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Abstract

We prove the existence of fountain-like solutions, obtained by superposition of bubbles of
different blow-up orders, for a nonlinear elliptic equation with critical growth and Hardy-type
potential.
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1 Introduction

This paper deals with the following class of nonlinear elliptic problems

A 2 -1
—Au — |m|2u_ (1+eK(z))u”

(P5.x)
u € DVY2RY), > 0in RV \ {0},
where ( )2
2N N —2
N > 2= — - A —
>3, N_2 00 <AL 1 ,

K is a continuous bounded function, and ¢ is a small real perturbation parameter. Here D12(RY)
denotes the closure space of C$°(RY) with respect to

1/2
- ( / |Vu|2dx)
RN
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which is equivalent to the norm

u2 1/2
||lul| :== </ |Vu|? da — )\—dm>
RN ||

in view of the Hardy inequality. D'2(R") endowed with the scalar product

(u,v) = Vu-Vvd:c—/\ﬂdx, u,v € DH2(RY)
RN |z|?
is a Hilbert space.

The main features of the above problem are the critical Sobolev growth and the presence
of a singular potential having the same spatial homogeneity. The study of this type of singular
problems arises in several fields, such as quantum mechanics, astrophysics, as well as Rieman-
nian geometry. Indeed equation (Pf ,) is related to the nonlinear Schrédinger equation with
a potential which exhibits a singular ‘behavior at the origin. For discussion on Schrédinger op-
erators we refer to [7]. Moreover (PS5 ;) can be seen as a simplified prototype of the nonlinear
Wheeler-De Witt equation which app7ears in quantum cosmological models (for more details we
remind to [6] and references therein). Let us finally remark that the study of (P ;) has also
a geometric motivation, since it is related to the scalar curvature problem on the sphere S¥.
Indeed, if we identify RV with SV through the stereographic projection and endow S¥ with a
metric whose scalar curvature is singular at the north and the south poles, then the problem of
finding a conformal metric with prescribed scalar curvature 1 + K (x) leads to solve equation
(PS.x): where the unknown u has the meaning of a conformal factor (see [5] and [22]).

For A < (N — 2)%/4, the unperturbed problem, namely the problem with ¢ = 0, admits a
one-dimensional manifold of radial solutions

ZN = {zfl‘:,uf¥zf‘(;)‘ ,u>0} (1.1)
where
2ay 2(N—=2—ay) 2 N(N ) 2a )2 ¥
D) = AN |l P o U] Ay = [T (12
and ay = &2 — (%)2 — A, see [26]. Moreover in [26] it is proved that if A > 0 such

solutions are the unique positive solutions whereas if A is sufficiently negative also nonradial
solutions exist.
Positive solutions to (Pf ;) can be found as critical points in the space DL2(RN) of the
functional 1 1
K 2 2
u) = —||u||” — = 14+eK(x))uy,
) = gl = 5z [ (1 oK @)
where u4 := max{u,0}. A key role in the variational approach to the problem is the study of
nondegeneracy properties of the unperturbed functional, i.e. of the functional

folu) = 3P = 5 [ o

u € DYA(RY),
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We say that the critical manifold Z* is nondegenerate if
ker D% fy(z) = T,Z* for all z € Z*, (1.3)

where D2 f(2) denotes the second Fréchet derivative of fy at z, which is considered as an element
of DL2(RY) in view of the canonical identification of D12(R¥) with its dual. A complete answer
to the question of nondegeneracy of Z* is given in [16], where it is proved that degeneracy occurs
only along a sequence of values of \; more precisely Z* is nondegenerate if and only if

— 9)2 i -
il 1 2) 1- ](NN+_] . 2) for any j € N\ {0}, (1.4)

A #

see Theorem 2.1 below. For all values of A < (N —2)2/4 satisfying (1.4), it is possible to perform a
finite dimensional reduction, using a perturbative method developed by Ambrosetti and Badiale,
see [3]. Using this procedure, in [16] existence of solutions to problem (P§ ;) close to Z* was
proved for || small, provided K vanishes at 0 and at infinity and (1.4) is satisfied, even for a
more general class of operators related to Caffarelli-Kohn-Nirenberg inequalities. Such solutions
have a single bubble profile wich is singular at zero when A > 0 and vanishes at zero when A < 0.

The purpose of this paper is to prove the existence of solutions with a multi-bubbling profile,
see figures 1 and 2.

0.6

o4t | !

0.2~

1. 3-bubbling solution profile (A = —4 and N = 3) 2. 2-bubbling solution profile (A =1 and N = 5)

To this aim we will assume that K is of the form

l
K(z) = ZKZ-(%) (1.5)

where v; > 0,

Ki(o0):= lim K;(z) existsand K;(c0)= K;(0)=0 (1.6)

|z|—o00



4 V. FELLI AND S. TERRACINI

foranyi=1,...,¢, and
Vi Y .
min | — + —=| is large, (1.7)
i#£] Vj v;
and discuss the existence of fountain-like solutions, obtained by superposition of ¢ bubbles of
different blow-up orders. The main result of the present paper is the following existence theorem.

Main Theorem. Let A\ < (N —2)2/4 satisfying (1.4) and assume (1.5) and (1.6) hold. Suppose
that for eachi=1,2,...,¢, K; € L®(RY)n CY(RN) satisfies

either there exists r; >0 such that K;(r;0)df # 0, (1.8);

S§N-1

or K;#0 and K; has a fized sign (i.e. either K; > 0 or K; <0). (1.9);

Then there exist 0 < a; < b, i = 1,2,...,4, C = C(\,N,a;,b;, || K;||pe,€) >0 and some &
sufficiently small such that if || < & and

1 N—2
Vi>_max{2’N—+2}

2 r};ﬁ?9<u_j >C (1.10)
where
g(v) := max { [Vl_JQVa—AQ + I/%_l] _max{2’¥}, (fi(v) + f2(V))} (1.11)

and f1, fo are defined in (2.13) below, there exists a solution u. to problem (P5 ) close to

Zle zﬁ‘l for some p; € (via;,vb;).

The proof of the above theorem is given in detail for £ = 2, the general case requiring only
simple modifications.

We will construct fountain-like solutions to (P5 ,-) using the perturbative method of [3]. This
method allows to find critical points of a perturbed functional of the type fe(u) = fo(u) —eG(u)
by studying a finite dimensional problem. More precisely, if the unperturbed functional fy has a
finite dimensional manifold of critical points Z which satisfies the nondegeneracy condition (1.3),
it is possible to prove, for |¢| sufficiently small, the existence of a small perturbation function
we(2) : Z — (T,Z)* such that any critical point Z € Z of the function

O.:Z >R, D (2)= fg(z—kwg(z))

gives rise to a critical point u. = z + w.(z) of f.. Moreover the reduced function ®. can be
expanded as
O.(2) =byg—el'(z) +o(e) asl|el —0

for some constant by and for some function I' : Z — R, see Theorem 2.1, so that critical points
of I which are stable in a suitable sense correspond to critical points of f. which are close to Z.
In order to prove the existence of ¢-bubbling solutions, we mean to construct solutions close to
Zle zﬁi. We remark that functions of the type Zle zﬁ‘i are pseudo-critical points of fy, in the

sense that fé(Zle zﬁ‘l) vanishes as the interactions between different bubbles tend to zero. We
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will show that when the rescaling factors v; satisfy condition (1.7), the interaction is small and
it is possible to construct a natural constraint for the functional fX close to the /- dimensional
manifold Z, = {Zle Z;)Zp wi € R, i =1,.. 6} Figure 3 represents the function Z
when A= —4, N =3, =3, u1 =2, uo = 6, and,u3220

The finite dimensional reduction described above leads us to look for critical points of a
function defined on R¥. The study of such a finite dimensional function will be performed by a
topological degree argument based on the Miranda’s Theorem, see Theorem 7.2.

We mention that a similar perturbative argument was used in [9] to construct multi-bump
solutions for the Yamabe problem on SV and in [8] to find multi-bump and infinite-bump solu-
tions to a perturbed dynamical second order system. Moreover multi-bubbling phenomenon at a
single point was observed for the scalar curvature problem in [12], where a sequence of solutions
blowing up with infinite energy was found. The existence of radial solutions which behave like
superposition of bubbles was also proved in [13] for the supercritical Brezis-Nirenberg problem
and in [14] for an elliptic equation involving the p-laplacian and an exponential nonlinearity.

Let us now recall some results concerning elliptic equations with singular potential which
can be found in the literature. In [25] Smets considers the nonperturbative problem

Zl/J'z

—Au — |m)\|2 U= F(:U)u2 -1 (1.12)
in the case N = 4, proving, by minimax methods, that, if F is a C'? positive function such that
F(0) = lim|g|_, ;o F'(x), then for any A € (0, 1) there exists at least one solution.

In [1], existence of solutions to problem (1.12) blowing-up at global maximum points of F' as
the parameter \ goes to zero is proved under some suitable assumption about the local behavior
of F close to such maximum points. In [15], it is studied the existence of solutions to problem
(1.12) blowing-up at a suitable critical point (not necessarily a maximum point) of the function
F, as A goes to zero. Let us mention that some related singular equations with Hardy type
potential were also studied in [2, 18, 20, 21, 24].

The change of variable v(z) = |z|* u(x) transforms problem (1.12) into the following degen-
erate elliptic equation with the same critical growth

1)2 -1

FRE

—div (|Jz| 2" Vo) = F(x) (1.13)
which is related to Caffarelli-Kohn-Nirenberg inequalities, see [10] and [11]. The estimates of
the behavior of single bubbles given in Section 3 are essentially based on the regularity results
for equation (1.13) contained in [17].

To construct fountain-like solutions to 73)\ x 1s equivalent to built multi-bump solutions for
a transformed problem on a cylinder. Indeed the Emden transformation

_ N—2—2ay .
o) =lal" 7 (= Inlal, &)

turns equation (1.13) into the following problem on the cylinder C := R x SVN—!

2 *
—u = Dop+ (X520 ) o = F(0e)e™ 7, (10) €C (L14)
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3. 3-bubbling fountain (A = —4 and N = 3)
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where Ag denotes the Laplace-Beltrami operator on the sphere S¥~1. We remark that
fountain-like solutions to Pi x correspond through the above transformations to multi-bump
solutions to equation (1.14).

The paper is organized as follows. In section 2 we introduce some notation, recall some
known facts and state the existence theorem for two-bubble solutions. In section 3 we provide
estimates of the behavior of the one-bubble solutions while section 4 contains estimates of the
interaction between different bubbles. Section 5 is devoted to the construction of the natural
constraint for the problem. In section 6 we expand the Jacobian of the reduced function up to
the first order and in section 7 we give the proof of the existence of critical points of the reduced
function by topological degree arguments. In the appendix we collect some technical lemmas.

2 Two bubble fountain solutions
For any k € L®(RY) N CORYN), let us consider the functional f¥: DV2(RY) — R defined by

FE(u) = fo(u) — e Gr(u)
where

1 A u?

1
— _ 2 _
folu) = 2/RN |Vul|* dx 5

1 - )
]RNW _§/RNU+ dxr and Glg(u):g/ﬂwk(aﬂ)u_F dx.

The functional fek is of class C? and its critical points are solutions of the problem

—Au — =(1 +5k(m))u2*71,

2

(P5.x)
u € DY2(RY),  uw>0in RV \ {0}.

The following theorem ensures that for A satisfying (1.4) a finite dimensional reduction is pos-
sible. For simplicity of notation, in the sequel we write z,, instead of zﬁ‘ and Z instead of Z* if
there is no possibility of confusion.

Theorem 2.1. Let A\ < (N — 2)2/4 satisfying (1.4). Then the critical manifold Z = Z* defined
in (1.1) satisfies the following nondegeneracy condition

T.,7Z = ker D?fo(2,) for all u > 0. (2.1)

Moreover for any k € L>®(RN)NCOY(RY) there exist ey, Cy, = Ci(||k| 1=, A, N) > 0, and a unique
couple of smooth functions w* : (0, +00) x (—ep, ) — DVERY), o : (0, 4+00) x (—ep, 1) — R
such that for any p >0 and € € (—¢eg, ex)

w¥ (1, €) is orthogonal to 1.7, (
D fE(zu + w*(n,€)) = o* (. €)éy, (
[w* (s )| + [ (1, €)| < Cilel, (
0" (1, )| < ™[ tEA/ =20 (
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where éu denotes the normalized tangent vector

: zZ . d
Eu = m, 2y = @zﬂ. (2.6)
Finally
FE (2 + w0 (1,€)) = folz1) — eTH(u) + o(e) (2.7)

as |e| — 0 uniformly with respect to p > 0, where

TF (1) = Gi(z,) = 2i /]R k()22 do. (2.8)

Proof. We refer to [16, Theorem 1.1, Lemma 3.4, and Lemma 4.1] for the proof of nondegen-
eracy, existence, uniqueness, estimate (2.4), and expansion (2.7). To prove estimate (2.5) we
observe that w* and o are implicitly defined by h(u,w,a,€) = (0,0) where

h:(0,00) x DV2RY) x R x R — DY2(RY) x R
h(,u,w,oz,e) = (Dfe(zu + w) - aé,ua (U],gp))

It is possible to show (see [16]) that (2.1) implies the existence of a positive constant C, such
that for any p > 0

oh -
|(Famuenon) |<c-
Since 9wk (u, €) satisfies
<8ka(u,a)> _ _( oh >1 Oh
a,uak(lu‘?e) a(w?a) (n,wk ok g) a‘u (wwk ok g)
we have
oh
19w (. )l < Cu| 52
Fl (uwk ok )
O |92 4 et 01, 20) 20 — it )| 4 | (w2, -6,
e Zu '€ '€ dp " AL
< c*[ (D2 ol + 1w (1,€)) = D2 folz))u| + lel | DG + b (1)
d . i d .
+ o | | + <u,e>u1|@@1ﬂ- (2.9)
Since [|z4]l = ||z1ll, |1Z.]] = Iz, H% H <c ~1 for some positive constant c(\, N)
depending only on A and N (see (A.10) and (A.1 )) usmg (A.8) of the appendix, (2.4), and the
estimate

| DG (2 + wF (u,€))2,]| = sup
flvlI<1

@ = 1) [ K@)+ w2 0| < const 2]
RN
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which follows easily from Holder inequality, (2.9) yields estimate (2.5). This ends the proof. O

Let us set
2575 =z + w(p,€). (2.10)

Hereafter we assume

K(z) = Ki(x) + Ko(z/v) (2.11)
where v > 0 and K7, Ko € L®(RY) N CY(RY) satisfy (1.6). We will also use the notation

ki(z) = Ki(z) and ko(x) = Ko(x/v). (2.12)

Let us set

2% 1 2% 1

ho = | [ gl @) T por=| [ [g(E)F @] T e

Lemma 2.2. Assume that (1.6) holds. Then

Proof. It follows from (1.6) and the Dominated Convergence Theorem. O

In order to ensure that the functions I'*' and I'*2 are not identically equal to zero, we require
that K;, i = 1,2, satisfies either (1.8); or (1.9);.

Lemma 2.3. Let i = 1,2. Assume that K; € L™(R") satisfies either (1.8); or (1.9);. Then
Ik £ 0.

Proof. Let i = 1 and assume (1.8);. For any g € L!([0,00),dr/r) let us define the Mellin
transform of g as

Mig(s) = /0 T risgr) I

r

see [19] and [4, Theorem 4.3]. The associated convolution is defined by

(ax ) = [ armsin -

There holds M([g x h] = M]g|] - M[h]. Let n be a smooth cut-off function such that n(xz) = 1
for |z| < 1, n(x) =0 for |z| > 2, and 0 < 5 < 1 in RY. Using polar coordinates and the above
notation we can write I'*! as

1 * 1 > * _
k1 (1) = > x Kl(x)zz dr = > ; [ v K1(r0) d@} zi (r) PN dr

1 _ © « /TN /r\N—o1 dr 1 _ > « (TN T\ N—02 dr
= 5ok ‘“/ g (D) (2) S 0‘2/ em: (2)(2) T
2 0 p/ N\ ro 2 0 p/ N\ r
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where
g1(r) :=r /SNl n(ro)Ki(rd)do, gao(r) :=r* /Nl(l —n)(r)K,(r0)do,

= (D)0 =1 () ()

and ag, a9 are chosen in such a way that
0<a; <N-—2%, 2%)—N<a<0. (2.14)

Note that the choice of 1, (1.2), and (2.14) imply that g1, g, h1,he € L*(]0,00),dr/r). If, by
contradiction, T* = 0, then p= (g1 x hy)(u) + p~2(g2 x he)(u) = 0, and hence

Mg x hl](s-i— %) + M{ga x ho] (s—i— %) =0, foranyseR.

From multiplication property of convolution we obtain
aq aq a9 a2\ _
M[gﬂ(s + 7) - M[h1] (s + 7) + Mg2] <s + 7) - M[hs] (s + 7) =0, foranysecR.

Since M|h;] is real analytic, it has a discrete number of zeroes. Moreover from a direct compu-
tation we have

(o 2) =Ml = [ () ()
Hence by continuity if follows that
M(g1] (s + %) + M|ga] <s + %) —0, foranys€R. (2.15)
On the other hand a direct computation yields
Migi)(s+ 1) + Miga] (s + 22) = Migl(s) (2.16)

where §(r) = [gn_1 K1(rf)df. From (2.15) and (2.16) we deduce that M[g] = 0. Then
g = 0, which contradicts assumption (1.8);. The proof for i = 2 is analogous. The proof under
assumption (1.9); is elementary. O

Lemma 2.4. Leti=1,2. Assume that K; € L®(RN) N CO(RYN) satisfies (1.6). Then

lim T () = lim I%(u) =0.
Jim, (p) = tim T (p)

Proof. It follows from (2.8), the change of variable y = z/u, (1.6), and the Dominated
Convergence Theorem. O

An easy consequence of Lemmas 2.3 and 2.4 is the following result.
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Corollary 2.5. Assume that K; € L®(RY) N CYRY) satisfies either (1.8); or (1.9);, Ka €
L¥(RMYNCYH(RYN) satisfies either (1.8); or (1.9);, and (1.6) holds. Then there exist 0< a; <b1,
0< ag <by depending only on K1, respectively Ks, (and independent of v), such that

(T (ar) - (%) (b1) < 0
(T*2Y (v ag) - (T*2) (v by) < 0.
Proof. Lemmas 2.3 and 2.4 imply that the functions

p [ Kilpe)s (@) do, 0= 12
RN

vanish at 0 and at oo and are not identically zero. Hence we can find 0 < a1 < by, 0 < as < by
such that

( RNVK@'(G@‘ z)-x 2 (z )dm)( RNVKi(bim) 222 (z )dx) i=1.2.

The result follows from above and the definition of T'%, see (2.8) and (2.12). O

For v either large or small enough, we will construct a natural constraint for the functional
ffl+k2 close to the 2-dimensional manifold

Z. = {zfjitk? + zﬁ;tkﬂ w1 € (ag,b1), po € (Vag,l/bg)}

where 0 < a; < b; and 0 < as < by are as in Corollary 2.5.
We will give a proof of our main theorem in the case £ = 2, i.e. of the following theorem.

Theorem 2.6. Let A < (N — 2)%/4 satisfy (1.4) and assume (1.6) and (2.11) hold. Suppose
that K1 € L=¥(RN) N CYRYN) satisfies either (1.8); or (1.9);, Ko € L®(RN) N CYRYN) satisfies
either (1.8); or (1.9);, and that a1, a9,by,be are as in Corollary 2.5. Then there exist a constant
C=C(A\ N,a1,a2,b1,ba, || K1||1oe, || K2||z) >0 and some & sufficiently small such that if |e| < &
and

629(1/)_max{%’%_‘_é} >C (2.17)
there exists a solution u. to problem (P5 ;) close to z,, + zu, for some pi € (a1,b1) and
U2 € (vag, vbs).

The general case £ > 2 requires just simple modifications.

3 Estimates of the behaviour of zﬁ;e

Lemma 3.1. There ezists C = C(\, N, a1, a2,b1,ba, || K1 Lo, | K2|lLe) > 0 such that for any
w1 € (a1,b1), po € (vag,vbe), and le| < eg = min{ey,, ek, }

(7) |Zu1 () <C ||~ (N=2-ax) forall |z| >1,

(i0) o2 @) <Cv T TN forall ] >,

(vi) |Zu1 ()] < Clz|7 for all |z| <1,
N-2-2a,

(1v) |zu2 (@) <Cv 7 la|™™ for all |z| <wv.
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In order to prove the above estimates we will use the following elliptic estimate which is an easy
consequence of [17, Theorem 1.1].

Theorem 3.2. Suppose Q C RY is a bounded domain and u € H*(Q) weakly solves
A

Assume that

/QWI“A(Q*T”S)If(:E)!sdw <00

for some s > N/2. Then for any Q' € Q there is a constant C = C(N,Q,dist (Q',Q), s) such
that

1/s
supllel®u(o)] < € { oy + [ lal > @) a) ).

Proof. It follows from [17, Theorem 1.1] after making the change of variable v(x) = |z|* u(x). O
Let us denote as Dé’f(RN ) the space obtained by completion of C§°(R”Y) with respect to the

weighted norm
1/2
HUH’D}lf(RN) = (/RN ’m‘*2awvv‘2 dx) :

—2ay 2
SOLN):= inf Jo ’xl ‘W‘* da e (3.1)
Doy RN} (fpn 2|72 o(2)]?" dx)
We have that S(A\, N) > 0; moreover S(\, N) is attained if ay > 0 (i.e. if A > 0) and not
attained if ay < 0 (i.e. if A < 0), see [11].
The following Brezis-Kato type Lemma will be also used to prove Lemma 3.1. We refer to
[17] for a proof (see also [25, Theorem 2.3)).

and set

Lemma 3.3. Let Q C RN be open and q > 2. Assume that v € Dy2(RV),

ax
/ || 72" o (2)|? < +oo
Q

and v is a weak solution of

—div (|z] 2" V) — Viz) v= /() in Q,

’x 2*@)\ ’x 2*0,)\

where
JERRIICTEES
Q

and V' satisfies for some o > 0

w2

1

* * 2
/ 2|2V ()| ¥ + / "2V (2) ¥ < mm{—su,m, —swv)} (3.2)
[V(z)|>0 Q\B, (0) 8 qg+4
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where S(\, N) is defined in (3.1). Then for any Q' € Q there is a constant C' = C(0,q,Q’) such
that

* 2%¢g 23(1 % 1/q . 1/(1
([ el )™ < coa( [l p@i) 4 ([l zels@r)
Qf Q Q

From (2.3) we have that u; solves

Proof of Lemma 3.1. Let us set u; = Zm o

A _
—Aul - WUI = (1 + €]€1(-T)) % I ;1,1 z—:( gm | |2£u1>

Since ém solves the linearized problem —Aém — #g’m = (2" - 1)z, 2* 2§u1v we obtain

—Auy — —sur = (L+eki(@))ui ' +all (2= 1)z 2. (3.3)

ER
For any function u € D2(R¥Y) let us denote by u* € DV2(RY) its Kelvin transform
u(z) = |z|" N Pu(z/|z]?). (3-4)

Let us set wy := u}. Since uy satisfies (3.3) in RY \ By 5(0), we have that w; satisfies
A _ s_g9 ¢ .
A = g = (L +eky(x/|x))wi '+ (2° = Daft (25,)* 2(§u)* in B2(0).  (3.5)
The weighted function vy (z) = ||* w1 (x) satisfies

—div (Jz| 72 V) — Viz) v = /(@) in By(0)

[a2ex ™ Jaen

where

V(@) = (1+ eka(a/[af?))]e]® 2wy (2)* 72

and .
fl@) = (2" = Daft |2 D% (25 )7 2(E,)"

We claim that the function V' defined above satisfies (3.2) for some o independent of 1 € (a1,b1)
and € € (—ep,&0). Indeed since the map wk! depends continuously on j; and ¢ and the Kelvin
transform defined in (3.4) is an isomorphism of D2(R¥Y), it is easy to check that the family of
functions

{|Z,u1,e |2* NS (al’bl)’ €€ (_50,50)}

is relatively compact in L'(R"), hence from the Dunford-Pettis Theorem such a family is equi-
integrable, i.e. for any 1 > 0 there exists ¢ > 0 such that for any measurable set A with measure
less than § there holds

/ ‘Zm R \2* <n forall p; €(ai,by) and e € (—ep,e0).
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Set A7, . ={z € B2(0) : |V(z)| > o} and let 0 <y < min {2%, NZJYGA }. Then for some positive

constants ¢; independent of u1 € (a1,b1) and € € (—eg, &), Holder inequality yields

|2

E3

aﬁ\AZm! < /0 \V(m)]ﬁ dw§01/g \x]“AV]zﬁLE*W SQ(/G ‘Zﬁi’a*’2*> =

H1,€ H1,E H1,E

V)

hence we can choose o large enough independently of py € (aj,b1) and € € (—e¢,ep) in order
to have |A7 .| as small as we need. From this and the equi-integrability of (zﬁie)z*, condition
(3.2) is proved to hold for some o large enough independently of p1 € (a1,b1) and € € (—¢&q, &¢).

Lemma A.5 and Lemma 3.3 with ¢ = 2* imply that for any r < 2

Iterating the argument above a finite number of times, it is possible to show that for any 7 > 2*
there exists some constant ¢ = ¢(IN, A\, 7) independent of py € (a1,b1) and & € (—&g,&p) such
that
/ |72 Moy ()| da = / | TH T oy (2)| dw < (N A 7). (3-6)
B3(0) )

B3
2

Estimate (3.6) with some fixed 7 > w, Lemma A.5 and (2.4) ensure that w; satisfies the

assumptions of Theorem 3.2 with s = 5 > % Then Theorem 3.2 yields

sup
B1(0)

a2k (2 )‘ <c

for some positive constant C' independent of p; € (a1,b1) and € € (—eg,€p), hence

sup ||z (y)] < C.

jul>1 e
Estimate (i) is thereby proved. To prove (ii) we set ug = zﬁge From (2.3) we have that wus
solves )
21 | _ky (ox Y
—Auy — g = (L+eko(z))us '+ a2 (25 —1)20, %, (3.7)

Let us set wy := u3. Since ug satisfies (3.7) in RY \ B, 5(0), we have that w, satisfies

A e . . .
Ww2=(1+5k2(x/|x]2))w§ P (2 = Dag2 (25,)7 2 (€w)" in By, (0).

The rescaled function wy(z) = v

_Ag)Q —

N-2 1

2 wy(v™ ') satisfies
)\ * *__ .
—Awy — Frkchs (1+ eka(va/|z))wd '+ (2F = D2, (25,)° (€m2)” in Ba(0). (3.8)

Since £2 € (ag, ba) we can argue as in the proof of (i) above to conclude

sup ||z|ws(z)| < C (3.9)
B;(0)
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for some positive constant C' independent of po € (az2,b2) and € € (—ep,ep) (depending on ag,
ba, A, N, ||k2||r). Estimate (i) hence follows from (3.9) and

N=2—(N-2) k x
wle) = v oDl (v

Let us now prove (iii). Set ©1(x) = |2|®uy(z), where u; = 2F! _ solves (3.3). We have that o

H1,e
solves equation N .
o oanoe Viz) . _ flz)
2a _
—div (je] 29V — i = s n Ba(0)
where B
Vi(z) = (1+ ek (2))|z]® D0y (2)2 72
and

flz) = (2" = Dag! Ja @7V 72,

Since {Zm o 1 € (a1,b1)} is equi-integrable and (A.17) holds, we can argue as the proof of (7)
and apply Lemma 3.3 a finite number of times to deduce that for any 7 > 2* there exists some
constant ¢ = ¢(N, A, 7) independent of p1 € (a1, by) such that

/ [ ~2 9 (2)|7 da :/ 22Oy () dr < o(N, 7). (3.10)
B3 (0) B%(O)

Estimate (3.10) with some fixed 7 > @ 71) , (A.17) and (2.4) ensure that w; satisfies the
assumptions of Theorem 3.2 with s = 2*7_1 > 5 N hence we obtain

sup Hx!‘”zme( )‘ <C

B1(0)
for some positive constant C' independent of pq € (a1,b1) and € € (—¢eq, &) thus proving (ii7).
Similarly (iv) follows by applying Theorem 3.2 to the function v = 252 .(vz). O

As a consequence of Lemma 3.1 we obtain the following result.

Lemma 3.4. There exists C = C(\, N,ay,a2,b1,bo, || K1||L<, ||K2||ree) > 0 such that for any
w1 € (ag,b1), po € (vag,vbe), and |e| < &g

Proof. A direct calculation gives

A(N,\) |z~ A(N, ) |z|~(N=2-ax)
(z) = (N, A)|| _ AWV, A |z

(142 72) T (14722 T

hence

e )|~ iffaf <1,
- 3.13
Al = {C()\,N)|x\_(N_2_2‘”) if | > 1. o
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(3.11) follows from (3.13) and (¢), (7i7) of Lemma 3.1. To prove (3.12) we observe that

N—-2—-2a, N—-2—-2a,

AN, v 7 lz|™» AN ANy gV 2me)
2 () = 5_day N-2 = day , N-2
(1 + /v 72) 2 (1+Jz/v|7=277) 2
hence
c(A ]\7)1/’1\]72272‘1A ||~ if || <v
2 () > © N—2-2ay ’ (3.14)
e\ N~z |z~ N=27200)if 2] > v
(3.12) follows from (3.14) and (4i), (iv) of Lemma 3.1. O

Remark 3.5. The same argument used in the proof of Lemmas 3.1 and 3.4 can be performed
to prove analogous estimates for zﬁﬁkﬁ and zfj;fgk?, namely it is possible to prove

|2 £72(x)] < Ca(a), (3.15)
|zi 2 ()] < Cz(x), (3.16)

for some positive constant C=C'(\, N, ay,as,b1,ba, || K11, || K2| L) >0.

4 Interaction estimates

Lemma 4.1. For any 0 < 3 < 2* there exists C=C(6,\, N,a1,a2,b1,ba, || K1z, [|[K2| 1) >0
such that for any py € (a1,b1), pa € (vag,vbs), and || < g

ki 125—B|k 1852
L i etz < ol v (41)
ke (2°—B|k — B2
/RN |23, 6’2;&,6‘6 < C[VW t+v w] 2 (4.2)
ke1tha 25— B k1+k —ya1 -85
[ b < o 4 149
* _pN=2
[ i < o ] (44
where vy =1 — ]\2[‘22.
Proof. We claim that
2B B < o[ -] B £ 0 4.5
RNzl zu_c[u + u ] or any [ > (4.5)

for some positive constant ¢ depending only on N, 3, and A. Indeed if § < 2*/2, for any p > 0
we have

—pN=2

g - 2
A—i—‘z‘ A) dr
i

* * o _(2*_g)N=2
/RNZ% Tzl = AN, N SN_l!/O O (LIS ES I (‘ﬁ

I
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where |[S™~!| denotes the measure of the unit (N —1)-dimensional sphere. Performing the change
of variable ¢t = Inr we obtain

/OO T*l(r’wx + r*% (2" < rm A)61\]22 dr
0 2
_ 9N / (cosh(pat)) & T [cosh(y,\(t — )] P a
* _pi=2
_ [cosh(n b w] / [cosh(1at)] "> P77 [cosh(qat) — tanh(y In o) sinh(yp0)] 7 de
R

N-2

< Const[cosh( | e 3 —@-p) g 3 — si i A5
< alnp)] [ cosh(yxt)] [ cosh(yxt) — signt sinh(yxt)] dt
R
—pN=2 —pN=2
< const | cosh () In )] 7 = const [p 4 p7 ] 2

proving (4.5) for 8 < 2*/2. Estimate (4.5) for 2* > g > 2*/2 follows from above and

/ zz*ﬁzlﬁ:/ zf*_ﬁzg. (4.6)
RN RN m

If 6 =2*/2 = N/(N —2) from Hélder’s inequality and (4.5) with 5 = N 3N 7 3 2 we have that

N N 2(]\]7V 2) 2(1\]7V 2) N
N—2 _N—-2 __ )
/]RN 21 Aw = /RN 21 21 u

N\ 174 oN 4N\ 3/4 N
< (/ z% > </ Z13(N 2) 25( )> < const [Iuw _i_ufw]*? (4_7)
RN RN

thus proving (4.5) in the case 8 = Z-. Estimate (4.1) follows from Lemma 3.4 and (4.5). Estimate
6),

(4.2) follows from Lemma 3.4, (4.6), and (4.5). The proof of (4.3) and (4.4) is analogous taking
into account Remark 3.5. O

Lemma 4.2. There ezists C = C(\, N, a1, a2,b1,ba, || Ki||ree, | K2|lLe) > 0 such that for any
w1 € (a1,b1), pe € (vag,vby), and |e| < g

IDfEE2 (2t 1) = DFE (232 O < Clel fa(v), (4.8)
IDfEE2 (22 ) = DfE2 (22 | < Clel fi(v),

where f1, fo are defined in (2.13).

Proof. Hoélder and Sobolev inequalities and estimate (3.11) yield
k 2*—1
6/RN ko(z) (2 A )+ vdx
2% -1

x * i
< const ]€|HUH</RN ‘Kg(;) ‘z% (x) dx) .

{(kalJer( Mh ) Df ( M1,€ ){ -
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In a similar way using Holder and Sobolev inequalities and estimate (3.12) we obtain

|(ka1+k2( u26) DfF(z, Zuz )y U)‘ = 6/]RN k() ( me)?:_lvdx

< const |€”””</RN [Ky@)] 2 (@) dx) — const ]5|HUH</ [Ky)| (@ )dg;>2*.

The lemma is thereby established. |

Lemma 4.3. Let A\ < (N —2)2/4 satisfying (1.4). There exist C1, €1 > 0, 1 < ¢ such that for
all [e] < ey and > 0 there holds

l® %2, €) = w (m, )| < CLID B2 (2) = DFF (21 (4.10)

and
[ (1, €) — w*2 (p, )| < CLIID fE42 (22) — DfE2 (22 (4.11)

Proof. Let us define the map
U :RY x DM2(RY) xR x R — DY(RY) xR
with components ¥; € D2(RV) and ¥y € R given by
Uy (p,w,0n8) = DfFHE (2, 4wkt (p,e) + w) — (P (p,2) + )€,
\IIQ(M,U],CM,E) = (wvéu)'

We have that W(u,w, o, e) = 0 if and only if (w, o) = ®. ,(w, a) where

(4.12)

ke

Using non-degeneracy property (2.1) and (A.8), we can easily obtain that for e sufficiently small

%(M,o 0,¢) is invertible and

|(oe000)”

hence for some positive constant ¢

—1
(I)Euu(w?a) = (H’anas)] \II(:U‘?wvaas) + (w,a).

< const uniformly with respect to u > 0

ov (
o(w, a)

= || DAE (2 b ) + ) = DAE (2 + w0 () — DEAEHR (2 4w ()

||(I)€,,Lt(waa)|| <c \I](,LL,U),Oé,EE) - ,LL,0,0,E)(’U),OZ)

<c ‘ka1+k2 716 + w) ka1+k2( k1 ) _ D2 ekl-i-kz (zkla)wH

+el[ D (ehy) - D ()

DfE*R(z) = DFF (2k) |
(4.13)

0

1
=c / {D2 Ekﬁk? (zﬁ}s—}—tw) D2fk1+k2( k1 )}wdt' +c
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Therefore if |Jw|| < p < 1, (4.13) and (A.8) yield for some positive constant c;
H(IDEM(U) Oz)” <c [HkaH—kQ( ) Df H +pm1n{2,N 2}] (4.14)

Similarly from (A.8), we have for some positive constant cp that for any wi, wa € B,(0) C
D1,2(RN)

[ @e p(wr, a1) — @c (w2, a)|

nglier(Z +w (H, )_|_w1) kalJer(z +UJ (,Ua )+w2)

— DRt (o, 4wt () (wn wQ)H

<c

1
< C/ HDfolJer (Zﬁ,le + t(w1 — wz) + w2) _ D2f§1+k2 (Zﬁle)
0

]wl — 'LUQ” dt

min{l

<cop ﬁ}le — wall. (4.15)

Let us choose p = p(u,€) = 2¢; Hfo1+k2 (zﬁ}e) —Dfh (zﬁ}e) H and note that in view of Lemma 4.2
there exists 0 < g1 < g¢ such that for all |¢| < e; and for all y >0

- 11
min {1, 3%5} < {_ _} 416

From (4.14), (4.15) and (4.16), we deduce that ®. , for |¢| < e; maps the ball of radius p(u, )
into itself and it is a contraction there. From the Contraction Mapping Theorem we have that
®. ,, has a unique fixed point in the ball of radius p(u, ), namely there exists a unique couple
of functions (w(u,e),a(u,e)) € DH*(RY) x R such that for all 4 > 0 and |e] < ey

(w(ﬂ7€)7éﬂ) =0,
DfFtke () 4wkt (p,e) +w(p,e)) = (¥ (1) + alu, €)) s
(s )| < 26| DFE (o) = DAE ()|

By the uniqueness statement of Theorem 2.1 there must be

" () + w(p, ) = wh R (u,e)

and hence

042 s, ) = ()| = ()| < 26| DSR2 (2fL) = Do (2h)

|

(4.10) is thereby proved. The proof of (4.11) is analogous. O
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5 Natural constraint for two bubble fountain solutions

Let us consider the function
H:RTxRTx DM?RY) x Rx R xR — DL(RY) xR xR
with components H; € DV2(RY) and Hy € R x R given by

_ k1+k k1+k: k1+k
Hl(M17M27w70¢1704275) - Df€1+ Q(Zﬂiig ? +Zﬂ§t¢ 2 +w)

— (o + aF1Fk2 (g €)) €, — (2 + F1FR2 (g, €)) (5.1)

HQ(M17/’L27U)70‘1704278) = ((w7é:ﬂ1)7(w7é:ﬂ2))'

We endow the space D12(RV) xR xR with the norm ||(v, 31, 32)|| = max{||v||, |41], |42|}. The fol-

lowing lemma ensures that if v is either large or small enough, the operator B0,01,03) | (11,112.,0,0,0.)

is invertible for & small and the norm of the inverse is uniformly bounded.

Lemma 5.1. There exist Cy,e9, L1 > 0 such that for anyv € (0,1/Ly)U(Ly, +00), p1 € (a1,b1),
wa € (vag,vbe) and for |e| < e9 there holds

OH
8(w, aq, 042)

(Ua ﬁlaﬂ?)

(11,142,0,0,0,¢)
for any (v, By, B2) € DV2(RY) x R x R.
Proof. Since from Lemma A.3 and (2.4)

oOH oOH
O(w, a1, a2) o(w, a1, az)

> Col|(v, B, Ba)|| (5.2)

(Mlvﬂ/QvOaO?OvE) (Mlv“?voaovovo)

= HDQfEkl-HCQ (Zﬂl + 2 + wk1+k2 (Ml’e) + wk1+k2 (M2’6)) _ szo(zm + ZM2)H
< HDfol—HQ (2 + 202 + whi e (p1,€) + whi e (n2,€)) — D2f§1+k2(2u1 + Zuz)H
D252z, + 23) — Dol + 750)]| < const [/ V=2)

to prove (5.2) it is enough to prove that for some positive constant C

(D?folzy + 23)0 = Bréy — Bopuas (0,6), (0, E)) || = Cll(w, B, Ba) | (5.3)

for all v € DV2(RY), By, B € R, py € (a1, by), u2 € (vasg, vby), provided v is either large or small
enough. Arguing by contradiction, let us assume that (5.3) is not verified, namely that there
exist sequences {v Y, {80, {62 ns {1h}ns {12}, C R and {v,},, € DV2(RY) such that

either v, <1/n or v,>n, a5 < ,u}b < b, vpas < ,ui < Upba, (5.4)
lvall + 18a] + 1621 = 1, (5.5)
1(D?folz + 22 Jon = Babu, — Bréuz (vn, € ), (vn €2)) || — 0, (5.6)
(s €1 )| + [(vns €2)] — 0. (5.7)

n—oo



FOUNTAIN-LIKE SOLUTIONS FOR ELLIPTIC EQUATIONS WITH HARDY POTENTIAL 21

From (5.4) either there exists a subsequence of {v,}, tending to 0 or there exists a subse-
quence tending to oo, therefore there is no restriction assuming that either lim, .., v, = 0 or
limy, 0o vy, = +00. For p > 0, we denote as U, : DV3(RY) — DL2(RY) the rescaling map
defined by

_N-2
Up(u) :==p~ 2 u(z/p). (5.8)
It is easy to check that U, conserves the norms || - || and || - || 2+ gy, thus for every p >0
(U) ™ = (Un) =Upr and fo=fooU, (5.9)

where (U,)" denotes the adjoint of U,. Twice differentiating the identity fo = fo o U, we obtain
for all hy, ho,v € DV2(RY)

(D? fo(v)ha, ha) = (D fo(Uu(0))Up(h1), Uy (h2))- (5.10)

Set up := Uy /1 vp. From (5.10) we have that for any h € DL2(RY)

(szo(z% + 2,2 )V, h) = (D*fo(z1 + 22 /1 Vn, Uy 1 h). (5.11)
From (A.18) it follows
. Uy
Eu = - for all p > 0. (5.12)
[1Z1]]
From (5.9) and (5.12) we have
(hagu%) = (Ul/u}lhaél) and (ha 5#%) = (Ul/u%h,gu%/u%) (513)

From (5.11) and (5.13) we deduce
szo(z% + 22 )on — ﬁrlzéu% - ﬁiéun = (Ul/uk)t<D2f0(Zl + 22 Jpul, U — Brér — ﬁiéui/u%)

hence from (5.6) we obtain

HDQfO(Zl + Z}L%/,LL}L)U’TL - ﬂ}zél - Brzzglu%/u% — 0. (514)

n—0o0

On the other hand from (5.12) and (5.9) we have (vn,é%) = (tn, &1) and (U"’éu%) = (u”’éu%/uh)
hence (5.7) yields

n—o0

Moreover (5.5) and invariance of norm under rescaling imply
lunll + 18] + 155 = 1. (5.16)

If v, — oo, from (5.4) we have that
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From (5.16), there exist subsequences of {uy}n, {8} n, {32}, (still denoted by {us }n, {52 }n,
{$2},,) such that
By — 1, Br — B2, un — uin DARY).

n—oo n—oo

For any h € D2(RY) there holds

(D% fo(21 + 2 )un, B) = (un, h) — (2% — 1)/ (21 + zun)a_*dunh dx. (5.17)
RN

Since z,, converges to 0 poitwise a.e., by Vitali’s convergence Theorem, we can pass to the limit
in (5.17) and thus find

(D?fo(z1 + 2, )un, h) — (u,h) — (2% — 1) /N 22 “2uh dz. (5.18)
n—oo R

From boundedness and pointwise convergence of éum we deduce that éﬂn weakly converges to 0
in DL2(RY), hence from (5.14) and (5.18) we get

(u,h) — (2° — 1)/ 2 2uhdx — B1(€1,h) =0 for any h € DVA(RY)
RN

ie. D?fo(z1)u = B1€1. Hence B4 = (DQfO(zl)u,Sl) = (D2f0(21)$1,u) =0. Then D2 fy(z)u = 0.
From (2.1) we deduce that u = a&; for some a € R. From (5.15) we obtain
0= lim (un, &) = (u,&1)

n—0o0

which implies @ = 0. Hence u = 0. We have thus proved that u,, — 0 in DY2(RY) and g} — 0
as n — oo. In a similar way, we define wy := Uy/,2v,. Arguing as above we can prove that

wy, — 0 in DVY2(RY) and B2 — 0 as n — oo. As a consequence, from (5.14) we find that
D?fo(z1 + 24, )un — 0 in DL?(RY) and hence

Jun|* = (27 - 1)/ (21 + 2 )2 202 — 0. (5.19)
RN n—oo
Since [pn zi;_gu% = [~ 22 2?2 from Vitali’s convergence Theorem we get S ziz_zuz — 0.

Using Lemma A.1 with s = 2* — 2 and again Vitali’s convergence Theorem, one can easily prove
that

-2 2% -2 9
/]RN|(21+ZHR)+ -z, luy, — 0.

Therefore

n—0o0

25-2 2 262 2% -2 9 25-2 2
/]RN(,'<:1+,'<:M)+ ung/RN|(,2*1—}—ZM)_F -2, |un+/RNZ“" uy — 0

and hence from (5.19) we deduce that u,, — 0 in DY2(RY) as n — oo, which is in contradiction
with (5.16). As the proof in the case v, — 0 is analogous, we omit it. 0
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Proposition 5.2. There exist C=C(\, N, a1, az2,b1,bo, || K1| Lo, | K2|lr)>0, L >0 and & >0
such that for all v € (0,1/L) U (L, +00) there exist C'-functions

w: (a,b1) X (vag,vby) x (—&,&) — DYERY),

o (al,bl) X (Z/CLQ,VbQ) X (—5, 5) — R, 1=1,2,
such that for all py € (a1,b1), pa € (vaz,vbe), and for all |e| < &, there hold

(Z) w(:“’h/’"?ag) € <$M17éu2>l7
(i) DfEFRR (2t 4 20w, o, )

H1,€ H2,€

= akl+k2(:u17€) +a1(ulau27€) § s akl+k2(M27€) +042(M17/J275) § 29
( 1 1

2
max {1 N=2
(i) fw(pr, po, o)l + Y lei(p, pa,e)| < g(v)™ {2’N+2},
i=1
2

() o, o, @)l < C[lelmn et gluymintiatal],

() N, ma.2)] < ot [leiniiatad 4+ gymn{iatal],
where g is defined in (1.11).

Proof. Let H be the function defined in (5.1). If H(p1, 2, w, a1, a0,e) = 0 then w, aq, and
ag satisfy (i — i) and H(u1, po, w, a1, c0,€) = 0 if and only if (w, a1, a2) = FL iy po (0, a1, )
where

OH -1

F€7H1,ﬂ2(w’a1’a2) = _|:8( 2) (,LLl,,UQ,0,0,0,E) H(:uluu%waal,a%g)+(wva1’a2)'

w, 1,

Suppose that (w,a1,as) € B,(0) = {(z,61,61) € D?RY) x Rx R : |(z,581,51)] < p} with
p < 1 to be detemined. From (5.2) we have

OH
)(/’Lla 12, 07 07 0,8)(’[1), 0417042)

1
HFe,mwz(w’al’O@)H < FQHH(M’M’W’@MO@’&) - W

1 k1+k k1+k ki1+k 2 rk1+k ki1+k k1+k
- @HD‘]EEH Q(Zuiﬁg : +Zu;g : +w) — Dt Q(Zu:g : +Zu;; 2)w
— ak1+k2(‘u1,€)£‘u1 _ ak1+k2(u2,€)éu2u
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where Cs is as in Lemma 5.1. From above and (2.3) we deduce

e oz (w0, 01, 2|
1
< DAl + it ) - D + 0 )

= D (4 0 g, ) — D2 (B

1 k1+k k1+k k1+k k1+k k1+k k1+k
< gD (e sl ) - Dptrh ahzhe 4 syt

- DR

1
b DA (efit 4 i) — D) — DS, (520)
From Lemma A.3 it follows that

| DfErhe (zfathe 4 2l the ) — D flithe (zputhe 4 gRithe) — D2 plathe (gRithe 4 ZRthe) g |

IN

H1,€ H2,€ H2,€

1
||w||/ HDQfEkH—Iw (Zk1+k2 + Zk1+/€2 4+ tw) _ D2ffl+kf2 (Z;]Zj;]” + Zk1+/€2)H dt
0

const ||w||2(1 n IIwH%), it N < 6, .
< const p™in{Z(N+2)/(N=2)} (5.21)

N2 )
const ||w| V-2, it N >6,
On the other hand

k1+k: k1+k: k1+k k1+k: ki1+k ki+k ki1+k
HDf€1+ Q(Z,ui,t 2 +Zﬂ§f; 2) _Df€1+ Q(Z“LJ; 2) —Df€1+ Q(Z“;:g 2)H

< HDfakﬁ-kQ (Z,]Zj;b + Z;]E,t]m) _ Df6k1+k2 (Z;]ji,e + Z;]Z,a) H
+ || DfERe (girthe) — DfERe (i || 4 | DB (g kRe) — DR (20 )|
+||DfEtR (e 2k ) — DRk ) — Dtk ke ). (5.22)

From Hélder inequality and estimate (A.4), with s = 2* — 1 it follows that for any h € DV2(RY)

| (Df§1+k2 (Zkl + ZkQ

H1,€ H2,€

) _ fol+k2(zkl )_ folJer(sz ),h)‘

H1,€ u2,e

L O el k) [l + 2207 =GR = Gl

N+2

2N
k ko \2°—1 Ey \2%—1 ko \2°—1| N1z | 2V
SCOHSHh”(/RN ‘(2u176+zu3,€)+ - (Zu},a)+ - (Zu3,6)+ ‘ ’ >
N+2

< const |h||</ N“)
RN
N+42

k1 5 ky |22 ko 5N k122 B
< const ) ([ Jebt o ¥ 1oty 8 el ) (5.23)

k 4k k 4k
|ZM},5| N2 |Zu3,5| + |Zug,e| N=2 |Z;&,e|

M1, H2, H1,E
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From (5.23) and Lemma 4.1 we deduce that

HDfEkl-Hw (Zkl + Zk2 ) _ Df8k1+k2 (Z;]E,e)_Dfekl—’—m (Zk2 )

pe T Fpae p2,e
< const [1/17 = + 1/%71] —max {2,252 } (5.24)
From (A.7), Lemma 4.3, and Lemma 4.2 we find that
1D F2HE (e + 23 £5) = DI (50 + 22 )|
+ (| D () = DER (I + DS (2 ) = DI (52|
< const | [t (a1, €) — w0 (o, @) + [t (g, ) — 0 gz, )|
< const [e|[f1(v) + fa(v)]. (5.25)

From (5.20), (5.21), (5.22), (5.24), and (5.25) we deduce the existence of a positive constant cy4
such that

HF&MJ@ (w7 Qaq, aQ)H < [pmin{27(N+2)/(N_2)} + g(”) (5'26)

where g(v) is defined in (1.11). On the other hand from (A.8) we obtain for some positive
constant cj

||F€,u1,u2 (w, a1, a2) — Fe iy o (w/’ H/l, ,ulz)H

< const [[ DB (2124 + 2R ) — DR (et 4k )

—D? fﬁ-kz (zﬁi,t]m + zﬁ;;’”)(w _ wl)H

1
< const ||[w — w'|| / | D? itk (zﬁ}t]” + zﬁ;fgb + '+ t(w — w'))
0

2 pkitko [ k1+k 1tk
-D sl+2(zu$2+zu; 2)||dt

< csljlw— /|| prin{14/(N=2)} (5.27)

From Lemma 2.2 we get that
limg(v) = lim ¢g(rv)=0

v—0 V—+400

hence there exists L > 0 such that

gy 7t <min {0 T for all v e (0,1/2) U (L, +00) (5.28)
B 2¢cy’ 2c5 ’ ’

Let us choose p = p(v) = g(v)max{%’%—:rg } With this choice of p from (5.26) and (5.27) it
follows that F. ,, ., maps the ball of radius p(v) into itself and it is a contraction there. From the
Contraction Mapping Theorem we have that F; ,, ,, has a unique fixed point in the ball of radius
p(v), namely there exists a unique triplet of functions (w(ul, W2, €)y o (p1, oy €), aa(pur, po, 5)) €
DL2(RN) x R x R such that (i — 4ii) are satisfied.
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To prove estimates (iv — v) we observe that w and «ay, i = 1,2, are implicitly defined by
H(p1, p2, w, a1, a9,e) = 0. From Lemma 5.1, for any pq € (a1,b1), g2 € (vag,vbe) and |e| < &

(o) @
8(w,a1,a2) 2

and hence there exists a positive constant C' such that

(rwaa)

for v either large or small enough. Since 0, w(p1, po,€) satisfies

<

(/,1,1 2 70707075)

<C

(/,1,1 2 7w(/>1'1 yH2 75) 1 (:u'l yH2 75) 2 (/,1,1 yH2 76)75)

gmw((/haﬂzﬁ)) < OH )1 OH
Q1 (M1, H2,€) | = —\ 57—~ i
8/1/1 a9 (/’[/17 /’L27 8) a(w, al’ a2) (/"17:11'27/“)70{170‘275) alul (ﬂ17ﬂ27w7a17027€)
we have
~||0H
0wl < € 5
'LLI (“17“27/“)70{17&2)

- d .
< C[HDfoﬁkQ(Zﬁ}?;@ + z,’j;,t’” + w(p, p2,€))0p, Zﬁi,tb - al(m,m,&)d—mful

. d .
- 8;11 afi ke (p1, 5)§u1 — Mtk (p1, 5)d—lu1§u1

From (2.3) we have that

| (w2 56| 629

DY (e ) = aP R s )

which, differentiating with respect to u1, yields

D2 £1+k2 (

. d .
k1+k ki1+ks __ k1+k k1+k
Z,ui,z—: 2)8}11%&,5 ? = aﬂla ! 2(:[‘1’6)5#1 +a™ Q(Ml’e)d,ul 5/.11

hence from (5.29) we have

”aﬂlw(ula M2, 8)”

~ 2 rk1+k k1+k k1+k 2 rk1+k k1+k k1+k
S C|:H(D 51+ Q(Zuij; ? +Zu;j; 2 +UJ(/11,,LL2,€)) -D 51+ 2(’2;&:2 2))8,11«1’2;&:2 2

d . d .
- a1(H1,H2,5)d—mfu1 + ‘ (w(ul,ﬂz,5)a d—mfm) u . (5.30)
We have that

[((D2pthe(afche 4 hthe by, g, ) — DR (21 k), 25 v)

*

* k1+k k1+k 22 k1+k2\2*— k1+k
== 1)‘ /sz(l +e(ky + ko)) [(2a1 2% + 20 22w, €)= (2 DY Oz £

k1+k k1+k 2% -2 k1+ko\2%— k1+ko\2%— k1+k
< const {/RN ‘(z“i’t Tt +w(“1’“2’5))+ — (2 f P (2un £ 2)7 2‘ Opur 2y 2201

2% -2
s [ b 0 ol (531)
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If N > 6, then 2* —2 < 1, hence using (A.6)s with s = 2" — 2 and r = ¢ = 2/(N — 2), Holder
and Sobolev inequalities we obtain

kitks | kitk 2*—2 Kbk 2" —2 Kbk | 2" —2 ko +k
/RN‘(ZHEZ2+Zﬂ§7—22+w(’u1”u’2’€))+ LG R CH A "%Zui?\!v!

. 2 2
<const | [,z 0l + [ Jste e e 0o |

2
. N N \ N
< const ol £ 21 latpn )24 ([ 1abit gl ) 7] ea
From (A.10) and (2.5) it follows that

ki1+k : k1+k
10y 2y €721 < g | + 18y w™ 2 (pa, )| < e (5.33)

for some constant ¢ > 0 depending only on ay,b1, A\, N, K1, K5. From (5.32), (5.33), (4.3) and
(7i1) we deduce for N > 6

k1+k ki1+k =2 k1+ko)2"—2 k1+ko\2"—2 k1+k
/RN (Zui:‘g *+ Zuéj; ’ +w('u1"u2’5))+ - (Zuij; 2)+ - (Zu;j; 2)+ ‘ aﬂlzuiz ?lv]
< const |[v]| g(v) 7. (5.34)

For N <6, from (A.5)s with s =2* — 2, Lemma 4.1, and (¢i7) we obtain

2% —2 2% —2 2% —2
J L AR i i R Crove i [ 3

< const |[v|| g(v)z2. (5.35)

=

From Holder inequality, (A.11), and (3.16) we obtain

N+2

2% -2 SN oy \ 2N
J e e T R O I e Il
RN RN
From above, (4.5), (4.6), and (2.5) we deduce

. ~ 4
[V 0t e < const ol [l Utad 1 g00]. )
RN

From (5.31), (5.34), (5.35), and (5.36) we obtain

I(Df2 75 (i £ 4 2 2% o+ wln, o, €)) = D22 (20 E42)) 2 £

< const [|e|min {151} + g(v)™® {%%}] (5.37)

From (A.13) we deduce that for any u > 0

d . 1 Uu(31 + %)
& = p
dp" [|21]]
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hence

d “1 B+ A 1
Ll = : — ¢\, Nt 5.38

for some constant ¢(A, N) depending only on A and N. From (iii) and (5.38) we deduce

st 2,00 |+ [ (i 2,0), )| < comst gy {23 (5.30)
’ ’ d,ul M1 ) ’ ’d,Uzl [751 =

From (5.30), (5.37), (5.39) we get (iv). The proof of (v) is analogous. O

Proposition 5.3. Under the assumptions of Proposition 5.2 we may choose & small and L large
enough such that for all v € (0,1/L) U (L,400) and |e| < & the manifold

Ze = {zfrthe g hbke (g, poe) 0 opn € (a1,by), po € (vas,vbo)}

1€ p2,€
is a natural constraint for fFitkz,

Proof. Let u = zF1tke 4 2kithe oy, o e) € Z. be a critical point of fFitk ‘Z , L.e.

H1,E H2,€
(ffl+k2 (u)az'}n + a,u1wkl+k2 (lu‘lae) + aﬂlw(:ufla/l?’e)) = 0’ (540)
( fl"'kQ(u),ém + 8M2’U}kl+k2(,u2,€) + augw(:ulauQ?E)) =0. (541)

We have to prove that D f¥+%2(y) = 0. From statement (ii) of Proposition 5.2 we have that

fol+k2 (U) =C1 (/1/17 M1, 8)'élll + C2 (/1/17 M1, 5)"3;12 (542)

for some ¢ (p1, p1,¢€), ca(p1, u1,€) € R. From (5.40), (5.41), and (5.42) it follows that

Cl(:ulnul’g)[uz.m H2 + (Z.,ul’aﬂlwkl—’—]w(:ul’e)) + (éﬂlaa}tlw(ul’ﬂ%e))]
+ 62(M17N175)[('§u1=2m) + (2M2=8u1wk1+k2 (Mlag)) + (Z.'uzaamw(ﬂhﬂ%g))} =0 (5.43)

and

02(,“'17/“75) [Hzm ”2 + (éumamwlier(ﬂ%g)) + (zu27au2w(ﬂlaﬂ27€))]
+ Cl(:ula M1, 5) [(’éﬂl?éll&) + (éﬂl’aﬂ2wk1+k2 (:u2’ 6)) + (’é/»ll ) a}mw(ul’ H2, 5))] =0. (5'44)

From statement (i) of Proposition 5.2 we have

(95 w(p1, p2,€)) =0 and (5.45)
(éﬂlaw(ul,l‘%e)) =0 (5'46)

and differentiating (5.45) with respect to 1 and (5.46) with respect to o we get

(s O w(p, po,€)) =0 and (2, 0 w(p, p2,€)) = 0. (5.47)
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Differentiating (5.45) with respect to pg and (5.46) with respect to p; we get

(éﬂwa}mw(ul’l‘%e)) = _(éuz’w(uluu%g)) and
(éﬂlaa}tlw(ul’ﬂ%e)) = —(5u1,w(M1aH2,5))

and hence in view of (A.12) and (iii) of Proposition 5.2 we obtain

‘(,:/':M,@Mw(ul,,ug,e)ﬂ < cyf2g(y)max{%’%—:r§} and (5.48)
G By (i, 2, 9))| < gy 1335 (5.49)

for some positive constant ¢ depending only on A\, N, a1, az, by, ba. Since 2, solves the linearized
problem

) A . “_g.
“Bhn — ppin = @7 D, (5.50)

multiplying by Z,, we obtain
. . * 2%_9. .
(Zps ) = (27 = 1) /RN Zun A fpe
and hence using (A.11) and (4.5) we get

N—-2

|(Zpur s Zus )| SCV?I[V%‘FVi%]_T- (5.51)
From (5.43), (5.44), (A.10), (2.5), (5.47),(5.48), (5.49), and (5.51) we deduce

ex(p 11,2) [ 12 + O (e 1552 1) 4+ 0 gy 345 )

N—-2

+co(py, p1, €)v [O([u” 2 ) + O<]€\min bﬁ})} =0 (5.52)
and

ca(pa, p, €) [Hngll2 + u*20(|e|mi“{1’ﬁ}) + ﬂo(g(y)max{%v%—li})]
N—2

+ ¢ (pr, 1, )t [O([V’h 2 ) + O(|e|min bﬁ})} =0. (5.53)

From (5.53) we deduce that for |e| sufficiently small and v either sufficiently small or sufficiently
large
N-2

ea(pr, s )| < Jea(pr, s v [0 4w 77 ) ol iw= b)) )

which together with (5.52) yield

1 N-2

le1 (g1, g1, €)| [Ilz‘m\l2 + O(|e|mm{lvﬁ}) n O<g(y)max{§’m}>}
< lex(pun, s )| [O([u” 4 y—wx]f(N72)> n O(,g‘min{z%}ﬂ.

Therefore for & sufficiently small and L sufficiently large, the number ¢q(u1, 41, €) must be zero
and hence from (5.54) also ca(u1, jt1,€) = 0. Then from (5.42) D fFi+k2(y) = 0. ]
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6 Expansion of the constrained functional

In view of Proposition 5.3, when |¢| is sufficiently small and v is either large or small enough, to
get critical points of the functional f] katk2 it is enough to find critical points of the two variable
function ®. defined by

O 1 (a1,b1) X (vag,vby) — R, Doy, po) = fEHR2(2fER 4 28R (g, g, e)).

Proposition 6.1. Let A < (N —2)2/4 satisfying (1.4) and assume (1.6) and (2.11) hold. Then
there exists a constant C' = C(A\, N, a1, az,b1,ba, ||K1|| 1, || K2|lzc) >0 and some & sufficiently
small such that if |e| < & and

2g(v) BN > 0 (6.1)

then the functions 0,,®¢, i = 1,2, admit the following expansions

O D= (pi1, p12) = =0, T (1, 12) + 0(e), (6.2)
Oy ®c(pur, p2) = €0y, T (paa, p12) + v o) (6.3)

as € — 0 uniformly with respect to (pu1,p2) € (a1,b1) X (vag,vbe), where

T(p1, p2) = T (1) + T% (2) (6.4)
and T%i is defined in (2.8).

Proof. From (ii) of Proposition 5.2, we have that

Ol 12) = (DI (82 1 2505 1wl ), B (225 + w0, ,6)
= (O/‘“l”€2 (Ml,&t)@“,zm) + o (pa, pi2, € )(5;“,%1)
+ (a2 (py, )+a1(u1,uz, (€ Oy (w72 () + Wy, o, 2)))

( k1+k2 (1 ( (fum Ml( k1+k2(ﬂl75)+w(”1’”2’€)))

+( (

))

a 2)
2,5 + a2 M1, 12, € ) g,uzaz/.u (65)

d

2,€) + aa(p1, o, €

ozkl +/€2

From (éi7) of Proposition 5.2, (6.1), and (A.10) we deduce that

- . max{; u} 9
o1 (g1 12, €) (S 2y )| < N2 lg ()™ V2 W72 < comst [e]* = o(e). (6.6)
From (2.4), (zii — iv) of Proposition 5.2, (6.1), and (2.5) we get

‘ (ak1+k2( ( k1+k2(

pi1,€) + o (1, 112, €)) (§ur s Opur (w0 pi1,€) + wlp, piz, €)))|
< const (|e] + ()™ LNZ ) [0, 041 (11, 2) + B, 2. 0)]| = o0). (6.7

Similarly

‘(O‘lier (12, €) + aa(p, po, 5)) (éﬂw o (wliFk2 (1,€) + w(p, po, 6))) ‘ = o(e). (6.8)
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Testing equation (5.50) with 5#2 we get

(Euas Za) = (2 = 1) /]RN Z;2Lji2émfuz

hence in view of (A.19), (A.11), and (4.5)

Kéuw'ém)‘ < const /]RN 2;2;_12#2 < const /RN Z%*—lz,, < const g(y)min %%} (6.9)
From (2.4), (¢ii) of Proposition 5.2, (6.1), and (6.9) we find
(akl+k2 (HQ’ 6) + az (:ul’ K2, 5)) (éuw ’éﬂl) = 0(5)' (6'10)
Multiplying —Az,, — ﬁzm = zﬁj_l by Z,,, we obtain
; Tl = 11
M1 ~pr) T M1 H1 T :
(2 2y ) ox 25 7% 0 (6.11)

while testing (5.50) with w*'**2 (11, ¢) and taking into account (2.2) we get

(2" —1) /RN 20 PR R (g )2, = (B, w T (g, e)) = 0. (6.12)
From (2.3), (2.2), (6.11), and (6.12) we deduce

(@R (1 )€ ) = (DFHR2 (2, + w2 (g, 2)), 2

=—¢ /RNU“ + ko)zp A, — e/RN(kzl + k) (2, + 02 (g, )T 1 = 277 4
- /R (G BB, )T — 20T = (27 = D Tt R () 2
+ [(ém,zm) — /RN ziz_lz’m} —(2"-1) /RN ziz_zwkﬁb(ﬂl,a)ém
_ —5/RN(1€1 T e/RN(kzl o) (2 + b2 (g, )2 =1 = 220z,
- /RN ((zpy +wh1R2 ()27 — 22070 — (25— 1)22 2wk R €)) 2, (6.13)

Using (A.3)s with s =2* — 1, (A.11), (2.4) and Hélder and Sobolev inequalities we have

8/]RN(kl + kZ)((Zul + wk1+k2(ﬂl75))?:71 - Zi:_l)zm

2*71)

<constlel [ (o)l 2 4 G, o) )

< const ]5|(||w"“”<“‘2 (n1,e)|| + ||wk1+k2(u1,s)||2*71) < const |¢]? = o(e). (6.14)
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Estimate (A.1)s with s =2* — 1, (A.11), Holder and Sobolev inequalities, and (2.4) yield

\ [ o, ) = 57— 20 = 1), 9) 5

< const / [ (g €)1z, < const [|wF TR (1, €) |27 < const e[ T = o(e) (6.15)
RN

if N > 6, and

/RN (w2 (g, )T 7 = 20 7h = (28 = D2l w2 (g, 6)) 2

< const /N (|wk1+k2(ﬂl,€)|2*il + w2 (g €) 22;2;73)%1
R

< const (12 iy, &) 7+ [l 42 (g, ) ?) < const g2 = o(e)  (6.16)

if N < 6. On the other hand, (A.11), (2.13), and (6.1) imply that

2%—1
€ koz z
/RN B TH

Collecting (6.13)—(6.17), we have

< const |¢| / ’kz’Zﬁj < const |5\g(u)1\2’752 = o(g). (6.17)
RN

(O[kl+k2(;u17€)£/.11”éﬂl) = —¢ /RN k‘lzij_lz'm + 0(6). (6.18)

From (6.5), (6.6), (6.7), (6.8), (6.10), (6.18), we finally get

Oy Pe(p1, p2) = _E/N klzizilém + o(e)
R

uniformly with respect to (p1, p2) € (a1, b1) x (vag, vba), namely
Oy D= (11, p2) = —e(T%) (1) + 0(€) = =€y, T (1, p2) + 0(e).-

Expansion (6.2) is thereby proved. The proof of (6.3) is analogous. O

7 Study of I' and Proof of Theorem 2.6

Stability properties of the topological degree allow to reduce the computation of the topological
degree of the jacobian map of ®. to the computation of the topological degree of the jacobian
map of I', as the following lemma states.

Lemma 7.1. Under the same assumptions of Proposition 6.1, there exists € such that for all
le] <&

deg ( — e acd,,Q,, O) = deg (Jac f, Q., O), (7.1)

where Q, := (a1,b1) X (v az,vbs).
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Proof. From (6.2) and (6.3) we have that
deg ( — e acd,,Q,, 0) = deg <Jacf +&e, Qu, 0)

where &, = 0(1)( 1 ). We can choose 6 > 0 such that ((—6,8) x v=1(—4,8)) NJac r0Q,) =10
Let & be such that for all |¢| < & we have £, € (=6,6) x v™1(=6,6). From well-known properties
of the topological degree it follows that

deg <Jacf +&¢, Ql,,0> = deg (Jacf, Q., 0).

The lemma is thereby proved. o

In order to prove that deg (Jac f, Q,,,O) # 0 we use the theorem below, which is due to
Miranda, see [23].

Theorem 7.2. [Miranda’s Theorem] Let Q = [a],0of] X [ay, 03] X -+ x [a , o) ] and let
f=(f1,far- o, fr) : Q — RF be a continuous function. Set v;= =0QN{x = (v1,...,7x) : z; =
a; }. Assume that fi{'y,i never vanish, have a fized sign, and

sign (fz‘fyj) - sign (fl{f) < 0. (7.2)
Then there exists T € QQ such that f;(Z) =0 for alli=1,2,..., k. Moreover if we set

+1 z’ffihl_ <0< fl-\ﬁ,
o(i) = ' '

then

:E’r

deg(f,Q,0) =

Proposition 7.3. Let A\ < (N—2)2/4 satisfying (1. ) and assume (1.6) and (2.11) hold. Suppose
that K1 € L®RN) N CYRN) satisfies either (1.8); or (1.9);, and Ko € L¥(RY) N CYRY)
satisfies either (1.8); or (1.9);. Then

deg (Jac f, Qy,0> £ 0.

Proof. We use Miranda’s Theorem with £ = 2, a] = ay, af = b1, ay = vao, a; = vby, and
f =JacI'. Corollary 2.5 ensures that (7.2) is satisfied. The conclusion follows from Theorem 7.2.
g

Proof of Theorem 2.6. From Lemma 7.1 and Proposition 7.3, it follows that

deg (Jac @.,Q,.0) #0,

provided |e| < & and (6.1) holds. From the solution property of the topological degree it follows
that ®. has a critical point (p1, u2) € @,. From Proposition 5.3 we deduce that zﬁ}t’” —|—zﬁ;,+k2 +
w(p1, o, €) is a critical point of f¥1+*2 and hence a nonnegative solution to equation (77)\7 )

Positivity of solution outside 0 follows from the Maximum Principle a
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Appendix

In this appendix we collect some technical lemmas. The first result provides some elementary
inequalities, the proof of which is omitted since it is quite standard.

Lemma A.1. The following inequalities

C(as b2+ [b]*) if s >2

(a+b)% — a5 —sa’ b < (A1)
T i ‘ C |b® ifl <s<2,

(a+b)i —af| <CP® if0<s<1 (A.2),

(a-+ )% — ab| < CQlal ol + bF) ifs>1 (A3),

hold for some C = C(s) > 0 and for any a,b € R. Moreover

Cllal*= ol + lallbl*~") if s > 1

(a+b)% —as — 0| < (A4),
‘ T T e )b ifs<1

forany a,b e R, r>0,q>0, r+q=s and for some C = C(s,r,q) > 0.

Corollary A.2. If s > 1 there exists a constant C' = C(s) > 0 such that for any a,b € R there
holds

(a+b+w)i —a = b3 < C(lwl* +Ja+b* | +|al*~ Mo + [al []*7). (A:5)s

Ifs<1landr>0,q>0,r+q=s there exists a constant C = C(s,r,q) > 0 such that for any
a,b € R there holds

(a+b+w); —a} —bi

< C(jwl” + [a["[b]7). (A.6)s
Proof. Since

[(a+b+w)5 —a® —b%| < |(@a+b+w) — (a+b)5 |+ |(a+b)] —a’f — b,
(A.5)s follows from (A.3)s and (A.4)s, while (A.6)s comes from (A.2)s and (A.4)s. 0

Lemma A.3. For any k € L>®(RY) there exist C = C(N, [kl oo vy) > O such that for any
le] <1 and u,w € DH?(RY)

4

IDfE(u+w) = DfE@)] < Cllwll(Jull 72 + flw] 7) (A7)

6N 6=—N .
Ol (Jlull 3% + ] %) i 3< N <6
1D (4 w) — D )] < (A8)

Clw|| 7= if N> 6,
and

| D2 £ (u) = D fo(u)]| < Clellful 7. (A.9)
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Proof. From Holder and Sobolev inequality we have that for any v € DV2(RY)

|(DrE @+ w) = DfEw),v) | = '<w,v> - /R (k@) ((wtw)P ™ —uf vda

N+2
2N

21 o125\ N
<l + 1+ Dbl o el oy ([ |+ w2~ =175

2

N2
<o+ [, oo 2182) ]
RN

Estimate (A.7) follows from (A.3)s with s = 2* — 1. Using again Hélder and Sobolev inequality,
we have that for any vy and vy € DH2(RY)

([P +w) = D2fE@or,vs)

= (2" - 1)‘ /RN(l +ek(z)) ((u+w)2 "2 — w2 ") vivp dr

2l

* __ * E
< (2" = DL+ ([l oo @) l[or | 2 v o2l 2 vy ( /R w7 )

2
. v o N\ N
s0||v1||||v2||<4N\<u+w>i f-uy 2\2) -

Using (A.3)s if N < 6 and (A.2), if N > 6 with s = 2* — 2 we get estimate (A.8). Estimate
(A.9) follows easily from Holder inequality. |

Lemma A.4. There holds
1l = Sl and |zl = i (A.10)
Zull = =|Z1|| an Zull = = 21| .
S ST

Moreover there exists a positive constant C depending only on A and N such that

2ul < cutzy, (A.11)
2] < cp?z,. (A.12)

Proof. Let U, : DY (RY) — DL3(RY) de defined in (5.8). Differentiating the identity
2o = Upzs ), with respect to o we obtain

) 1. . . 1.

2y = ;Uﬂzl and %, = FUﬂzl. (A.13)

Since U, conserves the norm, we obtain

1 1
Izl = =2l and [zl = Izl
1 L o ,u2
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thus proving (A.10). An explicit calculation shows that

2ay 2(N-2-ay)
(@) = AN, )Y - 2 (1 B Afa_A !m\;2 - \xim_:_;) - (A.14)
(lal ™% + Jof 7=
hence for some positive constant ¢ depending only on N and A
1Z21(z)] < cz1(x). (A.15)
From (A.13) and (A.15), it follows that
(@) = T /)] < en” T 2w/ ) = p (@)
thus proving (A.11). The proof of (A.12) is similar. O

Lemma A.5. Let Q be an open bounded subset of RY. Then there exists a positive constant
C = C(\ N) such that for any p >0 and s > 1

* . s _ *__ox s _ 2a
L1 2 el =204 s < 0% 07) (A.16)
Q

and

[ Il e o < o 1 3) (A.17)
Q

where z,, respectively éw are defined in (1.1), respectively (2.6), and x denotes the Kelvin
transform defined in (3.4).

Proof. A direct calculation shows that

Eule) = %j‘(w/u) (A.18)

where the explicit expression of 21 is given in (A.14). Hence from (A.15)
()] < (A, N)z,(2) (A.19)

and

() @) = meywz)z.l( )

[1Z1]] plef?
x

< c()\,N)M_¥|x|_(N_2)Z1 <W> = c(\, N)zj(z). (A.20)

A direct calculation shows that

day N-2

shlw) = AN N T o] (1 2 a2 ) T (A21)
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From (A.20) and (A.21) it follows that for some positive constant ¢ depending only on N and A

(@)Y 26 (@) <o’ AR g TR

hence for some positive constant ¢ depending only on N and A

2ay

[ 2G50 < 0 83) [ o e = o0, P 0-2)
Q Q

Estimate (A.16) is thereby proved. From (A.19), (1.1), and (1.2) we get

/ 2226, o]~ @ =259 g < CM—NJQS(l—ﬁ?z) / 272" dz = C(\, N~ Ni2s(1-72)
0 0

thus proving (A.17). O
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