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Abstract

Ternary subdivision schemes compare favorably with their binary analogues because
they are able to generate limit functions with the same (or higher) smoothness but
smaller support.
In this work we consider the two issues of local tension control and conics repro-

duction in univariate interpolating ternary refinements. We show that both these
features can be included in a unique interpolating 4-point subdivision method by
means of non-stationary insertion rules that do not affect the improved smoothness
and locality of ternary schemes. This is realized by exploiting local shape parameters
associated with the initial polyline edges.
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1 Introduction

The interest in investigating arities higher than two has started from the seminal

paper by Hassan et al. [1]. Here they showed that, for the so-called interpolating

4-point stationary scheme, higher smoothness and smaller support can be achieved

by going from binary to ternary.

At each iteration k > 0, an interpolating 4-point ternary subdivision scheme maps
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the polygon P k = {pkj }j∈Z to the refined polygon P k+1 = {pk+1
j }j∈Z through the

insertion rules

pk+1
3j = pkj ,

pk+1
3j+1 = ak0 pkj−1 + ak1 pkj + ak2 pkj+1 + ak3 pkj+2, (1)

pk+1
3j+2 = ak3 pkj−1 + ak2 pkj + ak1 pkj+1 + ak0 pkj+2,

where the coefficients {aki }i=0,1,2,3 are chosen in order to satisfy the relation

ak0 + ak1 + ak2 + ak3 = 1. (2)

In general, the coefficients may either stay constant throughout the subdivision pro-

cess or change according to the refinement level k. The scheme is said stationary in

the first case and non-stationary in the latter.

Although Hassan’s stationary refinement still looks like the most appealing proposal

of interpolatory ternary subdivision, it does not provide great design flexibility. In

fact, once the initial control points are chosen, this scheme does not allow the user

to control the shape of the interpolant. Moreover, although such a scheme repro-

duces cubic polynomials starting from uniformly spaced initial samples, it does not

reproduce any other analytic curve.

The goal of this paper is to improve the design performance of the 4-point ternary

interpolating scheme, without affecting its improved smoothness and local support.

We will thus consider two kinds of shape manipulations: one for controlling the

tension of the limit curve in correspondence to each edge of the initial polygon

and another for exactly reproducing circles and more generally conic sections. The

first has a two-fold advantage: it allows us to arbitrarily modify the shape of the

interpolant and, if the initial tension values are set properly, it may alleviate the

undesired undulations that often arise as a consequence of the interpolation pro-

cess. The second one, i.e. the capability of reproducing conic sections, is obviously

a fundamental feature in many application contexts.

Our aim is defining an interpolating algorithm that reproduces conic sections in

those regions of the initial polyline where the given samples belong to one of these

curves and locally-controlled C2 curves otherwise.

The definition of a locally-controlled interpolating ternary subdivision scheme has

been already addressed in [2]. In that work, a tension parameter is associated with

each edge of the initial polyline. In this way, by progressively increasing/decreasing

its value, in the corresponding region of interest the limit curve tends to become

tighter/looser to the underlying data polygon. After one initial parameter has been

assigned to each edge, its value is automatically updated at each iteration by means

of a recurrence formula. The corresponding refinement algorithm is non-stationary

and generates C2-continuous limit curves for any choice of the initial tensions in

a wide span of definition. However it does not reproduce the whole class of conic

sections nor any other analytic curve except quadratic polynomials.
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In binary subdivision literature, the construction of subdivision schemes reprodu-

cing conic sections has been addressed extensively [3–10]. Conversely, in the ternary

context, there is still no available scheme for exactly generating these families of

curves. The only attempt towards the definition of a ternary circle-preserving sub-

division scheme has appeared in [11]. In that work, exploiting a refinement which

preserves the discrete curvature and tangent direction at each vertex of the starting

control polygon, a satisfactory approximation of a circle is generated starting from

a regular κ-gon. However, the derived algorithm is quite involved, computationally

heavy and, as acknowledged by the authors themselves, the smoothness of the re-

lated limit curves is also not known.

Thus, to the aim of exactly generating conic sections, we first address the con-

struction of a non-stationary interpolating 4-point ternary refinement where the

insertion rules are determined through Lagrange interpolation by functions from

the 4-dimensional space {1, x, etx, e−tx}, where t ∈ {0, s, is|s > 0}. As a conse-

quence of its definition, such a scheme reproduces certain exponential functions and

in particular circles and conic sections (whenever the initial points are sampled at

equally-spaced values of t on these kinds of curves and the starting parameters are

initialized accordingly). Similarly to the ternary 4-point scheme presented in [2], this

refinement is non-stationary and its level-dependent coefficients are automatically

computed by means of a recurrence formula based on a third-angle relation linking

parameter values at two successive subdivision steps. We show that the proposed

scheme generates C1-continuous limit curves and we discuss how its property of

reproducing conic sections depends on an opportune choice of the initial parameter.

We finally present the unified subdivision scheme that combines the locally-controlled

C2 scheme in [2] with the derived exponentials reproducing scheme. The proposed

algorithm is realized by allowing different regions of the initial polyline to be re-

fined with one subdivision scheme or the other. Provided that the initial parameters

are set properly, the combined scheme defined in this way generates arcs of conic

sections where needed and locally-controlled C2 curves otherwise. Moreover, in the

region common to both schemes, its limit curves are C1-continuous.

The paper is organized as follows. In Section 2 we start out by reviewing the locally-

controlled C2 subdivision scheme presented in [2]. In Section 3, we define the novel

ternary scheme reproducing exponentials (Section 3.1), analyze its smoothness (Sec-

tion 3.2) and discuss how its parameter needs to be initialized according to the

spacing of the given samples (Section 3.3). In Section 4 we finally present the refine-

ment algorithm that unifies the two schemes described in Sections 2 and 3. Then

we analyze its smoothness and illustrate some application examples.

2 A locally-controlled C2 interpolating 4-point ternary subdivision scheme

The scheme in [2] is summarized by the following procedure. At the first stage, the

polyline P 0 = {p0j}j∈Z and an initial set of parameters {v0j }j∈Z are given. The value
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v0j is assigned to the edge p0jp
0
j+1.

At the iteration k > 0, the coarse polyline P k is transformed into the refined polyline

P k+1 by applying the 4-point insertion rules

pk+1
3j = pkj

pk+1
3j+1 = ak0,jp

k
j−1 + ak1,jp

k
j + ak2,jp

k
j+1 + ak3,jp

k
j+2 (3)

pk+1
3j+2 = ak3,jp

k
j−1 + ak2,jp

k
j + ak1,jp

k
j+1 + ak0,jp

k
j+2

with coefficients

ak0,j =
1

60
(−90uk+1

j − 1) ak1,j =
1

60
(90uk+1

j + 43) (4)

ak2,j =
1

60
(90uk+1

j + 17) ak3,j =
1

60
(−90uk+1

j + 1)

where

uk+1
j = − 1

3
(
1− (vk+1

j )2
)
(1 + vk+1

j )
(5)

and

vk+1
j =

√
2 + vkj . (6)

Equation (3) is analogous to (1), except that the coefficients {aki,j}i=0,...,3 enclose

the subscript index j to underline their dependence on the j-th polyline edge.

After each iteration, the parameters are reassigned to the refined edges according

to the rule vk+1
3j = vk+1

3j+1 = vk+1
3j+2 :=

√
2 + vkj .

In [2] it is shown that this scheme tends to become stationary in the limit, since

limk→+∞ vkj = 2. Moreover it is also proved that the described subdivision algorithm

generates C2-continuous limit curves for any v0j ∈ [−2,+∞)\{−1} 1 .

The peculiarity of this method is that the parameters assigned to the edges have a

local tension effect. More precisely, the higher the value of v0j , the tighter the limit

curve will be to the edge p0jp
0
j+1. In this sense we say that this scheme is locally-

controlled and we call the v0j -s tension parameters.

Notice also that, when v0j = 2, relation (6) implies that the scheme is stationary in

correspondence to the j-th initial edge. In this case, for all k > 0, the coefficients

assume the scalar values

a∞0,j := − 13

180
, a∞1,j :=

139

180
, a∞2,j :=

61

180
, a∞3,j := − 7

180
. (7)

1 The initial value v0j = −1 is excluded to avoid a zero denominator in (5).
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As pointed out in the Introduction, the considered scheme does not reproduce any

analytic curve except quadratic polynomials. Therefore, in the following section, we

will address the definition of a ternary 4-point scheme that is able to exactly repre-

sent a certain family of exponential functions, including circles and conic sections

as a particular case.

3 An interpolating 4-point ternary subdivision scheme reproducing ex-

ponentials

3.1 Construction of the scheme

In [3] a binary non-stationary interpolatory subdivision algorithm was designed by

up-sampling from the function space Vt = {1, x, etx, e−tx}, where t ∈ {0, s, is | s >

0}. In this way, the insertion rule naturally reproduces cubic polynomials when

t = 0, hyperbolic functions when t = s and trigonometric functions when t = is,

s > 0. Although such a scheme is non-stationary, at each iteration the refinement

coefficients are simply updated by means of a recurrence relation involving the

bisection formula of the cosine and hyperbolic cosine functions.

To generalize this refinement to the ternary case, the first necessary non-trivial step

is thus to find a recurrence relation for iterated trisections of a given argument.

Definition 1 For each subdivision level k > 0, let

wk := etk + e−tk , (8)

where tk = t/3k.

Proposition 2 (Third-angle formula) For any k > 0, the parameters wk and wk+1

defined in (8) satisfy the recurrence

wk+1 = ℜ


wk +

√
(wk)2 − 4

2


1
3

+

wk +
√
(wk)2 − 4

2

− 1
3

 . (9)

PROOF. When t = 0, wk = 2 ∀k > 0, and hence equation (9) is trivially verified.

When t = is, s ∈ (0, π), from the identity 4 cos3 (sk+1) − 3 cos (sk+1) = cos (sk) it

turns out that

cos (sk+1) =
1

2
ℜ
[(

cos (sk) +
√

cos2 (sk)− 1
) 1

3
+
(
cos (sk) +

√
cos2 (sk)− 1

)− 1
3

]
,

5



from which (9) can be easily obtained.

The case t = s, s > 0, can be treated analogously to the previous one due to the

identity 4 cosh3 (sk+1)− 3 cosh (sk+1) = cosh (sk), from which it follows

cosh (sk+1) =
1

2
ℜ

[(
cosh (sk) +

√
cosh2 (sk)− 1

) 1
3

+

(
cosh (sk) +

√
cosh2 (sk)− 1

)− 1
3

]
.

2

Furthermore, the following lemma holds.

Lemma 3 The parameter wk satisfies the equalities

etk =
wk +

√
(wk)2 − 4

2
and e−tk =

wk −
√
(wk)2 − 4

2
. (10)

PROOF. Let us denote sk := s
3k
. By simple algebra, it is straightforward to verify

that, depending on the value of t, equation (8) can be written as follows:

1. wk = 2, when t = 0;

2. wk = 2 cosh(sk), when t = s, s > 0;

3. wk = 2 cos(sk), when t = is, s > 0.

In case 1, relations (10) are trivially verified. In cases 2 and 3, they can be derived

from Euler identities. 2

Let tk := t
3k
. If we now interpolate the equally-spaced data {(3−kh, pkj+h)}h=−1,0,1,2

with a function of the form φ(x) = c0 + c1x + c2e
tx + c3e

−tx ∈ Vt, the unknown
coefficients of φ(x) are found as the unique solution to the linear system of equations
pkj+h = φ(3−kh), h = −1, 0, 1, 2, namely

c0 =

(
e−tk + etk

)
pkj − pkj−1 − pkj+1

e−tk + etk − 2
(11)

c1 = 3k
(
e−tk + etk + 1

)
(pkj+1 − pkj ) + pkj−1 − pkj+2

e−tk + etk − 2

c2 =
(e−2tk+2etk−3)(pkj−1−2pkj+pkj+1)−(e

−tk+etk−2)(2pkj−1−3pkj+pkj+2)

(e−tk−etk)(e−tk+etk−2)
2

c3 =
(e−tk+etk−2)(2pkj−1−3pkj+pkj+2)−(e

2tk+2e−tk−3)(pkj−1−2pkj+pkj+1)

(e−tk−etk)(e−tk+etk−2)
2

and they turn out to be well-defined when t ̸= 0 and, whenever t = is, for s ∈ (0, π).

In this way we get the following result.

Proposition 4 Given any initial parameter w0 ∈ (−2,+∞), let
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ak0 =
1 + 2wk+1

3(1− wk+1)(1 + wk+1)3
,

ak1 =
(2 + wk+1)

(
1− 2(wk+1)3

)
3(1− wk+1)(1 + wk+1)3

, (12)

ak2 =
2(−1 + wk+1)− (wk+1)3(2 + wk+1)

3(1− wk+1)(1 + wk+1)3
,

ak3 =
2 + wk+1

3(1− wk+1)(1 + wk+1)3

where wk+1 is recursively computed through (9) for all k > 0. Then the ternary inter-

polating 4-point scheme defined by equations (1) with {aki }i=0,1,2,3 in (12) reproduces

functions from the space Vt (whenever the initial data are sampled at equally-spaced

values of t from a function in Vt).

PROOF. By substituting (10) into equations (11), the coefficients {ci}i=0,1,2,3 can

be rewritten in terms of the parameter wk+1. To get the insertion rules, it is then

sufficient to compute the values of the interpolating function φ(x) at the grid points
1

3k+1 and 2
3k+1 respectively, and express the newly inserted vertices pk

j+ 1
3

and pk
j+ 2

3

as linear combinations of pkj−1, p
k
j , p

k
j+1, p

k
j+2 with coefficients depending on the

parameter wk+1. This gives us the set of coefficients in (12). Since relations (12)

are well-defined for any w1 ̸= 1, hence for any w0 ̸= −2, the choice of the initial

parameter value is conveniently bounded to the range w0 ∈ (−2,+∞). 2

For the sake of conciseness we will refer to the refinement algorithm with coefficients

in (12) as exponentials reproducing scheme (notice however that only functions in

Vt can be represented exactly). The advantage of the proposed scheme is that the

recurrence relation (9) makes wk independent of the values of tk which vary from

step to step. In fact, once w0 has been chosen, at all successive subdivision steps

its value is simply updated through (9) and the refinement coefficients {aki }i=0,1,2,3

are recomputed by substituting it in (12).

Remark 5 The novel subdivision scheme reproduces cubic polynomials. This is an

immediate consequence of the observation that, when t = 0, the solutions of the

differential equation ϕ(4)(x)− t2ϕ(2)(x) = 0 turn out to be cubic polynomials.

3.2 Smoothness analysis

For the subdivision scheme presented in the previous subsection, the coefficients

{aki }i=0,1,2,3 in (12) may vary from one refinement level to another. Hence the scheme

is non-stationary and its smoothness properties can be derived by asymptotical

equivalence with the corresponding stationary scheme. Two subdivision schemes

Sak and Sa are said asymptotically equivalent if
∑

k∈Z+ ||Sak − Sa||∞ < +∞. In
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particular, our analysis is based on the following generalization of Theorem 8 in [12]

to ternary subdivision.

Theorem 6 Let Sak and Sa be two asymptotically equivalent subdivision schemes,

with Sak non-stationary and Sa stationary. Suppose Sak and Sa have finite support

of equal width. If Sa is Cm and∑
k∈Z+

3mk||Sak − Sa||∞ < +∞,

then Sak is Cm too.

In addition, to the aim of our analysis, we need some preliminary results.

Lemma 7 Given w0 ∈ (−2,+∞), the recurrence relation (9) satisfies

lim
k→+∞

wk = 2.

PROOF. Recall that a monotonic and bounded sequence is always convergent.

Moreover, if it is non decreasing and upper bounded, then it converges to its up-

per bound. In the same way, if it is non increasing and lower bounded, then it

converges to its lower bound. In particular, for the sequence defined by (9) with

w0 ∈ (−2,+∞), it holds:

- if w0 ∈ (−2, 2), then the sequence {wk}k>1 is non decreasing, since cos(sk+1)

> cos(sk) ∀s ∈ (0, π);

- if w0 = 2, then the sequence {wk}k>1 is stationary;

- if w0 ∈ (2,+∞), then the sequence {wk}k>1 is non increasing, since cosh(sk+1)

< cosh(sk) ∀s > 0.

Therefore, in all the three cases above, wk is convergent and converges to 2. In fact,

if ℓ := limk→+∞wk, we have

ℓ = ℜ

(ℓ+
√
ℓ2 − 4

2

) 1
3

+

(
ℓ+

√
ℓ2 − 4

2

)− 1
3

 ,

and solving with respect to ℓ we get ℓ = 2. 2

This lemma allows us to view the Dubuc-Deslauriers ternary 4-point scheme [13,14]

as the limit of our scheme when k → +∞. In fact, it holds

a∞0 := − 5

81
, a∞1 :=

20

27
, a∞2 :=

10

27
, a∞3 := − 4

81
. (13)

Moreover, the two following lemmas establish a useful bound on the rate of conver-

gence.
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Lemma 8 Let w0 ∈ (−2,+∞) \ {2}. Then the sequence {wk}k>1 in (9) satisfies

the bound

2− wk+1

2− wk
<

1

3
, ∀k > 0. (14)

PROOF. To prove this result we will consider two cases separately.

1. w0 ∈ (−2, 2)

Hence wk ∈ (1, 2) ∀k > 0, and there exists s ∈ (0, π) such that sk = acos(wk/2).

Thus eisk =
wk+

√
(wk)2−4
2 , wk+1 = 2 cos (sk+1) and it is straightforward to see

the validity of (14).

2. w0 ∈ (2,+∞)

Hence wk ∈ (2,+∞) ∀k > 0, and there exists s > 0 such that sk = acosh(wk/2).

Thus esk =
wk+

√
(wk)2−4
2 , wk+1 = 2 cosh (sk+1) and (14) follows immediately.

2

Analogously the following lemma is easily proved.

Lemma 9 Let w0 ∈ (−2, 2). Then the sequence {wk}k>1 in (9) satisfies the bound

1− wk

1− wk+1
< 1, ∀k > 0. (15)

PROOF. As observed in case 1 of Lemma 8, wk = 2 cos(sk) ∀k. Hence (15) follows

straightforwardly, since cos(sk) < cos (sk+1) and 1 − 2 cos (sk+1) < 0, ∀s ∈ (0, π).

2

The above results can now be exploited to prove the asymptotic equivalence of the

novel scheme with the Dubuc-Deslauriers ternary 4-point scheme.

Proposition 10 The non-stationary interpolating 4-point ternary scheme with co-

efficients defined by (12) and updated through relation (9), generates C1 limit curves

for any choice of the parameter w0 ∈ (−2,+∞).

PROOF. Let us consider the mask of the subdivision scheme (1)-(12)

ak =
[
ak3, a

k
0, 0, a

k
2, a

k
1, 1, a

k
1, a

k
2, 0, a

k
0, a

k
3

]
. (16)

The related first divided difference mask is

dk(1) =
1

3(1− wk+1)(1 + wk+1)3

[
2 + wk+1, −1 + wk+1, −1− 2wk+1,
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3wk+1 − 2(wk+1)3 − (wk+1)4, 3− 2(wk+1)3 − (wk+1)4, (17)

3wk+1 − 2(wk+1)3 − (wk+1)4, −1− 2wk+1, −1 + wk+1, 2 + wk+1
]
.

To prove the thesis we will now show that dk(1) generates C
0 limit curves.

As, by Lemma 7,

d∞(1) := lim
k→+∞

dk(1) =
1

81
[−4, −1, 5, 26, 27, 26, 5, −1, −4 ] ,

hence d∞(1) coincides with the first divided difference mask of the Dubuc-Deslauriers

stationary scheme defined by (13). Since this scheme is known to be C1 [13,14], the

scheme associated with d∞(1) will be C0. Now, if

+∞∑
k=0

∥ dk(1) − d∞(1) ∥∞< +∞, (18)

the two difference schemes are asymptotically equivalent and by Theorem 6 the

scheme associated with dk(1) is C
0 too.

To conclude the proof, relation (18) can be easily verified by using simple algebra

and taking into account the results in Lemmas 8 and 9 (see Appendix A for the

details of this computation). 2

Remark 11 Notice that, if compared with its binary counterpart in [3], the proposed

scheme has the same smoothness order, but a smaller support. In particular, while

the support of the considered scheme has width 2 5
3

∑+∞
k=0

1
3k

= 5 (see [15]), the

support of the corresponding binary scheme has width 6.

3.3 The proper setting of the parameter w0

In the following we will see how the initial parameter w0 needs to be set to achieve

the reproduction properties of the exponentials reproducing scheme defined in Sec-

tion 3.1.

Let P 0 = {p0j}j∈Z be a set of uniform samples of a function in V0, Vs or Vis. By

construction of the subdivision scheme, it is clear that the value of w0 identifies the

space to which the limit function belongs. In particular,

- if w0 ∈ (−2, 2), then w0 = 2 cos(s) for some s ∈ (0, π), and the limit function

belongs to Vis with s = acos
(
w0/2

)
;

- if w0 = 2, then the limit function belongs to V0;

- if w0 ∈ (2,+∞), then w0 = 2 cosh(s) for some s > 0, and the limit function

belongs to Vs with s = acosh
(
w0/2

)
.
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As a consequence, if all the starting control points are sampled at equally spaced

parameter values on a cubic polynomial, the limit curve obtained through the ex-

ponentials reproducing scheme with w0 = 2 is the cubic polynomial itself.

In the same way, a regular κ-gon refined with initial parameter w0 = 2 cos(2π/κ)

converges to the circle passing through its vertices (see Fig. 1).

In our context, we are particularly interested in the practical purpose of generating

circles of a fixed radius or specified conic sections starting from a given set of sample

points. Hence we will now discuss in more detail how the initial parameter w0 needs

to be set in order to reproduce conic sections through the interpolatory scheme in

Section 3.1.

w0 = −1 w0 = 0 w0 = 2 cos
(
2π
5

)
w0 = 1

Fig. 1. Reproduction of circles through interpolation of regular κ-gons and related
starting parameters.

Proposition 12 Let w0 = 2 cosh(su), s, u > 0. The subdivision scheme (1) with

coefficients (12) reproduces the hyperbolic functions f(x) = cosh(sx) and f(x) =

sinh(sx) whenever the initial data points {(ju, p0j )}j∈Z lie on such functions. In

the same way, if w0 = 2 cos(su), with su ∈ (0, π), the trigonometric functions

f(x) = cos(sx) and f(x) = sin(sx) are exactly reproduced.

w0 = 2 cosh(1) w0 = 0

Fig. 2. Reproduction of hyperbolic and trigonometric functions starting from points
sampled with uniform parameter spacings u = 1 and u = π/2 respectively.

Corollary 13 Let p0j = {(a cosh(ju), b sinh(ju))}j∈Z, u > 0, be equally spaced

points on the parametric representation of the hyperbola. Then the limit curve ob-

tained by choosing w0 = 2 cosh(u) turns out to be the hyperbola itself (see Fig. 3

where a = b = 1, u = 1).

The same holds if p0j = {(a cos(ju), b sin(ju))}j∈Z, u ∈ (0, π), are on the ellipse with

center 0 and radii a, b, and w0 = 2 cos(u) (see Fig. 3 where a = 6, b = 3, u = π
2 ).
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In particular, when a = b, the limit curve is the circle of radius a (see Fig. 1 where

a = b = 1 and u = 2π
3 , π

2 ,
2π
5 , π

3 respectively).

w0 = 2 cosh(1) w0 = 0 w0 = 2

Fig. 3. Reproduction of conic sections starting from points sampled with uniform
parameter spacings u = 1 (hyperbola and parabola) and u = π/2 (ellipse).

4 The combined subdivision scheme

In Section 2 we have reviewed a ternary interpolatory subdivision scheme with the

properties of local tension control and C2-smoothness. In Section 3 we have defined

another ternary interpolatory scheme which reproduces conic sections, but, unlike

the previous one, generates C1 limit curves only. Both these schemes are described

by interpolating ternary 4-point refinement equations.

Given an initial polyline, we consider now the problem of including in the related

limit curve an alternation of pieces of conic sections in the regions where the start-

ing samples belong to one of these curves and C2 limit curves with local tension

otherwise.

To this aim, we associate one of the two refinements in Sections 2 and 3 - either the

locally controlled C2 scheme or the exponentials reproducing scheme - with each

edge of the initial polyline and we suppose that edge to be refined via the related

scheme throughout all the subdivision process.

We will also use the following convention: any initial edge which has an associated

parameter v0j is refined through the locally-controlled C2 scheme. Conversely, since

the exponentials reproducing scheme has a global parameter, if the initial curve

segment between the vertices p0j and p0j+h+1, h ∈ Z+, corresponds to an arc of conic

section, we denote its parameter with the symbol w0
j,j+h (see Fig. 4 (left)).

Remark 14 Once the starting values v0j and w0
j,j+h have been chosen, at each it-

eration k > 0 they are automatically updated and reassigned to the new edges by

exploiting the respective recurrence formulas (6) and (9).

Basically, the proposed method consists in using two different refinements to the left

and to the right hand side of a contact point, hence it belongs to the so-called piece-

wise uniform or combined subdivision schemes [16,17]. In particular, since all the

schemes that are applied locally have bounded support, after enough iterations each
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 p0
0

 p0
1

w
10,14
0

w
3,6
0

v
9
0

v
8
0

v
7
0 v

2
0 v

1
0

v
0
0  p0

0

 p0
1

Fig. 4. Initial parameters setting in a polyline including an alternation of circular
arcs and free-form curve segments (left); limit curve obtained via initial parameters
[v00, v

0
1, v

0
2, w

0
3,6, v

0
7, v

0
8, v

0
9, w

0
10,14] = [1, 10, 1, 2 cos(π4 ), 1, 10, 1, 2 cos(

π
5 )] (right).

contact point is affected only by the two schemes applied in its neighboring intervals.

Hence, without loss of generality, we confine ourselves to analyze the configuration

illustrated in Fig. 5. This situation corresponds to applying the locally-controlled C2

scheme to the left of the contact point p̄ and the exponentials reproducing scheme

to the right. Thus we respectively denote these two schemes by Sk
l and Sk

r and the

combined scheme by Sk.

pk
j

p = pk
j+1

pk
j+2

v
k

j−
1

v
k
j

wk
j+1,j+h

Fig. 5. Configuration of parameters around the contact point p at the k-th refinement
step.

In the remainder of this section we are interested in determining the smoothness

order of the limit curves generated by the proposed combined method.

The analysis of such a scheme reduces to the analysis of the two schemes Sk
l and Sk

r

themselves and to the analysis of their behavior in the bounded region where they

overlap. The two schemes Sk
l and Sk

r have been respectively analyzed in [2] and in

Section 3.2. From this analysis we can say that, away from the contact point p̄, the

limit functions of Sk are either C2 or C1, depending on whether they are generated

by Sk
l or Sk

r . Therefore we only need to study the regularity of the scheme Sk in

their overlapping region.

In a neighborhood of the contact point p̄, Sk is represented by the bi-infinite sub-

division matrix

13



Sk =



· · · · · · · · ·

· a′k
3,j−1 a

′k
2,j−1 a

′k
1,j−1 a

′k
0,j−1 0 0 0 ·

· 0 0 1 0 0 0 0 ·

· 0 a
′k
0,j a

′k
1,j a

′k
2,j a

′k
3,j 0 0 ·

· 0 a
′k
3,j a

′k
2,j a

′k
1,j a

′k
0,j 0 0 ·

· 0 0 0 1 0 0 0 ·

· 0 0 āk0 āk1 āk2 āk3 0 ·

· 0 0 āk3 āk2 āk1 āk0 0 ·

· 0 0 0 0 1 0 0 ·

· 0 0 0 āk0 āk1 āk2 āk3 ·

· · · · · · · · ·



, (19)

where {a′k
i,j}i=0,...,3 denote the coefficients (4) of the locally-controlled C2 scheme

and {āki }i=0,...,3 the coefficients (12) of the exponentials reproducing scheme.

The resulting refinement is piecewise uniform and non-stationary at the same time,

thus, for its analysis, we proceed as follows. First we determine the smoothness of the

subdivision scheme obtained by replacing the elements of Sk with their limit values

{a′∞
i,j }i=0,...,3 in (7) and {ā∞i }i=0,...,3 in (13). We denote this limit scheme, which is

still piecewise uniform but stationary, by S∞ (analogously the limit schemes of Sk
l

and Sk
r are S∞

l and S∞
r .) Successively we analyze Sk by establishing its asymptotical

equivalence to S∞.

Proposition 15 The subdivision scheme S∞ generates C1-continuous limit curves

in the region where S∞
l and S∞

r overlap.

PROOF. Generalizing Theorem 3 in [16] to ternary subdivision, it turns out that,

in order to prove C1-smoothness of the scheme S∞, it is sufficient to show that, in

a proper n × n neighborhood of the contact point, the local subdivision matrix of

S∞ has eigenvalues

λ1 = 1, λ2 =
1

3
, |λi| <

1

3
, i = 3, ..., n. (20)

In the following we verify that this condition holds for our subdivision matrix.

For ternary schemes, that are both primal and dual, the eigenvalues of the local

subdivision matrix S∞ shall be worked out following the approach in [1]. Based on

these results, we need to analyze the sub-matrices corresponding to points that are

topologically invariant under the subdivision step [18]. After enough refinements,

14



this implies analyzing the sub-matrix S∞
p̄ corresponding to the neighborhood of the

contact point p̄ (everywhere else only the scheme S∞
l or S∞

r exists). Thus we have

S∞
p̄ =



a
′∞
0,j a

′∞
1,j a

′∞
2,j a

′∞
3,j 0

a
′∞
3,j a

′∞
2,j a

′∞
1,j a

′∞
0,j 0

0 0 1 0 0

0 ā∞0 ā∞1 ā∞2 ā∞3

0 ā∞3 ā∞2 ā∞1 ā∞0


.

Substituting the limit values {a′∞
i,j }i=0,...,3 and {ā∞i }i=0,...,3 respectively with (7)

and (13), we can easily work out the eigenvalues of S∞
p̄ . Since we get λ1 = 1, λ2 =

1
3 , λ3 = 0.1140, λ4 =

1
9 , λ5 = 0.0168, conditions (20) are all satisfied. 2

In particular, as a consequence of this last proposition, the difference scheme of S∞

is C0.

Proposition 16 The subdivision scheme Sk generates C1-continuous limit curves

in the region where Sk
l and Sk

r overlap.

PROOF. Let us denote the difference schemes of Sk and S∞ by Dk
(1) and D∞

(1)

respectively. Recalling Theorem 6 in Section 3.2, to prove our thesis, it is now

sufficient to show that∑
k∈Z+

||Dk
(1) −D∞

(1)||∞ < +∞. (21)

Substituting into (19) the expressions (4) and (12) it turns out that, in the neigh-

borhood of the contact point p̄, the difference matrix Dk
(1) has the form

Dk
(1) =



· · · · · ·

· 90uk
j+1

60
18
60

−90uk
j+1

60 0 ·

· − 2
60

24
60 − 2

60 0 ·

· −90uk
j+1

60
18
60

90uk
j+1

60 0 ·

· 0 − 1+2wk
j+1,j+h

3(1−wk
j+1,j+h

)(1+wk
j+1,j+h

)3
1
3 − 1

3(1+wk
j+1,j+h

)3
2+wk

j+1,j+h

3(1−wk
j+1,j+h

)(1+wk
j+1,j+h

)3
·

· 0 − 1
3(1+wk

j+1,j+h
)3

1
3 + 2

3(1+wk
j+1,j+h

)3
− 1

3(1+wk
j+1,j+h

)3
·

· 0
2+wk

j+1,j+h

3(1−wk
j+1,j+h

)(1+wk
j+1,j+h

)3
1
3 − 1

3(1+wk
j+1,j+h

)3
− 1+2wk

j+1,j+h

3(1−wk
j+1,j+h

)(1+wk
j+1,j+h

)3
·

· · · · · ·



.
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(22)

Clearly, D∞
(1) is the matrix obtained from (22) by replacing ukj and wk

j+1,j+h with

their limit values. It can be easily observed that the rows of Dk
(1) −D∞

(1) bring back

either to the first divided difference of the scheme in Section 2 (see equation (16) in

[2]) or to the first divided difference of the scheme in Section 3 (see equation (17)).

As it was already proved, in both cases (21) is always verified. Hence the thesis

follows straightforwardly. 2

 p0
0

 p0
1

(a)

 p0
0

 p0
1

(b)

 p0
0

 p0
1

(c)

 p0
0

 p0
1

(d)

Fig. 6. Interpolation examples using the combined subdivision scheme.

In Figures 6 and 7 we illustrate how the proposed algorithm allows us to include in

the same curve arcs of conic sections and free-form C2 curve segments. The pictures

in Fig. 6 correspond to the following choices of parameters

(a) [w0
0,5, v

0
6, w

0
7,12, v

0
13] = [2 cos(π4 ), 20, 2 cos(

π
4 ), 20];

(b) [w0
0,5, v

0
6, v

0
7, v

0
8, v

0
9, v

0
10, v

0
11, v

0
12, v

0
13] = [2 cos(π4 ), 20, 1, 100, 1, 1, 100, 1, 20];

(c) [w0
0,2, v

0
3, ..., v

0
9, w

0
10,12, v

0
13] = [2 cos(π4 ), 20, ..., 20, 2 cos(

π
4 ), 1];

(d) [w0
0,5, v

0
6, v

0
7, v

0
8, ..., v

0
11, v

0
12, v

0
13] = [2 cos(π4 ), 10, 10, 100, ..., 100, 10, 10].
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The examples in Fig. 7 have been obtained by setting the parameters to the values

(a) [v00, v
0
1, w

0
2,7, v

0
8, v

0
9, v

0
10, v

0
11, w

0
12,17, v

0
18, v

0
19] =

[−0.5, 1, 2 cos(π6 ), 1,−0.5, 1, 1, 2 cos(π6 ), 1, 1];

(b) [v00, v
0
1, w

0
2,7, v

0
8, v

0
9, v

0
10, v

0
11, w

0
12,17, v

0
18, v

0
19] =

[20, 0.8, 2 cos(π6 ), 0.8, 20,−0.75, 1, 2 cos(π6 ), 1,−0.75];

(c) [v00, v
0
1, v

0
2, ..., v

0
7, v

0
8, v

0
9, v

0
10, v

0
11, w

0
12,17, v

0
18, v

0
19] =

[20, 0.8, 20, ..., 20, 0.8, 20, 1, 1, 2 cos(π6 ), 1, 1];

(d) [v00, v
0
1, w

0
2,7, v

0
8, v

0
9, v

0
10, v

0
11, w

0
12,17, v

0
18, v

0
19] =

[20, 0.8, 2 cos(π6 ), 0.8, 20, 30, 1, 2 cos(
π
6 ), 1, 30].

 p0
0

 p0
1

(a)

 p0
0

 p0
1

(b)

 p0
0

 p0
1

(c)

 p0
0

 p0
1

(d)

Fig. 7. Interpolation examples using the combined subdivision scheme.

We remark that the last one and a half spans at each end of the conic part of a

curve which includes both schemes (see Figs. 6-7) do not converge to the conic. In

fact they lie within the support of a control point which is not part of the conic

formulation.

We finally observe that the proposed subdivision algorithm can be easily generalized

to open polylines. To this aim, it is sufficient to uniformly extend the open control

polygon by one additional vertex at the beginning and at the end. In particular,

if the boundary vertices belong to a conic section, we extrapolate the additional

vertex on that conic section, otherwise we derive it by linear extrapolation. (see

Fig. 8). The examples in Fig. 8 have been obtained through the parameter values

(a) [w0
0,6, v

0
7, w

0
8,10] = [2 cos(π4 ), 2.1, 2 cos(

π
3 )];

(b) [w0
0,6, v

0
7, v

0
8, ..., v

0
10] = [2 cos(π4 ), 4, 10, ..., 10].
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 p0
0

 p0
1

(a)

 p0
0

 p0
1

(b)

Fig. 8. Interpolation of an open polyline through the combined subdivision scheme.

5 Conclusions

To the aim of exactly reproducing conic sections, we have defined a novel non-

stationary 4-point ternary refinement algorithm reproducing functions from the

space {1, x, etx, e−tx} with t = 0, t = s or t = is, s > 0. This scheme has the

same smoothness, but smaller support, than its binary counterpart [3].

Successively, we have presented a unified formulation for the derived exponentials

reproducing scheme and the locally-controlled C2 subdivision scheme in [2]. The re-

sulting ternary algorithm allows us to efficiently define limit curves that combine all

the ingredients of locality, C2 smoothness, user-independence, local tension control

and reproduction of fundamental shapes.

Appendix A: proof of relation (18)

We prove here that the series in (18) is convergent for any w0 ∈ (−2,+∞). Since

when w0 ∈ (−2, 2) then wk+1 ∈ (1, 2), and when w0 ∈ (2,+∞) then wk+1 ∈
(2,+∞), ∀k > 0, a straightforward calculation gives

∥ dk(1) − d∞(1) ∥∞=
2 |wk+1 − 2|

[
5(wk+1)3 + 20(wk+1)2 + 40wk+1 + 16

]
81(wk+1 − 1)(1 + wk+1)3

.

We will now consider two cases separately.

1. w0 ∈ (−2, 2)

∥ dk(1) − d∞(1) ∥∞=
2(2− wk+1)

[
5(wk+1)3 + 20(wk+1)2 + 40wk+1 + 16

]
81(wk+1 − 1)(1 + wk+1)3

with

5(wk+1)3 + 20(wk+1)2 + 40wk+1 + 16

(1 + wk+1)3
<

81

8
.
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Then

+∞∑
k=0

∥ dk(1) − d∞(1) ∥∞<
1

4

+∞∑
k=0

2− wk+1

wk+1 − 1
.

Now, since 2−wk+1

wk+1−1
> 0, convergence of this series can be proved by the ratio

test and by exploiting Lemmas 8 and 9. In particular it results

2−wk+1

wk+1−1

2−wk

wk−1

=
2− wk+1

2− wk

wk − 1

wk+1 − 1
<

1

3
1 < 1.

2. w0 ∈ (2,+∞)

∥ dk(1) − d∞(1) ∥∞=
2(wk+1 − 2)

[
5(wk+1)3 + 20(wk+1)2 + 40wk+1 + 16

]
81(wk+1 − 1)(1 + wk+1)3

with

5(wk+1)3 + 20(wk+1)2 + 40wk+1 + 16

(wk+1 − 1)(1 + wk+1)3
< 8.

Then

+∞∑
k=0

∥ dk(1) − d∞(1) ∥∞<
16

81

+∞∑
k=0

(wk+1 − 2)

and, due to Lemma 8, convergence is proven by the ratio test. In particular it

results

wk+1 − 2

wk − 2
<

1

3
< 1.

By unifying the cases 1 and 2 above, relation (18) is thus verified for any choice of

the initial parameter w0 ∈ (−2,+∞). 2
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