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Abstract

Many domains in the real world are richly structured, camtag a diverse set of agents char-
acterized by different set of features and related to edobran a variety of ways. Moreover,
uncertainty both on the objects observations and on thkitioas can be present. This is the
case of many problems as, for example, multi-target tragkactivity recognition, automatic
surveillance and traffic monitoring.

The common ground of these types of problems is the necedsigcognizing and under-
standing the scene, the activities that are going on, whoharactors, their role and estimate
their positions. When the environment is particularly céempincluding several distinct entities
whose behaviors might be correlated, automated reasoeicgnies particularly challenging.
Even in cases where humans can easily recognize activitiesent computer programs fail
because they lack of commonsense reasoning, and becauserd limitation of automated
reasoning systems. As a result surveillance supervisiso far mostly delegated to humans.

The explicit representation of the interconnected behlravid agents can provide better
models for capturing key elements of the activities in thengc In this Thesis we propose the
use of relations to model particular correlations betwegangs features, aimed at improving
the inference task. We propose the use of Relational DynBayesian Networks, an extension
of Dynamic Bayesian Networks with First Order Logic, to reggnt the dependencies between
an agent’s attributes, the scene’s elements and the ewolafistate variables over time. In
this way, we can combine the advantages of First Order Ldfat Can compactly represent
structured environments), with those of probabilistic mlsdthat provide a mathematically
sound framework for inference in face of uncertainty).

In particular, we investigate the use of Relational DynaBagesian Networks to represent
the dependencies between the agents’ behaviors in thextaitenulti-agents tracking and
activity recognition. We propose a new formulation of thengition model that accommodates
for relations and present a filtering algorithm that extethe@sParticle Filter algorithm in order
to directly track relations between the agents.

The explicit recognition of the relationships betweeniatéing objects can improve the un-
derstanding of their dynamic domain. The inference algoritve develop in this Thesis is able
to take into account relations between interacting obj@atswe demonstrate with experiments
that the performance of our relational approach outpergotmese of standard non-relational
methods.

While the goal of emulating human-level inference on scerdetstanding is out of reach
for the current state of the art, we believe that this workesents an important step towards
better algorithms and models to provide inference in compialti-agent systems.



Another advantage of our probabilistic model is its abildymake inferencenling, so that
the appropriate cause of action can be taken when necesgsgrydise an alarm). This is an
important requirement for the adoption of automatic sulaece systems in the real world, and
avoid the common problems associated with human surveélan

Keywords: Multi Target tracking, Probabilistic Relational Modelsayesian Filtering, Particle
Filtering.
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Chapter 1

Introduction

There are finer fish in the sea than have ever been caught.

Irish proverb

Many domains in the real world are richly structured, camtag a diverse set of objects
characterized by attributes and related to each other irriatyaof ways. A central aspect
of human intelligence is the ability to make inference inséhstructured environments using
abstract knowledge. For example, human reasoning is aldasity infer the participants and
their role in a particular activity or situation and it is alib recognize the activity itself.

The contextis often a key element that facilitates our understandinthefworld around.
Imagine, for instance, a scene where someone in the stregvisg his hand. It can either
be that the subject is greeting someone, perhaps a frietlabis hailing a taxi. While we,
humans, are very good at making this kind of distinctiondpmated reasoning encounters
great difficulties.

When the context is particularly complex, including seveistinct entities whose actions
might be correlated, automated reasoning becomes particwahallenging. Imagine, for in-
stance, a road traffic scenario where driving behaviors epemident on a quantity of variables,
as road and traffic conditions, time, etc. Detectingrélationsbetween the cars (who is trav-
eling together with who, the traffic due to an important matckhe nearby stadium) we can
identify suspicious behaviors and support traffic monitgri

In several applications, as for example surveillance systé is important to providenline
reasoning, so that the appropriate cause of action can ba taken necessarg.g.,raise an
alarm).

As another example, consider the problem of the survedlarfi@ big port that use a sensor
network to monitor movements in the harbor. Criminals erglg illicit trades on approaching
boats try to minimize exposure to the port authorities. Tog'psensor system might be able
only to catch a fraction of the boats trajectories, or idgraifraudulent activity when it is too
late for intervention; moreover, weather conditions caobdsibly limit the reliability of the
Sensors.

Under noisy observations condition, an automated reasoeeals to make use of all the
information available in order to assess the most probatlatsn both in terms of individual
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attributes (in our example, the most likely position of tlsats) and joint attributes or relations
(the connection between the boats: legal exchange, illegadunter, no connection).

Indeed, complex contexts reasoning are also charactepizeghcertainty not only on ob-
jects’ observation but also on their relations.

In this work, we focus on multi-target tracking for activitgcognition, in particular we
study how to use explicit recognition of the relationshipsAeen interacting objects to improve
the understanding of their dynamic model. The proposedoaaprhas been validated on two
different scenarios: a traffic monitoring system and a hiasboveillance system.

1.1 Relational multi-target tracking

Traditional (positional}rackingis defined as the problem of associating an object moving in
a scene with its most likely trajectory over time. If perfadonlineit requires to make such
association at each time step. When more than one objectsemirin the scene, we have to
deal with the problem ofulti target tracking Multi target tracking is the problem of jointly
tracking a (possibly unknown) number of objects.

In this work we consider, in addition to the positions and dbgect’s attributes, relations
that represent joint properties of the objecRelational multi target trackings the problem
of associating a set of objects or agémsth a full specification of the evolution of the value
of their attributes and relations over time. Relationatkrag is a paradigm first introduced in
(Guibas, 2002) that we think can be seen as a general alostrémt many problems of context
understanding.

In our work we model the relations in the context as a set ctfdrder Logic (FOL) pred-
icates. In any given situation, the state of the system isacie@rized by the evaluation of these
predicates. In domains as sport, different players oftememowards a specific coordinated
action. In this case, the state represents the playerdi@uosihe type of actiondg.g.,move on
the side, cross in the center and shoot) and the particifdretplayers). The relations are not
usually observed directlyas, for instance, we cannot recognize the type of action foyplgi
looking at a single still frame extracted from a video. lasterelations are inferred using the
history of past observations and prior knowledge. Becatideauncertainty of observations (as
motivated in the previous section), we represent our kndgéeprobabilistically, maintaining
beliefs(conditional probabilities of the state given the obseaoret) and updating them upon
the acquisition of new information.

Furthermore, probabilistic inference can provide infotiora that can be used to reason
about the most likely course of action that will happen ndXeturning to the sport example,
the observations of previous phases of the game, combirtbgpwor knowledge about playing
habits, can be used to recognize the beginning of a partipatéern, and predict future moves.

An important contribution of this work is to show how modgjirelations is useful with
respect to two different goals:

LIn this work we use the terms object, target or agent quitrahiangeably; however we might use the term
agent to underline the ability of proactive and delibematimasoning.
g yorp g
2This will be discussed in details in Chapter 3



1.1. RELATIONAL MULTI -TARGET TRACKING 5

* Relations can improve the efficiency of the positionalkiag. The information contained
in the relationships can improve prediction, resulting ibedter estimation of objects’
trajectories with respect to the state of the art algorithms

* Relations can be monitored as a goal in itself. Reasoningtatelationship between
different moving objects can be helpful to identify a pastar activity. This is the case in
many applications like traffic prediction or consumer monitg, anomaly detection or
activity recognition.

The achievement of these goals is based on the use of tobkxtiead the state of the art of
probabilistic relational reasoning to dynamic domainsthis aim, we us&elational Dynamic
Bayesian Network@RDBNS) (see Chapter 2) as a formalism to model objects aiatiors
between moving objects in the domain. In our relational dyicaBayesian network-based
model, relationships are considered as random variablesewalues may change over time.
While tracking the objects in the domain, we also track thelwion of their relationships,
using a novel algorithm calleelational Particle Filter(RPF) (see Chapter 3).

1.1.1 Relational Dynamic Bayesian Networks

Logical and probabilistic reasoning have been traditigregen as very different fields by Ar-
tificial Intelligence community. first-order logic systemasn deal with rich representations but
they cannot treat uncertainty. On the other hand, prolsticiinodels can deal well with uncer-
tainty in many real-world domains, but they operate on a psapnal level, and cannot scale
to cases where several instances are present. MoreovierJdoguages give an advantage in
terms of expressivity.

Recently a lot of interest has arise towards approachesntegrate these two types of
models; a prominent example is the work of Jaeger (Jaegéi)léh Relational Bayesian
Networks (RBNs). A relational Bayesian network is a probstic graphical model whose
nodes represent first-order logic predicates and whosapiidly distribution takes into account
first-order logic quantifiers.

However in many situations the state evolves over time. Asagawe know, not much
work has been done to incorporate logical reasoning int@ahya domains; inference in such
domains has been carried on only in propositional termsn&iance using Dynamic Bayesian
Networks (DBNs) (Murphy, 2002).

In this Thesis we present relational dynamic Bayesian nédsvthat are an extension of
dynamic Bayesian network to first-order lodic

A relational dynamic Bayesian network is defined as a couplelational Bayesian net-
works: the first provides the prior of the state of the relaiodomain, the second gives the
probability distribution between time steps.

3The authors are aware of the works of Sanghai, Weld and Damingn Relational Dy-
namic Bayesian Networks; however the paper presentingr tverk has been retracted. Refer to:
http://www.aaai.org/Library/JAIR/NoI24/jair24-01%p
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1.1.2 Relational Particle Filter

To accomplish both the task of tracking related multiplgéss and recognizing complex activ-
ities, in this Thesis, we introduce a novel inference alfponiable to track both the position of
the objects in the scene and their possible relations.

We extend the patrticle filter algorithm to deal with relagpmtroducing a new algorithm
called Relational Particle Filter(RPF). A particle filtering technique recursively implengn
a Monte Carlo sampling on the belief over the state of the domla order to deal with the
increased complexity of the state due to the introductionetdtions, we adopt a particular
state representation that factors the state in two parstéte of the attributeand thestate of
relations Our relational particle filtering takes advantage of thistbrization and implements
a two phases sequential Monte Carlo sampling.

1.2 Context Modeling

Context interpretation and context-based reasoning haga bhown to be key factors in the
development of algorithms for object recognition. In theddithe context is the scene where ob-
jects are and the knowledge about it, is expressed by thefelrer the scene (see (Derek Hoiem
& Hebert, 2006) and (Elidan, Heitz, & Koller, 2006) as exaag)l Knowing the scene can im-
prove the task of objects recognition; the knowledge abweiidentity of the objects improves
the belief over the scene.

In this work we loosely consider the concept of context asdih happening around the
object we are tracking”. We take advantage of the knowledgeiawhat is happening in the
scene (which “relations” are believed to be true in the spmenprove the tracking and of the
knowledge about the state of the objects to improve our kadge about the relation between
the objects in the scene (i.e. the context).

In the last years, computer vision has mostly dealt with #egnition of activities com-
posed by the sequence of simple movements (Yan Ke & Hebd7)2m this Thesis we show
how reasoning about relations between objects and/or thieesee of single different actions
can help us in recognizing more complex activities.

To understand how relations can be used for context modeli@gescribe the two scenarios
that have been used as validating examples in this Thesis.

1.2.1 Scenario 1: traffic monitoring

Consider several vehicles traveling on a one-lane highvi@aygawhich several highway en-
trances and exits are present. We want to track the vehigl@sh are moving non-determi-
nistically so that the future speed - and thus future pasiicannot be exactly predicted by
knowing the current state. As we have a limited number of ipbsfaulty and noisy sensors,
we want to exploit the information that we can acquire fromognizing common behaviors
due to relations.

The goal is to be able to track moving objects taking into aotoelations between them.
For example, a vehicle moving at very high speed will eveliytiave to slow down if the cars
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in front are moving substantially slower. Or we might wanimonitor which cars are likely
to be traveling together (because on a trip together or elétig to the same place). The value
of the relationT'ravelingTogether(X,Y) for a givenX andY cannot be computed on the
basis of the current values of the other variable values. ¥éelninstead, to infer this relation
from the scene and from previous observations, and reasmrti abirbeliefsthat two cars are
traveling together.

A simple prior definition of this probability might expredsat two cars are very likely to
be traveling together if they have the same size and coloreatel at the same entrance in
temporal proximity.

During the tracking, we update the belief with increased exrdased evidence about the
fact that carX and carY are traveling together. For example, the update shouldfgatie
following intuition:

« if car X exits but not ca®t’, the belief they are traveling together is greatly decreéase
two cars that take different directions are not usuallyetizg together

« if X andY are at a great distance for a long period; the belief proltpliécreases with
respect to the number of time steps in which they are far attgytonger and the farther
away, the less likely they are to travel together

« the closerX andY are, the more likely the belief to travel together increases

Furthermore for this relation we can express the correidetween objects in the same
relation: the observation that two vehicles are behavimglaily, produces evidence that they
are in relation {ravelingT ogether), but once we are quite sure that two vehicles are traveling
together we can use this belief to predict that they will behsimilarly in the future. We can
then anticipate the behavior of all components of a grougripting the value of other variables
and relations.

These intuitive patterns for belief update are given by aipeeand sound probabilistic
semantics in the graphical model that we use.

1.2.2 Scenario 2: harbor surveillance system

Consider the problem of monitoring the approaches to a hdrbm the sea and in particular
the problem of detecting any behavior that might indicatg ehship represents a security risk
or a law infringement. Monitoring the coast is complicatgdite sparse, irregular, imprecise,
and not always reliable nature of the surveillance data. ddfse, the problem becomes even
worst when multiple ships are approaching the coast.

Taking into account relations can improve the tracking. &mmple, if we know that a
couple of ships are sailing together because in a tour tegethbecause they belong to the
same companyi.g., if we have a certain belief over their relation), we know théil have a
similar behavior or a similar motion and this will help us adking them. On the other hand, if
we know there are multiple boats approaching the coast, esupte they will avoid collision,
so we can predict their behavior such that they will not coorertear one to the other.
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Taking into account the relations between objects allowt® uscognize complex activities
like, for example, the “rendezvous” between ships. Thevdgtof rendezvous is the activity of
two ships that stop or travel slowly together to exchangalgo@ommon surveillance systems
cannot detect the good that has been exchanged and havett tthelse encounters from the
behavior of the two ships.

A priori probability of two ships doing a rendezvous can barted from data. During the
tracking, we update the belief with increased or decreageléice about the fact that two boat
are involved in a rendezvous or not. For example, given twosstX andY) just entered the
scenep(rendezvous(X,Y') = true) should satisfy the following intuition:

« if the distance between boaf and boatY” increases, the belief they are doing a ren-
dezvous greatly decreased: two boats should be close toatwazvous

« if boat X decreases its speed but not bvathe belief they are doing a rendezvous de-
creased: to do a rendezvous, two boats have to decreasspken at almost the same
time

Dealing with relations between moving objects allows usistimguish the activity of ren-
dezvous from the “pick up” (a vessel dropping a package imeowater, that is quickly found
and picked up by another vessel). Both these encountersth@wmmon pattern of the two
ships that approach each other and subsequently go apart tbe rendezvous activity the two
ships travel for a while together. Studying relations betmehips allows us to recognize each
of these two incidents and distinguish both of them from thwps that are avoiding each other,
when one stop to let the other pass.

Furthermore, once we are quite sure that two boats are (omo&yévolved in an encounter,
we can use this belief to predict their future behavior.

1.3 Objectives and Contributions

This Thesis has the goal of studying how it is possible toaeagth relations between moving
objects in the context of multi-target tracking. An impart@art is devoted to literature review
in both fields of probabilistic reasoning (and in particul@iational reasoning) and computer
vision. We mainly focus on the concept of relations in dynadomains.

One of the main contributions of the Thesis is the develogroéan inference algorithm
able to handle with relations between moving objects. Theréghm is a two-phases sequential
Monte Carlo technique that samples the probability of tagesdf the objects given the previous
state in two steps: the first step predicts the state of thectdattributes and the second deals
with the prediction of the relations between them. The kemts to divide the state of the
relational domain irstate of the attributeandstate of relationand make the state of relations
being probabilistically independent by the state of thelattes at the previous time-step.

A large part of this work concentrates on the validation asi techniques in different
scenarios. In particular we show some results in the donfairaffic monitoring and activity
recognition.
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We evaluate the performance of the proposed method congpiaitima method that uses a
standard sequential Monte Carlo technique and to heuakjarithms that make use of static
rules. Results show that our technique improves the alafityetecting anomalous behaviors
without increasing the computational cost of the system.al§e validate the hypothesis (dis-
cussed before) that relational reasoning gives us predithat improve positional tracking.

1.4 Overview

In the following, we present the organization of the Thedikis chapter has introduced the
basic ideas and the motivations of this work. The remain efTfthesis can be divided in two
parts. In the first part, we start describing the problem lati@nal reasoning and the problem of
reasoning in dynamic domains, introducing the proposedatimoglapproach based on relational
dynamic Bayesian networks (Chapter 2). Then we introduedrtference problem and our
relational particle filter algorithm (Chapter 3).

In the second part of this Thesis, we discuss possible atigits of our model compared
with the state of the art (Chapter 4) and we evaluate our agpron different scenarios (Chap-
ter 5); finally, we describe possible improvements (Chapégrconsidering other possible
applications and draw our conclusions.

Chapter 2 We present the state of the art for reasoning with relatiosmcertain domains. We
define first-order logic, probabilistic relational modelsladynamic Bayesian networks.
Finally we introduce relational dynamic domains and relai dynamic Bayesian net-
works.

Chapter 3 We address the problem of inference in relational dynamicalos introducing our
relational particle filtering algorithm.

Chapter 4 In this chapter we consider particular applications anawdis the fundamental
problems and challenges posed by the design of activitygréton and surveillance
systems, reviewing relevant works from the computer visield.

Chapter 5 This chapter presents the results obtained applying ounaddb both the problem
of traffic monitoring and harbor surveillance.

Chapter 6 We provide a brief summary of the contributions and limdas of this Thesis and
we discuss promising future research directions.






Chapter 2

Modeling uncertainty in Relational
Dynamic Domains

I’m Winston Wolfe. | solve problems.

from the movie “Pulp fiction”

Uncertainty is a fundamental and irreducible aspect of awowkedge about the world,;
probabilistic models provide a natural, sound and cohdoemtdation for its representation.

In this chapter we present a novel framework to model uniceytén dynamic relational
domains. The uncertainty about the state of the world candseiad with a joint distribution
for a set of random variables representing the attributéiseobbjects in our world. In principle
we could just list all the complete instantiations of theemlt$’ attributes and specify a proba-
bility for each one (this is the “atomic” or “naive” repregation); as long as the probabilities
we specify add up to one, then this specification will indeefing a unique distribution. How-
ever, this approach is not generally feasible for real-edenarios: the number of cases grows
exponentially with the number of variables. This is a prableoth computationally, because
the model requires exponential space and time to answeteguand statistically, because the
number of probabilities to estimate from data will be expdradly large.

Probabilistic graphical models, instead, allow a compaptesentation of the uncertainty
about the state of the world. They provide a graphical stinecthat shows the dependencies
between objects’ attributes and constraint the probdigilisodel only on this dependencies.

We present a probabilistic graphical model able to take atmount relations in dynamic
domains. In this chapter we first review the literature alyababilistic graphical models for
static and dynamic domains; then we review probabilistati@nal graphical models, that sup-
port first-order logic; finally we extend the latter to modghdmic domains defining relational
dynamic Bayesian networks.

2.1 Probabilistic Graphical Models

Probabilistic graphical models are graphs in which nodpeesent random variables, and arcs
represent conditional dependence assumptions. Thesdspodeide a compact representation
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of the joint probability distribution of the set of randomriables representing the world in a
compact and natural way.

There are two main kinds of graphical models: undirecteddaretted. Undirected graph-
ical models, also known as Markov networks or Markov randaetdé (Chellappa & Jain,
1993), are more popular with the physics and vision commasitDirected graphical models
(Computer, Russell, Pearl, & Russell, 1994), also known ageBian networks, belief net-
works, generative models, causal models, etc. are mordauopith the Artificial Intelligence
and Machine Learning communities. It is also possible teehamodel with both directed and
undirected arcs, which is called a chain graph (Studeny &Raert, 1998).

While in a directed graphical model an arc frofnto B can be informally interpreted as
indicating the existence of a causal dependency betweand B, in an undirected graphical
model this would show the simple existence of a (symmetoonection between the two vari-
ables. Since it is a common sense rule to think about the pasising” the future, directed
graphical model can more naturally be extended to modeldicmdomains and for this reason
in this Thesis we will use them to model relations betweerctsjin dynamic domains.

In the following, we first introduce Bayesian networks andawyic Bayesian networks
(for problems in static and dynamic domains) then we intoedrelations in static domains
introducing relational Bayesian networks. Finally, weesd relational Bayesian networks to
dynamic domains introducing relational dynamic Bayesietworks that are a new framework
to model relations between moving objects using first-olalgic.

Relational dynamic Bayesian networks extend dynamic Bagegetworks with first-order
logic as Bayesian networks has been extended to relatiangddtan networks, combining the
representative power of first-order logic to reason aboutingoobjects in the world.

2.1.1 Bayesian Networks

Bayesian Networks (BNs) (Pearl, 1986) encode the joint @bdity distribution of a set of
variables,zq, - - - , x,, exploiting independence properties. We will introducesBhith the
following simple example, first used by Pearl in (Pearl, 1986

Example 1 Suppose | have a home alarm system that is designed to bereggjgy would-be
burglars, but can also be set off by small earthquakes, warehcommon where | live. If my
alarm goes off while | am at work, my neighbors John and Mary oal to let me know.

My beliefs about this scenario can be formalized with a pbilitg distribution over the
product space of five variableBurglary (represented by lettds), Farthquake (F), Alarm
(A), JohnClalls (J), andMaryCalls (M). Each of these variables is Boolean, taking values
inthe sef{T', F'}. Figure 2.1 shows a BN for this example. A BN consists of twdga

1. the BN structure and
2. the Conditional Probability Distributions (CPDs).

Hence directed cycles are disallowed, the BN structure isextéd acyclic graph with a
node for each random variable. Random variables repre$gette’ attribute in the domain.
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Figure 2.1: A BN for the Example 1, including the BN structared conditional probability
tables (figure from (Russell & Norvig, 2002)).

The nodes with an arc to are theparentsof =. We will denote the set of parents of a variable
x in the BN B as Pag(z). An edge in the graph represents the dependency of an abject’
attributes (or variable) from its parents.

In our example the variabld/arm depends on the variablésurglary and Earthquake,
we will say:

Pa(A) = {B, E}. (2.1)

For each variable, B specifies a CPD for given Pag(x). The structure of the network
encodes the assertion that each node is conditionally ekt of its non-descendants given
its parents. The probability of an arbitrary eveat= (z,,--- ,z4) can then be computed as
p(X) = H?le(xi|PaB(xi)). A formal definition of BN is the following:

Definition 1 A BN is a direct acyclic graph which nodes are conditionafigependent of its
non-descendants given its parents (this is also cdthedl Markov property.

If we topologically order the nodes (parents before chijligs1, - - - , N, we can write the
joint distribution as follows (Russell & Norvig, 2002):
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p(x1,...,tN) = )p(xa|x)p(as|zr, x2) - - plan|zr, -+, xN-1)

p(z

N
H xz‘xlz 1
v
H (z;|Pap(z;)) (2.2)
wherex; 1 = (x1,---,x;_1). The first line follows from the chain rule of probability ése

Appendix A), the second line is the same as the first, and fihe: lihe follows because node
x; is independent of all its ancestors,;_1, given its parents. In our example,

pB=T,E=FA=T,J=FM=T)=
pB=T)p(E=F)p(A=T|B=T,E=F)p(J=FIA=T)p(M =T|A=T). (2.3)

When z; and all its parents can assume a finite set of discrete vadu€8D forz; can
be represented as a Conditional Probability Table (CPTh witow for each instantiation of
Pag(x;). This is illustrated in Figure 2.1. Note that in this examplee CPTs contain only
20 probability values. In fact, since the values in each réweach CPT must sum to one,
this representation has only 10 free parameters. By cdnaasble listing probabilities for
all 32 instantiations of these 5 binary variables would ha\d¢ree parameters. Thus, even for
this small example, the BN is considerably more compact #raatomic representation. The
advantage of a BN increases with the number of variabledevaini explicit representation of a
joint distribution forn k-ary variables has"~! parameters, a BN representation in which each
variable has at most parents has onl® (nk™) parameters.

A BN can be used to reason about any attribute of the objedteidomain, given any set
of observations. It can thus be used for a variety of taskduding classification (Friedman,
Geiger, & Goldszmidt, 1997), prediction (Jansen, Yu, Gbeemn, Kluger, Krogan, Chung,
Emili, Snyder, Greenblatt, & Gerstein, 2003), and decismaking (wu Liao, Wan, & Li, 2008).
For instance, imagine we observed that both John and Marwdath is the probability of the
variable Burglary to be true? We can compute the probability of the varidhie glary to be
true as follow:

pB=T,J=T.M=T)=a> 3" p(B = D)p(E)(A|B =T, E)p(J = T|A)p(M = T|A),

E A
(2.4)

where we marginalized (see Appendix A) over the variabnd E' to compute the probability
of each value of that variable. To compute this expressi@have to add four terms (one for
each possible combination of the values of the variablerm and Farthquake) each com-
puted by multiplying five numbers using the probability &ln Figure 2.1. The probability
of theburglary being true given that both John and Mary called.i¥059236.

The probabilistic semantics also gives a strong founddtomhe task of learning models
from data. Techniques currently exist for learning both streicture and the parameters, for
dealing with missing data and hidden variables, and foradeng causal structure.
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2.2 Modeling sequential data

Most of the events that we meet in our everyday life are na@aetl based on a particular point
in time, but they can be described through a multiple statedservations that yield a judge-
ment of one complete final event. Statisticians have deeelopmerous methods for reasoning
about temporal relationships among different entitieb@world. This field is generally known
as time-series analysis. Time-series is a sample realizafia stochastic process, consisting of
a set of observations made sequentially over time.

Time is also an important dimension in the field of artificiatelligence and reasoning.
However, BNs do not provide direct mechanism for represgniiemporal dependencies. In
attempting to add temporal dimension into the BN modelsoumriapproaches has been sug-
gested. Between others, hidden Markov models and Kalman fiibdels are popular models
because they are simple and flexible. For example, hiddekdvanodels have been used for
speech recognition and bio-sequence analysis, and Kalitt@nrfiodels have been used for
problems ranging from tracking planes and missiles to ptewj the economy. However, hid-
den Markov models and Kalman filter models are limited inthexpressive power”. Hidden
Markov models constrain the state to be represented as le samglom variable, Kalman filter
models constrain the probability distributions to be Garss

Dynamic Bayesian Networks (DBNs) generalize hidden Markmdels by allowing the
state to be represented in factored form and generalize &alfitter models using arbitrary
probability distributions.

2.2.1 Dynamic Bayesian Networks

DBNs are an extension of BNs for modeling dynamic domaing DBN, the state depends on
the timet and is represented by a set of random varialdles- (x4, ..., z4.). The state at time
t depends on the states at previous time steps.

Typically, we assume that each state only depends on thedimateéy preceding staté.¢.,
the system idirst-order Markoy, and thus we need to represent the probability distriloutio
p(X¢|X;—1). This can be done using a two-time-slice BN fragmeftBN):

Definition 2 A 2T'BN is a BN that contains variables froo¥; whose parents are variables
from X;_; and/or from.X;, and variables fromX;_; without their parents.

A 2T BN (B,) definesp(X;|X;_1) by means of a directed acyclic graph as follows:

Xt|Xt1 HP zt|PaBt zt)) (2-5)

The nodes in the first slice of2d" BN do not have any parameters associated with them, but
each node in the second slice of #¥éB N has associated a CPD, which defipés, ;| Pag, (z;.))
for all ¢t > 1. The distribution given by 7'BN can be divided in two:

* theinter-slice distribution that models the probability of variables iy with parents at
timet — 1 and
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* theintra-slice distributionthat models the probability of variable iK; with parents in
the same time slice.

We assume that the parameters of the CPDs are time-invarearthe model is time-homoge-
neous.

Typically, we also assume that the process is stationa&ythe transition models for all
time slices are identical3, = B, = ... = B, = B_..

Definition 3 A DBN is defined to be a pair of BN8({, B_.), where

* By represents the initial distributiop(X,), and
* B_ isa2T BN, which defines the distributign X,;| X, 1).

The setX; is commonly divided into two sets: the unobserved statealséesS; and the
observed variable&;. The observed variables;, are assumed to depend only on the current
state variables,. The joint distribution represented by a DBN can then beiabthby unrolling
the2T' BN

T
p(So, ..., Sp, Zo, ..., Z1) = p(Zo|So) [ [ p(Se|Si—1)p(Z4|S1) (2.6)
t=1

wherep(Sy)p(Zy) is the distribution given by3, and Hthlp(St|St_1)p(Zt|St) highlights the
intra-slicep(Z;|S;) and the inter-slice(S;|S;-1) distributions:

(Xt Xi—1) = p(Si]St—1)p(Z:|St) (2.7)

To show the different parts of a DBN we consider the followmgersimplified example
(Russell & Norvig, 2003);

Example 2 Suppose you are the security guard at some secret undeiostallation. You
want to know whether it is raining today, but your only acdesthe outside world occurs each
morning when you see the director coming in with, or withautianbrella.

In this example,

* the intra-slice distribution is represented by the pralitgitthat the director has taken the
umbrella if it is raining (or not),

* the inter-slice distribution is given by the probabilitiyarainy day given the weather of
the previous day.

For each day, the setZ; contains a single observed variablg; whether the director takes
the umbrella or not. The set of the unobserved state vagataetains a single variablégz;,
whether it is raining or not. In Figure 2.2 the DBN is reporgedl the2T' BN's are highlighted.

Note that the term dynamic means we are modeling a dynamiersysot that the network
changes over time.

DBNs are a good tradeoff between expressiveness and tildgtadnd include the vast
majority of models that have been proved successful in jpeact
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Figure 2.2: A DBN for the Example 2. In the figure, the the irgh@e and inter-slice distribu-
tions are reported together with tA&@ BN . (figure from (Russell & Norvig, 2002)).

2.3 Modeling relations

One of the main limitations of BNs is that they represent tleglavin terms of a fixed set
of variables. Consider the Example 1) and consider the cagéich | have more than two
neighbors and they have neighbors themselves Figure 2.Beagkto explicitly represent each
neighbor as a variable with its specific CPT. Indeed, gragpinmodels are incapable of reasoning
explicitly about classes of objects.(.,classNeighbor), and thus cannot represent models over
domains where the set of entities and the relations betwesn are not fixed in advance. They
are propositional, as opposed to first-order: in other waittsy do not support quantification
over objects. As a consequence, BNs are limited in theirtatd model large and complex
domains.

Probabilistic Relational Models (PRMs) are a language &sctibing probabilistic models
based on the significantly more expressivity of first-oragjid. They allow the domain to be
represented in terms of object classes, their propertrestifibutes), and the relations between
them. These models represent the uncertainty over the piegef an entity, representing its
probabilistic dependence both on other properties of thatyeand on properties of related
entities.

2.3.1 First-Order Logic

First-order logic (FOL) is a formal language interpretednbgthematical structures. FOL is a
system of deduction that extends propositional logic bgvelhg quantification over classes of
a given domaintpe universg Objects relationsandquantifiersare the three main components
of FOL.
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Figure 2.3: A BN for the Example 1 extended to relational domalf we have more than
2 neighbors we have to instantiate a variable for each neighithanks to Mark Chavira for
providing us with this image

Murphy in (Murphy, 2002) states that: “Objects (objectssks) are basically groups of at-
tributes which “belong together”, c.f.r. a structure in agmamming language, once completely
instantiated (grounded) they give rise to a particular dljethe domain”. Object classes are
characterized byttributesand are related one another through relatioRsopositionsover
objects can be expressed by quantifiers.

While propositional logic deals with simple declarativepositions, FOL additionally cov-
ers predicates and quantification. Take for example theviatig sentences: "John is my neigh-
bor”, "Mary is my neighbor”. In propositional logic these lbe two unrelated propositions,
denoted for example by andq. In FOL however, both sentences would be connected by the
same attributex. My Neighbor, wherex.MyN eighbor means that is one of my neighbors.
Whenz = John we get propositiorp, and whenr = Mary we get proposition;. Such a
construction allows for a much more powerful logic when difeans are introduced. Consider
for example the quantifier “for every¥j: “V z, if x. MyNeighbor — z.CallMe”, enounce a
proposition that is valid for each..

Without quantifiers, every valid argument in FOL is valid iropositional logic, and vice-
versa.

The vocabulary of the FOL is composed of

1. Constants symbols usually used to represent objects or their ateguthey are often
denoted by lowercase letters at the beginning of the alghabec,... .

2. Variables symbols that range over the objects; they are often demytémivercase letters
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at the end of the alphabet y, z,... . Both the constants and the variables can be typed, in
which case the variables take on values only of the correipgrype.

3. A set offunctions each of some valence 1 that fixes the number of inputs it can take.
Functions take objects as input and return object, and des alenoted by lowercase
lettersf, g, h,...

4. Predicates symbols used to represent relations between objects imldh&in or at-
tributes of objects which are often denoted by uppercasersg?, ), R,... . Each pred-
icate symbol is associated with an arity. A ground predicatepredicate with constant
as arguments.g., not variables).

An interpretationfor a relational domain, assigns a semantic meaning to dajeletpfunc-
tion and relation in the domain. Each ground predicate is@ated with a true value in an
interpretation.

Existential quantifiers in FOL are handled by checking whethe predicate is true for any
object in the current state of the domain.
A term/ in the FOL can be

* aconstant symbol, as b, 0, 1
« avariable, as for example y
+ afunction of valence applied ton termsf(ly,--- ,,).
A first-order formulaassumes one of the following forms:
1. R(ly,---,l,) whereR is a predicate of arity. and!; are terms,
2. ~For(F'ANF")or (F'Vv F")whereF, F" andF" are first-order formula,
3. JzF(x) orVzF(x), wherex is a variable and’(z)’ is a first-order formula,
4. (= n)xF(x) orf(< n)zF(x) or (> n)zF(x), wherex is a variable F'(z) a first-order
formula andn an integer.
2.3.2 Relational Domain

A relational domain contains a set of objects with relatibesveen them.

Definition 4 A relational domains a set of constants, variables and predicates that reprtese
the objects and their relations in the domain.

The set of all true ground predicates can be representectigyphs tuples in a relational
database. This corresponds to shateof the world.

Definition 5 The state of a relational domaing]ational statkis the set of all the ground pred-
icates that are true.
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In an uncertain domain, the truth value of a ground predicaitebe uncertain and the value
can potentially depend on the values of other ground prescalrhese dependencies can be
specified using a BN on the ground predicates. However, thruof such ground predicates
is exponential in the size of the domain and hence the expbacistruction of such a BN would
be infeasible.

Relational Bayesian networks were introduced to compaepyesent the uncertainty in this
setting.

2.3.3 Relational Bayesian Networks

A Relational Bayesian Network (RBN) specifies dependenostween predicates at the first-
order level by using first-order expressions which incluxistential and universal quantifiers.

Definition 6 Given a relational domain, a RBNR({B) is a graph that, for every FOL predicate
R, contains:

* A node in the graph.

* A set of parentPars(R) = {Ri,..., R;} which are a subset of the predicates in the
graph.

* A conditional probability model fop(R|Parg(R)) which is a function with rangé, 1]
defined over all the variables iRarp(R).

We come back to the previous example and modify it to explaéndifferences between
BNs and RBNSs.

Example 3 Suppose | live in a building where each owner has a home algstes that is
designed to be triggered by would-be burglars, but can alssét off by small earthquakes,
which are common where we live. If one of these alarms goeshi the owner is at work,
his neighbors may call him to let him know. The neighbors levencertain knowledge about
whose alarm went off and they are less likely to call whengli®noise or when they are not
paying attention.

The objects in this relational domain can be representechéwariables: Farthquake,
Burglar, House, Neighbor. Each object has some attributes that can characterizeithei
stantiation: for the objedt ouse, it can beAlarm Ringing indicating if the alarm of the house
is ringing, for the objectVeighbor, it can beAttentionDegree and Noise Around, describ-
ing the reliability of the neighbor. The type space/@éighbor is person and the attribute
Neighbor. AttentionDegree ranges over the set of constagt§igh, Low}. Moreover there
will be some relations between objectsyg.,the relationEnter of arity 2 will represent the
relation of aBurglar to enter anHouse, the relationT'oCall will relate a Neighbor to the
House.Howner which he will eventually call if he hears an alarm. Figured @&ad 2.5 report
the objects and the relations of the domain.

Following Definition 6 the RBN for this problem will be a grap¥hich for every pred-
icate R (representing both objects’ attributes or relations) aors a node in the graph and
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Figure 2.4: The objects and the attributes of the relatidoatain of the example 3. We show
the objects as usually done for relational data bases, steeddine refers to foreign keys.

a set of parent?a(R) that “cause” the value of the predicate E.g., the parents of the
relationT'oCall(Neighbor, House.Owner) will be Neighbor. AttentionDegree, Neighbor.
NoiseAround and House. AlarmRinging (Figure 2.6 reports this RBN).

The RBN in the example presents more nodes than the BN of&igur and it encapsulates
much more information, in fact it can be used to explain theedelencies in each neighborhood
we want to consider independently from the number or the oypeighbors an owner has got.

A RBN defines a BN on the ground predicates in the relationahaln. It has not to
be acyclic but its complete instantiation defining a BN hds tBor every ground predicate
R(cy,...,c,) @ node is created together with its parents’nodes obtaigeiddtantiating the
predicates which appear ifarz(R) . The conditional model for a ground predicate is, there-
fore, restricted to the particular ground predicate anghatients. Thus, a RBN gives a joint
probability distribution on the state of the relational dom

To avoid cycles appearing in the BN obtained after groundling necessary to restrict
the set of parents of a predicate assuming an ordering. Tdexing < between the ground
predicates is given by the following rules:

1. R(zy, - an) < R'(@),- 2/)if R< R’

1This means that an attribute of an object can depend by the atiribute of another object of the same class;
this leads to a cycle at the object level that reveals to bamgtle at the grounding level.
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Figure 2.5: The relations of the relational domain of thenegle 3. With dashed bolt lines we
represent which objects participate in which relations.

2. R(xy, -+, @) < R(zy, -+, 2y,) if Fit oy < xj anda; = 2, Vj < i

rn

The set of parents of a predicate in a RBN is restricted asvitsti
» The parent sePa(R) can contain a predicate’ only if either R’ < Ror R’ = R

* If Pa(R) containsk then, during the groundin®(z1, - - - , x,,) has parent®(z}, - - - , x))
only if R(x),---,al) < R(xy, -+, xy).
This ordering implies that in the resulting BN each grounedicate can only have higher
order ground predicates as parents.
The conditional model can be any first-order conditional el@hd can be chosen depend-
ing on the domain, the model’s applicability and the easysaf. We will use first-order proba-
bilistic trees.

First-Order Probabilistic Trees

The most general way to model the conditional model is to nsalaitrary CPT that can repre-
sent any possible distribution.
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Figure 2.6: The RBN for the example 3.

Generally a CPT representation has an high memory costubedhe number of entries
is exponential in the number of relations and attributediefdomain. Indeed, givem objects
each withk attributes ofd possible values and binary relations, the state of the attributes
requiresd™* cases, while each binary relation associatpsssible values (true or false) to any
pair of objects and there aré pairs. In total the entries of the required CPT would/be"r.

For this reason, it is generally preferred to have a compamesentation of the CPTs. A
way to encode this probability is to usdrast-Order Probabilistic Treg FOPT). FOPTSs, also
called first-order decision diagrams (C. Wang & Khardon,&0@re probabilistic trees whose
nodes are first-order logic formulas.

Definition 7 Given a predicatd? and its parent®a(R), a FOPT is a tree where:

» each interior nodeK) is associated with a first-order logic formulg, whose arguments
are a subset oPa(R),

 each child oft corresponds to either the true or false outcome pf

* the leaves are associated with a probability distributianction over the possible values
of R.

A FOPT’s node can contain a formula with free variables anahtjtiers/aggregators over
them. Moreover, the quantification of a variable is presgteoughout the descendanig,,
if a variablex is substituted by a constantit a noden, thenz takesc as its value over all the
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descendants of. To avoid cycles in the network, quantified variables in a F@&nhge only
over values that precede the child node’s values in the imglem he function at the leaf gives
the probability of the ground predicate being true.

Just like a BN is completely specified by providing a CPT fochke&ariable, a RBN is
completely specified by having an FOPT for each first-ordedjgate.

2.4 Related Works

In this section we review the relevant works done on relaii@mobabilistic modelization. As
mentioned in the introduction (Chapter 1), a lot of work hagrb done to incorporate FOL
reasoning and Bayesian uncertainty. The definition of RBNinmduced is most closely
related to the one dRelational Bayesian Networdiven by Jaeger in (Jaeger, 1997) even if
he constrains CPDs to be combination functions (such ay+wo)swhile we use FOPTs. He
presents a sophisticated scheme for combination fungtionkiding the possibility of their
nesting.

In (Friedman et al., 1999) and in (Koller, 1999) Probahiiftelational Models (PRMs)
are defined with the formalism of frame systems used as angtgrbint. The language of
frames, similar also to relational databases, consistsfafidg a set of classes, objects and their
attributes. PRMs add probabilities to frame systems byipeg a probability distribution for
each attribute of each class as a generic CPT. The only elifterfrom our definition of RBN
is the fact that parents of an attribute that are attributeslated classes are reached via some
slot chain A slot chain in a frame-based system performs the sameifumot a foreign key
in a relational database. A slot chain can be viewed as a segqué foreign keys enabling one
to move from one table to another. In our definition of RBN nstrietion is imposed over the
reachability of the nodes.

RBNs as defined in this chapter subsume PRM (Friedman et®9)1n fact, replacing
the attributes of a PRM by FOL predicates would lead to defRBI® as a particular example
of RBNs (see Appendix B).

On the other hand, Domingat al., (Domingos, Kok, Lowd, Poon, Richardson, Singla,
Sumner, & Wang, 2008) represent uncertainty in the domaitéwse of undirected graphs as
Markov logic networks and focus on the inference task. Matkgic networks are a recent and
rapidly evolving framework for probabilistic logic that$a very simple semantics while keep-
ing the expressive power of FOL. Markov logic networks cetsf a set of weighted first-order
logic formulas and a universe of objects. Its semanticengbi that of a Markov network whose
features are the instantiations of all these formulas gikeruniverse of objects. Markov logic
networks are a powerful language accompanied by well-stggpaoftware (called Alchemy)
which has been applied to real domains. Its major drawbagiedo its impossibility to repre-
sent quantification over objects, replaced by the disjonatif their grounding (this is possible
because the domains are assumed to be finite). For this rdaabng with very large networks
(as dynamic networks generally are) for Markov logic netgas very difficult.

Kersting and DeRaedt (Kersting & Raedt, 2000) introduceeB&n logic programs to pro-
vide a language which is as syntactically and conceptuatiple as possible while preserving
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the expressive power of the works presented so far. Accgrdithe authors, this is necessary
to understand the relationship between all these appreaeimel the fundamental aspects of
probabilistic relational models.

Milch (Milch, 2006) introduced BLog (Bayesian Logic) thapides a language that uses
FOL to extend inference over set of objects belonging to #meesclass. However, he does not
seem to take into account the objects’ movement nor thaoakathat influence it.

There has been very limited work on extending relational e®tb dynamic domains. Dy-
namic object-oriented Bayesian networks (Friedman, KoflePfeffer, 1998) combine DBNs
with object-oriented Bayesian networks, a predecessoRd$ Unfortunately, no efficient
inference methods were proposed for dynamic object-ateBayesian networks.

Glesner and Koller (Glesner & Koller, 1995) proposed thaideadding the power of FOL
to DBNs. However, they only give procedures for construgtlaxible DBNs out of first-order
knowledge bases, and consider inference only at the prioguai level. Relational Markov
models (Anderson, Domingos, & Weld, 2002) and logical hidifarkov models (Kersting &
Raiko, 2005) are an extension of hidden Markov models to-dirder domains and as hidden
Markov models present the shortcoming of being able to moxlgi single-variable states.

2.5 Introducing Relations in Dynamic Domains

One of the purposes of this Thesis is the introduction otiala in dynamic domains. We want
to extend DBNs with FOL as BN has been extended to RBNs. Inataiswe will combine the
representative power of FOL to reason about moving objedtsa world.

While in the previous section we defined the state of a refatidomain, in this section
we consider relational domains in which the state evolvél time, these are calladynamic
relational domains

2.5.1 Relational Dynamic Bayesian Networks

Relational Dynamic Bayesian Networks (RDBNs) extend RBdsnbdel dynamics in rela-
tional domains. To define relational dynamic Bayesian neétajonve have first to define dy-
namic relational domains.

Dynamic relational domains are relational domains whegestate can change at every time
step. In a dynamic relational domain a ground predicate eamug or false depending on the
time step. Therefore we have to add a time argument to eadicpte: R(x1, ..., z,,t), where
t is a non-negative integer variable and indicates the tie st

Definition 8 A dynamic relational domain is a set of constants, variajdesl predicates that
can change their value with time.

As done for the relational domain, we can define the (relatjstate of a dynamic relational
domain as follows:

Definition 9 The state of a dynamic relational domain at times the set of all the ground
predicates in the domain that are true at time
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We now introduceRelational Dynamic Bayesian NetwofRDBN) that model uncertainty
in a dynamic relational domain.

Following the definition of DBN reported in Section 2.2.1define a RDBN we have first
to define awo-time-slice RBN2T' RBN).

Definition 10 A 2T'RBN is a graph which given the state of the domain at time1 gives a
distribution on the state of the domain at timdt contains

* predicates at time (R;) whose parents are predicate at tihe- 1 and/or¢, and

* predicates at time — 1 without their parents.

As a DBN is defined as a pair of BNs, a RDBN can be defined as a pRiBNS:

Definition 11 A RDBN is a pair of network&B Ry, BR_,), whereBR,, is an RBN with alt = 0
andBR_, isa2T'RBN.

* BR, represents the probability distribution over the state fué Relational Domain at
time0.

* BR_, gives the probability distribution on the state of the domatitimet given the state
of the domain at time — 1.

An RDBN gives rise to a DBN in the same way that a RBN gives a BNtirAe ¢ a node
is created for every ground predicate and edges added betiveeredicate and its parents
(if £ > 0 then the parents are obtained frdBfz_., otherwise fromBR,). The conditional
model at each node is given by the conditional model resttith the particular grounding of
the predicate.

Let us consider another very simple example.

Example 4 Imagine you are monitoring the movements of a group of peraod you want to
know who is friend with who. You are given observations abaah person’s location each day
(for simplicity we assume a single observation each day,fexed number of possible places:
park, cinema, theater; we assume also that observationaegeired with a sensor placed at
the entrance of each place). The assumption is that frienelsreore likely to go together to
one place, rather than non-friends. At the same time, intthysexample, people will prefer
to variate their activities, so if one is going to the park ogigen day, he will be more likely
to go to the cinema or the theater the next day. We can alsonammalate individual specific
preferences, as the fact that one agent prefers going toitteera, while another prefers going
to the park.

In this example, we have objecf3erson which are characterized by some attributes as
Location(t), Preference. The attributeLocation changes during time whilgre ference is
fixed. Moreover, between objects it can exist the relatiod'ofend, that relates two objects
that are friend (in Figure 2.7 we report the objéttrson and the2T'RBN for our example).
The probability distribution of the state of the domain ateit given the state of the domain at
timet — 1 is specified by the probability distributia®(z;|z,_1, Friend). Wherex, represents
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Figure 2.7: TheT RBN for Example 4 is depicted. On the left the objéttrson is reported.

the agents’Location at timet, and Friend is a 0-1 characteristic matrix representing all the
friendship relations in the domain (a céll j) has valuel if agent: is friend of ageny)).

Even in the case of noiseless observations (we observe whaoing to the theater on a
given evening), the friendship relatiof’(iend) is not directly observable. However, by using
inference we can maintain a belief distribution (the prolighdistribution representing our
guesses, and the respective certitude factor, about theowmkfeatures of the system) about
the friendship relation, represented by a table of proliads| whose cellgi, j) indicate the
probability that agent is friend with ageny. These probabilities will be initially set to a prior
(for instance.5) and then updated after each observation. So if, for instaagent: goes to
the cinema alone and agenand agent both goes to the park, the probability (belief) of agent
a being friend with either agertor ¢ will decrease a little bit, while the probability of agént
being friend with agent will increase.

These decreases or increases of our beliefs are dictatbd bipservations and the transition
model. More precisely, the current belief can be obtainétguhie Bayes’ theorem, integrating
over all possible values that the unknown features could {akthis case, all possible values
of the tables representing the friendship relation). TReceapproach however does not scale
well: if we consider5 agents, this already means integrating ®/€mpossible combinations of
values for the table representing the relation. If we coogpé the model assuming uncertain
observation (with some non-zero probability, the sensghtsay that agent is at the cinema
when in fact he is at the park), the number of cases to consgidatd be even larger. It is
then easy to see that, as the model becomes more complex{etetations in the model), as
the observation model becomes more uncertain (fewer elesnae® observable), as the transi-
tion model becomes more complex, or as the number of agetrsaises, the exact approach
would be infeasible, as it has exponential complexity. i lext chapter we will discuss how
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to achieve tractable inference by considering probalulistes to compactly represent the tran-
sition model, and particle filtering for monte-carlo forénénce.

2.5.2 Discussion

Introducing RDBNSs to model the world offers two major adayes:
1. we are able to take directly into consideration relatiogisveen the agents in the domain;
2. we can model the behavior of an infinite class of objectsdarapact way.

For example, in the scenario of the harbor introduced in teeipus chapter (Section 1.2.2)
and suppose the only information we have are relative to dlséipn and the type of the boats.

A DBN-based framework would model each boat in the scene aviimdom variable. If a
new boat enters the scene, it would be necessary to conatnaet (different) DBN. Moreover,
the inter-slice distribution that, gives the probabilitgtdbution on the state of the domain given
the previous state, would model the behavior of each bo&peddently, without taking into
account the existence of possible correlations between.the

A RBN-based framework would, instead, model each predigiéeclass of objects with a
random variable. For this reason, if a new boat enters theesitevould not be necessary to
change the representation, because this framework isat#ason about classes of objects and
not only about particular objects. Dependencies betwegablas at the same time-step will
be given by the type of relation that can exist between boEt® inter-slice distribution will
model how the state of the domain can change with respeceteethtions that exist between
the boats.

In this way a RBN-based framework would be able to model secgsof an arbitrary length
of states (as DBN does) and a not known a priori number of ¢djddoreover, taking directly
into account relations between objects, it will be able tobabilistically model and tracking
the object behavior recognizing that on line.

2.6 Summary

The major contribution of this chapter is the introductidnelational dynamic Bayesian net-
works (RDBNs). RDBNs are FOL-based probabilistic graphimadels. They extend both
RBNs to model dynamic domains (as DBNs extend BNs) and DBNIs thie representative
power of FOL (as RBNs extend BNs). The last section (Sectidh2? showed that RDBNs
can be more compact than DBNSs in representing a domain ane effective in dealing with

objects’ behavior.

In the next chapter (Chapter 3) we will introduce the probtdnmference in relational dy-
namic domains, introducing an algorithm that takes adwgntd the knowledge about relations
between objects to infer objects’position and doing it mahvith relations recognition. In the
remain of this work we will deal in particular with the taskkawtivity recognition and multi
objects tracking.



Chapter 3

Inference in Dynamic Relational Domains

Not being able to control events, | control myself; and | adagself to them, if they do not
adapt themselves to me.

Michel de Montaigne

Reasonable people adapt themselves to the world. Unrebtopaople attempt to adapt the
world to themselves. All progress, therefore, depends oeasonable people

George Bernard Shaw

In this chapter we present a novel algorithm that can tackerénce in dynamic relational
domains. In particular, we consider the estimation of theti@nal state of a system that changes
over time using a sequence of noisy measurements (or obiseisleof some variables of the
system.

In the first part of this chapter we describe the general probdf inference and we show
how it is tackled in non-relational domains. In the second pe introduce our relational
particle filter algorithm that is able to track relations.

3.1 Systems that evolve over time

A dynamic system can be represented by a state-space mod#hteAspace model is repre-
sented by some underlying hidden state of the world (the stttor) that generates the obser-
vations and evolves with time. A state-space model, usuailysists of two equations, one that
models the dynamic of the state vector and the other that Istiue observed state variables.
The state vector contains all relevant information requteedescribe the system under inves-
tigation. For example, in tracking problems, this inforroatcould be related to the kinematic
characteristics of the target. Alternatively, in an ecortmus problem, it could be related to
monetary flow, interest rates, inflation, etc.

A states, will be calledcompletsf it is the best predictor of the future state of the system
Completeness entails that knowledge of past states caraglditional information that would

!Recall that this is an assumption already taken introdubDiBblS
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help us predict the future more accurately. Temporal pseEethat meet these conditions are
commonly known as satisfying tiMarkov property

In an online setting, the goal is to infer the hidden stategithe observations up to the
current timezy.;, we can define our goal as computing the probability distidouover the state
variable conditioned on all past measurements; this iedalebelief of the state:

bel(s;) = p(s¢|z1:) (3.1)

The measurement vector represents (possibly noisy) cditsang that are related to the state
vector. The measurement vector is generally (but not nadggsof lower dimension than the
state vector.

The evolution of the state is governed by probabilistic lawls general, the state, is
governed stochastically from the state; . Thus, it makes sense to specify the probability
distribution from whichs; is generated. At first glance, the emergence of the stateght be
conditioned on all past states; hence, the probabilisticdaaracterizing the evolution of the
state might be given by a probability distribution of theldaling form: p(s;|so.+—1, z1:4-1). An
important insight is the following: if the states complete then it is a sufficient summary of all
that happened in previous time steps. In particuar, is a sufficient statistic of all previous
measurements up to the point timeIn probabilistic terms, this insight is expressed by the
following equality:

P(s¢|50:—1, 21:—1) = D(S¢]51-1)- (3.2)

The conditional independence expressed in Equation 3leiprimary reason why the algo-
rithms we will present in this chapter are computationaitahble.

One has also to model the process by which the observatiertseang generated from the
state. Again, ifs; is complete, we have an important conditional independence

p(zt|50:t7 Zl:t—l) = p(2t|3t)- (3.3)

In other words, the statg is sufficient to predict the measurement

S St

t+1

Figure 3.1: The DBN that characterizes the evolution of tages and measurements.
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We can say that, in order to analyze and make inference algyutaamic system, any state-
space model must define

* aprior, p(sg),

* astate-transition probabilityp(s;|s;_1), to predict future observations given all the ob-
servations occurred to the present, and

* ameasurement model(z|s;), to relate the noisy measurement to the state (sometimes
also calledbbservation model

The state transition probability and the measurement ntodekher describe the dynamic
stochastic system of the domain. Figure 3.1 illustrategtodution of the states and measure-
ments defined through those probabilities. The state at timestochastically dependent on
the state at timé — 1. The measurement depends stochastically on the state at tim8uch
a temporal generative model can be represented by a DBN winegate transition model is
the inter-slice distribution and the measurement modeintna-slice distribution. Since we are
dealing with relational domains, we will say that the systeithbe represented with a RDBN.

3.1.1 Bayes Filter

The probabilistic state-space formulation and the requar for the updating of information
on receipt of new measurements are ideally suited for thee@ag approach that provides a
rigorous general framework for dynamic state estimatiatf@ms. In this approach to dynamic
state estimation, one attempts to construct the posteridgbility density function of the state
based on all available information, including the set okreed measurements.

In online analysis, an estimate is required every time thaktasurement is received. The
Bayes filter algorithm is the most general method for calougathe belief distribution from
measurements data. The Bayes filter is recursive, thatlis;;) at timet is calculated from
the beliefbel(z,_1) at timet — 1. Received data can be processed sequentially rather then as
batch; the advantage is that it is not necessary to storeotihlete data set nor to completely
reprocess previous observation if a new measurement bscara#able.

In the Bayes filter algorithm the belief of the state is conepduafter the acquisition of the
measurement;. In theprediction Stepl;gl(xt) predicts the state at timébased on the previous
belief state, before incorporating the measurements atitim

l;\eJl(st) = p(s¢|214-1) = /p(st|st_1)bel(st_1)d5t_1 (3.4)

Computingbel(x;) from bAeJl(:ct) is calledupdate at timet, a measurement, becomes
available, and this may be used to update the predictiorgubmBayes’ law(see Appendix
A):
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bel(s;) = Pzl st 21:-1)p(s¢] 21:0-1)
t P2 z1:0-1)
p(zt|3t)b€l<st)

= plee) 59

where the likelihood functiop(z;|z1;,_1) (that can be view as a normalization factor and will
be often substituted by the lette) is defined by the measurement model:

p(alzren) = / Pzt 1o )p(sil 11 ) ds,
= [ pladsbel(sds (3.6)

The prediction stage uses the state-transition probabdipredict the state belief forward
from one measurement time to the next. Since the state idlyisudject to unknown distur-
bances (modeled as random noise), prediction generatglates, deforms, and spreads the
state distribution. In the update stage (Equation 3.5)ntkeasurement; is used to modify
the prediction to obtain the required belief of the currdates This is achieved using Bayes
theorem, which is the mechanism for updating knowledge ath@utarget state in the light of
extra information from new data (a sketch of this processvisrgin Figure 3.2).

Bei(s, ) Bﬁe'f(sf) Bel(s)

P(Si41Z101) [ [P(SZ144) | — | P(8|Z44)

t=1t+1

Figure 3.2: Graphical sketch of the Bayes filter iteration.

We assume that the transition and observation models asathe for all timé the models
are said to beéime-invariantor homogeneougwithout this assumption, we could not model
infinitely long sequences of data).

2Also this assumption was already taken introducing DBNS.
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3.1.2 Relational State

In the previous chapter (Chapter 2) we illustrated how dimlal domain represents the objects
by means of constants or variables and the relations betaleects and their attributes by
means of predicates. In FOL predicates represent bothardaand attributes. At the purpose
of this Thesis we have to differentiate the two. With refeito relational data bases, we will
call attributes(or attribute’s predicates when there is the risk of corfusthe predicates that
refer to an object’s attribute arrdlations(or relation’s predicates) the predicates that refer to
relations between objects. We will maintain the term pratido refer to both the relations
and the attributes. We will refer to ground relations or grdattributes when the respective
predicates are grounded.

Therefore the relational statecan be divided in two parts: thstate of the attributes® and
the state of the relations”. We will write s = [s%, s"].

The state of the attributes assigns to each object’s attrdwalue in its domain. Similarly,
the state of relations associates to each ground relatiomtatalue. The grounding of the
predicates is done over the objects present in the domain.

We define the relations to henobservablereasoning about relations can be done by in-
ference over objects’ attributes and their evolution oueet but it is not possible to measure
a relation directly (for example, we can measure the positiba boat but we will have to
infer from the positions of different boats if any of them ise&king any low). We will say
relations are@ntensional predicatebecause their value can only be inferred and cannot be di-
rectly observed. Objects’attributes @densional predicatdsecause their value can be directly
evaluated by a low-level pre-processing module (Minker &8k 2002).

We think that this assumption is quite reasonable and, irt singtions, natural. Anyway,
if a measurable relation exists, it is always possible tongefin equivalent model where only
state attributes are measurahle.(it is always possible to define an object’s attribute that is
equivalent to the original measurable relation).

When dealing with relations we should take them into accaumioth the measurements
and the transition model, in the following we introduce #ago models for relational dynamic
domains.

3.1.3 Measurements model

The state is often observed by a noisy measurement systépnathantroduce uncertainty in the
Domain. Given a certain measurement systerg.(a radar) a measurement model is defined
that gives the probability of the state at timgiven the measurements obtained at the same
time: it is appropriate to think of measurementg @s noisy projections of the state)

Since the part of the state relative to relatiosisjs not directly measurable: we can define

p(2ilst) = p(zilsy, sp) = p(zi]sy) (3.7)

as the observation, is independent by the relations between objects. In othedsyahis
measurement model only depends on the part of the statvediathe attributes.



34 CHAPTER 3. INFERENCE INDYNAMIC RELATIONAL DOMAINS

3.1.4 Relational Transition model

The state-transition models;|s;—1) = p(s¢, sj|s¢ 1, s} ;) is a joint probability of the state of
all objects and relations (Figure 3.3).

Figure 3.3: The relational transition model for the relaibdomain. The arrows mean prob-
abilistic dependence: relations are stochastic functidrike attributes, relations at tiniede-
pends by their historys{_,) and the attributes at time The attributes at timedepends by the
whole story of the state (relations and attributes). Weragsihe relational state to be complete.

In this work we will assume that the state of relatiafisloes not evolve with respect to the
previous attributes but only conditioned on its previoulsiga and the actual objects instantia-
tions. This assumption simplifies the transition model withloosing in generality: informa-
tion about the previous state of the attributes are inclund¢de respective state of relations.

In this particular circumstance we have to deal with a titgorsimodel that is a composition
of two distributions:p(s¢|s¢ 1, si_;) andp(s}|s}_;, s¥)

Through the Bayes' rule, the transition mogét?, s7|s? |, s7_,) can be written as

p(sts stlst 1, st_1) = p(stlsi 1, st 1)P(si18t 1, Si_1,8¢)s (3.8)

given the independence gf from s¢_, givensy we can write:

(st silsio1s 51-1) = p(s{]st-1, st-1)p(si ]84, 87), (3.9)
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that is the product of the two transition models introdudecdve.

Often the state of an object at timelepends by the state of the attributes of other objects at
the previous time step; in this case it is necessary to estaednhorder (<) on the objects.

In our settings, th@rder on the objects is scenario-dependent: in a traffic monigowe
assume that the furthermost object from the camepagerredaccording to<; in a harbor
surveillance system the order, instead, follows from thde$ of the road” for boats. The
introduction of this ordering while allowing the inferenctthose objects’state that depend by
the relations with other objects, disallows cycles in thevoek (as explained in Chapter 2).

3.2 Particle Filtering

The recurrence relations given in Equation 3.4 and in Eqnat8.5 form the basis for the
recursive Bayesian filter. This recursive propagation eftbsterior density is only a conceptual
solution in fact, generally, it is not possible to deterntirtee posterior analytically. Solutions
do exist in a restrictive set of cases, including the Kalmiderfmodel.

The Patrticle Filtering (PF) algorithm is a Monte Carlo methioat forms the basis for most
sequential Monte Carlo filters developed over the past decdtis a technique for implement-
ing a recursive Bayesian filter by Monte Carlo simulation$ie key idea is to represent the
required posterior density function by a set of random sasplith associated weights and to
compute estimates based on these samples and weights. Asrttier of samples becomes
very large, this Monte Carlo characterization becomes aivalgnt representation to the usual
functional description of the posterior distribution, atte PF filter approaches the optimal
Bayesian estimate (Arulampalam, Maskell, & Gordon, 2002).

In a PF algorithm, the samples of the posterior distributo@ called particles and are
denoted with

Xt 1= SP], s?}, e ,SEM]. (3.10)

Each particlesﬁm] (with 1 < m < M) is a concrete instantiation of the state at titmé&ut
differently, a particle is a hypothesis as to what the trueldvstate may be at time Here M
denotes the number of particles in the particleygsetn practice, the numbeY/ is often a large
number. In some implementatiovi is a function oft or other quantities related to the belief
bel(sy).

The intuition behind PF is to approximate the belief(s;) by the set of particles irn;.
Ideally, the likelihood for a state hypothesisto be included in the particle sgt shall be
proportional to its Bayes filter posterioei(s;)

sgm} x p(s¢]z1:¢) = bel(sy) (3.11)

As a consequence, the denser a subregion of the state spameuiated by samples, the
more likely it is that the true state falls into this region.
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3.2.1 Importance Sampling

Let {x¢, {wim} M_ 1 characterize the belief of the stdité(s;), where the set of particleg has

associated Weightﬁwim], m = 1,..., M} and the weights are normalized such thaf, wlm} =
1. Then, the posterior density at timean be approximated as

bel(s Z w™s(s, — sI™) (3.12)

whered() is the Dirac function. We therefore have a discrete weiglajgaroximation to the
true posteriorbel(s;) = p(s¢|z1.4)-

The weights are chosen using the principlaroportance samplingThis principle relies
on the following. Supposg(s) « m(s) is a probability density from which it is difficult to
draw samples but for which(s) can be evaluated. In addition, l€t" ~ ¢(s), m = 1,.... M
be samples that are easily generated from a propdsatalledimportance densityThen, a
weighted approximation to the density-) is given by

M
~ Y wma(s — st (3.13)
m=1
where -
wi™ o m(s™) (3.14)
q(s™)

is the normalized weight of thih particle.

Therefore, if the sampleém} were drawn from an importance densitys,|z.), then the
weights in Equation 3.12 are defined by Equation 3.14 to be

[m]
wgm} . (s |z14) (3.15)

g(si™|210)

3.2.2 Basic Algorithm

Returning to the sequential case, at each iteration, onld t@ve samples constituting an ap-
proximation ofp(s;_1|z1.¢+—1) and want to approximate(s,|z;.,) with a new set of samples.

The PF algorithm constructs the beltet(s,) recursively from the beligfel(s,_;) one time
step earlier. Since beliefs are represented by sets otlestithis means that PF constructs
the particle sek; recursively from the set;_;. A pseudo-code description of the most basic
variant of this algorithm is given by the following Algoriti 1.

The input of this algorithm is the particle set ;, along with the most recent measurement
z. The algorithm then first constructs a temporary partickexsethat represents the belief
bel,. It does this by systematically processing each parﬂlﬁ’lb in the input particle set;_;.
Subsequently, it transforms these particles into theygetvhich approximates the posterior
distributionbel(s;).
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Algorithm 1: Pseudo code for the PF basic algorithm
1.x: = PF(xi—1, %)
2. xXt=xt=0;
forall m=1: M do
4. Samples™ ~ p(s,|si™);
5. ol = p(z]s");
6. %0 = Xi + (51", w™);
forall m=1: M do
9. Draw: with probability oc wl;
10. Adds,[f] to x¢;

The real “trick” of the PF algorithm occurs in line 9 and 10 ifmgArithm 1, where the
resamplingstep is implemented. In the resampling step the algoritrawsywith replacement,
M particles from the temporary sgt, transforming a particle set @i/ particles into another
particle set of the same size.

With the resampling process, the distribution of the peetichanges: whereas before the
resampling step, they were distributed accordinget®s,), after the resampling they are dis-
tributed (approximately) according to the postefi@l(s;) l;(\z/l(st)p(zﬂst). In fact, the result-
ing sample set usually contains many duplicates, sincécfertare drawn with replacement.
The particle not contained ig; are the particles with lower importance weights.

Thus, the resampling step has the important function ofrigrparticles back to the poste-
rior bel(s;). There are different way to implement the resampling ste@:one implemented in
Algorithm 1 is calledsimple random samplingnd draws the particles with probability given
by their importance weigh. In the next subsection we preselifferent procedure that is easier
to implement than the simple random sampling and providesdlsnvariance.

3.2.3 Residual Sampling

The resampling step has been introduced to overcomiatieneracy problenThe degeneracy
problem is the problem where, after a few iterations, alldbparticle has negligible weights.

With the resampling step, particles that have small weigéseliminated and the algo-
rithm concentrates on particles with large weights dintiimg the Monte Carlo variation of the
particles (Berzuini, Best, Gilks, & Larizza, 1997).

Residual Resampling a resampling technique that can replace the simple rasdompling
providing favorable computation time and diminishing gaes’ Monte Carlo variation (Liu &
Chen, 1998). It consists of the following steps:

1. Retaink™ = | Mwl™ | copies ofs!™ for eachl < m < M.
M m
2. LetM, =M =Y k™,

3. Draw M, samples fromy, with probabilities proportional td/w™ — k™l for eachl <
m < M.
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4. reset the weights to/ M.

The residual sampling does not seem to have disadvantagayg aspects.
A pseudo-code for the variant of the PF algorithm that malsesaif the residual sampling
is given by the following Algorithm 2.

Algorithm 2 : Pseudo code for the PF algorithm with residual resampling
1.xt = PF(x-1, 2t)
2. Xt =xt=0;
forall m=1: M do
4. Samplesl™ ~ p(s|si™);
5. wll = p(z]s,™);
6. Xt = Xt + <S£m]’w[m]>;
forall m=1: M do
9. klml = [ Ml |:
10. Addk™ copies ofs!™ to y,;
11. wﬁm} = Mol — gl
13. M, = M ="M gl
forall m=1: M, do
15. Draw; with probability o w!;
16. Adds,[f] to x+;

3.3 Relational Particle Filter

Given our subdivision of the relational statedh (state of the attributes) and (state of the
relations), we want to express the belef(s,) and the predictionel(s,) in terms ofs* ands”.
The belief of the relational state is:

bel(s) = p(sy, sy|z1:t) (3.16)

A Bayesian filter algorithm requires to compute the belistribbution from measurement
data as:.

bel(sy) = a p(zsy, sp) /p(S?a Syl st_1, si_1)bel(si-1)dsi1 (3.17)

Following the assumption that the relational part of théestais not measurable (see Sec-
tion 2.5), the observations depend exclusively on thebatis: p(z|s", s*) = p(z|s*). The
previous equation becomes:

bel(sy) = o p(z¢]sy) /p(s?, sylst 1,87 1)bel(si—1)dss_1. (3.18)
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The predictiorb?l(g) can be written as:
bel(se) = p(sy, 57| z14-1) = /p(s?, stlst_1s sp_1)bel(si-1)ds— (3.19)

Considering the relational transition model introduceBduation 3.9, we can Wriﬂgs/l(st)
as:

lgevl(st) = p(sf, st]214-1) = /P(S?\S?—h s;_1)p(silsi_1, 5¢)bel(si—1)dse—1, (3.20)

that allows us to easily implement the filtering step.

The intuition behind our algorithm is the following. At eattime step we have samples con-
stituting an approximation gf(s¢|s¢_,, s;_,) and we want to approximatg s, sy|s¢ ,,s;_;)
with a new set of samples. Since the transition model is shahp(s¢, s7|s¢ |, s] ;) =
p(s¢lsiy, si_)p(sf]siy, s}_,) we can obtain samplefs;™, 5] ~ p(s7, si|siy, s]_,) by
augmenting each of the existing sampj;éém] ~ p(s?|s?_, s7_;) with the new state of rela-
tionSsI’[m} ~ p(st|st_1, sh_q).

We introduce in Algorithm 3 our Relational Particle Filté&RRF) algorithm able to take
advantage of the decomposition introduced in the relatimaasition model.

Algorithm 3: Pseudo code for the RPF algorithm
1. Xt = RPF(thl, Zt)
2.Xt=xt=0;
forall m=1: M do

a;[m] m]  r;[m]

4. Samples,"" ~ p(s§|st“1[1 , 5.1 "), Hypothesis for the state of the attributes
5. Samples; ™ ~ p(st|s@™ s7™: Hypothesis for the state of the relations

6. wlm = p(z|s¥™); Weights computation
7. %= X+ ([, s, wl);
forall m=1: M do
10. k™ = | Mw!™ |; Residual Resampling step:
11. Add k™ copies offsZ™ | 57 to x,;
12. 0™ = Muwlm — glm);
14. M, = M — "M gl
forall m=1: M, do
16. Drawi with probability oc w!™;
17. Add[s!7 sl to v,

A particle (sﬁm]) is a representation of the state, for this reason, in otingeit is divided
in two parts: the part of the attribute&™ and the part relative to relations™ (see Figure
3.4(a)). The part of the particle relative to the attribusesampled according to the first part
of the relational transition model (Line 4), subsequernttly part of the particle relative to the
relations is sampled according to the second part of theéigaekl transition model (Line 5).
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When the measurement is acquired, particles are weightending to the sensor model (Line
6). The measurement model takes into account only the pateoparticle relative to the
attributes, since the particle is composed by two parts, this part relative to the relations is
weighted. After the weighting step, particle are resampddidwing the Residual Resampling
procedure (Line 9). A sketch of the sampling and weightiregsis given in Figure 3.3.

0% o0 %e
008807
0 99%0g0® & ~ p(x% 5%1,8"t-1
° 00003 ©,8 o@"" p( ,(m)l ) )
(a) Particle representation. (b) First step of hypothesis.
~ p(Xt,(m)|s% = X0t (m),8"t-1) WV ( ) ~p(zt|x°)
(c) Second step of hypothesis. (d) Particle weighting.

Figure 3.4: Cartoon representation of the proposed alguarit

3.3.1 Mathematical Derivation of the RPF

To derive the RPF mathematically we refer to (Thrun, Burg&dFox, 2005). We think of
particles as samples of the state sequences:

a;[m]’ 56;[m]]’ [

= [s S st [yt s (3.21)

It is easy to modify the algorithm accordingly: simply appeo the particles? ™, s;i™]
the sequence of state samples from which it was gene[t‘ét:g@, sgiﬂ]. This relational particle
filter calculates the posterior over all state sequences:

b@l(ngt, ngt) = p(sgztv 86:t|211t) (322)

instead of the beliebel(s?, s}) = p(s¢, s7|z14). This definition is needed to derive the RPF
algorithm given in Algorithm 3.
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The posteriobel(sg,,, si,.,) is obtained by:

bel(88:t786:t) = p(sg:tasg;t|zlzt)

= ap(ze|85, Soups 21:6-1)P(85.4 S04 | 21:6-1)

P2l 85)P(SGut S0l 21:1-1)

p(2elsy, sp)p(SEs Sy180:0-15 S0:—121:0—6)P(SG4—15 St:p—-1] 21511

p(zelsts sp)p(sts silsiot, $i-1)P(Su—15 Sou—1l71:1-¢)
( )p(s]

= ap(zsy, s;)p(stlsiy,si_1)p(st]si_1, sE)P(80.6—15 S0:¢—1]21:1-¢)

Il
e

Il
e

I
Q

The absence of the integral signs is the result of maintgialhstates in the posterior.

The derivation is now carried out by induction. The initi@incition is trivial to verify.
Assume that our first particle set is obtained by samplingtiw p(sf, si). Let us assume that
the particle set at time— 1 is distributed according tbel(sg.,_, st..;). For them-th particle

s Emll, S, m] in the input set, the sampl&™ is generated from the proposal distribution:
p(silst1, si-1)bel (86,1, 5041) (3.23)
and the samplés?[m}, s’f[m}] is generated according to the proposal distribution:

p(silsi_1s st)p(stlsi_i, st 1)bel(85.4 15 S0:4-1) (3.24)

a;fm]

with s¢ = sy
To compute weights we use

m) _target distribution
* 7 proposal distribution

(3.25)

where
target distribution= np(z|sy, s;)p(s{|si_q, si_1)p(st]s; 1, 8¢)bel(sG4 1, S0.4-1) (3.26)
and

proposal distributior= p(s;[s;_y, s¢)p(sy|si_1, si_1)bel(s5,_1, St:—1)- (3.27)

m) _ P2y, 5P |8ty 811 )p(silsi_1, 57)bel (85,1, Sha-1)

Wl — (3.28)
! p(SHS;_l, Sg)p(sﬂsg—h S¥—1>bel(88:t—17 SS:t—l)

from which follows:

W™ = np(z)st, s7) (3.29)

The constant plays no role since the resampling takes place with proityapiloportional
to the importance weights. By resampling particles withbatality proportional tout[m}, the
resulting particles are distributed according to the pobaii the proposal and the importance

weightsw™:

nwi (s} Iy, SEP(EI5 1, 57 P(SGe1s St |204-1) = bel(sf,s})  (3.30)
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a  [m]r

Algorithm 3 follows from the simple observation that[isfgfﬂ ,Sp. ] Is distributed ac-
cordingly tobel(s2,, st,) then the relational state sampig™, si™"] is (trivially) distributed
accordingly tabel(s¢, s;). The mathematical derivation of the filter, ensures the eayence of

the filter forM T oc.

3.4 Conclusion

In this chapter we presented the general problem of inferendynamic domains, introducing
the Bayes filter, that is the most general algorithm for thigbgem. To face the increased
complexity posed by relational domains, we introduced dra® major contributions of the
Thesis, ouRelational Particle Filteralgorithm. This algorithm computes the belief of the state
taking into account relations between objects, and it isbbgpof track the relations as well.

In the last part of this chapter we derived the algorithm reathtically, proving that our
reasoning is sound and the algorithm converges.

We will now focus our attention on two principal problemse gbroblem of activity recog-
nition and the problem of multi target tracking. In the nelkaipters we first introduce these
problems, reviewing related works and then we show how otlif ®&Rperforms the state of the
art algorithms.



Chapter 4

Anatomy of an Activity Recognition
System

You'll never find your gold on a sandy beach,//You'll nevell tr oil on a city street.//l know
you’re looking for a ruby in a mountain of rocks.// But theie'tino coupe de ville hiding //at
the bottom of a cracker jack box.

Jim Steinman

The techniques developed in this work can be used in a varielymains ranging from bio-
sequence analysis, where different genes participatitigeisame interaction can be related, to
economy prediction, where the price is related to the trenithe@ demand of related shares.
We focus on behavior and scene understanding applicatr@hmagarticular we will deal with
systems forvision-based activity recognitionin this chapter we describe the challenges of
designing a vision-based activity recognition system it&imain components and present the
state of the art and our approach.

4.1 Vision-based Activity Recognition Systems

An activity recognition syste@ms to recognize the actions and the goals of one or mordsagen
from a series of observations on the agents’ positionsbatas and the environmental condi-
tions. In particularyvision-based activity recognitiooonsists in tracking and understanding
the behavior of the agents through videos taken by a camexanomber of cameras. Vision-
based activity recognition has found many applicationd1sag human-computer interaction,
user interface design, robot learning, and surveillanceray others.

A vision-based activity recognition system consists oftipié¢ modules

1. Themotion detectiormodule has the goal to detect the objects in the scene thatare
ing significantly {.e.,distinguish from background motion that is not of interdst leafs
moving on a tree).
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2. In thetracking module the objects detected in the previous step are assodaigth the
“path” they are traveling. If only one object is moving in teeene this task if straight-
forward. If there are multiple objects in the scene the tastomes more complex (a
data associatiorstep is required) and if the objects are interacting the dexity of the
tracking task grows a lot.

3. Theactivity recognitionmodule associates each (or groups) of the detected paths wit
a particular activity giving a meaning to the motion of thgealts. Activity recognition
can be exploitesnline with the tracking ((e., at each time step, a measurement is ac-
quired, the state of the domain is filtered given the hypashdsne over the domain by
the tracker and the belief over the activity computed) ofio#, when a sufficient amount
of knowledge about the domain has been acquired.

In some cases, applications are also required to raise an alaen a particular dangerous
or forbidden situation arise. These systems, caleoimaly detection systemmsay use activity
recognition in order to decide when rise an alarm and areudgsd in (Section 4.5). In Figure
4.1 a sketch of the interactions of these module is reported.

Motion |
Detection Y

@ L

TRACKING

016325 162.081 -6.81818 161.013 26,9255 1656.007 29.00..
1237 36 191,545 11.4545 152,99 32 9446 193.005 32 06 .
Activity
Recognition

ENVIRONMENT

I’_______Tw'_"',

| & !

. " Bnomaly ||
(@ «— — Anomaly

I G e e Jl Detection ,I

Figure 4.1: Graphical sketch of the activity recognitiondules iteration.

In this Thesis we use probabilistic relational models tdhbotprove tracking thanks to the
prior about the ongoing activity and feed-back the know&edgquired about the state to the
activity recognition module to compute the belief over thaaty online.
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In the following sections we describe each layer of a viddased activity recognition sys-
tem, discuss the design challenges, review existing warllgpaopose our solutions.

4.2 Motion Detection

Motion detections the activity of extracting the pixels of the moving obgot the scene from
the images of a video. Most of the approaches presentedsiiséistion rely on the output of a
robust motion detection step and our method for trackingaantidity recognition relies on the
same hypothesis.

Motion detection methods are used to locate the presenedéence) of motion in a given
animated scene. We refer here to a specific class of motiectitat methods for video surveil-
lance (McKenna, Jabri, Duric, & Wechsler, 2000), traffic mtoring (B.Gloyer & T.Kailath,
1995) and others using a static camera.

4.2.1 Traditional Approaches to Motion Detection

Several methods have been proposed to automatically deeectbjects’'motion in an image
sequence. They can be classified in two major categoriesnitpees that compares each new
frame to a model of the scene background, catladkground subtractiotechniques and tech-
niques based on the difference of consecutive framesgddatier frame differencer temporal
difference techniques

Background subtraction bases the detection of moving tbyat the difference between
the current frame and a reference frame, often cdikgroundmage. This implies that the
background image has to be reliable,, it has to be an image of the scene without moving
objects. This turns into the need of computing and updatingckground model, which could
account for changes in light conditions or small movemehth® scene and has to face with
a trade off: if the background model adapts too slowly to gesnin the scene, then we will
construct a very wide and inaccurate model that will have ttection sensitivity. On the
other hand, if the model adapts too quickly, this will leadw® problems: the background
model may include the target themselves, as their speedthameglected with respect to the
background variations, and it may lead to poor estimaticin@imotion.

The techniques used to model the background can be classiti@d major groups:

* Non-parametric approaches and
» Parametric approaches.

As an example ohon-parametri@pproaches to background modeling, consider the model
presented in (Elgammal, Harwood, & Davis, 2000) where thesitig function of the distri-
bution of each pixel in the scene is estimated at any mometitnefgiven only very recent(
frames) history information. With the median filter appriogaroposed in (R.Cutler & L.Davis,
1998) and in (R.Cucchiara & A.Prati, 2003), one computeh pae| of the background image
as the average of the corresponding pixels invthgrevious images. We also mention (Spag-
nolo, Leo, D’Orazio, Caroppo, & Matrtiriggiano, 2006) whehe pixels’ energy information is
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exploited in order to distinguish static points from movimges: a low energy content means
that the considered point is a static one and the correspgistitistics are included in the back-
ground model, whereas high energy points, correspondifigréground cannot contribute to
the model. Non-parametric approaches are based on the ptssnrihat a pixel is part of the
background image for a certain amount of time (at |€alsames).

A first class ofparametricalgorithms usestatistical approachet model background pix-
els. In (Stauffer & Grimson, 1999) a generalized mixture aii€sians is used to model com-
plex non-static background, however the presence of fowegt objects during the learning
phase could heavily alter the reliability of the model, agdemsudden light changes (Cheung
& Kamath, 2004). Moreover, these methods are computatioimdensive and their parame-
ters require careful tuning. A different class is composgdthie approaches that uskers for
temporal analysis. In (Luong, Weber, Koller, & Malik, 1998 authors use a Kalman filter
approach for modeling the state dynamics for a given pixelDoretto, Chiuso, Wu, & Soatto,
2003), instead, an autoregressive model was proposed tareahe properties of dynamic
scene. An improvement of this algorithm was implemented Monnet, Mittal, Paragios, &
Ramesh, 2003) to address the modeling of dynamic backgranchg@erform foreground detec-
tion. The common assumption of these filter-based techsituihat the observed time series
is independent at each pixel.

To reduce the background changes, the temporal differegppeach detects motion by
taking the absolute difference of consecutive images (#tulnique is also known asngle
difference (C. Zhang, 2003)). These approaches present the advardhgeguiring much
lower computational effort than the background subtraatnethods and avoids errors typically
due to the use of a particular background model and of usingrya wp-to-date image of the
scene as background. The disadvantage of the temporaletiffe approach is that the image
used as background includes the moving objects as welkftrerframe difference is liable to
generate large areas of false foreground, knowghasts Moreover, it may miss the detection
of that pixels that stop motion in the image frame (probleravin asforeground aperturg To
solve the ghost issue thelduble differencehas been proposed in (Yoshinari & Michihito,
1996) as a variation on this method. This approach computieeahold difference between
frames at time andt — 1 and between frames at time- 1 andt — 2, combining them with a
logical AN D. However, if the moving objects have not enough textureghigedure does not
allow an accurate motion detection and the object posisarot estimated in real time.

In the last years background subtraction and temporalrdiffee has been integrated in new
methods to fix the drawbacks each method present. One ofdlggsghm has been described in
(Collins, Lipton, & Kanade, 1999), this algorithm exploitsage difference between frames at
timet andt — 1 and the difference betweemndt — 2 to erase ghosting; it also keep in memory
a background model to solve the foreground aperture prabl&nother algorithm proposed
as the integration of two different techniques is the ongpsed in (Migliore, Matteucci, &
Naccari, 2006) where an image of background is updated dicgpto the result of the single
difference on the current frame. Despite these approaditasx@ood results, they spend a high
computational effort to solve problems introduced by thitegnation of the two methods.
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4.2.2 Context-aware Motion Detection

In this section we describe our approach to motion detection

Context-based reasoning has been shown to be a key factoorfgguter vision in the de-
velopment of algorithms for object recognition (Derek Hoi& Hebert, 2006), (Elidan et al.,
2006). These algorithms express the knowledge about tine sceund the objects with a prob-
ability distribution and use it to accomplish the task ofemftjrecognition given their context.
In (Heitz & Koller, 2008), for example, a system that levezagcontext” toward improving
detection is presented. The method clusters image regiasedbon their ability to serve as
context for the detection of objects. This method autoradifigroups regions based on their
appearance and computes the relationships between regidatect objects in the image.

Another approach that models the context for the objecty®mition task is that presented in
(Copsey & Webb, 2002). In this paper the uncertain causatiogiships between the objects and
their environment is modeled with a Bayesian Networks (Bldskecognize multiple military
targets. In particular they do that taking into account rmeament information on the targets,
measurements on the terrain around the target and the kahgevlbout certain characteristics
of the target (preference in hiding, ability to traversdeatiént types of terrain, ...)

As far as we know, algorithms for motion detection have notsadered context interpre-
tation. In (Archetti, Manfredotti, Messina, & Sorrenti, @b) we presented an approach that
detects moving objects performing a temporal differencéhotedifferentiating between fore-
ground and ghost areas with an heuristic. Here we describdéuristic in terms otontext
reasoning

Context to improve moving objects detection

The method we proposed is based on the difference betweaseaaive frames. Tradition-
ally, such difference is computed as the absolute valueetlifierence in the intensity (as in
Equation 4.1):

. I(z,y) — L1 (x, if |1,(z,y) — Is1(z,9)| > T
s e I S L

In SDif f motion is detected in two areas, one due to the image posfimobject had at
time (¢t — 1) (ghost), and the other due to the object position in the octiframe (foreground).
The two instances have similar image intensitySibi f f, and the possibility of distinguish
between the two is lost.

In Figure 4.3, another relevant area, cafleground aperturgis emphasized. Itis formed
by the overlapping of the target positions ip_,) and I, and its weightless depends by the
motion of the target in the image with respect to the frame. réihe foreground apertufé’ A.)
area is characterized by pixels where the intensity is ctoseero, due to the effect of the
subtraction of pixels more or less at the same intensityl:lawethis area no motion can be
detected.

Our method is based on the use of a Single Difference technigthout computing its
absolute value. We will call isigned single differenceWe propose to use the signed single
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Figure 4.2: Left: Image attimg — 1), I;_,. Right: Image at time, /,.

Chost Foreground Foreground

F.A. ‘

Figure 4.3: Left: SDiff: both foreground pixels and ghostgids are set td in the motion image
shown. Right: SSDiff: ghost and foreground pixels haveedéht intensity.

difference and to separate pixels of positive intensitynfrpixels of negative intensity: this
separation will be used to discriminate the foreground ftbenghost, as shown in Figure 4.3
right. Given two consecutive frameg,_,) and/, (Figure 4.2, left and right) we consider the
signed single differenc&SDif fi(z,y):

SSszft(x,y) _ { (()[t(x7y> - [(tfl)(x7y>> gtL[éE-'\q;\;lsz)e_ [(tfl)(x7y>| > T (42)

We are left with some ghost and some foreground areas, whecamt to discriminate. In
Figure 4.4 left a simple example with one foreground and drasparea is shown.

We now reason about tleentextof each detected blob (set of pixels assigned to a moving
object). The context of a moving object is the backgrounchefimage. Our idea is based on
the observation that around each blob area we have bacldjrbutinsidean area detected by
a blob:
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Neighborhood

Background Foreground

0

Figure 4.4: Left: The context (or neighborhood) for the &t are defined in th& SDif f
image. Right: The descriptor for the neighborhood are atehtliin the current imagé,.

« if it is foregroundthere is somethindifferentfrom the context: this is an area detected as
foreground that is indeed foreground;

« if it is ghost(i.e., background) there is somethissgnilar to the context all around the
blob: this is an area detected as foreground that is indegdybaund.

Similarity and difference can be defined in terms of col@ht;j etc.

Relational Reasoning to infer Foreground Aperture

Once we detect the foreground and the ghost areas, we akeitlefareas of background that
can be faulty detected.

A foreground aperture are& an area in the image between a blob of ghost and a blob of
foreground that has been detected as background but it éedhtbreground. We can use a
First-Order Logic (FOL) relation to detect such areas.

We observed that, for each blob of foreground that is formggadsitive pixels in the
SSDif f, therelatedblob of ghost is formed by negative pixels.

With respect to the main theme of this Thesis (relationas@aang) we can consider this
intuition from a “relational” perspective. We can definestnelation (between a positive fore-
ground and a negative ghost or vice-versa) based on the’diktaace, their pattern in the
image or their behavior in the previoudrames.

We can detect the foreground aperture areas as those atea@ebe¢he couples foreground
and ghost that are most probably related.

4.3 Multi-target Tracking

The problem of multi-target tracking is the problem of asaticg a (possibly unknown) number
of moving objects with their most likely trajectories (seq@es of positions) over time. If
performedonlineit requires to make such associations at each time step.
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Online tracking subsumes inference: it is the problem ofriihe state of all the moving
objects in the domain given the observations up to the cttiree.

A lot of work has been done in the past years to deal with thblpro of finding the tracks
of an unknown number of agents moving in the scene.

For non-interacting targets, the classical multi-targgatking literature approaches the prob-
lem by performing a data-association step after the adopnsof the measurement. The multi-
ple hypothesis tracker (Reid, 1979) and the joint probstigidata association filter (Fortmann,
Bar-Shalom, & Scheffe, 1983) are the most influential alfpons in this class. These multi-
target tracking algorithms have been used extensivelyarctimtext of computer vision. Some
examples are the use of nearest neighbor tracking in (Defchaugeras, 1990), the multiple
hypothesis tracker in (Cox & Leonard, 1994), and the joiiyabilistic data association filter
in (Rasmussen & Hager, 2001).

Some of the works that deal with multi-target tracking imegg the low level motion detec-
tion step from a sequence of frames with the tracking. Theaikedtracking-by-detectiomand
integrates the motion detection module with the trackiaging advantage from the feedback
connection between the two modules to improve both taske. uRderlying idea is to derive
higher-level semantic information from the motion detestmodule and feed it back to the
tracking module in order to improve performance there. Hgwan hypothesis over the future
positions of the moving objects in the scene, will decreasecomplexity of the motion detec-
tion. Between others an example of this approach is the wiodhao et al., (Zhao, Nevatia,
& Wu, 2008).

In (Zhao et al., 2008) a model-based approach to interpecitiage observations by mul-
tiple partially occluded human hypotheses in a Bayesiamétgork is presented. They define
a joint image likelihood for multiple humans based on th@p@arance, the visibility of their
body obtained by reasoning about occlusions and foregrbankiground separation. Their
“data driven Markov chain Monte Carlo” sampling method peris inference using image
observations as proposal probabilities.

In (Okuma, Taleghani, de Freitas, Little, & Lowe, 2004) thixeal particle filter algorithm
is combined with Adaboost algorithm to learn, detect ancki@bjects of interest. The mixture
particle filter algorithm assigns a mixture component tohealgject, the Adaboost algorithm
generates the proposal distribution of each particle.

These approaches are appropriate when targets behavemudeply, and the problem is a
problem of “visual confusion”.

The works presented in (Isard & MacCormick, 2001) and in (@laenick & Blake, 2000)
focus on the observation model, both these methods seermtee®’ the concept of relation in
the dynamic model. In (Isard & MacCormick, 2001) the factt thiweo objects cannot occupy
the same spot in the scene is used to constrain the objegniéon module. In (MacCormick
& Blake, 2000) reasoning about the fact that objects neartreé camera are more likely to be
recorded by it is used to detect of two objects which is odalgénd which one is occluded.

Both of these approaches do not give an explicit descrifdhe relations and they do not
treat with them in a probabilistic way: relations are usedrakes of thumb” to constrain the
reasoning over the system.

In (Khan, Balch, & Dellaert, 2004) a multiple hypothesistpae filter is described able to
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track targets that are influenced by the proximity and/orleavior of other targets. They do
that defining a Markov random field at each time step to modsitteractions between objects.
They argue that taking advantage of the knowledge abountbeaiction between objects greatly
help tracking two targets that pass close to one anotherir §bal is only to track multiple
objects, they do not take advantage of the knowledge abeuntharaction between objects to
learn (or detect) what are the objects doing in the scene.

Mixed-states models, that we discuss next, are the modelsaftking that most closely
relate to our approach.

4.3.1 Mixed-state models

There are scenarios in which the tracking task is compled (@& provided some examples
in the introduction) due to the unpredictability of the belba of the targets: in these cases a
unique motion model is not enough to predict the future stthe system, different motion
models would be necessary to handle the targets possibdeibes Mixed-statemodels allow
automatic switching between multiple motion models as amahtextension of the tracking
process.

The work presented in (Isard & Blake, 1998) allows a mixetesbbject representation
combining continuous-valued shape parameters with aetestabel encoding which of a dis-
crete set of motion models is in force. While the inferenak ia performed, the discrete label
says which model must be used to predict the future (contigustate. In the prediction step,
model switching is performed when necessary.

Consider, for example, a mixed state model for tracking tvlalkd balls. When the balls
are far apart (first model) the system tracks the balls indeégetly {.e., predicts their posi-
tion using simple cinematic model), instead when they apsecsecond model) the system
considers a transition model that predicts collisions amoes.

In a mixed-state models the label of the transition modeltesl the prediction of the future
state only to the time step previous to the current one, gssi@mption makes the prediction
over the motion model unrelated with the current state ittayg lead to a possible delay for the
tracker to correctly approximate the objects’ behaviorth@ example, at timeé the distance
between two billiard balls is computed taking into accour@ positions of the balls at time
t — 1 and the switching between the two models is done for the gliedi of the state at time
t + 1; this leads to a delayed in the approximation of the statéetwo balls. In our method,
instead, (see next paragraph) we use relations as theeepaen of the motion model in force.
The state of relations does depend by the previous reldtspaie and by the current state of
attributes, the prediction step takes into account whitdtioss are true to make its hypothesis
over the next state, that results in being more up-to-daiddnespect to a mixed-state model
approach. Moreover, the use of FOL relations (as opposedisba possible motion models)
generalizes our models to different domains.
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4.3.2 RelationalMulti-target Tracking

In this Thesis we deal witfelational trackinga framework first presented by Guibas in (Guibas,
2002) that allows to track multiple agents taking into actdhe correlation between their be-
havior. In relational tracking one considers, in additionttie positions and the object’s at-
tributes, relations that represent joint properties ofdbgects and associates a set of objects
with a full specification of the evolution of the value of thattributes and relations over time.

While tracking the state of attributeisg, “usual” state of the domain, refer to Section 3.1.2)
we track also the relations between objects at the same Timegoal of relational tracking is
that of finding the trajectories over time of an (unknown) fm@mof objects as well as the
evolution of the relations between them. We can say thatioela tracking subsumes activity
recognition.

A complete description of the relations existing betweejectis gives us a description of
the activity they are involved in. Tracking relations meaesg able to say at each time step
the activity (described as set of true relations) in whictheabject in the scene is involved. In
this Thesis we do not deal with the recognition of a singléoagberformed by a single person
but we focus on recognizing activities that reflect semagials.

4.4  Activity Recognition

Activity recognitionis the problem of model and detect specific, dynamic intevadietween
moving objects (sometimes referred as agents) or part ettdjIn the past years, the concept
of activity ranged from single-agent, short-duration action to theasgimgoal (or intention) of

a group of targets. Recognizing single-agent, short-turatctivities is also called event de-
tection (Laptev, Caputo, Schildt, & Lindeberg, 2007) aad the goal of identify and localize
spatio-temporal patterns in video€omplexactivities have been often defined as temporally
extended activities that can be fragmented in simple ones.

4.4.1 Traditional Approaches in Activity Recognition

In (Hongeng, Nevatia, & Brémond, 2004) simple activitigig@le threadsare characterized by
being executed by a single actor and multi-agent eventsglmmactivities) are represented by a
number of single threads related by temporal constraimtg)l&threads are recognized from the
characteristic of the trajectories of the actors using Beyemethods. Complex activities are
recognized by propagating temporal constraints of sirfgieaids in a temporal logic network.

We will focus on actions that see tlmteractionbetween objects, instead of focusing on
complex actions that are temporal sequence of simple one.

In (lvanov & Bobick, 2000), (Moore & Essa, 2002) and (Ryoo &gegwal, 2006) the
interactions between different agents is recognized. § hethods recognize single-actor, sim-
ple activities and organize the detected simple activitigls a stochastic grammar free parsing
to recognize complex activities. The recognition task isalgled in two levels: a lower level
that detects single simple activities that are the inputshe stochastic context-free grammar
used as a “bag of words” to interpret the structure of theesyst
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The complexity of this interactions are still temporal lhsbzanov and Bobick report the
example of a domain where the problem is to recognize theities that can occur in a parking
lot of a building. The interaction between a person exitimg building and a car entering the
parking lot is recognized as “pick-up” if the person apptuecthe car and then “disappears”
from the scene. As in (Intille & Bobick, 1999), Ivanov and Bdbdetect complex actions
that contain many components that occur in an ordered teahpalation to one another, that
generally reflect causal connection. We are, instead,asted in modeling and recognizing
activities that see thiamtegrationandcoordinationof multiple objects.

A good example of such activities is the one of recognizirtgpas during a sport match, in
particular some work has been done in soccer domain.

An example of these works is the one reported in (Tovinkera@n(X2001) where, based on
tracking data, players’actions and game events are ddtasieg a set of heuristic rules. These
(propositional) rules are derived from a hierarchical tyatelationship model representing the
prior knowledge of soccer events.

A first-order probabilistic model that combines multipleie$ to classify human activities
from video data is introduced in (Biswas, Thrun, & Fujimu2807). The probabilistic model
is implemented as a Dynamic Markov Logic Network that grofifteen FOL propositions.
The system is applied to an office setting where only actigithat involve an agent and an
inanimate object are considered (talking to the phonejngriwith a pen, ...). Our goal is to
model FOL relations between different moving objects.

As far as we know, the nearest approach to the one proposkidinhesis is the one intro-
duced in (Tran & Davis, 2008) where common sense domain letiyd is represented as FOL
rules and Markov logic networks are defined based on thess.rul

Differently from our method, the inference task is perfodhéf-line: they perform prob-
abilistic inference for input queries about events of ieserthat already happened. We seek,
instead, to perform an online probabilistic inference ofhbthe state of the domain and the
activities and leave each module sending feedbacks to ltiee @t improve its performance. We
claim that, once we recognize complex coordinated aawitiwill be easier to express the mo-
tion model. Our approach seek to take advantage from thkitigaéor the activity recognition
task and from the belief over complex activity to improve ttaeking.

4.4.2 Online Activity Recognition for Relational Tracking

The aim of our approach is that of tracking multiple interagtagents and recognize their
coordinated activities online. For this purpose we use deif Ror tracking the objects in the
domain together with their relations. The coordinatedvéiets are the results of the set of all
true relations in the domain.

For the sake of the explanation of our computational framkwe divide each particle in
two parts: the part of the attributes and the part of theimiat as reported in Figure 4.5.

Referring to Algorithm 3, in the first step of the predictidhe part of the particle relative
to the relations plays the role of the discrete label in theegistates models: they encode the
values of the parameters of the relational model based ochwhlations are true (Figure 4.6
left). In the second step of the prediction, the values ofréi&ions are predicted according to
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Figure 4.5: Our particles can be considered the combinaifomvo parts, the parts of the
attributes and the parts of the relations, these will coaeen the prediction step.

their previous values and the hypothesis over the stateedadttnibutes. Computing the predic-
tion of the relations between the objects means to predecadhivities in which the objects are
involve in: this step can be callettivity prediction(Figure 4.6 right).

Figure 4.6: In the first step of the prediction the part of thetiple relative to relations plays
the role of the discrete label in the mixed-states modelso@®es, of each object, which discrete
model is in force. In the second step of the prediction theesbf the relations are predicted
according to their previous values and the hypothesis deeetbe state of the attributes.

In the resampling step the state is filtered: the particlesfarced back to the posterior
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bel(s;). With this step we filter the activities: only the most proleafictivities will survive the
resampling step.

Using our Relational Particle Filter (RPF) for multi targedcking purposes allows us to
recognize activities online. To be notice that all the atiés we speak about (the single-person,
short-duration, the temporal based and the coordinat@mpe expressed as FOL relations.

4.5 Anomaly Detection

Most of the models used for activity recognition can be uded with the purpose of anomaly
detection.Anomaly detectiois the problem of detecting the occurrence of suspiciousateve
Activity recognition methods can detect anomalies whesélsispicious events are known or
described by a model representing interactions among pheittbjects moving in a scene.

In the next chapter we will often use the terms anomaly dete@nd activity recognition
interchangeably because one of the applications we will @éh is the recognition of the
activity of rendezvous between boats approaching the hatioat is, indeed, a suspicious (or
anomalous) behavior. For this reason, here we want to exiplaidifferences between anomaly
detection and activity recognition approaches.

Anomaly detection techniques can be divided in two diffekemd of approachessignature
andstatisticalanomaly detection. Signature anomaly detection has amadtéist” of anoma-
louspatterns; if an ongoing activity matches a pattern in thet™lian alarm is raised. Activity
recognition models can be used as signature anomaly detett@Archetti, Manfredotti, Mat-
teuci, Messina, & Sorrenti, 2006a), we explained that digigaanomaly detection present a
principal disadvantage: since the set of anomalous patteipased on known anomalies, new
one cannot be discovered. Instead, the objective of Statigtnomaly Detection is to establish
profiles ofnormalactivities: sequences of events that deviate from thedégware considered
anomalous and consequently an alarm is raised. The keyipdirdt the statistical model is an
accurate predictor of normal behavior, so if an ongoingepatis not accurately predicted by
the model, it is likely to be anomalous.

Our purpose is not to develop an anomaly detector systemmiadtavity recognition frame-
work. Itis possible to use our RDBN-based framework to méadetmal”’ behaviors and to use
it as a statistical anomaly detector.

In the next chapter,relations that, in some sense, can alsorsidered “anomalies”. We do
that to show how using FOL relations between objects canamgthe performance of both the
tracking and the activity recognition. Being, our modelgato track more accurately multiple
targets and the relations between them, we have reasondgdtrat it would be a good model
to implement a statistical anomaly detector as well.

A RDBN anomaly detector would be able to take the best of tleeviirlds: as a statistical
anomaly detector it can represent “normal”’ behavior prdisaically; moreover it supports the
behavior modeling of known anomalous activities (that camdpresented as “relations”) as a
signature anomaly detector. An alarm is raised to captwattention of a human operator if
either the belief associated to a known forbidden act is bigifi all allowable, “normal” acts
are associated with low belief (unknown anomaly).
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4.6 Conclusions

In this chapter we presented the challenges associate@atitlity recognition from a practical
perspective. An application for activity recognition isaplex system composed of many lay-
ers: motion detection, tracking and activity recognititself. For each of these, we presented
our approach compared to the state of the art.

The experimental part of this Thesis (Chapter 5) will be dasethese findings.



Chapter 5

Experiments

So come up to the lab and see what'’s on the slab.

Frank in the movie “The Rocky Horror Picture Show”

In this chapter we present the experiments we performedndstrate the effectiveness
of our method.

We evaluate our approach on three synthetic data sets oiplawlbjects moving in different
domains. These agents can perform a variety of actions, sémwaich may require interac-
tion between them. These experimental domains are of pkatimterest because the targets’
behaviors are dependent on some external conditions thdtecenodeled with relations.

In the following we give first an outline of the experiments imtroduce the performance
indicators and discuss our experimental goals. Then wept@s detail each experiment.

5.1 Introduction

In the previous chapter we presented a method that use®nslab improve complex activity
recognition, resulting from agents’ interactions. Adiviletection is performed online while
tracking the state of the domain. The proposed method isdbasehe use of probabilistic
relational models extended to model dynamic domains. Timedoction of RDBNs to model
dynamic domains allows a compact representation of thedywdine use of FOL predicates
allows the representation of the interactions of the agents

This chapter has the goal of presenting the experimentaltsese obtained applying our
approach to different domains. We show how modeling andimgaelations between objects
as well as their state, improves the prediction ability & tlacker and the activity recognition
task.

5.2 Overview of the experiments

We present the results obtained over three data sets arehpteem in an increasing difficulty
order.
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* The first data set deals with three cars moving on a one-wa/ [&he relation between
the targets that we consider i&ingInFront. This relation influences the behavior of
the objects in the following way: when the carthat is in front the cay, slows down, the
cary has to slow down as well. In this case, our relational tradia&ing into account the
relation BeingInFront, predicts their positions more accurately than standairtt ocks,
this leads to an improvement of the performance of the tragki

* In the second data set we consider a crossroad where weaudetitify the cars that are
traveling together (cars that are traveling together areerhkely to have some common
characteristics and follow a common travel pattern). ThevelingT ogether relation is
therefore unknown to the system but can be inferred by |lgpkirthe movements of the
cars.

* In the last data set we consider the automatic surveillagsgeem of a Canadian harbor.
A set of relations Rendezvous, Avoidance, PickUp) model the different activities that
two boats can undertake. All these activities are compos$ghases or sub-activities
(as moving towards the other boat, slowing down, loadingdgpetc.) and timing is an
important dimension. As a result, these activities are ncoraplex than the one seen
before; they require a more complex transition probabihitydel that also depends on the
type of the boats.

In all three experiments we show how the inference aboutdlaions allows us to make
better estimate. In the next section we present the perfarenaetrics that we use.

5.3 Performance metrics

In the experiments below we show a number of statistics Waltiate the performance of our
relational tracker compared to alternative standard teci@s. As we have two complementary

goals (improve positional tracking and identify relatipmge have two families of metrics as
well.

5.3.1 Positional tracking error

In the first family of metrics we consider the ability of thesggm of identifying the right po-
sitions of the target in a period of time. A trajectory (orckais a sequence of positions over
time. A trajectoryl is generally defined as a sequence bfpositions(z;, ;) and correspond-
ing times,t:

[ = {(xtluytmtl)u (xtwytga t2)7 Ty (xtn7ytn7 tn)} (51)

In the computer vision domain, time steps can often assuméx tequal, and measured in
frames. Thust,, may be dropped, as the subscript on the positions can be sakéme, and
Equation 5.1 becomes:
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I = {<x17y1)7 (x27y2>7 e 7(xT7yT>} (52)

i.e.,trajectoryl is a sequence dft,, y;) positions.

Our relational tracking technique makes use of relationseé&son about the positions of
the targets. At each time stefg/(s,) is a probability distribution (particle distribution) dfie
state. When considering the track identification problesiwea need to output a single position,
the best guess is obtained using statistical expectatitimedstate projected on the part relative
to the positions. We define the estimated position of a tddkeget at a given time step
according to a distributiobel(s;) as:

(@4, Ut) = (Ebet[@e]St]s Erer[Ye]Se])s (5.3)

wheres, is the state of the world and:, y;) is the part of the state relative to the position of the
targets. (Epe[7¢]8:], Ever[y:]s:]) are the expected values of the state restricted to its poaiti
values:

M M
1 m] 1 m
(Braalaels), Boalulsil) = (37 > 0™ 57 > u™), (5.4)
m=1 m=1
The track obtained with a RPF is the followikyg
lRPF = {(ilagl)a(i27g2)v"' 7(‘%TagT)}' (55)

We stress that this operation of averaging is only for thgapse of selecting a single can-
didate position (useful if we want to answer the query “whisr¢he target now?”) but the
algorithm continues to propagate the belief distributmthie next step.

Comparison of Trajectories

Consider two trajectorigs' and/”. Let positions on trajectory* bel* = (z;, ;) and positions
on trajectoryl® bel? = (p:, ¢;), for each time step. The distance between the positions at
time stept is given by the Euclidian distance:

A2 18) = (pe — 2)2 + (0 — )2 (5.6)

Let us definei(l4, [”) to be the set of distancei$l/, [Z) between the trajectorly* andi”.
A metric commonly used for tracker evaluation is tineanof these distances (Needham &
Boyle, 2001), (Harville, 2002):

T

pld(E17) = 7 37 dif 1) 5.7)

t=1

wherep gives the average distance of two trajectories over a ogpeiod of time.

IThe definition is the same for the non-relational trackewéser the belief distribution will be different.
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Discrete trajectories The definitions reported so far referred to a domain in whibjects
move in a 2D space. Of course, we can deal with discrete danaainvell (this is the case of
the second data set we consider,¢h@ssroaddomain). In a discrete domain objects move on a
graph, where each node is associated with a lahddelonging to a setD. Then, trajectories
are defined as sequences of the (discrete) ldbel$z,, xo, - - - , x1}, where each; € ID.

Given a particle distribution of a discrete position, ir&teof the expected value of the
position, we compute theode projecting the state of the attributes on the position:

Ty = modepe[¢]Se]. (5.8)

The track obtained with a RPF is given by the sequencg:of

IRPE — L3 &g, 27} (5.9)

To compare two tracks, we have to calculate the distancedegtiheir positions at time
Given two discrete trajectorigd and(”?, let positions ori* bel? = z, and positions oi? be
1B = ¢, for each time step. Since IDs are purely numeric names andoarerderedi(e., 7D,
can be nearer tbD-, than tol D5 in a particular ordainment) we need to consider the adjacenc
graph of the IDs and compute the distance over this graphoifgpate the distance we use the
shortest path algorithnfor Dijkstra algorithm (Sedgewick, 2001)) that returns the length of
the shortest path from a node to another on a given graph.

As before, we defind(“,1?) to be the set of distancek/, [”) between the discrete tra-
jectory 4 and the discrete trajectofyf. The mean distance of the two tracks over a certain
period of time is computed as the entire part of the averalyee\a the distances in that period
of time:

’ﬂ

T
u(d(14, 1)) —Z A1 15) ] (5.10)

Now that we have defined the terminology and introduced thheeot of track or trajectory,
we can formulate the evaluation metric that we use in theakste chapter. The following
metrics apply equivalently to discrete or continuous teack

Tracker evaluation

For the evaluation of the performance of a tracker impleeebly a given algorithn, with
respect to its ability of identifying the right track, we cpare the track (the ground truth) we
want to estimaté = {(z1,v1), (z2,42), - - -, (zr, yr)} with the track generated by the tracker
4 ={(21, %), (&2,7), -, (@7, 97)}. In the following we show three measures of errors.

Filtered error  Thefiltered tracking erroror simply thetracking errormeasures the ability of

a tracker to follow a target. It is computed as the mean of thiadces between the sequence
of the filtered positions (the output trajectory of the tgkand the track we want to estimate.
The tracking error of an algorithm A is:

EY(A) = p(d(i?, D). (5.11)
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Prediction error We also want to consider how the more informative beliefritigtion ob-
tained reasoning with relations improves the predicti@igh{e prediction step). In this case,
we consider the tuplér,, y;) made of the prediction’s estimation, instead of the filtetesdri-
bution:

(Te,9t) = (Epglrelse), By luelse), for the continous case and

Ty = modeg[z4|s¢], for the discrete case. (5.12)

The prediction errorof a given algorithm A is again defined as the mean of the distan
between the sequence of these valiés«{ {7, 7, } or I = {7,}) and the real trajectory;,

EP(A) = p(d(™,1)). (5.13)

It is possible to note that, on averade’; (A) < E7(A), as the filtered distribution incorpo-
rates more evidence.

Tracking error with the most-likely relational assumption The relational state is the vector
combining thestate of the attributeand thestate of the relationsAt each time stepjel(s;)
gives the joint probability of the state of the attributesl &ime state of the relations and our set
of particles is the result of the pairing of different retatiand position values.

The statistical estimation (used in the previously intrmetlierror metrics) takes the belief
distribution and outputs the “average case”, this estiomatan work well in many circum-
stances. However, in some cases a simple average mightmivasatisfactory estimate, or
even an unrealistic result. For example, in a road domagtbst likely value of the relation
might be that a cad is traveling together with a caér however their estimated position might
actually be extremely different. To overcome this problema,consider a metric that estimates
relational values first and then estimates the attribut§saonsidering the particles consistent
with the relation.

This method defines the best guess for the position of a tatgetertain time step condi-
tioned on the most probable value of the relations.

The trajectory obtained by this restriction is the sequeritiee estimation of the probability
distribution represented by the subset of particles obthin the following way: at each time
step we first compute the most probable value (the matheahatadg of the part of the particle
relative to the relations (we call it'); we then extract from the set of all the partictgs! =
(¥l ¢~[™]] only that particles that have their relational part(!) equal toq”. From this
subset of particles we compute, ..., J: .) Of 2., as before:

(it,*ra gt,*r) = (Ebel [xt|st7 QTL Ebel [yt|st7 qTD and
Trar = modepel[i]st,q] - (5.14)

In this way we obtain the sequence of filtered positions:

IBPE = L(%.r, t.4r) } OF €qQuivalently

= (i) (5.15)

ZRPF
*7
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and we can compute’ (RPF) as follows:
EX(RPF) = p(d(7F, 1)) (5.16)

Other metrics Other common statistics provide quantitative informatdaout the distribu-
tion of this errors. In this chapter we will use the mean, tamdard deviation, the minimum
and the maximum values to describe our results. The abotrstgmcan be applied to the set
d(14,15):

» Meanp(d(i, 1)) = L X7 (i, 17)

T

« Standard deviation(d(14, (7)) \/ ST (A2 1B) — p(d(14,18)))?2
o Minimummin(d(4,17)) = the smallest/(/2, [P)

o Maximummaz(d(I*,17)) = the largesti(I, [P)

5.3.2 Relational identification error

With respect to our second main objective,, to identify the relations, we consider the error
relative to the classification induced by our current beligf a particular time step, we are
given the belief distributioel(s;) and we have to associate a value for the grounding of each
binary relation. We consider two alternative ways to do:that

1. Fixing a thresholdbel(s;) assigns a probability to the true value of each relation. To
associate a unique value (true or false) to each predicatéxw threshold/ and assign
the valuetirue if the probability is greater thath, elsefalse.

2. Picking the most probable value: this method chooses thst probable value for each
relation as a representative value for the relations maddale; (this is the “most-likely”
relational assumption that we also considered in the tngokrror we presented in Equa-
tion 5.14). In other worlds, we pick the values that are megtesented by the particles.

We call 74 the resultingnterpretation(with one of these methods) using algorittin The
correct interpretatiod is matched against our guess and we count the mismatchesl Gdse
comparison of guessed and true values genera®es a contingency table that expresses the
correct and false matches between the two sets of intetioretdbased on:

1. true positives]Ny,: the number of guesses confirmed by the correct interpoetati
2. false positivesiNy,: the number of guesses not matched in the correct intetjneta
3. true negativesy,,: the number of guesses rejected (correctly identified asnadthed)

4. false negativelN,: the number of guesses erroneously accepted as a matck, thém
are unmatched in the correct interpretation.
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Correct interpretation
Guessed positive| negative
positive | NNV, Ny,
negative| Ny, Ny,

Table 5.1:2 x 2 contingency table

Name Index
sensitivity Nip/(Nep + Ny
specificity Nin/(Nen + Nyp)
accuracy (Ntn + Ny) /N
positive predictive value N,,/(N,, + Ny,)
false negative rate Nin/(Nip + Npy)
false positive rate Nyp/(Nyp + Nip)
negative predictive value N,/ (N, + Nyy)

Table 5.2: Scoring indexes for a method of identificationhef torrect relation.

In Table 5.2 we report some indexes derived from the compausetween correct and
guessed interpretations:

A graphical tool to evaluate the performance of a classioanethod is th&keceiver Op-
erator CharacteristigROC) curve. The ROC curve is a graphical plot of gensitivityvs
(1—specificity)for a binary classifier system as its discrimination thrégsvaried. It can also
be represented equivalently by plotting the true posii@te ws the false positive rate.

True positive rate determines a classifier performanceassitying positive instances cor-
rectly among all positive samples available during the. téstlse positive rate, on the other
hand, defines how many incorrect positive results occur gnatimegative samples available
during the test.

A ROC spaces defined by false positive rate and true positive rate asdy axes respec-
tively, which depicts relative trade-offs between trueipres and false positive. Each prediction
result represents one point in the ROC space.

The “ideal” prediction that is always correct would yield aiqt in the upper left corner
of coordinate (0,1) of the ROC space, representing 100%tsatys(no false negatives) and
100% specificity (no false positives). The (0,1) point ioatslled the perfect classification.
A completely random guess would give a point along the diagbne (the so-called line of
no-discrimination) from the left bottom to the top right ners.

The diagonal line splits the ROC space in areas of good or laaditication. Points above
the diagonal line indicate good classification results Jevpoints below the line indicate wrong
results.

Our RPF produces probability values representing the degfréelief that the objects are
in relationships. If we discretize the beliefs, settingresnold value, we will determine a point
in the ROC space. Different values of the threshold cornedpo different points in the ROC
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ROC space
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Figure 5.1: The ROC space.

space. Plotting the ROC point for each possible threshdicev@sults in a curve.
At each time step, in the ROC curve we plot the performancauofhethod in identifying
each of the modeled relations.

5.3.3 Experimental Goals
The hypothesis that we want to verify in the experiments laeddllowing:
* Prediction error is lower for the RPF than for a traditioR&: E” (RPF) < ET(PF).

« Filtered tracking error is lower for the RPF than for a ttemial PF: EX (RPF) <
EY(PF) and also using the most-likely relational assumption.

» The performance of our RPF in correctly identifying redais is better than that of an
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alternative rule-based classifier with respect to all thégpmance indicators presented
before.

5.4 Expl: one-way road scenario

Our first domain is composed of three agents moving in a omeasional path, each of them
starting at the same time. We can imagine the data set as bleiamed by a camera recording
the traffic of a one-way road, and we concentrate only on a@uoéthree cars. The camera
records the position of the cars moving behind it. In thiswee®, at a certain time step, the
object that leads the line slows down and therefore the atfpents have to slow down as well.
This experiment is the simplest among the ones we presentargv@ot concerned with
the understanding of what the agents are doing but we focusaoking the positions of the
cars. The relation that influences the behavior of the targ#iis settings is the relation of
BeingInFront that does not change over time. We track the objects in theesedking into
account the relation that exists between them. Our resuitts shat a RDBN is an appropriate
and effective way to model the behavior of an agent: using REBur method predicts the
agent’s position more accurately improving the perforneamfcstandard tracking methods.

5.4.1 Experimental settings

We represent thstate of the attributesf our relational domain at timewith the position £!)
and the velocity«}) of each target:f in the scene.
The three agents move forming a single line, their speedtideterministically known but
it is correlated as the cars behind cannot overtake the ¢eonit This means that by observing
a variation of the speed of the first car, we can often predangar variation on the other cars.
We use alynamic modethat compute$p:, v!] given the state at the previous time step as
the following:

P = pi_+u_dt + 5 d+? and
v = v tadt (5.17)

wherea is a random normally distributed variable that represdméspiossible acceleration of
an agent.

To correlate the prediction done over the system to theioelahat exists between the
targets we let the probability distribution given by thensdion model being represented by
the FOPT reported in Figure 5.2, where the dependenciesbattine position and velocity of
two different targets are explained by the relations thatedst between them given by their
relational structure.

For each targej the probability of its next state is given by a Gaussian itistion with
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position (i,t-1) » position (i,t)
velocity (i,t-1) » velocity (it)
direction (i,t-1) /:direction (i,t)

' SameDirection (i,j,t-1)
: distance (i, t-1)

! Before (j,it-1)

E DecreasingVelocity (j,t-1)

Figure 5.2: The FOPT for the objects moving on a one-way rddmk dependencies between
the states of two different targets are expressed by themesd structure.

meanu; = A1 + a whereA is the matrix:

L0 (1+ g5-)dt 0

a_]on 0 (1 + g7)dt (5.18)
00 1 0
0 0 0 1.

In the matrixA, d; ; is the distance between the targeind another targétin the scene and
is such that:

e if 34 BeingInFront(i,7) holds and its velocity; has decreasedi( ; < v} ,): r =
vi—vp_y

Uti—l )
* otherwiser =0

We can define as the ratio between the deceleration at tinoé the front target and its speed
at timet — 1, we expect the target behind to decelerate as much as tlet tafgont, with the
distance acting as discount factor. It should be noticetttteproposed transition model is
suitable for other kinds of relations like “being on the rifgft” of another target.

As asensor modelve use a model that relates the measuremeptsvith the state of the
attributes £7) using a normal distribution centered in the real positibthe car:

d(z, s2)?
exp{ (21502t)

a 1
p(ze|sy) = N I3 (5.19)

whered(z;, s?) is the Euclidian distance between the measurement anchtieeo§the attributes.
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Results

In this experiments we compare the performance of our RPfatioof a PF algorithm that uses
a transition model that does not take into account relatidie transition model used in the
latter algorithm is a transition model based on the matrixith » always equal t@.

In both cases, the data association algorithm associagechtprediction the nearest mea-
sure obtained (in a certain distance range).

The RPF at each step, for each target, checks if the distaticehe target before is lower
than a given threshold and if the target before slowed dovitheaprevious time step, in that
case it computes the prediction of the next state wdlfferent from0 (refer to Equation 5.18).

45+~

—+— RTM (Relational Transitional Model)
—o— TM (Transitional Model)

= N w
o N 2 w 3 ~
T T T T T T

Mean Error of the Filtered Position

[,
T

1
0 5 10 15 20 25 30 35 40 45 50
Time Step

Figure 5.3: Tracking error for objeétfor each time step, with both methods (number of par-
ticles M = 1000 ando = 1.5 cfr. Equation 5.19). At steps 15, 31 and 33 obj@¢that is in
front object3) slows down. At steps 16, 32 and 34 the RPF correctly expbetagent to slow
down and achieves a better prediction of the trajectori¢isase and the following steps.

The tracking errors of the two methods for one of the threatsga this scenario are shown
in Figure 5.3. Our approach achieves better results withewdo the real position of the agent
than a standard approach. In particular we can notice ttiaedtme steps in which the target
slows down because the target in front slowed down, our ndedohieves good results and
maintains this advantage over the PF method for the follgwieps as well.

We now compare the results considering their tracking emér for those steps in which the
relation BeingInFront is believed to be true and the speed of the car in front hasdsed,
(i.,e.,r # 0 in Equation 5.18). We do that because it is in these casesthratelational
reasoning can give an advantage; while in the other casés,nbethods behave in the same
way. For each of the time steps in whicldiffers from zero, we compute the distance between
the tracked state (i.e, the filtered position given the mesasant) and the true state. When the
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tracks have been completely processed, we compute thegavefrshese distances along each
track obtaining the tracking error. We iterate this prodésstimes for each of the two methods
(RPF and PF) and we calculate the average of the trackingsesver thel 00 iterations at the
end of the simulations. We compare the results for numbendfgbes (/) equal to100 and
1000 and values of the variance of the sensor model ¢crh Equation 5.19) equal t©.3, 0.5,
1,1.5, 2 and3.

Of course, the error for the first target (the car in front ia thne) is comparable between
the two methods because to track it the system would nevaheselational hypothesis. The
average errors for the other two targets are reported ireTal8:

Tracking Error M =100 M = 1000
EY(RPF) | EF(PF) | EF(RPF) | EF(PF)

oc=20.3

Obj2 11.57 19.42 8.23 12.36

Obj3 12.98 20.88 8.32 15.90
oc=20.5

Obj2 6.34 8.50 3.68 4.95

Obj3 6.43 9.52 3.62 5.92
c=1.0

Obj2 5.40 6.18 3.56 4.19

Obj3 5.18 6.09 3.42 4.57
oc=15

Obj2 5.70 6.13 4.25 5.14

Obj3 5.32 6.28 4.15 5.33
=20

Obj2 6.04 6.68 5.42 6.02

Obj3 5.29 6.82 4.94 5.94
oc=3.0

Obj2 6.14 6.91 5.96 6.74

Obj3 5.63 6.86 5.75 6.38

Table 5.3: Tracking error for the two methods, PF and RPHlifterent values otr and M.

In Table 5.3 we can see that in all the cases where the reliatione, the tracking error is
lower for our RPF than for a standard PF.

In terms of execution time, the proposed approach is not mmomeputational demanding
than a standard tracker. In fact given that the two trackasslieen coded in the same way,
using the same data association and the same importancdirgaapproach; the execution
time averaged ovel00 iterations of the two trackers usiri@0 particles is for our RPH.61 s
and the other takds1 seconds less.

We can finally conclude that, in this settings, our method dtasvn to be more effective
in terms of precision of tracking without being more compioiaal demanding than a standard
tracker.
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Figure 5.4: The crossroad where the simulated objects amaltrogether.

5.5 Exp2: identification of vehicles traveling together

The second data set contains positionsl ®fobjects traveling on the crossroad depicted in
Figure 5.4. The crossroad is dividedif cells. From each cell an object can move to one of
then cells in its neighborhodd

Again, we can imagine this data as obtained by a cameraledtadht over the crossroad.
The camera records the position and the color of the cark @@iine noise).

In this scenario, we make the hypothesis that objects careromgether if they are of the
same color (to represent vans of the same company). We alsothahypothesis that if moving
together, two (or more) objects will be always in a cell frorhigh it is possible to reach (one
of ) the other(s) or vice-versa in one time step (“reachgBiikssumption). Consequently, if
moving together the objects will behave similarlye(, if one turns right also the other(s) will
turn).

The relation that influences the behavior of the target isatetion of I'ravellingT ogether
that does not change over time but has to be recognized bystens.

The goal of these experiments is twofold: we want to trackdbgcts in the scene and
recognize online which objects are traveling together.

2n, take different values in order to model different speed
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5.5.1 Experimental settings

We model thestate of the attributesf the relational domain with the position (cell ID) and the
color of each object in the scene:

s¢ = (ID, color). (5.20)

The state of the relationseports, for each object, the list of the objects that aneetiag with
it. Our RPF gives the probability distribution of the staféhee domain at each time step.

An object: in a cell ¢; at time stept can move to one of the cells connected to;,. We
will call this set of cellsN(¢;). When traveling together with an objecthat has moved in;,

i can move from; only to that cells reachable fropnin one time step (for our “reachability”
assumption). Therefore can move only in the cells such that € N(c¢;) N N(c;).

The transition model, representing the distribution of stete at the next time step, has
to be consistent with the reachability assumption. For efssmputation, we establish an
order to all the objectsj(< i) and we process the objects in that order. Sp # : for the
particlem, we first predict the position of the objegtand then we predict the (constrained if
TravelingTogether(i, 7) = true) position of the object.

The probability transition modeWill give equal probability to each cell consistent with the
reachability assumption, conditioned to the value of tHati@n. We denote witlU/ (X), the
uniform distribution assigning the same probability| X | to all elements: € X, and 0 to all
other elements. We now can write:

ol a  r U(N(c;) N N(c; Vj s.t. TravelingTogether(i, j) = true
p(sflsiy, si1) = { UENECz‘g) (€)) ot%erwise 970 (.3) (5.21)
that gives the same probability at each possible cells teaetr by the object at the next time
step.

We relate the measurementg) (with the state of the attributes;() with the followingsensor
model

d(z, s2)?
6.1’]9{ (21502t)

1
zi|sy) = . 5.22
p( t‘ t) \/%0_ } ( )
Where the noise is normally distributed and the distancevdsst the measurement and the
state ((z, s¢)) is computed with the Dijkstra’s algorithm that gives themher of cells that the
object should cross to move from the prediction to the olesksiate.

Results

In our domain, there ares moving objects (with IDs 4, 2, ..., 15). The ground truth (unknown
to the tracking system) is that objects4 and 12 travel together as well as objecisand 7
all other objects travel alone. We compare the trackinggoerdnce of our method with the
performance of a PF that does not take into account relatidaisle 5.4 reports the tracking
error of the two methods with/ = 1000 particles.
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| [E"(PF) | E"(RPF) |

Objects traveling alone

Obj1 4.7 4.6
Obj5 4.6 4.7
Obj6 4.6 2.7
Obj8 1.9 1.5
Obj9 4.6 4.6
Obj10 2.2 2.4
Obj11 3.7 1.3
Obj13 2.0 2.0
Obj14 5.9 5.8
Obj15 1.6 2.2
Objects traveling together

Obj3 5.6 5.2
Ohj7 3.8 3.5
Objects traveling together

Obj2 3.6 3.5
Obj4 2.6 2.5
Obj12 2.7 2.1

Table 5.4: Tracking error for the two methods, PF and RPHjegbpo the cross roads data set.
Objects2, 4 and12 and objects and7 are traveling together.
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ROC curve for the time step 12 (the best for the RPF)
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Figure 5.5: ROC curve to evaluate the performance of our atetlientification of the relation
TravelingTogether at time stepl2. Time stepl2 is the time step of best performance for our
RPF.

ROC curve for the time step 24 (the worst for the RPF)
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Figure 5.6: ROC curve to evaluate the performance of our atetlientification of the relation
TravelingT ogether at time ste4. Time ste@4 is the time step of worst performance for our
RPF.
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ROC curve for the time step 25 (the best for the sliding window method)
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Figure 5.7: ROC curve to evaluate the performance of our ogketlientification of the relation
TravelingTogether at time ste@5. Time ste@5 is the time step of best performance for the
standard moving window approach.

Focusing on the agents that do travel together, we can see®fraachieves a lower tracking
error: for object, 4 and12 and for objects and7 our method gives better resiltg his gain
does not come at the expense of tracking the other agentsttaRBF and PF have comparable
performance.

We compare the relation recognition performance of our RBfraymoving window method
This approach, at each time step, computes the distanced®etwvery couple of objects ()
and gives to the relatiofiravelingT ogether(i, j) the true value if the objects have the same
color and their distance is lower than a given threshold.aliyirt averages this value over a
moving window of10 time steps. At each time step the two methods return the piitlya
distribution of the relation to be true. We plot the ROC cuimesome of the time steps that are
more characteristic. In Figures 5.5 and 5.6 we report the R@e for the steps of best and
worst performance of our RPF compared to the performancheofrtoving window method
at the same time steps. In Figure 5.7 we report the ROC curvinéotwo methods for that
time step in which the moving window reaches its best peréme. The ROC curves have been
drawn for100 values of threshold in the rang 1] and overall it allows us to conclude that RPF
is superior to the sliding window method for the purpose efiifying theTravelingT ogether
relation.

SRemember that, for these results, instead of using the dianlidistance we compute the distance with the
Dijkstra’s algorithm.
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5.6 Exp3: automatic surveillance of a Canadian harbor

The last data set we use is the data set provided for the Ganhudelligent System Challenge
2008-2009 about the surveillance of an harbor.

Canadian government agencies are responsible for margtoaastal activities, and in par-
ticular for detecting any behavior that might indicate thahip represents a security risk or a
risk to break the law. One type of such behavior is when twpstendezvous at sea -an action
that is seldom necessary to meet legitimate commerciattbgs, but that may indicate piracy
or an exchange of contraband goods for delivery to a coaathbh

The goal of the Challenge was that of interpret surveillatata and identify probable inci-
dents of two ships that are either doing:

* A Rendezvous: two ships stop or travel slowly together to exchange goods,

* A Pickup: a larger vessel drops a package into the water that is vecklgdound and
picked up by a smaller vessel.

The data set contains the description of 40 events happend isea. Given the small
number ofPickup activities (only 3 elements) we concentrate here on theaaralis activities.
The contest data includes tracking data for three class&sif

» Cargo Ship: large ships whose job is to travel from one maoatiother in the most efficient
possible way. These typically travel at 17 to 25 knots andsalchange heading.

 Fisher: ships and large boats of varying sizes that trdeellg (3-5 knots) when fishing
and faster (11 to 16 knots) when transiting. These boats magge direction or speed
frequently as part of their normal commercial activities.

* Yacht: the contest’s name for a variety of smaller craft thpically travel up and down
the coast for commerce or pleasure. They may travel at 2Gloranore when weather
permits, and may legitimately change heading more oftem thago ships.

The simulated ships generally follow the well-establistredes of the road” for ships
For the contest, the following simplifying assumptions hasn made:

1. Unambiguous identity: it is always possible to know whsttip to associate with each
contact report

2. No weather effects: sensors and ship dynamics are neotedféy changing weather
3. No other ships: each incident involves only two ships.

The purpose of our experiments is to model the relationsda&tvghips and infer what they
are doing and their path. In the following subsections wesgmeé our results on different type
of models.

“http:/lwww.intelligent-systems-challenge.ca/homedix.html
Sthe “rules of  the road” for ships can be found for example at
http://www.boatsafe.com/nauticalknowhow/boatingregs.html.
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Rendezvous between a Yacht and a Fisher boat
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Figure 5.8: Example of Rendezvous. Of each boat the x and idowie and the coordinate
for the speed are reported.

5.6.1 Experimental settings: Rendezvous between a Fishenéa Yacht

In the data set, for each time interval, only an event is sap@do take place at the sea (see
third assumption in the previous paragraph). Our challengestead, to detect activities in a
multi-target environment. For this reason, we presentigigbction experiments that deal with
couples of events occurring at the same time (i.e. recagndf 2 activities that involve 2 ships
each). In particular for the experiments reported in thidiea we dealt with the problem of
detecting aRendezvous between a Yacht and a Fisher ship. For this reason, we sgligota
the original data set only the events that wdr@idance in general orRendezvous between
a Yacht and a Fisher obtaining 20 events and we build a newsataf 120 elements, each
representing tracks of four ships that can be rendezvowsiagoiding each other.

From this new data set we learnt the prior for the eventdezvous between a Fisher and
a Yacht. The probability of a Fisher and a Yacht to be in refais 33/80. From the data
we observed recurring patterns that characterize theitgesivwe model these in the transition
model so that we are able to make inference and predict tips Sl@havior. An example of
Rendezvous relation between a Yacht and a Fisher ship is given in Figug the two ships
come closer and reduce their speed till they have both nearly speed, differently from a
couple of ships not in relation where one maintains its seebthe other decelerates (Figure
5.9). From Figure 5.8 it is also possible to notice the tlpkases which characterize the
relation: ships approach each other reducing their spetbeé ifirst phase, they travel in the same
direction with nearly-zero speed in the second phase anld/fthay go apart and at least one of
them changes its speed. Our relational transition modebtako account these three different
phases allowing to detect when the event starts and wheishég (that was one of the request
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Avoidance between a Yacht and a Fisher boat
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Figure 5.9: Example of Avoidance.
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Figure 5.10: The FOPT we used to repregenf|sf |, s;_,). At each time step, for each object
it computes the future state given the object’s relationtaedhase.
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distance(x,,, ¥.,)<20
&

(x = Yacht & y = Fisher
or
y = Yacht & x = Fisher)

1
4

Figure 5.11: The FOPT we used to mogéd}|s;_,, s¢). At each time step, for each object it
computes the probability of the object to be in relation (ot) with another object given their
attributes and the distance between them.
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of the Challenge) but also allowing to understand (sinceip san be rendezvousing only
another ship) if two ships can be in relation (if one of thers Blieady finished an encounter
with another ship this is not possible). Sketches ofrtational transition modelsed in our
experiments are given in Figure 5.10 (where the transitiodehfor the state of the attributes
is reported) and in Figure 5.11 (where the transition modeltlie state of the relations is
reported).

Therelational stateof this domain is represented by the position, the speedrantype of
each boats and by the value of the relatitvndezvous between each couple of boats.

Thesensor modek distributed accordingly to a Gaussian distribution eesd on the mea-
surements.

Results

We run the experiments on each of the 120 set of four trackseinata set.

In the central columns of Table 5.5 we report the accuracythagositive/negative pre-
dictive value of our method for th&endezvous detection: we assign to the relation the most
probable value given the particle distribution. In the lesiumns we show the tracking error
of our method (RPF) compared to a method that does not ta@aaount relations (PF). We
report the results divided by number of relations preseoluron R- and number of couple
Yacht-Fish (potentially related) -column Y F- in the exaetdrset of four boats

R Y-F | accuracy pos. predictive value neg. predictive value” (PF) km Ef(RPF) km
2 2 5/8 1 - 4.4138 3.1473
1 2 | 17/20 0/11 8/9 13771 2.9496
1 1 | 23/46 11/12 12/14 3.2874 3.0183
0o 2 23/30 - 1 1.4131 1.4838
0 1 | 125/13 - 1 1.0881 1.0883

Table 5.5: Results are divided by number of rendezvousioektrue in the data (column R)

and number of couple Yacht-Fisher (coloum Y-F). In columi®s AP, TN and FN the number

of True Positive, False Positive, True Negative and Falsgahiee are reported respectively. In
the last two columns the average tracking error for our me{RiPF) and a method that does
not take into account relations (PF) is reported.

5.6.2 Experimental settings: Master-Slave relation

Observing thekendezvous events in the data set we noticed a peculiar characterigheawo
boats involved in an encounter: one plays the rolenakter while the other that oflave In
particular, we focus on the variation of speed of the twodtsgthe master-boat is the one that
first decreases its speed and decides where to stop (or siag ery slowly) and when the
encounter is finished; the slave-boat “imitates” the bebravi the other ship (see Figure 5.8).
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3 ystrend(xy)==T

/

If Xx. phase ==

a“~avoid_distr. T
/ \ If x.phase ==
a* ~ indep_distr.
a’ ~ indep_distr. F

If master(x) == If master %) =
Other phases ...
T F
“ ]fr;e/%%agg mster ~ rend_ph1_master
d VeV th a* ~rend_ph1_slave
If Vht_vhm >th F 0= 0"+1
= T a’ ~ rend_phT_slave If & >n
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Figure 5.12: A possible FOPT for(s¢|s¢ ;, s ;). At each time step, for each object it com-
putes the future state distribution given the object’streta

Different is the case of ships that are avoiding each otlers(hot in relation according to
our model), one maintains its speed and the other deceddisse Figure 5.9).

In this section we present the experimental results obddyeapplying this intuition to all
the original data set. The “role” of the boat (either masteslave) is also unknown. The RPF
considers both hypothesis -every particle makes an assumgiiout which is the master- and
the importance sampling propagates the particles that mhakkypothesis that better explains
the observations.

We used the data set to estimate the prior for the e¥&nidezvous between different
couples of boats and the prior for a boat involved iR@dezvous to be the master-boat.

In these experiments we model the rendezvous activity aegfiases activities (as it is
also possible to notice in the images):

« ships are traveling independently (we call this phase)zero

* then, the master boat decreases its speed and decidestwBtop (.e.,it decides where
the Rendezvous will take place, see time step6 in Figure 5.8)

* in phase two, the slave boat approaches the master (attépefsom1.7 to 2)

* phase three is the period in which the boats are rendezvgiuiey maintain the same
direction and no (or very low) velocity
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« finally, the master boat decides tiindezvous is finished and go apart (we call this
phase four) and both boats start traveling independently.

Our new implementation of the relational transition modé&kis into account these different
phases allowing to detect when the event starts and whenshés and the role of the ships
involved.

We represent the state of the attributes with the positigraGd the velocity €) of each
target in the scene and use a dynamic model that compytes as the following:

1
Pt = Pr—1+ Ve_1dt + §CL dt2
Vp = V41 +a dt, (523)

whereq is a random variable whose distribution depends by the tdigpe, the relation and, if
the relation is true, it depends also by the role played bytject and the phase of the ongoing
activity. We learnt the distribution af from the data set.

Each particle represents the state of the domain: it reptesiee position and the velocity
of all the objects in the scene as well as their relations.hinrelational state we represent
the value of the relation and, if the relation is true, theerof each boat in the scene. When
sampling the particles, we take into account dinger of the objects introduced by the master-
slave relationship to predict the future state of each alpddng into account the relations.
Examples of the FOPTs we used to do that are reported in Figur2 and in Figure 5.13.

3 vys.trend(xy) ==

N

If x.phase > 0 If x. phase > 0
T F
rend(x,y) == rend(x.y) == A model tell us the probability
of x being in rel with y
given the type and

the distance of the 2 boats

A model tell us the probability
of X being in rel with y

given the type and

the distance of the 2 boats

Figure 5.13: An example of FOPT for(s]|s]_,, s?). At each time step, for each object it
computes the probability of the object to be in relation (ot)with another object given their
attributes and the distance between them.
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Results

We ran the experiments on each of the 37 events in the origatalset. We apply PF techniques
with ten thousands patrticles. In Table 5.6 we show the triséipe and true negative rate of our
method for the rendezvous detection (we consider, agaithévalue of the relation the most
probable value, given the particle distribution) compai@@ method that randomly chooses

which boats are in relation.

RPF

random

true positive rate

0.8947

0.4444

false positive rate

0.6111

0.4841

Table 5.6: True positive and true negative rate of our metloochte rendezvous detection
compared to a method that randomly chooses which boats astation.

In Table 5.7, we compare some statistics of the trackingewbour RPF and a standard
method (a PF that does not take into account relations batelgects). We compare the mean

| [EL(RPE) o] [ B (P[]

| all tracks | | |
mean 1.8533 2.1967
max 5.6811 8.1665
min 0.001 0.001
st.dev. 2.3660 2.9716
[ onlyrendezvous | | |
mean 1.6178 2.6356
max 4.0405 10.3366
min 0.001 0.001
st.dev. 2.2077 2.7612
| only correctly detected | |
mean 1.3167 3.1435
max 3.0108 11.2724
min 0.001 0.001
st.dev. 1.6451 2.2069

Table 5.7: Some statistics for the prediction error of the methods: our RPF and a stan-
dard PF for their average tracking error are reported aeerayer all the tracks, over only
the rendezvous tracks and over only that tracks which RPfecity recognizes as rendezvous
activity.

of the errors over time (for our RPF we compute the error aexteover that particles that
recognize the relation as the most probal#¢.}), the minimum and maximum values of the
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errors and its standard deviation (st.dev.). We report ieeadl results for all the tracks and the
result for only the rendezvous tracks and, finally, for ohly tendezvous tracks that our activity
detection system correctly recognizes.

From these Tables 5.7 and 5.6 we can see that:

1. The accuracy of our relational activity recognition nogths better than a simple standard
method.

2. Comparing the tracking error in this Section with the hesseported in the Table of Sec-
tion 5.6.1, we can say that the introduction of the mastereshssumption has increased
the performance of our method, generating better track$attdr exploiting the agents’
behavior.

3. Moreover, the tracking error for the agents whose agtigitorrectly recognized is par-
ticularly low and better than a standard method.

4. The standard deviation of the tracking error of our meibdalver than the one of the PF’s
error, this means that, during time, the error does not véoy @iving the convergence of
the method.

We evaluate the performance of our algorithm on this datavébtthe prediction error as
well. In Table 5.8 we report some statistics for the predicerror of our RPF and a standard
PF:

EF(RPF)[km] | EY(PF)[km)]
mean 2.12457 2.95225
max 6.0.1905 8.27881
min 0.001 0.001
st.dev. 1.6472 2.2087

Table 5.8: Some statistics for the prediction error of the methods: our RPF and a standard
PF.

As we was expecting the prediction error is bigger than theking error. From the Table
we can see that the prediction of our method is more accuratethat of a standard method.

5.7 Execution Time

In terms ofcomputational performan¢eur RPF is not more computational demanding than a
standard tracker. In table 5.9 we report the execution tveesged ovet 00 iterations of our
method (A\¢t(RPF)) and a standard PRA¢ (P F')) for different settings of the number of parti-
cles (M) and number of possible relation8) between the tracked objects. The computational
time increases at the increasing of the number of particidsas the number of objects (two
opposed to four) increases but it doe not increase much osinBPF.
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| M | R| A{RPF) | (At(PF)) |

100 | 1 49s 46s

100 | 2 23.3s 23.2s
1000 | 1 523.6 s 23.1s
1000 | 2 105.7s 104.3 s
10000 | 1 1289 s 127.2's
10000 | 2 2114s 208.1s

Table 5.9: Execution time averaged ouéf iterations of our methodXt¢(RPF')) and a stan-
dard PF (t(PF)).

5.8 Conclusion

In this chapter we presented the experiments we performetides the performance of our
RPF.

We evaluated our approach on three synthetic data sets:r¢heeftords the positions of
some objects moving on a one-lane way, the second recordsoiigon and the color of a
variety of objects that can be moving together or not on astoasl, the last data set records the
position of boats in a Canadian harbor for surveillance pseg.

These experimental domains are of particular interestusecéhe targets’ behaviors are
dependent on some external conditions that can be modeiedelations.

We outlined the experiments and introduced the performartieators at the beginning of
the chapter. For each data set, we presented in detail trexiegnts we carried on and the
results we obtained. Results validate the following hypseist

* Our RDBN based approach is able to model more accuratelgrdi;mdomains where
relations between objects can be interpreted as importa@s ¢or the understanding of
the on-going activities.

» The advantage of our relational tracker is particularlyrmunced when the relations are
correctly identified.

» Our activity recognition system, based on the recogniztations has an accuracy that
overcomes simple methods.

In the next chapter we draw some conclusion and outline satmesf works.






Chapter 6

Conclusion

The present letter is a very long one, simply because | hadisare to make it shorter.

Blaise Pascal.

In this chapter we review the work presented in this Thesg)light our achievements as
well as the limitations of our work; finally, we introduce senmteresting directions we would
like to pursue in the future.

6.1 Contributions and limitations of this work

This Thesis proposed a novel approach to tracking multgigets when the targets are delib-
erative agents that act in proactive ways and interact veith @ther. Modeling the interactions
that the agents can undertake allows the possibility of ntakiference on the agents behaviors,
on the activities they are carrying out and on their role.sTdliows to make predictions about
the next actions given the current belief about the agemisidering the relationships between
them and their activity.

In this work we presented a methodology that model actwdied interconnected behaviors
with relations, that are in turn modeled with first order ajiformulas. The algorithm we
presentedrelational particle filter, is able to make inference with relations, scaling up to €ase
with increasing complexity.

These are our main achievements:

» We extended DBNs with first-order logic formulas definReglational Dynamic Bayesian
Networks(RDBNS)

* We introduced a novel tracking algorithiRelational Particle Filter(RPF) for making
inference on RDBNSs. This algorithm is particularly suiteditack multiple targets that
show some relations in their movements. We showed the maiieahconvergence of the
algorithm: increasing the number of particles, the paetdiktribution becomes closer to
the actual belief (the probability of the state given thegiand all the past observations).
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* We discussed the problem of turning a belief distributittio ian estimation of the agent’s
trajectory and confronted several alternatives: staienasibn with the most likely rela-
tional assumption versus statistical expectation.

* We showed, with simulations, how RPF offers better esenadtthe positions of the
targets, exploiting the knowledge about the relations betwthe agents.

» We showed how it is possible to represent activities witatiens, transforming the activ-
ity recognition task in the problem of tracking these relas over time. We showed that
our tracking algorithm is suitable for this task becauseaintains a belief distribution
over the possible relations.

* We validated our activity recognition system with expegmts, we showed the perfor-
mance of our RPF in two domains: the identification of convioyghe area around a
crossroad and monitoring activities in a Canadian harbor.

The bottom line of this work is that, by making inference atbitne agents behaviors, the
activity that they are undertaking and their role, we can enbé&tter predictions about their
actions. This in turn, once predictions are filtered usingre observations, can be used to
update our belief about the activities and the agents’ roles

We hope that this work will generate a considerable intenetste research community and
that probabilistic relational models will be used in reéé llomains. As one of the main prob-
lems in this community is the lack of common benchmark dathtast beds, the availability of
more data sets could be a great benefit.

While the results are compelling and our formalism is thecaly sound, we acknowl-
edge that more work is needed in order to support the adopticational methods in real life
situations, for example to scale the algorithm to domairk wiarge number (hundreds or thou-
sands) of coexisting agents, triggering an important rebedirection towards fast inference in
RDBNs and approximated methods. Other domains offer éiffechallenges, requiring to tai-
lor the relational model to particular situations. In thetrsection we discuss some interesting
future work that we consider relevant.

6.2 Current and further research directions

A number of research directions naturally arise. Some aglohallenges (see next subsections)
are related to problems that require quantitative advaincée inference algorithm to make it
computationally more efficient (as it would be required bg #daptation to many real life
applications), other require the design of a qualitativetyre complex model (as application of
relational inference to social networks).

Our current work is focusing on applying the presented maddlinference system to more
complex situations like the detection of unattended goadiseomonitoring of a football match
(in which the relation master-slave could be important).réwver, as we shall see, automatic
learning of the transition model is of paramount importance
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6.2.1 Detection of unattended goods

Security has become an important issue in recent years. @uadespread fear of acts of
terrorism, many governing bodies have implemented pdaliofecontrol of public spaces. A
common problem is the detection of unattended goods. Thieitant problem has even at-
tracted the interest of a number of conferences, such &etti@rmance Evaluation of Tracking
and Surveillancevorkshop held in New York in 2006.

The problem of unattended goods detection is more diffitidhtone could think at first
sight. First, in complex and crowded places (and with nogssrs) as train stations or airports
it can be difficult to identify the object in the first place.c8ed, legitimate baggages can often
be left on the floor for a few seconds or even minutes, whiletheer is a few steps away. We
believe that a simple threshold model based on distance wiayark in many cases, giving
several false positives (the person just went a few stepg tsveheck the transit map, or left
the luggage close to a family member) or false negative.

We conjecture that relational modeling and reasoning cahdbgful in this domain: we
could model the relation of “owning” a luggage between a gerand an object; the proba-
bilistic transition model will account that a person ownantuggage will usually carry it in the
hands or even left in the floor close to him for some time. Buibhwome small (non zero) prob-
ability the luggage will be away from him or even be close tmsbody else (maybe a person
traveling with him). In this case, the domain needs to regrethe relations between the people
in the scene (considering who might be a friend of the persongthe luggage) and a RDBNs
based system should reason about which person is more tikélg a friend of the luggage’s
owner and detect if the good has been left unattended or not.

6.2.2 Tracking football players

Our ideas can be applied to the tracking of football play&slations can represent common
game strategies, specific game patterns (as left-wing nady@ass to center, head ball to goal)
and the role of the players. Relations can then represerdriance clues to the understanding
of what is happening in the scene. Moreover, the relatiaster-slaventroduced in the previ-
ous chapter can be an important insight of the model usecdtt txgents in this domain. We
conjecture that this relationship would show to be usefgjiort domains as well. For example,
you can often understand who has the ball only detectingwpliayer has been followed by
the others.

The application of our system to this domain can be imporfianthe development of an
automatic running commentary of a football match and alsatfe labeling of a set of videos
to classify actions of players based on what has happened.

6.2.3 Relational reasoning to support Decision-making

In the future we would like to extend our work tiecision support systemgve would like to
incorporate in our inference environment decisions thatlminfluencedby the observations
and can induce ocausea change in the domain. In this setting, an approach basebeon t
reasoning about relations will be able to make a decisioadas the correlations between the
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objects in the scene and not the conjunction of the singualaries of the objects. Taking into
account relations, we allow the system to see the domain agaall world and not as a set of
agents, the whole community of agents can make more smareasdned decisions.

6.2.4 Tracking robots

The two ideas presented before, tracking players and sugpoision-making, could be inte-
grated to develop a system for the coordination sfreall league RoboCuggam.

The small size robot socceis one of theRoboCupleague divisions that focuses on the
problem of intelligent multi-agent cooperation and cohtroa highly dynamic environment
with a hybrid centralized/distributed system. During thatoh an overhead camera transmits
video to an off-field PC that identifies and tracks the robatsheey move around the field.
Typically the off-field PC also performs the processing iegplifor coordination and control of
the robots.

Our idea is that of using our relational reasoning approad¢itatk the adversaries, detecting
what they are doing and their probable future actions; ia wmy the system can plan better
strategies for the team. We think that the application of teehniques to small size robot
soccer for adversarial modeling can be a very interestimgcaallenging application that can
lead to promising results.

6.2.5 Parameter Learning

Our framework is based on the assumption that a transiticsteir(the probability distribution
of the next state given the current state and the relatismgpidily available. This, however, in
many practical circumstances is not the case.

A research direction of paramount importance for the pcatadoption of relational meth-
ods in the real world is the study and development of algoritisuited to automatically learn
the transition model from data. A number of techniques froatihine learning and statistical
learning could be used for this purpose.

Model uncertainty could be explicitly represented by mgkam hypothesis and revising
it when new observed data does conflict with the current Hg®s. This idea is behind a
technique callecuxiliary particle filter that have been proposed in the literature (McKenna
& Nait-Charif, 2007). In the last months, in our lab, we apdlithe auxiliary particle filter to
financial problem, with interesting results. We hope to edtthis idea to relational models,
implementing an “Auxiliary Relational Particle Filter” Ebto learn the dependency distribution
of the predicates while tracking the objects.

6.2.6 Friends matching and mobile assistants

We consider how to use relations in social networks to carfnends, and notify them about
what the user is doing. The idea is to couple the versatifigogial networks (used as messag-
ing services, micro-blogging, and coordinating evening aatings) with the power of ubig-
uitous computing. Ubiquitous computing allows people tabeays connected and is gaining
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momentum with the widespread adoption of smart phones arsdpa&l assistants as PDAs.

At the moment, we are considering the integration of ourespgnto a tool for PDA called
friend-finder We assume that every user has a GPS integrated on his PDAadrsmone. The
application knows who are your friends and, thanks to the @&$ device is able to locate
himself and can communicate its position to an applicatiat post it on the web (to this end,
the system needs to track the users positions). At this froeemid-findercan locate your friends
and give you a road-map to reach them, accounting for theweshand continuously tracking
the position of each user. Moreover, it is possible thatJewou move to reach a friend another
friend moves as well in a position nearer to you; in this chsesyystem would be able to suggest
you to reach the second friend and together reach the firsi@mat the contrary, if one of your
friends is localized with someone else and the system repegjthat he would prefer to be
alone (by observing their behavior or simply because thegatonteract with other people) it
could suggest you not to reach him.

This system, could also have more serious application dtiaer entertainment. It could be
useful in the future to track people in crowded environmgndi lost children in big places and
also help elderly persons that lost the way home.

6.3 Conclusions

A central aspect of human intelligence is the ability to miaterence using abstract knowledge
in structured environments that contain diverse sets aftagelated to each other in a variety of
ways. Current Artificial Intelligence techniques are famfrmatching the human capabilities of
understanding complex scenes. In fact, when the envirohmm@articularly complex, includ-
ing several distinct entities whose actions might be cateel, automated reasoning becomes
particularly challenging.

In this work we tackle the inference problem in complex damayy combining mathe-
matical logic with probabilistic models. First-order logtan deal with the modelization of
structured environments but it cannot treat uncertaintyti@ other hand, probabilistic models
can deal well with uncertainty in many real-world domaing, ey operate on a propositional
level, and cannot scale to cases where several instancpeeasnt.

Recently a lot of interest has arisen towards approachesniegrate these two types of
models (relational Bayesian networks are an example); butmuch work has been done to
incorporate logical reasoning into dynamic domains; meeeanference in such domains has
been carried on only in propositional terms.

In this Thesis we presented relational dynamic Bayesiawarés, that are an extension of
relational Bayesian networks, able to model correlatemastof different entities in dynamic
domains.

Under noisy observations, an automated reasoner needsessdhe most probable situation
both in terms of individual attributes and relations ocimgiin the scene. At this purpose, in this
Thesis we developed a new algorithm for both inference aaakiing,able to take into account
the structure of the environment and the relations betweewnlbjects modeled by a RDBN.

In several applications, as for example surveillance systé is important to providenline
reasoning, so that the appropriate cause of action can ba taken necessarg.g.,raise an
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alarm). Our inference algorithm, tracking the relationsa@®n objects, is a suitable tool for
the online detection of those activities in which there tefaction between objects.



Appendix A

Basic Concepts in Probability

This Appendix provides basic probabilistic notions uséduinderstand this thesis.

Random Variables

In an uncertain domain, quantities such as sensor measut®radributes’ or relations’ values
are modeled asandom variables Random variables can assume multiple values accordingly
to specificprobabilistic laws

Let X denote a random variable. We denote with specific value thak’ might assume.
If the space of all values that can take on igliscrete we write p(X = z) to denote the
probability that the random variabl€ has valuer. For example in a fair coin flip, the random
variable X can take on the (discrete) values heads or tails with pribab( X = head) =
p(X = tail) = 5

Discrete probabilities sumto on®:_p(X = z) = 1. Probabilities are always non-negative:
p(X =x)>0.

Continuous spaces are characterized by random varialatesath assume continuous values
accordingly to grobability density functiofPDF).

Joint Distribution

Thejoint distributionof two random variableX andY is given byp(z,y) = p(X = z,Y =y),
that describes the probability of the event that the randariakile X takes on the value and
that Y take the value,. If X andY areindependentwe havep(z,y) = p(x)p(y). Often,
random variables carry information about other randomaldess. If we already know that’s
value isy, and we want to know the probability that's value isz conditioned on that fact, we
have to compute(z|y) = p(X = z|Y = y). This probability is callecdonditional probability
and is defined as

p(zly) = o) (A.1)
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If X andY are independent, we have

pply) A2

p(zly) = o)

If X andY are independent; tells us nothing about the value &f.
The unconditional oprior probability associated with a random variable (p(X)) is the
probability accorded to it in the absence of any other infation.

Bayes’ Rule

TheBayes' rulerelates a conditional probability of the typér|y) to the conditional probability
that inverts the random variableandy, p(y|z). The Bayes’ rule states that:

_plylz)p(z)  plylr)p(z) . ,
p(zly) = ) = S p(yle)p(@) in the discrete case, (A.3)
_plylo)p(z)  plylo)p(x) . ,
p(zly) = o) = fp(y|x’)p(x’)dx’ in the continuous case. (A.4)

If = is a quantity that we would like to infer from, y is called thedata (e.g.,a sensor mea-
surement). The distributiop(x) summarizes the knowledge we have regardingrior to in-
corporate the data The probabilityp(x|y) is called theposterior probability distributiorover
X. Bayes’ rule provides a convenient way to compute a postefigy) using the “inverse”
conditional probabilityp(y|z) along with the prior probability(z).

The denominator of Bayes' rujgy) does not depend on Thus, the factop(y)~* will be
the same for any value in the posteriop(x|y). For this reasonp(y)~! is often written as a
normalizer in Bayes’ rule variable, we will denote it witretkettera: p(x|y) = ap(y|x)p(z).

Marginalization

When we need to extract the distribution over some subsedridhbles or a single variable, we
need tomarginalizeor sum out the variables other than the variables of intefidst marginal-
ization rule for any sets of variablés andY is given by:

p(X) =) p(X,y). (A5)

The distribution overX can be obtained by summing out all the other variables froynaint
distribution containingX .

A variant of this rule is calledonditioningand it involves conditional probabilities instead
of joint probabilities, using the product rules:

p(X) =" p(X[y)p(y). (A.6)
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That is thetheorem of total probabilitythat says that(x) = >, p(z[y)p(y), in the discrete
case angh(z) = [ p(z|y)p(y)dy, in the continuous case.

We can be interested in computiegnditional probabilities of some variables given evi-
dence (or observation) about others. Letbe thequery variable(i.e., the variables we are
interested in computing the conditional probability o8t be the evidence we are given and
Y the remaining unobserved variables:

p(Xle) =a) p(X,ey) (A7)

Y

where the summation is over all possible combinations afes) of the unobserved variablé
and together the variables, F, andY” constitute the complete set of variables for the domain.

Conditional Independence

Any of the rules discussed so far can be conditioned on argitandom variables, such as the
variableZ. For example, conditioning Bayes’ rule ¢h= z gives us:

pP\y\xr, 2)p\r|\z
plaly, z) = ]2, 2)plelz) (A.8)
p(ylz)

Similarly, we can condition the rule for combining probdi®k of independent random vari-
ables on other variables p(x,y|z) = p(z|z)p(y|z). Such a relation is known aonditional
independence

It is worth to note that conditional independence is eqentto: p(x|z) = p(z|z,y) and to
p(ylz) = p(ylz, 2y).

Conditional independence does not imply independenceigha

p(x,y|z) = p(x|2)p(y|2) # p(z,y) = p(z)p(y); (A.9)

and absolute independence does not imply conditional evdgnce:

p(x,y) = p(x)p(y) # p(z,y|2) = p(z|2)p(y|2). (A.10)

Chain Rule

Another very useful rule in probability theory is called tttein rule The chain rule computes
joint probabilities from conditional probabilities: cader three random variabled], Y, 7, the
chain rule claims:

p(x,y,2) = p(zly, 2)p(yl2)p(2). (A.11)
If we expand out the conditional probabilities with theifidégions, we get
p(@,y,2) p(y, 2)
T,Y,2) = z), A.12
Pz 4, 2) p(y,z) p(z) ) (A.12)

when written this way, we see that each terms numerator tsatheeprevious terms denomina-
tor, leaving us with a simple expression thét, y, z) equals itself. The chain rule is important
when one have to estimate the probability distributionsegjugnces of data.
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Normal Distribution

An example of density function is that of the one-dimensiarmamal distributionwith meanu
and variance?. The PDF of a normal distribution is given by the followi@gussiarfunction:

(@) = (2r0t) beap(—2 L0 (A13)

that assumes to be a scalar value. Often,will be a multi-dimensional vector. Normal distri-
butions over vectors are calledultivariate Multivariate normal distributions are characterized
by density functions of the following form:

plr) = det(2mo) beap{~3(x — p) "= — )}, (A.14)

where:
* 1 is the mean vector and
e = a positive semi-definite and symmetric matrix called theac@nce matrix.

Equation A.14 and Equation A.13 are equivalent whes a scalar value angl = o2.
Equations A.13 and A.14 are examples of PDFs. As discreteghibty distributions always
sum up to 1, PDFs integrate to 1:

/p(x)dx =1. (A.15)
Unlike a discrete probability, the value of a PDF is not upgpaunded by 1.

Expectation and Covariance

The expectatiorof a random variable&X is given by: E[X] = > xp(x) for discrete cases and
E[X] = [xp(x)dx for continuous cases. The expectation is a linear functiom @ndom
variable:E[aX + b] = aE[X] + b.

The covarianceof X is obtained a€ov[X]| = F[X — E[X]* = E[X?] — E[X]?. The
covariance measures the squared expected deviation fermehn.



Appendix B
RBNs subsume PRMs

As discussed in Chapter 2, PRMs (Koller, 1999) can also bd tsenodel uncertainty in a
relational domain. However they are based on frame-bassdrag, and inherit the limitations
of the latter.

After presenting in more detail PRMs, in this Appendix wewhiobat RBNs subsume PRMs.

B.1 Probabilistic Relational Models

Probabilistic Relational Models (Koller, 1999)(from nowey K-PRMs!) are the extension to
relational domain of Probabilistic Models (PM), they siigaijoint distribution over a relational
domain.

A schemdor a K-PRM describes a set of classes, for each class itbatis and the set of
relations between them. A K-PRM defines a probability distiion over the possible instances
of a given schema. It can be thought as a PM which defines trendepcy model at the class
level, allowing it to be used for any object in the class arat #ixplicitly uses the relational
structure of the model. In particular, it allows the PM of @mibute to depend also on attributes
of related objects.

The sequence of relationships that permits to an attritutdepend by another one of a
different class is calledlot chain A slot chainC'.7 represents the sequence of objects that are
T-relatives of an attribute{. A) of the clas<’.

In (Getoor, Friedman, Koller, & Pfeffer, 2001) the conceptaational schemandrela-
tional skeletorare introduced. A relational skeleton for a relational sches a partial spec-
ification (instantiation) of the schema: it specifies theeglg involved in the schema and the
relations between them. In (Getoor et al., 2001) Getn@d.,define a K-PRM as the RBN that
specifies the probability distribution over particulartargtiations of a given skeleton: for each
schema there are more skeletons, for each skeleton theneoaeecompletionsife., complete
instantiations). A K-PRM induces a distribution over imgtas that complete the skeleton.

The structure of a K-PRM is defined by associating to eaclbate a set of formal parents
that will be instantiated in different ways for differentrétutes. There are two types of formal

We will call K-PRM the PRMs presented in (Friedman et al., 1999) to differamtiaem from the more
general PRMs of which RBNs are a sub-class.
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parents:

» Parents of an attribute that are attributes of the samephjethis case the same condi-
tional probabilistic model is applied to every connectitild:parent.

» Parents of an attribute that are attributes of differeas€lrelated through a slot chain.

For the objects part of the slot chaihr we must specify the probabilistic dependence of
C.Aonthe multisef K.B : K € C.7}. This dependence poses a representation problem: we
need to specify the distribution éf. A given a multi set of values of unknown size. This issue
is addressed introducing the notionagfgregation

B.1.1 Aggregation

To represent the conditional probabilistic model of a caioa child-parents in which child
and parents are attributes of two different classes in K-BRNMaggregatiorof the values of the
parents is used. The dependenc€ofl on C.7.B is interpreted as a probabilistic dependence
of C.A on some (deterministically computed) “aggregate propesfythe multi set of these
parents.

For each node, the set of parents is divided with respectet@ldss and the mean of the
values of each object in that class computed treating eatte @btained values as an “artificial”
value of a “super-parent” of the considered node. The setddpeters associated with the
qualitative structure is represented by a CPTs for eactbatitr of each class; this parameters
are shared by each objects in the class.

B.2 RBNSs subsume K-PRMs

Theorem 1 For each K-PRM representing a probability distribution oerelational domain
there is an RBN representing the same distribution.

Proof 1 We will first convert the attribute and the reference slota K-PRM to predicates of a
RBN, then add the corresponding edges to indicate the pacdrat node, and finally prove that
this does not lead to a cycle and the CPT can be converted toRAIFO

Each attributeC'. A in a K-PRM can be seen as a FOL predicate, wh€rés the object
class name andl is the predicate name. {f" A has a parent of the forrd’. B in the relational
schema, theld'. A hasC.B as parent. IfC. A has a parent of the form(C.7.B) wherer is a
slot chain andy an aggregation function, then all the predicates correspog to the attributes
in the slot chain are parents @f. A.

We now show that if the initial K-PRM is legald., without cycles) then the RBN obtained
above is also legal.

To prove this, we first consider the set of all certain slotshie K-PRM {.e., slots whose
values are already known). In the RBN, the predicates cpoeding to these are certain and
these predicates can be given higher priority than any ofdtieer predicates. The relative
ordering of the predicates themselves does not matter.Heordst of the predicates we define a
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relative ordering as follows: if any predicate appears asaagnt of some other predicate, the
parent predicate is given a higher priority.

We have to prove that the relative ordering defined abovensistentj.e., if we consider
the RBN graph there is no cycle among the predicates. We slbyicontradiction.

Assume that there is a cycle corresponding to predic&es- - , Ry, i.e., R; is a parent of
R;_1 and R, is a parent ofR,. Any predicate which has known values cannot appear in the
cycle. If the cycle consists of only predicates which cqoesl to simple attributes, we can see
that there will be a cycle among the attributes in the K-PRKker€fore, the cycle must involve
predicates which correspond to reference slots (that ardenown). We will assume that all
the predicates in the cycle correspond to reference slotspave that the K-PRM is illegal,
leading to a contradiction. The case where some of the pa¢eksan the cycle might correspond
to simple attributes can be ruled out similarly. L&t p; be the reference slot corresponding to
the predicateR;. SinceR; is a parent ofR; _; eitherC;.p; is a parent ol’;_;.p;_; in the K-PRM
or C;.p; appears in the slot chain such thatC;_;.7.B is a parent ofC;_;.p;_;. In both these
cases there is an edge in the K-PRM frafp; to C;_;.p;_,. Hence, we can see that a cycle
among the predicates corresponds to a cycle among the referslots in the K-PRM. This
implies that the K-PRM is illegal, leading to a contradiatio

Finally, we have to prove that the CPT in a PRM can be convadedFOPT in an RBN. It
is easy to think that any row of a CPT in the K-PRM is equivalera FOL expression that can
be expressed in terms of FOPT.

There are several advantages in using RBNs instead of K-PRMs

* RBNSs generalize K-PRMs by providing a more powerful langpiaecause based on FOL
instead of frame-based systems.

* In K-PRMs, parents of a predicate are obtained by travgreirains of reference slots
(i.e., conjunctive expressions) in RBNs, instead, parents canbbened via any FOL
constraint. However, for the same reason, learning K-PR\Mssier.

* Modelingn-ary relationships using K-PRMs requires to break them lomary relation-
ships, while with RBNs it is possible to model them directiposing a proper conditional
probability model (since the definition of RBNs is not coasted to the use of FOPTS).

* In K-PRMs the set of parents and the conditional modelspeeied using a big CPT. In
RBNs, the parents and the conditional model are specifieylDPTs which can take
advantage of context-specific independencies to reduae spguirements and possible
speed up inference.
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