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Abstract

In this paper we present a general strategy to deduce a family of interpolatory
masks from a symmetric Hurwitz non-interpolatory one. This brings back to
a polynomial equation involving the symbol of the non-interpolatory scheme
we start with. The solution of the polynomial equation here proposed, tai-
lored for symmetric Hurwitz subdivision symbols, leads to an efficient pro-
cedure for the computation of the coefficients of the corresponding family
of interpolatory masks. Several examples of interpolatory masks associated
with classical approximating masks are given.
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1. Introduction

A subdivision scheme is an iterative process that produces curves or sur-
faces from given discrete data by refining these on denser and denser grids.
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In the univariate case, starting with some initial points attached to the in-
teger grid, i.e. with q = (qi : i ∈ Z), one iteratively computes a sequence
qn := Saq

n−1 = Sn
aq

0 for n ≥ 1, where q0 ≡ q, by repeated application of
the rules

(Saq)i =
∑
j∈Z

ai−2j qj, i ∈ Z, (1)

which rely on the coefficients ai, i ∈ Z. These identify the subdivision
operator Sa and the so called refinement mask a = (ai : i ∈ Z), which is
an element of ℓ0(Z), i.e. of the space of compactly supported sequences of
real values. By assigning the values of Sn

aq, n ∈ N0, to the denser and denser
grids 2−nZ, one can then establish a notion of convergence to a continuous
limit function by requiring the existence of a uniformly continuous function
fq (depending on the starting sequence q) satisfying

lim
n→∞

sup
j∈Z

∣∣∣(Sn
aq)j − fq

(
2−nj

)∣∣∣ = 0 (2)

and fq ̸= 0 for at least some initial data q such that ∥q∥∞ := supi∈Z | qi| < ∞.
An equivalent description of convergence is to demand the existence of the
so called basic limit function as the limit of the sequence Sn

aδ (hereafter, we
denote by δ = (δi,0 : i ∈ Z) the “delta” sequence) that is, the existence of
a uniformly continuous function ϕa such that

lim
n→∞

sup
j∈Z

∣∣∣(Sn
aδ)j − ϕa

(
2−nj

)∣∣∣ = 0. (3)

In fact, in case of convergence of the subdivision scheme, we have

fq =
∑
j∈Z

ϕa(· − j) qj.

Note that the basic limit function is refinable with respect to a since it
satisfies the functional equation

ϕa =
∑
j∈Z

aj ϕa (2 · −j) . (4)

Most of the theory of stationary subdivision, whether convergence takes
place, consists of reading off the properties of the basic limit function ϕa

from the mask properties, or equivalently, from the properties of its symbol

a(z) =
∑
i∈Z

ai z
i z ∈ C \ {0},
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a Laurent polynomial associated with the mask a. For example, necessary
conditions for the subdivision convergence are given in terms of symbol prop-
erties as

a(1) = 2, a(−1) = 0. (5)

For more than an introduction to stationary subdivision, we refer to [2, 7].

A particular class of subdivision schemes are those that refine the sequence
q while keeping the “original data” in the sense that (Saq)2i = qi, i ∈ Z. For
obvious reasons, such schemes are called interpolatory and their refinement
mask is of special type since it satisfies

a2i = δi,0, i ∈ Z.

Whenever they converge, the associated limit functions are cardinal inter-
polants to q, i.e. fq(i) = qi, i ∈ Z and their basic limit function ϕa is a
cardinal interpolant of the δ sequence, ϕa(i) = δi,0, i ∈ Z. It is easy to show
that a(z) is the symbol of an interpolatory scheme if and only if it satisfies

a(z) + a(−z) = 2 z ∈ C \ {0}. (6)

Interpolatory subdivision schemes play a crucial role in both geometric mo-
deling and wavelets construction (see [7] and [16], respectively). In fact,
on one hand interpolatory methods have the ability to generate curves in
a very predictable manner (due to the fact that the produced limit shapes
pass through the given control points) which is certainly a desirable fea-
ture in curve design. On the other hand, a positive symmetric interpolatory
symbol, via its spectral factorization, allows the construction of an orthog-
onal refinable function, building block of orthonormal wavelets. Despite of
their importance and of the recent burgeoning literature in the field of sub-
division schemes, very few interpolatory examples are known so far even in
the univariate setting. The most celebrated example is the class of Dubuc-
Deslauriers (DD) symmetric schemes, first presented in [4].

Interpolatory subdivision is the subject of this paper, where we provide a
general strategy to deduce a family of interpolatory masks from a symmetric
Hurwitz non-interpolatory one. This brings back to a polynomial equation
involving the symbol of the non-interpolatory subdivision scheme we start
with. The solution of the polynomial equation here proposed is tailored for
symmetric Hurwitz subdivision symbols and leads to an efficient strategy for

3



the computation of the coefficients of the corresponding interpolatory masks.
This is particularly true in the case of B-splines and for the masks given in
[11].

We remark that a combination of DD-masks, also based on a polynomial
equation solution, has been recently considered in [5] by J. De Villiers and
K. Hunter. Nevertheless, their approach is less general than ours and no
discussion of how to get the solution of the polynomial equation is conducted.
We continue by noticing that, in the multivariate case, Jia extended the
results in [17] by discussing existence and uniqueness of interpolatory masks
induced by Box-splines [14]. Even though his analysis is somehow related
to the one here proposed, in his paper no strategy for the derivation of the
interpolatory mask coefficients is given. The advantage of our procedure (at
present confined to the univariate case) is therefore two-fold: first it allows
to generate a whole family of symmetric interpolatory masks and second it
provides an efficient method for the construction of their coefficients. In
addition, the polynomial formulation seems to be well suited for extensions
to the multivariate case which is the subject of our future research.

The paper is organized as follows: in Section 2 the idea of the strategy used
to move from a non-interpolatory mask to an interpolatory one is sketched
also with the help of some examples. The theoretical foundation of it is then
given in Section 3 together with an efficient procedure for the computation
of the interpolatory mask coefficients. The closing Section 4 is devoted to
the analysis of the B-spline and Gori-Pitolli (GP) cases. In both contexts
several examples are also given.

2. Getting the idea

Aim of this section is the description, in a quite heuristic way, of the stra-
tegy used to deduce an interpolatory subdivision mask from a non-interpolatory
one. It arises from the discussion conducted in [15] for the particular case of
the cubic B-spline. Theoretical foundation of the strategy will be given in
the next section.

Let Sak be the subdivision operator associated with the subdivision mask

ak = (· · · , 0, 0, a0, a1, · · · , ak, 0, 0, · · · )

and with the subdivision symbol ak(z) =
∑k

j=0 ajz
j.
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Let Hk be the matrix of order k associated with the polynomial ak(z)

Hk =



a1 a3 a5 a7 · · · 0
a0 a2 a4 a6 · · · 0
0 a1 a3 a5 · · · 0
0 a0 a2 a4 · · · 0
...

...
...

...
0 0 0 0 · · · ak


, (7)

namely
Hk = (h

(k)
i,j ), h

(k)
i,j = a2j−i, 1 ≤ i, j ≤ k (8)

and denote by Ak the leading principal submatrix of order k− 1. Whenever
Hk is non singular, Hk and Ak are related by

detHk = ak detAk

and, moreover, by

H−1
k =

(
A−1

k 0
∗ a−1

k

)
.

It is not difficult to see that the application of the subdivision operator Sak

defined as in (1),

v = Saku, vk+i =
∑
j∈Z

ak+i−2j uj, i ∈ Z,

exploiting a Matlab-like notation can be locally written in terms of the matrix
Hk as

v[2k − 1: − 1: k]T = Hk u[k − 1: − 1: 0]T . (9)

Now, if Hk is an invertible matrix so is Ak, and from (9) we can write

u[k−1: −1: 0]T = H−1
k v[2k−1: −1: k]T = H−1

k Hk u[k−1: −1: 0]T . (10)

For 1 ≤ i ≤ k − 1, let us introduce the polynomials

pik(z) :=
k−1∑
ℓ=1

(A−1
k )i,ℓ z

ℓ−1 =
k−1∑
ℓ=1

pi,ℓ z
ℓ−1, (pi,ℓ = 0 if ℓ < 1 or ℓ > k − 1),

(11)
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whose coefficients are determined by the entries of Ak. Moreover, define the
bi-infinite triangular Toeplitz matrix T i = (tik,s) associated with pik(z) by
setting tik,s = pi,s−k, s, k ∈ Z.
Then, we can derive k− 1 interpolatory masks from a non-interpolatory one
by taking the following subdivision rules for i = 1, · · · , k − 1

v(new) = T i · Saku, 1 ≤ i ≤ k − 1.

From (10) it follows that these masks are indeed interpolatory. In addition,
it can be easily shown that the symbol associated with the novel subdivision
operator T i · Sak is a suitable shift of ak(z) p

i
k(z). For a reason that will be

clear soon, the shift we will consider is given by the factor z2i−1. The shifted
symbol will be denoted by

mi
k(z) :=

ak(z) p
i
k(z)

z2i−1
. (12)

Though the theoretical analysis of the strategy sketched above will be given
in the next section, to better understand it we continue by discussing a few
examples.

2.1. Examples

We consider B-spline subdivision schemes of order k, k ≥ 2, having sym-

bol ak(z) =
(1 + z)k

2k−1
, k ≥ 2. Since for k = 2 the matrix A2 is A2 = (1), the

process doesn’t change the subdivision mask which is in fact interpolatory al-

ready. In case k = 3 we get the symbol of quadratic B-splines a3(z) =
(1+z)3

4
,

defining the matrix

A3 =
1

4

(
3 1
1 3

)
,

which is invertible. Using the coefficients of the first row of its inverse,
(3
2
,−1

2
), we define the interpolatory symbol

m1
3(z) =

(1 + z)3

4

(
3

2
− 1

2
z

)
z−1

having mask

m1
3 =

1

8
(· · · , 0, 3, 8, 6, 0, −1, 0, · · · ) , (13)
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while using the coefficients of the second row of its inverse, (−1
2
, 3
2
), we define

the interpolatory symbol

m2
3(z) =

(1 + z)3

4

(
−1

2
+

3

2
z

)
z−3

whose associated mask is

m2
3 =

1

8
(· · · , 0, −1, 0, 6, 8, 3, 0, · · · ) . (14)

Figure 1 shows the results obtained when applying 10 steps of the stationary
subdivision schemes based on the masks (13) and (14), respectively.
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Fig. 1. Plot of S10
m1

3
δ (left) and of S10

m2
3
δ (right).

For k = 4 we deal with the symbol of cubic B-splines, a4(z) =
(1+z)4

8
, defining

the matrix

A4 =
1

8

 4 4 0
1 6 1
0 4 4

 ,

with inverse given by

A−1
4 =

1

2

 5 −4 1
−1 4 −1
1 −4 5

 .

Therefore, we can define three interpolatory symbols

m1
4(z) = (1+z)4

8

(
5
2
− 2z + 1

2
z2
)
z−1,

m2
4(z) = (1+z)4

8

(
−1

2
+ 2z − 1

2
z2
)
z−3,

m3
4(z) = (1+z)4

8

(
1
2
− 2z + 5

2
z2
)
z−5,
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with corresponding masks

m1
4 = 1

16
( · · · , 0, 5, 16, 15, 0, −5, 0, 1, 0, · · · ) ,

m2
4 = 1

16
( · · · , 0, −1, 0, 9, 16, 9, 0, −1, 0, · · · ) ,

m3
4 = 1

16
( · · · , 0, 1, 0, −5, 0, 15, 16, 5, 0, · · · ) .

(15)

Note thatm2
4 is the mask of the celebrated Dubuc-Deslauriers 4-point scheme

[4, 9]. Figure 2 shows the results obtained when applying 10 steps of the
stationary subdivision schemes based on the masks (15).
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Fig. 2. Plot of S10
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4
δ (left), S10
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4
δ (center), S10
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3. Hurwitz symmetric masks

To set the theoretical foundation of the strategy sketched in the previous
section, we restrict the analysis to the case of a symmetric mask whose symbol
is a Hurwitz polynomial of degree k ∈ N+, i.e. a polynomial of degree k with
all zeros in the left-half plane. Thus, we continue by considering ak(z) a
symmetric Hurwitz polynomial symbol of degree k defined by

ak(z) = a0 + a1z + . . .+ akz
k,

subjected to the constraints

aj = ak−j, 0 ≤ j ≤ k . (16)

Remark 1. We remark that the refinable limit function of a subdivision
scheme based on a Hurwitz symmetric mask is symmetric and totally posi-
tive which is known to be a very important property, for example in CAGD
applications [10]. The stipulation on the symbol has two consequences. First
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it makes possible to prove the invertibility of Hk by characterizing the polyno-
mials pik(z) in (11) as the unique solution of a certain polynomial equation.
Secondly, it leads to very effective numerical methods for solving this equa-
tion. While the Hurwitz property is essential for the second result, the first
one could be obtained under very relaxed conditions, requiring merely that
ak(z) is a symmetric polynomial such that ak(z) and ak(−z) are relatively
prime. In this way the applicability of our approach can be extended to deal
with a wider class of symmetric masks.

3.1. Existence and characterization of the polynomials pik(z)

Aim of this subsection is two-fold. First we consider the existence and the
characterization of the polynomials pik(z) mentioned in (11), then we discuss
a technique for their construction.

Theorem 2. Let ak(z) be a symmetric Hurwitz polynomial with Hk its as-
sociated matrix of order k. The polynomial pik(z) with coefficients given by
the entries of the i-th row of H−1

k , 1 ≤ i ≤ k− 1, is the unique polynomial of
degree less than k such that

ak(z)p
i
k(z)− ak(−z)pik(−z) = 2 z2i−1, 1 ≤ i ≤ k − 1. (17)

Proof. Let us introduce the matrix Rk ∈ R2k×2k defined by

Rk =

(
JkHT

k Jk 0
0 HT

kDk

)
,

where Jk denotes the k×k reversion matrix having unit antidiagonal entries,
i.e., Jk = (δi,n−j+1) where δ is the Kronecker symbol, and, moreover,

Dk = diag[−1, (−1)2, . . . , (−1)k−1, (−1)k].

The proof of the Theorem follows by relating the matrixRk with the resultant
matrix generated by the polynomials ak(z) and ak(−z).
Let Pk ∈ R2k×2k, Pk = (δi,σ(j)) be the permutation matrix associated with
the “perfect shuffle” permutation given by

σ : {1, . . . , 2k} → {1, . . . , 2k}, σ(j) =


(j + 1)/2, if j is odd;

j/2 + k, if j is even.
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There follows that

PkRk = Pk

(
JkHT

k Jk
0

)
+ Pk

(
0

HT
kDk

)
.

In addition, let Gk ∈ R2k×2k be the matrix defined by

Gk =

(
Ik −Dk

Dk Ik

)
.

By performing one step of block Gaussian elimination we find that

Gk =

(
Ik 0
Dk Ik

)(
Ik −Dk

0 2Ik

)
,

which yields the following block characterization of the inverse of Gk

G−1
k =

1

2

(
Ik Dk

−Dk Ik

)
.

Hence, we obtain that

PkRkGk = Pk

(
JkHT

k Jk
0

)(
Ik −Dk

)
+ Pk

(
0

HT
kDk

)(
Dk Ik

)
,

which implies

PkRkGk =

(
Pk

(
JkHT

k Jk
HT

k

)
Pk

(
(−1)kJkHT

kDkJk
HT

kDk

) )
since −Dk = (−1)kJkDkJk. Now it is worth noting that the two block
columns of PkRkGk have basically the same structure. For the first compo-
nent we find that

Γ+ = (γ+
i,j) = Pk

(
JkHT

k Jk
HT

k

)
where from (8) we get

γ+
i,j =

{
ak+j−i if i odd,
ai−j if i even;

and, therefore, from (16) we obtain

γ+
i,j = ak+j−i, 1 ≤ i ≤ 2k, 1 ≤ j ≤ k.
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Similarly, we deduce that

Γ− = (γ−
i,j) = Pk

(
(−1)kJkHT

kDkJk
HT

kDk

)
,

where from (8) it follows

γ−
i,j =

{
ak+j−i(−1)j−1 if i odd,
ai−j(−1)j if i even;

and, therefore, again by using (16) we find that

γ−
i,j = ak+j−i(−1)j−i, 1 ≤ i ≤ 2k, 1 ≤ j ≤ k.

In this way we may conclude that

PkRkGk = Sk(a
+
k , a

−
k ),

where Sk(a
+
k , a

−
k ) ∈ R2k×2k is the resultant matrix of order 2k associated with

the polynomials a+k := ak(z) and a−k := ak(−z). From the Hurwitz property
we get that ak(z) and ak(−z) are relatively prime and, therefore, Sk(a

+
k , a

−
k )

is nonsingular. This implies that Rk, Hk and Ak are nonsingular matrices.
In particular, the i-th row xT

i of H−1
k satisfies

Rk

(
0

Dkxi

)
=

(
0
ei

)
which yields

PkRkGkG
−1
k

(
0

Dkxi

)
= Pk

(
0
ei

)
,

and, therefore,
1

2
Sk(a

+
k , a

−
k )

(
xi

Dkxi

)
= e2i.

By setting

xi = [x
(i)
0 , . . . , x

(i)
k−1]

T , pik(z) = x
(i)
0 + x

(i)
1 z + . . .+ x

(i)
k−1z

k−1,

we conclude that pik(z) is the unique polynomial of degree less than k such
that

ak(z)p
i
k(z)− ak(−z)pik(−z) = 2 z2i−1, 1 ≤ i ≤ k − 1.

11



By multiplying (17) by z we find that

ak(z)(zp
i
k(z)) + ak(−z)(−zpik(−z)) = 2 z2i, 1 ≤ i ≤ k − 1. (18)

Effective computational methods for solving such kind of equations had al-
ready appeared in the literature. In fact, polynomial equations of the more
general form

a(z)p(−z) + a(−z)p(z) = b(z), (19)

with
deg(a(z)), deg(p(z)) ≤ k, deg(b(z)) ≤ 2k, b(z) = b(−z), (20)

play a key role in several different contexts, including control theory. A solu-
tion method based on polynomial manipulations and related to the Routh-
Hurwitz theory has been described in [13]. In the following we pursue a
different approach which is more suited for the applications we have in mind
(see subsections 4.1 and 4.2).

Let us assume that all the polynomials in (19) are suitably represented by
using the Bernstein type polynomial basis (1−z)k, (1−z)k−1(1+z), . . . , (1−
z)(1 + z)k−1, (1 + z)k of the vector space of real polynomials of degree less
than or equal to k. That is,

a(z) =
k∑

j=0

âj(1− z)k−j(1 + z)j, p(z) =
k∑

j=0

p̂j(1− z)k−j(1 + z)j.

Moreover let us assume that b(z) is also suitably represented by using the
polynomial basis (1−z)2k, (1−z)2k−1(1+z), . . . , (1−z)(1+z)2k−1, (1+z)2k

of the vector space of real polynomials of degree less than or equal to 2k,
namely

b(z) =
2k∑
j=0

b̂j(1− z)2k−j(1 + z)j.

Since b(z) = b(−z) we obtain that

b(z) =
2k∑
j=0

b̂j(1− z)2k−j(1 + z)j =
2k∑
j=0

b̂j(1 + z)2k−j(1− z)j = b(−z)

12



and, hence,
b̂j = b̂2k−j 0 ≤ j ≤ 2k.

Observe that

a(z) = (1− z)kâ

(
1 + z

1− z

)
, a(−z) = (1 + z)kâ

(
1− z

1 + z

)
,

where

â(w) :=
k∑

j=0

âjw
j, w :=

1 + z

1− z
.

Similarly we can write

p(z) = (1−z)kp̂

(
1 + z

1− z

)
, p(−z) = (1+z)kp̂

(
1− z

1 + z

)
, p̂(w) :=

k∑
j=0

p̂jw
j,

and

b(z) = (1−z)k(1+z)k
(
b̂

(
1 + z

1− z

)
+ b̂

(
1− z

1 + z

))
, b̂(w) :=

b̂k
2
+

k∑
j=1

b̂k+jw
j.

In this way the relation (19) can be restated as

â

(
1 + z

1− z

)
p̂

(
1− z

1 + z

)
+ â

(
1− z

1 + z

)
p̂

(
1 + z

1− z

)
= b̂

(
1 + z

1− z

)
+ b̂

(
1− z

1 + z

)
,

(21)
or, equivalently, as

â(w)p̂

(
1

w

)
+ â

(
1

w

)
p̂(w) = b̂(w) + b̂

(
1

w

)
. (22)

Note that the Moebius transformation z → w =
1 + z

1− z
maps the left half-

plane into the open unit disc so that â(w) has all its zeros of modulus less
than 1. The equation (22) reduces to a Toeplitz-plus Hankel linear system.
Since â(w) is stable it follows that the coefficient matrix is invertible and,
hence, p̂(w) is uniquely determined from the coefficients of â(w) and of b̂(w).
In [1] superfast methods are devised for solving the linear system at the
cost of O(k log2 k) arithmetic operations. In many cases of interest for the
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applications under consideration, the polynomial â(w) has a very simple
form so that the computation can be dramatically simplified (compare with
subsections 4.1 and 4.2). For the polynomial b(z) = z2i, 1 ≤ i ≤ k−1 in (18),
the next proposition provides explicit and easily computable expressions for
the coefficients.

Proposition 3. We have

z2i =
1

22k

2k∑
s=0

ρ(i)s (1 + z)s(1− z)2k−s, 1 ≤ i ≤ k − 1,

where

ρ(i)s =
2i∑

j=2i−2k+s

(−1)j
(
2i

j

)(
2k − 2i

s− j

)
, 0 ≤ s ≤ 2k. (23)

Proof. From

z2i = z2i · (1)2k−2i =

(
1 + z

2
− 1− z

2

)2i(
1 + z

2
+

1− z

2

)2k−2i

it follows

z2i =

[
2i∑
j=0

(
2i

j

)
(−1)j

(
1 + z

2

)j (
1− z

2

)2i−j
]
·

·

[
2k−2i∑
m=0

(
2k − 2i

m

)(
1 + z

2

)m(
1− z

2

)2k−2i−m
]

which gives

z2i =
1

22k

2k∑
s=0

ρ(i)s (1 + z)s(1− z)2k−s,

where

ρ(i)s =
2i∑

j=2i−2k+s

(−1)j
(
2i

j

)(
2k − 2i

s− j

)
, 0 ≤ s ≤ 2k.

14



Observe that the symmetry property ρ
(i)
s = ρ

(i)
2k−s can easily be checked

by performing the substitution 2i− j = ℓ in (23). Indeed, we have

ρ(i)s =
2i∑

j=2i−2k+s

(−1)j
(
2i

j

)(
2k − 2i

s− j

)
=

min{2i,s}∑
j=max{2i−2k+s,0}

(−1)j
(
2i

j

)(
2k − 2i

s− j

)
,

2i−max{2i−s, 0} = min{2i, s}, 2i−min{2i, 2k−s} = max{2i−2k+s, 0}

and, hence, by using

(
k

h

)
=

(
k

k − h

)
,

ρ
(i)
2k−s =

min{2i,2k−s}∑
j=max{2i−s,0}

(−1)j
(
2i

j

)(
2k − 2i

2k − s− j

)
=

min{2i,s}∑
ℓ=max{2i−2k+s,0}

(−1)ℓ
(
2i

ℓ

)(
2k − 2i

ℓ− s

)
.

A recursive scheme for the computation of all the coefficients ρ
(i)
s , 1 ≤ i ≤

k − 1, 0 ≤ s ≤ 2k using O(k2) arithmetic operations was devised in [12].

3.2. Properties of the Laurent polynomials mi
k(z)

We continue by investigating the properties of the family of masks whose
symbol has been denoted by mi

k(z). As stated in the next two propositions,
these masks are interpolatory and show “related” symmetry.

Proposition 4. Given a symmetric Hurwitz-type degree-k polynomial ak(z)
such that ak(1) = 2, ak(−1) = 0, the Laurent polynomials

mi
k(z) :=

ak(z)p
i
k(z)

z2i−1
, 1 ≤ i ≤ k − 1, (24)

are interpolatory symbols and satisfy

mi
k(1) = 2, mi

k(−1) = 0, 1 ≤ i ≤ k − 1.

Proof. From the fundamental relation

ak(z)p
i
k(z)− ak(−z)pik(−z) = 2 z2i−1, 1 ≤ i ≤ k − 1, (25)

it follows that pik(1) = 1 and, moreover, we can recast the equation as in (18)
in the form

zak(z)p
i
k(z)

z2i
+

(−zak(−z)pik(−z))

z2i
= 2, (26)
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meaning that the schemes mi
k(z) :=

ak(z)p
i
k(z)

z2i−1
, 1 ≤ i ≤ k− 1 are interpola-

tory since they satisfy mi
k(z) +mi

k(−z) = 2. Last, the fact that ak(−1) = 0
implies that mi

k(−1) = 0 so that mi
k(1) = 2 and the proof is complete.

Remark 5. It is useful to note that any affine combination of the schemes
mi

k(z), 1 ≤ i ≤ k−1 is still interpolatory and that specific affine combinations
of these masks can be used to get symmetric interpolatory masks.

We now continue by analyzing the property of polynomial generation for the
interpolatory mask mi

k(z). To this aim we recall the following result already
given in [2] and more recently investigated in [6].

Lemma 6 (Polynomial Generation). For a non-singular subdivision scheme
Sc with symbol c(z), the condition

c(z) is divisible by (1 + z)dG+1 (27)

is equivalent to the property that for any polynomial p of degree d ≤ dG there
exists some initial data q0 such that S∞

c q0 = p. Moreover, q0 is sampled
from a polynomial of the same degree and with the same leading coefficient.

From the previous Lemma it trivially follows

Corollary 7. If the symmetric Hurwitz-type subdivision mask ak(z) gene-
rates polynomials of degree dG, then the associated family of interpolatory
masks mi

k(z) has as well the ability to generate degree-dG polynomials.

Remark 8. From the above corollary we can actually deduce that the subdi-
vision schemes with symbols mi

k(z), due to their interpolatory nature, repro-
duce polynomials of degree dG which means that, assumed q0 = {p(i), i ∈ Z},
where p is a degree-dG polynomial, then S∞

mi
k
q0 = p. It also means that the

interpolatory subdivision scheme has approximation order dG+1 even though
the non-interpolatory scheme we started with has a lower approximation or-
der, which is certainly an important fact.

Now, we will introduce a strategy to “symmetrize” the interpolatory subdi-
vision masks mi

k(z), 1 ≤ i ≤ k − 1, which consists in taking specific convex
combinations of them. In general, we can prove the following result.
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Proposition 9. Let mi
k(z), 1 ≤ i ≤ k − 1 be the interpolatory subdivision

masks defined in (24). The symbols


sn−ℓ,n+ℓ+1
k (z) := 1

2

(
mn−ℓ

k (z) + mn+ℓ+1
k (z)

)
, ℓ = 0, . . . , n− 1

for k = 2n+ 1,

sn+1−ℓ,n+ℓ+1
k (z) := 1

2

(
mn+1−ℓ

k (z) + mn+ℓ+1
k (z)

)
, ℓ = 1, . . . , n

for k = 2n+ 2,

(28)

are interpolatory and symmetric.

Proof. Since mi
k(z) =

ak(z)p
i
k(z)

z2i−1
, 1 ≤ i ≤ k − 1 with ak(z) a symmetric

symbol, we work with the polynomials
pik(z)

z2i−1 , 1 ≤ i ≤ k− 1 only. We start by
using the fact that, since Ak is a centrosymmetric matrix, so is its inverse
(bi,j) = B := A−1

k . This means that

bi,j = bk−i+1,k−j+1, i, j = 1, . . . , k − 1. (29)

If k is odd, the first expression in (28) is

1

2

ak(z)

z2(n−ℓ)−1

(
pn−ℓ
k (z) + z−4ℓ−2pn+ℓ+1

k (z)
)
.

Since

pn−ℓ
k (z) =

2n∑
j=1

bn−ℓ,j z
j, z−4ℓ−2pn+ℓ+1

k (z) =
2n−4ℓ−2∑
j=−4ℓ−1

bn+ℓ+1,j+4ℓ+2 z
j,

the polynomial c(z) := pn−ℓ
k (z) + z−4ℓ−2pn+ℓ+1

k (z) can be written as

2n∑
j=−4ℓ−1

cjz
j where cj :=


bn+ℓ+1,j+4ℓ+2, j = −4ℓ− 1, · · · , 0;

bn−ℓ,j + bn+ℓ+1,j+4ℓ+2, j = 1, · · · , 2n− 4ℓ− 2;

bn−ℓ,j, j = 2n− 4ℓ− 1 · · · , 2n.

The symmetry request for the first (and for the last) 4ℓ+2 elements of c(z),
i.e. the request that

bn+ℓ+1,j+4ℓ+2 = bn−ℓ,2n−j−4ℓ−1, j = −4ℓ− 1, · · · , 0,

17



follows from (29), from which also follows symmetry on the remaining coef-
ficients of c(z), i.e.

cj = c2n−4ℓ−1−j j = 1, · · · , 2n− 4ℓ− 2.

In fact,

cj = bn−ℓ,j + bn+ℓ+1,j+4ℓ+2 = bn+ℓ+1,2n−j+1 + bn−ℓ,2n−4ℓ−j−1 = c2n−4ℓ−1−j.

The case k even can be treated in a similar way.

Remark 10. We observe that any average of masks in (28) is also a sym-
metric interpolatory mask resulting in what we can call an ”higher order”
average. Examples of higher order averages will be given in the next section.

The symmetrization of the interpolatory masks via average of two of them,
may increase by one the order of polynomial generation. In fact, as a conse-
quence of [3, Corollary 1] we have

Corollary 11. Let the symbol mi
k(z) contain the odd degree factor (1+z)2d−1.

Then the symmetric masks defined in (28) contain also the even degree factor
(1 + z)2d.

4. Classical non-interpolatory Hurwitz symmetric masks: B-spline
and GP masks

This section is devoted to the solution of the polynomial equation (18) in
case ak(z) is either the symbol of a B-spline or of a GP function of order k.
Even though the latter class of functions includes B-splines, for the sake of
clarity we keep the two examples separated.

4.1. The B-spline case

In case we deal with a B-spline of order k whose symbol is the degree-k

polynomial ak(z) =
(1 + z)k

2k−1
, equation (18) reads as

(1 + z)k(zpik(z)) + (1− z)k(−zpik(−z)) = 2kz2i, 1 ≤ i ≤ k − 1, (30)

which gives us a simple way to compute the coefficients of the polynomial
pik(z). For the sake of simplicity we refer to the polynomial −zpik(−z) as
to p(z). Since a(z) = (1 + z)k we find that â(w) = wk and, therefore, the
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solution p̂(w) of (22) can immediately be reconstructed from the coefficients
of b̂(w) given in Proposition 3. Indeed, we obtain that

wk

k∑
j=0

p̂jw
−j+

1

wk

k∑
j=0

p̂jw
j = ρ

(i)
0 w−k+. . .+ρ

(i)
k−1w

−1+ρ
(i)
k +ρ

(i)
k+1w+. . .+ρ

(i)
2kw

k

(31)
which gives

p̂j = 2−kρ
(i)
j , 0 ≤ j ≤ k − 1, p̂k = 2−k−1ρ

(i)
k . (32)

By using the formulae stated in Proposition 3 we get an explicit represen-
tation of the coefficients of the solution polynomial p(z) expressed in the
Bernstein-like basis.

For the sake of illustration, we describe some examples of interpolatory sub-
division masks derived through the explained strategy. In particular, we

consider the case k = 5 i.e. the quartic B-spline symbol a5(z) =
(1 + z)5

16
.

The following four different polynomials are found

p15(z) = 1
8
(35− 47z + 25z2 − 5z3) ,

p25(z) = 1
8
(−5 + 25z − 15z2 + 3z3) ,

p35(z) = 1
8
(3− 15z + 25z2 − 5z3) ,

p45(z) = 1
8
(−5 + 25z − 47z2 + 35z3) ,

giving rise to the respective interpolatory masks

m1
5 = 1

128
( · · · , 0, 35, 128, 140, 0, −70, 0, 28, 0, −5, 0, · · · ) ,

m2
5 = 1

128
( · · · , 0, −5, 0, 60, 128, 90, 0, −20, 0, 3, 0, · · · ) ,

m3
5 = 1

128
( · · · , 0, 3, 0, −20, 0, 90, 128, 60, 0, −5, 0, · · · ) ,

m4
5 = 1

128
( · · · , 0, −5, 0, 28, 0, −70, 0, 140, 128, 35, 0, · · · ) .

(33)

Figure 3 shows the results obtained when applying 10 steps of the stationary
subdivision schemes based on the masks (33).
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Fig. 3. From left to right: plot of S10
mi

5
δ, i = 1, · · · , 4.

Next, according to Proposition 9 we consider the symmetrized schemes

s1,45 (z) =
1

2

(
m1

5(z) +m4
5(z)

)
, s2,35 (z) =

1

2

(
m2

5(z) +m3
5(z)

)
,

and

s1,2,3,45 (z) :=
1

2

(
s1,45 (z) + s2,35 (z)

)
=

1

4

(
m1

5(z) +m2
5(z) +m3

5(z) +m4
5(z)

)
.

The elements of the corresponding masks are:

s1,45 =
1

256
(−5, 0, 28, 0, −70, 0, 175, 256, 175, 0, −70, 0, 28, 0, −5),

s2,35 =
1

256
(3, 0, −25, 0, 150, 256, 150, 0, −25, 0, 3),

and s1,2,3,45 := 1
2

(
s1,45 + s2,35

)
that is

s1,2,3,45 =
1

512
(−5, 0, 31, 0, −95, 0, 325, 512, 325, 0, −95, 0, 31, 0, −5).

Note that s2,35 is the mask of the celebrated Dubuc-Deslauriers 6-point scheme
[4].
Figure 4 shows the results obtained when applying 10 steps of the statio-
nary subdivision schemes based on the above given symmetric interpolatory
masks.
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Fig. 4. From left to right: plot of S10
s1,45

δ, S10
s2,35
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δ.
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4.2. The GP case

Another class of masks whose associated symbol is a symmetric Hurwitz
polynomial is the class of masks introduced in [11], hereinafter referred to
as GP-masks. These masks, also characterized by positiveness of the coeffi-
cients, for fixed (k, ℓ), k > 2 and ℓ > 0, are defined as

gk,ℓi =
1

2k−1+ℓ

((
k
i

)
+ 4(2ℓ − 1)

(
k − 2
i− 1

))
, i = 0, · · · , k, (34)

and are associated with the Hurwitz symmetric degree-k polynomials

gk,ℓ(z) =
(1 + z)k−2

2k−2

(
z2 + (2ℓ+2 − 2)z + 1

)
2ℓ+1

. (35)

Note that gk,ℓ(z) is a convex combination of B-spline symbols of order k and
k − 2 with a convex combination parameter depending on ℓ, i.e.

gk,ℓ(z) =
1

2ℓ
ak(z) +

(
1− 1

2ℓ

)
z ak−2(z), 0 ≤ 1

2ℓ
≤ 1,

and that
gk,0(z) = ak(z), gk,∞(z) = zak−2(z)

are B-spline symbols. Even so, the refinable functions associated with con-
vergent GP symbols gk,ℓ(z) are not B-splines.

In view of the discussion had in Section 4.1, it is convenient to write the
quadratic polynomial in (35), z2 + (2ℓ+2 − 2)z + 1, as

(1− 2ℓ)(1− z)2 + 2ℓ(1 + z)2,

and derive the polynomial â(w) = âk−2w
k−2 + âkw

k in (22) explicitly as

â(w) = (1− 2ℓ)wk−2 + 2ℓwk.

The above expression of â(w) allows us to provide an efficient strategy for the
computation of p̂(w) =

∑k
j=0 p̂jw

j which reduces to the solution of a 3 × 3
linear system. In fact, a direct comparison of the polynomial coefficients in
the left hand side of (22), i.e.,(
âk−2w

k−2 + âkw
k
) (

p̂0 + · · ·+ p̂kw
−k
)
+
(
âk−2w

2−k + âkw
−k
) (

p̂0 + · · ·+ p̂kw
k
)
,
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with those in the right hand side of (22), i.e.,

2ℓ−k−1(ρ
(i)
0 w−k + . . .+ ρ

(i)
k−1w

−1 + ρ
(i)
k + ρ

(i)
k+1w + . . .+ ρ

(i)
2kw

k),

leads to the following relations for the coefficients p̂j, j = 0, · · · , k − 3,

âkp̂0 = 2ℓ−k−1ρ
(i)
0 ,

âkp̂1 = 2ℓ−k−1ρ
(i)
1 ,

âkp̂j + âk−2p̂j−2 = 2ℓ−k−1ρ
(i)
j , j = 2, · · · k − 3,

(36)

and the linear system
âk−2p̂k + âkp̂k−2 = 2ℓ−k−1

(
ρ
(i)
k+2 − âk−2p̂k−4

)
(âk + âk−2) p̂k−1 = 2ℓ−k−1

(
ρ
(i)
k+1 − âk−2p̂k−3

)
âk−2p̂k−2 + âkp̂k = 2ℓ−k−2ρ

(i)
k ,

to be solved for getting the remaining coefficients

p̂k−2 =
2ℓ−k−2(âk−2ρ

(i)
k − 2âkρ

(i)
k+2 + 2âkâk−2p̂k−4)

(âk−2)2 − (âk)2
,

p̂k−1 =
2ℓ−k−1(ρ

(i)
k+1 − âk−2p̂k−3)

âk−2 + âk
,

p̂k =
2ℓ−k−2(−âkρ

(i)
k + 2âk−2ρ

(i)
k+2 − 2(âk−2)

2p̂k−4)

(âk−2)2 − (âk)2
.

Finally, by setting

âk−2 = 1− 2ℓ, âk = 2ℓ, γ = − âk−2

âk
= 1− 2−ℓ

we arrive at the following explicit representation of the solution of the linear
system (36)

p̂j =
1

2k+1

⌊j/2⌋∑
s=0

γsρ
(i)
j−2s, 0 ≤ j ≤ k − 3. (37)
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We conclude the GP analysis with some examples of interpolatory subdivi-
sion masks derived through the explained strategy from a GP symbol. We

consider the GP symbol g4,2(z) =
(1 + z)2

22
(z2 + 14z + 1)

23
with associated

refinable function displayed in the next picture (Figure 5).
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Fig. 5. Plot of the limit function for g4,2(z).

Using (37) we can construct three different polynomials

p14,2(z) = 1
14
(29− 16z + z2) ,

p24,2(z) = 1
14
(−1 + 16z − z2) ,

p34,2(z) = 1
14
(1− 16z + 29z2) ,

and the corresponding interpolatory masks

m1
4,2 = 1

448
( · · · , 0, 29, 448, 615, 0, −197, 0, 1, 0, · · · ) ,

m2
4,2 = 1

448
( · · · , 0, −1, 0, 225, 448, 225, 0, −1, 0, · · · ) ,

m3
4,2 = 1

448
( · · · , 0, 1, 0, −197, 0, 615, 448, 29, 0, · · · ) .

(38)

Figure 6 shows the results obtained when applying 10 steps of the stationary
subdivision schemes based on the masks (38).
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Fig. 6. From left to right: plot of S10
m1

4,2
δ, S10

m2
4,2
δ and S10

m3
4,2
δ.

As it can be easily observed from Figure 6, the subdivision schemes m1
4,2 and

m3
4,2 do not seem to be convergent. Differently, m2

4,2 is a special member of
the family of C1 interpolatory 4-point schemes presented in [8], corresponding
to a mask of the form (−w, 0, 1

2
+ w, 1, 1

2
+ w, 0, −w), with parameter

w = 1
448

.
Next, according to Proposition 9, we construct the symmetrized interpolatory
symbols

s1,34,2(z) =
1

2

(
m1

4,2(z) +m3
4,2(z)

)
,

s1,2,34,2 (z) :=
1

2

(
s1,34,2(z) +m2

4,2(z)
)
=

1

4

(
m1

4,2(z) + 2m2
4,2(z) +m3

4,2(z)
)
.

The elements of the corresponding masks are:

s1,34,2 =
1

896
(1, 0, −197, 0, 644, 896, 644, 0, −197, 0, 1),

s1,2,34,2 =
1

1792
(1, 0, −199, 0, 1094, 1792, 1094, 0, −199, 0, 1),

and the results obtained when applying 10 steps of the stationary subdivision

schemes based on these masks are shown in Figure 7.
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Fig. 7. Plot of S10
s1,34,2

δ (left) and of S10
s1,2,34,2

δ (right).

5. Conclusions and future work

This paper describes a general strategy to construct a family of interpo-
latory masks from a symmetric Hurwitz non-interpolatory one. A way to
symmetrize the so obtained masks is also proposed together with an efficient
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technique for the computation of the interpolatory mask coefficients. Even
if some specific examples of interpolatory subdivision schemes deduced from
approximating subdivision schemes were already proposed in the literature
(see, e.g., [15]), to our knowledge this is the first time the theoretical foun-
dation of a general strategy is given with the help of linear algebra together
with an efficient algorithm for the computation of its coefficients.
In our understanding this is a first step in the analysis of a similar strategy
suited to the bivariate setting or, more generally, to the multivariate one.
In addition, it is our intention to generalize the proposed idea in the direc-
tion of taking affine combinations of non-interpolatory masks ending with an
interpolatory mask with specific, and possibly enhanced, properties.

Acknowledgements. We thank the anonymous referee for the careful read-
ing of the paper and for its useful observations.
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