
A non-stationary uniform tension controlled

interpolating 4-point scheme

reproducing conics

C. Beccari a, G. Casciola b, L. Romani b,∗

aDepartment of Pure and Applied Mathematics, University of Padova,
Via G. Belzoni 7, 35131 Padova, Italy

bDepartment of Mathematics, University of Bologna,
P.zza di Porta San Donato 5, 40127 Bologna, Italy

Abstract

In this paper we propose a non-stationary C1-continuous interpolating 4-point
scheme which provides users with a single tension parameter that can be either
arbitrarily increased, to tighten the limit curve towards the piecewise linear in-
terpolant between the data points, or appropriately chosen in order to represent
elements of the linear spaces spanned respectively by the functions {1, x, x2, x3},
{1, x, esx, e−sx} and {1, x, eisx, e−isx}. As a consequence, for special values of the
tension parameter, such a scheme will be capable of reproducing all conic sections
exactly.
Exploiting the reproduction property of the scheme, we derive an algorithm that

automatically provides the initial tension parameter required to exactly reproduce
a curve belonging to one of the previously mentioned spaces, whenever the initial
data are uniformly sampled on it.
The performance of the scheme is illustrated by a number of examples that show

the wide variety of effects we can achieve in correspondence of different tension
values.

Key words: Subdivision; Interpolation; Curves; Locality; Tension control; Conics
reproduction

∗ Corresponding author.
Email addresses: beccari@dm.unibo.it (C. Beccari), casciola@dm.unibo.it

(G. Casciola), romani@dm.unibo.it (L. Romani).

1 Introduction

Subdivision is an efficient method for generating smooth curves and surfaces in Com-

puter Aided Geometric Design (CAGD). A univariate subdivision process defines

a curve as the limit of a sequence of refinements performed on an initial polyline.

If the points generated at each refinement level are retained at all successive lev-

els, the scheme is said to be interpolatory (Dyn, 2002). The important schemes for

applications should allow to control the shape of the limit curve and be capable

of reproducing families of curves widely used in Computer Graphics, such as conic

sections and polynomials. Although a wide variety of schemes has been proposed

in the literature, the difficulty of combining the above requirements prevented the

diffusion of interpolatory schemes in applications. Indeed, the schemes proposed up

to now either possess a tension parameter to control the tightness of the limit curve

(Dyn et al., 1987; Dyn et al., 2005) or are able to reproduce circles (Zhang, 1996;

Ivrissimtzis et al., 2002; Jena et al., 2003) and generate conic sections (Dyn et al.,

2003). However, none of them possesses an intuitive shape parameter that, gradually

increased, allows to increase the tightness of the limit curve and for special values

associated with the initial data, allows to represent all conic sections exactly. The

only one which possesses a tension parameter that, appropriately chosen, allows to

reproduce circles as well, is the non-stationary scheme presented in Morin et al.

(2001). Anyway, this is not interpolatory. Aim of this work is therefore to generate

an interpolatory subdivision scheme with a tension parameter, that is capable of

reproducing circles and all other conic sections exactly whenever such a parameter

has been chosen correctly.

The paper is structured as follows. In Section 2 we derive a C1-continuous subdi-

vision scheme which allows us to represent cubic polynomials as well as a certain

class of hyperbolic and trigonometric functions, related to the definition of conic

sections. Next, in Section 3, we show its special property of conics reproduction and

we derive an algorithm that automatically provides the initial tension parameter

required to exactly reproduce a curve belonging to one of the previously mentioned

families, whenever the initial data are uniformly sampled on it. In Section 4 we pro-

pose an endpoint rule for generating open curves with the same regularity. Finally

in Section 5 we demonstrate the role of the tension parameter by a few examples.

2 Definition of the scheme

In this section we are going to define an interpolating 4-point scheme that captures

three different curve schemes which are capable of representing elements in the class

of cubic polynomials, hyperbolic functions and trigonometric functions.

For the sake of conciseness, in the remainder of this paper we will indicate with V0, Vs

and Vis the spaces spanned respectively by the functions {1, x, x2, x3}, {1, x, esx, e−sx}
and {1, x, eisx, e−isx}.

2

Observe that, depending on the value of t2 (where t is either a positive real or imag-

inary constant), the solutions of the differential equation D4 · −t2D2· = 0 are linear

combinations of the functions in V0 (whenever t = 0), Vs (whenever t = s, s > 0)

or Vis (whenever t = is, s > 0). Hence, due to the identities

cosh(sx) = 1
2(e

sx + e−sx), sinh(sx) = 1
2(e

sx − e−sx),

cos(sx) = 1
2(e

isx + e−isx), sin(sx) = 1
2i(e

isx − e−isx),

the common insertion rule which unifies the three cases will be obtained by in-

terpolation with a function from the linear space spanned by {1, x, etx, e−tx}. In
particular, whenever t = 0 such an insertion rule will reproduce cubic polynomials,

whenever t = s > 0 it will reproduce hyperbolic functions and whenever t = is,

s > 0, it will reproduce trigonometric functions. In this way, interpolating the data

(2−kh, pkj+h), h = −1, 0, 1, 2, by a function of the form

f(x) = a0 + a1x+ a2e
tx + a3e

−tx, (1)

we get the following system of equations

f(− 1
2k
) = pkj−1

f(0) = pkj

f(1
2k
) = pkj+1

f(1
2k−1) = pkj+2

from which it follows

pkj−1 = a0 − a1
1
2k

+ a2 e
− t

2k + a3 e
t

2k

pkj = a0 + a2 + a3

pkj+1 = a0 + a1
1
2k

+ a2 e
t

2k + a3 e
− t

2k

pkj+2 = a0 + a1
1

2k−1 + a2 e
t

2k−1 + a3 e
− t

2k−1 .

(2)

Then, solving (2) with respect to a0, a1, a2, a3, we get for any t ̸= 0 and, whenever

t = is, for any s not a multiple of π, the following expression for the coefficients in

(1):

a0 =

(
e
− t

2k + e
t

2k

)
pkj − pkj−1 − pkj+1

e
− t

2k + e
t

2k − 2

3

a1 = 2k

(
e
− t

2k + e
t

2k + 1
)
(pkj+1 − pkj) + pkj−1 − pkj+2

e
− t

2k + e
t

2k − 2

a2 =

(
e
− t

2k + e
t

2k − 2
)
(−pkj + 2pkj+1 − pkj+2) +

(
e
− t

2k − 1
)2

(pkj−1 − 2pkj + pkj+1)(
e
− t

2k − e
t

2k

) (
e
− t

2k + e
t

2k − 2
)2

a3 =

(
e
− t

2k + e
t

2k − 2
)
(pkj − 2pkj+1 + pkj+2)−

(
e

t

2k − 1
)2

(pkj−1 − 2pkj + pkj+1)(
e
− t

2k − e
t

2k

) (
e
− t

2k + e
t

2k − 2
)2 .

To get the insertion rule now, we only need to compute the value of the interpola-

ting function f(x) at the grid point 1
2k+1 , defining the new point pk

j+ 1
2

as a linear

combination of the four consecutive points pkj−1, p
k
j , p

k
j+1, p

k
j+2 in the last set:

f

(
1

2k+1

)
=

1
2
+

1

2
(
e

t

2k+1 + e
− t

2k+1

) (
e

t

2k+1 + e
− t

2k+1 + 2
)
 (pkj + pkj+1)

− 1

2
(
e

t

2k+1 + e
− t

2k+1

) (
e

t

2k+1 + e
− t

2k+1 + 2
) (pkj−1 + pkj+2) ≡ pk

j+ 1
2
.

In this way we will define the set of points at the (k + 1)-th level of refinement, as:

pk+1
2j = pkj (3)

pk+1
2j+1 = pk

j+ 1
2
=

(
1

2
+ wk+1

)
(pkj + pkj+1)− wk+1 (pkj−1 + pkj+2)

where

wk+1 =
1

2
(
e

t

2k+1 + e
− t

2k+1

) (
e

t

2k+1 + e
− t

2k+1 + 2
) . (4)

Remark 1 The subdivision scheme defined in (3)-(4) turns out to be a special case

of the general exponential reproducing schemes proposed by Dyn et al. (2003). Note

that when t = 0 the weight wk+1 is well-defined and turns out to be 1
16 , in such a way

that the subdivision rules (3) reduce to the 4-point Dubuc-Deslauriers insertion rules

(Dubuc, 1986; Deslauriers and Dubuc, 1989), which reproduce cubic polynomials.

This is due to the fact that, for t = 0, the solutions of the differential equation

D4 · −t2D2· = 0 are exactly cubic polynomials.

4

Proposition 2 Let tk = t
2k
, where whenever t = is, we assume s ∈ (0, π), and

define

vk =
1

2
(etk + e−tk). (5)

Then for any k ≥ 0 the parameters vk and vk+1 defined as in (5) satisfy the recur-

rence

vk+1 =

√
1 + vk

2
. (6)

PROOF. Equation (6) follows from the fact that√
1+vk

2 = 1
2

√
2 + etk + e−tk = 1

2

(
e

tk
2 + e−

tk
2

)
= 1

2

(
etk+1 + e−tk+1

)
= vk+1. �

Remark 3 Note that the recurrence relation defined in (6) satisfies the property

lim
k→+∞

vk = 1.

We now express the weights in (3) in terms of vk+1 so that, given any arbitrary

tension value v0 in (−1,+∞), and exploiting (6) to update it at each refinement

level, we can generate an interpolating limit curve whose shape is easily controlled

by the choice of v0.

Definition 4 Given a set of control points P 0 = {p0j | j ∈ Z} at refinement level 0

and an arbitrary initial tension parameter v0 ∈ (−1,+∞), we define a subdivision

scheme that generates a new set of control points P k+1 = {pk+1
j | j ∈ Z}k≥0 at the

(k + 1)-th level of refinement, by the subdivision rules (3) with weight

wk+1 =
1

8vk+1(1 + vk+1)
, k ≥ 0, (7)

where for any k ≥ 0 the sequence vk+1 in (7) is recursively defined through equation

(6).

Note that for any choice of the initial tension value v0 in the range (−1,+∞), the

recurrence in (6) is always well-defined and vk+1 > 0 for any k ≥ 0. Furthermore

limk→+∞ wk = 1
16 .

Remark 5 The subdivision scheme defined in (3)-(7) generates C1-continuous limit

curves for any choice of the initial tension parameter v0 ∈ (−1,+∞). This follows

from the convergence analysis results in Dyn and Levin (1995), as explained for the

general exponentials reproducing schemes proposed in Dyn et al. (2003).

5

3 Reproduction of conic sections

In the first part of this section we are going to show that, choosing correctly the

initial tension parameter v0, the subdivision scheme defined in (3)-(7) allows to

reproduce the classes of cubic polynomials, hyperbolic functions and trigonome-

tric functions identified respectively by the spaces V0, Vs and Vis. Successively, in

subsection 3.2, we will illustrate a procedure that allows to automatically compute

the special tension value required to reproduce curves from the above three classes

whenever the initial points are uniformly sampled on them.

3.1 The initial tension parameters for conics reproduction

Observe that, defining v0 as in (5), that is v0 = 1
2(e

t + e−t), and assuming t = 0,

t = s (with s > 0) and t = is (with s ∈ (0, π)), we get respectively:

• v0 = 1, hence vk = 1 and wk = 1
16 for all k ≥ 1;

• v0 = cosh(s) > 1, hence vk = cosh(s
2k
) and wk = 1

16 cosh
(

s

2k

)
cosh2

(
s

2k+1

) for all

k ≥ 1;

• v0 = cos(s) ∈ (−1, 1), hence vk = cos(s
2k
) and wk = 1

16 cos
(

s

2k

)
cos2

(
s

2k+1

) for all

k ≥ 1 (thus the scheme in (3)-(7) coincides with the interpolating 4-point scheme

on the circle presented in Ivrissimtzis et al. (2002)).

In this way, starting from a set of points uniformly sampled on a function in V0, Vs

or Vis the value of the parameter v0 identifies the space to which the limit function

generated by the scheme belongs. More precisely,

• if v0 = 1, then the limit curve belongs to V0, namely the linear space spanned by

cubic polynomials;

• if v0 > 1 then v0 = cosh(s) for some s ∈ R+, hence the limit curve belongs to Vs

with s = acosh(v0);

• if v0 ∈ (−1, 1) then v0 = cos(s) for some s ∈ (0, π), hence the limit curve belongs

to Vis with s = acos(v0).

As a consequence, the following result holds.

Proposition 6 Choosing the initial tension parameter v0 = cosh(su), s, u > 0,

the subdivision scheme defined in (3)-(7) reproduces exactly the hyperbolic functions

f(x) = cosh(sx) and f(x) = sinh(sx) whenever the given data points (ju, p0j), j ∈ Z
lie on such functions.

Analogously, choosing the initial tension parameter v0 = cos(su), su ∈ (0, π), the

subdivision scheme defined in (3)-(7) reproduces exactly the trigonometric functions

f(x) = cos(sx) and f(x) = sin(sx) whenever the given data points (ju, p0j), j ∈ Z

6

lie on such functions.

PROOF. The result above follows from the construction of the scheme. �

Corollary 7 By taking as initial data the points p0j = (a cosh(ju), b sinh(ju)), j ∈
Z, u > 0, equidistant in the parameter u on the parametric representation of the

hyperbola, and choosing the initial tension parameter v0 = cosh(u), the resulting

limit curve is the hyperbola itself (see Fig.2 where a = b = u = 1).

Analogously, if we take as initial data four points p0j = (a cos(ju), b sin(ju)), j ∈ Z,
u ∈ (0, π), equidistant in the parameter u on the parametric representation of the

ellipse with center 0 and radii a, b, by choosing the initial tension parameter v0 =

cos(u), the resulting limit curve is exactly the ellipse itself (see Fig.2 where a = 4,

b = 2, u = π
2). In particular, when a = b, the resulting limit curve is exactly the

circle of radius a (see Fig.5 where a = b = 1, u = π
2).

Fig. 1. Reproduction of hyperbolic and trigonometric functions: f(x) = cosh(x),
f(x) = sinh(x), f(x) = cos(x), f(x) = sin(x).

Fig. 2. Reproduction of conic sections: hyperbola, ellipse, parabola.

Remark 8 Figs. 1-2 have been obtained by extending uniformly on each side the

open control polygon P 0 = {p0j | j = 0, ..., 4} by two extra segments whose endpoints

lie on the curve. Whenever two auxiliary points have been defined for each endpoint,

we can deal with open polygons leaving the subdivision rules (3)-(7) unmodified. In

this way the open curve generated in the limit through (3)-(7) with j = −2, ..., 6,

trivially turns out to have p00 as first endpoint and p04 as the last one (see Section

4).

3.2 Automatical computation of the initial tension parameter

In this subsection we are going to derive an algorithm that, starting by a sufficient

number of equally-spaced data, is capable to automatically compute the initial ten-

7

sion parameter v0 such that, if the initial points are sampled from a curve belonging

to one of the spaces V0, Vs or Vis, by applying the scheme defined by (3)-(7) with

the so computed tension, we will be able to reproduce the curve from which those

points are sampled.

The following algorithm provides a brief sketch of the procedure one could exploit

in order to compute the value of the tension parameter that should be used to

reproduce a curve belonging to one of the above three spaces, whether the initial

points belong to it.

Algorithm in pseudo-code:

[1] Consider an initial set of equally-spaced points {ju, pj}j=0,...,2n

(n > 4) for some positive u

[2] for j = 1, ..., n− 2

[2.1] consider the quadruple of even-indexed points

p2j−2, p2j , p2j+2, p2j+4

[2.2] determine wj by solving componentwise the equation given by

p2j+1 =
p2j + p2j+2

2
+ wj

(
p2j + p2j+2

2
− p2j−2 + p2j+4

2

)
(8)

[2.3] if (8) has no solution (wj,x ̸= wj,y)

stop: the initial set of points belongs to none of the

specified classes

else

store the value of wj

[3] compare the values of wj obtained for all j in the previous step:

if wj = w, ∀j = 1, ..., n− 2

[3.1] compute the tension parameter v0 =

√
2w(2w+1)

4w − 1
2

else

the initial set of points belongs to none of the specified

curve types

The proposed procedure does not require to know a priori whether the initial points

lie on a curve of a prescribed space. Moreover, by step 3, it is clear that, if it does

not stop before, this method can come successfully to an end only when all the

coefficients wj stored at step 2.3 have the same value. This is always true if the

initial points are sampled from a curve either in V0, Vs or Vis, and, if this is the

case, the algorithm allows to determine the tension v0 necessary to reproduce the

given curve. In particular, when the initial data belong either to Vs or Vis, such a

tension value uniquely identifies the corresponding space through the parameter s

defined as s = acosh(v0)
u or s = acos(v0)

u respectively.

On the other hand, by applying the proposed algorithm to points that belong to

a curve of none of these spaces, the procedure could eventually yield a value of

tension, even so, by applying the proposed scheme with such a tension, it is not

8

possible to predict anything about what kind of curve we will get.

Remark 9 Taking a look at step 3. it is clear that, in order to possess all the initial

data necessary for the computation described at this stage of the procedure, we need

to produce at least two weights to compare. To this aim, we need to start from a

minimal number of nine initial points. This is due to the fact that the described

algorithm cannot be applied to compute the points p1 and pn−2, since we do not

possess a well defined two-neighborhood around these points.

4 A subdivision rule for curve endpoints

In case of open curves, rules (3)-(7) can be applied only on the interior of the

curve, while for the endpoints we should include an alternative rule. Since the two

endpoints can be treated analogously, it will be sufficient to address our attention

only on one side.

To this aim we observe that, if we define just two auxiliary points p0−2, p0−1 in

the coarsest polygon P 0 = {p0j | j = 0, ..., n}, each new point pk+1
2j+1 has a well-

defined 2-neighborhood and the open curve generated in the limit through (3)-(7)

with j = −1, ..., n trivially turns out to have p00 as first endpoint and to be C1-

continuous.

However, the extension of this strategy to surface subdivision, implies the definition

of two rings of points around the boundary control net. Thus, to avoid so many

computations when subdividing the first edge pk0, p
k
1, we propose here a special rule

for computing the point pk+1
1 independently of the two auxiliary points p0−2, p

0
−1;

as said above, to work out the endpoint rule for the last edge, it will be sufficient

to proceed analogously.

Let pk0, p
k
1 be the first edge of the non-refined polygon P k = {pkj | j = 0, ..., 2kn}.

Once defined an auxiliary point pk−1, we can compute the point pk+1
1 through (3)-(7)

with j = 0, applying subdivision to the subpolygon pk−1, p
k
0, p

k
1, p

k
2.

We choose here the following extrapolatory rule:

pk−1 = 2pk0 − pk1 (9)

since the three curve schemes (corresponding to the cubic, the hyperbolic and the

trigonometric cases) are all capable of representing linear functions. In this way

the additional refinement rule for the endpoint can be expressed as the following

stationary linear combination of points from the non-extrapolated open polygon pk0,

pk1, p
k
2:

pk+1
1 =

(
1

2
− wk+1

)
pk0 +

(
1

2
+ 2wk+1

)
pk1 − wk+1pk2. (10)

Proposition 10 Rule (10) does not affect the convergence of the original scheme

to a continuously differentiable limit.

9

PROOF. It is sufficient to show that, taken p0−2 = 2p00−p02 and p0−1 = 2p00−p01, and

refining the polygon P 0 through (3)-(7), after k rounds of subdivision the expression

of the point pk−1 turns out to coincide with (9). �

5 Applications and examples

The following examples show open and closed curves which pass through a set of

given points. The control polygons (corresponding to the piecewise linear curve be-

tween the given points) are drawn by a dashed line, and the smooth curves obtained

by our algorithm by a full line.

Fig. 3. Increasing the tightness (tension) of an open curve.

Figure 3, depicting the open limit curves obtained with v0 = −0.4, 1, 1000, demon-

strates the increase in the tightness (tension) of the curve with the increase in v0.

Fig. 4. Increasing the tightness (tension) of a closed curve.

Analogously, Figure 4, depicting the closed limit curves obtained with v0 = −0.5, 0,

1, 5, 50, 500, demonstrates the increase in the tightness (tension) of the curve with

10

the increase in v0.

The following figures show the effect of the tension parameter v0 when our algorithm

is applied on a regular N -sided control polygon inscribed in the unit circle.

Fig. 5. Interpolation of the vertices of a square with the uniform tension controlled
interpolating 4-point scheme defined by the following values of the parameter v0:
-0.95, -0.75, -0.5, 0, 1, 5, 25, 500.

While choosing v0 < 1 the parameter acts as a looseness and, smaller it is, looser

the limit curve is, for high values of the tension parameter v0, the limit curve tends

to shrink to the initial control polygon.

In addition, whenever we choose v0 = cos(2πN), in the limit we obtain exactly the

unit circle (see Figs. 5, 6).

6 Conclusions and Future Work

This paper describes a simple and efficient non-stationary subdivision scheme for

curve interpolation depending on a single tension parameter, that is capable of re-

producing conic sections exactly whenever such a parameter is chosen correctly. The

subdivision algorithm (3)-(7) is actually an insertion algorithm since all the points

at stage k are carried over to stage k + 1 and new points are inserted in between

the old ones. Evidently, the resulting limit curve interpolates the initial points. The

local nature of the scheme, the possibility of reproducing cubic polynomials as well

as certain classes of hyperbolic and trigonometric functions, and the control of the

tension by the associated parameter, are important features for curve design. The

algorithm proposed here is unique in combining these five ingredients: subdivision,

locality, interpolation, global tension control, reproduction of conic sections.

11

Fig. 6. Interpolation of the vertices of a regular pentagon with the uniform ten-
sion controlled interpolating 4-point scheme defined by the following values of the
parameter v0: -0.5, -0.25, 0, cos(2π5), 1, 5, 25, 500.

An interesting generalization of this proposal could include the possibility of work-

ing with a different tension parameter v0 for each segment of the initial polygon P 0.

In this way, since during each subdivision step each segment is split into two new

segments, these two will inherit a new tension via equation (6). The resulting sub-

division scheme will allow therefore different tensions on distinct curve segments.

The curve scheme proposed can also be naturally extended to tensor-product sur-

faces. Next step will be therefore generalizing the univariate scheme to a surface

scheme over arbitrary quadrilateral meshes.

Acknowledgements

This research was supported by MIUR-PRIN 2004 and by University of Bologna

“Funds for selected research topics”. Many thanks go to the anonymous reviewers for

their helpful comments. The authors are also grateful to Nira Dyn for her precious

suggestions.

References

Deslauriers, G., Dubuc, S., 1989. Symmetric iterative interpolation processes. Con-

str. Approx. 5, 49-68.

Dubuc, S., 1986. Interpolation through an iterative scheme. J. Math. Anal. Appl.

114, 185-204.

Dyn N., Levin D., Gregory J.A., 1987. A 4-point interpolatory subdivision scheme

12

for curve design. Computer Aided Geometric Design 4, 257-268.

Dyn, N., Levin, D., 1995. Analysis of asymptotically equivalent binary subdivision

schemes. J. Math. Anal. Appl. 193, 594-621.

Dyn, N., 2002. Interpolatory subdivision schemes. In: Iske, A., Quak, E., Floater,

M.S. (Eds.), Tutorials on Multiresolution in Geometric Modelling. Springer-Verlag,

25-50.

Dyn, N., Levin, D., Luzzatto, A., 2003. Exponentials Reproducing Subdivision

Schemes. Found. Comput. Math. 3, 187-206.

Dyn, N., Floater, M.S., Hormann, K., 2005. A C2 Four-Point Subdivision Scheme

with Fourth Order Accuracy and its Extensions. In: Dæhlen, M., Mørken, K., Schu-

maker, L.L. (Eds.), Mathematical Methods for Curves and Surfaces: Tromsø 2004.

Nashboro Press, 145-156.

Ivrissimtzis, I.P., Dodgson, N.A., Hassan, M.F., Sabin, M.A., 2002. On the geometry

of recursive subdivision. Intern. J. Shape Modeling 8(1), 23-42.

Jena, M.K., Shunmugaraj, P., Das, P.C., 2003. A non-stationary subdivision scheme

for curve interpolation. Anziam J. 44(E), 216-235.

Morin, G., Warren, J., Weimer, H., 2001. A subdivision scheme for surfaces of

revolution. Computer Aided Geometric Design 18, 483-502.

Zhang, J., 1996. C-curves: an extension of cubic curves. Computer Aided Geometric

Design 13, 199-217.

13

