
 
 

 

 

 

RELATIONAL CLUSTERING  

FOR KNOWLEDGE DISCOVERY  

IN LIFE SCIENCES 
 

 

 
 
 

A dissertation presented  
by 
 

ILARIA GIORDANI 
 
 
 
 

Submitted to the University of Milano-Bicocca 

in partial fulfillment of the requirements for the degree of 

DOCTOR of PHILOSOPHY 

 
 

October 2009 
 

Department of Informatics, Systems and Communication 
 

 

 

 

 

Advisors:  Prof. Enza MESSINA 
   Prof. Francesco ARCHETTI 



 

 

 

 

 

 

 

To My Mother and My Father 



 

 
3 

 

Acknowledgments 

 
 

 

First and foremost, I would like to thank my advisors Prof. Enza Messina and 

Prof. Francesco Archetti for their guidance, encouragement and patience. They 

help me in these years and in particular, encourage my scientific interests. It was 

a real pleasure working with them. 

 

I am also grateful to Leonardo Vanneschi for being a guide and a friend, and for 

making the time spent together for our researches so enjoyable. 

 

I am particularly grateful to all my colleagues and, between all, Elisabetta, 

Daniele and Cristina for their friendship, patience, understanding and for all the 

funny moments spent together. 

 

I am also grateful to Consorzio Milano Ricerche for the opportunity of improving 

my skills. Thanks to Marco, Luigi and Federica that help me during this last hard 

months. 

 

I would like to show my gratitude to Prof. Daniela Mari for her help and kindness 

during our works about the clinical study presented in this thesis. Thanks also to 

Giulia and Alessandra. 

 

I would also like to express acknowledgement to all my friends, particularly to 

Francesco and Paolo that help me during my moments of sadness with hearty 

laughs. Thanks also to the “friends of the train”: with them I spent a lot of nice 

moments in these years.  

 

Finally, I would thank my family, for their continual support, encouragement and 

for giving me the freedom to pursue my own interests. I cannot be grateful 

enough for their untiring support and unconditional belief in me. 

 

Last but not the least, I could not have done any of this without Giacomo that 

gave me hope whenever I was down, strength when I felt weak and 

unquestioning love all along.  

 



 

 
4 

Summary 
 
Introduction ............................................................................................................................... 9 

1. Clustering Analysis ........................................................................................................... 11 

1.1 Distance Measures ..................................................................................................... 12 

1.2 Clustering as an Optimization Problem ...................................................................... 16 

1.3 Clustering algorithms ................................................................................................. 17 

1.3.1 Partitional K-Means Clustering Algorithm ......................................................... 17 

1.3.2 Hierarchical Clustering Algorithm ...................................................................... 21 

1.4 Different Measures of Cluster Validation ................................................................... 23 

1.4.1 Cluster Validity Measures for Partitional Clustering ......................................... 24 

1.4.2 Cluster Validity Measures for Hierarchical Clustering ....................................... 28 

2. Specific Challenges Related to Biomedical Data ............................................................. 30 

2.1 Feature Selection ........................................................................................................ 30 

2.1.1 Supervised Feature Selection ............................................................................ 31 

2.1.2 Unsupervised Feature Selection ........................................................................ 33 

2.1.3 Proposed approach:   Genetic Programming for Feature Selection .................. 34 

2.2 Mixed Data Types ....................................................................................................... 51 

2.2.1 Overview of Existing Algorithm ......................................................................... 51 

2.2.2 Modified K-prototypes Algorithm ..................................................................... 53 

2.3 Knowledge “Integration” ............................................................................................ 56 

2.3.1 Knowledge in Life Science Domain .................................................................... 56 

2.3.2 Knowledge Integration in Clustering Procedure................................................ 59 

3. “Structure Driven” Methods ........................................................................................... 62 

3.1 Biclustering Algorithm ................................................................................................ 62 

3.2 3- Clustering Algorithm .............................................................................................. 67 

3.3 Quality Measures for Biclustering and 3-Clustering ................................................... 68 

3.3.1 Quality Measure for Biclustering ....................................................................... 68 

3.3.2 Quality Measure for 3-Clustering ...................................................................... 69 

4. “Knowledge Driven” Methods ......................................................................................... 71 

4.1 Constraint - Based Clustering Methods ...................................................................... 71 

4.2 Distance - Based Clustering Methods......................................................................... 72 

4.3 Hybrid Methods: Combination of Distance-Based and Constraint-Based ................. 73 

4.4 The Proposed Relational Clustering Framework: Principal Features ......................... 74 



 

 
5 

5. The Proposed Relational Clustering Framework: Case Studies ....................................... 78 

5.1 Learning Transcriptional Regulatory Modules ........................................................... 78 

5.1.1 The biological problem: state of the art ............................................................ 78 

5.1.2 Integration of Gene Regulatory Information and Gene Expression Data ......... 80 

5.1.3 The Proposed Iterative Relational Clustering Approach ................................... 81 

5.1.4 Computational Experiments and Results .......................................................... 84 

5.2 Detecting the Most Effective Cancer Drug: NCI-60 Dataset....................................... 90 

5.2.1 The Pharmacogenomics Problem: State of the Art ........................................... 90 

5.2.2 Traditional Approaches: K-Means and SVT Algorithms ..................................... 91 

5.2.3 The Proposed Relational Clustering Approach .................................................. 92 

5.2.4 Computational Experiment and Results ............................................................ 94 

5.3 Oral Anticoagulation Therapy .................................................................................. 100 

5.3.1 The Clinical Problem: State of the Art ............................................................. 100 

5.3.2 Patient Profiling: Drug Sensitivity Index .......................................................... 102 

5.3.3 Traditional Clustering Approach:   a Modified Version of Mod-K-Prototype .. 106 

5.3.4 The Proposed Relational Clustering Framework ............................................. 109 

5.3.5 Further Analysis on the Data Set ..................................................................... 112 

Conclusion ............................................................................................................................. 118 

Appendix A: Data Resources ................................................................................................. 121 

A.1 Transcription Factors Data ................................................................................... 121 

A.1.1 Gasch et al., 2000 Dataset .................................................................................... 121 

A.1.2 Spellman et al., 1998   Dataset ............................................................................. 122 

A.2 NCI-60 Data .......................................................................................................... 125 

A.3 Oral Anticoagulation Therapy (OAT) Data ........................................................... 127 

A.4 Oncological Data .................................................................................................. 130 

A.4.1 Colon Dataset ....................................................................................................... 130 

A.4.2 Leukemia Dataset ................................................................................................. 130 

A.4.3 Molecular Dataset .................................................................................................... 130 

Bibliography ........................................................................................................................... 132 

 



List of Figures 

 
Fig. 1-1: Typical cluster analysis procedure ............................................................................................ 11 

Fig. 1-2: An example of better clustering done when using the Standardized Euclidean distance in 

comparison with the Euclidean distance. ..................................................................................... 14 

Fig. 1-3: The Manhattan vs. Euclidean distance ..................................................................................... 14 

Fig. 1-4: Expression levels in different sample of two genes. ................................................................. 16 

Fig. 1-5: Example of using the K-means algorithm to find three clusters in sample data ...................... 18 

Fig. 1-6: A hierarchical clustering of four points shown as a dendrogram and as nested clusters ........ 22 

Fig. 1-7:  Graph-based definitions of cluster proximity .......................................................................... 23 

Fig. 2-1: Taxonomy of feature selection techniques. ............................................................................. 32 

Fig. 2-2: An example of a simple GP individual ....................................................................................... 36 

Fig. 2-3: Normalized Z-score of the most recurrent common genes for the Colon dataset. .................. 49 

Fig. 2-4: Normalized Z-score of the most recurrent common genes for the Leukemia dataset. ........... 50 

Fig. 2-5: Schema of modk-prototypes (Bushel et al., 2007) ................................................................... 53 

Fig. 2-6: Reductionist approach and Integrative approach. ................................................................... 56 

Fig. 2-7:  Iterative in silico model building in biology ............................................................................. 57 

Fig. 2-8: Beyond Genomics Correlation Network ................................................................................... 58 

Fig. 2-9:  Top down versus bottom-up approaches. ............................................................................... 59 

Fig. 2-10: Modified clustering procedure with knowledge integration .................................................. 60 

Fig. 3-1: gene expression dataset ........................................................................................................... 62 

Fig. 3-2: Perfect constant bicluster ......................................................................................................... 64 

Fig. 3-3: Bicluster with constant values on rows or columns ................................................................. 64 

Fig. 3-4: Bicluster with coherent values ................................................................................................. 65 

Fig. 3-5: Bicluster with coherent evolution ............................................................................................ 65 

Fig. 3-6: Sample data and clusters .......................................................................................................... 67 

Fig. 4-1: Relational Clustering Core ........................................................................................................ 75 

Fig. 4-2: Relation Learning Phase............................................................................................................ 76 

Fig. 5-1: ΩTF matrix ................................................................................................................................ 80 

Fig. 5-2: Instantiation of general relational clustering framework ......................................................... 82 

Fig. 5-3: Iterative process of learning distance measure and modify objective function ....................... 83 

Fig. 5-4: Number of co-expressed and co-regulated clusters for (Gasch et al., 2000) dataset .............. 86 

Fig. 5-5: Number of co-expressed and co-regulated clusters for (Spellman et al., 1998) dataset ......... 87 

Fig. 5-6: Genes correctly predicted by iterative relational clustering approach for (Gasch et al., 2000) 

dataset. ......................................................................................................................................... 88 

Fig. 5-7: Genes correctly predicted by STVQ approach for (Gasch et al., 2000) dataset. ....................... 88 

Fig. 5-8: Genes correctly predicted by iterative relational clustering approach for (Spellman et al., 

1998) dataset ................................................................................................................................ 88 

Fig. 5-9: Genes correctly predicted by STVQ approach for (Gasch et al., 2000) dataset. ....................... 88 

Fig. 5-10: General “flat” representation of cell lines .............................................................................. 92 

Fig. 5-11: Instantiation of the general relational clustering framework ................................................ 92 

Fig. 5-12: Computational process of the proposed relational clustering framework............................. 94 

Fig. 5-13:  A sub-sample of the obtained clustering solution and a particular sub-pattern representing 

an example of the active drugs. .................................................................................................... 97 

Fig. 5-14: Bayesian Networks for modelling the NCI60 dataset ............................................................. 98 

Fig. 5-15: Therapeutic INR range .......................................................................................................... 101 

Fig. 5-16: Oral Anticoagulation Therapy workflow ............................................................................... 101 

Fig. 5-17: Drug Sensitivity distribution ................................................................................................. 103 

Fig. 5-18: Approximate Entropy distribution for entire dataset ........................................................... 105 



 

 
7 

Fig. 5-19: Approximate entropy for each Dsens class ............................................................................. 105 

Fig. 5-20: Approximate Entropy for patients with different age .......................................................... 106 

Fig. 5-21: schema of the OAT Mod-k-prototypes algorithm................................................................. 106 

Fig. 5-22: α and β parameter ................................................................................................................ 107 

Fig. 5-23:DVI_CU index variation for k from 0 to 20 for dataset Ω1 ..................................................... 108 

Fig. 5-24: DVI_CU index variation for k from 0 to 20 for genomic dataset Ω2 ...................................... 108 

Fig. 5-25: Instantiation of general relational clustering framework ..................................................... 109 

Fig. 5-26: Computational process of the proposed relational clustering framework........................... 111 

Fig. 5-27: Wild type patient, positive Drug Sensitivity class ................................................................. 116 

Fig. 5-28: Patient with two polymorphisms (gene CYP2C9: AC; gene VK0RC1: TT),  medium Drug 

Sensitivity class ........................................................................................................................... 116 

Fig. 5-29: Patient with two polymorphisms (gene CYP2C9: CC; gene VK0RC1: CT),  negative Drug 

Sensitivity class ........................................................................................................................... 117 

 

Fig. A - 1: (Gasch et al., 2000) dataset representation ......................................................................... 122 

Fig. A - 2: (Spellman et al., 1998) data set representation ................................................................... 123 

Fig. A - 3: Simplified schematic overview of NCI60 database ............................................................... 125 

Fig. A - 4: dendrogram showing average-linkage hierarchical clustering  of human cancer cell lines . 126 

Fig. A – 5: Relational model of OAT application ................................................................................... 127 

Fig. A - 6: CYP2C9 genotypes prevalence and the mean weekly maintenance dosing for Warfarin. ... 129 

Fig. A - 7: VKORC1 genotypes prevalence and the mean weekly maintenance dosing for Warfarin. .. 129 

  

 

 

 



 

 
8 

List of Tables 

 
Tab. 1-1: Ideal cluster similarity matrix .................................................................................................. 26 

Tab. 1-2: Ideal classification similarity matrix ........................................................................................ 26 

Tab. 1-3: Two-way contingency table for determining .......................................................................... 26 

Tab. 2-1: Parameters used in the presented GP experiments ................................................................ 36 

Tab. 2-2: Experimental results returned by Linear Regression  for therapeutic responses prediction of 

four different drugs. ...................................................................................................................... 38 

Tab. 2-3: Experimental results returned by Least Square Regression  for therapeutic responses of four 

different drugs. ............................................................................................................................. 39 

Tab. 2-4: Results returned by GP ............................................................................................................ 40 

Tab. 2-5: Results that we have obtained performing 100 independent runs of RMSEGP  on our 

dataset. ......................................................................................................................................... 42 

Tab. 2-6: Experimental results returned by Linear Regression .............................................................. 43 

Tab. 2-7: Experimental results returned by Least Square Regression .................................................... 43 

Tab. 2-8: Results obtained with CCGP configuration .............................................................................. 44 

Tab. 2-9: Results obtained with linScalGP configuration ........................................................................ 44 

Tab. 2-10: Results returned by non- evolutionary methods on Colon dataset ...................................... 46 

Tab. 2-11: Results returned by the studied GP variants on the Colon dataset ...................................... 46 

Tab. 2-12: Results returned by the non evolutionary methods on the Leukemia dataset ..................... 47 

Tab. 2-13: Results returned by the studied GP variants on the Leukemia dataset ................................ 47 

Tab. 5-1: Iterative relational clustering algorithm results on (Gasch et al., 2000) dataset .................... 86 

Tab. 5-2: Iterative relational clustering algorithm results on (Spellman et al., 1998) dataset ............... 86 

Tab. 5-3: Transcription factors found by our iterative relational clustering algorithm  on (Gasch et al., 

2000) dataset ................................................................................................................................ 88 

Tab. 5-4: Transcription factors found by our iterative relational clustering algorithm  applied on 

(Spellman et al., 1998) dataset ..................................................................................................... 89 

Tab. 5-5: Computational results on Ω1 .................................................................................................. 96 

Tab. 5-6: Computational results on Ω2 .................................................................................................. 96 

Tab. 5-7: Computational results of Bayesian networks on Ω2 ............................................................... 99 

Tab. 5-8: F-measure and entropy results for OAT modify k prototypes algorithm .............................. 108 

Tab. 5-9: F-measure and entropy results for OAT modify k prototypes algorithm .............................. 112 

Tab. 5-10: INR based classification results ........................................................................................... 113 

Tab. 5-11: Drug sensitivity based classification results ........................................................................ 113 

Tab. 5-12: Drug sensitivity based classification results with new features .......................................... 114 

Tab. 5-13: Induction phase: Drug sensitivity based classification results ............................................ 114 

Tab. 5-14: INR based classification results on Ω2 dataset configuration ............................................. 114 

Tab. 5-15: Dsens based classification with genomic data results.   In this phase INR average and 

variance are not considered. ...................................................................................................... 115 

Tab. 5-16: Dsens based classification with complete genomic data results ........................................ 115 

Tab. 5-17: Dsens based classification with genomic data results.  In this phase INR average and 

variance are not considered. ...................................................................................................... 115 

Tab. 5-18: Genomic variant distribution in the three Dsens classes .................................................... 116 

 

Tab. A – 1: OAT patients’ characteristics .............................................................................................. 128 

Tab. A - 2: Allelic variant frequencies of gene CYP2C9 and VKORC1 .................................................... 128 



 

Introduction 

Clustering is one of the most common machine learning technique, which has 

been widely applied in genomics, proteomics and more generally in Life 

Sciences.  

In particular, clustering is an unsupervised technique that, based on geometric 

concepts like distance or similarity, partitions objects into groups, such that 

objects with similar characteristics are clustered together and dissimilar objects 

are in different clusters.  

In many domains where clustering is applied, some background knowledge is 

available in different forms: labelled data (specifying the category to which an 

instance belongs); complementary information about “true” similarity between 

pairs of objects or about the relationships structure present in the input data; 

user preferences (for example specifying whether two instances should be in 

same or different clusters). In particular, in many real-world applications like 

biological data processing, social network analysis and text mining, data do not 

exist in isolation, but a rich structure of relationships subsists between them. A 

simple example can be viewed in biological domain, where there are al lot of 

relationships between genes and proteins based on many experimental 

conditions. Another example, maybe common, is the Web search domain where 

there are relations between documents and words in a text or web pages, search 

queries and web users.  

Our research is focalized on how this background knowledge can be 

incorporated into traditional clustering algorithms to optimize the process of 

pattern discovery (clustering) between instances. 

In this thesis, we first provide an overview of traditional clustering methods with 

some important distance measures and then we analyze three particular 

challenges that we try to overcome with different proposed methods: “feature 

selection” to reduce high dimensional input space and remove noise from data; 

“mixed data types” to handle in clustering procedure both numeric and 

categorical values, typically of life science applications; finally, “knowledge 

integration” in order to improve the semantic value of clustering incorporating 

the background knowledge. 

Regarding the first challenge we propose a novel approach based on using of 

genetic programming, an evolutionary algorithm-based methodology, in order to 

automatically perform feature selection. 

Different clustering algorithms are been investigated regarding the second 

challenge. A modify version of a particular algorithm is proposed and applied to 

clinical data. 

Particularly attention is given to the final challenge, the most important objective 

of this Thesis: the development of a new relational clustering framework in 

order to improve the semantic value of clustering taking into account in the 

clustering algorithm relationships learned from background knowledge. 

We investigate and classify existing clustering methods into two principal 

categories: 

- Structure driven approaches: that are bound to data structure.   

The data clustering problem is tackled from several dimensions: clustering 
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concurrently columns and rows of a given dataset, like biclustering algorithm 

presented in subsection 3.1 or vertical 3-D clustering presented in subsection 

3.2.  

- Knowledge driven approaches: where domain information is used to drive the 

clustering process and interpret its results: semi-supervised clustering 

(presented in subsection 4), that using both labelled and unlabeled data, has 

attracted significant attention. This kind of clustering algorithms represents 

the first step to implement the proposed general framework that it is 

classified into this category. 

 

In particular the thesis focuses on the development of a general framework for 

relational clustering instantiating it for three different life science applications: 

the first one with the aim of finding groups of genes with similar behaviour 

respect to their expression and regulatory profiles. The second one is a 

pharmacogenomics application, in which the relational clustering framework is 

applied on a benchmark dataset (NCI60) to identify a drug treatment to a given 

cell line based both on drug activity pattern and gene expression profile. Finally, 

the proposed framework is applied on clinical data: a particular dataset 

containing different information about patients in anticoagulant therapy has 

been analyzed to find groups of patients with similar behaviour and responses to 

the therapy. 

 

Thesis Outline 
This thesis is organized as follows: standard clustering techniques and distance 

measures will be outlined in section 1.   

Three specific challenges related to life science domain will be illustrated into 

section 2.  In particular, subsection 2.1 is focalized on feature selection, generally 

used to reduce high dimensional input space, and on the proposed technique 

based on Genetic Programming. In subsection 2.2 different clustering algorithm 

for mixed data type, a typical problem that born when we apply clustering 

algorithm to life science data, are investigated and in particular the attention is 

focalized on the approach called Modify-k-prototypes. Last subsection (2.3) is 

dedicated to the investigation of the different kind of information that we 

possibly integrate into the clustering process and on a general presentation of 

relational clustering. 

A review of structure driven approaches and knowledge driven approach 

developments is covered respectively in sections 3 and 4. 

In particular, in section 4 the proposed relational clustering framework that has 

been applied to three case studies is presented. 

Section 5 described these case studies with, for each one, an introduction on the 

problem, the presentation of the instantiation of the general framework and, 

finally, the promising results obtained. 

A description of data used in this Thesis is presented into appendix A. 



 

1. Clustering Analysis  

Human beings are skilled at dividing objects into groups (clustering) and 

assigning particular objects to these groups (classification).  

Cluster analysis groups data objects based only on information found in the data 

that describes the objects and their relationships. The goal is that the objects 

within a group be similar (or related) to one another and different from (or 

unrelated to) the objects in other groups. The greater the similarity (or 

homogeneity) within a group and the greater the difference between groups, the 

better or more distinct the clustering.  

Cluster analysis is related to other machine learning techniques that are usually 

used to divide data objects into groups (subsets or categories), like classification. 

In particular, classification is a form of supervised learning i.e., new unlabeled 

objects is assigned a class label using a model developed from objects with 

known class labels “the training set”. In contrast, cluster analysis that creates an 

implicit labelling of objects with class (cluster) labels, derived only from data, is 

referred to a form of unsupervised learning (no labelled data are available). 

Typical cluster analysis consists of four principal steps (Xu and Wunsch, 2005) 

that are closely related each other and affect the derived clusters. 
 

 
Fig. 1-1: Typical cluster analysis procedure 

 

Fig. 1-1 depicts the procedure of traditional cluster analysis with four basic 

steps: 

 

1) Feature selection and extraction: In general, as pointed out by (Jain et al., 

2000) and (Bishop, 1995), feature selection chooses distinguishing features from 

a set of candidates, while feature extraction utilizes some transformations to 

generate useful and novel features from the original ones. Both are very crucial 

to the effectiveness of clustering applications: the selection of features can 

simplify the clustering process. Generally, ideal features should be of use in 

distinguishing patterns belonging to different clusters, immune to noise, easy to 

extract and interpret. In section 2.1 we will discuss on feature selection 

techniques.  
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2) Clustering algorithm design or selection.  This step represents the most 

important phase of all clustering procedures. Here a similarity measure between 

objects must be selected and a criterion function, which minimize the similarity 

between objects belonging to the same cluster and maximize the similarity 

between objects of different clusters, must be built. Obviously, the similarity 

measure directly affects the formation of the resulting clusters. This key 

ingredient of clustering algorithms is called “distance metric”. A distance metric d 

is a function that takes as arguments two objects x and y in an n-dimensional 

space Rn. A lot of distance measures have been considered in literature: some of 

these are reported and discussed in subsection 1.1. 

Once a distance measure is chosen, the construction of a clustering criterion 

function makes the partition of clusters an optimization problem, which is well 

defined mathematically, and has rich solutions in the literature. We discuss on 

this feature in subsection 1.2. 

 

3) Cluster validation. As already mentioned at the beginning of the chapter, 

given a data set, each clustering algorithm can always generate a division of the 

input objects. Moreover, different approaches usually lead to different cluster 

and even for the same algorithm, parameter identification or the presentation 

order of input patterns may affect the final results.   

Generally, there are three categories of testing criteria: external indices (that we 

will call classification-oriented), internal indices (that we will call similarity-

oriented), and relative indices. External indices are based on some pre-specified 

structure, which is the reflection of prior information on the data, and used as a 

standard to validate the clustering solutions. Internal measures are not 

dependent on external information (prior knowledge): they observe the 

clustering structure directly from the original data. We survey some of these 

indices in subsection 1.4.  

 

4) Results interpretation. The ultimate goal of clustering is to provide users 

with meaningful insights from the original data, so that they can effectively solve 

the problems encountered. Experts in the relevant fields interpret the data 

partition. Further analyzes, even experiments, may be required to guarantee the 

reliability of extracted knowledge. 

 

Cluster analysis is not a one-shot process. In many circumstances, it needs a 

series of trials and repetitions. Moreover, there are no universal and effective 

measures to guide the selection of features and clustering schemes. Validation 

indexes provide some insights on the quality of clustering solutions. But even 

how to choose the appropriate criterion is still a problem requiring more efforts. 

1.1 Distance Measures 

When a clustering algorithm is designed, it is natural to ask what kind of 

standards we should use to measure the distance (dissimilarity or similarity) 

between a pair of objects, an object and a cluster, or a pair of clusters.  

Usually, a data object is described by a set of features, represented as a 

multidimensional vector. These features can be quantitative or qualitative, 
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continuous or binary, nominal or ordinal which determine the corresponding 

measure mechanisms. 

When a distance function is defined, it must satisfy the following properties: 

a) Symmetry: The distance should be symmetric, i.e.: d(x, y) = d(y, x) 

b) Positivity: The distance between any two objects should be a real number 

greater than or equal to zero: d(x, y) ≥ 0 for all x  and y. 

c) Triangle inequality: The distance between two objects x and y should be 

shorter than or equal to the sum of the distances from x to a third object z and 

from z to y:  d(x, y)≤ d(x, z) + d(z, y) for all x, y and z. 

 

In this section, we review different distance measures between two objects 

defined by two n-dimensional vectors x= (x1, x2,…,xn) and y = (y1, y2,…,yn). 
 

Euclidean distance 

The most commonly used metric define as: 

∑
=

−=−++−+−=
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iinnE
yxyxyxyxyxd
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11
)()()()(),( K  ( 1-1) 

The Euclidean distance is simply the geometric distance. Deriving the Euclidean 

distance between two data points involves computing the square root of the sum 

of the squares of the differences between corresponding values.  

 

Squared Euclidean distance 
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The squared Euclidean distance tends to give more weight to outliers than the 

Euclidean distance because of the lack of squared root. Data which is clustered 

using this distance metric might appear sparser and less compact then the 

Euclidean distance metric. In addition, this metric is more sensitive to 

miscalculated data than is the Euclidean distance metric. 
 

Standardized Euclidean distance 

This distance metric is measured very similar to the Euclidean distance ( 1-1) 

except that every dimension is divided by its standard deviation: 
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( 1-3) 

 

This measure gives more importance to dimensions with smaller standard 

deviation (because of the division by the standard deviation).  
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Fig. 1-2: An example of better clustering done when using the Standardized Euclidean distance in 

comparison with the Euclidean distance.  

The better results are due to equalization of the variances on each axis. 

 
 

Manhattan distance 

∑
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( 1-4) 

Where ||
ii

yx −   represents the absolute value of the difference between xi and 

yi.  

The Manhattan distance represents the distance measured along directions that 

are parallel to the x and y axes. 
 

 
Fig. 1-3: The Manhattan vs. Euclidean distance 

 

In Fig. 1-3 it is evident that the Manhattan distance is greater than the Euclidean 

because of the Pythagorean Theorem. 

Data which is clustered using Manhattan distance metric might appear slightly 

sparser and less compact then the Euclidean distance metric. In addition, this 

metric is less robust regarding miscalculated data than is the Euclidean distance 
metric. 

 

 

 

 

 

Standardize Euclidean Distance Euclidean distance 
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Chebychev distance 

The Chebychev distance will simply pick the maximum absolute difference in 

values for any objects. This implies that any changes in lower values will be 

discarded. This kind of metric is very sensitive to outlying values. 

 

||max),(
max ii

i
yxyxd −=  ( 1-5) 

 

Angle between vectors 
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This metric takes into account only the angle and discards the magnitude. Note 

that if a point is shifted by scaling all its coordinates by the same factors (i.e. 

noise), the angle distance will not change. This distance is not sensitive to noise if 

the noise adds some constant value to all dimensions (assuming different values 

in different dimensions). 
 

Correlation distance 
 

),(1),( yxpyxd
R
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Where p xy is the Pearson correlation coefficient of the vectors x and y: 
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Since the Pearson correlation coefficient p(x,y) takes values between -1 and 1, 

the distance 1- p(x,y) will vary between 0 and 2.  

This metric is commonly used in the bioinformatics domain, where the Pearson 

correlation is used to find whether two differentially expressed genes vary in the 

same way. For example, the correlation between two genes x and y, represented 

by two vectors containing their expression levels, will be high if the 

corresponding expression levels increase or decrease at the same time, 

otherwise the correlation will be low (see Fig. 1-4). In particular, in this figure 

the black profile and the red profile have almost perfect Pearson correlation 

despite the differences in basal expression level and scale. 
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Fig. 1-4: Expression levels in different sample of two genes. 

 

 

 
Mahalanobis distance 
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where S is any n x n positive definite matrix and (x-y)

T
 is the transposition of (x-y). 

The role of the matrix S is to distort the space as desired. It is very similar to what is 

done with the Standardized Euclidean distance except that the variance may be 

measured not only along the axes but in any suitable direction. If the matrix S is taken 

to be the identity matrix then the Mahalanobis distance reduces to the classical 

Euclidean distance. 

1.2 Clustering as an Optimization Problem 

Once a distance measure is chosen, the construction of a clustering criterion 

function makes the partition of clusters an optimization problem, which is well 

defined mathematically, and has rich solutions in the literature. 

In this way clustering methods correspond to the optimization of some objective 

global functions and consequently can be treated as an optimization problem. 

Given the data objects xi belonging to the dataset X and a set of clusters Cj  with  

j= 1 : J, the clustering problem consists in assigning each object xi to a cluster Cj  

such that the intra-cluster distance is minimized and the inter-cluster distance is  

maximized.  

If we define a matrix Z of dimension Jjj, as: 
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( 1-10) 

The problem can be formulated, in general terms, as: 
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This is a quadratic assignment problem known to be NP-Hard (Gonzalez, 1985) 

and several heuristics has been proposed to solve it as presented in (Hand et al., 

2001).  

So, given an objective function such as “minimize SSE (sum of squared error)” 

clustering can be treated as an optimization problem. One way to solve this 

problem—to find a global optimum—is to enumerate all possible ways of 

dividing the points into clusters and then choose the set of clusters that best 

satisfies the objective function. Of course, this exhaustive strategy is 

computationally infeasible and as a result, a more practical approach is needed, 

even if such an approach finds solutions that are not guaranteed to be optimal. 

One technique, which is known as gradient descent, is based on picking an initial 

solution and then repeating the following two steps: compute the change to the 

solution that best optimizes the objective function and then update the solution. 

The optimization problem presented in this section can be resolved using 

different clustering algorithms that will be presented in the next session. 

1.3 Clustering algorithms 

Different starting points and criteria usually lead to different taxonomies of 

clustering algorithms. A rough but widely agreed frame is to classify clustering 

techniques as partitional clustering and hierarchical clustering, based on the 

proprieties of cluster generated.  In this section, we use the following two simple, 

but important techniques to introduce many of the concepts involved in cluster 

analysis. Partitional clustering directly divides data objects into some 

prespecified number of clusters, while hierarchical clustering groups data 

objects with a sequence of partitions, either from singleton clusters to a cluster 

including all individuals or vice versa. 

1.3.1 Partitional K-Means Clustering Algorithm 

K-means algorithm is a prototype-based, partitional clustering technique that 

attempts to find a user-specified number of clusters (K), which are represented 

by their centroids.  

In principal, the optimal partition, based on some specific criterion, can be found 

by enumerating all possibilities. But this brute force method is infeasible in 

practice, due to the expensive computation. Therefore, heuristic algorithms have 

been developed in order to seek approximate solutions. K-means clustering 

technique is simple, and aims at assigning a set of object into K clusters with no 

hierarchical structure. 
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We begin with a description of the basic algorithm. We first choose K initial 

centroids, where K is a user specified parameter, namely, the number of clusters 

desired. Each point is then assigned to the closest centroid, and each collection of 

points assigned to a centroid is a cluster. The centroid of each cluster is then 

updated based on the points assigned to the cluster. The assignment and update 

steps are repeated until no point changes clusters, or equivalently, until the 

centroids remain the same. K-means is formally described by Algorithm  1-1.  

 
Algorithm  1-1: Basic k-Means clustering algorithm. 

1: Select k points as initial centroids. 

2: repeat 
3:    form k clusters by assigning each point to its closest centroid. 

4:    Recomputed the centroid of each cluster. 

5: Until  centroids do not change 

 

The operation of K-means is illustrated in Fig. 1-5, which shows how, starting 

from three centroids, the final clusters are found in four assignment-update 

steps. 

 

 
Fig. 1-5: Example of using the K-means algorithm to find three clusters in sample data 

 

In the first step points are assigned to the initial centroids, which are all in the 

larger group of points. For this example, we use the mean as the centroid. After 

points are assigned to a centroid, the centroid is then updated. Again, the figure 

for each step shows the centroid at the beginning of the step and the assignment 

of points to those centroids. In the second step, points are assigned to the 

updated centroids, and the centroids are updated again. In steps 2, 3, and 4, 

which are shown in Fig. 1-5 (b), (c), and (d), respectively, two of the centroids 

move to the two small groups of points at the bottom of the figures. When the K-

means algorithm terminates in Fig. 1-5 (d), because no more changes occur, the 

centroids have identified the natural groupings of points. 

 

The k-means algorithm is very simple and can be easily implemented in solving 

many practical problems.   

The space requirements are modest because only the data points and centroids 

are stored. Specifically, the storage required is O((m + K)n), where m is the 

number of points and n is the number of attributes.   

The time requirements for K-means are also modest basically linear in the 

number of data points. In particular, the time required is O(I *K*m*n), where I is 
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the number of iterations required for convergence. As mentioned, I is often small 

and can usually be safely bounded, as most changes typically occur in the first 

iterations. Therefore, K-means is linear in m, the number of points and is efficient 

as well as simple provided that K, the number of clusters, is significantly less 

than m. Parallel techniques for k-means are developed that can largely accelerate 

the algorithm.  

 

The drawbacks of k-means are also well studied, and as a result, many variants 

of k-means have appeared in order to overcome these obstacles.  

Therefore, this algorithm has a long history, but is still the subject of current 

research. The original K-means algorithm was proposed by (MacQueen et al., 

1967). The ISODATA algorithm by (Ball and Hall, 1967) was a premature version 

of K-means that employed various pre- and post-processing techniques to 

improve on the basic algorithm. The K-means algorithm and many of its 

variations are described in detail in the books by (Anderberg, 1983) and (Jain 

and Dubes, 1988).   

The bisecting K-means algorithm (we will outline a version called “Induced 

bisecting k-means” (Archetti et al., 2006) in the next subsection) was described 

in (Steinbach et al., 2000), and an implementation of this and other clustering 

approaches is freely available for academic use in the CLUTO (CLUstering 

TOolkit) package created by (Karypis et al., 2003).  

(Boley et al., 1998) has created a divisive partitioning clustering algorithm 

(PDDP) based on finding the first principal direction (component) of the data, 

and (Savaresi and Boley, 2004) has explored its relationship to bisecting K-

means. Recent variations of K-means are a new incremental version of K-means 

(Dhillon et al., 2002), X-means (Pelleg and Moore, 2000), and K-harmonic means 

(Zhang et al., 1999). While some of the previously mentioned approaches 

address the initialization problem of K-means in some manner, other approaches 

to improving K-means initialization can also be found in the work of (Bradley 

and Fayyad, 1998). (Dhillon and Modha, 2001) present a generalization of K-

means, called spherical K-means, that works with commonly used similarity 

functions. A general framework for K-means clustering that uses dissimilarity 

functions based on Bregman divergences was constructed by (Banerjee et al., 

2004).  

1.3.1.1 Induced Bisecting K-means 

The bisecting K-means algorithm, proposed in (Savaresi et al., 2001; Steinbach et 

al., 2000), is a straightforward extension of the basic K-means algorithm that is 

based on a simple idea: to obtain K clusters, split the set of all points into two 

clusters, select one of these clusters to split, and so on, until K clusters have been 

produced. In particular, bisecting k-Means has a linear complexity and is 

relatively efficient and scalable. 

It starts with a single cluster of all input points and works as reported in 

Algorithm  1-2: 

 

 

 

 



Clustering Analysis  

 
20 

Algorithm  1-2: Bisecting k-Means algorithm. 

1: Initialize the list of clusters to contain the cluster consisting of all points. 

2: repeat 
3:    remove a cluster S from the list of clusters 

4:    for i=1 to ITER do 

5:       Select two random seeds which are the initial centroids 

6:       Bisect the selected cluster S using basic K-Means 

7:   end for 

8: Select the two clusters from the bisection with the highest Intra Cluster 

Similarity (ICS) 
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9:    Add these two clusters to the list of clusters 

10: Until  the list of clusters contains K clusters 

 

The major disadvantage of this algorithm is that it requires the a priori 

specification of K and ITER parameters. An incorrect estimation of K and ITER 

may lead to poor clustering accuracy. Moreover, the algorithm is sensitive to the 

noise which may affect the computation of cluster centroids. For any given 

cluster let N be the number of objects belonging to that cluster and R the set of 

their indices. In fact, the jth element of a cluster centroid is computed as: 
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where N represents the number of objects belonging to the cluster. 

 

The centroid c may contain also the contribution of noisy terms contained in the 

objects which the pre-processing phase and feature selection phase have not 

been able to remove. To overcome these two problems an extended version of 

the Standard Bisecting k-Means, named Induced Bisecting k-Means, has been 

proposed in (Archetti et al., 2006). Its main steps are described as follows: 

1. Set the Intra Cluster Similarity (ICS) threshold parameter τ 

2. Build a distance matrix A, of dimension |Q| x |Q|, whose elements are given by 

the Euclidean distance between objects 
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where i, j ∈Q. 

3. Select, as centroids, the two objects i and j s.t. 
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 The splitting is also different from the Standard Bisecting k-Means and is 

performed according to the following 3 steps: 

4. Find 2 sub-clusters S1 and S2 using the basic k-Means algorithm. 

5. Check the ICS of S1 and S2 as: 
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a. If the ICS value of a cluster is smaller than τ then reapply the divisive 

process to this set, starting form step 2. 

b. If the ICS value of a cluster is over a given threshold, then stop. 

6. The entire process will finish when there are no sub-clusters to divide. 

 

The main differences of this algorithm with respect to the Standard Bisecting k- 

Means consist in: 

- how the initial centroids are chosen: as centroids of the two child clusters we 

select the objects of the parent cluster having the greatest distance between 

them. 

- the cluster splitting rule: a cluster is split in two if its Intra Cluster Similarity 

is smaller than a threshold parameter τ. Therefore, the “optimal” number of 

cluster K is controlled by the parameter τ. The main advantages being that 

no input parameters K and ITER must be specified by the user. 

1.3.2 Hierarchical Clustering Algorithm 

Hierarchical clustering (HC) techniques are a second important category of 

clustering methods. These algorithms organize data into a hierarchical structure 

according to the similarity matrix. As K-means, these approaches are relatively 

old, but they still enjoy widespread use.  

Much of the initial activity was in the area of taxonomy and is covered in books 

by (Sneath and Sokal, 1971; Jardine and Sibson et al 1988). Agglomerative 

hierarchical clustering is the focus of most work in the area of hierarchical 

clustering, but divisive approaches have also received some attention. For 

example, (Zahn et al., 1971) describes a divisive hierarchical technique that uses 

the minimum spanning tree of a graph.  

There are two basic approaches for generating a hierarchical clustering: 

- Agglomerative: Start with the points as individual clusters and, at each step, 

merge the closest pair of clusters. This requires defining a notion of cluster 

proximity. 

- Divisive: Start with one, all-inclusive cluster and, at each step, split a cluster 

until only singleton clusters of individual points remain. In this case, we need 

to decide which cluster to split at each step and how to do the splitting. 

 

While both divisive and agglomerative approaches typically take the view that 

merging (splitting) decisions are final, there has been some work, which we shall 

not considered here, by (Fisher et al., 1996) and (Karypis et al., 1999) to 

overcome these limitations. 

Agglomerative hierarchical clustering techniques are by far the most common, 

and, in this section, we will focus exclusively on these methods.  

 

The results of hierarchical clustering are usually depicted by a binary tree or 

dendrogram which displays both the relationships between cluster and sub-

cluster and the order in which the clusters were merged (agglomerative view) or 

split (divisive view). The root node of the dendrogram represents the whole data 

set and each leaf node is regarded as a data object. The intermediate nodes, thus, 

describe the extent that the objects are proximal to each other; and the height of 

the dendrogram usually expresses the distance between each pair of objects or 
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clusters, or an object and a cluster. The ultimate clustering results can be 

obtained by cutting the dendrogram at different levels.  

This kind of representation provides very informative descriptions and 

visualization for the potential data clustering structures, especially when real 

hierarchical relations exist in the data, like the data from evolutionary research 

on different species of organisms. 

Usually, for sets of two-dimensional points the graphical representation of 

hierarchical clustering is made using a nested clustering diagram, like this in Fig. 

1-6 that shows an example of the two types of figures for a set of four two-

dimensional points (p1, p2, p3, p4). 

 

 
Fig. 1-6: A hierarchical clustering of four points shown as a dendrogram and as nested clusters 

 

1.3.2.1 Basic Agglomerative Hierarchical Clustering Algorithm 

The key process at the basis of many agglomerative hierarchical clustering 

techniques can be summarized with few simple steps: starting with individual 

points as clusters, successively merge the two closest clusters until only one 

cluster remains. A more formally description of this algorithm is expressed in 

Algorithm  1-3. 

 
Algorithm  1-3: Basic agglomerative hierarchical clustering algorithm. 

1: Compute the proximity matrix 

2: repeat 

3:    merge the closest two clusters 

4:    Update the proximity matrix to reflect the proximity between the new  cluster 

and the original clusters. 

5: Until only one cluster remains 

 

The computation of the proximity between two clusters, typically defined with a 

particular type of cluster in mind, is the key operation of Algorithm  1-3. For 

example, many agglomerative hierarchical clustering techniques, such as MIN, 

MAX, and Group Average, come from a graph-based view of clusters. MIN defines 

cluster proximity as the proximity between the closest two points that are in 

different clusters, or using graph terms, the shortest edge between two nodes in 

different subsets of nodes. This yields contiguity-based clusters.   

Alternatively, MAX takes the proximity between the farthest two points in 

different clusters to be the cluster proximity, or using graph terms, the longest 
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edge between two nodes in different subsets of nodes. (If our proximities are 

similarities, where higher values indicate closer points, is usually preferred to 

use single link and complete link). Another graph-based approach, the group 

average technique, defines cluster proximity to be the average pair wise 

proximities (average length of edges) of all pairs of points from different 

clusters. Fig. 1-7 illustrates these three approaches. 

 

 
Fig. 1-7:  Graph-based definitions of cluster proximity 

 

The basic agglomerative hierarchical clustering algorithm just presented uses a 

proximity matrix. This requires the storage of 2

2
1 m  proximities (assuming the 

proximity matrix is symmetric) where m is the number of data points. 

The space needed to keep track of the clusters is proportional to the number of 

clusters, which is m−1, excluding singleton clusters. Hence, the total space 

complexity is O(m2). 

The analysis of the basic agglomerative hierarchical clustering algorithm is also 

straightforward with respect to computational complexity. O(m2) time is 

required to compute the proximity matrix. After that step, there are m−1 

iterations involving steps 3 and 4 because there are m clusters at the start and 

two clusters are merged during each iteration. If performed as a linear search of 

the proximity matrix, then for the ith iteration, step 3 requires O((m−i+1)2) time, 

which is proportional to the current number of clusters squared. Step 4 only 

requires O(m − i + 1) time to update the proximity matrix after the merger of two 

clusters. Without modification, this would yield a time complexity of O(m3). If the 

distances from each cluster to all other clusters are stored as a sorted list (or 

heap), it is possible to reduce the cost of finding the two closest clusters to O(m− 

i+1). However, because of the additional complexity of keeping data in a sorted 

list or heap, the overall time required for a hierarchical clustering based on 

Algorithm  1-3 is O(m2 log m).  

The space and time complexity of hierarchical clustering severely limits the size 

of data sets that can be processed. 

1.4 Different Measures of Cluster Validation 

In supervised classification, the evaluation of the resulting classification model is 

an integral part of the process of developing a classification model, and there are 

well-accepted evaluation measures and procedures, e.g., accuracy and cross-

validation, respectively. However, because of its very nature, cluster evaluation 

is not a well-developed or commonly used part of cluster analysis. 

Nonetheless, cluster evaluation, or cluster validation as it is more traditionally 

called, is important; many times, cluster analysis is conducted as a part of an 

exploratory data analysis. 
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When we have external information about data, it is typically in the form of 

externally derived class labels for the data objects. In such cases, the usual 

procedure is to measure the degree of correspondence between the cluster 

labels and the class labels. Motivations for such an analysis are the comparison of 

clustering techniques with the “ground truth” or the evaluation of the extent to 

which a manual classification process can be automatically produced by cluster 

analysis. 

In next subsections we present different cluster validity measures for both 

partitional clustering and hierarchical clustering.  

1.4.1 Cluster Validity Measures for Partitional Clustering 

We consider two different kinds of approaches:  

- External validity measures: a set of techniques that use measures from 

classification, such as entropy, purity, and the F-measure. These measures 

evaluate the extent to which a cluster contains objects of a single class.  

- Internal validity measures: a group of methods related to the similarity 

measures. These approaches measure the extent to which two objects that are 

in the same class are in the same cluster and vice versa.  

For convenience, we will refer to the external validity measures as classification-

oriented and to the internal validity measures as similarity-oriented. 

1.4.1.1 Classification-Oriented Measures of Cluster Validity 

There are a number of measures, like entropy, purity, precision, recall and the F-

measure, that are commonly used to evaluate the performance of a classification 

model. In the case of classification, we measure the degree to which predicted 

class labels correspond to actual class labels, but for the measures just 

mentioned, nothing fundamental is changed by using cluster labels instead of 

predicted class labels. Next, we quickly review the definitions of these measures. 

 

Entropy 

The degree to which each cluster consists of objects of a single class. For each 

cluster, the class distribution of the data is calculated first, i.e., for class j we 

compute pij, the probability that a member of cluster i belongs to class j as:  

i

ij

ij
m

m
p =  ( 1-16) 

  

where mi is the number of objects in cluster i and mij is the number of objects of 

class j in cluster i. Using this class distribution, the entropy of each cluster i is 

calculated using the standard formula 
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where L is the number of classes.  

The total entropy for a set of clusters is calculated as the sum of the entropies of 

each cluster weighted by the size of each cluster, i.e.: 
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where K is the number of clusters and m is the total number of data points. 

 

Purity 

Another measure of the extent to which a cluster contains objects of a single 

class. Using the previous terminology, the purity of cluster i is: 
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the overall purity of a clustering is: 
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where mi is the number of  data points of cluster i.  

 

Precision  

The fraction of a cluster that consists of objects of a specified class. The precision 

of cluster i with respect to class j is: 

ij
pjiprecision =),(  ( 1-21) 

 

Recall  

The extent to which a cluster contains all objects of a specified class. The recall of 

cluster i with respect to class j is: 

j

ij

m

m
jirecall =),(  ( 1-22) 

where mj is the number of objects in class j. 

 

F-measure  

A combination of both precision and recall that measures the extent to which a 

cluster contains only objects of a particular class and all objects of that class. The 

F-measure of cluster i with respect to class j is 
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1.4.1.2 Similarity-Oriented Measures of Cluster Validity 

Γ statistic measures 

We can view this approach to cluster validity as involving the comparison of two 

matrices:  

(1) the ideal cluster similarity matrix, which has a 1 in the ijth entry if two 

objects, i and j, are in the same cluster and 0, otherwise 

(2) an ideal class similarity matrix defined with respect to class labels, which 

has a 1 in the ijth entry if two objects, i and j, belong to the same class, and 

a 0 otherwise. As before, we can take the correlation of these two 

matrices as the measure of cluster validity. 
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Example: Correlation between Cluster and Class Matrices:   

To demonstrate this idea more concretely, we give an example involving five 

data points, p1, p2, p3, p4, p5, two clusters, C1 = {p1, p2, p3} and C2 = {p4, p5}, and two 

classes, L1 = {p1, p2} and L2 = {p3, p4, p5}.  

The ideal cluster and class similarity matrices are given in Tab. 1-1 and Tab. 1-2. 

The correlation between the entries of these two matrices is 0.359. 

 
Point p1 p2 p3 p4 p5 

p1 1 1 1 0 0 

p2 1 1 1 0 0 

p3 1 1 1 0 0 

 p4 0 0 0 1 1 

p5 0 0 0 1 1 

Tab. 1-1: Ideal cluster similarity matrix 

Point p1 p2 p3 p4 p5 

p1 1 1 0 0 0 

p2 1 1 0 0 0 

p3 0 0 1 1 1 

 p4 0 0 1 1 1 

p5 0 0 1 1 1 

Tab. 1-2: Ideal classification similarity matrix 

More generally, we can use any of the measures for binary similarity (For 

example, we can convert these two matrices into binary vectors by appending 

the rows). Specifically, we need to compute the following four quantities for all 

pairs of distinct objects (There are m(m − 1)/2 such pairs, if m is the number of 

objects): 

 

f00 = number of pairs of objects having a different class and a different cluster 

f01 = number of pairs of objects having a different class and the same cluster 

f10 = number of pairs of objects having the same class and a different cluster 

f11 = number of pairs of objects having the same class and the same cluster 

 

In particular, the simple matching coefficient, which is known as the Rand 

statistic in this context, and the Jaccard coefficient are two of the most frequently 

used cluster validity measures. 
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Example: Rand and Jaccard Measures: 

Based on these formulas, we can readily compute the Rand statistic and Jaccard 

coefficient for the example based on Tab. 1-1 and Tab. 1-2. Noting that f00 = 4, f01 

= 2, f10 = 2, and f11 = 2, the Rand statistic = (2 + 4)/10 = 0.6 and the Jaccard 

coefficient = 2/(2+2+2 ) = 0.33. We also note that the four quantities, f00, f01, f10 

and f11, define a contingency table as shown in Tab. 1-3. 

 
 Same Cluster Different Cluster 

Same Class f11 f10 

Different Class f01 f00 

Tab. 1-3: Two-way contingency table for determining  

whether pairs of objects are in the same class and cluster. 
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DVI measure 

The DVI index, proposed by (Shen et al., 2005) is based on an intra/inter ratio 

validity index that also includes scaling of the intra- and the inter-cluster 

distances. 
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where k is the number of clusters, N is the number of data points and intra is the 

average Euclidean distance between data points and the prototype q of the 

cluster Ci each sample is assigned to. 

In the above equations, IntraRatio is used to represent the overall compactness 

of clusters which is scaled from Intra term; InterRatio is used to represent the 

overall separateness of clusters which is scaled from Inter term. The normalized 

ratios are used for the purpose of comparison.  

The Intra term is defined as the average sum square of the distance from the data 

points to the cluster centroids. The value of the Intra term generally decreases 

with cluster number since the clusters become more and more compact. Thus, 

the normalized intra-ratio is the same and its value ranges between 0 and 1.  

The Inter term is composed of two parts: 
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of them are influenced by the geometry of the cluster centroids.  

The value of Inter tends to increase with the number of clusters, k. The Inter 

term is more sensitive to the distance between clusters than the Intra term.  

So, the DVI Index should be more significant when the clusters is merged or split. 

Since the Inter term is more sensitive to the distance between clusters than the 

Intra term, one modulating parameter γ could be used to balance the importance 

between the IntraRatio and InterRatio terms. Usually, this parameter is set γ = 1 

if there is no noise in the raw data. If exists some noise in the data, the effect of 

such noise could be decreased by adjusting the parameter γ less than 1; and this 

parameter γ could also be adjusted to be greater than 1 in some special cases 

where the within-cluster compactness is more important than the between-

cluster separateness.  
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In general, this index is used also to find the cluster number k. In fact the 

relationship between DVI and the cluster number k is simplified as DVI Index = 

f(k) if no other factors are included into this function. In other words, the optimal 

cluster number is obtained when the DVI Index value reaches its minimum 

where the k value is considered a good indication for the “true” number of 

clusters in the data set. 

 

Categories Utility measure 

The Categories Utility (CU) measure (Gluck et al., 1985), used only for categorical 

data, defines the probability of matching a categorical feature value given a 

cluster versus the probability of the categorical feature value given the entire 

data set 
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Where: 

- P(Ai = Vij) is the unconditional probability of feature xi taking on the value vij 

- P(Ai = Vij | Ck) is the conditional probability of Ai = Vij given cluster Ck 

- k is the cluster number from 1 to K.  

 

DVI_CU measure 

For mixed data types, (Bushel et al., 2007) proposed an index that combines both 

DVI index for numerical data and CU index for categorical data. 

The DVI modified with CU. 

CU
DVICUDVI 1_ +=  ( 1-31) 

 

This index is minimized over all k sets for each run of the modk-prototypes 

clustering algorithm. 

1.4.2 Cluster Validity Measures for Hierarchical Clustering 

So far in this section, we have discussed supervised measures of cluster validity 

only for partitional clustering. Supervised evaluation of a hierarchical clustering 

is more difficult for a variety of reasons, including the fact that a pre-existing 

hierarchical structure often does not exist. Here, we will give an example of an 

approach for evaluating a hierarchical clustering in terms of a (flat) set of class 

labels, which are more likely to be available than a pre-existing hierarchical 

structure. 

The key idea of this approach is to evaluate whether a hierarchical clustering 

contains, for each class, at least one cluster that is relatively pure and includes 

most of the objects of that class. To evaluate a hierarchical clustering with 

respect to this goal, we compute, for each class, the F-measure for each cluster in 

the cluster hierarchy. For each class, we take the maximum F-measure attained 

for any cluster. Finally, we calculate an overall F-measure for the hierarchical 

clustering by computing the weighted average of all per-class F-measures, where 

the weights are based on the class sizes. More formally, this hierarchical F-

measure is defined as follows: 
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where the maximum is taken over all clusters i at all levels, mj is the number of 

objects in class j, and m is the total number of objects. 

 



 

2. Specific Challenges Related to Biomedical Data 

A suitable clustering algorithm depends on the application and data type (Han 

and Kamber, 2006).  

Clustering with its most popular algorithms, partitional k-means and 

hierarchical (presented in section 1.3.1 and 1.3.2) is universally applied in life 

science domain. Numerous improvements of these two traditional methods have 

been introduced, as well as totally different approaches.  

Like said in (Andreopoulos et al., 2009), clustering in life science involves 

principally two groups of users, both of which need to recognize what 

algorithmic features a biological application requires. One user group includes 

biologists with experience on the underlying biological problem, who apply 

existing clustering algorithms to solve the problem. The challenge is to choose a 

suitable algorithm, since each algorithm will produce different results. For 

instance, in clustering gene expression data a biologist wishes to mix numerical 

expression levels with discrete Gene Ontology (GO) categorization.  

Another user group includes computer scientists who develop novel 

bioinformatics algorithms. This group assumes current algorithms are 

insufficient for the underlying biological problem, and that progress requires 

improved methods. There is significant overlap between these two user groups, 

since applications often stimulate algorithmic development. 

As a result, requirements and desiderable features of biomedical clustering 

applications are: minimum user-specified input parameters, robustness to noise 

and outliers, mixed data types and integration of background knowledge (such 

as Gene Ontology annotations). 

In this section we explain and verify three particular challenges that we try to 

overcome with different proposed methods. These challenges are: “feature 

selection” (subsection 2.1) to reduce high dimensional (thousands or millions of 

records with tens or hundreds of attributes) input space and remove noise from 

data; “mixed data types” (subsection 2.2) to handle both numeric and categorical 

values (subsection 2.3); finally, “knowledge integration” (subsection 2.3) in 

order to improve the semantic value of clustering. 

2.1 Feature Selection 

Feature selection (FS) is the process of identifying and removing as much 

irrelevant and redundant information as possible. The reduction of the 

dimensionality of the data allows learning algorithms to operate faster and more 

effectively. 

Feature selection is an important tool in many life sciences studies. Given the 

large complexity of biological data, e.g. the number of genes in a microarray 

experiment, one naturally looks for a small subset of features (e.g. small number 

of genes) that may explain the properties of the data that are being investigated. 

During the last decade, the motivation for applying feature selection (FS) has 

become a real prerequisite for model building (Saeys et al., 2007). In particular, 

the high dimensional nature of many modelling tasks in bioinformatics, going 

from sequence analysis over microarray analysis to spectral analyses and 
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literature mining has given rise to a wealth of feature selection techniques being 

presented in the field. In contrast to other dimensionality reduction techniques 

like those based on projection (e.g. principal component analysis) or 

compression (e.g. using information theory), feature selection techniques do not 

alter the original representation of the variables, but only select a subset of them. 

Thus, they conserve the original semantics of the variables, hence, offering the 

advantage of interpretability by a domain expert. 

As many pattern recognition techniques were originally not designed to cope 

with large amounts of irrelevant features, combining them with FS techniques 

has become a necessity in many applications (Guyon and Elisseeff, 2003; Liu and 

Motoda, 1998).  

Feature selection techniques are usually applied to: 

- improve model performance, i.e. prediction performance in the case of 

supervised classification and better cluster detection in the case of clustering 

- provide faster and more cost-effective models, i.e. reducing noise into data 

- gain a deeper insight into the underlying processes that generated the data.  

 

However, the advantages of feature selection techniques come at a certain price, 

as the search for a subset of relevant features introduces an additional layer of 

complexity in the modelling task, like it’s just said in section 1 and in particular 

it’s visible in Fig. 1-1. 

Feature selection techniques differ from each other in the way they incorporate 

the search of finding the optimal subset of relevant features and in the model 

selection.  

Feature selection can be applied to both supervised and unsupervised learning. 

In the following subsections we focus our attention on both problems: initially 

on supervised learning (classification), where the class labels are known 

beforehand, then on the interesting topic of feature selection for unsupervised 

learning (clustering), a more complex issue that get more attention in several 

communities (Varshavsky et al., 2006). 

2.1.1 Supervised Feature Selection 

In the context of supervised machine learning techniques, feature selection 

techniques can be organized into three categories: filter methods, wrapper 

methods and embedded methods. The categorization depends on how each 

technique combine the feature selection search with the construction of the 

supervised classification model. Fig. 2-1, taken from (Saeys et al., 2007) provides 

a common taxonomy of feature selection methods. For each feature selection 

type are highlighted advantages, disadvantages and some examples with the 

relative references. 
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Fig. 2-1: Taxonomy of feature selection techniques.  

 

Filter techniques, looking only at the intrinsic properties of the data, assess the 

relevance of features. Features’ relevance is measured using a “feature relevance 

score” and, consequently, low-scoring features are removed. Afterwards, the 

subset of chosen relevant features is presented as input to the classification 

algorithm. Advantages of these techniques are that they easily scale to very high-

dimensional datasets, they are computationally simple and fast, and they are 

independent of the classification algorithm. As a result, feature selection needs to 

be performed only once, and then different machine learning methods can be 

evaluated. A common disadvantage of filter methods is that they ignore the 

interaction with the classifier (the search in the feature subset space is separated 

from the search in the hypothesis space). This means that each feature is 

considered separately, thereby ignoring feature dependencies, which may lead to 

worse classification performance when compared to other types of feature 

selection techniques. In order to overcome the problem of ignoring feature 

dependencies, a number of multivariate filter techniques were introduced, 

aiming at the incorporation of feature dependencies to some degree.  

Wrapper methods embed the model hypothesis search within the feature subset 

search. In this setup, a search procedure in the space of possible feature subsets 

is defined, and various subsets of features are generated and evaluated. The 

evaluation of a specific subset of features is obtained by training and testing a 
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specific classification model, rendering this approach tailored to a specific 

classification algorithm. To search the space of all feature subsets, a search 

algorithm is then ‘wrapped’ around the classification model. However, as the 

space of feature subsets grows exponentially with the number of features, 

heuristic search methods are used to guide the search for an optimal subset. 

Advantages of wrapper approaches include the interaction between feature 

subset search and model selection, and the ability to take into account feature 

dependencies. A common drawback of these techniques is that they have a 

higher risk of over fitting than filter techniques and are very computationally 

intensive, especially if building the classifier has a high computational cost.  

Finally, in embedded techniques, the search for an optimal subset of features is 

built into the classifier construction, and can be seen as a search in the combined 

space of feature subsets and hypotheses. Just like wrapper approaches, 

embedded approaches are thus specific to a given learning algorithm. Embedded 

methods have the advantage that they include the interaction with the 

classification model, while at the same time being far less computationally 

intensive than wrapper methods 

2.1.2 Unsupervised Feature Selection 

As just said in the last subsection, many methods have been developed for 

selecting small informative feature subsets in large noisy data. However, 

unsupervised methods are limited. Examples are using the variance of data 

collected for each feature, or the projection of the feature on the first principal 

component.  

Unsupervised feature selection algorithms belong to the field of unsupervised 

learning. These algorithms are quite different from the major bulk of feature 

selection studies that are based on supervised methods (e.g., Liu et al., 2002; 

Guyon and Elissef, 2003), and compared to the latter are relatively overlooked. 

Unsupervised studies, unaided by objective functions, may be more difficult to 

carry out; nevertheless they convey several important advantages:  

- they are unbiased, by neither the experimental expert nor by the data-analyst, 

can be performed well when no prior knowledge is available,  

- they reduce the risk of over fitting (in contrast to supervised feature selection 

that may be unable to deal with a new class of data).  

 

The downside of the unsupervised approach is that it relies on some 

mathematical principle and no guarantee is given that this principle is 

universally valid for all data. A common practice to resolve this quandary is to 

demonstrate the success of the method on various biological datasets and 

compare the results obtained by the method with external knowledge.  

 

In this case existing methods can be classified in two principal categories: 

wrapper and filter.  

Wrapper methods contain a well-specified objective function, which should be 

optimized through the selection. The algorithmic process usually involves 

several iterations until a target or convergence is achieved.  

Feature filtering is a process of selecting features without referring back to the 

data classification or any other target function. Hence we find filtering as a more 
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suitable process that may be applied in an unsupervised manner. Existing 

methods of unsupervised feature filtering include ranking of features according 

to range or variance (e.g., Herrero, 2003, Guyon and Elissef, 2003), selection 

according to highest rank of the first principal component (‘Gene shaving’ of 

Hastie et al. 2000, Ding 2003) and other statistical criteria. An example of the 

latter is (Ben-Dor et al., 2001) where all possible partitions of the data are 

considered and the corresponding features are labelled. The partitions with 

statistical significant overabundance are selected. Another example is of (Wolf et 

al., 2005), who optimize a function based on the spectral properties of the 

Laplacian of the features. 

2.1.3 Proposed approach:   

Genetic Programming for Feature Selection 

In this section we focus the attention on a peculiar machine learning method, 

namely Genetic Programming (GP), which has been shown has good results in the 

analysis of different life sciences datasets (Archetti et al., 2009a; Archetti et al., 

2009b; Vanneschi et al., 2009). 

Evolutionary algorithms (defined in artificial intelligence, as a subset of 

evolutionary computation, a generic population-based metaheuristic 

optimization algorithm) have also been used for feature selection (Siedlecki and 

Sklansky, 1988; Casillas et al., 2001; Pal et al., 1998; Sherrah et al., 1996). 

Usually, in a genetic algorithm based feature selection approach (Siedlecki and 

Sklansky, 1989), each individual (chromosome) of the population represents a 

feature subset. For an n-dimensional feature space, each individual is encoded by 

an n-bit binary string b1,…, bn where bi=1 if the i-th feature is present in the 

feature subset represented by the individual and bi=0 otherwise.  Therefore, a 

machine learning algorithm, usually classification, is used to evaluate each 

individual (or feature subset). Typically each individual is evaluated based on the 

classification accuracy and the dimension of the feature subset (number of 1s). 

(Kudo and Sklansky, 2000) in their work affirm that genetic algorithm based 

feature selection performs better than many conventional feature selection 

techniques for high-dimensional data. (Siedlecki and Sklansky, 1989) used 

branch and bound technique for feature selection using genetic algorithms. 

(Casillas et al., 2001) developed a genetic feature selection scheme for fuzzy rule 

based classification systems. (Pal et al., 1998) introduced a new particular 

genetic operator for feature selection: self-crossover.  

However, there have been only a few attempts to use genetic programming 

(Koza, 1992; Banzhaf et al., 1998) for feature selection. 

 

In this section we focus on different applications of Genetic Programming 

technique to different life science datasets and we will point out strength of the 

Genetic programming approach as a feature selection technique.  

In particular, initially in subsection 2.1.3.1, we proposed a description of the 

implemented genetic programming framework, subsequently we report all 

experimental results obtained on three different life science datasets: NCI60 

dataset (described in Appendix A1.2), two Oncologic Datasets (briefly described 

in Appendix A1.4) and finally a molecular dataset (described in Appendix A1.5). 

For each dataset Genetic Programming has been applied not only for feature 
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selection scope, but also for prediction (NCI60 and molecular dataset) and 

classification (two oncologic datasets). 

2.1.3.1 Genetic Programming Framework 

Genetic Programming (GP) (Koza, 1992) is an evolutionary approach which 

extends Genetic Algorithms (GAs) (Holland, 1975; Goldberg, 1989) to the space 

of programs. Like any other evolutionary algorithm, GP works by defining a goal 

in the form of a quality criterion (or fitness) and then using this criterion to 

evolve a set (also called population) of solution candidates (also called 

individuals) by mimic the basic principles of Darwin evolution theory. The most 

common version of GP, and also the one used here, considers individuals as LISP-

like tree structures that can be built recursively from a set of function symbols 

F={f1, f2, … , fn} (used to label internal tree nodes) and a set of terminal symbols 

T={t1, t2, … , tm} (used to label tree leaves). GP breeds these solutions to solve 

problems by executing an iterative process involving the probabilistic selection 

of the fittest solutions and their variation by means of a set of genetic operators, 

usually crossover and mutation. 

 

Genetic Programming for regression: application to NCI60 and molecular datasets 

 

Both the application of Genetic Programming to NCI60 dataset and molecular 

dataset can be regarded as a regression problem.  

In particular for NCI60 dataset we look for a relationship between gene 

expressions and responses to oncology drugs Fluorouracil, Fludarabine, 

Floxuridine and Cytarabine, i.e. we aim at identifying, from genomic 

measurements of biopsies, the likelihood to develop drug resistance.  

On the other side, the objective of the study on the molecular dataset is assessing 

and predicting the value of the docking energy of genistein based drug 

compounds with estrogen receptor proteins. 

Results of this two studies are illustrated into (Archetti et al., 2009a) and 

(Archetti et al., 2009b) respectively. A description of the dataset used is in 

Appendix A. 

In both regression problems, we have used a tree-based GP configuration 

inspired by (Koza, 1992). Each feature in the dataset has been represented as a 

floating point number. Potential solutions (GP individuals) have been built by 

means of the set of functions F = {+, _, −, /, log, sin, cos, exp, sqrt}. 

The set of terminals T was composed by M−1 floating point variables (where M is 

the number of features in the dataset). The fitness function we have used is the 

Root Mean Squared Error (RMSE) on the training set. 

Below is reported an example of this kind of function: suppose the names of the 

floating point variables contained into the tree T set are x1, x2, ..., xM−1. Then, a 

candidate solution found by GP, expressed in infix notation, may for instance be: 

 

34125121
)exp(),,,( xxxxxxF

M
−+=

−
K  ( 2-1) 

 

 

A tree representation of expression ( 2-1) is given in Fig. 2-2.  
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Fig. 2-2: An example of a simple GP individual 

 

Its fitness is obtained by calculating the value of F(x1, x2, ..., xM−1) on all the lines of 

the dataset, i.e. by assigning the values contained in each line of the dataset to 

variables x1, x2, ..., xM−1 (in this example, only three variables are used). The RMSE 

is calculated using this result and the corresponding target for each line of the 

training set. 

In order to improve GP performances, we have optimized the RMSE on the 

training set with linear scaling, as described in (Keijzer, 2004). The efficacy of 

linear scaling in GP for many regression problems has been shown in (Keijzer, 

2003; Keijzer, 2004). In order to give a picture of the generalization ability of GP, 

we also report the RMSE and the correlation coefficient (CC) between outputs 

and targets on the test set.   

The parameters used in the implemented GP experiments are reported in Tab. 

2-1. Furthermore, we have used generational tree based GP with elitism, i.e. 

unchanged copy of the best individual into the next population at each 

generation. Finally, no explicit feature selection strategy has been employed 

(data from our dataset have been used as input to GP with no filtering, nor pre-

processing) in the experiments presented here, since we want to point out GP’s 

ability to automatically perform an implicit feature selection. 

 
Parameter Value 

Population size 200 individuals 

Population initialization Ramped half and half 

Selection method Tournament 

Tournament size 7 

Genetic operators Sub tree crossover and mutation 

Crossover rate 0.95 

Mutation rate 0.1 

Maximum number of generation 500 

Tab. 2-1: Parameters used in the presented GP experiments 

 

Genetic Programming for classification 

The aim of this application is not only to underline the ability of GP to perform a 

feature selection, but also to classify tumour tissues belonging to the “Colon 

dataset” and “Leukemia dataset”, both presented in appendix A.  

Also in this case the representation of individuals, that will be candidate 

classifiers are Lisp-like tree expressions built using the function set F = {+, ∗,−, /} 

and a terminal set T composed by M floating point variables, where M is the 

number of columns in the dataset (i.e., M = 2000 for the Colon Dataset and M = 

7070 for the Leukemia Dataset). Thus, GP individuals are arithmetic expressions 

that can be transformed into binary classifiers (class “normal” for healthy tissues 

and class “tumour” for ill ones for the Colon Dataset; class “myeloid” for acute 

myeloid leukemia and class “lymphoblastic” for acute lymphoblastic leukemia for 
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the Leukemia Dataset) by using a threshold. Here, we use two fitness functions: 

ROCAUC and CCI. In the first case each classifier is evaluated by a fitness function 

defined as the area under the ROC curve (Metz, 1978; Zweig and Campbell, 

1993). In this case, the ROC curve is obtained by considering 20 different 

threshold values uniformly distributed in the interval [−1, 1]. For each one of 

these threshold values, a point is drawn having as abscissa the false positive rate 

and as ordinate the true positive rate obtained by the candidate classifier using 

that threshold. The area is calculated using the trapezoids method. The second 

type of fitness function is instead obtained by fixing a particular threshold value 

(equal to 0.5 in this work, following (Rosskopf et al., 2007)) and calculating the 

CCI. CCI is defined as the correctly classify instances rate, that is, CCI = (TP + 

TN)/N, where TP indicates True Positives, TN specifies True Negatives, and N is 

the number of rows in the dataset. For calculating both these fitness values 

during the presented GP simulations, we have considered a static and a dynamic 

way of handling the training set, and we have considered training data as they 

are (i.e., without any explicit modification) or perturbing them with noise.  

2.1.3.2 Experimental Results on NCI60 dataset 

As just said before, our goal is two folds: find a mathematical relationship 

between the gene expression profile and the activity pattern of some particular 

drugs and test the ability of GP as a features selection technique.  

We consider four particular drugs, chosen from the NCI-60 A-matrix: 

Fluorouracil (5-FU), Fludarabine, Floxuridine and Cytarabine. For each one of 

these drugs we have built a separate dataset. Each one of our four datasets can 

be represented by N × M matrices H = [H(i,j)] where N = 60 and M = 1376. Each 

line i represents a gene expression whose known value of the therapeutic 

response to the chosen drug (Fluorouracil, Fludarabine, Floxuridine and 

Cytarabine respectively) has been placed at position H(i,1376). Thus, the last 

column of matrix H contains the known values of the parameter to estimate.  The 

four matrices representing the dataset of each drug differ only in the last column, 

while all the other columns are genes expressions as contained in the NCI-60 T-

matrix (see Appendix A.1.2).  

The results that we have obtained with Linear Regression are shown in Tab. 2-2. 

These table is partitioned into three sub-tables, respectively reporting the 

results obtained with no feature selection, i.e. where data have been used with 

no filtering or pre-processing (upper table), with PCFS (table in the middle) and 

with CorrFS (lower table). For each one of these three sub-tables, the first 

column reports the name of the drug that has been used, the second column 

reports the Root Mean Squared Error (RMSE) on the test set and the third 

column reports the correlation coefficient (CC) between outputs and targets. 

PCFS has selected 47 of the 1375 available features for all drugs, while CorrFS 

has selected 20 features for Fluorouracil, 19 features for Floxuridine, 30 features 

for Fludarabine and 25 features for Cytarabine. 
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a)No Feature Selection 

Drug RMSE on test set CC on test set 

Fluorouracil 0.2341 0.4815 

Floxuridine 0.3227 0.2196 

Fludarabine 0.1811 0.5927 

Cytarabine 0.3391 0.4761 

 

b)Principal Component Based Feature Selection (PCFS) 

Drug RMSE on test set CC on test set 

Fluorouracil 0.4946 0.6159 

Floxuridine 0.5807 0.2164 

Fludarabine 0.4910 0.1353 

Cytarabine 0.7004 0.0693 

 

c)Correlation Based Feature Selection (CorrFS) 

Drug RMSE on test set CC on test set 

Fluorouracil 0.1433 0.8675 

Floxuridine 0.1642 0.6828 

Fludarabine 0.2104 0.6979 

Cytarabine 0.3370 0.5252 

 
Tab. 2-2: Experimental results returned by Linear Regression  

for therapeutic responses prediction of four different drugs. 

 

In Tab. 2-3 we report the results returned by Least Square Regression on the 

same datasets. For obtaining these results, we have performed 100 independent 

runs of the Weka implementation of Least Square Regression (Weka, 2006) and 

we report the best, the average and the standard deviations of the results 

obtained. 

As for the case of Linear Regression, we have applied the method with no feature 

selection (part (a) of the table) and using the PCFS (part (b)) and CorrFS (part 

(c)) feature selection methods. 

Comparing the results of Tab. 2-2 with the ones of Tab. 2-3, we observe that for 

Floxuridine, both the best RMSE and the best CC have been obtained by Linear 

Regression using CorrFS. On the other hand, for Fluorouracil, Fludarabine and 

Cytarabine both the best RMSE and the best CC have been obtained by Least 

Square Regression using CorrFS. However, we point out that average results 

obtained by Least Square Regression are comparable (and sometimes slightly 

worse) than the ones returned by Linear Regression. Standard deviations for the 

Least Square Regression method are rather small and this seems to hint the fact 

that the behaviour of this method is rather “stable” (different executions return 

results which are rather “similar” to each other). Furthermore, we observe that 

the PCFS method is not useful to improve results on Tab. 2-4 reports the results 

we have obtained executing 100 independent GP runs with no previous explicit 

feature selection.  
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a)No Feature Selection 

Drug  RMSE on test set CC on test set 

Fluorouracil 

Best 

Avg 

Std. Dev. 

0.2446 

0.2591 

0.0160 

0.3505 

0.2077 

0.0160 

Floxuridine 

Best 

Avg 

Std. Dev. 

0.3518 

0.3595 

0.0351 

0.1695 

0.2836 

0.0169 

Fludarabine 

Best 

Avg 

Std. Dev. 

0.1961 

0.2098 

0.0106 

0.5207 

0.4591 

0.0469 

Cytarabine 

Best 

Avg 

Std. Dev. 

0.3517 

0.3799 

0.0189 

0.0727 

0.1524 

0.0145 

 
c)Correlation Based Feature Selection (CorrFS) 

Drug  RMSE on test set CC on test set 

Fluorouracil 

Best 

Avg 

Std. Dev. 

0.1389 

0.1843 

0.0481 

0.8980 

0.7352 

0.0184 

Floxuridine 

Best 

Avg 

Std. Dev. 

0.2009 

0.2455 

0.0419 

0.7439 

0.6071 

0.0105 

Fludarabine 

Best 

Avg 

Std. Dev. 

0.1661 

0.2038 

0.0338 

0.7439 

0.6071 

0.0105 

Cytarabine 

Best 

Avg 

Std. Dev. 

0.2902 

0.3269 

0.0376 

0.7142 

0.5616 

0.0192 

 
Tab. 2-3: Experimental results returned by Least Square Regression  

for therapeutic responses of four different drugs. 

 

For each one of these runs, we have monitored the best RMSE and CC in the GP 

population and we have reported their best, average and standard deviations. In 

general, the best results found by GP have a slightly better RMSE and remarkably 

better CC compared to both Linear Regression and Least Square Regression for 

all the four considered drugs. 

Tab. 2-4 also shows that standard deviations of the best obtained results over 

the 100 independent runs that we have executed are rather “small”, thus we 

could informally say that GP behaviour is rather “stable”, i.e. the results obtained 

in the different runs are quantitatively rather “similar” to each other.  

 

b)Principal Component Based Feature Selection (PCFS) 

Drug  RMSE on test set CC on test set 

Fluorouracil 

Best 

Avg 

Std. Dev. 

0.3183 

0.3275 

0.0161 

0.5761 

0.4160 

0.0139 

Floxuridine 

Best 

Avg 

Std. Dev. 

0.4110 

0.4208 

0.0136 

0.2142 

0.1783 

0.0420 

Fludarabine 

Best 

Avg 

Std. Dev. 

0.3263 

0.3501 

0.0405 

0.1885 

0.1056 

0.0567 

Cytarabine 

Best 

Avg 

Std. Dev. 

0.4435 

0.5829 

0.0103 

0.1260 

0.0497 

0.0552 
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a)Individual with the best RMSE on the test set 

Drug 
 RMSE  

on training set 

CC  

on training set 

RMSE  

on test set 

CC  

on  test set 

Fluorouracil 

Best 

Avg 

Std. Dev. 

0.1426 

0.1362 

0.0203 

0.9348 

0.8961 

0.0576 

0.1126 

0.1687 

0.0151 

0.9006 

0.7526 

0.1803 

Floxuridine 

Best 

Avg 

Std. Dev. 

0.1968 

0.1968 

0.0259 

0.8056 

0.8056 

0.1217 

0.1225 

0.1225 

0.0099 

0.8628 

0.8628 

0.1902 

Fludarabine 

Best 

Avg 

Std. Dev. 

0.1201 

0.1580 

0.02079 

0.9055 

0.8207 

0.0963 

0.1065 

0.1544 

0.0155 

0.9675 

0.7065 

0.2399 

Cytarabine 

Best 

Avg 

Std. Dev. 

0.1813 

0.2370 

0.0334 

0.6694 

0.6524 

0.1457 

0.1967 

0.2601 

0.0238 

0.8815 

0.6371 

0.1378 

b)Individual with the best  CC on the test set 

Drug 
 RMSE  

on training set 

CC  

on training set 

RMSE  

on test set 

CC  

on  test set 

Fluorouracil 

Best 

Avg 

Std. Dev. 

0.1112 

0.1236 

0.0171 

0.9542 

0.9299 

0.0372 

0.1487 

0.1940 

0.0208 

0.9522 

0.9046 

0.0238 

Floxuridine 

Best 

Avg 

Std. Dev. 

0.1860 

0.1823 

0.0253 

0.08221 

0.7962 

0.0943 

0.1347 

0.1736 

0.0175 

0.9110 

0.8127 

0.0473 

Fludarabine 

Best 

Avg 

Std. Dev. 

0.1204 

0.1312 

0.0162 

0.9248 

0.9060 

0.0356 

0.1089 

0.1727 

0.0216 

0.9729 

0.9113 

0.0311 

Cytarabine 

Best 

Avg 

Std. Dev. 

0.1767 

0.2181 

0.0321 

0.8973 

0.7469 

0.1264 

0.2003 

0.2843 

0.0367 

0.8911 

0.7253 

0.0577 

Tab. 2-4: Results returned by GP 

 

Furthermore, we did not apply any explicit feature selection method before 

running GP, thus saving some computational effort.  

We hypothesize that one of the advantages of GP compared to Linear Regression 

is that, while Linear Regression works under the hypothesis that the target 

function is linear, GP makes no hypothesis on the shape of the target function. 

Furthermore, the fact that GP allows us to obtain better CC results than Linear 

Regression and Least Square Regression may be due to the fact that we have 

used linear scaling as a quality criterion on the training set for GP: linear scaling 

is in fact known to optimize CC and RMSE together, as explained in (Keijzer, 

2004). 

We report the best individuals found by GP for the four considered drugs, in 

order to pinpoint the implicit ability of selecting relevant features and to 

understand the mutual relationships between genes that could potentially 

support the identification of biological meaningful pathways. The individual with 

the best RMSE found by GP over our 100 simulations for Fluorouracil, expressed 

in infix notation, is: 

 
(id 376146+id 49816+div(id_361815, id_158260)+ div(id_376146, 

(id_242740 + id_306136 + id_471110 * id_116296)) + id_428733 + 

id_376146 + id_306136 + sin(id_346396) + id_43555) 

 



Specific Challenges Related to Biomedical Data 

 
41 

Here genes are given as references to entries of the NCI-60 T-Matrix and they are 

documented in (Nci60 dataset, Appendix A1.2). The fact that the number of 

features is 1375 and ids have reference number larger than 1375 does not have 

to be surprising, given that we have used exactly the same identifiers as in NCI60 

in order to facilitate results interpretation.  

It is possible to remark that the solution reported above uses only 12 of the 1375 

possible features, thus GP has effectively performed an automatic feature 

selection. Furthermore, gene id_376146 (Cyb561) appears in three different 

positions in this expression. As explained in (Srivastava et al., 1995), this gene 

was found to be highly expressed in colon cancer cell lines and T cell lymphomas.  

This seems to hint that GP is maintaining pertinent information into the 

population. The individual with the best CC found by GP is: 

 
(id_470160 + exp(id_292082, id_321203) + div((exp(id_292082, 

id_321203) + id_417226 + id_327435), exp(id_292082, id_321203))+ 

id_417226 + id_471096+ div((id_292082 + id_417226 + id_327435), 

exp(id_417125, id_328234)) + exp(exp(sqrt(id_470160), id_193562), 

(id_193562 + id_301416)) + exp(sqrt(id_470160), id_143985) + 

id_471096 _ (id_292082 + id_417226) + exp(div(id_292082, id_359769), 

id_471096) + exp((sqrt(id_470160) − id_327435), sqrt(id_470160)) + 

id_488118) _ id_327435 

 

Also in this case the individual uses a small set of features (16 out of 1375) and 

some features appear more than once; for instance, it is the case of gene 

id_470160 (casp4) that appears in 5 different positions of this expression and of 

gene id_292082 (ssr3) that appears in 6 different positions. Gene id_470160 

(casp4) encodes a protein that is a member of the cysteine-aspartic acidprotease 

(caspase) family and when over-expressed, it has been shown to induce cell 

apoptosis. 

Gene id_292082 (ssr3) is a glycosylated endoplasmic reticulum membrane 

receptor associated with protein translocation across the endoplasmic reticulum 

membrane and it is limited to cell-lines of leukemic origin. 

Similar considerations can be done for the individuals with the best RMSE and 

CC found by GP for the other three drugs studied.   

All these results underline the fact that GP has implicitly performed a feature 

selection for all the four drugs and that some genes and structures appear more 

than once in the expressions of the best solutions. 

Since all these experiments are done on only one drug, a possible future work in 

order to include GP into the feature selection component of the clustering 

workflow depicted into Fig. 1-1, could be based on applying GP on all the set of 

drugs. After obtaining a single regression for each drug, we could apply a 

frequentist approach in order to rank the features selected based on their 

frequencies. 
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2.1.3.3 Experimental Results on Molecular Dataset 

Principal goals of GP application on molecular dataset is to assess and predict the 

value of the docking energy of genistein based drug compounds with estrogen 

receptor proteins and to test with also in this case study the GP features 

selection ability. 

Also in this case study different fitness function has been used: 

- root mean squared error (RMSEGP); 

- correlation coefficient (CCGP) between outputs and targets; 

- RMSE with linear scaling (LinScalGP) 

 

Tab. 2-5 reports the results of RMSEGP. These tables must be interpreted as 

follows: the upper part (part (a)) shows the results that we have obtained when 

no feature selection strategy has been employed (data from our dataset have 

been used as input with no filtering, nor pre-processing), the middle part (part 

(b)) reports the results when PCFS has been used and the lower part (part (c)) 

shows the results obtained using CorrFS. Columns 2 and 3 of these tables report 

the results obtained on the training set and columns 4 and 5 the ones on the test 

set; on both cases, we have reported the root mean squared error (RMSE) and 

the correlation coefficient (CC) between outputs and goals returned by the 

trained model. 

These results have been obtained by executing 100 independent RMSEGP runs. 

For each one of these runs, we have monitored the individual with the best RMSE 

on the test set and the one with the best CC on the test set. The upper part of Tab. 

2-5 reports the best (first line), average (second line) and standard deviation 

(third line) of the results returned by the individuals with the best RMSE on the 

test set at each run. The lower part of Tab. 2-5 does the same thing for the 

individuals with the best CC on the test set at each run. 

 
a) Individual with the best RMSE on the test set 

 RMSE  

on training set 

CC  

on training set 

RMSE  

on test set 

CC  

on  test set 

Best 

Avg 

Std. Dev. 

0.0805 

0.0899 

0.0056 

0.7592 

0.7022 

0.0442 

0.1104 

0.1227 

0.0059 

0.7100 

0.6509 

0.0367 

b) Individual with the best CC on the test set 

Best 

Avg 

Std. Dev. 

0.0830 

0.0913 

0.0069 

0.7913 

0.6924 

0.0532 

0.1110 

0.1268 

0.0084 

0.7323 

0.6659 

0.0330 

 
Tab. 2-5: Results that we have obtained performing 100 independent runs of RMSEGP  

on our dataset.  

 

Tab. 2-6 and Tab. 2-7 show the experimental results that have been returned by 

two non-evolutionary machine learning techniques: Linear Regression (Akaike, 

1973) and Least Square Regression (Rousseeuw and Leroy, 1987).  
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a) No Feature Selection 

 RMSE  

on training set 

CC  

on training set 

RMSE  

on test set 

CC  

on  test set 

Best 

Avg 

Std. Dev. 

0.0816 

0.0903 

0.0064 

0.7265 

0.6754 

0.0467 

0.1169 

0.1175 

0.0071 

0.6952 

0.6432 

0.0391 

 b) Principal Component Based Feature Selection (PCFS) 

Best 

Avg 

Std. Dev. 

0.1054 

0.1183 

0.0082 

0.6951 

0.6592 

0.0362 

0.1328 

0.1395 

0.0052 

0.6003 

0.5835 

0.0746 

c) Correlation Based Feature Selection (CorrFS) 

Best 

Avg 

Std. Dev. 

0.0945 

0.0995 

0.0056 

0.7064 

0.6845 

0.0476 

0.1185 

0.1276 

0.0036 

0.6972 

0.6325 

0.0427 

Tab. 2-6: Experimental results returned by Linear Regression 

 
a) No Feature Selection 

 RMSE  

on training set 

CC  

on training set 

RMSE  

on test set 

CC  

on  test set 

Best 

Avg 

Std. Dev. 

0.0945 

0.1769 

0.0085 

0.6964 

0.6065 

0.0392 

0.1709 

0.1865 

0.0083 

0.4145 

0.4395 

0.0426 

b) Principal Component Based Feature Selection (PCFS) 

Best 

Avg 

Std. Dev. 

0.0971 

0.0996 

0.0047 

0.6837 

0.6046 

0.0265 

0.1805 

0.1965 

0.0085 

0.4531 

0.4297 

0.0385 

c) Correlation Based Feature Selection (CorrFS) 

Best 

Avg 

Std. Dev. 

0.0901 

0.0983 

0.0038 

0.7013 

0.6954 

0.0238 

0.1661 

0.1753 

0.0029 

0.5143 

0.4975 

0.0285 

 

Tab. 2-7: Experimental results returned by Least Square Regression  

 

Tab. 2-8 reports the results of CCGP. This table must be interpreted as Tab. 2-5 

and it clearly shows that if we optimize the correlation on the training set, we 

obtain a CC on the test set which is considerably better then the CC returned by 

RMSEGP and non-evolutionary techniques. Nevertheless, CCGP also returns poor 

RMSE results. We also point out that standard deviations on the RMSE are high, if 

compared with the ones obtained with RMSEGP, both on the training and test 

set. 

These results suggest that only optimizing the correlation is not a good strategy 

to solve our problem. On the other hand, we would like to develop a method to 

optimize both the RMSE and the CC, and we hope that in that way we will be able 

to obtain results which are comparable to the ones of CCGP for the correlation, 

but better RMSE results. This is done with the next proposed configuration 

which takes both criteria, RMSE and the CC, into account. 
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a)Individual with the best RMSE on the test set 

 RMSE  

on training set 

CC  

on training set 

RMSE  

on test set 

CC  

on  test set 

Best 

Avg 

Std. Dev. 

0.0893 

0.1202 

0.0190 

0.8017 

0.8329 

0.0420 

0.1225 

0.1446 

0.0094 

0.6618 

0.5600 

0.0975 

b) Individual with the best CC on the test set 

Best 

Avg 

Std. Dev. 

4.2266 

5.9515 

4.0070 

0.9137 

0.9070 

0.0093 

6.2392 

7.6128 

5.0734 

0.9020 

0.8758 

0.0195 

Tab. 2-8: Results obtained with CCGP configuration 

 

Moreover we have decided to use linear scaling, like we have adopted in the 

NCI60 dataset case study.  

Tab. 2-9 clearly shows that both the best RMSE and CC on the test set found by 

LinScalGP are better than the best RMSE and CC found by the other GP variants. 

Furthermore, also the average best RMSE and the average best CC outperform 

the best RMSE and CC found by any of the other techniques. Finally, standard 

deviations confirm that the behaviour of LinScalGP is ‘‘stable’’ (i.e. the results of 

the 100 runs are rather similar to each other). All these considerations allow us 

to conclude that LinScalGP seems a suitable technique to solve our problem. 

 
a)Individual with the best RMSE on the test set 

 RMSE  

on training set 

CC  

on training set 

RMSE  

on test set 

CC  

on  test set 

Best 

Avg 

Std. Dev. 

0.0740 

0.0757 

0.0055 

0.9193 

0.8939 

0.0180 

0.1000 

0.1092 

0.0036 

0.9065 

0.8781 

0.539 

b) Individual with the best CC on the test set 

Best 

Avg 

Std. Dev. 

0.0691 

0.0735 

0.0041 

0.9356 

0.9221 

0.0113 

0.1000 

0.1107 

0.0042 

0.9245 

0.9057 

0.0074 

Tab. 2-9: Results obtained with linScalGP configuration 

 

The genotypes of the individual with the best RMSE will be given here as 

expressions in infix form and the molecular descriptors will be represented 

using traditional identifier.  

 
(POLA_pmi + (SMR_SAS0 - Z_pcplus + VAdjMa) * (b_1rotR + chi0v_C + 

POLA_pmi + b_1rotR + SlogP_VOL0) * (SMR_SAS0 - Z_pcplus)*(chi0v + 

VAdjMa))* (chi0v + VAdjMa) + chi0v_C +(SMR_SAS0 - Z_pcplus)*(chi0v + 

VAdjMa) + VAdjMa 

 

The first thing that one might observe when looking at this expression is that it 

uses a limited number of molecular descriptors: only 12 different descriptors 

over the 267 total descriptors included in the dataset. In other words, although 

no explicit feature selection algorithm has been applied to reduce the number of 

input data, GP has implicitly performed a strong feature selection. 

The mechanism that allows GP to perform feature selection is simple: GP 

searches over the space of all arithmetic expressions of 267 variables. This 

search space includes the expressions that use all the 267 variables, but also the 

ones that use a smaller number of variables and in principle there is no reason 

why an expression using a smaller number of variables could not have a better 
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fitness value than an expression using all the 267 variables. If expressions using 

smaller number of variables get a better fitness, they survive, given that fitness is 

the only principle used by GP for selecting genes. This is evidently what 

happened during the presented GP executions: GP has found expressions using a 

small number of variables with a better fitness value than the ones using all 

variables. Thus, the former expressions survived into the population, while the 

latter ones were extinguished. 

Furthermore, we point out that all the descriptors that have been used have an 

intuitive correlation with docking energy. In fact they are mostly belonging to the 

categories of constitutional descriptors, derived from properties like solvent 

accessible surface and log P, characteristics known to influence the binding 

energy. 

2.1.3.4 Experimental Results on Oncological Datasets 

In this study, we present an application of Genetic Programming for molecular 

classification of cancer and for the identification of the principal genes that 

explained the studied pathologies.  

Four versions of GP are studied on those datasets; those GP variants differ by the 

way of handling the training set and by the fact that they may or may not affect 

training data with noise.  

Results returned by GP are compared with the ones returned by three well-

known non-evolutionary Machine Learning methods: Support Vector Machines, 

Multi-Boosting and Random Forests.  

Combining different methods of handling training set and data have lead us to 

define four different versions of GP, that we call GP0, GP1, GP2, and GP3 for 

simplicity. 

- GP0 uses the static training set handling and data with no noise. This 

corresponds to standard GP. 

- GP1 uses the static training set handling and data perturbed with Gaussian 

noise. 

- GP2 uses the dynamic training set handling and data with no noise. 

- GP3 uses the dynamic training set handling and data perturbed with Gaussian 

noise.  
 

Results obtained by the non-evolutionary methods and by the different GP 

variants on the Colon Dataset and on the Leukemia Dataset are reported in the 

sequent paragraphs.  

 

Colon dataset 

Tab. 2-10 summarizes the experimental results obtained by the non-

evolutionary methods on the Colon Dataset. SVM is the method that returns the 

best average results, both for CCI and ROC, while the best CCI results are 

returned by Random Forests and SVM, and the best ROC results are returned by 

Random Forests. We point out that we have applied these classification methods 

to our datasets without any explicit feature selection or pre-processing 

algorithm. The motivation for this is that we wanted to compare these results 

with the ones obtained by GP, pointing out that GP is able to perform an 
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automatic feature selection, while the other non-evolutionary methods do not 

have this capability.  

 
 CCI ROC 

Best Average Std. Dev Best Average Std.Dev 

Random Forests 0.9444 0.7417 0.0810 1 0.8250 0.0755 

SVM 0.9444 0.8778 0.0438 0.9545 0.8525 0.0874 

Multi Boosting 0.8889 0.7850 0.0577 0.9861 0.8152 0.0488 

Tab. 2-10: Results returned by non- evolutionary methods on Colon dataset 

 
 CCI ROC 

Best Average Std. Dev Best Average Std.Dev 

GP0 1 0.8926 0.038 1 0.9437 0.0472 

GP1 1 0.8946 0.042 1 0.9444 0.0455 

GP2 1 0.8947 0.039 1 0.9437 0.0455 

GP3 1 0.8950 0.042 1 0.9555 0.0466 

Tab. 2-11: Results returned by the studied GP variants on the Colon dataset 

 

Tab. 2-11 reports the results obtained by the different GP variants studied using 

the same 10 training-test partitions as in Tab. 2-10. Comparing the results 

reported in these two tables, we can remark that all GP variants are able to find 

an ideal solution both for CCI and ROC, which is not the case for the non-

evolutionary methods (with the exception of Random Trees for ROC). Also 

comparing the average values, we can remark that all GP variants outperform all 

non-evolutionary methods, and the respective standard deviations seem to hint 

that the difference between GP performances and the ones of the other methods 

is statistically relevant. 

Differences between the various GP variants seem marginal, which hints that 

both the dynamic dataset handling and the use of Gaussian noise are not useful 

to improve GP generalization ability, at least for this application. By the way, it 

has to be remarked that performances of standard GP (GP0) are already 

(informally) rather “high”, and thus difficult to improve. In the future, we plan to 

investigate the gain in using GP1, GP2, and GP3 for more complex problems, 

where GP0 is not able to find good solutions. 
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Leukemia dataset 

 
 CCI ROC 

Best Average Std. Dev Best Average Std.Dev 

Random Forests 0.9048 0.7191 0.0939 0.9500 0.6999 0.1270 

SVM 0.8571 0.7476 0.0552 0.8375 0.7274 0.0924 

Multi Boosting 0.9524 0.7548 0.0733 1 0.7500 0.0895 

Tab. 2-12: Results returned by the non evolutionary methods on the Leukemia dataset 

 
 CCI ROC 

Best Average Std. Dev Best Average Std.Dev 

GP0 1 0.8323 0.0390 1 0.8491 0.0047 

GP1 1 0.8592 0.0425 1 0.8777 0.0400 

GP2 1 0.8325 0.0395 0.9778 0.8500 0.0392 

GP3 1 0.8607 0.0407 0.9904 0.8778 0.0381 

Tab. 2-13: Results returned by the studied GP variants on the Leukemia dataset 

 

Results obtained by the studied non-evolutionary methods are summarized Tab. 

2-12. For the Leukemia Dataset, MultiBoosting is the method that has returned 

both the best results and the best average results, both for CCI and ROC. 

Tab. 2-13 reports the results obtained by the different GP variants studied using 

the same 10 training-test partitions as in Tab. 2-12. Also in this case, all GP 

variants outperform all non-evolutionary methods, and standard deviation 

values seem to hint that the differences between the average results obtained by 

GP and the average ones obtained by the best non-evolutionary method on this 

dataset (Multi Boosting) are statistically relevant. All GP variants have been able 

to produce ideal solutions for CCI, while only GP0 and GP1 have been able to 

generate ideal ROC values. We finally remark that, also for the Leukemia Dataset, 

perturbing data with Gaussian noise or handling the training set in a dynamic 

way is not beneficial. 

 

We now report the genotype of some of the best solutions found by GP in the 

form of expressions in infix notation, and successively we describe the most 

recurrent genes contained in them. 

These expressions are reported here to allow the reader to have an idea of how 

the best solutions found by GP on the test sets look like; we do not pretend them 

to necessarily be the model explaining the relationships between gene 

expressions and the studied pathologies. In order to build such a model, 

collaborations with domain experts are needed (and we are planning them in 

our future activity). Nevertheless, we hope that reporting those expressions here 

may be a starting point for this new and challenging research. Furthermore, we 

also report scatter plots of the Z-scores of the different genes contained in the 

best solutions found by GP, and we show how those values are correlated when 

ROC and CCI are used as fitness functions. 
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Colon Dataset 

We first report a solution with CCI = 1 on the test set found by GP0.  

 

IF (K03460%X59131∗(X66924 + H20709) - (T74896 + U28963)∗(R61359 + 

T86444) - (U20659 - T81460)∗R53941)>0.5 

THEN Class = "tumour" 

ELSE Class = "normal" 

 

We remark that GP has performed an automatic feature selection; in fact, this 

solution contains only 15 over the 2000 possible genes. This fact distinguishes 

GP from the other studied Machine Learning, which can use a subset of features 

only if an explicit feature selection algorithm is executed before training (pre-

processing). 

One of the solutions with area under the ROC curve on the test set equal to 1 

returned by GP0 is 

 
IF ((X51416+R99200 * X06614)%(H23544 * X61123-T47213+M34344+(H79575-  

R50864)* U18920 + R46739 %(U20659 + H04333)-R53941+L09604)>0.5) 

THEN Class = "tumour" 

ELSE Class = "normal" 

 

In this case, GP’s feature selection has been even stronger: only 11 of the 2000 

available genes are used by GP. 

It is a widely agreed upon idea that only a restricted number of genes are 

correlated with tumour pathologies (those genes are often identified by domain 

experts as biomarkers). For this reason, the ability of GP to retain a limited 

number of genes into the proposed solutions is interesting. In order to identify 

and study the most important genes found by GP, for each one of the 4000 GP 

independent runs that we have performed to obtain the results reported in this 

Thesis (100 independent runs for each one of the 10 training-test different 

partitions and for each one of the 4 GP variants), we have retained the best 

solution found on the test set, both for CCI and ROC. In all those 8000 solutions, 

we have counted the number of occurrences of each gene in the dataset. We 

finally have extracted the 30 most recurrent genes. A detailed description of 

those genes is contained in (Archetti et al., 2009b). 

Furthermore, we have considered all the genes that have appeared in at least one 

best solution found by GP using CCI and in at least one best solution found by GP 

using ROC (i.e., we have considered the set of genes contained in the best 

solutions found by GP using CCI, set of genes contained in the best solutions 

found by GP using ROC, and we have considered the intersection between these 

two sets). 

In Fig. 2-3 the normalized Z-Score of these genes is depicted. In particular, gene’s 

normalized Z-Score it is defined as follows:  

σ

)(
ii

SES
ScoreZ

−
=−  ( 2-2) 

 

where Si denotes the number of times genes i being contained in the studied GP 

solutions, E(Si) is the expected number of times for gene i being contained in 

those solutions, and σ denotes the square root of the variance.  
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The computation of E(Si) is: 

pool gene initial in the genes ofnumber 

solution GP studied in the contained gene ofnumber 
)( =

i
SE  ( 2-3) 

 

 
Fig. 2-3: Normalized Z-score of the most recurrent common genes for the Colon dataset.  

 

In particular, Fig. 2-3 shows the correlation between genes’ normalized Z-Score 

for the two fitness criteria (CCI and ROC) for the four versions of GP ((a): GP0, 

(b): GP1, (c): GP2, (d): GP3) that we have studied. For all these GP versions, the 

score seem positively correlated (the figure also reports the axis bisector, which 

represents the ideal correlation). 

 

Leukemia dataset 

 

The genotype of one of the solutions with CCI = 1 found by GP0 is: 

 

IF (X05409 % M28130 +(U94855 - M84526)%(U04270∗ X55668 % D28473-
(D38498 - Z37976)% M96326) > 0.5) 

THEN Class = "tumour" 

ELSE Class = "normal" 

 

Also in this case, GP has operated an automatic feature selection, given that this 

solution contains only 10 of the 7070 possible genes. 

The genotype of a solution with area under the ROC curve on the test set equal to 

1 returned by GP0 is:  

 
IF (U15782 - J04990)% X04707+ X62822 - M27891∗ M96326 > 0.5) 

THEN Class = "tumour" 

ELSE Class = "normal" 
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It contains only 6 of the 7070 possible genes. 

Also for the Leukemia dataset for each one of the 4000 GP independent runs, we 

have retained the best solutions found on the test set, both for CCI and ROC. In all 

those 8000 solutions, we have counted the number of occurrences of each gene 

in the dataset. We finally have extracted the 30 most recurrent genes. For a 

detailed description of those genes we remand the reader to (Archetti et al., 

2009b). 

In Fig. 2-4 we report the correlation between the normalized Z-Scores of the 

genes that appear at least once in the best solutions found by GP using CCI and at 

least once in the best solutions found by GP using ROC. Also in this case, Z-Scores 

seem positively correlated. 

 

 
Fig. 2-4: Normalized Z-score of the most recurrent common genes for the Leukemia dataset.  

 

All the case studies presented in this subsection have confirmed that GP is a 

promising techniques for automatically perform, given a dataset as input, a 

feature selection. In the last case a study regarding the importance of the 

selected features has been presented, in order to confirm the ability of GP. 

So in this way we could include GP in the feature selection component of 

clustering procedures presented in Fig. 1-1. 
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2.2 Mixed Data Types 

The clustering methods we are been considering in section 1, while very good at 

grouping numerical values i.e. gene expression levels, cannot incorporate 

phenotypic data about the samples like histopathology observations (generally 

categorical values). 

In the last years the data mining community has been on the look-out for good 

criterion function for handling mixed data, since the traditional clustering 

algorithms work well on either categorical or numeric valued data. 

In order to overcome this problem, different strategies have been utilized like 

the follows: 

- A simple approach in which categorical and nominal attribute values are 

converted to numeric integer values. Subsequently numeric distance measures 

are used for calculating similarity between object pairs. On the other hand, it is 

very difficult to give correct numeric values to categorical values like colour, 

etc. 

- Another approach has been to discretize numeric attributes and then apply a 

categorical clustering algorithm. Also in this case there is a drawback:  the 

discretization process leads to loss of information. 

 

In the next sections we report an overview of existing algorithms and we focalize 

our attention on a particular algorithm, called Modified-K-Prototypes that we 

will use as a traditional technique in a particular application described in 

subsection 5.3. 

2.2.1 Overview of Existing Algorithm 

Clustering techniques for mixed data requires an objective function (that we 

already defined in section 1.2) with a combination of the distance measure for 

numerical values and that for categorical values.  A simple example can be seen 

in (Bushel et al., 2007), where the sum of the distance for the numerical values 

and a matching distance for a categorical values has been computed. 

(Li and Biswas, 2002) presented the Similarity Based Agglomerative Clustering 

(SBAC) algorithm based on (Goodall, 1966) similarity measure. This algorithm 

works well with mixed numeric and categorical features, though is 

computationally expensive.   

(Huang, 1997) proposed an objective function that considers numeric and 

categorical attributes separately. This function handles mixed data sets and 

computes the similarity between two elements in terms of two distance values 

(one for numeric attributes and the other for categorical attributes) and since it 

can be used with a partitional algorithm, is cost-effective. In particular, (Huang, 

1997) defined an objective function, that must be minimized, for clustering 

mixed data sets with n data objects and m attributes (mr numeric attributes, mc 

categorical attributes, m = mr + mc) as 

∑
=

=
1

),(
i

ji
qxdζ  ( 2-4) 

where the distance ),(
ji

qxd of a data object xi from the closest cluster centroid qj 

is defined as:  
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Where: 

-  r

it
x  are values of numeric attributes and c

it
x   are values of categorical attributes 

for data object xi.  

- qj = (qj1, qj2, … , qjm) represents the cluster centroid for cluster j.  

- c

jt
q represents the most common value (mode) for categorical attributes t and 

class j. For these attributes, d(p, q) = 0 for p = q and d(p, q) = 1 for p ≠ q.  

- r

jt
q  represents the mean of numeric attribute t and cluster j.  

- γ j  is a weight for categorical attributes for cluster j.   

 

Objective function ζ (reported in equation ( 2-4 )) is minimized for clustering 

mixed data sets. Analyzing Huang’s function, we can see that it takes care of 

categorical attributes separately. However, this has a few shortcomings:  

� For categorical attributes, the cluster centroid is represented by the mode of 

the cluster rather than the mean. While this allays the problem of finding the 

mean for categorical values, there is information loss since the true 

representation of the cluster is not obtained. Only one attribute value 

represents the cluster, even though there may be close seconds or thirds. 

� Binary distance between two categorical attribute values p and q is taken as 

d(p, q) = 0 for p = q and d(p, q) = 1 for p ≠ q. This does not reflect the real 

situation appropriately. (Stanfill and Waltz, 1986) suggested that for 

supervised learning though it is observed that d(p, q) = 0 for p = q, but it is not 

necessarily true that d(p, q) = 1 for p ≠ q. According to them d(p, q) is mostly 

different for different attribute value pairs and depends on the relative 

frequencies of value pairs within a class. This works even for clustering since 

it is usually not one attribute that determines the clusters but rather a 

collection of attributes. Thus, during clustering, attribute value co-occurrences 

among different attributes should be considered to compute d(p, q). The 

distance measure in that case can take care of significance of an attribute. 

(Ganti et al., 1999) uses a similar approach to derive clusters though it does 

not explicitly define d(p, q). 

� In Huang’s objective function weight of all numeric attributes is taken to be 1. 

The weight of categorical attributes is a user-defined parameter γj. However, 

in a real data set all numeric attributes may not have the same effect on 

clustering. Incorrect user-given values of γj may also lead to inaccurate 

clustering. 

Later, (He et al., 2005) extended their earlier algorithm for clustering categorical 

data called “Squeezed algorithm” (He et al., 2002), to cluster mixed data. In 

particular, they propose a divide-and-conqueror technique to solve mixed 

clustering problem. First, the original mixed dataset is divided into two sub-

datasets: the pure categorical dataset and the pure numeric dataset. Next, 

existing well established clustering algorithms (k-mean for numerical data and 

k-mode for categorical data), designed for different types of dataset are 

employed to produce corresponding clusters. Last, the clustering results on the 

categorical and numeric dataset are combined as a categorical dataset on which 

the categorical data clustering algorithm is employed to get the final output. (He 

et al, 2005) contribution is to provide an algorithm framework for the mixed 
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attributes clustering problem, in which existing clustering algorithms can be 

integrated.  

In the same year, (Huang et al., 2005) proposed a new “k-prototype clustering 

method” for handling mixed data. In this method attribute weights are 

automatically calculated based on the current partition of data. (Luo et al., 2006) 

proposed to cluster pure numeric subset of attributes and categorical attributes 

differently, and use cluster ensemble technique evidence accumulation to 

combine these clustering results to get final clusters.  

In the last years, several other approaches have been proposed like those of 

(Andreopouolus, 2006), (Ahmad and Dey, 2007). 

2.2.2 Modified K-prototypes Algorithm 

In this section we present a particular algorithm for mixed data types, proposed 

by (Bushel et al., 2007), that we will subsequently use and modify for a peculiar 

life science application.  The proposed algorithm consist in a modified k- 

prototypes, called “modk-prototypes”, algorithm.  

The approach follows the k-means paradigm with randomization of initialization 

of the algorithm. The distance computation schemes for handling numeric and 

categorical values have been designed to take care of the shortcomings discussed 

above. The strategy involves constructing an objective function from the sum of 

the squared Euclidean distances for numeric data with simple matching for 

categorical values in order to measure dissimilarity of the samples. Separate 

weighting terms are used to control the influence of each data domain on the 

clustering of the samples. Finally, a dynamic validity index for numeric data was 

modified with a category utility measure in order to determine the optimal 

number of clusters in the mixed type data. A cluster's prototype is formed from 

the mean of the values for numeric features and the mode of the categorical 

values of all the samples in the group. The cluster's prototype is taken as a 

representation of the feature values that depicts the phenotype of the samples in 

the group.  

 

Fig. 2-5: Schema of modk-prototypes (Bushel et al., 2007) 

In Fig. 2-5 is represented the components of the modk-prototypes algorithm for 

mixed data types proposed by (Bushel et al., 2007).    

The k-prototypes algorithm of (Huang, 2005) proposed above, was modified to 
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follow the k-means algorithm paradigm, and was also optimized to search for 

clusters formed closest to the global minima of the modk-prototypes objective 

function: 
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where xi is the ith instance ( i = 1...N), ql is the lth prototype, (l = 1...k), mr is the 

number of numeric attributes, as for  example microarray data, ms is the number 

of numeric attributes belonging to another domain (as for example clinical 

chemistry), mc is the number of categorical attributes.  

Finally, α, β and γ denote the weights (W) for the different data domain 

dissimilarity measures, respectively. They are non-negative and their sum is 

constrained to equal 1.  

As we can see in Fig. 2-5, (Bushel et al., 2007) propose two different weights for 

numerical data and one for categorical data, since in his case study he applied 

Mod-k-prototype algorithm to two numerical data (microarray data and clinical 

chemistry data) and one categorical (histopathology data). 

In particular, the weights for data domain t at the nth step (Wt[n]) are adapted (as 

follows: 
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where τ is the exponential weighting update factor in the range [0,1] and 

avecorr(xd, qd) is the average correlation coefficient (Pearson for numeric data, 

Jaccard for categorical data) between the samples and the prototypes based on 

the feature values from domain t. 
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where cov is the instance covariance, s is the instance standard deviation, N is the 

number of instances, p is the number of features that match and q is the number 

of features that do not match.  

 

Distance for numerical data 

Letting z represent numerical data, the distance between Z

i
x  and Z

l
q  containing 

missing values is defined as: 
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Then the distance between Z

i
x  and Z

l
q is: 
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where dj is the Euclidean distance (described in subsection 1.1), p is the number 

of numeric features and p0 is the number of numeric features with missing 

values in Z

i
x  and Z

l
q  or both. 

 

Distance for categorical data 

For categorical (c) feature values, the dissimilarity measure between c

i
x  and c

l
q  is 

defined by the total number of mismatches of the corresponding features from 

the instance c

i
x and the centroid  c

l
q  such that: 
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The modk-prototypes algorithm initialization is seeded by the domain data 

vector of a randomly selected instance for each of the k clusters. For adaptive 

clustering, recursion was used to update the centroids in order to find the 

configuration of the initial k-prototypes which ultimately results in the reduction 

of the objective function closest to the global minimum. 
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2.3 Knowledge “Integration” 

2.3.1 Knowledge in Life Science Domain 

During the second half of the 20th century life science domain and in particular, 

biology, has been dominated by a reductionist approach whose main enablers 

have been high throughput technologies, to generate large amounts of data, and 

bioinformatics to support their storage and analysis and help in inferring hidden 

relationships. 

 

 
Fig. 2-6: Reductionist approach and Integrative approach. 

 

We now have entire DNA sequences for a growing number of organisms and are 

continually defining their gene portfolios. Although functional assignment to 

these genes is presently incomplete, we can soon expect the assignment and 

verification of function for the majority of genes on selected genomes. 

Expression array and proteomic technologies give us the capability to determine 

when a cell uses particular genes and when it does not.  

The reductionist process is schematically depicted on the left in Fig. 2-6 (taken 

from (Palsson, 2000)). However, it has become generally accepted that the 

integrative analysis of the function of multiple gene products has become a 

critical issue for the future development of biology (Aebersold et al., 2000; 

Bailey, 1999; Evans, 2000; Hartwell, 1999; McAdams et al., 1998; Palsson 1997; 

Strothman, 1997). 

Such integrative analysis will rely not only on bioinformatics, thru the 

development of semantically richer methods of analysis but increasingly on 

systems biology. 

It is thus likely that over the coming years and decades, the biological sciences 

will be increasingly focused on the systems properties of cellular and tissue 

functions. These are the properties that arise from the whole, and represent 

“real” biological properties. These properties are sometimes referred to as 

“emergent” properties because they emerge from the whole and are not 

properties of the individual parts. 
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Bioinformatics will gradually merge into statistical and, both continuous and 

discrete, mathematical models: data driven iterative model building is likely to 

emerge as the underlying paradigm of integrative biology. 

 

The process of building mathematical models of complex biological processes 

and their computer simulation will be an iterative one (visible in Fig. 2-7), for 

example beginning to construct “in silico organisms” that are computer 

representations of their in vivo counterparts. Initial versions will be synthesized 

using genomic, biochemical, and physiological data. These models will have some 

interpretive and predictive capabilities. However, because of incomplete 

knowledge of constraints and erroneous annotation, these initial models will be 

able to represent only some functions of the organism correctly. 

In carrying out this iterative model building process, we must learn to embrace 

failure. The main difference between the in silico and in vivo organism is that the 

in silico version is missing some features. Therefore, we must set out to 

formulate experimentally testable hypotheses based on the in silico analysis, 

perform the experiments, and update the models (see Fig. 2-7). Interestingly, this 

iterative process for building in silico organisms is likely to have two feedback 

loops. One is the classical experimental loop (the one on the right in Fig. 2-7), and 

the other is in silico (on the left in Fig. 2-7). Many corrections and adjustments 

for these models are likely to originate from analyzing and searching the ever-

growing availability of bioinformatics databases. 

 

 
Fig. 2-7:  Iterative in silico model building in biology  

involves the formulation of experimentally testable hypotheses based in the in silico analysis, 

collection of experimental data, and subsequent refinement of the models based on these data.  

Figure from (Pallson, 2000) 

 

It is clear that even though the molecular composition of living cells is complex 

(i.e. their genotype) the number of distinct behaviours (i.e. their phenotypes) 

that they display is much fewer. This important principle of simplicity from 

complexity is emerging from singular value decomposition of gene expression 

data that clearly shows that many expressed gene products behave in a highly 

coordinated fashion (Alter et al., 2000; Holter et al., 2000).  
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Nowhere knowledge driven bioinformatics and systems biology approaches are 

more needed than in the pharmaceutical industry: the reductionist 

ligand/receptor approach has been exposed as inadequate in the design of 

genomically base drugs and diagnostics: the very concept of target has changed 

from the single protein to the regulatory druggable network. 

 

 
Fig. 2-8: Beyond Genomics Correlation Network  

Up and down regulates genes, proteins and metabolites in a mammalian disease model versus 

controls (‘normal’). A subset of the molecules depicted here could be used as an early biomarker 

of disease. The lines between and among the various molecules denote correlations, which are 

useful for understanding disease pathways and drug mechanisms of action from a biological 

perspective. Figure from (Mack, 2004) 
 

For the pharma industry it is critical that bioinformatics and systems biology can 

move beyond data integration and use information from many data sets to create 

computational models that can predict phenotypes at the cell, tissue and organ 

level.  

Inferring individual pathways is now possible: however no widely agreed upon 

methods still exist to infer the evolution of medically relevant phenotypes or 

clinical biomarkers, fro molecular events in a cell. 

Indeed it is increasingly clear that the sheer computational complexity of dealing 

in a principled way with all molecular components of a cell will prevent a purely 

bottom-up approach to allow the development of clinically useful disease 

models. For this reason bioinformatics, which has been so far mostly associated 

with data driven bottom-up approach must integrate itself with the top- down 

approach which is typical of systems biology ways (Fig. 2-9). In this figure, the 

analysis starts at the phenotype or even patient level and moves down thru the 

functional pathways towards protein networks and the underlying regulatory 

pathways. 
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Fig. 2-9:  Top down versus bottom-up approaches.  

Top-down approaches with major systems and work from the top down to the relevant tissues, cells, 

proteins and genes. Bottom-up starts with thousands of genes and proteins and tries to fit them together 

in a representation of cells. 

 

2.3.2 Knowledge Integration in Clustering Procedure 

In the introduction of this section we have explained and surveyed the 

importance of using the available background information in the process of 

building mathematical models to resolve important life science problems.  

In fact, in many cases we have access to additional information or domain 

knowledge about the types of clusters that are sought in the data. This 

supplemental information may occur at the object level, such as class labels for a 

subset of objects, complementary information about “true” similarity between 

pairs of objects or about the relationships structure present in the data, or user 

preferences about how items should be grouped; or it may encode knowledge 

about the clusters themselves, such as their position, identity, minimum and 

maximum size, distribution. 

Referring to the traditional clustering procedure described in section 1 and, in 

particular, in Fig. 1-1, we must modify this figure including different kind of 

background knowledge in the clustering problem.   

The modified clustering procedure is visible in Fig. 2-10, where adaptations are 

highlighted in yellow. With the new dotted yellow components with yellow 

dotted, we want to include knowledge derivate from both clustering analysis and 

the supplemental information coming from external sources (for example for life 

science domain: annotation, Gene Ontology terms, information about 

experimental conditions, etc.). 
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Fig. 2-10: Modified clustering procedure with knowledge integration 

 

The “background” knowledge included into clustering algorithm can be used to 

guide it and consequently improve obtained results.  

This knowledge takes into account not only a lot of information about initial data 

but also the richer structure of relationships present in data, more important for 

improving efficacy and efficiency of clustering output. 

The addition of this information, and in particular of relational information, 

implies that in the traditional “flat” data representation (where each instance is 

represented by a vector with a fixed number of attribute (Duda et al., 2000)) 

used by traditional clustering approached, must include the rich relational 

structure. In fact in many real-world applications like biological data processing, 

social network analysis and text mining, data do not exist in isolation, but a rich 

structure of relationships subsists between data. A simple example can be 

viewed in biological domain, where there are al lot of relationships between 

genes and proteins based on many experimental conditions. Another example, 

maybe common, is the Web search domain where there are relation between 

documents and words in a text or web pages, search queries and web users. 

Using all these relationships we can optimize the process of pattern discovery 

(clustering) between instances. As a result, relational data clustering, that learns 

cluster structures taking into account all these rich relationships structure, has 

become one of the most important data mining and machine learning topics. 

Analyzing in a deep view relational data, we can view three major types of 

information: 

• attributes for individual objects 

• homogeneous relations between objects of the same type 

• heterogeneous relations between objects of different types 

 

For example, for a scientific publication relational data set of papers and authors, 

the personal information such as name, surname and affiliation for authors are 

attributes; the keywords relations among papers are homogeneous relations; the 

authorship relations between papers and authors are heterogeneous relations.  

It’s possible to find another simple example in clinical data set, where the 

personal patient’s information is attributes, the concurrent medication among 

patients are homogeneous relations and the relations between patients and 

doctor through visits are heterogeneous. 
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The classic IID (independently and identically distributed) assumption in 

machine learning and statistics is violated by all these kind of data and the 

inclusion of all the different information about relationships in traditional 

machine learning methods represents a challenge. 

The first instinctive solution is the transformation of relational data into a “flat” 

representation and subsequently the application of traditional clustering 

techniques on each type of objects independently. Few problems can arise from 

this kind of transformation like the loss of the relations and the rich structure of 

information. Secondly, in some data mining applications, users are not only 

interested in the hidden structure for each type of objects, but also interaction 

patterns involving multi-types of objects.  

Furthermore, a large amount of clustering problems can be viewed as special 

cases of relational clustering.  

For example, partitional clustering (like k-means algorithm explained in 

subsection 1.3.1) clusters homogeneous data objects based on pair wise 

similarities, which can be viewed as homogeneous relations (represented by an 

affinity matrix). 

Different other literature algorithms can be viewed as particular relational 

clustering.  

In this thesis we have classified them into two principal categories: 

- “Structure driven approaches” that are bound to data structure.  

Data analysis problem is tackled from several dimensions: clustering 

concurrently columns and rows of a given dataset, like biclustering 

algorithm presented in subsection 3.1 or vertical 3-D clustering presented in 

subsection 3.2. These kinds of clustering algorithms can be formulated as 

clustering on bi-type relational data consisting of only homogeneous 

relations. 

- “Knowledge driven approaches” where domain information is used to drive 

the clustering process and interpret its results: semi-supervised clustering 

(presented in subsection 4), which is a special type of clustering using both 

labelled and unlabeled data, has attracted significant attention and is the 

most significant approach in this category. This kind of clustering algorithms 

represents the first step to implement a general framework taking into 

consideration heterogeneous relations and so a real “relational clustering” 

algorithm. 

 

Consequently, relational data present not only huge challenges to traditional 

unsupervised clustering approaches, but also great need for theoretical 

unification of various clustering tasks. 

The thesis work focuses on developing a unified framework for relational data 

clustering and effective algorithms for different types of data from a wide range 

of applications. The proposed relational approach will be presented in section 1. 

 



 

3. “Structure Driven” Methods 

In this section we describe the two main structure driven approaches: 

biclustering algorithms and three dimensional algorithms.  

Both approaches work only based on dataset structure without an explicit 

integration of unstructured domain knowledge. Biclustering, like we will 

highlight in subsection 3.1, is a data mining technique that allows a simultaneous 

clustering of columns and rows of a data matrix.  

On the other side, three dimensional clustering, a more recent approach 

described in section 3.2, aims to concurrently cluster two datasets that share a 

common set of row labels, but whose column labels are distinct. The resulting 

clusters reveal the underlying connections between the elements of all three sets 

of labels.  

Like we have already mentioned before, these kinds of clustering algorithms can 

be viewed as a particular case of “relational clustering”. 

3.1 Biclustering Algorithm 

In this subsection is proposed a brief survey of existing biclustering algorithms 

applied to life science domain.  

Generally, biclustering is a data mining technique which allows simultaneous 

clustering of rows and columns of a data matrix. The term became popular 

thanks to a work by (Hartigan, 1972), although the technique was originally 

introduced by (Mirkin, 1996). More recently biclustering has been successfully 

applied by (Cheng and Church, 2000) in the field of gene expression analysis.  

The simple idea of a biclustering algorithm is: given an m x n matrix, the 

algorithm generates biclusters, i.e. a subset of rows which exhibit similar 

behaviour across a subset of columns, or vice versa. 

One of the most important applications of clustering algorithm in life science 

domain is related to the analysis of gene expression dataset. A gene expression 

dataset contains measurements of increasing or decreasing expression levels of a 

set of genes. A number of gene expression measurements are usually taken, 

across time points, tissue samples, or patients. A gene expression dataset (visible 

in Fig. 3-1) is represented as a matrix of numerical values: gene expression 

versus experimental condition, gene expression versus tissue, gene expression 

versus patient. 

 

 
Fig. 3-1: gene expression dataset 
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The most common objectives pursued during gene expression data analysis, 

include:  

1) Grouping of genes according to their expression under multiple conditions. 

2) Classification of a new gene, given its expression and the expression of other 

genes, with known classification. 

3) Grouping of conditions based on the expression of a number of genes. 

4) Classification of a new sample, given the expression of the genes under that 

experimental condition. 

Traditional clustering techniques can only be used to group either genes or 

conditions, and, therefore, to pursue directly objectives (1) and (3), above, and, 

indirectly, objectives (2) and (4).  

However, many activation patterns are common to a group of genes only under 

specific experimental conditions. In fact, our general understanding of cellular 

processes leads us to expect subsets of genes to be co-regulated and co-

expressed only under certain experimental conditions while behaving almost 

independently under other conditions. Discovering such local expression 

patterns may be the key to uncovering many genetic pathways that are not 

apparent otherwise. It is therefore highly desirable to develop new algorithmic 

approaches capable of discovering local patterns in microarray data (Ben-Dor et 

al., 2002) and in other kind of data. 

These new approaches take the name of biclustering methods that, like just said 

above, perform clustering in the two dimensions simultaneously.  

One of the main differences between clustering and biclustering approaches is 

that clustering methods derive a global model, while biclustering algorithms 

produce a local model. Indeed, each gene in a bicluster is selected using only a 

condition of the features and each condition in a bicluster is selected using only a 

subset of the genes.  

The resulting clusters do not need to be exclusive and/or exhaustive: a gene or a 

condition should be able to belong to more than one cluster or to no cluster at all. 

 

Definition and problem formulation 

In the case of a gene expression matrix A whose elements xij represents the 

expression level of gene i under condition j, where i=1..n and j=1..m.  

Such a matrix A, with n rows and m columns, is defined by its set of rows, 

R={r1,…, rn}, and its set of columns, C={c1, …, cm}. We will use (R,C) to denote the 

matrix A.  

If I ⊆ R and J ⊆ C are subsets of the rows and columns, respectively, AIJ= (I,J) 

denotes the sub-matrix AIJ of A that contains only the elements xij belonging to 

the sub-matrix with set of rows I and set of columns J. 

Given the data matrix A, a cluster of rows is a subset of rows that exhibit similar 

behaviour across the set of all columns. This means that a row cluster AIC = (I,C) 

is a subset of rows defined over the set of all columns C, where I = {i1,…, ik} is a 

subset of rows (I ⊆  R and k ≤ n). A cluster of rows (I; C) can thus be defined as a k 

by m sub-matrix of the data matrix A.  

Similarly a cluster of columns is a subset of columns that exhibit similar 

behaviour across the set of all rows. In this case a cluster is a subset of columns 

defined over the set of all rows R, where J = {j1,…, js} is a subset of columns (J ⊆ C 

and s ≤ m). A cluster of columns (R,J) can then be defined as an n by s sub-matrix 

of the data matrix ARJ. 
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A bicluster is a subset of rows that exhibit similar behaviour across a subset of 

columns, and vice-versa. A bicluster (I, J) results therefore in a k by s sub-matrix 

of the data matrix A. 

The specific problem addressed by biclustering algorithms can now be defined. 

Given a data matrix, A, we want to identify a set of biclusters Bk = (Ik,Jk) such that 

each bicluster Bk satisfies some specific characteristics of homogeneity.  

The exact characteristics of homogeneity that a bicluster must obey vary.  

There are four major classes of biclusters: 

- Biclusters with constant values. 

- Biclusters with constant values on rows or columns. 

- Biclusters with coherent values. 

- Biclusters with coherent evolutions. 

Below a description of each class is reported. 

 
Biclusters with Constant Values 

This approach only produces good results when it is performed on ordered data 

(rows and columns must be reordered) and on non-noisy data.  

A perfect constant bicluster (visible in Fig. 3-2) is a sub-matrix (I, J), where all 

values within the bicluster are equal for all i ∈ I and all j ∈ J: 

µ=
ij

A  ( 3-1) 

 
1.0 1.0 1.0 1.0 

1.0 1.0 1.0 1.0 

1.0 1.0 1.0 1.0 

1.0 1.0 1.0 1.0 

Fig. 3-2: Perfect constant bicluster 

Different approaches are present in literature like that proposed in (Hartigan, 

1972) which introduced a partition based algorithm called Block Clustering.  
 

Biclusters with Constant Values on Rows or Columns 

The biclusters in Fig. 3-3(a) and Fig. 3-3(b) are examples of biclusters with 

constant rows and constant columns, respectively.  
 

1.0 1.0 1.0 1.0 

2.0 2.0 2.0 2.0 
3.0 3.0 3.0 3.0 
4.0 4.0 4.0 4.0 

 
 

1.0 2.0 3.0 4.0 

1.0 2.0 3.0 4.0 

1.0 2.0 3.0 4.0 

1.0 2.0 3.0 4.0 

(a) Bicluster with constant rows  (b) Bicluster with constant columns 

Fig. 3-3: Bicluster with constant values on rows or columns 

A perfect bicluster with constant rows or columns is a sub-matrix where all the 

values within the bicluster can be obtained using one of the following additive or 

multiplicative models: 

iij

iij

x

x

αµ

αµ

×=

+=
           or          

jij

jij

x

x

βµ

βµ

×=

+=
 ( 3-2) 

where µ is the typical value within the bicluster and αi is the adjustment for row 

i∈ I and βj is the adjustment for column j∈J. These adjustments can be obtained 

either in an additive or multiplicative way. 
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Many biclustering algorithms aim at finding these types of biclusters: (Getz et al., 

2000) introduced the Coupled Two-Way Clustering (CTWC) algorithm, (Sheng et 

al., 2003) tackled the biclustering problem in a Bayesian framework. 

 
Biclusters with Coherent Values  

When an additive or multiplicative model is used within the biclustering 

framework, a perfect bicluster with coherent values, (I,J), is defined as a subset of 

rows and a subset of columns, whose values xij are predicted using the following 

expression: 

jiij
x βαµ ++=   or   jiij

x ''' βαµ ××=  ( 3-3) 

where µ  is the typical value within the bicluster, αi is the adjustment for row i ∈ I 

and βj is the adjustment for column j ∈  J.  

The bicluster in Fig. 3-4(a) is an example of a bicluster with coherent values on 

both rows and columns, whose values can be described using an additive model.  
 

1.0 2.0 5.0 0.0 

2.0 3.0 6.0 1.0 
4.0 5.0 8.0 3.0 
5.0 6.0 9.0 4.0 

 
 

1.0 2.0 0.5 1.5 

2.0 4.0 1.0 3.0 

4.0 8.0 2.0 6.0 

3.0 6.0 1.5 4.5 

(a) Additive model  (b) Multiplicative model 

Fig. 3-4: Bicluster with coherent values  

Several biclustering algorithms attempt to discover biclusters with coherent 

values assuming either additive or multiplicative models: (Cheng and Church, 

2000) introduced a mean squared residue as a measure of the coherence of the 

rows and columns in the bicluster. (Klugar et al., 2003) looked for checkerboard 

structures in the data matrix by integrating biclustering of rows and columns 

with normalization of the data matrix. (Tang et al., 2001) introduced the 

Interrelated Two-Way Clustering (ITWC) algorithm that combines the results of 

one-way clustering on both dimensions of the data matrix in order to produce 

biclusters. (Lazzeroni and Owen, 2000) introduce the plaid model where the 

value of an element in the data matrix is viewed as a sum of terms called layers.  

 
Biclusters with Coherent Evolutions 

These biclustering algorithms address the problem of finding coherent 

evolutions across the rows and/or columns of the data matrix regardless of their 

exact values. The co-evolution property can be observed on both rows and 

columns of the biclusters, as it is shown in Fig. 3-5 (a), on the rows of the 

bicluster or on its columns. The biclusters presented in Fig. 3-5 (c) and Fig. 

3-5(d) are examples of biclusters with coherent evolutions on the columns, while 

Fig. 3-5 (b) shows a bicluster with co-evolution on the rows. 
 

S1 S1 S1 S1 

S1 S1 S1 S1 

S1 S1 S1 S1 

S1 S1 S1 S1 

 
 

S1 S1 S1 S1 

S2 S2 S2 S2 

S3 S3 S3 S3 

S4 S4 S4 S4 

 
 

S1 S2 S3 S4 

S1 S2 S3 S4 

S1 S2 S3 S4 

S1 S2 S3 S4 

 
 

70 13 19 10 

29 40 49 35 

40 20 27 15 

90 15 20 12 

(a) Overall coherent 

evolution 
 

(b) Coherent evolution 

on the rows 
 

(c) Coherent evolution 

on the columns 
 

(d) Example of 

bicluster with coherent 

evolution on the 

columns 

Fig. 3-5: Bicluster with coherent evolution  
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(Ben-Dor et al., 2002) defined a bicluster as an order-preserving sub-matrix 

(OPSM), a group of rows whose values induce a linear order across a subset of 

the columns. (Murali and Kasif, 2003) assumed that data may contain several 

xMOTIFs (biclusters) and aimed at finding the largest xMOTIF: the bicluster that 

contains the maximum number of conserved rows.  

 

In conclusion, the simplest biclustering algorithms identify subsets of rows and 

subsets of columns with constant values. More sophisticated approaches look for 

biclusters with coherent values on both rows and columns: each row and column 

can be obtained by adding a constant to each of the others or by multiplying each 

of the others by a constant value.   

According to the specific properties of each problem, one or more of these 

different types of biclusters are generally considered interesting.  
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3.2 3- Clustering Algorithm 

3-Clustering goes one step beyond biclustering and aims to concurrently cluster 

two datasets that share a common set of row labels, but whose column labels are 

distinct. Such clusters reveal the underlying connections between the elements 

of all three sets of labels.  

To outline the main advantages of the 3D approach we consider a “toy” example  

with references to the NCI-60 dataset (see Appendix A), composed by two 

matrices T and A containing cell lines and gene expression and cell lines and drug 

activity data, respectively. Just for the sake of this example we have assumed a 

cut-off value for gene expression and drug activity levels, so that the matrices are 

binary, like represented in Fig. 3-6 (a) and (b).  

Therefore, in T element tij is equal to 1 if gene j has a gene expression values over 

the fixed threshold, 0 otherwise. The same thing is done for matrix A where the 

value of aij cell is equal to 1 if the response of drug j is greater than a prefixed 

threshold and 0 otherwise.  
 

 G1 G2 G3 G4 

C1 1 1 1 0 

C2 1 0 0 0 

C3 1 1 0 0 

C4 1 1 0 1 

 

 D1 D2 D3 D4 

C1 1 0 1 1 

C2 0 1 1 0 

C3 1 0 0 0 

C4 0 1 0 0 

(a) T: Cell lines (C1… C4) vs. Genes (G1… G4) 

 

(b) A: Cell lines (C1… C4) vs. Drug response 

(D1… D4) 
 

<{G1}, {C1, C2, C3, C4}> 

<{G1, G2}, {C1,C3, C4}> 

<{G1, D1, G2}, {C1,C3}> 

<{G1, D3}, {C1,C2}> 

<{G1, D2}, {C2,C4}> 

<{G1, D1, G2, G3, D3, D4 }, {C1}> 

<{G1, G2, G4, D2 }, {C4}> 

 

<{G1, G2, G3}, {D1,D3, D4},{C1} > 

<{G1, G2, G4}, {D1 },{C4} > 

(c) Clusters in the join of T and A (d) 3-clusters across T and A 

 
Fig. 3-6: Sample data and clusters 

 

In principle we could join A e T in a single matrix D = [A|T].  

Fig. 3-6 (d) shows the 3-clusters that connect both A and T matrices, while figure 

Fig. 3-6 (c) shows clusters for D. 

For example consider the clusters listed in Fig. 3-6(c). The first two clusters 

<{G1}, {C1, C2, C3, C4}> and <{G1, G2}, {C1,C3, C4}> correspond to biclusters found 

within T and thus do not reveal any association between drug responses and 

gene expressions. The next three clusters < {G1, D1, G2}, {C1, C3}>, < {G1, D3}, {C1, 

C2}> and <{G1, D2}, {C2,C4}> do reveal some associations between drugs and gene 

expressions.  

However, if we partition each cluster, the partitions do not correspond to local 

bi-clusters in the individual datasets. In other words consider < {G1, D3}, {C1, 
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C2}>, the partition <{G1}, {C1,C2}> is not a bi-cluster in T (since it is enclosed 

within the larger pattern <{G1}, {C1,C2, C3 ,C4}> ).  

Still in this small “toy” example we see that only two of the seven mined bi-

clusters in the join of T and A revealed associations between the clusters of T and 

A.   

If we consider instead the 3-cluster < {G1, G2, G3}, {D1, D3, D4}, {C1} >, it not only 

points out an association among genes G1, G2, G3 and drug responses D1, D3, D4  

through the cell line C1, but also an association among the cell line C1 and genes 

G1, G2, G3 through drug responses terms D1, D3, D4 .  

Thus 3-clusters not only disclose associations between attributes of individual 

datasets through objects, but also reveal associations between local biclusters 

with respect to attributes in other data-sets. 

For a formal presentation of 3-Clustering see (Alqadah and Bhatnagar, 2008). 

3.3 Quality Measures for Biclustering and 3-Clustering 

In this subsection we report quality measures for the structure driven methods 

that we have just presented. In particular, the proposed measures for both 

approaches have been defined only for binary matrices (Procopiuc et al., 2002; 

Alqadah and Bhatnagar, 2008). 

3.3.1 Quality Measure for Biclustering 

As already defined above, biclusters may be thought as rectangular sub-matrices 

of the original dataset, in which the number of objects correspond directly to the 

height of the rectangle, while the number of items corresponds directly to its 

width.  

Given a bicluster AIJ=(I,J) where I denote the height of AIJ and J denote the width 

of AIJ. The number of 1’s in AIJ then corresponds directly to the area enclosed by 

AIJ, which we denote as: 

JIC *)( =ρ  ( 3-4) 

Utilizing ρ as a quality measure for local bi-clusters has two major drawbacks:  

a) it does not distinguish between the individual contribution of width and 

height to the total number of 1’s in a pattern.  

b) ρ does not take into account the fact that as height increases, the width of a 

bicluster must decrease.  

In order to overcome these drawbacks, (Alqadah and Bhatnagar, 2008) 

introduce a parameter β which represents a trade-off value for the percentage of 

items we are willing to drop for each additional object added. Equivalently β 

represents how many units of width we are willing to drop for each additional 

unit of height.  

It’s now possible to construct a quality measure, Ω centred around β and ρ(AIJ). 

Formally, given a bi-cluster AIJ in a dataset Di and β (0 < β < 1), let: 

|)||,(|)( JIA
iIJi

µ=Ω  ( 3-5) 

 

denotes the quality of AIJ in Di. Then Ωi should: 
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)1|||,|*(|)||,(|  subject to

  maximize

ii
+= JIJI

)ρ(A
IJ

βµµ
 ( 3-6) 

 

In order to solve the optimization problem defined above function μ(a, b) must 

satisfy the following two conditions (Procopiuc et al., 2002): 

1. μ(a, b) should be monotonically increasing in both a and b 

2. μ(a, b) should be a β-balanced. Mathematically this implies that: 
+∈<<+= Nnnbaba

n ,10),,(),( ββµµ  ( 3-7) 

 

One such function that satisfies conditions 1 and 2 is: 

µ(a,b) = a(
1

β
)b  ( 3-8) 

 

This results in the following definition for the quality of a bicluster. Given β and a 

bi-cluster AIJ=(I,J) in the dataset Di its quality )(AΩ
IJi

is given by 

|Y|

iIJi
)

β
|X|()(w(C),h(C)µ)(AΩ

1
==  ( 3-9) 

 

3.3.2 Quality Measure for 3-Clustering 

Usually when 3-Clustering algorithm is applied to binary matrices, we would like 

to: 

� Maximize the number of one’s in a 3-cluster.  

� Maximize the number of objects and items.  

 

A quality measure for 3-clusters has been developed in (Alqadah and Bhatnagar, 

2008) using the same intuition that was used for biclusters. 3-Clusters may also 

be thought of as rectangular sub-matrices across two data-tables.  

Therefore, given a 3-cluster  C12 =< X, Y, Z >,  where X is a subset set of the feature 

of data matrix D1, Y represents the features’ subset of the other data matrix D2  

and Z is a subset of the instances common to both data matrices:  

 
|||)||(|)( 12 ZYXC ∗+=ρ  ( 3-10) 

 

As the height of a 3-cluster increase, its width also must decrease, just as was the 

case with biclusters. Utilizing this fact, and properties 1 and 2 from the previous 

subsection we may now derive Ω12: 

),(),(
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1

(||)
1
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)
1
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∗+=

+=Ω
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YX

ZYXC
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Z

ββ

β

µ

 ( 3-11) 

 

The above equation is clearly β-balanced, and can be computed since it is the 

sum of the quality of bi-clusters. 
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In this way, given β and a 3-cluster C12 =< X,Y,Z > across Di and Dj its quality Ωij (C) 

is given by 
Ωij (C) = Ωi(< X,Z >) + Ω j (< X,Z >)  ( 3-12) 

 

The value of β will have a great effect on the nature of 3-clusters discovered. 

Higher values of β will favour 3-clusters containing more items from either D1 or 

D2 and fewer objects. As mentioned earlier, β represents the trade-off between 

how many columns a user is willing to give up in order to include n more rows.  



 

4.  “Knowledge Driven” Methods 

A large quantity of unlabeled data is available in many real-life data mining tasks, 

e.g., genes of unknown functions, uncategorized messages in an automatic email 

classification system, etc; on the contrary, labelled data is often limited and 

expensive to generate, since labelling typically requires human expertise.  

The first fact explains why clustering is common as an exploratory data analysis, 

the second why semi-supervised learning has become a topic of significant recent 

interest (Blum and Michell, 1998; Joachims, 1999; Nigam et al., 2000).  

In this section, we outline the main results on semi-supervised clustering, where 

the performances of unsupervised clustering algorithms are improved with 

limited amounts of supervision in the form of labels on the data or constraints 

(Wagstaff et al., 2001;Basu et al., 2003a; Klein et al., 2002; Xing et al., 2003;Basu 

et al., 2003b). In particular, semi-supervised learning can be viewed as a special 

case of relational clustering in which instances are represented into a 

propositional form and relationships among them are retained.  

Generally a fully unsupervised clustering algorithm might naturally find a 

solution that is consistent with the domain knowledge; the most interesting 

cases are those in which the domain knowledge suggests that the default 

solution is not the one that is sought. Therefore, researchers began exploring 

principled methods of enforcing desirable clustering properties.  

Recently semi-supervised clustering algorithms have been proposed that can 

incorporate pair wise constraints on cluster membership (Demiriz et al., 1999; 

Wagstaff et al., 2001; Basu et al., 2002) or learn problem-specific distance 

metrics that produce desirable clustering output (Cohn et al., 2003; Bilenko and 

Mooney, 2003; Hertz et al., 2004; Chang and Yeung, 2004; Bar-Hillel et al., 2005).  

This research area has been expanded to include algorithms that leverage many 

additional kinds of domain knowledge for the purpose of clustering (Basu et al., 

2004). 

Therefore, existing methods for semi-supervised clustering can be classified into 

three general categories usually called constraint-based, distance-based and 

hybrid clustering. The last one aims at defining a framework able to combine 

distance and constraint based methods. 

In the next subsections we provide a current account of the innovations in these 

three semi-supervised clustering categories. 

4.1 Constraint - Based Clustering Methods 

In Constraint-based clustering problems some pre-existing knowledge about the 

desired partitioning is available. This knowledge can be provided by the user in 

the form of labels or constraints to guide the clustering algorithm towards a 

more appropriate data partitioning.  

Constrained clustering was first introduced by using instance-level constrains. In 

particular, a set of instance-level constraints, C, consists of statements about 

pairs of instances (or objects). If two instances should be placed into the same 

cluster, a must-link constraint between them is expressed as c= (i,j). Likewise, if 

two instances should not be placed in the same cluster, c≠ (i,j), express a cannot-
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link constraint. If constraints are available, rather than returning partitions that 

satisfy the generic objective function used by the clustering algorithm, it is 

required that the algorithm adapts its solution to accommodate C.  

These instance-level constraints have several interesting properties.  

A collection of must-link constraints encodes an equivalence relation 

(symmetric, reflexive and transitive) on the instances involved.  The transitivity 

property permits additional must-link constraints to be inferred from the base 

set. More generally, if we produce a graph in which nodes represent instances 

and edges represent must-link relationships, then any must-link constraint that 

joins two connected components will entail an additional must-link constraint 

between all pairs of items on those components. In contrast, the cannot-link 

constraints do not encode transitivity; indeed c= (i,j) and c≠ (j,k) implies c≠ (i,k).  

The full set of constraints can be used in a variety of ways, including enforcing 

individual constraints and using them to learn a problem-specific distance 

metric. 

So we can say that constraint-based methods rely on user-provided labels or 

constraints to guide the algorithm towards a more appropriate data partitioning. 

In literature different approaches apply these methods in different ways: by 

modifying the objective function for evaluating clustering so that it includes 

satisfying constraints, like in (Demiriz et al., 1999); or by enforcing constraints 

during the clustering process like in the COP-KMeans algorithm proposed in 

(Wagstaff et al., 2001), or initializing and constraining the clustering based on 

labelled examples (Basu et al., 2004a). 

4.2 Distance - Based Clustering Methods 

Distance-based approaches are characterized by clustering distortion measures 

which take into account the labels or constraints in the supervised data.  

These can be viewed as other fruitful approaches to incorporate constraints as 

statements to adjust the distance (or similarity) between instances for 

accommodating the given relationship between instances. Indeed, a must link 

constraint c=(i,j) implies that instances i and j should be close together and a 

cannot-link constraint c≠ (i,j) implies that they should be sufficiently far apart to 

never be clustered together.   

Research on distance-based semi-supervised clustering with pairwise 

constraints includes the work of (Cohn et al., 2003), who used gradient 

descendent for weighted Jensen-Shannon divergence in the context of 

Expectation Maximization (EM) clustering; (Xing et al., 2003) utilized convex 

optimization and iterative projections to learn a Mahalanobis distance for K-

means clustering; the Redundant Component Analysis (RCA) algorithm used 

only must-link constraints to learn Mahalanobis distance using convex 

optimization (Bar-Hillel et al., 2005). Other methods include training a string-

edit distance using EM (Bilenko and Mooney, 2003), modification of the squared 

Euclidean distance using the shortest path algorithm (Klein et al., 2002), learning 

a margin-based clustering distortion measure using boosting (Hertz et al., 2004), 

and learning a distance metric transformation that is globally linear but locally 

non-linear (Chang and Yeung, 2004).  
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Most of these distance learning techniques for clustering learn the distance 

measure first using only supervised data, and then perform clustering on the 

unsupervised data.  

 

4.3 Hybrid Methods: Combination of Distance-Based and 

Constraint-Based  

As we have described in the last subsections, existing methods for semi-

supervised clustering can be generally grouped into constraint-based methods, 

with the aim to guide the clustering process with pairwise instances, and 

distance-based methods, that employ metric learning techniques to get an 

adaptive distance measure to be used in the clustering process. 

A hybrid method, that combines these two methods under a single probabilistic 

framework, has been proposed by (Basu et al., 2004). In particular, authors 

present a general framework based on Hidden Markov Random Fields (HMRFs) 

that combines the constraint-based and distance-based approaches in a unified 

model. 

This semi-supervised clustering model considers a set of data points X with a 

specified distance measure D between the points. Supervision is provided as a 

set of must-link constraints c=(i,j) (with a set of associated violation costs W) and 

a set of cannot-link constraints c≠ (i,j) (with associated violation costs W). The 

objective is to partition the data into K clusters so that the total distance between 

the points and the corresponding cluster centroids according to the given 

measure D is minimized while a minimum number of constraints are violated.  

An HMRF is defined by the following components: 

• A hidden field L = {li}i=1

N of random variables, whose values are 

unobservable. In the clustering framework, the set of hidden variables are 

the unobserved cluster labels on the points, indicating cluster 

assignments. Every hidden variable li takes values from the set {1, . . . ,K}, 

which are the indices of the clusters.  

• An observable set X = {x i}i=1

N of random variables, where every random 

variable xi is generated from a conditional probability distribution Pr(xi|li) 

determined by the corresponding hidden variable li. The random 

variables X are conditionally independent given the hidden variables L, 

i.e., 

Pr(X | L) = Pr(x i | li)
x i ∈X

∏  

In the framework, the set of observable variables for the HMRF 

corresponds to the given instances.  

 

Relationships between pairs of instances are provided by user supervision and 

summarized by a relation matrix R as follows: 
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Where: 

• ),(
ji

M

ij
xxdw is a function that penalizes the violation of must-link constraints. 

• ),(
ji

C

ij
xxdw is a penalty function for cannot-link. 

Each relationship contributes to the clustering process, according to the weight 

of must and cannot constraints violation ( M

ij
w and C

ij
w ) smoothed by a penalty 

scaling function ),(
ji

xxd  defined over the given feature space. In this case must 

and cannot-links are provided in order to guide the clustering process according 

to the existing relationships. Indeed, two objects xi and xj may share either a must 

or a cannot relationship if there exists a user supervision which states that xi and 

xj should or should not assigned to the same cluster. 

Given must and cannot relationships, the clustering objective function is to 

minimize the objective function as follows: 
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where If is an indicator function that denotes a violation of must or cannot 

constraints. In this case, if a supervised relationship provided by the user is not 

respected during the clustering process, the objective function is penalized and 

the cluster assignments are accordingly refined. A refined version of this model, 

focused on two-type relational data, has been investigated in the next section, 

where is described the proposed relational clustering framework. 

 

4.4 The Proposed Relational Clustering Framework: 

Principal Features 

In the last subsection, we have outlined different clustering methods aimed at 

including some information in the clustering process introducing penalization 

components, which are defined at the beginning of the clustering phase, in the 

clustering objective function . 

Instead, in our proposed relational clustering algorithm, relationships between 

data are not known a priori but are learned and subsequently used to smooth the 

assignment process through the penalization of those placements that increment 

distances between instances. The proposed approach can therefore be classified 

as a relational hybrid method. 

The main goal of the algorithm is to find the optimal partitioning of a set of 

related instances into exclusive clusters through the optimization of an objective 
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function based not only on features similarity/dissimilarity, but also on the 

inclusion of information coming from the relationships among instances. These 

relationships, are not given as an input, but they are learned from background 

knowledge about instances themselves. 

We started from the general clustering framework described in section 2.3 (Fig. 

2-10) and modified it to obtain the one represented in Fig. 4-1. 

 

 
Fig. 4-1: Relational Clustering Core 

 

The proposed clustering procedure is based on two principal phases that take 

into account both input and background data for relationships learning. These 

phases are: 

1. Relations Learning: in general in this phase relationships are discovered 

and learned from domain background information. 

2. Relational Clustering: in this phase, the learned relationships are included 

into the clustering process modifying the clustering objective function. 

 

The relation learning phase receives as input background information about 

instances in the form of a data matrix, where each instance is characterize by a 

set of features. Generally, in the proposed framework relations are learned thru a 

traditional clustering algorithm used as an exploratory technique to better 

analyze additional information and find possible relationships between 

instances. So in this relation learning step we can define two principal 

relationship types among instances, each one represented by a different degree 

of intensity. We will refer to these as Affinity and Diversity link (with the word 

link we mean relationships). 

In particular, an Affinity link is a link between two instances belonging to the 

same cluster in this first step. This link suggest us that maybe there is a relation 

between these instances, since they share some similar features and this 

relationship has a weight equals to the distance between these. In this way, if 

two instances are more similar each other (they are very close in the features 

space) they are likely to be related.  

In the opposite way, a Diversity link is a link between two instances belonging to 

different clusters in this first step. As a consequence, this kind of links suggests 
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us that probably there isn’t a relationship between these two instances or the 

instances have a very week relationship.  

A simple representation of Affinity and Diversity Links is illustrated in Fig. 4-2. In 

the left part of the figure a simple data representation of background information 

is provided, where each instance is represented by a vector of n features (as 

already presented in section 1 and 3).  

The affinity and diversity links are visible on the right of the figure, where a 

particular weight based on distances between instances is assigned to each link. 

For example, the link among instance i and j is an affinity link, and links between 

instances z and h or instances g and f are diversity links.  

It is necessary to point out that the two diversity links have different weights. 

In this way, we can so define two matrices of relations RA (for affinity relations) 

and RD (for diversity relations) where each element of the matrices represents 

the links weight. Formally: 
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From the above definition we can see that in our approach the weight of a 

relationship between two instances depends on the distance between them. This 

distance will be computed with one of the different measures presented in 

subsection1.1 chosen according to the application domain. 

 

 
Fig. 4-2: Relation Learning Phase 

 

In this way, the strength of the relationships will be used to modify, in the 

relational clustering phase, the traditional clustering objective function 

presented in subsection 1.2. 
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Defining the assignment matrix Z (as in ( 1-10)): 
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The clustering problem can be formulated as: 
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This optimization problem can be solved through an adaptation of K-means 

heuristic, reported in Algorithm  1-1. 

As we can understand from equation ( 4-6), if an affinity or a diversity link 

between instances i and j is not preserved, the objective function is penalized 

according to the weight defined A

ij
r  (or D

ij
r ). 

 

In this subsection we have provided only a general description of the proposed 

relational clustering framework.  

In this thesis this framework has been developed and applied for different kind 

of applications in life science domain. As a consequence, this general relational 

framework will be modified and instantiated for each application, based on the 

goal of the application itself.  

In the next chapter three different instantiations of the framework are 

presented. 
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5. The Proposed Relational Clustering Framework: 

Case Studies 

This chapter describes the proposed relational clustering framework applied to 

three different case studies: 

- Learning transcriptional regulatory modules (section 5.1) 

- Detecting the most effective cancer drug (section 5.2) 

- Oral Anticoagulation Therapy (OAT) (section 5.3) 

5.1 Learning Transcriptional Regulatory Modules 

In this section we present a particular instantiation of the relational clustering 

framework for finding modules of co-regulated genes, i.e. group of genes that are 

likely to be regulated by the same set of transcription factors.  

The main results of this analysis are synthesized in (Archetti et al., 2008; Archetti 

et al., 2009c). 

5.1.1 The biological problem: state of the art 

To completely understand the behaviour of an organism, an organ, or still a 

single cell, we need to learn the underlying regulatory mechanisms governing 

the expression of genes in the cell itself. A key junction in these mechanisms is 

the mRNA transcription regulated by proteins, known as transcription factors 

(TF). A TF binds to specific DNA sequences in the promoter region of a target 

gene and activates the transcription process from DNA to RNA. A consequence of 

this particular mechanism is the expression of the target gene in a cell. Genes 

regulated by a common set of TFs are usually called co-regulated genes, since 

their expression levels will follow the same pattern. 

Understanding the regulatory mechanisms of gene transcription is an important 

goal of molecular biology and high-throughput genomics and the availability of 

DNA microarrays, which measure the expression level of thousands of genes 

simultaneously, has given an important contribution in this direction (Haverty et 

al., 2004). 

Several approaches have been proposed to uncover genes’ regulatory 

mechanisms, by partitioning genes into transcriptional modules (TM), i.e. groups 

of genes that obey to a common transcriptional program.  

The most commonly used computational methodology for the discovery of co-

regulated genes applies clustering algorithms to expression data and then 

searches for the transcription factors that most probably bind to each set of co-

expressed genes (Eisen et al., 1998; Liu et al. 2001; Sinha et al. 2000). 

Biclustering algorithms, already presented in section  3.1, have also been applied 

(Bergmann et al. 2003; Ihmels et al. 2004), aimed at obtaining biclusters of co-

regulated genes, i.e. clusters characterized by a set of genes and the set of 

experimental conditions that induce their co-regulated expression, thus 

facilitating the identification of set of genes involved in the same functional role. 
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In this case however the identification of the transcription factors involved in the 

regulation is not directly revealed and is left to a further analysis. (Middendorf et 

al., 2005) introduced a particular motif discovery algorithm called MEDUSA 

(Motif Element Discrimination Using Sequence Agglomeration) that builds motifs 

models whose presence in the promoter region of a gene is predictive of 

differential expression. In particular, putative binding sites are used to build a 

decision tree that tries to explain the gene expression profiles in terms of motifs.  

Other approaches like that by (Barash et al. 2001),  starting from the analysis of 

sequence data, work in the opposite direction: they first reduce the sequence 

data into some predefined features of the gene, given by the presence or absence 

of various potential transcription factor binding sites, then identify groups of 

genes having common patterns.  

All these clustering-based methods principally partition genes into mutually 

exclusive clusters measuring correlative and linear relationship among genes 

and discover TM by presuming that genes with similar expression profiles share 

similar functions. However, genes implicated in the same biological process can 

have different expression patterns (Zhou et al., 2005; Zhang et al., 2004).  

Recently, more sophisticated algorithms have been presented to attempt to 

combine both upstream sequence information and expression data in a single 

framework to build prediction models able to identify regulation patterns: in 

particular (Segal et al. 2003) constructed a probabilistic model that uses 

expression data to link regulators to regulated genes. Their method relies on the 

assumption that the expression levels of regulated genes will depend on those of 

regulators, which is a limitation in cases in which the expression level of the 

regulator does not change appropriately (e.g., cases of post-transcriptional 

modification). Moreover, they might produce gene clusters that are not 

biologically interpretable because both the cluster and the regulation program 

are free parameters that have to be optimized. 

(Ernst et al., 2008), propose SEREND, a semi-supervised regulatory network 

discovery method applied to the bacterium Escherichia Coli. They use an 

iterative classification scheme that exploits a compendium of gene expression 

data in a semi-supervised way in order to predict novel regulator-target 

interactions: they train a model using expression and regulatory motif data and 

then infer novel interactions using their model on expression and motif data.   

These methods aim at finding new motifs that are probably involved in the 

regulation of the uncovered clusters of genes or new predictions of transcription 

factors-genes interactions.  

In the last years, large databases about known transcriptional factors and their 

functionalities have been made available for an increasing number of organisms. 

Taking into account this information we can associate to each gene a TF profile, 

whose elements represent the strength of the relation between genes and TFs. 

(Clements et al. 2007), for example, exploit this information to cluster genes 

using a weighted distance measure to combine features associated to gene 

expression levels with features associated with information about interaction 

between gene and known TF.  

Analyzing all the clustering-based approaches just presented, we have seen that 

generally they aim at partitioning genes into a specified number of clusters 

through the minimization of a cost function related to a similarity/dissimilarity 

measure between points computed usually on the basis of a distance measure, 
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without taking into account background and contextual information about pairs 

of instances for constraining their cluster placement.  

By using the available data (like microarray, dna-binding, protein-protein 

interaction and sequence data) in an integrative framework it is possible to 

unravel the regulation process at a more global level.  

The conclusions drawn by previous investigations and the weakness of 

traditional distance-based algorithms, lead us to the application of our relational 

clustering framework taking into account the background knowledge. In this 

way, the incorporation of this knowledge permits to obtain an improved and 

reliable picture of the whole transcriptional regulation process. 

In particular, in this application we develop an instantiation of the general 

relational clustering framework (illustrated in section 4.4): we propose an 

iterative relational clustering procedure that given a dataset Ω of genes, at each 

iteration, determines a set of possible significant regulatory interactions by 

identifying a set of candidate transcription factors and then refines the clusters 

of genes based on their expression level, by modifying the distance measure 

accordingly. As a result we obtain clusters of genes that are both co-expressed 

and co-regulated by the same set of transcription factors.  

In the next subsections initially we describe the method used for obtaining gene 

regulatory information and then we integrate this information with gene 

expression data thru the iterative relational clustering procedure. 

5.1.2 Integration of Gene Regulatory Information and Gene Expression Data 

Gene regulatory information is computed by using Pscan, a recently 

developed tool (Zambelli et al., 2009). Pscan is a software tool that takes as input 

a set of candidate co-regulated genes and gives as output their binding values 

with respect to a set of known TF (order by their associated p-value). 

For each gene i we consider a vector of real numbers TF

i
g , that we call TF profile of 

the gene, whose element TF

it
g  represents the binding value of gene i with respect 

to TF t.   

The result is a set ΩTF (an example is visible in Fig. 5-1) that can be regarded as a 

measure of the relationship strength between genes and the set of TFs.  

 

 
Fig. 5-1: Ω

TF
 matrix 
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Combining gene expression data and gene regulation: a simple traditional 

clustering approach 

 

The dataset can be viewed as a set into the space Rn+m defined as: 

 
},),,(|{ mTFnExpTFExp RgRggggg ∈∈==Ω  

 
( 5-1)  

where for each gene we have both its expression values in n experimental 

conditions Expg and its TF profile TFg  with respect to a set of m known TFs.  

We can consequently define ΩG and ΩTF as the set of the genes represented thru 

their gene expression profile and their binding values with known TFs 

respectively: 
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In this way a gene Ω∈i  can be represented as a vector mn

i
g +ℜ∈ . 

A first integration of this data in the clustering procedure can be done following 

the approach proposed by (Clements et al., 2007), also called STVQ by (Graepel, 

1968). They suggest integrating the occurrence of known regulating elements in 

the upstream region of genes together with their expression levels as a combined 

input to the clustering system.  

The approach clusters genes using a linear combination of two distances, 

),(
Exp

j

Exp
ggd

i
related to the gene expression data ΩExp and ),(

TF
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TF
ggd
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related to the 

regulation profiles ΩTF. Therefore, a weighting parameter α ( 10 ≤≤ α ) sets the 

balance between the gene distance in ΩExp and in ΩTF: 
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In our implementation we compute this distance using the Pearson correlation 

distance measure (described in sect. 1.1), i.e.  

)),(1(),(
jiji

ggpggd −=  ( 5-5) 

where ),(
ji

ggp  is the Pearson correlation coefficient.  

Using this distance metric we employed the traditional K-Means clustering 

algorithm, described in sect. 1.3.1 with different values of the parameter α. 

Analyzing the cluster obtained with this simple clustering approach we can see 

that the number of TFs with a high potential binding vales is much low compared 

to the entire set (of size m). For this reason we propose an approach that at each 

iteration considers only the subset of relevant TF.  

How to determine such subset is described in the following section. 

5.1.3 The Proposed Iterative Relational Clustering Approach 

The general relational clustering framework proposed in the last chapter, has 

been instantiated for this problem (visible in Fig. 5-2) where a loop between the 

relational learning and relational clustering components has been introduced.  
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Fig. 5-2: Instantiation of general relational clustering framework 

 

The initialization phase consists of clustering genes with respect to their 

expression levels, to obtain sets of genes that exhibit similar expression 

behaviors under various experimental conditions. In particular, we apply the K-

means algorithm and the distance metric explained in subsection 2.1.  

Since we want to cluster genes with respect to their gene expression profile, we 

set the weighting parameter α, presented in equation ( 5-4), equals to 1 in order 

to obtain the following distance measure: 

),(),( ExpExp

ji ji
ggdggd =  ( 5-6) 

where ),(
ji

ggd  is computed using equation ( 5-5). 

In order to build a TF profile for each gene belonging to the obtained clusters, we 

find the set of candidate TFs for each cluster of genes. Instead of considering all 

the TFs, which imply a profile dimension of m elements, we consider only the 

relevant ones.  

In particular, we define a TF as relevant if it has a high potential binding factor 

with the promoter regions of genes belonging to that cluster.  

We consider as candidate TFs only those TFs whose associated p–value 

(obtained by Pscan tool, as described above) is below a certain threshold that we 

set to 10-4, deemed as a significant level (Lee et al., 2002).  

In this way, with all the binding values of chosen candidate TFs, we can build a 

new set ΩTF of transcriptional profiles of dimension less than m. 

We now describe the main components of the framework depicted in Fig. 5-2 . 

5.1.3.1 Relation Learning 

In order to learn affinity and diversity relations, we perform a genes clustering 

with respect to gene TF profile using the traditional K-Means algorithm and a 

distance measure based on Pearson Correlation Coefficient.  

Genes belonging to the same cluster TF

c
C , obtained by this step, will be considered 

as regulated by the same TFs and genes belonging to different clusters will be 

considered as having different transcriptional profiles.  

The strength of genes relations depends on the distance between genes in the 

clustering model just obtained.  
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In order to include this relationships in the objective function of relational 

clustering phase, the two relation matrices RA and RD are defined;  each element 

of RA, A

ij
r , represents the weight of an Affinity Link and the element D

ij
r  of RD 

represents the weight of an Diversity Link.  

In particular, A

ij
r  of matrix RA is defined as the distance between the two 

transcriptional profiles TF

i
g and TF

j
g . Formally: 
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Therefore, an Affinity Link between two genes i and j is defined as a link that 

invites us to put the 
i

g and 
j

g together in the same cluster during the subsequent 

phase, since this link means that the genes that we take into account have a high 

binding strengthens, and so a regulatory relationships, with the same TF(s). 

A Diversity Link between two genes i and j suggests us not to put the two genes in 

the same cluster during the subsequent phase. In fact, since we want to find 

genes co-regulated by the same TF, a Diversity link says that genes i and genes j 

do not bind with the same TF. So, the element D

ij
r is represented by: 
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5.1.3.2 Relational Clustering 

The core of relational clustering step, depicted in Fig. 5-2, is based on refining the 

initial clustering model based only on gene expression profiles, in order to take 

into consideration regulatory relationships between genes based on their TF 

profile similarity. 
 

 
Fig. 5-3: Iterative process of learning distance measure and modify objective function 

 

In particular, using the information matrixes RA and RD about gene Affinity and 

Diversity links and their respectively degrees of intensity, we perform a genes 

clustering with respect to gene expression profiles taking into account these 

learned regulatory relationships.   

Also in this case, we use a K-Means clustering algorithm, but the objective 

function is modified (with respect to the traditional proposed in equation ( 
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1-11)) by using both gene expressions data Exp

i
g  and the Affinity and Diversity 

relationships. 
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In this way we minimize the sum of the distances between genes, expressed by 

their expression level measures, penalized by a function that considers 

regulatory and not regulatory links. In particular, if an Affinity Link (or a Diversity 

Link) is not preserved, the objective function will be penalized according to the 

weight A

ij
r  (or D

ij
r ) learned from transcriptional profiles clustering.  

The framework is iterative, in fact the new set of clusters is used to find a new 

set of relevant TFs that will be subsequently used to learn relations and apply 

the relational clustering. All these steps are repeated till the stability is reached 

i.e. when the set of relevant TFs doesn’t change with respect to the previous 

iteration. 

5.1.4 Computational Experiments and Results 

The iterative relational cluster algorithm presented in the above section has 

been evaluated by using two Saccharomyces Cerevisiae data sets: one (Gasch et 

al., 2000) consisting of 173 microarrays and 6172 genes, measuring the 

responses to various stress conditions; the other (Spellman et al., 1998) 

consisting of 77 microarrays and 6178 genes, measuring expression during  cell 

cycle. These datasets are described more deeply in Appendix A1.1. 

The promoter sequence data used by Pscan tool consists of the 500 base pairs 

upstream region of each gene. These sequences were retrieved from SGD 

(Saccharomyces Genome Database), an organized collection of genetic and 

molecular biological information about Saccharomyces Cerevisiae (Cherry et al., 

1998). 

Before applying the clustering procedure we perform a pre-processing phase 

with the aim of, not only remove as much as possible the systematic noise 

presented in microarray data, but also provide a basis for the next comparisons 

between genes. In particular, we perform a two-steps pre-processing strategy 

with missing value replacement and data normalization, and finally a 

preliminary genes selection to reduce the problem dimension. 

The first step is based on data normalization and missing value replacement. 

Missing values often appear in gene expression data, due to various experimental 

limitations: technical reasons, like insufficient resolution, image corruption, or, 

simply, dust or scratches on the slide. The inability of clustering algorithms to 

handle such values necessitates their replacement.  

In our approach for each gene, we substitute all missing values by the average of 

gene’s expression profile.  

Moreover, it is important to eliminate from microarray data variations due to 

non-biological factors. This procedure, known as normalization, is significant to 

obtain consistent data for following analysis. The normalization approach used 

in our work is the mean and SD normalization, whereby all microarray data are 

normalized so that every gene has been scaled to mean 0 and standard deviation 

of 1.  
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In the microarray datasets used for testing our approach thousands of gene 

expression levels were monitored. But, a considerable part of the data is related 

to genes that don’t contribute to the underlying biological progress; in fact large 

numbers of genes exhibit nearly constant expression levels, as measured by the 

variance of the expression levels across arrays. Therefore we can discard these 

genes, and use only genes with high-variance of expression levels in the 

clustering process. In particular, after this selection, for our analysis we retained 

1010 genes out of 6172 from (Gasch et al., 2000) dataset and 774 genes out of 

6178 from (Spellman et al., 1998) dataset. 

 

Evaluation of the results of our clustering algorithm necessitates careful 

consideration since there are no gold standards against which performance can 

be measured. In particular we evaluate our algorithm based on two points of 

view: first, we analyze the obtained modules based on co-expression and co-

regulated patterns, then we compare the prediction ability of the SVTQ 

clustering approach with those of the proposed relational clustering method.  

 

Gene Expression and Gene Regulation Coherence 

Since the goal of the proposed method is to find modules of genes that are co-

expressed and co-regulated, we analyze the modules obtained at each iteration. 

For both S. Cerevisae datasets, we initialized 50 clusters using standard k-means 

clustering algorithm (as proposed in (Segal et al., 2003)) and then we learn 

common regulators, by means of Pscan tool (Zambelli et al., 2009). 

In particular, iterative relational clustering algorithm converges after 6 

iterations for (Gasch et al., 2000) dataset with a set of 9 TFs, and after 5 

iterations for (Spellman et al., 1998) dataset with a set of 8 TFs. 

Main results are summarized, for (Gasch et al., 2000) dataset in Tab. 5-1 and Fig. 

5-4 and for (Spellman et al., 1998) dataset in Tab. 5-2 and Fig. 5-5.  

In these tables the number of co-expressed and co-regulated modules obtained 

at the different iterations is reported. In particular, to count the number of co-

expressed clusters we computed for each group of genes the mean Pearson 

correlation coefficient and we considered only those clusters with a coefficient 

larger than 0.6. In Tab. 5-1 we reported, for different range values of Pearson 

correlation coefficient, the frequency of clusters in them.  

A cluster is considered co-regulated if the Pearson correlation coefficient of the 

TF profile of its genes is larger than 0.7.  

Analyzing these tables we can see that at iteration 0 only a small part of co-

expressed clusters consists of co-regulated genes. The number of clusters that 

are both co-expressed and co-regulated increments with the iterations. In the 

last iteration we have that almost all co-expressed clusters are also co-regulated.   

Examining Fig. 5-4 (Gasch et al., 2000), we can see that at iteration 0, when the 

clustering is applied only on gene expression data (the initialization of 

algorithm), we obtain only 10 clusters out of 50 that are both co-expressed and 

co-regulated. In the last iteration (iteration 6), we obtain 29 out of 31 both co-

expressed and co-regulated clusters. Genes which do not belong to these clusters 

may be considered as genes that are not involved in the regulation process. 

 

 
 



The Proposed Relational Clustering Framework: Case Studies 

 
86 

 
ITERATION 

0 

ITERATION 

1 

ITERATION 

2 

ITERATION 

3 

ITERATION 

4 

ITERATION 

5 

ITERATION 

6 

Pearson 

Correlation 

Threshold 

# 

Co-exp 

# 

Co-exp / 

Co-reg 

# 

Co-

exp 

# 

Co-exp / 

Co-reg 

# 

Co-

exp 

# 

Co-exp /

Co-reg 

# 

Co-

exp 

# 

Co-exp / 

Co-reg 

# 

Co-

exp 

# 

Co-exp / 
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# 
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exp 

# 

Co-exp / 

Co-reg 

# 

Co-

exp 

# 

Co-exp / 

Co-reg 

0.6<Corr<0.7 7 3 4 3 7 4 3 5 4 4 6 5 7 6 

0.7<Corr<0.8 8 3 12 8 12 9 15 11 16 12 15 14 14 14 

0.8<Corr<0.9 12 3 8 5 6 4 4 4 6 5 7 6 8 7 

Corr>0.9 2 1 1 1 2 2 2 2 2 2 2 2 2 2 

Total cluster 

number 
29 10 25 17 27 19 24 22 28 23 30 27 31 29 

Tab. 5-1: Iterative relational clustering algorithm results on (Gasch et al., 2000) dataset 

 

 

 
Fig. 5-4: Number of co-expressed and co-regulated clusters for (Gasch et al., 2000) dataset 

 

Also the results obtained on the dataset of (Spellman et al., 1998) emphasized 

the ability of our approach to identify modules of co-expressed and co-regulated 

genes. Also in this case, as depicted in Fig. 5-5, from iteration 0, where only 17 

clusters are co-expressed and co-regulated, we obtain at iteration 5, 41 clusters 

of genes both co-expressed and co-regulated.  
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# 
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# 

Co-exp 

# 

Co-exp / 

Co-reg 

0.6<Corr<0.7 11 5 9 7 9 8 12 10 11 11 11 11 

0.7<Corr<0.8 15 9 16 12 18 15 17 16 18 17 18 17 

0.8<Corr<0.9 9 3 7 3 8 5 12 9 16 11 16 11 

Corr>0.9 1 0 1 0 1 0 1 1 2 1 2 2 

Total cluster number 36 17 33 22 36 28 42 36 47 40 47 41 

Tab. 5-2: Iterative relational clustering algorithm results on (Spellman et al., 1998) dataset 
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Fig. 5-5: Number of co-expressed and co-regulated clusters for (Spellman et al., 1998) dataset 

Predicting Expression from Transcriptional Profiles 

To assess the consistency of cluster analysis in the inference of co-regulation, we 

also evaluated our iterative relational clustering algorithm results by computing 

the number of genes whose cluster assignment is correctly predicted based on 

transcription factors profiles. Specifically, with the clustering assignment 

obtained from the relational clustering phase, we built Naive Bayes classification 

models and compared the cluster assignment of each gene when we consider 

only the transcriptional data to its cluster assignment considering both 

expression and transcriptional data.  

Fig. 5-6 and Fig. 5-8 show, for both datasets, the total number of genes whose 

expression-based cluster assignment is correctly predicted using only the 

transcriptional data, as the algorithm progresses.  

To verify our approach we also compared our prediction results with those 

obtained using the simple clustering approach that follows the idea proposed by 

(Clements et al., 2007), called also STVQ in (Graepel et al., 1998). In these 

approach, like just said before, is used a parameter α ( 10 ≤≤ α ) as a weighting 

parameter that sets the balance between the expression distance and the 

regulatory distance. Clearly, when 1=α  the simple clustering algorithm is 

performed only on gene expression data and, therefore, when 0=α  clustering 

algorithm is performed only on transcriptional data.  

The number of genes correctly predicted by the initial iteration of our approach 

must be equivalent to the number of genes calculated by traditional approach 

using an alpha equal to 1, in fact in both cases clustering is based only on gene 

expression data. 
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Fig. 5-6: Genes correctly predicted by 

iterative relational clustering approach for 

(Gasch et al., 2000) dataset. 

 
Fig. 5-7: Genes correctly predicted by STVQ 

approach for (Gasch et al., 2000) dataset. 

 

As can be seen in figures Fig. 5-6, Fig. 5-7, Fig. 5-8 and Fig. 5-9, the predictions 

get better across the learning iterations, and the results obtained in the last 

iteration significantly outperform the simple approach with the best α (α=0,6).  

In particular, our model converges to 405 genes correctly predicted in the stress 

dataset (Gasch et al., 2000), respectively, compared to 296 for the simple 

clustering approach. Also analyzing results obtained on (Spellman et al., 1998) 

dataset, it’s possible to see that our relational clustering algorithm at the last 

iteration, predicts 587 genes against the 333 genes of the simple clustering 

algorithm. 

 
Fig. 5-8: Genes correctly predicted by 

iterative relational clustering approach for 

(Spellman et al., 1998) dataset 

 
Fig. 5-9: Genes correctly predicted by STVQ 

approach for (Gasch et al., 2000) dataset. 

 

 

Finally, we analyzed also the set of candidate TFs obtained at each iteration of 

our iterative relational clustering approach. In tables below (Tab. 5-3 and Tab. 

5-4) we can see that, for both datasets, iteration after iteration the number of TF 

is reduced until it converges to a stable set of TFs. 

TRANSCRIPTION FACTORS 

ITERATION 0 ITERATION  1 ITERATION  2 ITERATION  3 ITERATION 4 ITERATION  5 ITERATION 6 

GAL4 GAL4 ABF1 ABF1 ABF1 ABF1 ABF1 

MATHALPHA2 GCN4 GAL4 GAL4 GAL4 GAL4 GAL4 

MCM1 MCM1 MCM1 MCM1 MCM1 MCM1 MCM1 

MIG1 MIG1 MIG1 MIG1 MIG1 MIG1 MIG1 

PDR1/PDR3 PDR1/PDR3 PDR1/PDR3 PDR1/PDR3 PDR1/PDR3 PDR1/PDR3 PDR1/PDR3 

PHO4 PHO4 PHO2 PHO4 PHO4 PHO4 PHO4 

RAP1 RAP1 RAP1 RAP1 RAP1 RAP1 RAP1 

REPRESSOR OF 

CAR1 

REPRESSOR OF 

CAR1 

REPRESSOR OF 

CAR1 

REPRESSOR OF 

CAR1 

REPRESSOR OF 

CAR1 

REPRESSOR OF 

CAR1 

REPRESSOR OF 

CAR1 

RLM1 RLM1 RLM1 SCB ROX1  SCB SCB 

ROX1 SMP1 SCB STE12      

SWI5 SWI5 SWI5         

TBP             

Tab. 5-3: Transcription factors found by our iterative relational clustering algorithm  

on (Gasch et al., 2000) dataset 
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TRANSCRIPTION FACTORS 

ITERATION  

0 

ITERATION  

1 

ITERATION  

2 

ITERATION 

 3 

ITERATION 

 4 

ITERATION  

5 

GAL4 MATHALPHA2 MATHALPHA2 MCB MCB MCB 

MATHALPHA2 MCB MCB MCM1 MCM1 MCM1 

MCB MCM1 MCM1 PDR1/PDR3 PDR1/PDR3 PDR1/PDR3 

MCM1 PDR1/PDR3 
PDR1/PDR3 

REPRESSOR  

OF CAR1 

REPRESSOR  

OF CAR1 

REPRESSOR  

OF CAR1 

PDR1/PDR3 RAP1 RAP1 RLM1 ROX1 ROX1 

RAP1 

REPRESSOR  

OF CAR1 

REPRESSOR  

OF CAR1 
ROX1 SCB SCB 

REPRESSOR  

OF CAR1 RLM1 
RLM1 SCB SMP1 SMP1 

RLM1 ROX1 ROX1 SMP1 STE12 STE12 

ROX1 SCB SCB STE12   

SCB SMP1 SMP1    

SMP1 STE12 STE12    

STE12 SWI5 SWI5    

SWI5 UASPHR XBP1    

UASPHR XBP1     

XBP1      

Tab. 5-4: Transcription factors found by our iterative relational clustering algorithm  

applied on (Spellman et al., 1998) dataset 

 

In conclusion, in this application, we proposed an iterative relational clustering 

approach that integrates information concerning known transcription factors-

gene interactions with gene expression data and whose goal is to identify 

transcriptional modules of co-regulated genes, i.e. group of genes that are not 

only expressed similarly under the measured conditions, but also share a 

common regulatory program.  

Obtained results indicate that the proposed method discovers iteration after 

iteration, modules of genes that are both highly coherent in their gene 

expression and regulatory profiles. A comparison to the common approach of 

constructing clusters based only on a linear combination of gene expression 

profiles and regulatory profiles, shows that the prediction of gene expression 

from transcriptional profiles of our method improve across the different 

iterations and outperforms the common approach. 
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5.2 Detecting the Most Effective Cancer Drug: NCI-60 Dataset 

The ultimate goal of this case study is to define a model which, given the gene 

expression profile related to a specific tumour tissue, could help in selecting a set 

of most responsive drugs.  

In this Thesis this is accomplished through the instantiation of the general 

relational framework presented in sect.4.4.  

Main results of this analysis are illustrated in (Fersini et al., 2009a; Fersini et al., 

2009b).  

This approach groups cell lines using drug response information and taking into 

account cell-to-cell relationships derived from their gene expression profiles. 

Next subsections provide an overview of the pharmacogenomics problem, a 

review of the state of the art and a deeply description of the relational 

framework. 

5.2.1 The Pharmacogenomics Problem: State of the Art 

Microarray technologies (as for example cDNA microarrays and affymetrix 

chips), that measure the expression level of thousands of genes simultaneously, 

have steady established themselves as a standard tool in biological and 

biomedical research. As already underlined in the previous sections, thanks to 

these recent progresses large amount of data have been collected, offering 

important opportunities to increase the knowledge related to complex biological 

phenomena.  

One of the most challenging problem in biomedical research is related to the 

discovery of embedded relationships among human cancer, gene expression 

profile and drug activity. Highlighting these relationships is of crucial importance 

for several objectives, among others: identification of mechanisms of the cancer 

development, design of new molecular targets for anti-cancer drugs and 

definition of an individual therapy driven by a specific gene profile.  

Several studies tried to integrate gene expression data with drug-response 

profiles in a sequential manner.  

A first gene-drug integrative analysis was presented in (Paull et al., 1989). 

Authors developed a tool, named “COMPARE”, able to show that the growth 

inhibitory patterns against different cancer cell lines are well correlated with the 

mechanism of action of anticancer therapy.  

One of the most relevant alternative studies into the pharmacology of cancer 

relates to (Scherf et al., 2000), in which a hierarchical clustering algorithm, with 

several similarity metrics, has been used to analyze: (1) cell-to-cell correlation 

on the basis of gene expression and drug activity profiles, (2) relationships 

between drug activity patterns and mechanism of action, (3) gene-drug 

correlation on the basis of gene expression and drug activity profiles. In (Chang 

et al., 2002) and (Chang et al., 2005) the relationships between gene expression 

profiles and drug responses are investigated by both unsupervised and 

supervised machine learning algorithms. In particular, while through the 

unsupervised Soft Topographic Vector Quantization (STVQ) algorithm (Graepel 

et al., 1998) (Clements et al., 2007) authors shown that gene expression profiles 

are more related to the kind of cancer than to drug activity patterns, through the 
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supervised Bayesian networks (Chang et al., 2002) and (Chang et al., 2005), 

some biologically meaningful relationships among gene expression levels, drug 

activities, and cancer types have been revealed. 

An alternative approach to the traditional clustering and classification methods 

for discovering relationships among genes and drugs across different cell lines is 

represented by the “structure driven” approaches and in particular by 

Biclustering algorithms (subsection 3.1). An interesting investigation has been 

proposed in (Kutalik et al., 2008) that applied the well known Iterative Signature 

Algorithm for uncovering co-modules, i.e. smaller building blocks that exhibit 

similar patterns across certain genes and drugs in some of the cell lines.  

 

After a deeply analysis of the results of the above quoted papers and of a wide 

set of related approaches, we can highlight an interesting remark: drug activity 

patterns are less related to the organ of origin compared to the gene expression 

profile. This suggests us that a gene expression profile of a cell line plays a 

fundamental role, independently from the tissue of origin, to understand 

anticancer therapy responses. 

Inspired by this remark we perform different cluster analysis aimed at linking 

gene expression profiles to drug activity patterns.  

In particular, initially we apply traditional clustering algorithms for a first 

analysis of the problem and then we apply the relational clustering framework 

presented in subsection 4.4 aimed at investigating whether drug response can be 

related to subsets of genes.  

Finally, we exploit the output of cluster analysis to induce a specific Bayesian 

Network able to predict the response of a set of drugs. 

5.2.2 Traditional Approaches: K-Means and SVT Algorithms 

The NCI60 dataset, described in Appendix A and presented in (Scherf et al., 

2000), provides a suite of comprehensive measurements on a set of cell lines 

derived from 9 kinds of cancers: colorectal, renal, ovarian, breast, prostate, lung 

and central nervous system origin, as well as leukaemia and melanoma.  

The dataset can be viewed as a set into the space Rn+m defined as: 
}RcR), c,c(c{c|c Ω nDmGDG ∈∈== ,  ( 5-10) 

where c is a cell line, cG represents the gene expression level into a space Rm and 

cD denotes the drug response into a space Rn. In particular, cG has been derived 

by using the cDNA microarray and cD by assessing the grown inhibition activities 

(GI50) after 48 hours of drug treatment through Sulphorhodamine B.  

We can consequently define ΩG and ΩD as the set of the cell lines represented 

through their gene expression profiles and their drug activity response 

respectively: 
}Ω), c,c(c|c{c Ω DGGG ∈==  ( 5-11) 

}Ω), c,c(c|c{c Ω DGDD ∈==  ( 5-12) 

Even in this case we used as distance measure based on the Pearson Correlation 

(p(ci, cj)), already described in section 1.1, i.e. 

 
),(1),(

jiji
ccpcc d −=  ( 5-13) 

 

where ci and cj represent two cell lines. 
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A first analysis of the problem is done investigating two traditional clustering 

algorithms: the traditional K-means and the STVQ.  

Both this algorithms use a “flat” representation of data, i.e. by representing each 

cell line as a vector in Rn+m, like in Fig. 5-10. 

 

 
Fig. 5-10: General “flat” representation of cell lines 

 

The goal is to minimize the error that occurs by assigning a cell line to a given 

cluster through a distance measure that consider the entire space Rn+m.  

Even if both K-means and STVQ algorithms use the same data representation, 

STVQ, like already explained in the previous case study, uses a distance measure 

based on a linear combination of gene expression profile and drug activity 

pattern distances tuned by the parameter α, i.e. 

),()1(),(),( G

j

G

i

D

j

D

iji
ccdccdcc d αα −+=  ( 5-14) 

During the experimental investigation we have used three different values: α=0, 

α = 0.5 and α= 1. Each of these values has been used in order to produce a 

partitioning solution that consider only the distance based on gene expression 

profiles (α=0), the distance based on gene expression profiles and drug activity 

patterns (α=0.5) and, finally, the distance based only on drug activity patterns 

(α=1). 

5.2.3 The Proposed Relational Clustering Approach 

The instantiation of the general relational clustering framework for this case 

study is depicted in Fig. 5-12. In particular in the “relation learning” component 

we learn relationships between cell lines over the gene space, while in the 

“relational clustering” component phase we incorporate these relationships 

along with an underlying objective function over the drug space. 

 

 
Fig. 5-11: Instantiation of the general relational clustering framework 
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5.2.3.1 Relation Learning 

A relation among two instances can be either an Affinity or a Diversity link where 

with Affinity link we want to describe the relation between two instances that 

shared similar expression profile and with Diversity link we want to underline 

the fact that the two instances don’t share a common expression profile.  

Like we have described in the general relational clustering framework we assign 

to each relation a different degree of intensity.  

Since no relations between cell lines in the gene space are given in advance, we 

can discover them by formulating a clustering problem.  

Given the elements GG

i
c Ω∈ , a set of clusters Cj with j = 1 : J, the clustering 

problem can be defined as in equation ( 1-11), where each element G

i
c  is 

assigned to a cluster G

j
C such that the intra-cluster distance is minimized and the 

inter-cluster distance is maximized. This issue has been addressed through the 

k-Means clustering algorithm described in previous subsection. 

The obtained set of clusters leads us to define two matrices of relationships RD 

and RA that will be used in the subsequent objective function optimization over 

the drug space. 

RD is a |Ω|X|Ω| matrix whose elements D

ik
r represents the weights of the Diversity 

links between elements belonging to different clusters and will suggest in the 

following phase that two cell lines should not be placed in the same module. 

More formally, D

ik
r  is defined as the distance (computed as in ( 5-10)) between G

i
c  

and G

i
c i.e. 



 ≠∈∈

=
                      otherwise                   0

CC and C  if          ),(
GGG

αβα

G

k

G

i

G

k

G

iD

ik

ccccd
r  ( 5-15) 

The matrix RA, having the same dimension of RD, represents the weight of the 

Affinity links of elements belonging to the same cluster and will suggest in the 

following phase that two elements should be placed in the same module. 

The element A

ik
r is given by 



 ∈∧

=
                      otherwise                   0

C   if          ),(
G

α

G

k

G

i

G

k

G

iA

ik

ccccd
r  ( 5-16) 

5.2.3.2 Relational clustering 

The second phase of the computational process is focused on grouping cell lines 

using drug response information while taking into account cell to-cell 

relationships coming from the previous stage. In particular, this clustering step is 

aimed at minimizing the sum of the distances between elements, expressed by 

their drug activity response, penalized by a function that takes into account 

affinity and diversity links. 
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Fig. 5-12: Computational process of the proposed relational clustering framework 

 

Let DD

i
c Ω∈ be a given cell line represented by its drug response features and D

j
C , 

with j = 1 : J, be a set of clusters. Defining Z as in equation ( 1-10 ), for cell lines 

expressed by their drug responses, i.e. 



 ∈

=
otherwise 0

 if 1
DD

ij

ji
Cc

z  ( 5-17) 

 

The problem can be formulated as follows: 

 

∑ ∑
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The optimization problem reported in equation ( 5-18), can be solved through an 

adaptation of K-means heuristic reported before. 

In this way if an Affinity link (or a Diversity link) is not preserved, the objective 

function is penalized according to the weight A

ik
r (or D

ik
r ) and the distance between 

cell lines i and k represented in terms of their drug responses features, ),( D

k

D

i
ccd . 

5.2.4 Computational Experiment and Results 

In order to obtain a meaningful representation of the NCI60 data, in terms of 

discriminative features that can be used by the proposed machine learning 

algorithm, two pre-processing steps have been performed: 

1. Cell lines with strong variation and missing values.   

We defined Ω1 by representing each cell line into the gene expression and 

drug activity spaces Rm=1376 and Rn=1400 respectively. With respect to Rm, 

genes have been selected from the original NCI60 dataset (characterized by 
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9073 genes) in order to have 5 or fewer missing values and to show strong 

pattern of variation among the 60 cell lines. This representation corresponds 

to the NCI60 T-matrix.  

With respect to Rn, we maintained the 1400 drugs stated into the original 

dataset, where each compound has been tested one at time and 

independently. This dataset representation, corresponding to the NCI60 A-

matrix,  need a further pre-processing activity aimed at dealing with missing 

values: for each gene (or drug) that show one or more missing values, its 

average gene expression value (or its average drug activity) over the 60 cell 

lines is used as replacement.   

A description of both T-matrix and A-matrix is in Appendix A. 

2. Cell lines with strong variation and no missing values.   

We defined Ω2 by removing from the original dataset (composed by T-matrix 

and A-matrix) those genes and drugs for which at least one cell line had a 

missing value. In this case, each cell line is represented into the gene 

expression and drug activity spaces Rm =555 and Rn =836 respectively. 

 

In both reduced datasets Ω1 and Ω2 cell lines have been normalized in order to 

have mean equal to 0. 

 

In order to evaluate the quality of the proposed relational clustering algorithm, 

we used similarity-oriented evaluation measures as the Average Pearson 

Correlation Coefficient, as well as classification-oriented measures as F-Measure 

and Entropy. An overview of these clustering evaluation measures has been 

already presented in subsection 1.4. 

In particular, for similarity-oriented evaluation measure, we computed the 

widely adopted in biology studies, average Pearson Correlation Coefficient 

defined as: 

∑ ∑
= < 












−
=

J
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m
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1 1

2

|
 ( 5-19) 

 

where J is the number of clusters and mj is the cardinality of the cluster obtained 

by our relational clustering process. Here we use zij to say that the cell line i has 

been assigned to the cluster j in the overall clustering process.  

We estimate P  in two ways: in one case P  is computed considering the 

correlation between instances i and k represented by their gene expression 

profiles and in another case using their drug response profiles. Following this 

evaluation we have a scalar value GP  related to the overall correlation of the 

obtained clusters, with respect to gene expression profiles and DP  related to 

drug activity patterns. 

With respect to the traditional classification-oriented evaluation measure, we 

use F-Measure which combines the Precision and Recall measure typical of 

Information Retrieval.  

In particular, if we apply to this problem the general definition introduced in 

subsection 1.4.1.1, we obtain the following formulation.  

Given a set of class label L representing the type of cancer (in this case equals to 

9), we compute the Precision and Recall for each class label Ll ∈ with respect to 

the cluster j as: 
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l

lj

m

m
(l,j) Precision =  ( 5-20) 

j

lj

m

m
j) Recall(l, =  ( 5-21) 

Where: 

- mlj is the number of cell lines belonging to the class label j and located in the 

cluster i 

- mj represents the cardinality of cluster j 

- ml is the number of cell lines with class label l. 

 

The F-Measure ),( jlF for each class label Ll ∈ is computed as the harmonic mean 

of Precision and Recall, like in equation ( 1-23). 

The overall quality of the obtained clustering solution is given by a scalar F* 

computed as the weighted sum of the F-Measure values taken over all the class 

labels Lj ∈ : 

{ }∑
= ∈

=
L

l Jj

l jlF
|Ω

m
 F

1

),(
|

* max  ( 5-22) 

 

The other classification-oriented measure used for evaluating clustering output 

is the Entropy Measure that, like already explained, evaluates the purity of the 

clusters with respect to the given class labels.  

To compute the total entropy E* of a set of obtained cluster we have used the 

same formulation of equation ( 1-18), and in particular: 

∑
=

=
J

j

j

lj
E

|Ω

m
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1 |
*  ( 5-23) 

where mlj is the number of elements belonging to the class label l and located in 

the cluster j. In Tab. 5-5 and in Tab. 5-6 we report a performance comparison, 

over Ω1 and Ω2 respectively, among the results of our relational clustering 

approach (RC), the traditional k-Means (KM) and Soft Topographic Vector 

Quantization (STVQ) algorithm.  

In particular, for STVQ algorithms, we report results obtained for the three 

different values of the tuning parameter. Since all the evaluated algorithms 

depend on the initial choice of the representative element of each cluster 

(centroid), we show the average performance obtained over 1000 runs. 
 PG PD F* E* 

K-Means 0.4373  0.8032  0.5407  1.010 

STVQ 

α=0 0.4996  0.8210 0.5481 1.0334 

α=0.5 0.4801  0.8311 0.5005 1.0871 

α=1 0.3606   0.8330 0.4320 1.2610 

Relational Clustering 0.4873  0.8231 0.5591 0.9868 

Tab. 5-5: Computational results on Ω1 

 
 PG PD F* E* 

K-Means 0.5147  0.8748 0.5231 1.0527 

STVQ 

α=0 0.5573  0.8646 0.5455 1.0233 

α=0.5 0.5394  0.8700 0.5307 1.0613 

α=1 0.4430  0.8762 0.5455 1.388 

Relational Clustering 0.5436  0.8665 0.5619 0.9684 

Tab. 5-6: Computational results on Ω2 
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Results have shown that all the tested algorithms produces better performance 

on the reduced dataset Ω2 than on the dataset Ω1.  

It is interesting to note that, even if we set the number of clusters J in the 

proposed relational clustering algorithm equal to 9, in some cases our algorithm 

converges, due to the force of Affinity and Diversity links, to a solution that 

provides an inferior number of clusters.  

It’s clear that the best results with respect to PD and PG are obtained by STVQ 

approach with α = 0 and  α = 1, albeit our approach is very close to these 

correlation values implying that the obtained groups of cell lines are 

homogeneous both from gene expression profile and drug activity response 

point of view. In this way, cell lines will likely respond similarly to the set of 

considered compounds thanks to their high drug and gene correlations. 

Moreover, with respect to the classification-oriented quality measures, our 

approach produces a clustering solution that is characterized by more purity and 

discriminative power than the traditional technique.  

From a biomedicine point of view, the model defined by our approach could help, 

given the gene expression profile related to a cell line cT, in selecting the set of 

most responsive drugs. In order to suggest these compounds, the cell line cT 

could be associated to a specific module by using the minimum distance between 

cT and the representative element of each obtained cluster.  

Having the assignment of cT to a given module, the active drugs could be ranked 

considering the number of samples having high response.  

Therefore the most active drugs are ranked considering the number of samples 

having high response, which belongs to the cluster in which the new instance is 

assigned. An interesting sub-sample is depicted in Fig. 5-13. 

 

 
Fig. 5-13:  A sub-sample of the obtained clustering solution and a particular sub-pattern representing 

an example of the active drugs. 

 

The cell lines are depicted in terms of their drug response and subsequently 

their gene expression profile. Each drug has been represented in terms of high, 

medium and low level of response with respect to its range of activity variation. 

The gene profile of each cell line is coloured in order to reject the mean-adjusted 

expression level of the gene (row) and cell line (column). In this way we can 
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associate to a given cell line the set of most responsive drugs, ranked by a simple 

frequentist intra-cluster approach.  

 

Bayesian Networks for Predicting Drug Response 

This simple frequentist ranking approach for the suggestion of the most 

responsive drugs do not take into account causal dependencies between the 

expression level of genes and the activity level of drugs.  

A more sophisticated approach able to consider these causal relationships is 

represented by Bayesian Networks, a probabilistic graphical model that 

compactly represent the joint probability distribution of M random variables, 

Y={Y1, Y2,..., YM}.  

The main assumption, captured graphically by a dependency structure, is that 

each variable is directly influenced by only few others. A probability distribution 

is represented as a directed acyclic graph (DAG) whose nodes represent random 

variables and whose edges denote direct dependencies (causal relationships) 

between a node Y and its set of parents Pa(Y).  

Formally, a Bayesian Network asserts that each node is conditional independent 

of its non-descendants given its parents. This conditionally independence 

assumption allows us to represent concisely the joint probability distribution.   

If we consider a distribution P over M feature, it can be decomposed as the 

product of M conditional distributions: 

∏∏
==

− ==
M

j

jj

M

j

jjM
yPayPyyyyPyyy P

11

12121 ))(|(),...,,|(),...,,(  ( 5-24) 

where )(|( jj
yPayP is described by a conditional probability distribution (CPD).  

 

 
Fig. 5-14: Bayesian Networks for modelling the NCI60 dataset 

 

Fig. 5-14 shows our instantiation of Bayesian Networks for gene-drug 

dependency analysis. Here, the DAG denotes the dependency structure among 

gene expression, modules and drug activities. We could gain an insight that the 

expression pattern of genes influences the activity level of drugs through the 

module assignment. This structure of Bayesian Networks has been defined for 

inducing a probabilistic model able to predict the drug response of a new cell, 

only by providing its gene expression profile. 

In order to evaluate the predictive power of the defined Bayesian Network, we 

performed a leave-one-out cross validation. This means that we use a single cell 

line from the original dataset as the validation data and the remaining cell lines 

as the training samples. CPDs of the defined network are derived by specifying 
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for each cell line not only its gene expression profile and pattern of drug 

responses, but also its associated module generated as output of the clustering 

process. 
 Correctly Predicted Drugs 

K-Means 11957 

STVQ 

α=0 11782 

α=0.5 11964 

α=1 12009 

Relational Clustering 12292 

Tab. 5-7: Computational results of Bayesian networks on Ω2 

 

In Tab. 5-5 we reported the results on inducing BNs on the set of cell lines 

belonging to Ω2, according to the output obtained by the three clustering 

algorithms (average over the 1000 clustering runs). This analysis has been 

limited only to the set Ω2 due to the presence of “replaced” missing values in Ω1. 

The quality of prediction of each induced network has been evaluated by 

counting the total amount of drug responses that, along the entire 60 cell lines, 

are correctly inferred. As highlighted in Tab. 5-8, the BN that obtain the quite 

encoring result is the one trained with the modules defined by the proposed 

relational clustering algorithm. 

 

In conclusion, in this application we have instantiated the relational clustering 

approach to cluster the 60 cell lines of the NCI60 dataset for defining groups of 

cell lines by using drug response information and taking into account cell-to-cell 

relationships defined by the similarity of their gene expression profiles.  

At the end of cluster analysis Bayesian Networks have been instantiated for 

inducing a probabilistic model able to predict drug responses of a new tumour 

tissue. 

The experimental results show that the proposed method outperforms the 

traditional distance-based techniques. In particular, our clustering algorithm 

brings to the definition of clusters that are homogeneous both in terms of gene 

expression and drug activity profiles. Moreover, our approach produces a 

clustering solution that is characterized by more purity and discriminative 

power than the traditional technique.  
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5.3 Oral Anticoagulation Therapy 

In this section we present a clinical application of the general relational 

clustering framework.  

Results obtained in this third case study are synthesized in (Archetti et al., 

2009d; Archetti et al., 2009e).  

The application’s aim is focused on grouping patients undergoing Oral 

Anticoagulation Therapy in order to profiling them based on their behavior and 

clinical features and consequently suggest physicians the correct drug dosage.  

In this way, with the instantiation of the relational clustering framework 

presented in section 4.4, we want to cluster patients using clinical and genotypic 

information, taking into account patients’ relationships derived from their 

behavioural data. 

For this application we used a proprietary dataset, built in collaboration with 

two hospitals in Milan: Istituto Auxologico and Clinica Humanitas. A description 

of these data is presented in Appendix A.  

For each patient we have collected clinical data (like gender, age and OAT data), 

therapeutical data (concomitant drugs) and visit data (a time series of INR and 

doses measurements).  

In this case study, an initial pre-processing phase of the collected data and a 

preliminary study of the principal patients’ characteristics has been performed 

before applying the relational clustering framework. 

In the next subsections a description of the clinical problem and in particular of 

Oral Anticoagulation Therapy is provided; subsequently are presented a review 

of the state of the art, an initial patient’s characterization and a description of the 

relational clustering framework.  

5.3.1 The Clinical Problem: State of the Art 

Oral anticoagulation therapy (OAT), largely performed by warfarin-based drugs, 

is commonly used for patients with a high risk of blood clotting which can lead to 

stroke or thrombosis. A lot of persons start taking warfarin each year; physicians 

commonly prescribe it for patients with a history of atrial fibrillation, recurrent 

stroke, deep vein thrombosis, or pulmonary embolism, as well as for patients 

who have had heart valve replacements. 

A major challenge in treating patients in OAT is that the optimal dose varies 

greatly from person to person. Further, if the dose taken is too high, users are 

subject to increased risk of serious bleeding. Finally, if the dose is too low, users 

are subject to increased risk of stroke. 

Currently, the state of the patient, with respect to anticoagulation, is captured by 

the index INR (International Rationalised Ratio), which is to be kept within a 

therapeutic range defined by physician during the first visit. A representation of 

the risks concerned to INR index is illustrated in Fig. 5-15. 

In particular, if INR value is over the assigned range then hemorrhagic risk 

increments, while if INR value is under the range then thrombotic risk grows. In 

this way, the appropriate dose is determined by monitoring INR index and 

altering the dose if INR index is out of range.  
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Fig. 5-15: Therapeutic INR range 

 

The OAT workflow is rather complex (as shown in Fig. 5-16) and demanding 

given the typically old age of most patients.  

It is therefore a heavy therapeutic modality for patients and often it is not 

accepted by physicians for different reasons like: potential hemorrhagic or 

thrombotic risk during the therapy, difficulties in management and 

communication between laboratory and patient (probably due to patients’ age). 

In addition, patient’s response to therapy is influenced by several other factors, 

including genetic factors, as evidenced by recent scientific papers, dietary habits 

and intake of other drugs that interact in a complex and difficult to predict way 

with INR.  

In conclusion, frequent sampling (at least once in 2-3 weeks) of the INR and 

careful dosage adjustments are needed for the INR to stay within its assigned 

range. 

 

 
Fig. 5-16: Oral Anticoagulation Therapy workflow 

 

The “trial &error” basis of the methods currently in use by physicians to fine 

tune the dosage for a given patient along with the response’s variability due to 

genetic and behavioural factors, can result in out of range periods and therefore 

in a non negligible risk of thromboembolic and bleeding events. In particular, 

individual characteristics and behaviour, such as sex and diet, account for the 

variation in appropriate warfarin dose across individuals.  
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Indeed warfarin initiation is associated with one of the highest adverse events 

for anticoagulation drug due to high inter-individual variability.  About 50% of 

patients fail to stabilize within the therapeutic range: for this reason most of 

these patients even with no contraindication to warfarin therapy are not 

receiving it because physicians are reluctant to initiate it in elderly patients or 

with risk of bleeding. This fact has strong negative clinical applications in that  

the absolute benefit of Oral Anticoagulation increases as patient get older 

(Rosove et al., 2009). 

Recent research shows that genetic tests can, to some extent, identify which 

patients require higher and lower doses and may be a way to reduce bleeding or 

thrombotic events from warfarin. In particular, genotypes of patients have been 

recently suggested in order to understand their variability and control the dose-

INR relationship, particularly in the induction phase. This fact has been also 

recognized by Food and Drug Administration (FDA) whose labelling for Warfarin 

2007 reads: “It cannot be emphasized too strongly that the treatment of each 

patient is a highly individualized matter”.  

A notable contribution to patient genotyping is: (Schwarz et al., 2008) where it is 

shown that genetics variants of the enzyme that metabolized Warfarin 

cytochrome P450 CYP2C9 and VKORC1 contribute to differences in patients’ 

response. Basically the same results have been obtained in a wide range genetics 

investigation (Sconce et al., 2005; Voora et al., 2005; Wadelius et al., 2007; 

Anderson 2007;Gage et al., 2008; Wadelius et al., 2009). 

While there is a relative large agreement of the value of genotypes for the 

induction phase (Lesko, 2008), the debate is still open on its effectiveness in the 

long term therapeutic management (Garcia et al., 2009; Eckman et al., 2009).  

5.3.2 Patient Profiling: Drug Sensitivity Index 

To improve the characterization of the patient we introduce an index, called 

Drug Sensitivity (Dsens), with the aim to capture the dose-INR relationships that 

better describes the patient behaviour. This index is represented by the ratio 

between dose and INRs variations, as follows: 
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As INR measurements are not taken at regular intervals the dose values are 

replaced by their daily variations (Δdi), and the INR values by ΔINRi (computed 

with the above formula) where Nd is the number of days between consecutive 

measurements. Note that a negative value of Dsens means that patient is not 

responding to the therapy because increasing (decreasing) doses are likely to 

correspond to increasing (decreasing) INR values. In this case a high absolute 

value of Dsens correspond to patients whose response in highly unpredictable. 

Positive values of Dsens indicate that patient is responding to the therapy, in this 

case the absolute value indicate the response sensitivity with respect to the 

dosage, patients falling in this class have more predictable drug response 
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behaviour. In our study we compute the drug sensitivity index (Dsens) by using 6 

dose-INR measurement time courses (i=6).  

Fig. 5-17 shows the empirical distribution of this index. Three principal drug 

sensitivities classes (Negative [-125≤ Dsens ≤-3.738], Medium [-3.738< Dsens ≤7.38], 

Positive [7.38< Dsens ≤ 107]) are obtained by discretizing the variable by using the 

minimum description length approach.  

 

 
Fig. 5-17: Drug Sensitivity distribution 

5.3.2.1 Drug Sensitivity and Entropy 

For a better definition and characterization of each Dsens class we use a particular 

“regularity statistic” measure called “Approximate Entropy” (ApEn), proposed by 

(Pincus, 1991; Pincus, 1995) as a measure of systems complexity.  

In literature it finds application in many fields and in particular is used to 

analyze various signals in biomedical engineering. Between the different 

proposed applications of this index there are: (Ryan et al., 1994) that used 

approximate entropy in order to identify gender and age-related differences in 

heart rate dynamics; (Ho et al., 1997) that, with approximate entropy, predicts 

survival in heart failure and (Schuckers et al., 1999) use it for the distinction of 

different kinds of arrhythmias. There are also several studies which apply 

approximate entropy on the electroencephalogram (Levy et al., 2003; Abasolo et 

al., 2004). The authors in (Burioka et al., 2003) studied the human respiratory 

movement using approximate entropy, while in (Vaya et al., 2006) predicted the 

atrial fibrillation termination.  

In this Thesis we used this index to better characterize patients’ behaviour. In 

particular, like examples in literature, we want to analyze Dsens classes using this 

index on the basis that patients belonging to negative drug sensitivity class have 

higher entropy than those patients of positive Dsens classes. Indeed, if a patient 

has a negative Dsens value means that in his INR measurements there are a lot of 

unpredictability fluctuations. In fact, the presence of repetitive patterns of 

fluctuation in a series makes it more predictable than a series in which such 

patterns are absent.  

In particular, ApEn reflects the likelihood that a pattern of observations will not 

be followed by an additional “similar” one. As a consequence, a series containing 

many repetitive patterns has a relative small ApEn; a less predictable (i.e. more 

complex) process has a higher ApEn.   

Here, we provide a brief summary of ApEn computation (Ho et al., 1997; Mannis 

et al., 2008), as applied to a series of INR measurements.  
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Given a sequence X, consisting of N instantaneous INR measurements: 

N
INRINRINRX ,...,,

21
=  ( 5-27) 

We must choose values for two input parameters, m and r, to compute the 

approximate entropy, ApEn(XN, m, r), of the sequence. In particular, m specifies 

the pattern length, and r defines the criterion of similarity.  

Consequently, we construct a new series X  of vectors (or patterns)
i

INR : 
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Each vector 
i

INR  represents a subsequence of size m of INR measurements 

beginning at measurement i.  

As a consequence, after the selection of the threshold distance r,  we can define 

that two vector 
i

INR  and 
j

INR  are similar if the difference between any pair of 

corresponding measurements in the vectors is less than r,  i.e., if 
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In this way, given the threshold distance r, the probability of a vector 
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The quantity )(rC m

i
 is the fraction of patterns of length m that look like the 

pattern of the same length that begins at interval i. We can calculate )(rC m

i
for 

each pattern in X . 

Finally, if we define  

1

)(ln

)(

1

1

+−
=Φ
∑

+−

=

mN

rC

r

mN

i

m

i

m
 

( 5-33) 

The approximate entropy, given m and r, is the difference: 

 

)()(),( 1 rrrmApEn mm +Φ−Φ=  ( 5-34) 

 

If the measurements’ series is highly irregular, the occurrence of similar patterns 

will not be predictive for the following measurements and ApEn will be relatively 

large. 

After different tests on our data and following the opinion of physician (Ho et al., 

1997), we set the parameter m equals to 5 and )(2.0 Xr σ⋅= where σ represents the 

standard deviation of patient’s INR measurements. 

Results confirm the division in three classes already proposed before i.e. negative, 

medium and positive. The approximate entropy distribution for the entire dataset is 

illustrated in Fig. 5-18. 
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Fig. 5-18: Approximate Entropy distribution for entire dataset 

 

As illustrated in Fig. 5-19, positive class (Fig. 5-19 (a)) has a low value of entropy 

(from 0.3 to 0.65) while negative class (Fig. 5-19 (c)) has high entropy values (from 

0.6 to 1). This confirms the obtained classes and in particular the fact that patient in 

negative class has INR measurements with a lot of unpredictability fluctuations. 

 

 
Fig. 5-19: Approximate entropy for each Dsens class 

 

Approximate entropy has been computed also for better characterize patients 

with respect to different other features as for example age. Fig. 5-20 illustrates 

the approximate entropy distribution for patient older than 75 years and those 

younger than 75 years. In this case we can see that elderly patients have, like 

some literature works affirm (Rosove et al., 2009), a higher entropy than the 

young ones. 
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Fig. 5-20: Approximate Entropy for patients with different age 

5.3.3 Traditional Clustering Approach:   

a Modified Version of Mod-K-Prototype 

After the definition of Dsens index that characterizes patients, a first analysis of 

available OAT data is made by a traditional clustering algorithm with the aim to 

find new interesting properties into data.  

In particular, this case study is an example of a typical problem for biomedical 

data analysis explained in section 2.2: the need of clustering for mixed data 

types. In this case, in fact, patients’ data are both categorical (like gender, 

concomitant therapy, etc.) and numerical (like doses, INR values, age, etc.). 

We use a specialized version of the algorithm “modified k-prototypes” (Bushel et 

al., 2007) for handling mixed data, that we will call “OAT- Mod-k-prototypes”.  

Like already described the approach is based on the construction of an objective 

function obtained from the sum of the squared Euclidean distance for numeric 

data and simple matching distance for categorical values in order to measure 

dissimilarity of the instances (patients). Separate weighting terms are used to 

control the influence of each data type.  

A cluster's prototype (centroid) is formed from the mean of the values for 

numeric features and the mode of the categorical values of all the samples in the 

group.  

 

 
Fig. 5-21: schema of the OAT Mod-k-prototypes algorithm 
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In Fig. 5-21 are represented the components of the modified k-prototypes 

algorithm for our OAT mixed dataset.  

The mod-k-prototypes objective function is formulated as: 
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where pi is the ith patient ( i = 1 to N number of patients), ql is the lth centroid, (l=1 

to k number of clusters), mn is the number of  numeric attributes and mc is the 

number of categorical attributes; α and β denote the weights (W) for the numeric 

and categorical data domain dissimilarity measures, respectively.  

The weights for data type t (t=numerical, categorical)at the nth step are called 

Wt[n] where if t is referred to numerical attributes represents α while if it is 

referred to categorical values represents β.  

These weights are adapted and modified respect to equation ( 2-7) as follows: 
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where τ is the exponential weighting update factor in the range [0,1] and 

avecorr(pd, qd) is the average correlation coefficient between the instances and 

the centroids based on the feature values from type t, as defined in equation ( 

2-8).  

In our setting τ=0.13 as shown in Fig. 5-22. 

 

 
Fig. 5-22: α and β parameter 

 

Finally, the dynamic validity index and category utility index (DVI_CU), defined in 

subsection 1.4.1.2 is used to both determine the optimal number of clusters and 

for the obtained clusters. 

5.3.3.1 OAT-Mod-K-Prototypes Results 

In order to investigate better the importance of genomic features in the 

characterization of the patient, we tested this algorithm by considering data with 

or without genetic features which represent the polymorphism of gene CYP2C9 

and VK0RC1. Feature CYP2C9 can assume values [WT, AC, CT] and VK0RC1 the 

τ 
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values [WT, CT, TT]. We call the configuration without genomic data Ω1 and the 

other Ω2. 

Ω1 and Ω2 are clustered using the OAT-modified-k-prototypes algorithm with 

values of k =2,…,N.  

As shown in Fig. 5-23 we have the minimum value of DVI_CU index, for Ω1, with 

k=3 and DVI_CU = 1.12. 

The results shown in Fig. 5-24 are those obtained on the dataset Ω2: in this case 

minimum DVI_CU index is obtained with k=3 and DVI_CU=1.08. 

 

 
Fig. 5-23:DVI_CU index variation for k from 0 to 20 for dataset Ω1 

 

 
Fig. 5-24: DVI_CU index variation for k from 0 to 20 for genomic dataset Ω2 

 

The obtained number of clusters (3) has confirmed our initial subdivision of 

patients in three principal categories (negative, medium and positive).  

 

To evaluate clustering results we use two of the traditional classification-

oriented evaluation measures, already defined in subsection 1.4.1.1: F-Measure 

which combines the Precision and Recall and Entropy.  

The used set of labels L is based on the three Dsens classes defined before.  

 
 F-measure Entropy 

OAT-modify-k-prototypes 
Ω1 0.521 1.48 

Ω2 0.563 1.35 
Tab. 5-8: F-measure and entropy results for OAT modify k prototypes algorithm 
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The results obtained by OAT-mod-k-prototypes are summarized in Tab. 5-8, 

where we can see that better results, in terms of both f-measure and entropy, are 

those achieved by genomic configuration Ω2. 

5.3.4 The Proposed Relational Clustering Framework 

The clustering approach presented in the previous subsection belong to the 

category of distance-based approaches, in which the objective function is based 

only on the minimization of a combination of two distance measures, one for 

categorical data and the other for the numerical ones. 

Also in this case study we instantiate the proposed relational clustering 

framework (presented in subsection 4.4), considering behavioural relationships 

between patients as background knowledge that can be included into the 

clustering objective function. A representation of the proposed framework for 

this clinical application is illustrated in Fig. 5-25.  

The main aim of this application is based on the creation of groups of patients 

based on their clinical features, by constraining the clustering process in order to 

consider also the behavioural relationships between couples of patients. This is 

motivated by the fact that we want find not only clusters of patients clinically 

similar, but also cluster of patients sharing a similar behaviour, as, for example, 

similar response to oral anticoagulation therapy. 

 

 
Fig. 5-25: Instantiation of general relational clustering framework 

 

The computational process of the proposed framework is illustrates in Fig. 5-26.  

 

The OAT dataset can be viewed as a set into the space Rm+n where m is the 

behavioural feature number and n the clinical features number.  
}RpR), p,p(p{p|p Ω nCfmBfCfBf ∈∈== ,  ( 5-37) 

 

where p represents a patient, pBf corresponds to the behavioural features value 

into a space Rm and pCf denotes the clinical features value into the space Rn.  

We can therefore define ΩBf and ΩCf as the set of the patients represented 

through their behavioural and clinical features respectively: 
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}Ω), p,p(p|p{p Ω CfBfBfBf ∈==  ( 5-38) 

}Ω), p,p(p|p{p Ω CfBfCfCf ∈==  ( 5-39) 

 

In particular in the behavioural features set we include numerical data as: 

average and variance of INR measurements, average and mean of doses.  

On the other side, the set of clinical features is composed only by categorical data 

i.e. age, gender, evidence leading to OAT, concurrent medications. 

In this case study since we have both numerical and categorical data we use two 

different distance measures. In particular, for numerical data we use the 

traditional Euclidean distance, described into subsection 1.1. On the other side, 

for categorical data we use the simple matching distance measure, already used 

in the modified-k-prototypes algorithm. 

5.3.4.1 Relations Learning 

A relation among two patients can be an Affinity or a Diversity link. In this case 

study with Affinity link we want to explain the relation between two patients that 

shared similar behavioural profile and with Diversity link we want to underline 

the fact that the two patients don’t share a common behaviour.  

Given that we don’t know any behavioural relationships between patients in 

advance, we can learn Affinity and Diversity link weight by formulating a 

clustering problem that can be solved by the K-Means algorithm. 

Given the elements Bf

i
p , a set of clusters Cj with j = 1 : J, the clustering problem 

can be defined as in equation ( 1-11), where we must allocate each element Bf

i
p  

in a cluster Bf

j
C such that the intra-cluster distance is minimized and the inter-

cluster distance is maximized.  

The resulting clusters of patients permit us to build two relations matrices, 

called RA and RD where: 

- RA: is a matrix whose elements A

ik
r  represent the weights of the Affinity links 

between patients belonging to the same cluster and will suggest in the 

following phase that two patients should be placed in the same module, 

because they share some behavioural features.  

The element  A

ik
r  is given by: 
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- RD: each element  D

ik
r  of this matrix represents the weights of the Diversity 

links between patients belonging to different clusters and will suggest that in 

the following phase two patients should not be placed in the same module 

because they have different behaviour (for instance they respond in a 

different way to warfarin therapy).   

More formally, D

ik
r  is defined as the distance (computed as in ( 5-10)) 

between the behavioural profile of patient i and that of patient k, i.e. 
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These two matrices will be used in the subsequent objective function 

optimization over the clinical features space. 
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5.3.4.2 Relational Clustering 

The second component of relational clustering process, illustrated in Fig. 5-26, is 

based on grouping patients on the basis of their clinical features taking into 

account the relations, based on patients behavioural features, learned in the 

previous step.   

In particular, we want to minimize the sum of the distances between instances, 

expressed by patients’ clinical features, penalized by a function that takes into 

account Affinity and Diversity links. 

 

 
Fig. 5-26: Computational process of the proposed relational clustering framework 

 

Let Cf

i
p be a given patients represented by its clinical features, like age and 

therapy and Cf

j
C , with j = 1 : J, be a set of clusters.  

For solving the clustering problem we must define the assignment matrix, called 

Z (as in equation ( 1-10)), where each element zij is equal to: 
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The problem can be formulated as follows: 
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The optimization problem can be solved through an adaptation of K-means 

heuristic reported in the starting chapter. 

In this way if an Affinity link (or a Diversity link) is not preserved, the objective 

function is penalized according to their respective weight ( A

ik
r  or D

ik
r ) and the 

distance between patients i and k represented in terms of their clinical features, 

),( Cf

k
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i
ppd . 



The Proposed Relational Clustering Framework: Case Studies 

 
112 

5.3.4.3 Obtained Results 

In the analysis of relational clustering results we use the two dataset 

configurations Ω1 and Ω2 based on the inclusion or exclusion of genomic features 

as already used in the results analysis of OAT-modify-k-prototypes algorithm. 

Also in this case we evaluate the resulting clusters using two traditional 

classification oriented measures: F-Measure and entropy (defined in subsection 

1.4.1.1) based on the set of class label L constituted by the three drug sensitivity 

class, since, as already investigate, this index characterize the patient behaviour. 

In the table below we have reported results that we have already seen in the 

previous subsection and Relational clustering results. 

 
 F-measure Entropy 

OAT-modify-k-prototypes 
Ω1 0.521 1.48 

Ω2 0.563 1.35 

Relational Clustering 
Ω1 0.600 1.25 

Ω2 0.630 1.01 

Tab. 5-9: F-measure and entropy results for OAT modify k prototypes algorithm 

 

As we can see relational clustering approach obtain more purely clusters in 

respect to the traditional one. Maybe the increments obtained are due to the 

inclusion of underlined behavioural relationships between patients. In fact, using 

traditional approach we could obtain clusters of patients with the same age or 

therapy or other clinical features, but these patients can differ greatly each other 

under the point of view of their therapeutical behavioural. Using behavioural and 

not-behavioural links, patients with same behavioural features are forced to be 

in the same cluster. 

Another interesting characteristic deducible from results is that genomic 

features increment clustering performance both in term of F-measure and 

Entropy. 

5.3.5 Further Analysis on the Data Set 

After an analysis of OAT data using unsupervised machine learning techniques 

we have further analyzed it by using supervised techniques based on drug 

sensitivity classes. 

Analyzing literature, for the best of our knowledge, we haven’t found any 

application of unsupervised techniques on oral anticoagulation problem. On the 

other side, different patient classification models, based on personal and clinical 

data, have been proposed in (Carney et al., 2005; Mc Donald et al., 2008). 

However, these traditional machine learning applications classifies patients on 

their average INR value (below, in and over patient range) without considering 

their drug sensitivity.  

In this Thesis we investigate classification models using drug sensitivity index, 

explained above, as class variable. 

In order to build a classification model we considered the following features: 

personal data (age and gender), OAT therapeutic data (drug used for OAT 

therapy and medical evidence leading to OAT) and concomitant medication.  

We train and test, using 10-fold cross validation, four different machine learning 

classification algorithms (Multi Layer Perceptron (MLP), Support Vector 
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Machines (SVM), K-Nearest Neighbourhoods (kNN) and Bayesian Networks 

(BN)). In this study, a particular configuration for MLP is used: it had two hidden 

layers and a high momentum value than usual to try to alleviate the potential 

problem of reaching only a local optimal solution, rather than a global optimum. 

Therefore SVM, a machine learning approaches based on multiple regression, 

was configured using a non-linear kernel function.  

A particular version of KNN is used: the neighbours (3 in our configuration) were 

weighted by the inverse of their distance. Finally, for finding the conditional 

probability tables of the Bayesian Network we use a Simple Estimator and for 

finding a well scoring BN structure we use a Genetic Search that works by having 

a population of Bayesian Network structures and allow them to mutate and 

apply cross over to get offspring. 

For our experiments we use the Weka (www.cs.waikato.ac.nz/ml/weka) 

implementation of the used classification algorithms. 

5.3.5.1 Classification Results  

In this paragraph we will present the obtained classification results in term of 

correctly classified instances (CCI) and F-measure (the weighted harmonic mean 

of precision and recall), two extensively used metrics in supervised learning. 

The first step that we have done to better compare our classification results with 

literature is based on building classification models based only on INR class (low, 

in or over range). We report the obtained results in the table below. 

 

 

INR 

based Classification 

MLP SVM kNN BN 

% CCI 59,30% 59,30% 58,47% 58,79% 

F-

measure 
0,5513 0,5818 0,5521 0,5380 

Tab. 5-10: INR based classification results 

 

The next phase of our supervised analysis is based on the training and testing of 

classification models based on drug sensitivity class label. Obtained results are 

presented in Tab. 5-11. 

 

 

DRUG SENSITIVITY 

based Classification 

MLP SVM kNN BN 

% CCI 60.61% 64.06% 59.32% 62.29% 

F-measure 0.581 0.595 0.578 0.589 

Tab. 5-11: Drug sensitivity based classification results 

 

As we can observe in the table, there is an increment in terms of both F-measure 

and CCI for drug sensitivity based classification respect to the traditional one 

proposed in Tab. 5-10 . 

To characterize better the behaviour of a patient we compute INR average and 

variance of a time course of 6 INR measurements and include both these data in 

the feature set. So, we built new classification models with this new feature set 
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and the obtained results, reported in Tab. 5-12, are better both in term of CCI 

and F-measure.  

  

 

DRUG SENSITIVITY 

based Classification 

MLP SVM kNN BN 

% CCI 63.71% 68.70% 64.30% 64.46% 

F-

measure 
0.6214 0.613 0.598 0.611 

Tab. 5-12: Drug sensitivity based classification results with new features 

 

The model thus learned i.e. with the full set of features has been applied also in 

the induction phase i.e. without considering INR values. Obtained results are 

reported in Tab. 5-13.  

Comparing these results with those reported in Tab. 5-11, we can see that 

models learned using the two additional features about INR are better in term of 

CCI and f-measure than those learned without these two features. 

 

 

DRUG SENSITIVITY 

based Classification 

MLP SVM kNN BN 

% CCI 61.61% 65.26% 60.88% 63.8% 

F-

measure 
0.5964 0.61 0.584 0.597 

Tab. 5-13: Induction phase: Drug sensitivity based classification results 

 

Also in this case, like in clustering analysis, another investigation has been made 

taking into account genomic data.  

We now present classification results obtained including the two genomic 

feature regarding polymorphism of CYP2C9 and VKORC1 genes in the feature set 

previously introduced. This dataset configuration is the same that we called, in 

the previous section, as Ω2. 

Also with this dataset four different tests are performed.  

The first one is focalized on INR based classification. Obtained results are 

reported in the table below. 

  

 

INR 

based Classification 

MLP SVM kNN BN 

% CCI 60,12% 61,95% 60,24% 59,44% 

F-measure 0,573 0,601 0,574 0,579 

Tab. 5-14: INR based classification results on Ω2 dataset configuration  

 

As in the tests presented previously, in the induction phase first stage we do not 

use INR average and variance. Results obtained at this step are reported in Tab. 

5-15. 
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DRUG SENSITIVITY 

based Classification 

MLP SVM kNN BN 

% CCI 61.66% 65.6% 62.3% 63.5% 

F-measure 0.591 0.62 0.58 0.60 

Tab. 5-15: Dsens based classification with genomic data results.   

In this phase INR average and variance are not considered. 

 

Results obtained using the complete set of features (including INR average and 

variance) are reported in Tab. 5-16. A new improvement is visible compared to 

the results in Tab. 5-12 . 

 

 

DRUG SENSITIVITY 

based Classification 

MLP SVM kNN BN 

% CCI 68.61% 74.41% 79.07% 75.58% 

F-measure 0.675 0.747 0.665 0.645 

Tab. 5-16: Dsens based classification with complete genomic data results 

 

Also in this case, the model thus learned i.e. with the full set of features has been 

applied also in the induction phase i.e. without considering INR values. Obtained 

results are reported in the table below.  

 

 

DRUG SENSITIVITY 

based Classification 

MLP SVM kNN BN 

% CCI 62.2% 66.8% 63.1% 64.1% 

F-measure 0.62 0.64 0.60 0.625 

Tab. 5-17: Dsens based classification with genomic data results.  

In this phase INR average and variance are not considered. 

 

5.3.5.2 Drug Sensitivity Classes Characterization Based on Genetic Features 

Analyzing classification results presented in the last paragraph, we can 

understand that genomic data allow a better characterization of patient’s 

behaviour. This confirms both the first data analysis done with the entropy 

measure and the results obtaining thru the relational clustering framework. 

In Tab. 5-18 we provide the distribution of genomic variants into the three drug 

sensitivity classes described before.  

An interesting feature is that a lot of patients with a polymorphism on both 

genes belong to negative drug sensitivity class. Therefore wild type patients are 

predominantly in positive and medium drug sensitivity classes and patients with 

only one polymorphism are distributed principally in medium.  
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Genes Total 

Patient 

Number 

Drug Sensitivity class 

 
CYP2C9 VKORC1 POSITIVE MEDIUM NEGATIVE 

WILD TYPE WT WT 65 51,72% 44,83% 3,45% 

ONE POLYMORPHISM 

WT TT 53 34,21% 50,00% 15,79% 

WT CT 96 34,78% 60,87% 4,35% 

CT WT 31 8,33% 75,00% 16,67% 

AC WT 6 0,00% 25,00% 75,00% 

TWO POLYMORPHISMS 

CT CT 32 10,00% 30,00% 60,00% 

CT TT 16 0,00% 83,33% 16,67% 

AC CT 18 14,29% 14,29% 71,43% 

AC TT 8 0,00% 16,67% 83,33% 

Tab. 5-18: Genomic variant distribution in the three Dsens classes 

 

We studied also patients belonging to each class and we report an example of 

INR measurements of one patients of each class.  

In this way we want to underline not only the negative behaviour of a patient, 

but also the unpredictability of his INR values. In Fig. 5-27 are plotted INR values 

of a wild type patient belonging to the positive drug sensitivity class. Comparing 

this plot with that reported in Fig. 5-29 is possible to see that the hemorrhagic or 

thrombotic risk of a patient in negative Dsens class is higher than that of a positive 

Dsens patient. 

 

 
Fig. 5-27: Wild type patient, positive Drug Sensitivity class 

 

 
Fig. 5-28: Patient with two polymorphisms (gene CYP2C9: AC; gene VK0RC1: TT),  

medium Drug Sensitivity class 
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Fig. 5-29: Patient with two polymorphisms (gene CYP2C9: CC; gene VK0RC1: CT),  

negative Drug Sensitivity class 

 

In conclusion, in this subsection we have applied different machine learning 

techniques on the clinical problem of oral anticoagulation therapy.  

In particular, after the introduction of Drug Sensitivity index (used to better 

characterize patients), we instantiated the relational clustering framework for 

finding groups of patients with similar behavioural and clinical features.  

Results are compared with those of a traditional distance based approach (OAT- 

mod-k-prototypes): improvements are obtained in terms of F-measure and 

entropy. 

In a second phase, classification models based on drug sensitivity classes have 

been trained and tested.  

Analyzing both clustering and classification results we understand the 

importance of genetic information, that increments the performance of the 

algorithms end therefore help us to better characterize patients.  

 

 

 

 

 

 

 



 

Conclusion 

In this Thesis, we have addressed the problem of incorporating into traditional 

clustering algorithms available background knowledge, gathered from difference 

sources. 

We have investigated three main methodological challenges in clustering 

namely: feature selection, distance measure using mixed data types and 

knowledge integration into the clustering procedure.   

The main methodological achievements of this work can be synthesized as 

follow:  

• Concerning the goal of feature selection, a new genetic programming 

based framework has been proposed to automatically identify and 

remove irrelevant and redundant information. Interesting results has 

been obtained on different life science case studies.  

• With respect to the second challenge, a modified clustering version for 

mixed data type has been proposed. The traditional clustering objective 

function has been modified to take into account a weighted combination 

of numerical and categorical distances, with the aim to control the 

influence of each data domain on the clustering of the instances.    

• As far as the integration of background knowledge in the clustering 

process is concerned, a relational clustering framework has been 

proposed, characterized by two main components: “relation learning”, in 

which relations are discovered and learned from domain background 

information and “relational clustering” in which the learned relationships 

are included into the clustering process modifying the clustering objective 

function. 

 

The proposed methodologies have been validated on three different applications 

in the life science domain: the first focused at the identification of modules of 

genes with similar regulatory profiles; the second one is a pharmacogenomics 

application with the aim of defining a model which, given the gene expression 

profile related to a specific tumors tissue, could help in selecting a set of most 

responsible drugs; finally the proposed relational framework is applied to a 

clinical application for grouping patients undergoing the Oral Anticoagulation 

Therapy in order to profile  them based on their behavior and clinical features.  

The experiments done on all the case studies mentioned above demonstrate that 

using background knowledge the clustering accuracy improves and that the 

application of the relational clustering algorithm yields better results than 

traditional approaches. 

   

Research Perspectives 
There are different interesting research topics which stem from the ideas 

presented in this Thesis. 

An interesting research direction could be the extension of the proposed 

relational clustering framework for clustering data with respect to more 

dimensions, like biclustering and 3-clustering. 



Conclusion 

 
119 

A further interesting development could be the extension of the relational 

clustering framework to include background information with richer structure, 

like the approach proposed in (Taskbar et al., 2001), who developed a relational 

approach based on Probabilistic Relational Models (PRM) introduced by 

(Friedman et al., 1999). In a simple way, PRM can be viewed as a Bayesian 

Network extended to the relational domain. In this way an additional 

development will be aimed at defining new similarity measures between objects 

that consider the relational structure.  

 

There are a number of other interesting future directions regarding the case 

studies presented in this thesis; below we present the possible ones for each case 

study: 

 

Learning Transcriptional Regulatory modules  

In the system biology domain a lot or different information are available. We use 

regulatory information to find modules of genes that are co-regulated and co-

expressed. Possible interesting background information that can be included into 

the clustering procedure is that became from the Gene Ontology (The Gene 

Ontology Consortium, 2000) database with functional gene annotations. 

In this way we think that it is possible to increment the clustering performance 

and gene annotations will make easier the interpretation of clustering results. 

 

Detective the most effective cancer drug: NCI-60 dataset 

In this case study future works will be focused principally on a modification of 

the proposed relational clustering framework instantiation. In particular we 

would like to create an iterative procedure, that iteration after iteration select 

genes that most explain anticancer therapy responses. For this aim we can take 

as example the iterative procedure used in the first case study. 

Other future contributions will concern in Vitro testing for validating drug 

prediction based on the relational clustering modules found by our framework. 

Finally an interesting topic is the refinement of Bayesian Networks for predicting 

drug responses of those compounds that are in clinical use, after a strict 

collaboration with physicians. 

 

Oral Anticoagulation Therapy  

Using the relational framework in this application we are able to profile patients 

into three different sensitivity classes: negative, medium and positive. 

This profiling will be useful for building “ad hoc” dosage algorithm. In particular, 

the workflow that we have thought is based on the following steps: the patient 

arrives at hospital, an INR measurement is done by the physician and, using all 

the information available, a drug sensitivity class is assigned to him. In 

particular, patient p could be associated to a specific class by using the minimum 

distance between p and the representative element of each class.  

Different literature works like (Anderson et al., 2007; Gage et al., 2008), 

proposed pharmacogenomics dosing algorithms. We would suggest a 

personalized dosing algorithm based on patient’s class. 

Thanks to patient profiling we will be also able to build a dosage system to 

suggest physician the correct drug dosage during the entire therapy. In this case 

we think that this problem can be viewed as a sequential optimization problem 
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and that the application of Markov Decision Processes (MDP) provides an 

appropriate model, since they take into account the long-term effects of each 

dosing action and the INR expected value.  
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Appendix A: Data Resources 

In this appendix we report a description of all data resources used in the case 

studies presented in this Thesis. 

A.1  Transcription Factors Data 

The complexity of the yeast cell’s system for detecting and responding to 

environmental variation is only beginning to emerge and makes it a suitable 

model for analysis of more complex biological systems. Genes whose 

transcription is responsive to a variety of stresses have been implicated in a 

general yeast response to stress (Mager and De Kruijff, 1995; Ruis and Schuller, 

1995). Other gene expression responses appear to be specific to particular 

environmental conditions. Several regulatory systems have been implicated in 

modulating these responses, but the complete network of regulators and the 

details of their actions, including the signals that activate them and the 

downstream targets they regulate, remain to be elucidated. 

A.1.1 Gasch et al., 2000 Dataset 

Gasch et al. 2000 used data came from DNA microarrays to analyze changes in 

transcript abundance in yeast cells responding to a panel of diverse 

environmental stresses.  

In particular, they describe the global expression programs in response to a 

diverse set of stresses, including their specific features and a common response 

to all of the stressful conditions, termed the “environmental stress response” 

(ESR). These ESR are: heat shock, hydrogen peroxide, superoxide generated by 

menadione, a sulfhydryl oxidizing agent (diamide), and a disulfide reducing 

agent (dithiothreitol), hyper-osmotic shock, amino acid starvation, nitrogen 

source depletion, and progression into stationary phase. The severity of each 

condition was calibrated to preserve more than 80% cell viability, so that we 

could observe the expression programs in viable cells adapting successfully to a 

changing environment.  

In their experiments, 173 different mRNA samples were analyzed by whole-

genome microarray hybridization. Each microarray used in this study contains 

6172 yeast genes.  

The resulting table was organized by hierarchical clustering and displayed as in 

the figure below taken from (Eisen et al., 1998). Briefly, their clustering 

algorithm arranges genes according to their similarity in expression profiles 

across all of the array experiments, such that genes with similar expression 

patterns are clustered together.     
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Fig. A - 1: (Gasch et al., 2000) dataset representation 

 

In Fig. A - 1 each row of coloured boxes represents the variation in transcript 

abundance (expression) for each gene, and each column represents the variation 

in transcript (expression) levels of every gene in a given mRNA sample, as 

detected on one array. The variations in transcript abundance for each gene are 

depicted by means of a colour scale, in which shades of red represent increases 

and shades of green represent decreases in mRNA levels, relative to the 

unstressed culture, and the saturation of the colour corresponds to the 

magnitude of the differences. A black colour indicates an undetectable change in 

transcript level, and a gray colour represents missing data. A dendrogram 

constructed during the clustering process depicts the relationships between 

genes: the branch lengths represent the degree of similarity between genes 

based on their expression profiles. Genes that display similar patterns of gene 

expression over multiple experiments are thus grouped together on a common 

branch of the dendrogram and can also be recognized by an obvious pattern of 

contiguous patches of colour in the cluster diagram.  

A.1.2 Spellman et al., 1998   Dataset 

In 1981 Hereford and co-workers discovered that yeast mRNAs oscillate in 

abundance during the cell division cycle (Hereford et al., 1981). To date 104 

messages that are cell cycle regulated have been identified using traditional 

methods, and it was estimated that some 250 cell cycle-regulated genes might 

exist (Price et al., 1991). There are several reasons why genes might be regulated 

with the cell cycle. Such regulation might be required for the proper functioning 

of mechanisms that maintain order during cell division. Alternatively, regulation 

of these genes could simply allow conservation of resources.  
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Much of the literature has focused on the post-transcriptional mechanisms that 

control the basic timing of the cell cycle. However, there is also clear evidence 

that trans-acting factors play a critical role in the regulation of the abundance of 

many cell cycle-regulated transcripts. 

In particular, (Spellman et al. 1998) used DNA microarrays and samples from 

yeast cultures synchronized by three independent methods: alpha factor arrest, 

elutriation, and arrest of a cdc15 and cdc28 temperature-sensitive mutant. 

 

 
Fig. A - 2: (Spellman et al., 1998) data set representation 

 

In Fig. A - 2 is represented the dataset composed by gene expressions during the 

yeast cell cycle. Genes correspond to the rows, and experiments are the columns. 

The ratio of induction/repression is shown for each gene such that the 

magnitude is indicated by the intensity of the colours displayed. If the colour is 

black, then the ratio of control to experimental cDNA is equal to 1, whereas the 

brightest colours (red and green) represent a ratio of 2.8-1. Ratios >2.8 are 

displayed as the brightest colour. In all cases red indicates an increase in mRNA 

abundance, whereas green indicates a decrease in abundance. Gray areas (when 

visible) indicate absent data or data of low quality. Colour bars on the right 
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indicate the phase group to which a gene belongs (M/G1, yellow; G1, green; S, 

purple; G2, red; M, orange). These same colours indicate cell cycle phase along 

the top. (A) Gene expression patterns for cell cycle-regulated genes. 

In conclusion the microarray data used in this study are composed by the 

expression level of 6178 genes across 77 different experimental conditions. In 

particular, only 774 genes are cell cycle regulated which constitutes >10% of all 

protein-coding genes in the genome. 
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A.2  NCI-60 Data 

The NCI-60 data, commissioned by the National Cancer Institute U.S.A. and 

publicly available online (Scherf et al., 2000), consists of 60 cell lines from 9 

kinds of cancers, all extracted from human patients.  

The tumours considered in this panel derive from colorectal (8), renal (8), 

ovarian (6), breast (8), prostate (2), lung (8) and central nervous system (6) as 

well as leukaemia (6) and melanomas (8) cancer tissues. 

The dataset is composed by two matrices: the Activity matrix (or simply A-

matrix), that contains responses to pharmacologic treatments, and the Target 

matrix (or T-matrix) that contains the gene expressions data. 

A representation of the dataset is visible in Fig. A - 3. 

 

 
Fig. A - 3: Simplified schematic overview of NCI60 database 

 

Cell-cell correlations on the basis of gene expression profiles (T-matrix) 

NCI has applied selective filters to reduce the initial 9,703 gene spots to a 1,376 

genes that showed strong patterns of variation among the cell lines: cluster 

analyses, on the basis of gene expression pattern using a variety of algorithms 

and metrics organizes the cell lines into groups that reflect their tissue of origin  

(Fig. A - 4 (a). With average linkage clustering and a correlation metric, the 1,376 

genes, yielded 11 distinct cell clusters differing in average inter-cluster 

correlation coefficient by more than 0.3. 

 

Cell-cell correlations on the basis of drug activity profiles (A-matrix) 

From the overall database of more than 70,000 chemical compounds tested, NCI 

has  selected for this analysis 1,400 compounds that has been tested at least four 

times on all or most of the 60 cell lines. Most of the drugs currently in clinical use 

are considered for cancer treatment. 

The 60 cell lines have been originally clustered using an average-linkage 

algorithm and a metric based on the growth inhibitory activities (GI50) of the 

1,400 compounds (Fig. A - 4 (b)):  comparison of Fig. A - 4 (a) and Fig. A - 4 (b) 

indicates that the clustering by organ of origin was not as strong on the basis of 

activity as it was on the basis of gene expression. They observed 15 distinct 

branches at an average inter-cluster correlation coefficient of more than or equal 

to 0.3. 

T-Matrix A-Matrix 
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This difference in clustering (Fig. A - 4 (a, b)) was probably due, at least in part, 

to the activity of genes important to drug sensitivity and resistance. For example, 

several tumour cell lines known to express the multi-drug resistance gene 

ABCB1 (formerly MDR1) had closely related drug-activity profiles. 

For quantitative comparison of the clustering (Fig. A - 4 (a, b)), they used the 

mean Pearson correlation coefficient p of all the Pearson correlation coefficients 

relating all possible pairs of cells in terms of their response to drugs and in terms 

of their gene expression. For these data sets, p was only 0.21. If these clustering 

had been identical, p would have been unity; if there had been no relationship at 

all, p would have been 0. 

 

 
Fig. A - 4: dendrogram showing average-linkage hierarchical clustering  

of human cancer cell lines 

 

The pharmacological implications of gene expression profiling studies of the 

NCI60 cell lines are of great importance. Because the gene expression patterns 

were determined in untreated cells, the data relates to sensitivity to therapy, 

rather than to the molecular consequences of therapy. In that sense, the study 

proposed in (Scherf et al., 2000) is analogous to an assessment of clinical 

tumours for markers that predict sensitivity to therapy. Their aim is to 

understand molecular pharmacology, to provide a rationale for selection of 

therapy on the basis of molecular characteristics of a patient’s tumour. 

Subsection 5.2 would be shown how the relational approach can be more 

effective than traditional cluster analysis. 
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A.3 Oral Anticoagulation Therapy (OAT) Data 

Oral anticoagulation therapy data used came from two clinical studies we have 

been participated. In particular clinical and therapeutical data are collected from 

computerized databases of two clinical institutes in Milan: Istituto Auxologico 

and Clinica Humanitas. 

In this way we build a database of 4000 patients of which around 380 have been 

so far genotyped. In the applications proposed in section 0 we considered only a 

subset of 1013 patients. 

The collected data are imported in a database characterized by three entities: 

patients, therapy and visits.  

In particular, for each patient we have information about date of birth, sex, 

medical evidence leading to OAT (Atrial Fibrillation, Deep Venous Thrombosis, 

other), patient’s INR range (2-3, 2.5-3.5, 2.5-3).  

Furthermore, for each patient, we memorize the concurrent medications in the 

therapy entity. In particular we classified all drugs in different categories: 

digitalis, amiodarone, furosemide, nitrates, beta blockers, calcium channel 

blockers, ACE Inhibitors, diuretic tiazidic, sartanic, farmaco lipids and other. So 

for each patient and for a particular category, we have a value “yes” if patient 

assumes a drug belong to this category and value “no” otherwise.  

Finally, for each visit we collected the date of visit, the result of the INR 

measurement and the weekly dose and drug used for OAT therapy (Coumadin 5 

mg, Sintrom 1 or 4 mg). 

Relational structure of database is represented in Fig. A – 5. In particular, a one to 

n relation exists between patient and visit entities and an n to n relation exists 

between visit and therapy entities. 

 

 
Fig. A – 5: Relational model of OAT application 

 

For only a subset of patients (380) we collected in the patient entity genomic 

data. In particular the polymorphism of CYP2C9 and VKRC01 are collected. For 

each patient CYP2C9 gene feature can have the following values: WT (wild Type), 

AC, CC. The possible values for gene VKORC1 are: WT (wild type), CT and TT.  

For a better description of each polymorphism we remand to (Anderson et al., 

2007). 
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Entry characteristics for both 1013 patients and the subset of 135 patients with 

genomic data are summarized in Tab. A – 1: 

 

Characteristics 

Patient 

without 

genomic data 

Patient with 

genomic data 

Patients number 1013 380 

Age, y, mean (dev.std) 76 (10) 76 (11) 

Gender: 

Women N (%) 502 (49.5%) 180 (47.40%) 

Men N (%) 511 (50.44%) 200 (52.60%) 

Primary reason for anticoagulation, N (%) 

Atrial fibrillation 771(76.11 %) 360 (94.70%) 

Deep vein thrombosis 80 (7.9%) 15(3.9 %) 

Other diagnosis 
162 (15.99 

%) 
5 (1.4%) 

Clinical Variables: 

Takes amiodarone, N (%) 175 (17.20%) 66 (17, 36%) 

Takes ASA (acetylsalicylic acid), N (%) 110 (10.85%) 35 (9.2.%) 

Takes Farmaco Lipids, N (%) 213 (21.02%) 49 (12.9%) 

Tab. A – 1: OAT patients’ characteristics 

 

The sample shows a prevalence of atrial fibrillation (76.11%). The genotyped 

sub-sample mirrors in a balanced way the relative weight of the features in the 

large one. In our studies we extract from the 380 patients, only those with atrial 

fibrillation and so we work on a dataset of 360 patients. 

The allelic variant frequency for the subset of 360 patients is summarized in the 

table below. 
Allelic variant frequencies 

CYP2C9 WT 66.67% 

 CT 20.74% 

AC 12.59% 

 

VKORC1 WT 40.74% 

 CT 33.33% 

TT 25.93% 

Tab. A - 2: Allelic variant frequencies of gene CYP2C9 and VKORC1 

 

The overall allelic frequency distribution is similar to what is reported in the 

literature (Anderson et al., 2007; Gage et al., 2008).  

In the following figures (Fig. A - 6 and Fig. A - 7) we report the genotypes 

prevalence for both genes and the mean weekly maintenance dosing for 

Warfarin. Circle represents relative population size.  
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Fig. A - 6: CYP2C9 genotypes prevalence and the mean weekly maintenance dosing for Warfarin. 

 

 
Fig. A - 7: VKORC1 genotypes prevalence and the mean weekly maintenance dosing for Warfarin. 

 

As we can see the weekly maintenance dose for patients with polymorphism is 

less than that for wild type patients. 

Cyp2c9 Genotypes 

VKORC1 Genotypes 
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A.4 Oncological Data 

Genetic Programming as feature selection method has been tested on two 

publicly available oncologic datasets: the first one contains data from healthy 

colon tissues and colon tissues affected by cancer and will be called Colon 

Dataset from now on; the second one contains data from patients affected by two 

different kinds of leukemia (acute myeloid leukemia and acute lymphoblastic 

leukemia) and will be called Leukemia Dataset from now on. These two datasets 

are described as follows. 

A.4.1 Colon Dataset 

The Colon Dataset is a collection of expression measurements from colon biopsy 

samples reported in (Alon et al., 1999).  

The dataset consists of 62 samples of colon epithelial cells collected from colon-

cancer patients. In particular the “tumour” biopsies were extracted from 

tumours, and the “normal” biopsies were collected from healthy parts of the 

colons of the same patients. The final assignments of the status of biopsy samples 

were made by pathological examination.  

Gene expression levels in these 62 samples were measured using high-density 

oligonucleotide arrays. Of the about 6000 genes represented in these arrays, 

2000 genes were selected based on the confidence in the measured expression 

levels. The dataset, 62 samples over 2000 genes, is available at  

http://microarray.princeton.edu/oncology/affydata/index.html. 

A.4.2 Leukemia Dataset 

The Leukemia Dataset (first introduced in (Golub et al., 1999)) contains data 

from 72 patients, half of which affected by acute myeloid leukemia and the 

remaining ones affected by lymphoblastic leukemia.  

For these patients, 7070 genes have been monitored. For measuring the 

expression level of those genes, oligonucleotides microarrays produced by 

Affimetrix have been used. Thus, the dataset is composed by 7070 columns and 

72 lines, each of which labelled with “myeloid” or “lymphoblastic” in order to 

separate these two kinds of leukemia.  

This dataset and a detailed description of it can be found at:  

http://genecruiser.broadinstitute.org/cgibin/cancer/publications/pubpaper.cgi

?mode=view&paper id=43. 

A.4.3 Molecular Dataset 

The molecular dataset is built by a collaboration with Delos s.r.l.. 

In particular, a small set of estrogen–genistein virtual molecules have been 

collected from the RCSB PDB database (RCSB Protein Data Bank, 2007). 

Successively substitution points on which we have clasped a small database of 

substituents (OH, CH3, CH2CH3, CH2OH, CH2CH2OH, CH2CH2NH2, 

OCH2CH2NH2) have been defined, obtaining a set of 992 genistein based virtual 

molecules.  



Appendix A: Data Resources 

 
131 

The resulting chemical structures where then optimized by means of molecular 

mechanics using the MOE software (Molecular Operating Environment (MOE), 

2007) and MMFF94 force field (MMFF94, 2007) for calculating 267 molecular 

descriptors.  

Finally, for each one of these ligands, we have calculated their docking energy 

value by means of the DELOS software platform (Delos s.r.l., 2007), an 

environment for effective virtual screening and docking simulations recently 

produced by the Discovery and Lead Optimization Systems company (Bresso, 

Italy).  

The resulting dataset was composed of 992 genistein based molecules, each of 

which is represented by a vector of 267 molecular descriptors and with known 

values of the docking energy. It can be downloaded from the web page: 

http://personal.disco.unimib.it/Vanneschi/Docking.htm . 

The dataset is a matrix H=[H(i,j)] of 992 rows and 268 columns, where each line i 

represents a molecule whose known docking energy value has been placed at 

position H(i,268).  

In this way, the last column of matrix H represents all the known docking energy 

values. 
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