availability of conditional instructions is a key issue in computing devices.

We implement a system where the quantity stored inside the register is
represented by the amount of molecules u occurring in volume V1. The label
for the next instruction is related to the production of molecules p or z in
volume V0. Finally, to start the system, molecules s are produced inside V0.
s′ and z′ are additional molecular species used to implement the instruction.

In order to correctly execute the SUB instruction, when molecules s are
sent inside the volume V1, the system first checks if the register value is
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zero, that is, if any u molecule occurs inside V1; then, the label for the next
instruction is produced.

Formally, a τ -DPP ΥSUB is defined as

ΥSUB = (V0, V1, µ,S′,S∞,M0,M1, R0, R1, C0, C1),

where:

• V0, V1 are the volumes of the SUB unit;

• µ is the nested membrane structure [0 [1 ]1 ]0;

• S0 = {p, s, s′, z} and S1 = {p, s, u, z, z′} are the sets of molecular
species of volumes V0 and V1, respectively;

• M0 = {s′40}, M1 = {u20, z5}, are the multisets occurring inside the
membranes V0 and V1 at time t = 0;

• R0 = {r01
, . . . , r05

}, R1 = {r11
, . . . , r13

} are the sets of rules defined
in volumes V0, V1, respectively, and reported in Table 5.6;

• C0 = {c01
, . . . , c05

}, C1 = {c11
, . . . , c13

} is the sets of stochastic con-
stants associated to the rules defined in V0 and V1, respectively, and
reported in Table 5.6.

Table 5.6: Reactions for the SUB unit (R0 on the left and R1 on the right).
Reaction Constant

r01
: 2p → (p, here) c01

= 1
r02

: z + p → (z, here) c02
= 1

r03
: 2z → (z, here) c03

= 1
r04

: s → (s, in1) c04
= 1

r05
: s′ → (s, here) c05

= 6 · 10−2

Reaction Constant

r11
: s + u → (p, out) c11

= 1 · 103

r12
: s + z → (z + z′, here) c12

= 1
r13

: z′ → (z, out) c13
= 1

The simulation starts with a positive register value within V1, represented
by the u molecules; the system receives a sequence of SUB requests, due to
the presence of s′ molecules in V0, transformed in s by the application of
rule r05

and then sent to V1 by rule r04
. Figure 5.25 shows the two execution

phases: in the first phase the counter is decremented, as long as there are s′

molecules available in V0, and molecules p are produced in V0. Afterwards,
when the register counter reaches zero (all u molecules are consumed), only
molecules z are produced in V0.

This system is initialised with small quantities for molecular species, and
this makes it fragile with respect to the inherent stochasticity, but our goal
is to qualitatively show the required sharp change of behaviour occurring
when the simulated register goes to zero.
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Figure 5.25: Plot of the dynamics of the SUB unit.

5.3.2.4 The SUBADD module

The SUB unit can be extended to perform both a SUB and an ADD instruc-
tions, according to the molecules received from the environment: s or a,
respectively. The register value is stored inside a third volume, V2, and it is
represented by the amount of molecules u occurring inside of it. The rules
shown in Table 5.7 are defined to perform both SUB and ADD operations,
and the choice of molecular species avoid mixing them. In particular, rules
r01

, . . . , r04
, r11

, . . . , r16
and r21

, . . . , r23
define the SUB instruction (check-

ing whether the register value is zero or not). The other rules are used to
perform the ADD instruction.

The τ -DPP ΥSUBADD implementing the SUBADD module is defined as

ΥSUBADD = (V0, V1, V2, µ,S′,S∞,S∈,M0,M1,M2, R0, R1, R2, C0, C1, C2),

where:

• V0, V1, V2 are the volumes of the SUBADD module;

• µ is the nested membrane structure [0 [1 [2 ]2 ]1 ]0;

• S0 = {l, l′, s, z,m, n, p, k, k′, a,A, o, q}, S1 = {s, p, z, a,A} and S2 =
{s, u, z, z′, a, a′} are the sets of molecular species;

• M0 = M1 = ∅ and M2 = {u30} are the multiset occurring inside the
membrane V0, V1 and V2 at time t = 0.

• R0 = {r01
, . . . , r08

}, R1 = {r11
, . . . , r18

}, R2 = {r21
, . . . , r25

} are the
sets of rules defined in volumes V0, V1 and V2 respectively, and reported
in Table 5.7;
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• C0 = {c01
, . . . , c08

}, C1 = {c11
, . . . , c18

}, C2 = {c21
, . . . , c25

} are the
sets of stochastic constants associated to the rules defined in V0, V1

and V2, respectively, and reported in Table 5.7.

In Figure 5.26 (left), the simulation of a decrement instruction is shown.
Inside the register there is a positive value (30 molecules u inside volume
V2); the system receives a SUB request, since l is sent to volume V0. This
request is processed by executing reaction r01

that produces l′ and s; the
latter is first sent to V1 by means of reaction r02

and then to V2 by applying
reaction r11

. The value of the register is decreased by executing reaction r21

inside volume V2, and a molecule p is sent to volume V0 (passing through
V1) where the next instruction will be processed.

One the right side of Figure 5.26, the simulation of an increment instruc-
tion is shown. In this case, the label of the instruction is represented by the
presence of a molecule k inside volume V0. The molecule k is transformed
into molecules k′ (that is left inside volume V0) and a (that is sent to vol-
ume V1) by means of reaction r05

. a in then sent to volume V2, by executing
reaction r17

, where it is used to increment the value of the register (reaction
r24

). The increment instruction inside volume V2 produces a molecule a′

that is transformed into A and sent to volume V1 (reaction r25
). Finally A

is sent to volume V0 by means of reaction r18
where it is transformed into a

molecule o by applying reaction r07
.

Table 5.7: Reactions for the SUBADD module (R0 on the left, R1 on the
right and R2 on the bottom).

Reaction Constant

r01
: l → (l′ + s, here) c01

= 1
r02

: s → (s, in1) c02
= 1

r03
: l′ + z → (n, here) c03

= 1
r04

: l′ + p → (m, here) c04
= 1

r05
: k → (k′ + a, in1) c05

= 1
r06

: a → (a, in1) c06
= 1

r07
: k′ + A → (o, here) c07

= 1
r08

: k′ + A → (q, here) c08
= 1

Reaction Constant

r11
: s → (s, in2) c11

= 1
r12

: 2p → (p, here) c12
= 1

r13
: 2z → (z, here) c13

= 1
r14

: p + z → (p, here) c14
= 1

r15
: z → (z, out) c15

= 1
r16

: p → (p, out) c16
= 1

r17
: a → (a, in2) c17

= 1
r18

: A → (A, out) c18
= 1

Reaction Constant

r21
: s + u → (p, out) c21

= 1 · 103

r22
: s + z → (z + z′, here) c22

= 1
r23

: z′ → (z, out) c23
= 1

r24
: a → (u + a′, here) c24

= 1
r25

: a′ → (A, out) c25
= 1

5.3.3 Discussion and open problems

In this section we presented the framework of chemical computing for the
implementation of logic gates and circuits, which can be modelled and sim-
ulated by using τ -DPP.
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Figure 5.26: Plot of the dynamics of the SUBADD module performing a
decrement instruction (left) and an increment instruction (right) on a reg-
ister.

We first shown the results obtained from the simulation of simple logic
gates, namely, the NAND and XOR. These gates represent the basic ele-
ments for the implementation of a “more complex” computing device. In
fact, by composing a number of NAND or XOR logic gates, arranged ac-
cording to a particular structure, it is possible to represent any boolean
function.

Afterwards, we have shown how to model and simulate both the Fredkin
gate and (an example of) Fredkin circuits with chemical reactions systems.
The results presented in Section 5.3.2.2 show the behaviour of the system
simulating the Fredkin gate; during the simulation the input values can be
modified, producing a corresponding change in the output values. Moreover,
the model of Fredkin gate has been used to build an example of Fredkin
circuit (composed of three Fredkin gates, arranged in a tissue-like structure).
Thanks to the modularity of the chemical system implementing the gate,
every Fredkin circuit can be built by putting each gate inside a volume and
adding as many communication rules as the lines connecting the gates within
the circuit. Another aspect that is worth considering is that Fredkin circuits
implemented as chemical systems are not “self reversible”, that is, it is not
possible to simulate both the forward and backward computations of the
circuit without any modification of the system. Hence, in order to simulate
the backward computations of a circuit, the flow of information described by
communication rules needs to be reversed. This can be achieved, anyway,
by constructing a similar system where the source and the target volumes
of these rules are exchanged.

A possible improvement to the implementation of Fredkin gates and
circuits hereby proposed includes the test of different sets of stochastic con-
stants for the chemical reactions, in order to reduce the delay generated
during the computation.

A different application of chemical computing within the τ -DPP frame-
work consists in the simulation of the register machine instructions. We first
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modelled the SUB instruction as a system composed by two membranes,
which has a conditional behaviour, checking whether a register is zero or
not. We then presented the results obtained by simulating the SUBADD
module. Note that, by using these modules, we can outline the structure
of a τ -DPP system simulating a complete register machine with just three
levels of nested membranes, namely, the skin membrane, enclosing a number
of “register” membranes structured like volume V1 in SUBADD module.

The key idea to be developed, is to simulate the steps of the register
machine by having inside the skin membrane the molecules representing the
current instruction label.

For instance, if instruction l increments register r, then the rules would
be defined to produce molecules ar and send them to an internal membrane
representing register r. That internal membrane will then produce molecules
Ar, and a rule in the skin membrane would transform pairs of molecules
l+Ar into (non-deterministically chosen) molecules m, where m is one of the
outcome labels specified by the ADD instruction being simulated. Additional
details related to the halting of the computation need to be specified.

This approach to the implementation of complex systems leads to some
open problems worth being studied. How does the passage from single simple
components to complete universal devices, with the required connectivity,
scale? It is well known that small universal register machines can be built,
as shown in [102], but their τ -DPP implementation, and eventually their
chemical system implementation have to be evaluated.

Moreover, the computational efficiency of these systems can be studied,
for instance with respect to NP-complete problems such as SAT. Anyway,
the usual trade-off between space and time in structural complexity perhaps
has to be applied with negative results to τ -DPP, since objects could ex-
ponentially grow in polynomial time (by using rules like p → 2p), but the
space structure of volumes is fixed. Finally, also the stochasticity of τ -DPP
has to be considered in the computational complexity study.
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5.4 A study on the combined interplay between
stochastic fluctuations and the number of flag-

ella in bacterial chemotaxis

Chemotaxis is an efficient signal transduction pathway which allows bacterial
cells to move directionally, in response to specific attractants or repellents
occurring in their surroundings. The pathway consists of several trans-
membrane and cytoplasmic proteins acting as signal sensors and response
regulators [97], which rule the reversal of the flagellar motor (governed by
the phosphorylation and dephosphorylation of a key protein, CheY). This
process induces a switch between running and tumbling movements, with
a frequency that allows a temporal sampling (through random walks) of
homogeneous environments. Anyway, in the presence of a gradient of at-
tractants or repellents, the bacteria are able to respond quickly by reducing
the frequency of flagellar reversal between clockwise and counterclockwise
rotations, which cause a longer running motion in a biased direction. The
frequency of switching is then reset to the random walk level if the concen-
tration of the external ligands remains constant in time. At the molecular
scale, this adaptation property is implemented by the coordinated action of
methyltransferase and methylesterase proteins acting on the transmembrane
receptors.

The genetic regulation and biochemical functions of the proteins in-
volved in chemotaxis are well known, and several models have been proposed
to study their complex interplay as well as the robustness of this system
[5, 186, 138, 106, 110, 170]. In the model we present hereby, we consider
very detailed protein–protein interactions for the chemotactic pathway in E.
coli, in response to attractant molecules, which sum up to 62 biochemical
reactions and 32 molecular species. The temporal evolution of the phos-
phorylated form of CheY (CheYp) is studied through stochastic simulations
performed by means of the τ -DPP algorithm presented in Chapter 4. In
particular, we investigate the CheYp dynamics under different conditions,
such as the deletion of other proteins involved in the pathway, the addition
of distinct amounts of external ligand, and the effect of different methylation
states.

We then propose an analysis on the interplay between the stochastic
fluctuations of CheYp and the number of cellular flagella – around half a
dozen in E. coli – in the individual bacterium, to the aim of devising the
mean time periods during which the cell either performs a running or a
tumbling motion. Experimental observations show that the running motion
requires all flagella to be simultaneously synchronized in the counterclock-
wise rotation, which occurs when CheYp is not interacting with the proteins
regulating the flagellar motor; on the contrary, when at least one flagellum
is not coordinated with the others, then the bacterium performs a tum-
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bling movement. To distinguish between these two states, we assume that
the cell is sensitive to a threshold level of CheYp, that is evaluated as the
mean value of CheYp at steady state. Because of stochastic fluctuations,
the amount of CheYp will randomly switch from below to above this value,
thus reversing the rotation from counterclockwise to clockwise rotations of
each flagellum. The original contribution presented here, is the link between
synchronization of flagella and stochastic fluctuations of CheYp, as the core
reason that stands at the basis of chemotactic motion. We have defined a
procedure to identify the synchronization of rotations of all flagella, and we
use it to compare the mean time intervals of running and tumbling motions
– as well as of the adaptation times after ligand addition – according to a
varying number of flagella.

5.4.1 The modeling of bacterial chemotaxis

In this section we present the chemotaxis signalling pathway and define
the mechanistic model that describes the molecular interactions therein in-
volved.

Bacterial chemotaxis Chemotaxis is a signal transduction pathway that
allows swimming bacteria to perform biased movements in ever–changing
environments, by efficiently sensing concentration gradients of beneficial
or toxic chemicals in their immediate proximity. The binding of ligand
molecules triggers an event cascade involving several transmembrane and
cytoplasmic proteins, which lately affects the concentration of a pivotal re-
sponse regulator, CheY. This protein rapidly diffuses inside the cell and
interacts with the proteins of the flagellar motor, thus inducing clockwise
(CW) and counterclockwise (CCW) rotation of each flagellum. When flag-
ella are turning CW, they are uncoordinated and the bacterium performs a
tumbling movement, while if they are all turning CCW, they form a bun-
dle and get coordinated, thus allowing the cell to swim directionally (the
so–called running movement). In a homogeneous environment, bacteria
perform a temporal sampling of their surroundings by moving with a ran-
dom walk, that is caused by a high switch frequency of the flagellar motors
rotations, that alternate rapid tumblings with short runnings. In the pres-
ence of a ligand concentration gradient, instead, bacteria carry out direc-
tional swimming toward/against the attractants/repellents, by reducing the
switch frequency of flagella rotations, that results in longer running move-
ments. If the ligand concentration remains constant in time, then the switch
frequency is reset to the prestimulus level, therefore realizing an adaptation
of the chemotactic response to the change in ligand concentration. In what
follows, we consider the chemosensory system of E. coli bacteria, in response
to attractant chemicals.
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The chemotactic pathway has been well characterized from a molecu-
lar point of view (see Figure 5.27). External signals are detected by trans-
membrane methyl–accepting proteins (MCPs), which are linked to cytoplas-
mic histidine protein kinases (CheA) by means of scaffold proteins (CheW).
These three proteins constitute the sensor module (receptor complexes) of
the whole pathway; each protein occurs as a dimer in every receptor com-
plex. The role of CheA is to transduce the presence of an external ligand
toward the inside of the cell, by phosphorylating two cytoplasmic proteins,
called CheY and CheB. The transfer of the phosphoryl group to these pro-
teins is more probable – that is, the activity of CheA is stronger – in absence
of external ligands. CheY and CheB compete for the binding to CheA, but
the phosphotransfer to CheY is faster than to CheB [202]; this fact assures
that the proper chemotactic response can be generated before the process
of adaptation occurs, as explained hereafter. CheY is the response regula-
tor protein which, after being phosphorylated, interacts with the proteins
FliM of the flagellar motors, inducing the CW rotation of the flagellum and
the tumbling movements (FliM is a key component of the processes that
stand downstream of the chemotaxis signalling, and therefore will not be
explicitly included in our model; anyway, some considerations about its role
within the model are discussed in Section 5.4.4). In presence of external
ligands, the activity of CheA is reduced: the concentrations of phosphory-
lated CheY diminishes, its interaction with the flagellar motors is reduced,
the CCW rotation is switched on, and bacteria can perform longer running
movements. The termination of this signal transduction process is mediated
by another cytoplasmic protein, CheZ, which acts as an allosteric activator
of CheY dephosphorylation. Concurrently to the processes involving CheY,
the chemosensory system possesses an adaptation response which depends
on the methylation level of the receptors. Methylation reactions are modu-
lated by the coordinated interplay between proteins CheR and CheB. Up to
4–6 methyl groups are constantly transferred to the cytoplasmic domain of
MCPs by the constitutively active methyltransferases CheR. On the other
side, the demethylation of MCPs occurs by means of the phosphorylated
form of the methylesterase CheB. The methylation state of MCPs also in-
tervene on the regulation of CheA: when MCPs are highly methylated, CheA
is more active; when MCPs are unmethylated, the activity of CheA is re-
duced. In the latter case, also the concentrations of phosphorylated CheB
diminishes, and this in turn lets the methylation state of MCPs increase,
with a consequent renewed activity of CheA, and so on through a continu-
ous feedback control. Therefore, the cell is able to adapt to environmental
changes and return to the random walk sampling when the concentration
gradient of the attractant remains constant in time. This feedback mech-
anism also allows bacteria to widen the range of ligand concentration to
which they can respond, making them very sensible to low environmental
variations.
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Figure 5.27: Signal transduction pathway in bacterial chemotaxis: solid ar-
rows indicate enzyme–catalysed reactions, dashed arrows indicate autocatal-
ysis; CH3 denotes the methyl group, P the phosphoryl group (the dimensions
of components are not scaled).

A mechanistic model For the modeling of the chemotaxis pathway, we
have considered detailed protein–protein interactions which sum up to a
total of 62 reactions and 32 molecular species [51]. The initial amounts –
given as number of molecules – of the 7 elementary chemotactic proteins
[184] are the following: 4000 dimers of MCPs; 4000 dimers of CheW; 4000
dimers of CheA; 17000 monomers of CheY; 12000 monomers of CheZ; 200
monomers of CheR; 1700 monomers of CheB (plus a constant amount of
1.2 ·106 ATP molecules that are needed for phosphorylation reactions). All
other molecular species appearing in the model are obtained by mimicking
the formation and dissociation of protein complexes, and by describing the
phosphorylation/dephosphorylation of cytoplasmic proteins and the methy-
lation/demethylation of MCPs, in both the conditions of presence and ab-
sence of external ligands.

Each reaction in the model is given in the form “reagents → products”,
where the notation X + Y is used to represent a molecular interaction
between species X and Y, while X::Y denotes that X and Y are chemi-
cally bound in the formation of a complex (see Table 5.8). Note that only
monomolecular o bimolecular reactions are here considered; the formation
of complexes consisting of more than two species is performed stepwise. The
phosphorylated form of species X, with X ∈ {CheA, CheB, CheY}, is de-
noted by Xp, while the methylation state of receptor MCP is denoted by
MCPm, for m = 0, . . . , 4 (that is, five methylation states are considered).

The reactions describe the following molecular interactions:
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Table 5.8: The 62 reactions of the model of bacterial chemotaxis. The val-
ues of the corresponding stochastic constants are: c1 = 0.1, c2 = 0.01, c3 =
0.1, c4 = 0.02, c5 = 0.325, c6 = 0.29, c7 = 0.165, c8 = 0.05, c9 = 0.0044, c10 =
0.0175, c11 = 0.0306, c12 = 0.035, c13 = 5.0 · 10−7, c14 = 7.0 · 10−6, c15 =
2.8 ·10−5, c16 = 5.0 ·10−5, c17 = 6.8 ·10−5, c18 = 5.0 ·10−4, c19 = 0.0035, c20 =
0.014, c21 = 0.025, c22 = 0.0336, c23 = 2.0 · 10−4, c24 = 0.0014, c25 =
0.0056, c26 = 0.01, c27 = 0.0135, c28 = 0.6, c29 = 0.8, c30 = 1.0, c31 =
1.2, c32 = 1.4, c33 = 15.0, c34 = 15.0, c35 = 15.0, c36 = 15.0, c37 = 15.0, c38 =
4.0 · 10−4, c39 = 3.75 · 10−4, c40 = 3.5 · 10−4, c41 = 2.125 · 10−4, c42 =
6.0 · 10−4, c43 = 0.0044, c44 = 0.0175, c45 = 0.0343, c46 = 1.0 · 10−8, c47 =
5.0·10−7, c48 = 7.0·10−6, c49 = 2.8·10−5 , c50 = 5.0·10−5, c51 = 1.0·10−5, c52 =
5.0 · 10−4, c53 = 0.0035, c54 = 0.014, c55 = 0.03, c56 = 1.0 · 10−5, c57 =
2.0 · 10−4, c58 = 0.0014, c59 = 0.0056, c60 = 0.0112, c61 = 0.0080, c62 = 1.0.
The methylation states (m) corresponding to the reactions are: m = 0 for
reactions 1−4, m = 0, . . . , 3 for reactions 5−8 and 38−41, m = 1, . . . , 4 for
reactions 9− 12 and 42− 45, m = 0, . . . , 4 for reactions 13− 37 and 46− 60.

Reagents Products

1 2MCPm + 2CheW 2MCPm::2CheW
2 2MCPm::2CheW 2MCPm + 2CheW
3 2MCPm::2CheW + 2CheA 2MCPm::2CheW::2CheA
4 2MCPm::2CheW::2CheA 2MCPm::2CheW + 2CheA
5-8 2MCPm::2CheW::2CheA + CheR 2MCPm+1::2CheW::2CheA + CheR
9-12 2MCPm::2CheW::2CheA + CheBp 2MCPm−1::2CheW::2CheA + CheBp
13-17 2MCPm::2CheW::2CheA + ATP 2MCPm::2CheW::2CheAp
18-22 2MCPm::2CheW::2CheAp + CheY 2MCPm::2CheW::2CheA + CheYp
23-27 2MCPm::2CheW::2CheAp + CheB 2MCPm::2CheW::2CheA + CheBp
28-32 lig + 2MCPm::2CheW::2CheA lig::2MCPm::2CheW::2CheA
33-37 lig::2MCPm::2CheW::2CheA lig + 2MCPm::2CheW::2CheA
38-41 lig::2MCPm::2CheW::2CheA + CheR lig::2MCPm+1::2CheW::2CheA + CheR
42-45 lig::2MCPm::2CheW::2CheA + CheBp lig::2MCPm−1::2CheW::2CheA + CheBp
46-50 lig::2MCPm::2CheW::2CheA + ATP lig::2MCPm::2CheW::2CheAp
51-55 lig::2MCPm::2CheW::2CheAp + CheY lig::2MCPm::2CheW::2CheA + CheYp
56-60 lig::2MCPm::2CheW::2CheAp + CheB lig::2MCPm::2CheW::2CheA + CheBp
61 CheYp + CheZ CheY + CheZ
62 CheBp CheB

• association of the three dimers (2MCP, 2CheW and 2CheA) consti-
tuting each ternary receptor complex (reactions 1–4);

• binding and unbinding of ligand molecules to the receptor complex in
the five methylation states (reactions 28–32 and 33–37, respectively);

• methylation and demethylation of MCPs, in absence and in presence
of ligand molecules (reactions 5–8 and 9–12, 38–41 and 42–45, respec-
tively);

• autophosphorylation of CheA in the five methylation states of MCPs,
in absence and in presence of ligand molecules (reactions 13–17 and
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46–50, respectively);

• phosphotransfer to CheY in different methylation states of MCPs, in
absence and in presence of ligand molecules (reactions 18–22 and 51–
55, respectively);

• phosphotransfer to CheB in different methylation states of MCPs, in
absence and in presence of ligand molecules (reactions 23–27 and 56–
60, respectively);

• dephosphorylation of CheYp and CheBp (reactions 61–62).

According to literature, the ternary receptor complex 2MCPm::2CheW::-
2CheA is assumed to be stable for the duration of the signal transduction
process [185]; moreover, the synthesis and degradation rates of all chemo-
tactic proteins are assumed to occur at a much slower scale than the chemo-
tactic response (hence, the reactions corresponding to these processes have
not been included in the model).

A stochastic constant is associated to each reaction, and it is needed
to evaluate the probability of that reaction to occur, as explained in Sec-
tion 1.1. The stochastic constants used for simulations are reported in the
caption of Table 5.8 (all values are expressed in sec−1). These values have
been partly derived from literature [139], and partly tuned to account for
the following biological features [109, 124]: (1) the binding affinity of the
ligand is directly proportional to the methylation state of MCPs; (2) the
ligand–receptor binding reactions occur at a faster rate with respect to phos-
phorylation and methylation/demethylation reactions; (3) the methylation
and demethylation activities of CheR and CheBp are, respectively, inversely
and directly proportional to the methylation state of MCPs; (4) the rate
of phosphotransfer from CheA to CheY and CheB depends on the rate of
autophosphorylation of CheA.

5.4.2 Stochastic simulations of chemotactic response regula-
tor

In this section we show the results obtained for the chemotactic response reg-
ulator protein, the phosphorylated CheY (CheYp), by analysing the system
under different conditions.

As already said, all the simulations have been performed using the τ -
DPP algorithm, setting the error control parameter ǫ = 0.03, as suggested
in [26]. All the simulations have been performed using a Personal Computer
with an Intel Core2 CPU (2.66 GHz) running Linux. The mean duration
time for one run, for the simulation of the dynamics of CheYp over 3000
sec, is about 4–5 seconds (with the initial values of chemical amounts given
in Section 5.4.1 and the constants reported in Table 5.8). All the figures

149



Chapter 5. Modelling chemical and biological systems

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0  2000  4000  6000  8000  10000  12000  14000

C
he

Y
p 

M
ol

ec
ul

es

Time [sec]

 1050

 1100

 1150

 1200

 1250

 1300

 1350

 1400

 1450

 1500

 1550

 0  100  200  300  400  500

C
he

Y
p 

M
ol

ec
ul

es

Time [sec]

50 ligands
100 ligands
500 ligands

1000

Figure 5.28: Dynamics of CheYp. Left: adaptation response to two consec-
utive stimuli. Right: comparison of transient and steady state response to
different ligand amounts.

reported in the following, unless otherwise stated, represent the mean value
over 50 independent runs of tau leaping, each one executed with the same
initial conditions.

The dynamics of CheYp has been analysed by considering various condi-
tions, such as the addition and removal of different ligand amounts, distinct
methylation states of MCPs and deletion of other chemotactic proteins.

We start by reporting in Figure 5.28, left side, the response of the sys-
tem to the addition of two consecutive amounts of external ligand: the first
stimulus corresponds to a ligand amount of 100 molecules, added to the
system at time t = 3000 sec and removed at time t = 6000 sec, while the
second stimulus corresponds to a ligand amount of 500 molecules, added at
time t = 9000 sec and removed at time t = 12000 sec. Note that, since
the amount of CheYp is equal to 0 at the beginning of the simulation, its
dynamics shows a marked increase which then reaches – due to the coun-
teraction of CheZ, CheR and CheB – a steady state level. Starting from
this level, the addition of the ligands has been simulated by changing its
amount from 0 to 100 (500, respectively) molecules, thus mimicking the
environmental situation where the bacterium encounters a different concen-
tration of attractant molecules. Vice versa, the removal of the ligands has
been simulated by putting the value of the ligand back to 0. In the time
interval between the addition and the removal of each ligand stimulus, the
amount of ligand molecules has been kept at the constant value of 100 and
500, respectively, thus mimicking the presence of an environmental homo-
geneous concentration. This has been done in order to test the adaptation
capabilities of the system. In both cases, we can see that the system is able
to respond to a step–increase of the ligands by achieving a sharp and fast
decrease in CheYp (that is, the negative peaks at time instants t = 3000
and t = 9000 sec). Immediately after this transient, the amount of CheYp
returns to a steady state value, which differs from the prestimulus level only

150



5.4. A study on the combined interplay between stochastic fluctuations
and the number of flagella in bacterial chemotaxis

Table 5.9: Steady state values and minimal/maximal transient values of
CheYp after addition and removal of distinct ligand amounts.

Ligand amount SS1 Min SS2 Max SS3
50 molecules 1486.7 1245.4 1500.9 1626.0 1474.7
100 molecules 1486.7 1160.7 1495.1 1645.4 1474.3
500 molecules 1486.7 1078.4 1481.4 1653.2 1469.4
1000 molecules 1486.7 1058.6 1478.2 1665.8 1474.7

for a few tens of molecules, at most, according to the amount of added lig-
and. In this phase, the bacterium is returning to the prestimulus switching
and thus to the random walk sampling of its surroundings. When the ligand
is removed, CheYp shows another transient behavior, corresponding to a
sharp and fast increase of its amount, that is in line with experimental ob-
servations (see [11, 170]). After this second transient, the amount of CheYp
correctly returns to the prestimulus steady state level.

In Figure 5.28, right side, we compare the transients and steady states
reached by CheYp after the addition of distinct ligand amounts. This figure
shows that the response magnitude at steady state and the adaptation time
of CheYp is only slightly sensitive to the ligand amount, being the relative
differences less than a few tens of molecules and less than a few seconds,
respectively. The mean values of the steady state of CheYp before the
stimulus (SS1), after the ligand addition (SS2) and after the ligand removal
(SS3) are reported in Table 5.9, together with the values of its minimal and
maximal values immediately after the ligand addition and removal (Min
and Max, respectively), for the four ligand amounts (50, 100, 500, 1000
molecules) considered in Figure 5.28.

In Figure 5.29 we show how the dynamics of CheYp changes when CheB
is deleted from the system at time t = 3000 sec, in both conditions of absence
of external ligands (left side) and of presence of 100 molecules of ligand (right
side) added at time t = 3000 sec. CheB is the methylesterase that, once
being phosphorylated by CheA, increases the methylation state of MCPs,
thus keeping CheA more active. This, in turn, causes an increase in the
amount of CheYp, which is evident from its new steady state level reached
after CheB deletion, and also from its less negative transient decrease after
ligand addition.

Similarly, in Figure 5.30 we show the dynamics of CheYp when either
CheR (left side) or CheZ (right side) are deleted from the system at time
t = 3000 sec, simultaneously to the addition of 100 ligand molecules (the
temporal evolution of CheYp when no ligand is added is basically equiva-
lent). When CheR is deleted, then its methyltransferase activity is silenced,
the MCPs are no more methylated, and hence the amount of CheYp tends
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Figure 5.29: Comparison of dynamics of CheYp in normal condition and
after deletion of CheB at t = 3000 sec, without ligand (left) and with simul-
taneous addition of 100 ligand molecules (right).
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Figure 5.30: Comparison of dynamics of CheYp in normal condition and
after deletion of CheR (left) and CheZ (right) at t = 3000 sec, with simul-
taneous addition of 100 ligand molecules.

to zero. On the contrary, when CheZ is deleted, then all CheY molecules
always remain phosphorylated. For the sake of completeness, we have also
simulated the dynamics of CheYp when either CheB, CheR or CheZ are
deleted from the system since the time instant t = 0, in order to have a
comparison about the initial temporal evolution of CheYp and the steady
state levels it can reach. In these conditions, the model correctly simulates
a very low production of CheYp when CheR is deleted, and an increased
production (albeit with different magnitudes) when either CheB or CheZ
are deleted (data not shown).

Finally, in Figure 5.31 we compare the dynamics of CheYp in response to
the addition of 100 ligand molecules at t = 3000 sec, when only 3 (left side)
or 2 (right side) methylation states of the receptors are allowed. In prac-
tice, this is achieved by initially putting to zero the values of the stochastic
constants of methylation and demethylation reactions for level 4, and levels
3 and 4, respectively. In both cases, we see that the system is not able
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Figure 5.31: Dynamics of CheYp when only 3 (left) and 2 (right) methylation
states are active.

to adapt, as the steady state level of CheYp reached after the addition of
the ligand is substantially lower than the steady state when all methylation
levels are activated.

5.4.3 The interplay between stochastic fluctuations and the
number of bacterial flagella

In this section we analyse the interplay between stochastic fluctuations of
CheYp and the number of flagella occurring on the cell, in order to outline
the influence of synchronization of flagellar motors on the swimming behav-
ior, and on the adaptation mechanism of the bacterium to the environmental
changes. To this aim, we consider the dynamics of CheYp at steady state,
as well as its transient step–decrease that takes place immediately after the
chemotactic stimulus. In both cases, we are interested in devising the time
periods during which the cell performs either a running or a tumbling mo-
tion. In particular we will assume that: (1) the time spent in alternating
CW and CCW rotations during the steady state corresponds to the random
walk sampling of the environment – where we expect more time spent in
tumbling than in running motions; (2) the time required to return to the
prestimulus level of CheYp (that is, the transient response immediately af-
ter the ligand addition) corresponds to the chemotactic adaptation time –
where we expect a much longer and uninterrupted time interval of running
motion with respect to the steady state condition.

As explained in Section 5.4.1, a running motion requires that all flagella
are simultaneously synchronized in a CCW rotation – which occurs when
CheYp is not interacting with the proteins FliM of the flagellar motors, that
is, when its intracellular concentration diminishes with respect to a refer-
ence value. To distinguish between the CW and CCW rotations of a single
flagellum, we assume that the flagellar motor switch is sensitive to a thresh-
old level of CheYp, that is hereby evaluated as the mean value of CheYp at
steady state (see also [138], where a similar approach of threshold–crossing
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mechanism for motor switching was tested, albeit that work considered only
single flagellum and did not propose any investigation on the simultane-
ous coordination of many flagella). When the amount of CheYp is below
this threshold, each flagellum is rotating CCW, while when the amount of
CheYp is above the threshold, each flagellum is rotating CW. In what fol-
lows, we make a one–to–one correspondence between the behavior of a single
flagellum and one temporal evolution of CheYp generated by one run of the
τ -DPP algorithm, that is, we consider a different and independent stochastic
simulation for each and every flagellum (albeit starting from the same initial
conditions). To determine the synchronization of all flagella, that will in-
duce a running motion, we therefore need to identify the time instants when
all flagella are rotating CCW, that is, to select the time intervals when all
the temporal evolutions of CheYp are below the fixed threshold.

Formally, we proceed as follows. Let n = 1, . . . , 10 be the number of
flagella f1, . . . , fn whose influence we want to test, and let si, i = 1, . . . , n,
be the temporal series of CheYp (generated by a single τ -DPP run) as-
sociated to each fi. For any fixed value of n, the total time of the sim-
ulation considered to generate the dynamics of CheYp is the same for
all si. This simulation time, hereby denoted by ∆tsim, is chosen long
enough to have statistical significance for the analysis performed below (e.g.
∆tsim = 40000, 60000, 120000 sec for n = 1, 5, 10, respectively). The thresh-
old for CheYp is evaluated in the following way: we choose an initial time
instant at the steady state level – distant enough from the step decrease
of CheYp after ligand addition, i.e. 1000 sec afterwards – and then, start-
ing from this instant and till the end of ∆tsim, we calculate the mean value
µi =< si > for each si. Then, we define a common threshold µ for all flagella
such that µ = 1

n

∑n
i=1 µi. This threshold is considered as the reference value

also for the portion of the CheYp dynamics corresponding to the transient
decrease after ligand addition. In Figure 5.32, top panel on the left side, we
show a part of ∆tsim over a single simulation of CheYp, where both the ini-
tial transient response and the stochastic fluctuations around the threshold
are evidenced. For all the results discussed below, the different values of µ
have been found to be approximatively equal to 1480 molecules.

The next step consists in detecting, for each fi, the time intervals during
which the amount of CheYp remains below µ, each one of these intervals
corresponding to a CCW rotation time interval of that flagellum. Namely,
for each si we identify the time intervals ∆ttrue ⊆ ∆tsim such that ∆ttrue =
{t ∈ ∆tsim | si(t) − µ ≤ 0}. Note that this simple mechanism of single
threshold-crossing could be extended to consider more complex situations
– e.g., a double threshold-crossing mode can be assumed – whereby one
simply asks for analogous conditions to be satisfied. Similarly, for each si

we can locate the complementary time intervals ∆tfalse ⊆ ∆tsim such that
∆tfalse = {t ∈ ∆tsim | si(t)−µ > 0}; these intervals correspond to the time
that each flagellum fi spends in a CW rotation. Stated in other terms, we
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Figure 5.32: Threshold-crossing intervals in stochastic fluctuations of CheYp
(left) and synchronization of running motion between 2 flagella (right).

can associate to each si a function CCWsi
: ∆tsim → {true, false} defined

as:

CCWsi
(t) =

{
true if si(t) − µ ≤ 0
false otherwise

In Figure 5.32, bottom panel on left side, we show the values of this
function for the CheYp simulation given in the upper panel. As it can be seen
at a glance, the transient response after ligand addition (when the amount
of CheYp is initially below µ) corresponds to a longer and uninterrupted
interval of CCW rotation.

Once that the set of all ∆ttrue intervals – or, equivalently, of function
CCWsi

– have been found out for each flagellum, we start the process of
synchronization of these time intervals for the given number n of flagella.
To this aim, let us define T n

sync = {t ∈ ∆tsim | CCWsi
(t) = true for all i =

1, . . . , n}. T n
sync is the set of all times during which all time series si are

below the threshold µ, that is, the time intervals during which all flag-
ella are rotating CCW. More precisely, we identify these intervals as the
running motion of the bacterium, i.e. T n

sync corresponds to the time of di-
rectional swimming – when all flagella are coordinated in a bundle. As an
example, in Figure 5.32, right side, we show the set T n

sync for n = 2. On
the contrary, T n

unsync = ∆tsim \ T n
sync corresponds to tumbling motion –

when at least one flagellum (over the set of n flagella considered time by
time) is rotating CW. Namely, T n

unsync = {t ∈ ∆tsim | there exists i =
1, . . . , n such that CCWsi

(t) = false}.

We are now interested in understanding if and how the time intervals
within the set T n

sync are influenced by the increase of n. For statistical
significance, we have performed this analysis over a set of 10 distinct in
silico experiments (each one corresponding to a cell with n flagella, with
n = 1, . . . , 10), and then we have evaluated the mean values of the following
three parameters:
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Figure 5.33: Variation of mean time values of running (left) and tumbling
motions (right), and of adaptation time (bottom), with respect to the num-
ber of flagella.

1. the time intervals corresponding to a running motion of the bacterium
(< ∆trun >), when all flagella are rotating CCW (that is, when all
time series si are below µ);

2. the time intervals corresponding to a tumbling motion of the bacterium
(< ∆ttumb >), when at least one flagellum over the n flagella is rotating
CW (that is, when at least one time series si is above µ);

3. the time intervals corresponding to the transient decrease of CheYp
after ligand addition (< ∆tadapt >), that is, the adaptation time during
which the bacterium is performing a longer running motion.

The results for < ∆trun > are reported in Figure 5.33, left side, where we
can see that the mean time intervals of running motion are very short, and
their values decrease in a (qualitative) exponential way as the number n of
flagella increases. On the opposite side, the results for < ∆ttumb > evidence
a (qualitative) exponential increase with respect to n, as reported in Figure
5.33, right side. As reference, the precise values of the mean running and
tumbling time intervals are given in Table 5.10, together with their ratio,
for three values of n. The running–to–tumbling ratio, which decreases as n
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Table 5.10: Values of mean time intervals for running, tumbling and adap-
tation.

n 〈∆trun〉 (sec) 〈∆ttumb〉 (sec) 〈∆trun〉/〈∆ttumb〉 〈∆tadapt〉 (sec)
1 3.102 3.062 1.013 104.0
5 0.606 18.73 0.032 73.48
10 0.310 297.4 0.001 72.22

increases, highlights the relevance of the number of flagella and the necessity
of their synchronization with respect to the chemotactic behavior of the
bacterium. That is, we see that for n = 1 the time spent in running or
tumbling motions is approximatively equivalent, but if coordination among
many flagella (n = 10) has to take place, then the running motions are
highly reduced with respect to tumbling motions, which is in agreement
with biological expectations.

The results for < ∆tadapt > are reported in Figure 5.33, bottom, and
in Table 5.10. In this case, it is not possible to recognize a simple function
for the curve progress, and we see that the variation of the time intervals
is within a range of a few tens of seconds. Once more, this result seems to
be in agreement with biological expectations, as the response of the bac-
terium to an environmental change (i.e. the presence of ligands) should not
be strictly dependent on the number of flagella that are present on its sur-
face, otherwise the chemotactic pathway would not guarantee an appropriate
adaptation mechanism, independently from the variation of the number of
flagella among individuals in a population of cells.

5.4.4 Discussion

We have proposed a very detailed mechanistic model of the bacterial chemo-
taxis pathway that takes into account all proteins, and their respective in-
teractions, involved in both signalling and response. In particular, all post-
translational modifications of proteins, such as methylation and phosphory-
lation, have been considered because of their relevant roles in the feedback
control mechanisms governing this pathway. By exploiting the τ -DPP al-
gorithm, we have investigated the dynamics of the pivotal protein involved
in chemotaxis, CheYp, under different conditions, such as the deletion of
other chemotactic proteins, the addition of distinct amounts of external lig-
and, the effect of different methylation states. Then, we have investigated
the possible influence of stochastic fluctuations of CheYp with respect to
an increasing number of flagella in the individual bacterium. Namely, we
have defined a procedure to identify the synchronization of CCW rotations
of all flagella, and then we have compared the mean time intervals of run-
ning and tumbling motions of the cell, as well as of adaptation times to
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ligand addition, according to the different numbers of flagella. We have
shown that the running–to–tumbling ratio highlights the relevance of the
number of flagella, and the necessity of their synchronization with respect
to the chemotactic behavior of the bacterium. Moreover, we have shown
that the adaptation time does not seem to be strongly influenced by the
varying number of flagella in distinct individual cells.

Concerning the analysis of the interplay between CheYp fluctuations
and the number of flagella, another aspect could be investigated, such as
the influence of the amount of external ligands on the adaptation times (in
Section 5.4.3, in fact, only the addition of 1000 ligands was used to execute
all simulations). We will consider this matter in a forthcoming extension of
this work. In addition, other relevant biological aspects of chemotaxis, that
stand downstream of the signalling process, might represent valuable points
to be included in a future study. For instance, it is known that each flagel-
lar motor switch–complex is constituted by a group of proteins, called FliM,
FliN, FliG (assembled in a ring), and by the torque–generating complexes,
called MotA and MotB. In E. coli, a typical flagellar ring contains 34 copies
of FliM, each of which can bind one copy of CheYp. In [53] it is suggested
that binding of CheYp to FliM modifies the displacement of protein FliG,
which directly interacts with the Mot complexes and therefore modulates
the switch state of the flagellum. Moreover, flagellar motor switching has
been found to be highly sensitive to the concentration of CheYp (having a
Hill coefficient ≈ 10), though the binding of CheYp to FliM has a low level
of cooperativity (Hill coefficient ≈ 1). In [53], the hypothesis that CheYp
can interact more favourably with the FliM displaced in the CW orientation,
than those in the CCW orientation, is put forward. In [181], in addition,
the following mechanism is considered for the control of flagellar motor by
means of CheYp: the number of CheYp molecules bound to FliM deter-
mines the probability of CW or CCW rotation, while the switch is thrown
by thermal fluctuations. In other words, CheYp only changes the stabili-
ties of the two rotational states, by shifting the energy level of CCW–state
up and of CW–state down, by a magnitude that is directly proportional to
the number of bound molecules. Therefore, interesting questions related to
stochastic fluctuations of CheYp, that might be coupled with the investi-
gation on the number of cellular flagella, are: how many FliM proteins at
each flagellar switch have to be occupied by CheYp in order to generate the
CW rotation [21]? What is the corresponding probability of throwing the
reversal switch? Can a double–threshold crossing mechanism [21] be more
suitable to effectively detect the CW and CCW rotational states?

Nonetheless, other related features might be relevant points for a further
extension of this work. For instance, the model does not take into account
the diffusion processes of molecules inside the volume where reactions occur.
Though, the gradient of CheYp that can be present inside the cytoplasm –
due to the diffusion from the area of its phosphorylation (close to chemotac-
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tic receptors) to the area of its activity (around the flagellar motors) – can
be a significant aspect in chemotaxis, together with the localization of CheZ
(that controls the dephosphorylation of CheYp) and of the flagella around
the cell [110].

We believe that the definition of detailed mechanistic models, like the
one proposed here for chemotaxis, and the use of efficient tools for the anal-
ysis of stochastic processes in individual cells, can be a good benchmark to
investigate the combined roles of many interplaying biological factors. With
this perspective, the development of formal methods specifically devised for
the analysis of properties of stochastic systems represents indeed a major
hot topic research in biological modeling.
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Chapter 6

The role of parameters in
chemical and biological
systems

The modelling of biological systems requires the knowledge of many numer-
ical factors, like the concentrations of molecular species or reaction rates,
which represent an indispensable quantitative information to perform com-
putational investigations of the system behavior. Unfortunately, the exper-
imental values related to molecular quantities and rate constants are often
not available or inaccurate [173]. This lack of information has led to the
development of different techniques, based on local or global optimisation
methods, in order to estimate the unknown parameters [137].

In addition, once that the calibration of the parameters of a systems has
been done, it is interesting to study and analyse the effect of the combination
of different values of the parameters by means of ad hoc techniques (e.g.
parameter sweep) that are suitable to the exploration of these very large
and complex research spaces. Parameter sweep can be realised by executing
a very large number of simulations, each one corresponding to a different
parametrisation of the analysed system, in order to test its robustness and
to find its crucial points.

In this chapter, we will first present the issue of parameter estimation for
biochemical systems (Section 6.1), together with a brief description of the
optimisation techniques that are already present in literature for this scope.
Afterwards, we recall the basic definition of parameter sweep application
(Section 6.2) emphasising its suitability for the exploration of the parameters
space of biological systems.

Both parameter estimation and parameter sweep require the definition of
an appropriate fitness function, in order to quantify the quality of a partic-
ular set of parameters. To be more precise, this function is used to measure
the “difference” between the estimated dynamics, that is, the behavior ob-

161



Chapter 6. The role of parameters in chemical and biological systems

tained through a simulation using the set of parameters under investigation,
and a target dynamics, which represents a known behaviour of the system.
The fitness function used hereby, will be described in Section 6.3.

In Section 6.4, we show how we can tackle the problem of estimating the
unknown parameters of stochastic biochemical systems by means of two opti-
mization heuristics, genetic algorithms and particle swarm optimization [15].
Their performances are tested and compared on two basic kinetics schemes:
the Michaelis–Menten equation and the Brussellator. The experimental re-
sults suggest that particle swarm optimization is a suitable method for this
problem. The set of parameters estimated by particle swarm optimization
allows us to reliably reconstruct the dynamics of the Michaelis–Menten sys-
tem and of the Brussellator in the oscillating regime.

Finally, in Section 6.5 we present a possible implementation of parameter
sweep application obtained by distributing a number of stochastic simula-
tions on the EGEE project grid platform [140]. As a case study, we present a
parameter sweep application for a stochastic model of bacterial chemotaxis
composed of 59 reactions and 31 chemical species. In order to analyse the
effect of parameter variation over the dynamics of this system, we have per-
formed a large number of simulations to explore the 59-dimensional space of
its stochastic constants, and considered the temporal evolution of a pivotal
protein as the reference dynamics. The performance and the results ob-
tained from the different parameter sweep applications executed are finally
discussed.
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6.1 Parameter estimation of biochemical systems

In computational investigation of biochemical systems, the first step consists
in understanding the system structure (that is, the molecular species and
compartments involved in the system, their localisation and topology, etc.)
and in developing a model to describe the interactions among the system
components. The second stage corresponds to the study of the dynamics of
the system, under different conditions, in order to yield useful predictions
about any unknown interactions which can take place within the system.
To achieve these tasks, it is important to identify the system structure as
well as the set of parameters, because both are needed to analyse the be-
havior of such systems. The final stage consists in comparing the obtained
computational results with the experimental results, in order to validate the
developed model [101].

One of the most challenging step in this process, which is usually due
to the non–linearity of these systems, is the estimation of the large set of
numerical parameters that they contain. These parameters are: molecular
amounts, binding constants, transcription rates, translation rates, chemi-
cal reaction rates, degradation rates, diffusion rates, etc. Except for special
cases where the experimental values of these factor can be found in literature,
they are often not available or inaccurate, since carrying out their measure-
ments in vivo can be tangling or even impossible [173]. In a few cases, the
values of some parameters of a given system can be estimated either from in
vitro experiments (by fitting the dynamics derived through equations based
on mass-action law against the concentration time series that result from
these measurements), or by assuming some analogies with similar processes
or organisms for which more experimental data are available. In general, it
is exactly the lack and the inaccuracy of these information that bring about
the problem of assigning the correct values to all parameters, in order to
reproduce the expected dynamics in the best possible way.

The parameter estimation issue, also called inverse problem [126], con-
sists in the calibration of the unknown system’s parameters by means of
optimisation techniques. It is called “inverse” because it is the opposite
of the “forward” problem of the simulation of a system’s dynamics. The
inverse problem requires methods that can combine simulation techniques
with optimization algorithms, capable of searching global optima in large
(and complex) multi–dimensional spaces.

In general, the calibration of the parameters values can be tackled ac-
cording to the following simple procedure [127]:

1. Simulate the model with the given set of parameters;

2. Compare the known experimental time course with the simulation out-
come;
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3. If the difference between these two dynamics is “small enough”, then
stop, otherwise adjust the parameters of the model;

4. Go back to step 1.

Step 1 of the procedure consists in the simulation of the model, which is
the “inverse” problem of optimisation. During this step, given a set of fixed
parameters, the dynamics of the system is described. Note that, usually,
in the first iteration of this procedure, the initial values for the parameters
are randomly chosen according to the chosen optimisation technique. After-
wards, the experimental data (if available) or a generic “reference dynamics”
is compared to the results of the simulation in order to quantify the quality of
the set of parameters previously assigned to the model. This task is accom-
plished by computing the value of a fitness function. During step 3, the value
of the fitness function is checked in order to decide if the set of parameters
needs further refinements, or if it is acceptable according to some specified
criterion. In the first case, the values of the parameters are adjusted using
an optimisation technique, such as e.g. hill climbing, simulated annealing,
genetic algorithms or particle swarm optimizer, and another iteration of the
procedure is executed. In the second case, the procedure terminates.

In general, the inverse problem is complicated by the non–linearity of the
system’s dynamics which is very often multimodal (i.e. nonconvex) [127].
The first attempt to tackle this kind of optimisation problems, the so–called
multistart strategy, has been presented in [83]. This method consists in the
repeated application of local methods, starting from a number of different
initial sets of parameters for the analysed model. However, this approach is
not suitable for real applications because of its inefficiency; as a matter of
fact, when many starting points are used, the same minimum is determined
several times. Moreover, the execution of a large number of instances of this
method is very time consuming.

The limitations of local methods lead to the application of global op-
timisation methods in order to improve the efficiency and the robustness.
In particular, in [127], the parameter estimation of the mechanism of irre-
versible inhibition of HIV proteinase has been presented, and the best results
have been obtained by using the simulated annealing method. However, also
in this case the main drawback is represented by the computational time re-
quired by the execution of this procedure.

Several different stochastic optimisation methods, applied to the param-
eter estimation of a large three-step pathway, that is, a case study consisting
in the optimisation of 36 kinetic parameters, have been compared in [125].
The best performing method found was the evolutionary programming, since
the solution obtained by the application of this procedure allowed to de-
scribe the correct dynamics of the analysed system, while other methods
failed. More recently, in [137], several global optimisation methods have
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been applied for the calibration of 36 parameters of a benchmark model.
The most suitable method for the solution of the inverse problem, among
those considered by the authors, was the evolution strategy using stochastic
ranking (SRES), presented in [178]. SRES is an evolutionary optimisation
algorithm that uses stochastic ranking as constraint handling technique, a
method that adjusts the balance between the objective and the penalty
functions automatically during the evolutionary search.

The main disadvantage of these global optimisation methods is the time
required to perform a computation; however, it is well known that the meth-
ods cited above can be easily parallelised, thus reducing the computational
time needed to obtain good results.

The method for the parameter estimation that we will propose in the
following sections exploits two population based optimisation heuristic: ge-
netic algorithms and particle swarm optimizer. These methods are suitable
for the optimisation of sets of real values, like the parameters of biochemical
systems, and their efficiency in the exploration of the parameter space has
been proved by many applications. Moreover, our approach for the parame-
ter estimation, like those presented above, can be parallelised, for instance,
by distributing the computation of the fitness functions (which is usually
the most time consuming task of the procedure) on a cluster.

6.2 Parameter sweep application

The behaviour of biochemical models is mainly influenced by the initial
conditions, i.e. the molecular quantities, and by the rate constants values
assigned to the chemical reactions. Real models are usually composed of
a large number of chemical species which interact through many chemical
reactions, hence, the space constituted by all possible combinations of values
of the parameters has a high number of dimensions. Therefore, the explo-
ration of such kind of spaces, to the aim of quantifying the influence of the
parameter values on the system dynamics, is a hard task.

There exist many different techniques suitable for this kind of analysis.
For instance, steady state analysis concerns the identification of points in the
space of reachable states, where the dynamical system is fixed (e.g. where
the behaviour of the system is constant over time); bifurcation analysis stud-
ies the qualitative variation of the dynamics (e.g. transition from oscillating
to non oscillating regime) as a consequence of the variation of the parame-
ters; sensitivity analysis relates the uncertainty of the input of a model (i.e.
variations in parameters and initial conditions) to its output (namely, the
resulting behaviour); and parameter sweep application (PSA) explore the
parameters space of a system by means of independent experiments.

Among the techniques cited here, PSA represents one of the simplest
method to execute, and it is very easy to run it on a parallel architecture.
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The features of PSA makes it suitable to analyse the complex and non–
convex parameters space of chemical and biological systems, where a very
large number of simulations is needed. The aim of PSA consists in com-
paring the dynamics resulting from a particular setting with respect to the
“reference dynamics”, obtained by using the correct parametrisation. So
doing, it is possible to test the robustness or the fragilities of a model.

To be more precise, PSA is an application that composes high–through-
put computing applications for processing on parallel architectures. This
application is a combination of task and data parallel models. Applica-
tions formulated by means of PSA contain large number of independent
jobs operating on different data sets. A range of scenarios and parame-
ters to be explored can be applied to the input values to generate different
data sets. This application is executed by processing N independent jobs
(each with the same task specification, but with a different data set) on M
distributed computers (where N is, typically, much larger than M). For-
tunately, this high–throughput parametric computing model is simple, yet
powerful enough to formulate distributed application ranging in many dif-
ferent areas.

PSA occurs frequently in scientific computation across a broad range of
disciplines. For example, this method is used in bio-medical [151], bioin-
formatics [91], bio-physics applications [158], data mining [187] and many
other scientific domains.

6.3 Fitness function

The parameter estimation methods and PSA require a function able to quan-
tify the quality of a particular set of parameters. This fitness function is
used to measure the “difference” between a given experimental outcome
(target dynamics), which represents the observed behaviour of the analysed
system, and the dynamics obtained by means of simulations. Stated in other
words, the “reference dynamics” is the behaviour that has to be reproduced
by calibrating the parameters (in the case of parameters estimation issue),
or the behaviour with respect to the dynamics obtained by perturbing one
(or more) parameters is compared (in the case of PSA).

Working in the field of stochastic modelling and simulation, the fitness
definition is based on the idea that we have to compare the target dynamics
with the estimated dynamics that are generated by using a stochastic sim-
ulation algorithm (which will run using a particular set of parameter values
time by time). Therefore, we have to manage some troublesome properties,
hereby discussed, that are inherent to stochastic simulations. We start by
introducing the definition of fitness function that will be used in the rest
of this chapter. Briefly, the fitness of each individual will be evaluated by
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calculating the area between the target dynamics1 (TD) and the estimated
dynamics (ED) of each molecular species.

To be more precise, the fitness function is defined as follows. Let L ⊆
{1, . . . ,M} be the set of molecular species whose dynamics is assumed to
be experimentally known, t0 and tN the initial and final time instants of
the given TD. We denote by x′

l(t0), . . . , x
′
l(tN ) the TD time series of species

l, l ∈ L, and by xl(τ0), . . . , xl(τ eN
) its ED time series, where τ0 = t0 and

τ eN
∼= tN . Note that, in general, all the time instants (except the initial one)

of the ED series will be distinct from those sampled in the TD series, since
the two methods use different time samplings and, above all, each simulation
performed by tau leaping generates a different time series (hence, it does not
correspond to the constant-step temporal sampling of TD). In addition, the
time interval between any couple of consecutive time instants of the ED
series will be generally distinct from every other time interval in the same
series. As the evaluation of the fitness function requires to determine the
difference between the TD and the ED, we need to pick up couples of values,
one in the TD series and the other one in the ED series, that correspond to
an identical time instant. Therefore, for each simulated time instant τi, i =
0, . . . , Ñ (drawn as the “evaluated” time series in Figure 6.1), we consider
the two consecutive time instants in the TD series tj, tj+1, j = 0, . . . , N − 1
(drawn as the “target” time series in Figure 6.1), which satisfy the following
conditions: (1) tj ≤ τi ≤ tj+1; (2) there exist no other time instants t′j , t

′
j+1,

j = 0, . . . , N−1, such that tj ≤ t′j ≤ τi ≤ t′j+1 ≤ tj+1. Then, by performing a
linear interpolation between the given TD series values x′

l(tj) and x′
l(tj+1),

we derive the element x′
l(τi) (drawn as the “interpolated” time series in

Figure 6.1) in the TD series corresponding to the element xl(τi) in the ED
series, and we evaluate their distance, |x′

l(τi)−xl(τi)|. We then compute the
fitness fz (for each independent execution z of the tau leaping algorithm)
by summing up, for each simulated time instant τi and for each molecular
species l ∈ L, the areas of the trapezoids (thick lines in Fig. 6.1) having as
basis the distances |x′

l(τi)−xl(τi)| and |x′
l(τi+1)−xl(τi+1)|, and as height the

length of the time interval [τi, τi+1], that is: fz =
∑ eN−1

i=1

∑
l∈L

1
2(|x′

l(τi) −
xl(τi)|+|x′

l(τi+1)−xl(τi+1)|)(τi+1−τi). Finally, the fitness function is defined

as f = 1
Z

∑Z
z=1 fz, where Z is the total number of independent runs of the

tau leaping algorithm executed by using the same set of parameters.

There exist other methods to compute the value of the fitness function;
for instance, by using the root mean square the “difference” between the TD
and the ED can be measured. Clearly, in order to calculate the correct value
for the fitness function, we need to interpolate the ED to obtain a regular
sampling. However, this strategy is much more time consuming with respect

1In the examples proposed in the following sections, pseudo-experimental TD are gen-
erated by means of an ODEs solver, or as the average dynamics obtained as the “mean”
behavior of a set of stochastic simulations.
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Figure 6.1: Area evaluation between TD and ED series for the fitness func-
tion.

to the computation of the area between the two analysed curves, since the
number of operations needed to linearly interpolate the points of the ED is
higher with the root mean square than that needed to compute the areas of
the trapezoids denoted by the two time series.
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6.4 A comparison of GAs and PSO for parameter
estimation in stochastic biochemical systems

Optimization methods can be used to tackle the calibration problem of pa-
rameter estimation of biochemical systems by minimizing a cost function
(e.g. a distance measure) which quantitatively defines how good is the sys-
tem behavior using the predicted values, with respect to the experimental
dynamics. Several global optimization techniques (see [173, 137] and refer-
ences therein) have already been adopted for parameter estimation of bio-
chemical and biological systems. A peculiarity of our approach, with respect
to other methods previously investigated for this problem, is that it embeds
the (forward) problem of performing stochastic simulations of a system dy-
namics, into the inverse problem of estimating its unknown parameters. This
leads to the development of a method that exploits the outcome of stochastic
simulation algorithms to effectively compute the fitness function value used
by the optimization techniques here investigated. In particular, we compare
the performances of genetic algorithms (GAs) and particle swarm optimiza-
tion (PSO) for the parameter estimation of two simple biochemical schemes
which are well representative of the dynamics of many other biological sys-
tems: a basic catalytic kinetics (the Michaelis-Menten system), a sustained
oscillating behavior and a damped oscillating behavior (both based on the
Belousov-Zhabotinskii reaction).

The choice of these two particular optimisation techniques is motivated
by the fact that parameter estimation is an example of dynamic optimiza-
tion problems, meaning that the fitness function may change (more precisely,
each individual can have slightly different fitness values each time it is eval-
uated) and a number of contributions exist about the use of GAs and PSO
for this kind of problems (see, e.g., [115, 95]).

In the following sections we will recall some basic notions of biochemical
reactions, and describe the two simple systems (Michaelis-Menten reaction
and the Brussellator) that we will consider for parameter estimation. After-
wards, we describe the versions of GAs and PSO that we have used. The
experimental results are finally presented together with further applications
of these methods and some open problems.

6.4.1 Systems of biochemical reactions

Any generic (bio)chemical reaction can be written in the form r :
∑N1

i=1 αiRi

→
∑N2

j=1 βjPj , where R1, . . . , RN1
are distinct reactant molecular species and

P1, . . . , PN2
are distinct products, for some N1, N2 ≥ 0. The non-negative

integers αi, βj are the stoichiometric coefficients of the reaction r; they spec-
ify how many molecules of each reagent species are necessary to trigger the
reaction, and how many product molecules are formed after the reaction
has occurred. Each reaction is also characterized by a numerical factor,
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called the rate constant, which determines – together with the amount of
reagents – the rate, or velocity, of the reaction itself. The kinetics of a reac-
tion is influenced by many factors, such as temperature, pressure, amounts
of reactants, molecular crowding, etc. As a consequence, the experimental
determination of rate constants for a given biochemical system is not a triv-
ial task, and the situation gets even harder when considering more complex
biological systems, like metabolic pathways or cellular processes in general.
For further notions about biochemical reactions and chemical kinetics we
refer to [39, 146].

Michaelis-Menten system. The first chemical system we consider, the
Michaelis-Menten (MM) kinetics, describes the catalytic transformation of
one-reacting substrate (denoted by S) into a final product (P ) mediated
by an enzyme (E), passing through the (relatively fast) reversible forma-
tion of the enzyme-substrate intermediate complex (ES). The role of E
is to lower the energy required by S for its interconversion to P ; the en-
zymatic kinetics assumes that S and E are in a fast equilibrium with the
complex they form, which then dissociates to yield the product while releas-
ing the enzyme free. The set of chemical reactions corresponding to MM
is: E + S

c1−→ ES,ES
c2−→ E + S,ES

c3−→ E + P , where c1, c2, c3 are the
stochastic constants that encompass the physical and chemical properties of
the reaction. The initial amounts of the substrate and the enzyme used to
generate the target dynamics for our problem of parameter estimation are
S = 1000, E = 750 molecules, while the stochastic constant values (that we
want to estimate with GAs and PSO) are c1 = 2.5 · 10−3, c2 = 0.1, c3 = 5.
The dynamics corresponding to this set of parameters is shown in Figure
6.5 (top left graph, with solid lines).

Brussellator system. The second chemical system we consider, called
Brussellator [199], is a simplified scheme for the Belousov-Zhabotinskii re-
action, a family of inorganic redox reaction systems that exhibit macro-
scopic temporal oscillations and spatial patterns formation. This theoreti-
cal scheme is recognized as the prototype of nonlinear oscillating (open and
well-stirred) systems, proving the significance and variety of both spatial
organizations and complex rhythms occurring in many biological systems.
Here, we give a description of the Brussellator that slightly differs from the
original one: with respect to the formulation given in [199], we leave out
the presence of two products (since they are not directly involved in the
formation of the oscillating limit cycle), and we consider the following set

of reactions: A
c1−→ X,B + X

c2−→ Y, 2X + Y
c3−→ 3X,X

c4−→ λ, where A,B
are two chemicals that are given as input and always kept at a constant
amount, X,Y are the intermediate product chemicals that exhibit oscilla-
tions, and λ represents the degradation of species X. The initial amounts
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of molecules used for generating the target dynamics for parameter estima-
tion are A = X = 200, B = 600 and Y = 300. In this case, we consider
two distinct sets of values for the reaction constants {c1, c2, c3, c4} to be
estimated using GAs and PSO. The set {1, 5 · 10−3, 2.5 · 10−5, 1.5} gives
rise to sustained and periodic oscillations in the species X,Y , while the
set {1, 5 · 10−3, 2.5 · 10−4, 1.5} gives rise to damped oscillations and quickly
drives the system dynamics to a steady-state. The corresponding dynamics
are shown (with solid and dashed lines) in Figure 6.5 (top right and bottom,
respectively).

6.4.2 GAs and PSO settings

The GAs and PSO formulations used in this work evolve individuals of the
same shape: n-length vectors of floating point numbers, where n is the
number of rate constants to optimise. That is, each allele of an individual
corresponds to one parameter that has to be estimated. The experimental
settings and the related choices that we have done for GAs and PSO are
described below.

Genetic algorithms. The most commonly used GAs formulation evolves
fixed length strings over a finite alphabet, while in our case each allele can
contain any floating point value from a limited range. This GAs version is
often called real-valued or real-coded GAs (see, e.g., [204] and Section 2.1).
Many sophisticated genetic operators for real-coded GAs have recently been
defined (like, for instance, Laplace Crossover, Makinen, Periaux and Toiva-
nen Mutation, Non-Uniform Mutation [48]), but in this study we consider
classical operators, like the ones originally defined in [204]: one point and
average crossover, gaussian mutation, range mutation and reinitialization.

One point crossover is similar to the standard GAs crossover defined
by Holland in [89]: parents are aligned, one crossover point is selected and
substrings are inverted to generate offspring. Average crossover returns one
offspring that contains at each position the average values of the parents
chromosomes. In this work, crossover is executed with a 0.95 rate. In
case crossover is not executed, parents are copied in the next population
with no modification (reproduction). Otherwise, one operator among one
point crossover and average crossover is chosen with uniform probability
distribution.

Gaussian mutation perturbs an allele with a number drawn from a nor-
mal distribution with mean µ equal to the current value of that allele and
σ = 0.05·µ. Range mutation increments or decrements an allele of a prefixed
quantity (equal to 5% of its admissible range size in this work). Reinitial-
ization changes the value currently contained in an allele with an uniformly
distributed random number in the admissible range. For each individual in
the spring, mutation is applied to each allele with probability 1/n, where n is
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its length. If an allele has to be mutated, one operator among gaussian mu-
tation, range mutation or reinitialization is chosen with uniform probability
distribution.

The other parameters that we have used are: population size of 100
individuals; maximum number of generations equal to 100; tournament se-
lection of size 5; elitism (i.e. copy of the best individual unchanged in the
next population at each generation).

Particle swarm optimization. Among the different versions of PSO
present in literature and explained in Section 2.2, we are particularly in-
terested in the version defined in [23], where the co-evolutionary PSO algo-
rithm aimed at optimizing the values of constants C1 and C2 first proposed
by Miranda and Fonseca in [135], is investigated. Authors of [23] study
this co-evolutionary PSO version for a large set of well-known theoretically
hand-tailored problems and hint that it may outperform standard PSO for
complex problems. For this reason, here we study two versions of the PSO:
the canonical PSO formulation (indicated with PSO1 from now on) and the
co-evolutionary Miranda and Fonseca model (PSO2 from now on).

The other experimental settings that we have used for both these PSO
versions are: swarm size of 20 particles; maximum number of iterations
equal to 500 (so doing, GAs and PSO will have executed the same number
of fitness evaluations at the end of a run); the inertia weight w has been
linearly decremented from 0.9 to 0.2 with gaussian noise, with average equal
to the current w value and σ = 0.05 (as reported in [201]). In addition,
in PSO2 we add a gaussian noise to C1 and C2 with σ = 0.1. For both
PSO versions, we have considered velocity ranges of half the size of the rate
constants ranges, and when a particle reaches a bound of the admissible
interval, its velocity is halved and its direction inverted.

6.4.3 Experimental results

Here we discuss the application of our proposed GAs and PSO versions,
for the estimation of rate constants of the systems described in Section
6.4.1, for which we have used the following admissible ranges: c1 ∈ [2.5 ·
10−5, 2.5 · 10−1], c2 ∈ [1 · 10−3, 10], c3 ∈ [5 · 10−2, 5 · 102] for the MM sys-
tem (three further ranges have been tested for this system, obtaining qual-
itatively similar results to the ones presented here); c1 ∈ [0.1, 10], c2 ∈
[5·10−4, 5·10−2], c3 ∈ [2.5·10−6, 2.5·10−4], c4 ∈ [0.15, 15] for the Brussellator
system with oscillating regime, and c1 ∈ [0.1, 10], c2 ∈ [5 ·10−4, 5 ·10−2], c3 ∈
[2.5 ·10−5, 2.5 ·10−3], c4 ∈ [0.15, 15] for the Brussellator system with damped
oscillations. Each range has been chosen such that the lower and upper
bounds are two (resp. one) orders of magnitude below and above the target
value for MM (resp. Brussellator).
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For both GAs and PSO, and for each individual in the population, fit-
ness is evaluated by performing a fixed number Z of independent executions
of the tau leaping stochastic algorithm, chosen according to the system dy-
namics. For each system we report the Average Best Fitness (ABF) against
fitness evaluations, and the accumulated number of successful runs at each
considered value of the fitness evaluations. Given that it is unlike to obtain a
fitness equal to zero (see discussion in Section 6.4.4), a run has been consid-
ered successful if at least one individual (that we improperly call an optimal
solution) has been found with a fitness value smaller than 1.1 · f , where f is
the best fitness value obtained among any one of the three algorithms and
any one of the executed runs (50 in the following examples).

Michaelis-Menten. Figure 6.2 presents the experimental results returned
by GAs, PSO1 and PSO2 for the MM system. These results have been
obtained with 50 independent runs of GAs, PSO1, PSO2, and Z = 10 tau
leaping simulations. In Fig. 6.2(a) we report the ABF and in Fig. 6.2(b)
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Figure 6.2: Experimental results returned by GAs, PSO1 and PSO2 for
the Michaelis-Menten system, obtained by executing 50 independent runs
of each algorithm. Left: Average Best Fitness against fitness evaluations.
Right: Accumulated number of successful runs against fitness evaluations.

we report the number of successful runs. Figure 6.2(a) shows that GAs
have returned a better ABF than the two PSO variants at each value of the
fitness evaluations that we have studied, while Fig. 6.2(b) shows that PSO1
has obtained the largest number of successful runs, in particular after 6,000
fitness evaluations. This different behavior between GAs and PSO1 hints
that PSO1 has found optimal solutions more frequently than GAs, but when
an optimal solution has not been found, GAs have returned individuals of
better quality. We also point out that the ABFs of PSO1 and PSO2 are
similar to each other (in particular after 9,000 fitness evaluations), while
PSO1 has been able to find optimal solutions more often than PSO2.

In Fig. 6.5(a) we report the dynamics of the MM system generated by tau
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leaping using the constants found by the best solution generated by PSO1
over the considered 50 runs, which are c1 = 0.00245, c2 = 0.02691, c3 =
5.03552. We compare this dynamics (dots) with the target curves (solid
lines), pointing out that it very well approximates the targets for each one
of the four chemicals involved in the reaction (E, S, ES, P ).

Brussellator with oscillating regime. Figure 6.3 reports the experi-
mental results returned by GAs, PSO1 and PSO2 for the Brussellator sys-
tem with oscillating regime. In particular, Fig. 6.3(a) reports the ABF and
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Figure 6.3: Experimental results returned by GAs, PSO1 and PSO2 for
the Brussellator system with oscillating regime, obtained by executing 50
independent runs of each algorithm. Left: Average Best Fitness against
fitness evaluations. Right: Accumulated number of successful runs against
fitness evaluations.

Fig. 6.3(b) reports the number of successful runs. These results have been
obtained with 50 independent runs of GAs, PSO1, PSO2; in this case, only
one tau leaping execution (Z = 1) has been performed because, if we execute
more than one run and we calculate their average behaviours, we would risk
to flatten the oscillations that characterize this dynamics.

In this case, it is clear that PSO outperforms GAs both from the ABF
and success rate viewpoints. In particular, we point out that neither GAs
nor PSO2 have been able to find an optimal solution in none of the 50
independent executions that we have performed, while PSO1 has found an
optimal solution in only a single run after a number of fitness evaluations
approximately equal to 3,500. We conclude that PSO1 can be considered
the most suitable algorithm, among the ones that we have studied, for this
particular Brussellator dynamics.

Figure 6.5(b) reports the dynamics (dots) over one period of the Brus-
sellator system with oscillating regime that we have obtained using the con-
stants found by the best solution generated by PSO1 over the 50 runs that
we have executed. We also observe that the target behavior (lines) has
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been reliably approximated with the estimated constants, that are c1 =
1.23966, c2 = 0.00634, c3 = 4.37171 · 10−5, c4 = 2.71063.

Brussellator with damped oscillations. The experimental results re-
turned by GAs, PSO1 and PSO2 for the Brussellator system with steady-
state attractor are reported in Fig. 6.4. As for the other cases, in Fig. 6.4(a)
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Figure 6.4: Experimental results returned by GAs, PSO1 and PSO2 for
the Brussellator system with damped oscillations, obtained by executing 50
independent runs of each algorithm. Left: Average Best Fitness against
fitness evaluations. Right: Accumulated number of successful runs against
fitness evaluations.

we report the ABF and in Fig. 6.4(b) the accumulated number of successful
runs, obtained with 50 independent runs of GAs, PSO1, PSO2, and Z = 5
tau leaping simulations.

Also in this case, as for the Brussellator system with oscillating regime,
PSO clearly outperforms GAs both for ABF and success rate. In this case,
PSO1 and PSO2 show a similar behavior for both these statistics. GAs have
not been able to find an optimal solution in none of the 50 independent ex-
ecutions that we have performed, while both PSO variants have found an
optimal solution in all the 50 runs after a number of evaluations approxi-
mately equal to 5,500.

Given that PSO1 has been able to obtain a success rate equal to 1 with
a slightly lower number of fitness evaluations than PSO2, also in this case
we report the dynamics obtained using the constants contained in the best
solution found by PSO1 (c1 = 9.9571, c2 = 0.00616, c3 = 0.00033, c4 = 15).
These dynamics are shown in Fig. 6.5(c). This time the estimated dynam-
ics (dots) of the two chemicals do not approximate the targets dynamics
(lines) in a satisfactory way. In particular, we evidence that the estimated
dynamics approximates the target at the steady-state, while the first part of
the target dynamics, with damped oscillations, is not reliably reconstructed.
We hypothesize that this problem could be solved by assigning to the sec-
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Figure 6.5: Dynamics of the studied systems using the constants found by
the best solution generated by PSO1. Left: Michaelis-Menten system; Right:
Brussellator with oscillating regime; Bottom: Brussellator with damped os-
cillations.

ond (non-oscillatory) part of the dynamics a lower weight than to the first
(oscillatory) one in the fitness calculation.

6.4.4 Discussion

The problem of estimating the rate constants of two well known biochem-
ical systems has been tackled in this section, using GAs and two different
versions of PSO. The experimental results that we have obtained hint that
canonical PSO is a suitable optimization method for this problem, since it
outperforms both GAs and the PSO version that co-evolves parameters C1

and C2. The values of the constants returned by PSO have allowed us to
faithfully reconstruct the behavior of the MM system and of the oscillat-
ing Brussellator. Nevertheless, for the damped Brussellator even the best
set of constants found by PSO has not allowed us to reconstruct the target
dynamics in a suitable way. Thus, even though interesting, the presented
results deserve further investigations.

Some possible improvements to the proposed optimization methods in-
clude the use of further GAs genetic operators, for instance, Laplace Cross-
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over, Makinen, Periaux and Toivanen Mutation, Non-Uniform Mutation [48]
and the other operators described in Section 2.1, or other PSO models,
like PSO with structured populations, with various different neighbourhood
structures or with more than two basins of attraction (in addition to the
local and global best positions).

Another possible improvement concerns the fitness function. The defini-
tion of a suitable fitness function is an intrinsically difficult task for param-
eter estimation of biochemical systems, for several reasons. First of all, if
we exploit stochastic simulation algorithms for the fitness calculation, then
it is very unlike to reach the (ideal) value of zero because of the stochastic
fluctuations of the estimated time series. Moreover, the same individual
will generally have different fitness values each time it is evaluated. These
drawbacks could be mitigated by, for instance, executing many times the
tau leaping algorithm and calculating averages, but this might be very time
consuming in some cases and it could raise serious problems when the target
dynamics shows an oscillating behavior (averages may flatten oscillations).

In addition, regarding the fitness function, our choice of using tau leaping
to generate the dynamics corresponding to a given set of constants (and thus
to evaluate the fitness of an individual) has suggested us to consider the area
between the target and the estimated curves, instead of calculating their
point-to-point mutual distance. In fact, since the tau leaping algorithm
samples points at arbitrary time instants, we have to deal with irregular
timing patterns; furthermore, some portions of the dynamics might be more
frequently sampled than others. If we use the point-to-point distance to
calculate fitness, all sampled points would receive the same importance, thus
overrating the dynamics portions that have been more frequently sampled.
On the other hand, the area calculation allows us to better evaluate the
dynamics also in regions that have not been sampled by tau leaping, and
thus approximate more faithfully the (ideal) situation in which we have
information for each possible time instant.

To try and solve these problems, this fitness definition could be fur-
ther improved, for instance, in two ways. The first consists in partitioning
the time axis into subintervals, and performing the optimization by incre-
mentally extending the time interval considered for the fitness calculation.
The second consists in giving different weights to regions of the dynam-
ics that show distinct behaviours, according to some previous knowledge of
the system. Moreover, a different weight could be assigned to the various
species involved in the chemical reactions under consideration according, for
instance, to the relevance they hold within the system.

Finally, we have recently applied the PSO versions presented here for the
parameter estimation of the chemotaxis model described in Section 5.4.1; the
preliminary, but promising results of this work can be found in [13].

177



Chapter 6. The role of parameters in chemical and biological systems

6.5 Stochastic simulations on a grid framework
for parameter sweep applications in biological

models

In this section we present the distribution of a large number of computations
of τ -DPP stochastic simulator (see [30] and Chapter 4 for additional details),
on the EGEE grid framework [56], to enable an analysis of the parameter
space of a biochemical system by means of parameter sweep applications
(PSAs) [140]. This is done to the aim of exploring this high–dimensional re-
search space, and gain knowledge about the influence of the initial conditions
on the system’s dynamics.

Given the biological model to analyse, the first step is to define the ranges
and the distribution of the parameters values that will be perturbed during
the PSA. The most intuitive way to define a set of parametrisations involves
the cartesian product of the admissible ranges of each parameter; however,
since we have to deal with a high number of parameters, the number of
different parametrisation needed to cover the entire research space would
be troublesome. A more efficient method to sample this multidimensional
space exploits the quasi-random series [149], also called low discrepancy
sequences. The discrepancy of a sequence is a measure of its uniformity, and
is computed by comparing the actual number of sample points in a given
multidimensional space with the number of sample points that “should be”
there assuming a uniform distribution. Therefore, the aim of quasi-random
series is to “uniformely” cover the space with “few” samples (i.e., with a
lower number of points with respect to classic uniform distributions).

Since each instance of a PSA – corresponding to a simulation of the
biochemical system by means of τ -DPP –2 is independent, the grid comput-
ing framework constitutes a good solution to tackle the high computational
cost of this kind of application. The advantage of using a grid distributed
approach for computing large computational challenges relies on the high-
end scalability of this technology. If jobs are completely independent the
theoretical scalability of the system is linear. This is not true in real com-
putations, due to the time needed to schedule jobs, to transfer data and to
resubmit failed jobs. However, while distributed platform are not suitable
to parallelise the execution of programs that require high connectivity, they
are very reliable for data parallel applications, by splitting the computation
of input data in independent processes and collecting back the results.

As a case study, we present a PSA for the exploration of the stochastic
constants values space of a model composed by 59 reactions which describes
the bacterial chemotaxis process presented in Section 5.4.1. This approach
represents a benchmark for the development of a sensitivity analysis tool for
stochastic biochemical systems implemented on the grid framework.
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6.5.1 The EGEE grid platform

In this work we exploit the EGEE project infrastructure, a wide area grid
platform for scientific applications, composed of thousands of CPUs, which
implements the Virtual Organisation (VO) paradigm [63]. The produc-
tion framework is a large multi-science grid infrastructure, federating 250
resource centres world-wide, which provides comprehensively 20.000 CPUs
and several Petabytes of storage. This infrastructure is used on a daily basis
by thousands of scientists federated in over 200 VOs.

The EGEE platform relies on the gLite middleware [103] used in several
projects like: DataGrid, DataTag, Globus, GriPhyN, and LCG. The gLite
distribution is an integrated set of components designed to enable resource
sharing and must be installed on a local server, the User Interface (UI), to
allow users to manage the EGEE grid computations. In particular, employ-
ing gLite, it is possible to submit jobs to the grid, to monitor their state
of advancement, and to retrieve the outputs when the computations have a
normal termination or to resubmit the job in case of failure. This grid infras-
tructure is highly scalable and allows computational intensive challenges to
be accomplished, but users must cope with the continuous dynamic reshape
of the available resources, which is typical of loosely coupled distributed
platforms.

The grid middleware offers a well-established security system, which en-
ables a secure connection to remote resources. This system relies on the
Grid Security Infrastructure (GSI) which uses public key cryptography to
recognise users. The access to remote clusters is granted by a Personal Cer-
tificate, encoded in the X.509 format, associated to each job with the aim to
authenticate the user. Moreover, users must be authorised to submit jobs by
a VO, that is, a grid community having similar tasks, which grants for them.
In this test we join the Biomed VO, which shares on average 2000 CPUs
and admits applications in the medical image processing, bioinformatics,
and more generally the biomedical data processing fields.

The resources available on the EGEE project platform are composed by
a network of several Computing Elements (CEs), which are gateways for
computer clusters where jobs are actually performed, and an equal number
of Storage Elements (SEs), that implement a distributed filesystem to store
temporary files. The computational resources are connected to a Resource
Broker (RB) that routes each job on a specific CE taking into account the
directives of the submitting script, called JDL (Job Description Language).
In detail, the Workload Management System is the RB service which sched-
ules jobs by delivering them to the best matching resource, balancing the
computational load, via a Condor-G client [24]. Although this brokering is
not configurable by users, it provides high performance: bulk submission
allows to submit sets of independent jobs in a much more reliable and com-
pound operation, up to a rate of 50Hz for job submission and 0.5Hz for job
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dispatching to the CEs.

Each CE submits the incoming job to a batch system queue (PBS or
LFS) which hides the farm of Working Nodes. To handle files over the grid,
the gLite middleware provides a set of tools to manage data similarly to
a distributed filesystem. These tools allow the data to be replicated into
different SEs, which can help to reduce the database upload time during
the computations. The RB, in fact, is able to redirect the execution of an
application to a CE located as near as possible to the files currently used,
hence minimising the communication time. Although large files should be
always managed by using the SEs, for both input and output, it is possible to
use the SandBox to load and download small files directly to the CE. The
main difference is that files transferred using the InputSandBox and the
OutputSandBox are temporary stored on the RBs, therefore are managed
directly by the middleware (but their size should be less than few MB,
otherwise RBs will be rapidly stuck) and cannot be reused. On the contrary,
files on the SEs have no limitation in size and availability, but have to be
handled directly by users.

6.5.2 PSA over the grid

From the computational point of view, the greatest problem of implementing
a PSA over the grid is the dynamic behaviour of the available resources. Due
to network and system errors, or in relation to the global computational load,
the available resources are continuously reshaped and the rate of failure in
computations is quite high.

Some solutions, such as Nimrod [22] and APST [28], have been devel-
oped to handle these PSAs on grid but they rely on particular middleware
implementations, which are not gLite compliant. Moreover, a grid-inspired
solution to distribute stochastic simulations is described in [108], but the
approach does not rely on a grid implementation. While the infrastructure
used for the PSAs presented in the following sections is a standard pro-
duction environment, our focus is not on the middleware implementation,
but on testing the reliability of the proposed simulation approach over this
distributed platform, by choosing the best strategy to cope with the grid
ensemble. Therefore, a crucial point is the creation of a system able to in-
teract with the grid to manage the whole PSA computation, which should
check the consistency of each job in a fault tolerant environment.

Managing jobs over the grid: the Challenge Control System. In
the context of the EGEE grid, the Challenge Control System (CCS) [130]
was developed to completely coordinate a computational challenge running
on a single UI, by submitting and managing the whole set of jobs in which
the computation is split dealing with CEs and SEs. In other words, this
framework provides an automatic management of all the necessary opera-
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tions to fulfil each single task, because it wraps the grid middleware low level
API for file handing (lcg-* ) and for job submission, status monitoring and
output retrieving (glite-* ), by providing a user-friendly and fault-tolerant
environment.

The CCS is highly customisable, thanks to its double layered infras-
tructure: the first layer was developed to cope with the latest middleware
versions of the EGEE infrastructure to manage each single job, while the
second level deals with the different requirements of the current application
to split the computation and perform the specific tasks on the remote re-
sources. These layers are interconnected by a MySQL database designed to
collect all the information needed to manage each grid job, which works as
back-end of the system.

The first layer of the CCS works in close connection with the UI and it
is mainly devoted to the management of each single job, from the definition
of the JDL script and its submission, to the retrieving of the output results.
This layer employs the network time protocol using the same servers of the
EGEE infrastructure, in order to be synchronised with respect to all the grid
components, which is crucial for enabling a correct survey on computational
trends. Our system also makes use of the crond daemon which beats the
interval between each round of Challenge Coordination System execution in
which, according to the information stored in the MySQL database, tasks
such as the submission of new jobs, polling the RB about the status of
scheduled jobs, the resubmission of failed jobs and the retrieve back of output
results are accomplished.

The second layer is the most important from the application point of
view because it coordinates, by using a set of scripts, the job distribution
over the grid by splitting the input data in specific tasks: their computation
on remote resources and the collection of the output results. Moreover, the
second layer checks the output consistence of each simulations computed on
the grid platform in connection with the upper layer, which monitors each
job as an independent unit.

Implementations to distribute the PSA over the grid. A crucial
factor in the implementation of a grid application is the identification of a
suitable strategy for splitting the computation into a set of grid jobs, which
corresponds to the granularity of the computation. In fact, the computation
of long jobs on the grid may cause significant data loss in case of system
failure or problems during the data transfer. On the other hand, the exe-
cution of a large number of short jobs raises the total latency time in the
batch queues, affecting the global performance of the system. Moreover,
the size of the output results should be considered, due to the impact of
the transfer time on the total computation efficiency. For this reason we
performed different PSAs, by varying the number of jobs and the number of
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simulations performed in each job, and by altering the computation time by
using different strategies of parameters selection, which consequently affect
the output size.

In order to enable the execution of a large number of τ -DPP simulations
over the grid platform, the CCS [130] has been adapted to satisfy the appli-
cation requirements. While the lower layer has been periodically updated
to be compliant with the latest release of the EGEE grid middleware, the
upper layer has been customised for this specific application. In detail, two
scripts of the developed framework have been modified to manage the input
and output of the PSA computation: one concerns the input management
and the other coordinates the computation on the remote resource.

The first script splits of the computation in grid jobs according to the
desired granularity. This script populates a directory in which all the files for
each single job are temporary collected for submission (i.e., the τ -DPP pro-
gram and a folder tree containing the input files for each single simulation)
and creates the JDL script which describes the job. It then calls the lower
layer for the real submission to the grid, specifying some important param-
eters such as the maximum number of resubmission in case of failure (which
allows to overcome most of the problems due to the dynamic reshape of the
grid facilities), the maximum time for the job to be queued on a grid cluster
before its deletion and resubmission (to avoid over-crowded computational
resources), and the output directory on the local server where results will
be collected.

The second script of the CCS that has to be customised, is the one ef-
fectively executed on the remote clusters. This script manages the input
files: it unpacks the input from the InputSandBox, defines the pipeline of
operations to be accomplished on the remote resources (in this case, it iter-
ates the execution of τ -DPP according to the specified granularity), rebuilds
the output directory in a structure which allows an easy evaluation of the
results, packs the results to be retrieved and transfers the output results.

The output of a PSA is constituted by a set of calculated dynamics. In
this case, the SEs must be used to archive the numerical results before down-
loading them to the UI. This approach is essential when there is the need of
retrieving the complete numerical results for a complete investigation of the
system dynamics. However, preliminary analysis of the grid performance
suggested that the output data size have a significant effect on the overhead
and the success rate of the grid infrastructure.

In order to test the grid infrastructure in a wider range of conditions, we
developed another approach in which the analysis of the dynamics is done
just after the simulations. In this case, the output is reduced significantly:
instead of the complete time series for each molecular species, a value rep-
resenting an interesting property of the considered dynamics is retrieved
immediately through the OutputSandBox, without using the SEs. In other
words, we developed two different implementations: the first one (imple-
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Table 6.1: The 59 reactions of the model of bacterial chemotaxis. The
methylation states (m) corresponding to the reactions are: m = 0 for reac-
tions 1 − 4, m = 0, . . . , 3 for reactions 5 − 8 and 38 − 41, m = 1, . . . , 4 for
reactions 9 − 12 and 42 − 57, and m = 0, . . . , 4 for reactions 13 − 37.

Reagents Products

1 2MCPm+2CheW 2MCPm::2CheW

2 2MCPm::2CheW 2MCPm+2CheW

3 2MCPm::2CheW+2CheA 2MCPm::2CheW::2CheA

4 2MCPm::2CheW::2CheA 2MCPm::2CheW+2CheA

5-8 2MCPm::2CheW::2CheA+CheR 2MCPm+1::2CheW::2CheA+CheR

9-12 2MCPm::2CheW::2CheA+CheBp 2MCPm−1::2CheW::2CheA+CheBp

13-17 2MCPm::2CheW::2CheA+ATP 2MCPm::2CheW::2CheAp

18-22 2MCPm::2CheW::2CheAp+CheY 2MCPm::2CheW::2CheA+CheYp

23-27 2MCPm::2CheW::2CheAp+CheB 2MCPm::2CheW::2CheA+CheBp

28-32 lig + 2MCPm::2CheW::2CheA lig::2MCPm::2CheW::2CheA

33-37 lig::2MCPm::2CheW::2CheA lig+2MCPm::2CheW::2CheA

38-41 lig::2MCPm::2CheW::2CheA+CheR lig::2MCPm+1::2CheW::2CheA+CheR

42-45 lig::2MCPm::2CheW::2CheA+CheBp lig::2MCPm−1::2CheW::2CheA+CheBp

46-49 lig::2MCPm::2CheW::2CheA+ATP lig::2MCPm::2CheW::2CheAp

50-53 lig::2MCPm::2CheW::2CheAp+CheY lig::2MCPm::2CheW::2CheA+CheYp

54-57 lig::2MCPm::2CheW::2CheAp+CheB lig::2MCPm::2CheW::2CheA+CheBp

58 CheYp+CheZ CheY+CheZ

59 CheBp CheB

mentation A), in which all the temporal series resulting from a stochastic
simulation are retrieved; the second one (implementation B), in which each
simulation result is analysed within the corresponding remote resource and
only the result of the analysis is retrieved.

6.5.3 Bacterial chemotaxis: a case study

In order to test the performances of PSA over the grid, we have analysed
the stochastic constants space of a chemotactic model (see Section 5.4 for
the system description, and for additional details about the model and the
results obtained by means of stochastic simulations). Note that, actually,
the model considered here and used during the PSA is different from that
presented in Section 5.4; this is a previous version composed of 59 chemical
reactions (with respect to the 62 reactions of the new version), which are
listed in Table 6.1.

The reference dynamics (used in the fitness function during the PSA) have
been obtained by performing stochastic simulations with the τ -DPP algo-
rithm, and considering the temporal evolution of phosphorylated state of
the protein CheY (CheYp). The initial conditions of the system are that re-
ported in Section 5.4, while the set of stochastic constants used for the 59 re-
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actions is: c̄ = (c1 = 0.1, c2 = 0.01, c3 = 0.1, c4 = 0.02, c5 = 5.0·10−7, c6 =
5.0 · 10−4, c7 = 2.0 · 10−4, c8 = 0.0080, c9 = 1.0, c10 = 0.6, c11 =
15.0, c12 = 0.35, c13 = 5.0 · 10−7, c14 = 5.0 · 10−4, c15 = 2.0 · 10−4, c16 =
6.0 · 10−4, c17 = 0.325, c18 = 7.0 · 10−6, c19 = 0.0035, c20 = 0.0014, c21 =
0.0044, c22 = 0.8, c23 = 15.0, c24 = 0.325, c25 = 7.0 · 10−6, c26 =
0.0035, c27 = 0.0014, c28 = 0.0044, c29 = 0.29, c30 = 2.8 · 10−5, c31 =
0.014, c32 = 0.0056, c33 = 0.0175, c34 = 1.0, c35 = 15.0, c36 = 0.29, c37 =
2.8 · 10−5, c38 = 0.014, c39 = 0.0056, c40 = 0.0175, c41 = 0.165, c42 =
5.0·10−5, c43 = 0.025, c44 = 0.01, c45 = 0.0306, c46 = 1.2, c47 = 15.0, c48 =
0.165, c49 = 5.0 · 10−5, c50 = 0.03, c51 = 0.0112, c52 = 0.0343, c53 =
0.05, c54 = 6.8 · 10−5, c55 = 0.0336, c56 = 0.0135, c57 = 0.035, c58 =
1.4, c59 = 15.0).

6.5.4 Results

For each specific PSA we decided to perform in every single job a constant
number of simulations of the system, in order to keep constant the expected
CPU time, tcpu

e , for each job within every single PSA. However, the number
of simulations and jobs is different in each PSA, according to the purpose
of each test and to test the grid using different settings. Therefore, PSAs
differ with each other for what concerns the number of simulations grouped
in each job and for the number of grid jobs, which have comprehensively a
tcpu
e between 0.5 and 3.5 hours. Jobs within this interval are defined long

jobs, in opposition to medium jobs (between 5 and 45 minutes) and short jobs
(less than 5 minutes). Long jobs are largely considered the most suitable
to exploit grid computing because they represent a good trade-off between
latency and failure problems [69]. Therefore, the proposed job duration
interval is appropriate to value the efficiency of grid in this PSAs challenge.

Four PSAs, in the following called PSA1, PSA2, PSA3 and PSA4, have
been performed on the bacterial chemotaxis model described in Section 6.5.3.
The parametrisations of each PSA have been defined by perturbing one or
more values of the set c = (c1, . . . , c59) of stochastic constants of the model,
with respect to the values in c̄ (used to obtain the target dynamics).

The results of the stochastic simulations performed on the grid have been
analysed by comparing them to the target dynamics, exploiting the fitness
function described in Section 6.3.

PSA1 and PSA2. In PSA1 and PSA2, only one element of the stochastic
constants vector c has been perturbed in each parametrisation. In PSA1,
for each parameter cj ∈ c, 10 simulations have been run using 10 values of
cj linearly distributed within the interval [0.5 · c̄j , 1.5 · c̄j], where c̄j is the
reference value of each constant cj, j = 1, . . . , 59. A total of 590 simulations
have been distributed over the grid, organised in jobs of 10 simulations each.
Every simulation has been initialised with a relative long time length, 10 time
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units, in order to check for potential late effects on the system dynamics.
The computation of a single job, corresponding to the set of simulations in
which one value cj has been perturbed 10 times, had tcpu

e of about 45’ and
was associated to a data volume of about 70MB (leading to a total data
volume of 4GB).

The results of PSA1 denote that there are three most influential parame-
ters: c8, c37, c49 that affect the system dynamics. The variation of the other
stochastic constants has negligible effects on the system behaviour, there-
fore we decided, for the subsequent PSA analysis, to extend the range of
variation for all the stochastic constants and to have a finer grain sampling.

PSA2 was composed of 5900 instances, organised in 59 jobs in which
each parameter cj has been perturbed 100 times, logarithmically distributed
within the interval [10−1 · c̄j , 10 · c̄j]. Every job had tcpu

e of about 90’ and
was associated to a data volume of about 25MB. The lower data volume
with respect to PSA1, despite the higher number of instances, was obtained
reducing the total time of the simulated dynamics (conversely, we would
have had an output of about 40GB).

The results of PSA2 confirmed those obtained from PSA1. As depicted
in Figure 6.6, parameters c8, c37, c49 highly influence the system dynam-
ics, while the other stochastic constants have a little effect on the system
behaviour. These results show that the crucial points of the model, consid-
ering these ranges for the parameters, are represented by reactions r8, r37,
r49. This analysis can be extended increasing the ranges of the parameters
variation in order to find the boundaries of the “wild type” behaviour.
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Figure 6.6: Fitness values obtained varying a single parameter for each
parametrisation. On the x axis there is the index j of the 59 stochastic
constants cj and on the y axis the relative intensity of the variation with
respect to c̄j .
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PSA3 and PSA4. PSA3 and PSA4 were composed of 10000 simulations
each, the samples have been obtained by using a quasi-random number
generator, within the interval [10−1 · c̄j, 10 · c̄j ]. 100 jobs, of 100 simulations
each, have been distributed on the grid.

In PSA3 every job had tcpu
e of about 230’ and produced an output of

188MB in size, while PSA4 was characterised by jobs with tcpu
e of about

30’ and produced 12MB in size. The differences in space occupation and
computation time are related to the different number of perturbed param-
eters: 59 in PSA3 and 3 in PSA4. Moreover, these results show that, by
(randomly) sampling 59 parameters, a choice of values that lead to faster
dynamics, occurs more frequently. The effect of this parameters values (us-
ing a stochastic algorithm) consists in a higher number of steps needed to
perform a simulation, and hence in higher resources occupation and output
size.

The results of PSA3 show that, even though the parametrisation is ob-
tained quasi-randomly sampling all the 59 parameters, the most influent
parameter is c8. This is evident comparing Figures 6.7 and 6.8 – where we
show the fitness landscape of the 10000 simulations considering the param-
eters c8, c37 and c8, c49, respectively – with Figure 6.9, where the fitness
landscape is plotted versus parameters c37, c49. The effect of parameter
c8 induces a sort of ordering of the fitness values. In particular, as the
parameter value decreases, the fitness value increases.
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Figure 6.7: Fitness landscape of PSA3 related to parameters c8 and c37.

In PSA4 we performed 10000 simulations, where the parametrisations
occurred varying only the three most influent parameters of the system. The
aim of PSA4 was to deeply investigate the 3-dimensional space delimited by
parameters c8, c37 and c49. The obtained results show again the influence
of parameter c8 (Figures 6.10 and 6.11 against Figure 6.12).
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Figure 6.8: Fitness landscape of PSA3 related to parameters c8 and c49.
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Figure 6.9: Fitness landscape of PSA3 related to parameters c37 and c49.

6.5.5 Performance discussion

In this section we discuss the performance of the PSA executed over the grid
by using the two implementations described above.

Implementation A. As stated above, in the implementation A the fitness
analysis was performed on the UI after the computation of all the simulations
on the grid platform. The four PSAs have comprehensively an estimated
computational time of 24 days employing a single CPU while over the grid
the full computation lasted 2 days. Hence the crunching factor, Cf , is equal
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Figure 6.10: Fitness landscape of PSA4 related to parameters c8 and c37.
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Figure 6.11: Fitness landscape of PSA4 related to parameters c8 and c49.

to 122.

This result was considerably lower than what we expected. Investigating
the problem, we discovered that the number of CPUs used concurrently
was significantly higher, but due to unforeseen failure, the scalability was
considerably reduced. Considering these four PSAs, a total of 318 jobs have
been submitted to the EGEE [56] grid infrastructure: there were about
67% of the jobs reported as successfully finished according to the status
logged in the RB, at the first submission. However, the ratio went down

2
Cf is a metric of the parallelisation gain, defined as the ratio between the total CPU

time and the duration of the experiment over grid. It basically represents the average
number of CPUs used simultaneously along the computation.
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Figure 6.12: Fitness landscape of PSA4 related to parameters c37 and c49.

to 57% after checking the existence of the output. Generally, among the
most frequent reported problems there are: (1) faults in the RB scheduling,
because resources with the required characteristics are not available; (2)
faults in the jobs management by the CE queue, due to overload problems
incorrectly reported to the grid; (3) problems with the SE files holding. In
our tests, the main cause of job failure seems to be the data transfer between
the SEs and the CEs and, in few cases, the unexpected termination of the
jobs due to errors on the CEs.

Implementation B. In this implementation the fitness is computed di-
rectly on the grid infrastructure, avoiding the full download of the output
data describing the system dynamics. Computing the fitness during the sim-
ulations, the output was reduced to less than 1 MB, which can be held using
the OutputSandBox. Implementation B has a success rate of 78%, according
to the RB, which outcomes in about 75% of results correctly retrieved. The
expected computational time was also of about 24 days on single CPU, be-
cause the fitness calculation is quite fast, but the whole computation takes
only 30 hours, which correspond to Cf = 20.

Comparison between implementations A and B. The comparison
of the two implementations allows to better explore the EGEE grid infras-
tructure potential, by avoiding the bottleneck represented by the fragility
of the distributed filesystem, and exploiting in the meantime as much as
possible the power of its computational resources. Figure 6.13 shows the
effective CPU time on grid resources, tcpu

g , and the total grid time spent to
accomplish a single job of a particular PSA, tg.

It is worthy to note that even if the expected CPU time for jobs within
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each PSA is similar, the effective CPU times are distributed on large ranges
(for instance, the CPU time for PSA1 ranges from 10 to 100 minutes) due
to the heterogeneity of the computational resources. For what concerns the
grid computation time, the graphs in Figure 6.13 show that the grid overhead
in implementation A has a large impact on the performance of the system.
On the other hand, by preventing the use of the distributed filesystem for
the output management, the scalability and the robustness of the system is
largely improved (as shown by the shorter grid time of implementation B).
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Figure 6.13: Distribution of the jobs of each PSA in relation to their CPU
time over grid (tcpu

g ) and total grid time (tg) in implementations A and B.

Considering the job resubmission by the CCS, in the implementation B
jobs have been resubmitted at most 3 times before a successful termination,
which is considerably better than implementation A, in which some jobs
were resubmitted up to 5 times. The other causes of job failure can be
hardly eliminated, because they are due to unrecoverable hardware problems
(such as hard disk burns, RAM and motherboard failures, or power supply
discontinuities), and network access disruption or misconfiguration (note
that all these hardware and network problems can lead to many job failures).
On the other hand, considering that the latency time tlg – which includes
input file upload, job routing by the RB and the time spent on the grid
clusters queue – is quite the same for jobs of the different PSAs (Figure 6.14),
the improvement of the grid performance of implementation B with respect
to implementation A (shown in Figure 6.13) can be effectively attributed
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to the lower failure rate obtained by avoiding the use of the distributed
filesystem.
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Figure 6.14: Cumulative distribution function of the latency time (tlg) for
the PSAs. No significant differences are reported in the overall time required
for file upload, job routing by the RB and time spent on the grid clusters
queue between different implementations.

A very important indicator to evaluate the grid efficiency is the overhead
ratio, which can be defined as Or = (tlg + tcpu

g )/tcpu
g . In some cases the

overhead ratio is computed by using tcpu
e (at the denominator), however

here we use tcpu
g , thus including the time required to transfer the results

from the CEs to the SEs. Moreover, tcpu
g is largely influenced by the grid

facility on which the job is performed and can result considerably different
from the expected time that we have obtained from our preliminary tests.
However, Or indicates the time spent “on the grid” with respect to the
effective tcpu

g . From Figure 6.15 it is clear that the higher the tcpu
g the better

Or. In other words, the use of the grid is justified when the computational
time is considerably long, because for short jobs tlg can be very large with
respect to the effective tcpu

g . Therefore, the empirical idea we have exposed
about the importance of the job granularity is confirmed by the obtained
results: while there is a considerable failure rate which suggests to perform
short tasks, the job duration should be carefully considered with respect to
the large overhead of short jobs which prevents from fully exploit the grid
potentiality.

The time tui
g needed for the output retrieval (which is sent to the UI) is

shown in Figure 6.16. In the implementation A, tui
g corresponds to the time

required to transfer files from the SEs to the UI, while in the implementation
B, tui

g is the time to retrieve the OutputSandBox from the RB. Clearly, the
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Figure 6.15: Overhead ratio (Or) for each PSA, best values of the overhead
ratio are obtained for large CPU time.

latter is considerably shorter than the time needed to transfer the entire
result of the stochastic simulation from the grid distributed filesystem. tui

g

has not been included in the previous performance analysis because it is
affected by a noise caused by the intervals between each polling of the RB
by the CCS. In particular, in our PSAs the time intervals have been set to 10
minutes in order to avoid an overload of requests to the grid infrastructure.

The rational behind the choice of excluding tui
g from the performance

analysis is that the output is retrieved on the UI only when its status is
reported as successfully finished, and a direct interrogation of the RB is
needed to be acknowledged of this status. Stated in other words, while
tlg is calculated as difference between the job submission time and the job
execution beginning time, and tcpu

g is calculated as difference between the
job execution beginning time and job execution end time, the time elapsed
for the effective presence of the output results on the UI (tui

g ) is an uncertain
component, because of the interval between two consecutive interrogations
of the RB.

The time we can effectively measure is the total time needed to transfer
the files from the grid infrastructure to our UI. Due to the authentication on
the grid facilities and the interrogation of the distributed filesystem, tui

g has
a large overhead which is considerable high for small files but decreases while
dealing with large data. For example, files of few MB have a transfer rate of
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about 33KB/sec, files of tens of MB have transfer rate of about 100KB/sec
and files larger than 100MB have a transfer rate of about 200KB/sec.
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Figure 6.16: Cumulative distribution function of the files transfer time be-
tween the grid and the UI (tui

g ) for the different PSAs. In implementation
A, tui

g corresponds to the time needed to transfer the files from the SE to
the UI, while in the implementation B it is the time required to retrieve the
OutputSandBox from the RB.

6.5.6 Conclusion

PSAs are a useful solution to explore the huge state space of a system,
which corresponds to all possible combinations of initial molecular numbers
and reaction rate constants values. This exploration provides insights about
the relationships between the parameters of the chemical reactions and the
evolution of the system. In particular, PSA helps in analysing how the
choice of a set of values in the parametrisation determines the change of the
set of reachable states. This information can be exploited in the application
of different techniques such as parameter estimation or sensitivity analysis.
Usually, the computation time required to achieve significant results is very
high, but thanks to the independence of the parametrisations executed with
a PSA, this technique is suitable for a distributed implementation.

In this context we proposed a work with two aims: from one side we
want to prove the effectiveness of PSA on grid showing that it is possible
to achieve interesting biological results and, on the other side, we tested the
EGEE grid infrastructure to show its performance and its bottleneck for
this kind of applications, thus providing useful insights for future works.

Considering the chemotaxis model, results of the PSAs showed that the
stochastic constants determining the major impact on the system dynamics
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are c8, c37 and c49. These constants control, respectively, the addition of the
fourth methyl group to the MCP, the unbinding of the ligand from the MCP
with 4 methyl groups, and the phosphorylation of CheA protein bound to
the MCP complex with MCP in the highest methylated state. The evidence
that the three constants are involved in controlling processes in the highly
MCP methylated state underlines the role of the MCP methylations for the
functioning of the system.

The EGEE grid proved to be a useful solution for the distribution of
PSAs concerning the analysis of the biochemical systems dynamics by means
of stochastic simulations. The efficiency of this platform has been demon-
strated during of our middle-size test and, considering that the more inten-
sive the computation the more scalable the infrastructure, grid computing
can be considered a suitable technology to exploit in the context of large
scale biological model analysis. However, due to the high rate of failure, a
capable submission and monitoring environment should be set-up in order
to appropriately manage the volume of data. Moreover, to our experience,
the granularity of the submitted jobs and the use of the SE for managing
files are element to carefully consider while using the grid infrastructure.

In this work, we compared the grid performances between two imple-
mentations: implementation A, in which the entire results of the stochastic
simulations are first retrieved from the SEs and then analysed; implemen-
tation B, in which the model dynamics are analysed during the simulation
phase and only the results of the analysis are retrieved. Implementation A
is useful when the complete numerical data of the simulations need to be
saved. In implementation B, the SEs have not been used and this deter-
mined an increase of the grid performances. As a consequence, these results
encourage the development of a tool for the analysis of model dynamics
behaviour, with one (or more) parameters perturbed, distributed over the
grid within the PSA and avoiding the retrieval of the whole numerical data
representing the simulations.

A possible future development of this work consists in the extension of
the range of variation for the stochastic constants, in order to identify the
boundaries of the “wild type” behaviour of the system, that is, to identify the
values of the stochastic constants in which the system’s behaviour actually
changes and might show other biologically relevant dynamics. Moreover, to
test the robustness of the biological model, we plan to apply PSAs with a
parametrisation where also the initial molecular quantities are changed. In
conclusion, good performances provided by the grid framework encourage
to use this architecture to develop a sensitivity analysis tool for stochastic
biochemical systems, since also in this field, a large number of simulations
need to be performed in order to quantify how much the parameters of the
model can affect the system’s behaviour, e.g., to help in recognizing the
fragilities or the robustness of the system.
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Conclusion and future work

The work presented in this thesis has been motivated by the need to develop
novel methods for the stochastic simulation and analysis of discrete models
for biochemical systems.

To this aim, we first considered DPPs [162], a variant of P systems [154]
that can be used to model chemical, biological and ecological systems. DPPs
rely on the definition of a topological structure (i.e., the membrane struc-
ture), that is suitable to represent the hierarchical organisation of the com-
partments composing a biochemical system; moreover, they use rewriting
rules to describe the chemical reactions that modify the chemical species
involved in the system, which are in turn represented as multisets of ob-
jects. In DPPs probabilities are associated to the rules, and these values
vary according to the system state. By exploiting these values, it is possible
to provide a description of the system’s dynamics, that is, DPPs allow to
reproduce the stochastic variations of the elements (i.e. chemical species)
occurring in the system. However, this description is only qualitative, in
the sense that an effective (physical) time streamline cannot be directly
associated to the evolution steps of the system.

On the other hand, a quantitative description of a system’s dynamics,
in which a time length is associated to each evolution step, can be actually
provided by using stochastic simulation algorithms. Among others, one of
the most efficient procedure of this type is represented by the tau-leaping al-
gorithm [26]. Though it has been shown that tau-leaping can be successfully
used to generate the dynamics of biochemical systems in a very accurate way,
one of its limitations is related to its applicability only to systems enclosed
within a single volume.

To solve these problems, starting from the notions of DPPs and tau-
leaping algorithm, we have developed a novel method which combines their
suitable features for the description and simulation of biochemical systems,
while overcoming their limitations. So doing, we are now able to obtain
quantitative and accurate simulations of the dynamics of biochemical sys-
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tems composed by many volumes. This novel procedure is called τ -DPP
[30]: it consists in a modified tau-leaping algorithm which is enclosed inside
each compartment defined in the membrane structure of DPPs.

A second version of this framework, called Sτ -DPP [29], has then been
introduced. Sτ -DPP owns all features of τ -DPP and, in addition, it considers
the size of both molecules and compartments, to the purpose of building
realise more realistic models and obtain more accurate simulation results
for biological systems.

The stochastic framework for multivolume systems could be further im-
proved by considering diffusive processes inside the compartments, which is
very important in order to characterise the actual localizations of the chem-
icals involved in the modelled systems. Moreover, since these simulation
methods aim at a close description of the biological reality, compartments
whose size changes during the evolution should also be taken into consider-
ation, especially when dealing with cellular processes spanning the cell cycle
period.

Another biological aspect that is worth considering is the influence of
membrane potential over the processes occurring in the system. For in-
stance, in neurons, the open and close states of ion channels are controlled
by the existence of a membrane potential and its variations.

Both algorithms, τ -DPP and Sτ -DPP, have been implemented in C lan-
guage exploiting MPI to handle parallel computations. So doing, the simu-
lation of a model can be executed on parallel architectures, by assigning to
each node (or processor) a single compartment, thus reducing the computa-
tional load of the whole simulation. The efficiency of τ -DPP and Sτ -DPP
can be even improved by using alternative implementations, with the aim of
distributing the simulations on parallel architectures like grid, or on parallel
devices like GPUs by using CUDA libraries.

Different examples of biological and chemical systems, described through
discrete models and simulated using the τ -DPP algorithm, have been pre-
sented in this thesis.

We have described the Ras/cAMP/PKA pathway in the yeast S. cere-
visiae, focusing on the cytoplasmic regulators of the pathway, and provid-
ing stochastic simulations of the synthesis of cAMP and of the cytoplasmic
quantities of the pivotal complexes. As a future development, we plan to
construct an accurate map of other related cellular phenomena, such as the
response of this pathway to nutrients and to intracellular acidification, its
connections with other pathways co–involved in glucose signalling, and the
downhill nuclear expression of target genes. In particular, in order to gain
a higher biological relevance of our model, we will include the Gpr1/Gpa2
pathway, which is a specific signalling mechanism that responds only to high
glucose concentration, and operates in an addictive redundant way with Ras
protein to activate pathway. We believe that establishing the pivotal roles
of the different components in the Ras/cAMP/PKA pathway in yeast might
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have a positive outcome for the elucidation of similar components in higher
eukaryotes. For instance, it is well known that the protein neurofibromin
1 (NF1), acting as tumor suppressor in human cells, is homologous to the
proteins of the Ira family, and it has been shown to contain a GAP related
domain which regulates Ras [10].

Then, we have proposed a multivolume model implementing a synthetic
multicellular clock [67], obtained by coupling the repressilator system with
bacterial quorum sensing. This intercellular communication mechanism is
able to lead the local genetic oscillators (within a noisy and nonidentical
population) to global oscillatory rhythms. The results of the simulations
performed by means of τ -DPP have shown the oscillatory dynamics of the
proteins involved in a single cell. Moreover, we have investigated the effects
of the quorum sensing signal, focusing on the communication mechanism
from the cell to the environment and vice-versa. It would be interesting to
extend this work in order to check whether a more complex system, consist-
ing of a population of coupled cells, can show (emergent) synchronisation
events with respect to the oscillations of the three repressor proteins and
the quorum sensing protein. Since the modelling and simulation approach
we have used is stochastic, the gain of such a synchronised behaviour in a
noisy system is harder than doing this with a deterministic approach.

The last biological application of τ -DPP proposed in this thesis concerns
a very detailed mechanistic model of the bacterial chemotaxis pathway, that
takes into account all proteins (and their respective interactions) involved
in both signalling and response. In particular, all post-translational mod-
ifications of proteins, such as methylation and phosphorylation, have been
considered because of their relevant roles in the feedback control mecha-
nisms governing this pathway. We have investigated the dynamics of the
pivotal protein involved in chemotaxis, CheYp, under different conditions,
such as the deletion of other chemotactic proteins, the addition of distinct
amounts of external ligand, the effect of different methylation states. Then,
we have investigated the possible influence of stochastic fluctuations of the
chemotactic protein CheYp with respect to the running and tumbling mo-
tion of bacterial cells, by considering an increasing number of flagella in the
individual bacterium. To this aim, we have defined a procedure to identify
the synchronisation of rotation of each and every flagella: we have assumed
that the cell is sensitive to a threshold level of CheYp, which is evaluated as
the mean value of CheYp at steady state. Because of stochastic fluctuations,
the amount of CheYp will randomly switch from below to above this value,
thus reversing the rotation of each flagellum from counterclockwise to clock-
wise mode. Our results have demonstrated the importance of stochasticity,
showing the link between the synchronisation of all flagella to the stochastic
fluctuations of CheYp, as the core component that stands at the basis of
chemotactic motions. This model might be improved in order to consider
other relevant features of bacterial chemotaxis. For instance, the gradient

197



Chapter 7. Conclusion and future work

of CheYp that can be present inside the cytoplasm – due to the diffusion
from the area of its phosphorylation (close to chemotactic receptors) to the
area of its activity (around the flagellar motors) – can be a significant as-
pect in chemotaxis, together with the localization of CheZ (that controls the
dephosphorylation of CheYp) and of the flagella around the cell [110].

As a final application, we have considered the framework of chemical
computing for the implementation of logic gates and circuits. The chemical
computing approaches present in literature define simple logic components as
sets of chemical reactions enclosed in a single volume, which can be simulated
by means of classic stochastic algorithms. τ -DPP provides an extension of
these approaches, since it allows to simulate a set of simple logic components
by splitting each of them in separate – but communicating – compartments.
So doing, we can both reproduce the behaviour of every component, and
propagating the output/input signals by sending/receiving molecules among
the distinct compartments.

In particular, we started by simulating two simple logic gates, NAND
and XOR. These gates represent the basic elements for the implementation
of more complex computing devices. In fact, by composing a number of
NAND or XOR logic gates, arranged according to a particular structure, it
is possible to represent any boolean function. Then, we have shown how
to model and simulate the Fredkin gate and Fredkin circuits. A possible
improvement to the implementation and simulation of the presented gates
and circuits might include, for instance, the test of different sets of stochastic
constants for the chemical reactions, in order to reduce the delay generated
during the computation.

A different example of chemical computing that we have presented within
the τ -DPP framework, consists in the simulation of the register machine
instructions. We have shown the modelling of the SUB instruction as a
system composed by two membranes, governed by a conditional behaviour
that checks whether a register is zero or not. We have then presented the
results obtained by simulating the SUBADD module.

The results obtained from these applications have shown a close cor-
respondence between τ -DPP and the chemical reacting systems occurring
inside micro reactors [87]; this can be considered a preliminary step towards
a real implementation of τ -DPP by means of the microflow reactors tech-
nology.

In the second part of the thesis we have explained the important role
of parameters in biochemical systems, by focusing on the set of stochastic
constants associated to the reactions. We have described two techniques
whose aim are, on the one hand, to calibrate the parameters values by means
of optimisation algorithms and, on the other hand, to explore the parameters
space by considering a very large set of independent simulations. These
methods are called parameter estimation and parameter sweep application,
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respectively.
For the first method, we have compared the performances of genetic

algorithms and particle swarm optimizer. The experimental results that
we have obtained hint that the canonical implementation of particle swarm
optimizer is a suitable optimization method for parameter estimation. The
values of the constants returned by particle swarm optimizer have allowed
to faithfully reconstruct the behavior of simple chemical systems.

Some possible improvements to the proposed optimisation methods in-
clude the use of further operators of genetic algorithms as, for instance,
Laplace Crossover, Makinen, Periaux and Toivanen Mutation, Non-Uniform
Mutation [48], or other models of particle swarm optimizer, like the imple-
mentations with structured populations, with various different neighbour-
hood structures or with more than two basins of attraction (in addition to
the local and global best positions).

Another possible improvement concerns the fitness function. Indeed, the
definition of a suitable fitness function is an intrinsically difficult task for
parameter estimation of biochemical systems, for several reasons. First of
all, if we exploit stochastic simulation algorithms for the fitness calculation,
then it is very unlike to reach the (ideal) value of zero because of the stochas-
tic fluctuations of the estimated time series. Moreover, the same individual
will generally have different fitness values each time it is evaluated. These
drawbacks could be mitigated by executing many times the simulation al-
gorithm and calculating averages, but this might be very time consuming
in some cases and could raise serious problems when the target dynamics
shows an oscillating behavior (averages may flatten oscillations).

These problems could be solved by introducing a novel version of the
fitness function. For instance, the time axis can be divided into subintervals,
and the optimization can be performed by incrementally extending the time
interval considered for the fitness calculation. Furthermore, different weights
can be assigned to the regions of the dynamics that show distinct behaviours,
according to some previous knowledge of the system. In addition, a different
weight could be assigned to the various species involved in the chemical
reactions under consideration, according to the relevance they hold within
the system.

Finally, in the last part of the thesis, the parameter sweep application
implemented on a grid framework has been presented. As a case study, we
have applied this technique to the bacterial chemotaxis model, comparing
the results obtained from the application of 4 different configurations of
the parameter sweep. The obtained results have shown the suitability of
the grid framework for this kind of analysis for biochemical systems, and
suggest to implement parameter sweep applications that avoids the retrieval
of huge numerical data since the data transfer represents the main cause of
job failure.

Parameter sweep application can even be exploited to develop a novel
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Chapter 7. Conclusion and future work

sensitivity analysis approach for stochastic biochemical models. In mathe-
matical modelling of biological or biochemical systems, sensitivity analysis
is used to quantify how much the parameters of the model can affect the sys-
tem’s behaviour, e.g., to help in recognizing the fragilities or the robustness
of the system. Though it has been traditionally applied to deterministic
continuous models, theories and tools for parametric sensitivity of discrete
stochastic systems have recently been defined [82, 166], with the aim of
capturing the relevant stochastic effects which can occur in small systems.
Taking advantage of these theories, we plan to develop a similar analysis
methodology within the framework of τ -DPP. So doing, by exploiting all
relevant characteristics of membrane systems (discreteness, multicompart-
mental structure), integrated with the efficiency of stochastic simulation
algorithms, and extended with tools for the estimation and the analysis of
system’s parameters, the framework presented in this thesis can indeed be
considered an useful and successful approach for the stochastic modelling
and simulation of biochemical systems.
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systems. PhD thesis, Università degli studi di Milano - Bicocca, 2008.

[161] D. Pescini, D. Besozzi, and G. Mauri. Investigating local evolutions in
dynamical probabilistic P systems. In Seventh International Sympo-
sium on Symbolic and Numeric Algorithms for Scientific Computing
(SYNASC’05), pages 440–447. IEEE Computer Press, 2005.

[162] D. Pescini, D. Besozzi, G. Mauri, and C. Zandron. Dynamical proba-
bilistic P systems. Int. J. Found. Comput. S., 17(1):183–204, 2006.

[163] D. Pescini, D. Besozzi, C. Zandron, and G. Mauri. Analysis and sim-
ulation of dynamics in probabilistic P systems. In N. P. A. Carbone,
editor, Proc. of 11th International Workshop on DNA Computing,
DNA11, volume 3892, pages 236–247, London, ON, Canada, June 6-
9, 2005 2006. LNCS.

[164] D. Pescini, P. Cazzaniga, C. Ferretti, and G. Mauri. First steps to-
ward a wet implementation for τ -dpp. In D. Corne, P. Frisco, G. Păun,
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